1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
24 static struct kmem_cache
*key_jar
;
25 struct rb_root key_serial_tree
; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock
);
28 struct rb_root key_user_tree
; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock
);
31 unsigned int key_quota_root_maxkeys
= 200; /* root's key count quota */
32 unsigned int key_quota_root_maxbytes
= 20000; /* root's key space quota */
33 unsigned int key_quota_maxkeys
= 200; /* general key count quota */
34 unsigned int key_quota_maxbytes
= 20000; /* general key space quota */
36 static LIST_HEAD(key_types_list
);
37 static DECLARE_RWSEM(key_types_sem
);
39 static void key_cleanup(struct work_struct
*work
);
40 static DECLARE_WORK(key_cleanup_task
, key_cleanup
);
42 /* We serialise key instantiation and link */
43 DEFINE_MUTEX(key_construction_mutex
);
45 /* Any key who's type gets unegistered will be re-typed to this */
46 static struct key_type key_type_dead
= {
51 void __key_check(const struct key
*key
)
53 printk("__key_check: key %p {%08x} should be {%08x}\n",
54 key
, key
->magic
, KEY_DEBUG_MAGIC
);
60 * Get the key quota record for a user, allocating a new record if one doesn't
63 struct key_user
*key_user_lookup(uid_t uid
, struct user_namespace
*user_ns
)
65 struct key_user
*candidate
= NULL
, *user
;
66 struct rb_node
*parent
= NULL
;
70 p
= &key_user_tree
.rb_node
;
71 spin_lock(&key_user_lock
);
73 /* search the tree for a user record with a matching UID */
76 user
= rb_entry(parent
, struct key_user
, node
);
80 else if (uid
> user
->uid
)
82 else if (user_ns
< user
->user_ns
)
84 else if (user_ns
> user
->user_ns
)
90 /* if we get here, we failed to find a match in the tree */
92 /* allocate a candidate user record if we don't already have
94 spin_unlock(&key_user_lock
);
97 candidate
= kmalloc(sizeof(struct key_user
), GFP_KERNEL
);
98 if (unlikely(!candidate
))
101 /* the allocation may have scheduled, so we need to repeat the
102 * search lest someone else added the record whilst we were
107 /* if we get here, then the user record still hadn't appeared on the
108 * second pass - so we use the candidate record */
109 atomic_set(&candidate
->usage
, 1);
110 atomic_set(&candidate
->nkeys
, 0);
111 atomic_set(&candidate
->nikeys
, 0);
112 candidate
->uid
= uid
;
113 candidate
->user_ns
= get_user_ns(user_ns
);
114 candidate
->qnkeys
= 0;
115 candidate
->qnbytes
= 0;
116 spin_lock_init(&candidate
->lock
);
117 mutex_init(&candidate
->cons_lock
);
119 rb_link_node(&candidate
->node
, parent
, p
);
120 rb_insert_color(&candidate
->node
, &key_user_tree
);
121 spin_unlock(&key_user_lock
);
125 /* okay - we found a user record for this UID */
127 atomic_inc(&user
->usage
);
128 spin_unlock(&key_user_lock
);
135 * Dispose of a user structure
137 void key_user_put(struct key_user
*user
)
139 if (atomic_dec_and_lock(&user
->usage
, &key_user_lock
)) {
140 rb_erase(&user
->node
, &key_user_tree
);
141 spin_unlock(&key_user_lock
);
142 put_user_ns(user
->user_ns
);
149 * Allocate a serial number for a key. These are assigned randomly to avoid
150 * security issues through covert channel problems.
152 static inline void key_alloc_serial(struct key
*key
)
154 struct rb_node
*parent
, **p
;
157 /* propose a random serial number and look for a hole for it in the
158 * serial number tree */
160 get_random_bytes(&key
->serial
, sizeof(key
->serial
));
162 key
->serial
>>= 1; /* negative numbers are not permitted */
163 } while (key
->serial
< 3);
165 spin_lock(&key_serial_lock
);
169 p
= &key_serial_tree
.rb_node
;
173 xkey
= rb_entry(parent
, struct key
, serial_node
);
175 if (key
->serial
< xkey
->serial
)
177 else if (key
->serial
> xkey
->serial
)
183 /* we've found a suitable hole - arrange for this key to occupy it */
184 rb_link_node(&key
->serial_node
, parent
, p
);
185 rb_insert_color(&key
->serial_node
, &key_serial_tree
);
187 spin_unlock(&key_serial_lock
);
190 /* we found a key with the proposed serial number - walk the tree from
191 * that point looking for the next unused serial number */
195 if (key
->serial
< 3) {
197 goto attempt_insertion
;
200 parent
= rb_next(parent
);
202 goto attempt_insertion
;
204 xkey
= rb_entry(parent
, struct key
, serial_node
);
205 if (key
->serial
< xkey
->serial
)
206 goto attempt_insertion
;
211 * key_alloc - Allocate a key of the specified type.
212 * @type: The type of key to allocate.
213 * @desc: The key description to allow the key to be searched out.
214 * @uid: The owner of the new key.
215 * @gid: The group ID for the new key's group permissions.
216 * @cred: The credentials specifying UID namespace.
217 * @perm: The permissions mask of the new key.
218 * @flags: Flags specifying quota properties.
220 * Allocate a key of the specified type with the attributes given. The key is
221 * returned in an uninstantiated state and the caller needs to instantiate the
222 * key before returning.
224 * The user's key count quota is updated to reflect the creation of the key and
225 * the user's key data quota has the default for the key type reserved. The
226 * instantiation function should amend this as necessary. If insufficient
227 * quota is available, -EDQUOT will be returned.
229 * The LSM security modules can prevent a key being created, in which case
230 * -EACCES will be returned.
232 * Returns a pointer to the new key if successful and an error code otherwise.
234 * Note that the caller needs to ensure the key type isn't uninstantiated.
235 * Internally this can be done by locking key_types_sem. Externally, this can
236 * be done by either never unregistering the key type, or making sure
237 * key_alloc() calls don't race with module unloading.
239 struct key
*key_alloc(struct key_type
*type
, const char *desc
,
240 uid_t uid
, gid_t gid
, const struct cred
*cred
,
241 key_perm_t perm
, unsigned long flags
)
243 struct key_user
*user
= NULL
;
245 size_t desclen
, quotalen
;
248 key
= ERR_PTR(-EINVAL
);
252 desclen
= strlen(desc
) + 1;
253 quotalen
= desclen
+ type
->def_datalen
;
255 /* get hold of the key tracking for this user */
256 user
= key_user_lookup(uid
, cred
->user
->user_ns
);
260 /* check that the user's quota permits allocation of another key and
262 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
263 unsigned maxkeys
= (uid
== 0) ?
264 key_quota_root_maxkeys
: key_quota_maxkeys
;
265 unsigned maxbytes
= (uid
== 0) ?
266 key_quota_root_maxbytes
: key_quota_maxbytes
;
268 spin_lock(&user
->lock
);
269 if (!(flags
& KEY_ALLOC_QUOTA_OVERRUN
)) {
270 if (user
->qnkeys
+ 1 >= maxkeys
||
271 user
->qnbytes
+ quotalen
>= maxbytes
||
272 user
->qnbytes
+ quotalen
< user
->qnbytes
)
277 user
->qnbytes
+= quotalen
;
278 spin_unlock(&user
->lock
);
281 /* allocate and initialise the key and its description */
282 key
= kmem_cache_alloc(key_jar
, GFP_KERNEL
);
287 key
->description
= kmemdup(desc
, desclen
, GFP_KERNEL
);
288 if (!key
->description
)
292 atomic_set(&key
->usage
, 1);
293 init_rwsem(&key
->sem
);
296 key
->quotalen
= quotalen
;
297 key
->datalen
= type
->def_datalen
;
303 key
->payload
.data
= NULL
;
304 key
->security
= NULL
;
306 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
))
307 key
->flags
|= 1 << KEY_FLAG_IN_QUOTA
;
309 memset(&key
->type_data
, 0, sizeof(key
->type_data
));
312 key
->magic
= KEY_DEBUG_MAGIC
;
315 /* let the security module know about the key */
316 ret
= security_key_alloc(key
, cred
, flags
);
320 /* publish the key by giving it a serial number */
321 atomic_inc(&user
->nkeys
);
322 key_alloc_serial(key
);
328 kfree(key
->description
);
329 kmem_cache_free(key_jar
, key
);
330 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
331 spin_lock(&user
->lock
);
333 user
->qnbytes
-= quotalen
;
334 spin_unlock(&user
->lock
);
341 kmem_cache_free(key_jar
, key
);
343 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
344 spin_lock(&user
->lock
);
346 user
->qnbytes
-= quotalen
;
347 spin_unlock(&user
->lock
);
351 key
= ERR_PTR(-ENOMEM
);
355 spin_unlock(&user
->lock
);
357 key
= ERR_PTR(-EDQUOT
);
360 EXPORT_SYMBOL(key_alloc
);
363 * key_payload_reserve - Adjust data quota reservation for the key's payload
364 * @key: The key to make the reservation for.
365 * @datalen: The amount of data payload the caller now wants.
367 * Adjust the amount of the owning user's key data quota that a key reserves.
368 * If the amount is increased, then -EDQUOT may be returned if there isn't
369 * enough free quota available.
371 * If successful, 0 is returned.
373 int key_payload_reserve(struct key
*key
, size_t datalen
)
375 int delta
= (int)datalen
- key
->datalen
;
380 /* contemplate the quota adjustment */
381 if (delta
!= 0 && test_bit(KEY_FLAG_IN_QUOTA
, &key
->flags
)) {
382 unsigned maxbytes
= (key
->user
->uid
== 0) ?
383 key_quota_root_maxbytes
: key_quota_maxbytes
;
385 spin_lock(&key
->user
->lock
);
388 (key
->user
->qnbytes
+ delta
>= maxbytes
||
389 key
->user
->qnbytes
+ delta
< key
->user
->qnbytes
)) {
393 key
->user
->qnbytes
+= delta
;
394 key
->quotalen
+= delta
;
396 spin_unlock(&key
->user
->lock
);
399 /* change the recorded data length if that didn't generate an error */
401 key
->datalen
= datalen
;
405 EXPORT_SYMBOL(key_payload_reserve
);
408 * Instantiate a key and link it into the target keyring atomically. Must be
409 * called with the target keyring's semaphore writelocked. The target key's
410 * semaphore need not be locked as instantiation is serialised by
411 * key_construction_mutex.
413 static int __key_instantiate_and_link(struct key
*key
,
418 unsigned long *_prealloc
)
428 mutex_lock(&key_construction_mutex
);
430 /* can't instantiate twice */
431 if (!test_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
)) {
432 /* instantiate the key */
433 ret
= key
->type
->instantiate(key
, data
, datalen
);
436 /* mark the key as being instantiated */
437 atomic_inc(&key
->user
->nikeys
);
438 set_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
);
440 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
))
443 /* and link it into the destination keyring */
445 __key_link(keyring
, key
, _prealloc
);
447 /* disable the authorisation key */
453 mutex_unlock(&key_construction_mutex
);
455 /* wake up anyone waiting for a key to be constructed */
457 wake_up_bit(&key
->flags
, KEY_FLAG_USER_CONSTRUCT
);
463 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
464 * @key: The key to instantiate.
465 * @data: The data to use to instantiate the keyring.
466 * @datalen: The length of @data.
467 * @keyring: Keyring to create a link in on success (or NULL).
468 * @authkey: The authorisation token permitting instantiation.
470 * Instantiate a key that's in the uninstantiated state using the provided data
471 * and, if successful, link it in to the destination keyring if one is
474 * If successful, 0 is returned, the authorisation token is revoked and anyone
475 * waiting for the key is woken up. If the key was already instantiated,
476 * -EBUSY will be returned.
478 int key_instantiate_and_link(struct key
*key
,
484 unsigned long prealloc
;
488 ret
= __key_link_begin(keyring
, key
->type
, key
->description
,
494 ret
= __key_instantiate_and_link(key
, data
, datalen
, keyring
, authkey
,
498 __key_link_end(keyring
, key
->type
, prealloc
);
503 EXPORT_SYMBOL(key_instantiate_and_link
);
506 * key_negate_and_link - Negatively instantiate a key and link it into the keyring.
507 * @key: The key to instantiate.
508 * @timeout: The timeout on the negative key.
509 * @keyring: Keyring to create a link in on success (or NULL).
510 * @authkey: The authorisation token permitting instantiation.
512 * Negatively instantiate a key that's in the uninstantiated state and, if
513 * successful, set its timeout and link it in to the destination keyring if one
514 * is supplied. The key and any links to the key will be automatically garbage
515 * collected after the timeout expires.
517 * Negative keys are used to rate limit repeated request_key() calls by causing
518 * them to return -ENOKEY until the negative key expires.
520 * If successful, 0 is returned, the authorisation token is revoked and anyone
521 * waiting for the key is woken up. If the key was already instantiated,
522 * -EBUSY will be returned.
524 int key_negate_and_link(struct key
*key
,
529 unsigned long prealloc
;
531 int ret
, awaken
, link_ret
= 0;
540 link_ret
= __key_link_begin(keyring
, key
->type
,
541 key
->description
, &prealloc
);
543 mutex_lock(&key_construction_mutex
);
545 /* can't instantiate twice */
546 if (!test_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
)) {
547 /* mark the key as being negatively instantiated */
548 atomic_inc(&key
->user
->nikeys
);
549 set_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
550 set_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
);
551 now
= current_kernel_time();
552 key
->expiry
= now
.tv_sec
+ timeout
;
553 key_schedule_gc(key
->expiry
+ key_gc_delay
);
555 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
))
560 /* and link it into the destination keyring */
561 if (keyring
&& link_ret
== 0)
562 __key_link(keyring
, key
, &prealloc
);
564 /* disable the authorisation key */
569 mutex_unlock(&key_construction_mutex
);
572 __key_link_end(keyring
, key
->type
, prealloc
);
574 /* wake up anyone waiting for a key to be constructed */
576 wake_up_bit(&key
->flags
, KEY_FLAG_USER_CONSTRUCT
);
578 return ret
== 0 ? link_ret
: ret
;
581 EXPORT_SYMBOL(key_negate_and_link
);
584 * Garbage collect keys in process context so that we don't have to disable
585 * interrupts all over the place.
587 * key_put() schedules this rather than trying to do the cleanup itself, which
588 * means key_put() doesn't have to sleep.
590 static void key_cleanup(struct work_struct
*work
)
596 /* look for a dead key in the tree */
597 spin_lock(&key_serial_lock
);
599 for (_n
= rb_first(&key_serial_tree
); _n
; _n
= rb_next(_n
)) {
600 key
= rb_entry(_n
, struct key
, serial_node
);
602 if (atomic_read(&key
->usage
) == 0)
606 spin_unlock(&key_serial_lock
);
610 /* we found a dead key - once we've removed it from the tree, we can
612 rb_erase(&key
->serial_node
, &key_serial_tree
);
613 spin_unlock(&key_serial_lock
);
617 security_key_free(key
);
619 /* deal with the user's key tracking and quota */
620 if (test_bit(KEY_FLAG_IN_QUOTA
, &key
->flags
)) {
621 spin_lock(&key
->user
->lock
);
623 key
->user
->qnbytes
-= key
->quotalen
;
624 spin_unlock(&key
->user
->lock
);
627 atomic_dec(&key
->user
->nkeys
);
628 if (test_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
))
629 atomic_dec(&key
->user
->nikeys
);
631 key_user_put(key
->user
);
633 /* now throw away the key memory */
634 if (key
->type
->destroy
)
635 key
->type
->destroy(key
);
637 kfree(key
->description
);
640 key
->magic
= KEY_DEBUG_MAGIC_X
;
642 kmem_cache_free(key_jar
, key
);
644 /* there may, of course, be more than one key to destroy */
649 * key_put - Discard a reference to a key.
650 * @key: The key to discard a reference from.
652 * Discard a reference to a key, and when all the references are gone, we
653 * schedule the cleanup task to come and pull it out of the tree in process
654 * context at some later time.
656 void key_put(struct key
*key
)
661 if (atomic_dec_and_test(&key
->usage
))
662 schedule_work(&key_cleanup_task
);
665 EXPORT_SYMBOL(key_put
);
668 * Find a key by its serial number.
670 struct key
*key_lookup(key_serial_t id
)
675 spin_lock(&key_serial_lock
);
677 /* search the tree for the specified key */
678 n
= key_serial_tree
.rb_node
;
680 key
= rb_entry(n
, struct key
, serial_node
);
682 if (id
< key
->serial
)
684 else if (id
> key
->serial
)
691 key
= ERR_PTR(-ENOKEY
);
695 /* pretend it doesn't exist if it is awaiting deletion */
696 if (atomic_read(&key
->usage
) == 0)
699 /* this races with key_put(), but that doesn't matter since key_put()
700 * doesn't actually change the key
702 atomic_inc(&key
->usage
);
705 spin_unlock(&key_serial_lock
);
710 * Find and lock the specified key type against removal.
712 * We return with the sem read-locked if successful. If the type wasn't
713 * available -ENOKEY is returned instead.
715 struct key_type
*key_type_lookup(const char *type
)
717 struct key_type
*ktype
;
719 down_read(&key_types_sem
);
721 /* look up the key type to see if it's one of the registered kernel
723 list_for_each_entry(ktype
, &key_types_list
, link
) {
724 if (strcmp(ktype
->name
, type
) == 0)
725 goto found_kernel_type
;
728 up_read(&key_types_sem
);
729 ktype
= ERR_PTR(-ENOKEY
);
736 * Unlock a key type locked by key_type_lookup().
738 void key_type_put(struct key_type
*ktype
)
740 up_read(&key_types_sem
);
744 * Attempt to update an existing key.
746 * The key is given to us with an incremented refcount that we need to discard
747 * if we get an error.
749 static inline key_ref_t
__key_update(key_ref_t key_ref
,
750 const void *payload
, size_t plen
)
752 struct key
*key
= key_ref_to_ptr(key_ref
);
755 /* need write permission on the key to update it */
756 ret
= key_permission(key_ref
, KEY_WRITE
);
761 if (!key
->type
->update
)
764 down_write(&key
->sem
);
766 ret
= key
->type
->update(key
, payload
, plen
);
768 /* updating a negative key instantiates it */
769 clear_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
780 key_ref
= ERR_PTR(ret
);
785 * key_create_or_update - Update or create and instantiate a key.
786 * @keyring_ref: A pointer to the destination keyring with possession flag.
787 * @type: The type of key.
788 * @description: The searchable description for the key.
789 * @payload: The data to use to instantiate or update the key.
790 * @plen: The length of @payload.
791 * @perm: The permissions mask for a new key.
792 * @flags: The quota flags for a new key.
794 * Search the destination keyring for a key of the same description and if one
795 * is found, update it, otherwise create and instantiate a new one and create a
796 * link to it from that keyring.
798 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
801 * Returns a pointer to the new key if successful, -ENODEV if the key type
802 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
803 * caller isn't permitted to modify the keyring or the LSM did not permit
804 * creation of the key.
806 * On success, the possession flag from the keyring ref will be tacked on to
807 * the key ref before it is returned.
809 key_ref_t
key_create_or_update(key_ref_t keyring_ref
,
811 const char *description
,
817 unsigned long prealloc
;
818 const struct cred
*cred
= current_cred();
819 struct key_type
*ktype
;
820 struct key
*keyring
, *key
= NULL
;
824 /* look up the key type to see if it's one of the registered kernel
826 ktype
= key_type_lookup(type
);
828 key_ref
= ERR_PTR(-ENODEV
);
832 key_ref
= ERR_PTR(-EINVAL
);
833 if (!ktype
->match
|| !ktype
->instantiate
)
836 keyring
= key_ref_to_ptr(keyring_ref
);
840 key_ref
= ERR_PTR(-ENOTDIR
);
841 if (keyring
->type
!= &key_type_keyring
)
844 ret
= __key_link_begin(keyring
, ktype
, description
, &prealloc
);
848 /* if we're going to allocate a new key, we're going to have
849 * to modify the keyring */
850 ret
= key_permission(keyring_ref
, KEY_WRITE
);
852 key_ref
= ERR_PTR(ret
);
856 /* if it's possible to update this type of key, search for an existing
857 * key of the same type and description in the destination keyring and
858 * update that instead if possible
861 key_ref
= __keyring_search_one(keyring_ref
, ktype
, description
,
863 if (!IS_ERR(key_ref
))
864 goto found_matching_key
;
867 /* if the client doesn't provide, decide on the permissions we want */
868 if (perm
== KEY_PERM_UNDEF
) {
869 perm
= KEY_POS_VIEW
| KEY_POS_SEARCH
| KEY_POS_LINK
| KEY_POS_SETATTR
;
870 perm
|= KEY_USR_VIEW
| KEY_USR_SEARCH
| KEY_USR_LINK
| KEY_USR_SETATTR
;
873 perm
|= KEY_POS_READ
| KEY_USR_READ
;
875 if (ktype
== &key_type_keyring
|| ktype
->update
)
876 perm
|= KEY_USR_WRITE
;
879 /* allocate a new key */
880 key
= key_alloc(ktype
, description
, cred
->fsuid
, cred
->fsgid
, cred
,
883 key_ref
= ERR_CAST(key
);
887 /* instantiate it and link it into the target keyring */
888 ret
= __key_instantiate_and_link(key
, payload
, plen
, keyring
, NULL
,
892 key_ref
= ERR_PTR(ret
);
896 key_ref
= make_key_ref(key
, is_key_possessed(keyring_ref
));
899 __key_link_end(keyring
, ktype
, prealloc
);
906 /* we found a matching key, so we're going to try to update it
907 * - we can drop the locks first as we have the key pinned
909 __key_link_end(keyring
, ktype
, prealloc
);
912 key_ref
= __key_update(key_ref
, payload
, plen
);
915 EXPORT_SYMBOL(key_create_or_update
);
918 * key_update - Update a key's contents.
919 * @key_ref: The pointer (plus possession flag) to the key.
920 * @payload: The data to be used to update the key.
921 * @plen: The length of @payload.
923 * Attempt to update the contents of a key with the given payload data. The
924 * caller must be granted Write permission on the key. Negative keys can be
925 * instantiated by this method.
927 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
928 * type does not support updating. The key type may return other errors.
930 int key_update(key_ref_t key_ref
, const void *payload
, size_t plen
)
932 struct key
*key
= key_ref_to_ptr(key_ref
);
937 /* the key must be writable */
938 ret
= key_permission(key_ref
, KEY_WRITE
);
942 /* attempt to update it if supported */
944 if (key
->type
->update
) {
945 down_write(&key
->sem
);
947 ret
= key
->type
->update(key
, payload
, plen
);
949 /* updating a negative key instantiates it */
950 clear_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
958 EXPORT_SYMBOL(key_update
);
961 * key_revoke - Revoke a key.
962 * @key: The key to be revoked.
964 * Mark a key as being revoked and ask the type to free up its resources. The
965 * revocation timeout is set and the key and all its links will be
966 * automatically garbage collected after key_gc_delay amount of time if they
967 * are not manually dealt with first.
969 void key_revoke(struct key
*key
)
976 /* make sure no one's trying to change or use the key when we mark it
977 * - we tell lockdep that we might nest because we might be revoking an
978 * authorisation key whilst holding the sem on a key we've just
981 down_write_nested(&key
->sem
, 1);
982 if (!test_and_set_bit(KEY_FLAG_REVOKED
, &key
->flags
) &&
984 key
->type
->revoke(key
);
986 /* set the death time to no more than the expiry time */
987 now
= current_kernel_time();
989 if (key
->revoked_at
== 0 || key
->revoked_at
> time
) {
990 key
->revoked_at
= time
;
991 key_schedule_gc(key
->revoked_at
+ key_gc_delay
);
996 EXPORT_SYMBOL(key_revoke
);
999 * register_key_type - Register a type of key.
1000 * @ktype: The new key type.
1002 * Register a new key type.
1004 * Returns 0 on success or -EEXIST if a type of this name already exists.
1006 int register_key_type(struct key_type
*ktype
)
1012 down_write(&key_types_sem
);
1014 /* disallow key types with the same name */
1015 list_for_each_entry(p
, &key_types_list
, link
) {
1016 if (strcmp(p
->name
, ktype
->name
) == 0)
1020 /* store the type */
1021 list_add(&ktype
->link
, &key_types_list
);
1025 up_write(&key_types_sem
);
1028 EXPORT_SYMBOL(register_key_type
);
1031 * unregister_key_type - Unregister a type of key.
1032 * @ktype: The key type.
1034 * Unregister a key type and mark all the extant keys of this type as dead.
1035 * Those keys of this type are then destroyed to get rid of their payloads and
1036 * they and their links will be garbage collected as soon as possible.
1038 void unregister_key_type(struct key_type
*ktype
)
1043 down_write(&key_types_sem
);
1045 /* withdraw the key type */
1046 list_del_init(&ktype
->link
);
1048 /* mark all the keys of this type dead */
1049 spin_lock(&key_serial_lock
);
1051 for (_n
= rb_first(&key_serial_tree
); _n
; _n
= rb_next(_n
)) {
1052 key
= rb_entry(_n
, struct key
, serial_node
);
1054 if (key
->type
== ktype
) {
1055 key
->type
= &key_type_dead
;
1056 set_bit(KEY_FLAG_DEAD
, &key
->flags
);
1060 spin_unlock(&key_serial_lock
);
1062 /* make sure everyone revalidates their keys */
1065 /* we should now be able to destroy the payloads of all the keys of
1066 * this type with impunity */
1067 spin_lock(&key_serial_lock
);
1069 for (_n
= rb_first(&key_serial_tree
); _n
; _n
= rb_next(_n
)) {
1070 key
= rb_entry(_n
, struct key
, serial_node
);
1072 if (key
->type
== ktype
) {
1074 ktype
->destroy(key
);
1075 memset(&key
->payload
, KEY_DESTROY
, sizeof(key
->payload
));
1079 spin_unlock(&key_serial_lock
);
1080 up_write(&key_types_sem
);
1084 EXPORT_SYMBOL(unregister_key_type
);
1087 * Initialise the key management state.
1089 void __init
key_init(void)
1091 /* allocate a slab in which we can store keys */
1092 key_jar
= kmem_cache_create("key_jar", sizeof(struct key
),
1093 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1095 /* add the special key types */
1096 list_add_tail(&key_type_keyring
.link
, &key_types_list
);
1097 list_add_tail(&key_type_dead
.link
, &key_types_list
);
1098 list_add_tail(&key_type_user
.link
, &key_types_list
);
1100 /* record the root user tracking */
1101 rb_link_node(&root_key_user
.node
,
1103 &key_user_tree
.rb_node
);
1105 rb_insert_color(&root_key_user
.node
,