powerpc: move find_and_init_phbs() to pSeries specific code
[linux/fpc-iii.git] / arch / powerpc / net / bpf_jit_comp.c
blobd1916b577f2c9a71c3fb3a5ee419925f070412d0
1 /* bpf_jit_comp.c: BPF JIT compiler for PPC64
3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
12 #include <linux/moduleloader.h>
13 #include <asm/cacheflush.h>
14 #include <linux/netdevice.h>
15 #include <linux/filter.h>
16 #include <linux/if_vlan.h>
18 #include "bpf_jit.h"
20 int bpf_jit_enable __read_mostly;
22 static inline void bpf_flush_icache(void *start, void *end)
24 smp_wmb();
25 flush_icache_range((unsigned long)start, (unsigned long)end);
28 static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
29 struct codegen_context *ctx)
31 int i;
32 const struct sock_filter *filter = fp->insns;
34 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
35 /* Make stackframe */
36 if (ctx->seen & SEEN_DATAREF) {
37 /* If we call any helpers (for loads), save LR */
38 EMIT(PPC_INST_MFLR | __PPC_RT(R0));
39 PPC_STD(0, 1, 16);
41 /* Back up non-volatile regs. */
42 PPC_STD(r_D, 1, -(8*(32-r_D)));
43 PPC_STD(r_HL, 1, -(8*(32-r_HL)));
45 if (ctx->seen & SEEN_MEM) {
47 * Conditionally save regs r15-r31 as some will be used
48 * for M[] data.
50 for (i = r_M; i < (r_M+16); i++) {
51 if (ctx->seen & (1 << (i-r_M)))
52 PPC_STD(i, 1, -(8*(32-i)));
55 EMIT(PPC_INST_STDU | __PPC_RS(R1) | __PPC_RA(R1) |
56 (-BPF_PPC_STACKFRAME & 0xfffc));
59 if (ctx->seen & SEEN_DATAREF) {
61 * If this filter needs to access skb data,
62 * prepare r_D and r_HL:
63 * r_HL = skb->len - skb->data_len
64 * r_D = skb->data
66 PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
67 data_len));
68 PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
69 PPC_SUB(r_HL, r_HL, r_scratch1);
70 PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
73 if (ctx->seen & SEEN_XREG) {
75 * TODO: Could also detect whether first instr. sets X and
76 * avoid this (as below, with A).
78 PPC_LI(r_X, 0);
81 switch (filter[0].code) {
82 case BPF_RET | BPF_K:
83 case BPF_LD | BPF_W | BPF_LEN:
84 case BPF_LD | BPF_W | BPF_ABS:
85 case BPF_LD | BPF_H | BPF_ABS:
86 case BPF_LD | BPF_B | BPF_ABS:
87 /* first instruction sets A register (or is RET 'constant') */
88 break;
89 default:
90 /* make sure we dont leak kernel information to user */
91 PPC_LI(r_A, 0);
95 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
97 int i;
99 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
100 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
101 if (ctx->seen & SEEN_DATAREF) {
102 PPC_LD(0, 1, 16);
103 PPC_MTLR(0);
104 PPC_LD(r_D, 1, -(8*(32-r_D)));
105 PPC_LD(r_HL, 1, -(8*(32-r_HL)));
107 if (ctx->seen & SEEN_MEM) {
108 /* Restore any saved non-vol registers */
109 for (i = r_M; i < (r_M+16); i++) {
110 if (ctx->seen & (1 << (i-r_M)))
111 PPC_LD(i, 1, -(8*(32-i)));
115 /* The RETs have left a return value in R3. */
117 PPC_BLR();
120 #define CHOOSE_LOAD_FUNC(K, func) \
121 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
123 /* Assemble the body code between the prologue & epilogue. */
124 static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
125 struct codegen_context *ctx,
126 unsigned int *addrs)
128 const struct sock_filter *filter = fp->insns;
129 int flen = fp->len;
130 u8 *func;
131 unsigned int true_cond;
132 int i;
134 /* Start of epilogue code */
135 unsigned int exit_addr = addrs[flen];
137 for (i = 0; i < flen; i++) {
138 unsigned int K = filter[i].k;
139 u16 code = bpf_anc_helper(&filter[i]);
142 * addrs[] maps a BPF bytecode address into a real offset from
143 * the start of the body code.
145 addrs[i] = ctx->idx * 4;
147 switch (code) {
148 /*** ALU ops ***/
149 case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
150 ctx->seen |= SEEN_XREG;
151 PPC_ADD(r_A, r_A, r_X);
152 break;
153 case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
154 if (!K)
155 break;
156 PPC_ADDI(r_A, r_A, IMM_L(K));
157 if (K >= 32768)
158 PPC_ADDIS(r_A, r_A, IMM_HA(K));
159 break;
160 case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
161 ctx->seen |= SEEN_XREG;
162 PPC_SUB(r_A, r_A, r_X);
163 break;
164 case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
165 if (!K)
166 break;
167 PPC_ADDI(r_A, r_A, IMM_L(-K));
168 if (K >= 32768)
169 PPC_ADDIS(r_A, r_A, IMM_HA(-K));
170 break;
171 case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
172 ctx->seen |= SEEN_XREG;
173 PPC_MUL(r_A, r_A, r_X);
174 break;
175 case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
176 if (K < 32768)
177 PPC_MULI(r_A, r_A, K);
178 else {
179 PPC_LI32(r_scratch1, K);
180 PPC_MUL(r_A, r_A, r_scratch1);
182 break;
183 case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
184 case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
185 ctx->seen |= SEEN_XREG;
186 PPC_CMPWI(r_X, 0);
187 if (ctx->pc_ret0 != -1) {
188 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
189 } else {
190 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
191 PPC_LI(r_ret, 0);
192 PPC_JMP(exit_addr);
194 if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
195 PPC_DIVWU(r_scratch1, r_A, r_X);
196 PPC_MUL(r_scratch1, r_X, r_scratch1);
197 PPC_SUB(r_A, r_A, r_scratch1);
198 } else {
199 PPC_DIVWU(r_A, r_A, r_X);
201 break;
202 case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
203 PPC_LI32(r_scratch2, K);
204 PPC_DIVWU(r_scratch1, r_A, r_scratch2);
205 PPC_MUL(r_scratch1, r_scratch2, r_scratch1);
206 PPC_SUB(r_A, r_A, r_scratch1);
207 break;
208 case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
209 if (K == 1)
210 break;
211 PPC_LI32(r_scratch1, K);
212 PPC_DIVWU(r_A, r_A, r_scratch1);
213 break;
214 case BPF_ALU | BPF_AND | BPF_X:
215 ctx->seen |= SEEN_XREG;
216 PPC_AND(r_A, r_A, r_X);
217 break;
218 case BPF_ALU | BPF_AND | BPF_K:
219 if (!IMM_H(K))
220 PPC_ANDI(r_A, r_A, K);
221 else {
222 PPC_LI32(r_scratch1, K);
223 PPC_AND(r_A, r_A, r_scratch1);
225 break;
226 case BPF_ALU | BPF_OR | BPF_X:
227 ctx->seen |= SEEN_XREG;
228 PPC_OR(r_A, r_A, r_X);
229 break;
230 case BPF_ALU | BPF_OR | BPF_K:
231 if (IMM_L(K))
232 PPC_ORI(r_A, r_A, IMM_L(K));
233 if (K >= 65536)
234 PPC_ORIS(r_A, r_A, IMM_H(K));
235 break;
236 case BPF_ANC | SKF_AD_ALU_XOR_X:
237 case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
238 ctx->seen |= SEEN_XREG;
239 PPC_XOR(r_A, r_A, r_X);
240 break;
241 case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
242 if (IMM_L(K))
243 PPC_XORI(r_A, r_A, IMM_L(K));
244 if (K >= 65536)
245 PPC_XORIS(r_A, r_A, IMM_H(K));
246 break;
247 case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
248 ctx->seen |= SEEN_XREG;
249 PPC_SLW(r_A, r_A, r_X);
250 break;
251 case BPF_ALU | BPF_LSH | BPF_K:
252 if (K == 0)
253 break;
254 else
255 PPC_SLWI(r_A, r_A, K);
256 break;
257 case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
258 ctx->seen |= SEEN_XREG;
259 PPC_SRW(r_A, r_A, r_X);
260 break;
261 case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
262 if (K == 0)
263 break;
264 else
265 PPC_SRWI(r_A, r_A, K);
266 break;
267 case BPF_ALU | BPF_NEG:
268 PPC_NEG(r_A, r_A);
269 break;
270 case BPF_RET | BPF_K:
271 PPC_LI32(r_ret, K);
272 if (!K) {
273 if (ctx->pc_ret0 == -1)
274 ctx->pc_ret0 = i;
277 * If this isn't the very last instruction, branch to
278 * the epilogue if we've stuff to clean up. Otherwise,
279 * if there's nothing to tidy, just return. If we /are/
280 * the last instruction, we're about to fall through to
281 * the epilogue to return.
283 if (i != flen - 1) {
285 * Note: 'seen' is properly valid only on pass
286 * #2. Both parts of this conditional are the
287 * same instruction size though, meaning the
288 * first pass will still correctly determine the
289 * code size/addresses.
291 if (ctx->seen)
292 PPC_JMP(exit_addr);
293 else
294 PPC_BLR();
296 break;
297 case BPF_RET | BPF_A:
298 PPC_MR(r_ret, r_A);
299 if (i != flen - 1) {
300 if (ctx->seen)
301 PPC_JMP(exit_addr);
302 else
303 PPC_BLR();
305 break;
306 case BPF_MISC | BPF_TAX: /* X = A */
307 PPC_MR(r_X, r_A);
308 break;
309 case BPF_MISC | BPF_TXA: /* A = X */
310 ctx->seen |= SEEN_XREG;
311 PPC_MR(r_A, r_X);
312 break;
314 /*** Constant loads/M[] access ***/
315 case BPF_LD | BPF_IMM: /* A = K */
316 PPC_LI32(r_A, K);
317 break;
318 case BPF_LDX | BPF_IMM: /* X = K */
319 PPC_LI32(r_X, K);
320 break;
321 case BPF_LD | BPF_MEM: /* A = mem[K] */
322 PPC_MR(r_A, r_M + (K & 0xf));
323 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
324 break;
325 case BPF_LDX | BPF_MEM: /* X = mem[K] */
326 PPC_MR(r_X, r_M + (K & 0xf));
327 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
328 break;
329 case BPF_ST: /* mem[K] = A */
330 PPC_MR(r_M + (K & 0xf), r_A);
331 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
332 break;
333 case BPF_STX: /* mem[K] = X */
334 PPC_MR(r_M + (K & 0xf), r_X);
335 ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
336 break;
337 case BPF_LD | BPF_W | BPF_LEN: /* A = skb->len; */
338 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
339 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
340 break;
341 case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
342 PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
343 break;
345 /*** Ancillary info loads ***/
346 case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
347 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
348 protocol) != 2);
349 PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
350 protocol));
351 break;
352 case BPF_ANC | SKF_AD_IFINDEX:
353 case BPF_ANC | SKF_AD_HATYPE:
354 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
355 ifindex) != 4);
356 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
357 type) != 2);
358 PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
359 dev));
360 PPC_CMPDI(r_scratch1, 0);
361 if (ctx->pc_ret0 != -1) {
362 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
363 } else {
364 /* Exit, returning 0; first pass hits here. */
365 PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
366 PPC_LI(r_ret, 0);
367 PPC_JMP(exit_addr);
369 if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
370 PPC_LWZ_OFFS(r_A, r_scratch1,
371 offsetof(struct net_device, ifindex));
372 } else {
373 PPC_LHZ_OFFS(r_A, r_scratch1,
374 offsetof(struct net_device, type));
377 break;
378 case BPF_ANC | SKF_AD_MARK:
379 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
380 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
381 mark));
382 break;
383 case BPF_ANC | SKF_AD_RXHASH:
384 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
385 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
386 hash));
387 break;
388 case BPF_ANC | SKF_AD_VLAN_TAG:
389 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
390 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
391 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
393 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
394 vlan_tci));
395 if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
396 PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
397 } else {
398 PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
399 PPC_SRWI(r_A, r_A, 12);
401 break;
402 case BPF_ANC | SKF_AD_QUEUE:
403 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
404 queue_mapping) != 2);
405 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
406 queue_mapping));
407 break;
408 case BPF_ANC | SKF_AD_PKTTYPE:
409 PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
410 PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
411 PPC_SRWI(r_A, r_A, 5);
412 break;
413 case BPF_ANC | SKF_AD_CPU:
414 #ifdef CONFIG_SMP
416 * PACA ptr is r13:
417 * raw_smp_processor_id() = local_paca->paca_index
419 BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
420 paca_index) != 2);
421 PPC_LHZ_OFFS(r_A, 13,
422 offsetof(struct paca_struct, paca_index));
423 #else
424 PPC_LI(r_A, 0);
425 #endif
426 break;
428 /*** Absolute loads from packet header/data ***/
429 case BPF_LD | BPF_W | BPF_ABS:
430 func = CHOOSE_LOAD_FUNC(K, sk_load_word);
431 goto common_load;
432 case BPF_LD | BPF_H | BPF_ABS:
433 func = CHOOSE_LOAD_FUNC(K, sk_load_half);
434 goto common_load;
435 case BPF_LD | BPF_B | BPF_ABS:
436 func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
437 common_load:
438 /* Load from [K]. */
439 ctx->seen |= SEEN_DATAREF;
440 PPC_LI64(r_scratch1, func);
441 PPC_MTLR(r_scratch1);
442 PPC_LI32(r_addr, K);
443 PPC_BLRL();
445 * Helper returns 'lt' condition on error, and an
446 * appropriate return value in r3
448 PPC_BCC(COND_LT, exit_addr);
449 break;
451 /*** Indirect loads from packet header/data ***/
452 case BPF_LD | BPF_W | BPF_IND:
453 func = sk_load_word;
454 goto common_load_ind;
455 case BPF_LD | BPF_H | BPF_IND:
456 func = sk_load_half;
457 goto common_load_ind;
458 case BPF_LD | BPF_B | BPF_IND:
459 func = sk_load_byte;
460 common_load_ind:
462 * Load from [X + K]. Negative offsets are tested for
463 * in the helper functions.
465 ctx->seen |= SEEN_DATAREF | SEEN_XREG;
466 PPC_LI64(r_scratch1, func);
467 PPC_MTLR(r_scratch1);
468 PPC_ADDI(r_addr, r_X, IMM_L(K));
469 if (K >= 32768)
470 PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
471 PPC_BLRL();
472 /* If error, cr0.LT set */
473 PPC_BCC(COND_LT, exit_addr);
474 break;
476 case BPF_LDX | BPF_B | BPF_MSH:
477 func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
478 goto common_load;
479 break;
481 /*** Jump and branches ***/
482 case BPF_JMP | BPF_JA:
483 if (K != 0)
484 PPC_JMP(addrs[i + 1 + K]);
485 break;
487 case BPF_JMP | BPF_JGT | BPF_K:
488 case BPF_JMP | BPF_JGT | BPF_X:
489 true_cond = COND_GT;
490 goto cond_branch;
491 case BPF_JMP | BPF_JGE | BPF_K:
492 case BPF_JMP | BPF_JGE | BPF_X:
493 true_cond = COND_GE;
494 goto cond_branch;
495 case BPF_JMP | BPF_JEQ | BPF_K:
496 case BPF_JMP | BPF_JEQ | BPF_X:
497 true_cond = COND_EQ;
498 goto cond_branch;
499 case BPF_JMP | BPF_JSET | BPF_K:
500 case BPF_JMP | BPF_JSET | BPF_X:
501 true_cond = COND_NE;
502 /* Fall through */
503 cond_branch:
504 /* same targets, can avoid doing the test :) */
505 if (filter[i].jt == filter[i].jf) {
506 if (filter[i].jt > 0)
507 PPC_JMP(addrs[i + 1 + filter[i].jt]);
508 break;
511 switch (code) {
512 case BPF_JMP | BPF_JGT | BPF_X:
513 case BPF_JMP | BPF_JGE | BPF_X:
514 case BPF_JMP | BPF_JEQ | BPF_X:
515 ctx->seen |= SEEN_XREG;
516 PPC_CMPLW(r_A, r_X);
517 break;
518 case BPF_JMP | BPF_JSET | BPF_X:
519 ctx->seen |= SEEN_XREG;
520 PPC_AND_DOT(r_scratch1, r_A, r_X);
521 break;
522 case BPF_JMP | BPF_JEQ | BPF_K:
523 case BPF_JMP | BPF_JGT | BPF_K:
524 case BPF_JMP | BPF_JGE | BPF_K:
525 if (K < 32768)
526 PPC_CMPLWI(r_A, K);
527 else {
528 PPC_LI32(r_scratch1, K);
529 PPC_CMPLW(r_A, r_scratch1);
531 break;
532 case BPF_JMP | BPF_JSET | BPF_K:
533 if (K < 32768)
534 /* PPC_ANDI is /only/ dot-form */
535 PPC_ANDI(r_scratch1, r_A, K);
536 else {
537 PPC_LI32(r_scratch1, K);
538 PPC_AND_DOT(r_scratch1, r_A,
539 r_scratch1);
541 break;
543 /* Sometimes branches are constructed "backward", with
544 * the false path being the branch and true path being
545 * a fallthrough to the next instruction.
547 if (filter[i].jt == 0)
548 /* Swap the sense of the branch */
549 PPC_BCC(true_cond ^ COND_CMP_TRUE,
550 addrs[i + 1 + filter[i].jf]);
551 else {
552 PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
553 if (filter[i].jf != 0)
554 PPC_JMP(addrs[i + 1 + filter[i].jf]);
556 break;
557 default:
558 /* The filter contains something cruel & unusual.
559 * We don't handle it, but also there shouldn't be
560 * anything missing from our list.
562 if (printk_ratelimit())
563 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
564 filter[i].code, i);
565 return -ENOTSUPP;
569 /* Set end-of-body-code address for exit. */
570 addrs[i] = ctx->idx * 4;
572 return 0;
575 void bpf_jit_compile(struct bpf_prog *fp)
577 unsigned int proglen;
578 unsigned int alloclen;
579 u32 *image = NULL;
580 u32 *code_base;
581 unsigned int *addrs;
582 struct codegen_context cgctx;
583 int pass;
584 int flen = fp->len;
586 if (!bpf_jit_enable)
587 return;
589 addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
590 if (addrs == NULL)
591 return;
594 * There are multiple assembly passes as the generated code will change
595 * size as it settles down, figuring out the max branch offsets/exit
596 * paths required.
598 * The range of standard conditional branches is +/- 32Kbytes. Since
599 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
600 * finish with 8 bytes/instruction. Not feasible, so long jumps are
601 * used, distinct from short branches.
603 * Current:
605 * For now, both branch types assemble to 2 words (short branches padded
606 * with a NOP); this is less efficient, but assembly will always complete
607 * after exactly 3 passes:
609 * First pass: No code buffer; Program is "faux-generated" -- no code
610 * emitted but maximum size of output determined (and addrs[] filled
611 * in). Also, we note whether we use M[], whether we use skb data, etc.
612 * All generation choices assumed to be 'worst-case', e.g. branches all
613 * far (2 instructions), return path code reduction not available, etc.
615 * Second pass: Code buffer allocated with size determined previously.
616 * Prologue generated to support features we have seen used. Exit paths
617 * determined and addrs[] is filled in again, as code may be slightly
618 * smaller as a result.
620 * Third pass: Code generated 'for real', and branch destinations
621 * determined from now-accurate addrs[] map.
623 * Ideal:
625 * If we optimise this, near branches will be shorter. On the
626 * first assembly pass, we should err on the side of caution and
627 * generate the biggest code. On subsequent passes, branches will be
628 * generated short or long and code size will reduce. With smaller
629 * code, more branches may fall into the short category, and code will
630 * reduce more.
632 * Finally, if we see one pass generate code the same size as the
633 * previous pass we have converged and should now generate code for
634 * real. Allocating at the end will also save the memory that would
635 * otherwise be wasted by the (small) current code shrinkage.
636 * Preferably, we should do a small number of passes (e.g. 5) and if we
637 * haven't converged by then, get impatient and force code to generate
638 * as-is, even if the odd branch would be left long. The chances of a
639 * long jump are tiny with all but the most enormous of BPF filter
640 * inputs, so we should usually converge on the third pass.
643 cgctx.idx = 0;
644 cgctx.seen = 0;
645 cgctx.pc_ret0 = -1;
646 /* Scouting faux-generate pass 0 */
647 if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
648 /* We hit something illegal or unsupported. */
649 goto out;
652 * Pretend to build prologue, given the features we've seen. This will
653 * update ctgtx.idx as it pretends to output instructions, then we can
654 * calculate total size from idx.
656 bpf_jit_build_prologue(fp, 0, &cgctx);
657 bpf_jit_build_epilogue(0, &cgctx);
659 proglen = cgctx.idx * 4;
660 alloclen = proglen + FUNCTION_DESCR_SIZE;
661 image = module_alloc(alloclen);
662 if (!image)
663 goto out;
665 code_base = image + (FUNCTION_DESCR_SIZE/4);
667 /* Code generation passes 1-2 */
668 for (pass = 1; pass < 3; pass++) {
669 /* Now build the prologue, body code & epilogue for real. */
670 cgctx.idx = 0;
671 bpf_jit_build_prologue(fp, code_base, &cgctx);
672 bpf_jit_build_body(fp, code_base, &cgctx, addrs);
673 bpf_jit_build_epilogue(code_base, &cgctx);
675 if (bpf_jit_enable > 1)
676 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
677 proglen - (cgctx.idx * 4), cgctx.seen);
680 if (bpf_jit_enable > 1)
681 /* Note that we output the base address of the code_base
682 * rather than image, since opcodes are in code_base.
684 bpf_jit_dump(flen, proglen, pass, code_base);
686 if (image) {
687 bpf_flush_icache(code_base, code_base + (proglen/4));
688 /* Function descriptor nastiness: Address + TOC */
689 ((u64 *)image)[0] = (u64)code_base;
690 ((u64 *)image)[1] = local_paca->kernel_toc;
691 fp->bpf_func = (void *)image;
692 fp->jited = true;
694 out:
695 kfree(addrs);
696 return;
699 void bpf_jit_free(struct bpf_prog *fp)
701 if (fp->jited)
702 module_memfree(fp->bpf_func);
704 bpf_prog_unlock_free(fp);