Merge branch 'v6v7' into devel
[linux/fpc-iii.git] / security / keys / key.c
blob1c2d43dc5107ecbe66bb8a5077876147ab785719
1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
24 static struct kmem_cache *key_jar;
25 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
28 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
31 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
33 unsigned int key_quota_maxkeys = 200; /* general key count quota */
34 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
39 static void key_cleanup(struct work_struct *work);
40 static DECLARE_WORK(key_cleanup_task, key_cleanup);
42 /* We serialise key instantiation and link */
43 DEFINE_MUTEX(key_construction_mutex);
45 /* Any key who's type gets unegistered will be re-typed to this */
46 static struct key_type key_type_dead = {
47 .name = "dead",
50 #ifdef KEY_DEBUGGING
51 void __key_check(const struct key *key)
53 printk("__key_check: key %p {%08x} should be {%08x}\n",
54 key, key->magic, KEY_DEBUG_MAGIC);
55 BUG();
57 #endif
60 * Get the key quota record for a user, allocating a new record if one doesn't
61 * already exist.
63 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
65 struct key_user *candidate = NULL, *user;
66 struct rb_node *parent = NULL;
67 struct rb_node **p;
69 try_again:
70 p = &key_user_tree.rb_node;
71 spin_lock(&key_user_lock);
73 /* search the tree for a user record with a matching UID */
74 while (*p) {
75 parent = *p;
76 user = rb_entry(parent, struct key_user, node);
78 if (uid < user->uid)
79 p = &(*p)->rb_left;
80 else if (uid > user->uid)
81 p = &(*p)->rb_right;
82 else if (user_ns < user->user_ns)
83 p = &(*p)->rb_left;
84 else if (user_ns > user->user_ns)
85 p = &(*p)->rb_right;
86 else
87 goto found;
90 /* if we get here, we failed to find a match in the tree */
91 if (!candidate) {
92 /* allocate a candidate user record if we don't already have
93 * one */
94 spin_unlock(&key_user_lock);
96 user = NULL;
97 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
98 if (unlikely(!candidate))
99 goto out;
101 /* the allocation may have scheduled, so we need to repeat the
102 * search lest someone else added the record whilst we were
103 * asleep */
104 goto try_again;
107 /* if we get here, then the user record still hadn't appeared on the
108 * second pass - so we use the candidate record */
109 atomic_set(&candidate->usage, 1);
110 atomic_set(&candidate->nkeys, 0);
111 atomic_set(&candidate->nikeys, 0);
112 candidate->uid = uid;
113 candidate->user_ns = get_user_ns(user_ns);
114 candidate->qnkeys = 0;
115 candidate->qnbytes = 0;
116 spin_lock_init(&candidate->lock);
117 mutex_init(&candidate->cons_lock);
119 rb_link_node(&candidate->node, parent, p);
120 rb_insert_color(&candidate->node, &key_user_tree);
121 spin_unlock(&key_user_lock);
122 user = candidate;
123 goto out;
125 /* okay - we found a user record for this UID */
126 found:
127 atomic_inc(&user->usage);
128 spin_unlock(&key_user_lock);
129 kfree(candidate);
130 out:
131 return user;
135 * Dispose of a user structure
137 void key_user_put(struct key_user *user)
139 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
140 rb_erase(&user->node, &key_user_tree);
141 spin_unlock(&key_user_lock);
142 put_user_ns(user->user_ns);
144 kfree(user);
149 * Allocate a serial number for a key. These are assigned randomly to avoid
150 * security issues through covert channel problems.
152 static inline void key_alloc_serial(struct key *key)
154 struct rb_node *parent, **p;
155 struct key *xkey;
157 /* propose a random serial number and look for a hole for it in the
158 * serial number tree */
159 do {
160 get_random_bytes(&key->serial, sizeof(key->serial));
162 key->serial >>= 1; /* negative numbers are not permitted */
163 } while (key->serial < 3);
165 spin_lock(&key_serial_lock);
167 attempt_insertion:
168 parent = NULL;
169 p = &key_serial_tree.rb_node;
171 while (*p) {
172 parent = *p;
173 xkey = rb_entry(parent, struct key, serial_node);
175 if (key->serial < xkey->serial)
176 p = &(*p)->rb_left;
177 else if (key->serial > xkey->serial)
178 p = &(*p)->rb_right;
179 else
180 goto serial_exists;
183 /* we've found a suitable hole - arrange for this key to occupy it */
184 rb_link_node(&key->serial_node, parent, p);
185 rb_insert_color(&key->serial_node, &key_serial_tree);
187 spin_unlock(&key_serial_lock);
188 return;
190 /* we found a key with the proposed serial number - walk the tree from
191 * that point looking for the next unused serial number */
192 serial_exists:
193 for (;;) {
194 key->serial++;
195 if (key->serial < 3) {
196 key->serial = 3;
197 goto attempt_insertion;
200 parent = rb_next(parent);
201 if (!parent)
202 goto attempt_insertion;
204 xkey = rb_entry(parent, struct key, serial_node);
205 if (key->serial < xkey->serial)
206 goto attempt_insertion;
211 * key_alloc - Allocate a key of the specified type.
212 * @type: The type of key to allocate.
213 * @desc: The key description to allow the key to be searched out.
214 * @uid: The owner of the new key.
215 * @gid: The group ID for the new key's group permissions.
216 * @cred: The credentials specifying UID namespace.
217 * @perm: The permissions mask of the new key.
218 * @flags: Flags specifying quota properties.
220 * Allocate a key of the specified type with the attributes given. The key is
221 * returned in an uninstantiated state and the caller needs to instantiate the
222 * key before returning.
224 * The user's key count quota is updated to reflect the creation of the key and
225 * the user's key data quota has the default for the key type reserved. The
226 * instantiation function should amend this as necessary. If insufficient
227 * quota is available, -EDQUOT will be returned.
229 * The LSM security modules can prevent a key being created, in which case
230 * -EACCES will be returned.
232 * Returns a pointer to the new key if successful and an error code otherwise.
234 * Note that the caller needs to ensure the key type isn't uninstantiated.
235 * Internally this can be done by locking key_types_sem. Externally, this can
236 * be done by either never unregistering the key type, or making sure
237 * key_alloc() calls don't race with module unloading.
239 struct key *key_alloc(struct key_type *type, const char *desc,
240 uid_t uid, gid_t gid, const struct cred *cred,
241 key_perm_t perm, unsigned long flags)
243 struct key_user *user = NULL;
244 struct key *key;
245 size_t desclen, quotalen;
246 int ret;
248 key = ERR_PTR(-EINVAL);
249 if (!desc || !*desc)
250 goto error;
252 desclen = strlen(desc) + 1;
253 quotalen = desclen + type->def_datalen;
255 /* get hold of the key tracking for this user */
256 user = key_user_lookup(uid, cred->user->user_ns);
257 if (!user)
258 goto no_memory_1;
260 /* check that the user's quota permits allocation of another key and
261 * its description */
262 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
263 unsigned maxkeys = (uid == 0) ?
264 key_quota_root_maxkeys : key_quota_maxkeys;
265 unsigned maxbytes = (uid == 0) ?
266 key_quota_root_maxbytes : key_quota_maxbytes;
268 spin_lock(&user->lock);
269 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
270 if (user->qnkeys + 1 >= maxkeys ||
271 user->qnbytes + quotalen >= maxbytes ||
272 user->qnbytes + quotalen < user->qnbytes)
273 goto no_quota;
276 user->qnkeys++;
277 user->qnbytes += quotalen;
278 spin_unlock(&user->lock);
281 /* allocate and initialise the key and its description */
282 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
283 if (!key)
284 goto no_memory_2;
286 if (desc) {
287 key->description = kmemdup(desc, desclen, GFP_KERNEL);
288 if (!key->description)
289 goto no_memory_3;
292 atomic_set(&key->usage, 1);
293 init_rwsem(&key->sem);
294 key->type = type;
295 key->user = user;
296 key->quotalen = quotalen;
297 key->datalen = type->def_datalen;
298 key->uid = uid;
299 key->gid = gid;
300 key->perm = perm;
301 key->flags = 0;
302 key->expiry = 0;
303 key->payload.data = NULL;
304 key->security = NULL;
306 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
307 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
309 memset(&key->type_data, 0, sizeof(key->type_data));
311 #ifdef KEY_DEBUGGING
312 key->magic = KEY_DEBUG_MAGIC;
313 #endif
315 /* let the security module know about the key */
316 ret = security_key_alloc(key, cred, flags);
317 if (ret < 0)
318 goto security_error;
320 /* publish the key by giving it a serial number */
321 atomic_inc(&user->nkeys);
322 key_alloc_serial(key);
324 error:
325 return key;
327 security_error:
328 kfree(key->description);
329 kmem_cache_free(key_jar, key);
330 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
331 spin_lock(&user->lock);
332 user->qnkeys--;
333 user->qnbytes -= quotalen;
334 spin_unlock(&user->lock);
336 key_user_put(user);
337 key = ERR_PTR(ret);
338 goto error;
340 no_memory_3:
341 kmem_cache_free(key_jar, key);
342 no_memory_2:
343 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
344 spin_lock(&user->lock);
345 user->qnkeys--;
346 user->qnbytes -= quotalen;
347 spin_unlock(&user->lock);
349 key_user_put(user);
350 no_memory_1:
351 key = ERR_PTR(-ENOMEM);
352 goto error;
354 no_quota:
355 spin_unlock(&user->lock);
356 key_user_put(user);
357 key = ERR_PTR(-EDQUOT);
358 goto error;
360 EXPORT_SYMBOL(key_alloc);
363 * key_payload_reserve - Adjust data quota reservation for the key's payload
364 * @key: The key to make the reservation for.
365 * @datalen: The amount of data payload the caller now wants.
367 * Adjust the amount of the owning user's key data quota that a key reserves.
368 * If the amount is increased, then -EDQUOT may be returned if there isn't
369 * enough free quota available.
371 * If successful, 0 is returned.
373 int key_payload_reserve(struct key *key, size_t datalen)
375 int delta = (int)datalen - key->datalen;
376 int ret = 0;
378 key_check(key);
380 /* contemplate the quota adjustment */
381 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
382 unsigned maxbytes = (key->user->uid == 0) ?
383 key_quota_root_maxbytes : key_quota_maxbytes;
385 spin_lock(&key->user->lock);
387 if (delta > 0 &&
388 (key->user->qnbytes + delta >= maxbytes ||
389 key->user->qnbytes + delta < key->user->qnbytes)) {
390 ret = -EDQUOT;
392 else {
393 key->user->qnbytes += delta;
394 key->quotalen += delta;
396 spin_unlock(&key->user->lock);
399 /* change the recorded data length if that didn't generate an error */
400 if (ret == 0)
401 key->datalen = datalen;
403 return ret;
405 EXPORT_SYMBOL(key_payload_reserve);
408 * Instantiate a key and link it into the target keyring atomically. Must be
409 * called with the target keyring's semaphore writelocked. The target key's
410 * semaphore need not be locked as instantiation is serialised by
411 * key_construction_mutex.
413 static int __key_instantiate_and_link(struct key *key,
414 const void *data,
415 size_t datalen,
416 struct key *keyring,
417 struct key *authkey,
418 unsigned long *_prealloc)
420 int ret, awaken;
422 key_check(key);
423 key_check(keyring);
425 awaken = 0;
426 ret = -EBUSY;
428 mutex_lock(&key_construction_mutex);
430 /* can't instantiate twice */
431 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
432 /* instantiate the key */
433 ret = key->type->instantiate(key, data, datalen);
435 if (ret == 0) {
436 /* mark the key as being instantiated */
437 atomic_inc(&key->user->nikeys);
438 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
440 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
441 awaken = 1;
443 /* and link it into the destination keyring */
444 if (keyring)
445 __key_link(keyring, key, _prealloc);
447 /* disable the authorisation key */
448 if (authkey)
449 key_revoke(authkey);
453 mutex_unlock(&key_construction_mutex);
455 /* wake up anyone waiting for a key to be constructed */
456 if (awaken)
457 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
459 return ret;
463 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
464 * @key: The key to instantiate.
465 * @data: The data to use to instantiate the keyring.
466 * @datalen: The length of @data.
467 * @keyring: Keyring to create a link in on success (or NULL).
468 * @authkey: The authorisation token permitting instantiation.
470 * Instantiate a key that's in the uninstantiated state using the provided data
471 * and, if successful, link it in to the destination keyring if one is
472 * supplied.
474 * If successful, 0 is returned, the authorisation token is revoked and anyone
475 * waiting for the key is woken up. If the key was already instantiated,
476 * -EBUSY will be returned.
478 int key_instantiate_and_link(struct key *key,
479 const void *data,
480 size_t datalen,
481 struct key *keyring,
482 struct key *authkey)
484 unsigned long prealloc;
485 int ret;
487 if (keyring) {
488 ret = __key_link_begin(keyring, key->type, key->description,
489 &prealloc);
490 if (ret < 0)
491 return ret;
494 ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
495 &prealloc);
497 if (keyring)
498 __key_link_end(keyring, key->type, prealloc);
500 return ret;
503 EXPORT_SYMBOL(key_instantiate_and_link);
506 * key_negate_and_link - Negatively instantiate a key and link it into the keyring.
507 * @key: The key to instantiate.
508 * @timeout: The timeout on the negative key.
509 * @keyring: Keyring to create a link in on success (or NULL).
510 * @authkey: The authorisation token permitting instantiation.
512 * Negatively instantiate a key that's in the uninstantiated state and, if
513 * successful, set its timeout and link it in to the destination keyring if one
514 * is supplied. The key and any links to the key will be automatically garbage
515 * collected after the timeout expires.
517 * Negative keys are used to rate limit repeated request_key() calls by causing
518 * them to return -ENOKEY until the negative key expires.
520 * If successful, 0 is returned, the authorisation token is revoked and anyone
521 * waiting for the key is woken up. If the key was already instantiated,
522 * -EBUSY will be returned.
524 int key_negate_and_link(struct key *key,
525 unsigned timeout,
526 struct key *keyring,
527 struct key *authkey)
529 unsigned long prealloc;
530 struct timespec now;
531 int ret, awaken, link_ret = 0;
533 key_check(key);
534 key_check(keyring);
536 awaken = 0;
537 ret = -EBUSY;
539 if (keyring)
540 link_ret = __key_link_begin(keyring, key->type,
541 key->description, &prealloc);
543 mutex_lock(&key_construction_mutex);
545 /* can't instantiate twice */
546 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
547 /* mark the key as being negatively instantiated */
548 atomic_inc(&key->user->nikeys);
549 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
550 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
551 now = current_kernel_time();
552 key->expiry = now.tv_sec + timeout;
553 key_schedule_gc(key->expiry + key_gc_delay);
555 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
556 awaken = 1;
558 ret = 0;
560 /* and link it into the destination keyring */
561 if (keyring && link_ret == 0)
562 __key_link(keyring, key, &prealloc);
564 /* disable the authorisation key */
565 if (authkey)
566 key_revoke(authkey);
569 mutex_unlock(&key_construction_mutex);
571 if (keyring)
572 __key_link_end(keyring, key->type, prealloc);
574 /* wake up anyone waiting for a key to be constructed */
575 if (awaken)
576 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
578 return ret == 0 ? link_ret : ret;
581 EXPORT_SYMBOL(key_negate_and_link);
584 * Garbage collect keys in process context so that we don't have to disable
585 * interrupts all over the place.
587 * key_put() schedules this rather than trying to do the cleanup itself, which
588 * means key_put() doesn't have to sleep.
590 static void key_cleanup(struct work_struct *work)
592 struct rb_node *_n;
593 struct key *key;
595 go_again:
596 /* look for a dead key in the tree */
597 spin_lock(&key_serial_lock);
599 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
600 key = rb_entry(_n, struct key, serial_node);
602 if (atomic_read(&key->usage) == 0)
603 goto found_dead_key;
606 spin_unlock(&key_serial_lock);
607 return;
609 found_dead_key:
610 /* we found a dead key - once we've removed it from the tree, we can
611 * drop the lock */
612 rb_erase(&key->serial_node, &key_serial_tree);
613 spin_unlock(&key_serial_lock);
615 key_check(key);
617 security_key_free(key);
619 /* deal with the user's key tracking and quota */
620 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
621 spin_lock(&key->user->lock);
622 key->user->qnkeys--;
623 key->user->qnbytes -= key->quotalen;
624 spin_unlock(&key->user->lock);
627 atomic_dec(&key->user->nkeys);
628 if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
629 atomic_dec(&key->user->nikeys);
631 key_user_put(key->user);
633 /* now throw away the key memory */
634 if (key->type->destroy)
635 key->type->destroy(key);
637 kfree(key->description);
639 #ifdef KEY_DEBUGGING
640 key->magic = KEY_DEBUG_MAGIC_X;
641 #endif
642 kmem_cache_free(key_jar, key);
644 /* there may, of course, be more than one key to destroy */
645 goto go_again;
649 * key_put - Discard a reference to a key.
650 * @key: The key to discard a reference from.
652 * Discard a reference to a key, and when all the references are gone, we
653 * schedule the cleanup task to come and pull it out of the tree in process
654 * context at some later time.
656 void key_put(struct key *key)
658 if (key) {
659 key_check(key);
661 if (atomic_dec_and_test(&key->usage))
662 schedule_work(&key_cleanup_task);
665 EXPORT_SYMBOL(key_put);
668 * Find a key by its serial number.
670 struct key *key_lookup(key_serial_t id)
672 struct rb_node *n;
673 struct key *key;
675 spin_lock(&key_serial_lock);
677 /* search the tree for the specified key */
678 n = key_serial_tree.rb_node;
679 while (n) {
680 key = rb_entry(n, struct key, serial_node);
682 if (id < key->serial)
683 n = n->rb_left;
684 else if (id > key->serial)
685 n = n->rb_right;
686 else
687 goto found;
690 not_found:
691 key = ERR_PTR(-ENOKEY);
692 goto error;
694 found:
695 /* pretend it doesn't exist if it is awaiting deletion */
696 if (atomic_read(&key->usage) == 0)
697 goto not_found;
699 /* this races with key_put(), but that doesn't matter since key_put()
700 * doesn't actually change the key
702 atomic_inc(&key->usage);
704 error:
705 spin_unlock(&key_serial_lock);
706 return key;
710 * Find and lock the specified key type against removal.
712 * We return with the sem read-locked if successful. If the type wasn't
713 * available -ENOKEY is returned instead.
715 struct key_type *key_type_lookup(const char *type)
717 struct key_type *ktype;
719 down_read(&key_types_sem);
721 /* look up the key type to see if it's one of the registered kernel
722 * types */
723 list_for_each_entry(ktype, &key_types_list, link) {
724 if (strcmp(ktype->name, type) == 0)
725 goto found_kernel_type;
728 up_read(&key_types_sem);
729 ktype = ERR_PTR(-ENOKEY);
731 found_kernel_type:
732 return ktype;
736 * Unlock a key type locked by key_type_lookup().
738 void key_type_put(struct key_type *ktype)
740 up_read(&key_types_sem);
744 * Attempt to update an existing key.
746 * The key is given to us with an incremented refcount that we need to discard
747 * if we get an error.
749 static inline key_ref_t __key_update(key_ref_t key_ref,
750 const void *payload, size_t plen)
752 struct key *key = key_ref_to_ptr(key_ref);
753 int ret;
755 /* need write permission on the key to update it */
756 ret = key_permission(key_ref, KEY_WRITE);
757 if (ret < 0)
758 goto error;
760 ret = -EEXIST;
761 if (!key->type->update)
762 goto error;
764 down_write(&key->sem);
766 ret = key->type->update(key, payload, plen);
767 if (ret == 0)
768 /* updating a negative key instantiates it */
769 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
771 up_write(&key->sem);
773 if (ret < 0)
774 goto error;
775 out:
776 return key_ref;
778 error:
779 key_put(key);
780 key_ref = ERR_PTR(ret);
781 goto out;
785 * key_create_or_update - Update or create and instantiate a key.
786 * @keyring_ref: A pointer to the destination keyring with possession flag.
787 * @type: The type of key.
788 * @description: The searchable description for the key.
789 * @payload: The data to use to instantiate or update the key.
790 * @plen: The length of @payload.
791 * @perm: The permissions mask for a new key.
792 * @flags: The quota flags for a new key.
794 * Search the destination keyring for a key of the same description and if one
795 * is found, update it, otherwise create and instantiate a new one and create a
796 * link to it from that keyring.
798 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
799 * concocted.
801 * Returns a pointer to the new key if successful, -ENODEV if the key type
802 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
803 * caller isn't permitted to modify the keyring or the LSM did not permit
804 * creation of the key.
806 * On success, the possession flag from the keyring ref will be tacked on to
807 * the key ref before it is returned.
809 key_ref_t key_create_or_update(key_ref_t keyring_ref,
810 const char *type,
811 const char *description,
812 const void *payload,
813 size_t plen,
814 key_perm_t perm,
815 unsigned long flags)
817 unsigned long prealloc;
818 const struct cred *cred = current_cred();
819 struct key_type *ktype;
820 struct key *keyring, *key = NULL;
821 key_ref_t key_ref;
822 int ret;
824 /* look up the key type to see if it's one of the registered kernel
825 * types */
826 ktype = key_type_lookup(type);
827 if (IS_ERR(ktype)) {
828 key_ref = ERR_PTR(-ENODEV);
829 goto error;
832 key_ref = ERR_PTR(-EINVAL);
833 if (!ktype->match || !ktype->instantiate)
834 goto error_2;
836 keyring = key_ref_to_ptr(keyring_ref);
838 key_check(keyring);
840 key_ref = ERR_PTR(-ENOTDIR);
841 if (keyring->type != &key_type_keyring)
842 goto error_2;
844 ret = __key_link_begin(keyring, ktype, description, &prealloc);
845 if (ret < 0)
846 goto error_2;
848 /* if we're going to allocate a new key, we're going to have
849 * to modify the keyring */
850 ret = key_permission(keyring_ref, KEY_WRITE);
851 if (ret < 0) {
852 key_ref = ERR_PTR(ret);
853 goto error_3;
856 /* if it's possible to update this type of key, search for an existing
857 * key of the same type and description in the destination keyring and
858 * update that instead if possible
860 if (ktype->update) {
861 key_ref = __keyring_search_one(keyring_ref, ktype, description,
863 if (!IS_ERR(key_ref))
864 goto found_matching_key;
867 /* if the client doesn't provide, decide on the permissions we want */
868 if (perm == KEY_PERM_UNDEF) {
869 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
870 perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
872 if (ktype->read)
873 perm |= KEY_POS_READ | KEY_USR_READ;
875 if (ktype == &key_type_keyring || ktype->update)
876 perm |= KEY_USR_WRITE;
879 /* allocate a new key */
880 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
881 perm, flags);
882 if (IS_ERR(key)) {
883 key_ref = ERR_CAST(key);
884 goto error_3;
887 /* instantiate it and link it into the target keyring */
888 ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
889 &prealloc);
890 if (ret < 0) {
891 key_put(key);
892 key_ref = ERR_PTR(ret);
893 goto error_3;
896 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
898 error_3:
899 __key_link_end(keyring, ktype, prealloc);
900 error_2:
901 key_type_put(ktype);
902 error:
903 return key_ref;
905 found_matching_key:
906 /* we found a matching key, so we're going to try to update it
907 * - we can drop the locks first as we have the key pinned
909 __key_link_end(keyring, ktype, prealloc);
910 key_type_put(ktype);
912 key_ref = __key_update(key_ref, payload, plen);
913 goto error;
915 EXPORT_SYMBOL(key_create_or_update);
918 * key_update - Update a key's contents.
919 * @key_ref: The pointer (plus possession flag) to the key.
920 * @payload: The data to be used to update the key.
921 * @plen: The length of @payload.
923 * Attempt to update the contents of a key with the given payload data. The
924 * caller must be granted Write permission on the key. Negative keys can be
925 * instantiated by this method.
927 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
928 * type does not support updating. The key type may return other errors.
930 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
932 struct key *key = key_ref_to_ptr(key_ref);
933 int ret;
935 key_check(key);
937 /* the key must be writable */
938 ret = key_permission(key_ref, KEY_WRITE);
939 if (ret < 0)
940 goto error;
942 /* attempt to update it if supported */
943 ret = -EOPNOTSUPP;
944 if (key->type->update) {
945 down_write(&key->sem);
947 ret = key->type->update(key, payload, plen);
948 if (ret == 0)
949 /* updating a negative key instantiates it */
950 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
952 up_write(&key->sem);
955 error:
956 return ret;
958 EXPORT_SYMBOL(key_update);
961 * key_revoke - Revoke a key.
962 * @key: The key to be revoked.
964 * Mark a key as being revoked and ask the type to free up its resources. The
965 * revocation timeout is set and the key and all its links will be
966 * automatically garbage collected after key_gc_delay amount of time if they
967 * are not manually dealt with first.
969 void key_revoke(struct key *key)
971 struct timespec now;
972 time_t time;
974 key_check(key);
976 /* make sure no one's trying to change or use the key when we mark it
977 * - we tell lockdep that we might nest because we might be revoking an
978 * authorisation key whilst holding the sem on a key we've just
979 * instantiated
981 down_write_nested(&key->sem, 1);
982 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
983 key->type->revoke)
984 key->type->revoke(key);
986 /* set the death time to no more than the expiry time */
987 now = current_kernel_time();
988 time = now.tv_sec;
989 if (key->revoked_at == 0 || key->revoked_at > time) {
990 key->revoked_at = time;
991 key_schedule_gc(key->revoked_at + key_gc_delay);
994 up_write(&key->sem);
996 EXPORT_SYMBOL(key_revoke);
999 * register_key_type - Register a type of key.
1000 * @ktype: The new key type.
1002 * Register a new key type.
1004 * Returns 0 on success or -EEXIST if a type of this name already exists.
1006 int register_key_type(struct key_type *ktype)
1008 struct key_type *p;
1009 int ret;
1011 ret = -EEXIST;
1012 down_write(&key_types_sem);
1014 /* disallow key types with the same name */
1015 list_for_each_entry(p, &key_types_list, link) {
1016 if (strcmp(p->name, ktype->name) == 0)
1017 goto out;
1020 /* store the type */
1021 list_add(&ktype->link, &key_types_list);
1022 ret = 0;
1024 out:
1025 up_write(&key_types_sem);
1026 return ret;
1028 EXPORT_SYMBOL(register_key_type);
1031 * unregister_key_type - Unregister a type of key.
1032 * @ktype: The key type.
1034 * Unregister a key type and mark all the extant keys of this type as dead.
1035 * Those keys of this type are then destroyed to get rid of their payloads and
1036 * they and their links will be garbage collected as soon as possible.
1038 void unregister_key_type(struct key_type *ktype)
1040 struct rb_node *_n;
1041 struct key *key;
1043 down_write(&key_types_sem);
1045 /* withdraw the key type */
1046 list_del_init(&ktype->link);
1048 /* mark all the keys of this type dead */
1049 spin_lock(&key_serial_lock);
1051 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1052 key = rb_entry(_n, struct key, serial_node);
1054 if (key->type == ktype) {
1055 key->type = &key_type_dead;
1056 set_bit(KEY_FLAG_DEAD, &key->flags);
1060 spin_unlock(&key_serial_lock);
1062 /* make sure everyone revalidates their keys */
1063 synchronize_rcu();
1065 /* we should now be able to destroy the payloads of all the keys of
1066 * this type with impunity */
1067 spin_lock(&key_serial_lock);
1069 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1070 key = rb_entry(_n, struct key, serial_node);
1072 if (key->type == ktype) {
1073 if (ktype->destroy)
1074 ktype->destroy(key);
1075 memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1079 spin_unlock(&key_serial_lock);
1080 up_write(&key_types_sem);
1082 key_schedule_gc(0);
1084 EXPORT_SYMBOL(unregister_key_type);
1087 * Initialise the key management state.
1089 void __init key_init(void)
1091 /* allocate a slab in which we can store keys */
1092 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1093 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1095 /* add the special key types */
1096 list_add_tail(&key_type_keyring.link, &key_types_list);
1097 list_add_tail(&key_type_dead.link, &key_types_list);
1098 list_add_tail(&key_type_user.link, &key_types_list);
1100 /* record the root user tracking */
1101 rb_link_node(&root_key_user.node,
1102 NULL,
1103 &key_user_tree.rb_node);
1105 rb_insert_color(&root_key_user.node,
1106 &key_user_tree);