1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag
)
108 case CON_FLAG_LOSSYTX
:
109 case CON_FLAG_KEEPALIVE_PENDING
:
110 case CON_FLAG_WRITE_PENDING
:
111 case CON_FLAG_SOCK_CLOSED
:
112 case CON_FLAG_BACKOFF
:
119 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
121 BUG_ON(!con_flag_valid(con_flag
));
123 clear_bit(con_flag
, &con
->flags
);
126 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
128 BUG_ON(!con_flag_valid(con_flag
));
130 set_bit(con_flag
, &con
->flags
);
133 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
135 BUG_ON(!con_flag_valid(con_flag
));
137 return test_bit(con_flag
, &con
->flags
);
140 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
141 unsigned long con_flag
)
143 BUG_ON(!con_flag_valid(con_flag
));
145 return test_and_clear_bit(con_flag
, &con
->flags
);
148 static bool con_flag_test_and_set(struct ceph_connection
*con
,
149 unsigned long con_flag
)
151 BUG_ON(!con_flag_valid(con_flag
));
153 return test_and_set_bit(con_flag
, &con
->flags
);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache
*ceph_msg_cache
;
159 static struct kmem_cache
*ceph_msg_data_cache
;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
163 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
164 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class
;
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection
*con
);
177 static void cancel_con(struct ceph_connection
*con
);
178 static void con_work(struct work_struct
*);
179 static void con_fault(struct ceph_connection
*con
);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
191 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
193 static struct page
*zero_page
; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
199 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
200 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
202 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
205 switch (ss
->ss_family
) {
207 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
208 ntohs(in4
->sin_port
));
212 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
213 ntohs(in6
->sin6_port
));
217 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
223 EXPORT_SYMBOL(ceph_pr_addr
);
225 static void encode_my_addr(struct ceph_messenger
*msgr
)
227 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
228 ceph_encode_addr(&msgr
->my_enc_addr
);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct
*ceph_msgr_wq
;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache
);
239 ceph_msg_cache
= kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg
),
241 __alignof__(struct ceph_msg
), 0, NULL
);
246 BUG_ON(ceph_msg_data_cache
);
247 ceph_msg_data_cache
= kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data
),
249 __alignof__(struct ceph_msg_data
),
251 if (ceph_msg_data_cache
)
254 kmem_cache_destroy(ceph_msg_cache
);
255 ceph_msg_cache
= NULL
;
260 static void ceph_msgr_slab_exit(void)
262 BUG_ON(!ceph_msg_data_cache
);
263 kmem_cache_destroy(ceph_msg_data_cache
);
264 ceph_msg_data_cache
= NULL
;
266 BUG_ON(!ceph_msg_cache
);
267 kmem_cache_destroy(ceph_msg_cache
);
268 ceph_msg_cache
= NULL
;
271 static void _ceph_msgr_exit(void)
274 destroy_workqueue(ceph_msgr_wq
);
278 ceph_msgr_slab_exit();
280 BUG_ON(zero_page
== NULL
);
282 page_cache_release(zero_page
);
286 int ceph_msgr_init(void)
288 BUG_ON(zero_page
!= NULL
);
289 zero_page
= ZERO_PAGE(0);
290 page_cache_get(zero_page
);
292 if (ceph_msgr_slab_init())
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
299 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
303 pr_err("msgr_init failed to create workqueue\n");
308 EXPORT_SYMBOL(ceph_msgr_init
);
310 void ceph_msgr_exit(void)
312 BUG_ON(ceph_msgr_wq
== NULL
);
316 EXPORT_SYMBOL(ceph_msgr_exit
);
318 void ceph_msgr_flush(void)
320 flush_workqueue(ceph_msgr_wq
);
322 EXPORT_SYMBOL(ceph_msgr_flush
);
324 /* Connection socket state transition functions */
326 static void con_sock_state_init(struct ceph_connection
*con
)
330 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
331 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
332 printk("%s: unexpected old state %d\n", __func__
, old_state
);
333 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
334 CON_SOCK_STATE_CLOSED
);
337 static void con_sock_state_connecting(struct ceph_connection
*con
)
341 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
342 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
343 printk("%s: unexpected old state %d\n", __func__
, old_state
);
344 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
345 CON_SOCK_STATE_CONNECTING
);
348 static void con_sock_state_connected(struct ceph_connection
*con
)
352 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
353 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
354 printk("%s: unexpected old state %d\n", __func__
, old_state
);
355 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
356 CON_SOCK_STATE_CONNECTED
);
359 static void con_sock_state_closing(struct ceph_connection
*con
)
363 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
364 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
365 old_state
!= CON_SOCK_STATE_CONNECTED
&&
366 old_state
!= CON_SOCK_STATE_CLOSING
))
367 printk("%s: unexpected old state %d\n", __func__
, old_state
);
368 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
369 CON_SOCK_STATE_CLOSING
);
372 static void con_sock_state_closed(struct ceph_connection
*con
)
376 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
377 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
378 old_state
!= CON_SOCK_STATE_CLOSING
&&
379 old_state
!= CON_SOCK_STATE_CONNECTING
&&
380 old_state
!= CON_SOCK_STATE_CLOSED
))
381 printk("%s: unexpected old state %d\n", __func__
, old_state
);
382 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
383 CON_SOCK_STATE_CLOSED
);
387 * socket callback functions
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock
*sk
)
393 struct ceph_connection
*con
= sk
->sk_user_data
;
394 if (atomic_read(&con
->msgr
->stopping
)) {
398 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
399 dout("%s on %p state = %lu, queueing work\n", __func__
,
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock
*sk
)
408 struct ceph_connection
*con
= sk
->sk_user_data
;
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
417 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
418 if (sk_stream_is_writeable(sk
)) {
419 dout("%s %p queueing write work\n", __func__
, con
);
420 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
424 dout("%s %p nothing to write\n", __func__
, con
);
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock
*sk
)
431 struct ceph_connection
*con
= sk
->sk_user_data
;
433 dout("%s %p state = %lu sk_state = %u\n", __func__
,
434 con
, con
->state
, sk
->sk_state
);
436 switch (sk
->sk_state
) {
438 dout("%s TCP_CLOSE\n", __func__
);
440 dout("%s TCP_CLOSE_WAIT\n", __func__
);
441 con_sock_state_closing(con
);
442 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
445 case TCP_ESTABLISHED
:
446 dout("%s TCP_ESTABLISHED\n", __func__
);
447 con_sock_state_connected(con
);
450 default: /* Everything else is uninteresting */
456 * set up socket callbacks
458 static void set_sock_callbacks(struct socket
*sock
,
459 struct ceph_connection
*con
)
461 struct sock
*sk
= sock
->sk
;
462 sk
->sk_user_data
= con
;
463 sk
->sk_data_ready
= ceph_sock_data_ready
;
464 sk
->sk_write_space
= ceph_sock_write_space
;
465 sk
->sk_state_change
= ceph_sock_state_change
;
474 * initiate connection to a remote socket.
476 static int ceph_tcp_connect(struct ceph_connection
*con
)
478 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
483 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
487 sock
->sk
->sk_allocation
= GFP_NOFS
;
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
493 set_sock_callbacks(sock
, con
);
495 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
497 con_sock_state_connecting(con
);
498 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
500 if (ret
== -EINPROGRESS
) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con
->peer_addr
.in_addr
),
504 } else if (ret
< 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
508 con
->error_msg
= "connect error";
517 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
519 struct kvec iov
= {buf
, len
};
520 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
523 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
529 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
530 int page_offset
, size_t length
)
535 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
539 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
546 * write something. @more is true if caller will be sending more data
549 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
550 size_t kvlen
, size_t len
, int more
)
552 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
556 msg
.msg_flags
|= MSG_MORE
;
558 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
560 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
566 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
567 int offset
, size_t size
, bool more
)
569 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
572 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
579 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
580 int offset
, size_t size
, bool more
)
585 /* sendpage cannot properly handle pages with page_count == 0,
586 * we need to fallback to sendmsg if that's the case */
587 if (page_count(page
) >= 1)
588 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
590 iov
.iov_base
= kmap(page
) + offset
;
592 ret
= ceph_tcp_sendmsg(sock
, &iov
, 1, size
, more
);
599 * Shutdown/close the socket for the given connection.
601 static int con_close_socket(struct ceph_connection
*con
)
605 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
607 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
608 sock_release(con
->sock
);
613 * Forcibly clear the SOCK_CLOSED flag. It gets set
614 * independent of the connection mutex, and we could have
615 * received a socket close event before we had the chance to
616 * shut the socket down.
618 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
620 con_sock_state_closed(con
);
625 * Reset a connection. Discard all incoming and outgoing messages
626 * and clear *_seq state.
628 static void ceph_msg_remove(struct ceph_msg
*msg
)
630 list_del_init(&msg
->list_head
);
631 BUG_ON(msg
->con
== NULL
);
632 msg
->con
->ops
->put(msg
->con
);
637 static void ceph_msg_remove_list(struct list_head
*head
)
639 while (!list_empty(head
)) {
640 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
642 ceph_msg_remove(msg
);
646 static void reset_connection(struct ceph_connection
*con
)
648 /* reset connection, out_queue, msg_ and connect_seq */
649 /* discard existing out_queue and msg_seq */
650 dout("reset_connection %p\n", con
);
651 ceph_msg_remove_list(&con
->out_queue
);
652 ceph_msg_remove_list(&con
->out_sent
);
655 BUG_ON(con
->in_msg
->con
!= con
);
656 con
->in_msg
->con
= NULL
;
657 ceph_msg_put(con
->in_msg
);
662 con
->connect_seq
= 0;
665 ceph_msg_put(con
->out_msg
);
669 con
->in_seq_acked
= 0;
673 * mark a peer down. drop any open connections.
675 void ceph_con_close(struct ceph_connection
*con
)
677 mutex_lock(&con
->mutex
);
678 dout("con_close %p peer %s\n", con
,
679 ceph_pr_addr(&con
->peer_addr
.in_addr
));
680 con
->state
= CON_STATE_CLOSED
;
682 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
683 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
684 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
685 con_flag_clear(con
, CON_FLAG_BACKOFF
);
687 reset_connection(con
);
688 con
->peer_global_seq
= 0;
690 con_close_socket(con
);
691 mutex_unlock(&con
->mutex
);
693 EXPORT_SYMBOL(ceph_con_close
);
696 * Reopen a closed connection, with a new peer address.
698 void ceph_con_open(struct ceph_connection
*con
,
699 __u8 entity_type
, __u64 entity_num
,
700 struct ceph_entity_addr
*addr
)
702 mutex_lock(&con
->mutex
);
703 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
705 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
706 con
->state
= CON_STATE_PREOPEN
;
708 con
->peer_name
.type
= (__u8
) entity_type
;
709 con
->peer_name
.num
= cpu_to_le64(entity_num
);
711 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
712 con
->delay
= 0; /* reset backoff memory */
713 mutex_unlock(&con
->mutex
);
716 EXPORT_SYMBOL(ceph_con_open
);
719 * return true if this connection ever successfully opened
721 bool ceph_con_opened(struct ceph_connection
*con
)
723 return con
->connect_seq
> 0;
727 * initialize a new connection.
729 void ceph_con_init(struct ceph_connection
*con
, void *private,
730 const struct ceph_connection_operations
*ops
,
731 struct ceph_messenger
*msgr
)
733 dout("con_init %p\n", con
);
734 memset(con
, 0, sizeof(*con
));
735 con
->private = private;
739 con_sock_state_init(con
);
741 mutex_init(&con
->mutex
);
742 INIT_LIST_HEAD(&con
->out_queue
);
743 INIT_LIST_HEAD(&con
->out_sent
);
744 INIT_DELAYED_WORK(&con
->work
, con_work
);
746 con
->state
= CON_STATE_CLOSED
;
748 EXPORT_SYMBOL(ceph_con_init
);
752 * We maintain a global counter to order connection attempts. Get
753 * a unique seq greater than @gt.
755 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
759 spin_lock(&msgr
->global_seq_lock
);
760 if (msgr
->global_seq
< gt
)
761 msgr
->global_seq
= gt
;
762 ret
= ++msgr
->global_seq
;
763 spin_unlock(&msgr
->global_seq_lock
);
767 static void con_out_kvec_reset(struct ceph_connection
*con
)
769 con
->out_kvec_left
= 0;
770 con
->out_kvec_bytes
= 0;
771 con
->out_kvec_cur
= &con
->out_kvec
[0];
774 static void con_out_kvec_add(struct ceph_connection
*con
,
775 size_t size
, void *data
)
779 index
= con
->out_kvec_left
;
780 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
782 con
->out_kvec
[index
].iov_len
= size
;
783 con
->out_kvec
[index
].iov_base
= data
;
784 con
->out_kvec_left
++;
785 con
->out_kvec_bytes
+= size
;
791 * For a bio data item, a piece is whatever remains of the next
792 * entry in the current bio iovec, or the first entry in the next
795 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
798 struct ceph_msg_data
*data
= cursor
->data
;
801 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
806 cursor
->resid
= min(length
, data
->bio_length
);
808 cursor
->bvec_iter
= bio
->bi_iter
;
810 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
813 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
817 struct ceph_msg_data
*data
= cursor
->data
;
819 struct bio_vec bio_vec
;
821 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
826 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
828 *page_offset
= (size_t) bio_vec
.bv_offset
;
829 BUG_ON(*page_offset
>= PAGE_SIZE
);
830 if (cursor
->last_piece
) /* pagelist offset is always 0 */
831 *length
= cursor
->resid
;
833 *length
= (size_t) bio_vec
.bv_len
;
834 BUG_ON(*length
> cursor
->resid
);
835 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
837 return bio_vec
.bv_page
;
840 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
844 struct bio_vec bio_vec
;
846 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
851 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
853 /* Advance the cursor offset */
855 BUG_ON(cursor
->resid
< bytes
);
856 cursor
->resid
-= bytes
;
858 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
860 if (bytes
< bio_vec
.bv_len
)
861 return false; /* more bytes to process in this segment */
863 /* Move on to the next segment, and possibly the next bio */
865 if (!cursor
->bvec_iter
.bi_size
) {
869 cursor
->bvec_iter
= bio
->bi_iter
;
871 memset(&cursor
->bvec_iter
, 0,
872 sizeof(cursor
->bvec_iter
));
875 if (!cursor
->last_piece
) {
876 BUG_ON(!cursor
->resid
);
878 /* A short read is OK, so use <= rather than == */
879 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
880 cursor
->last_piece
= true;
885 #endif /* CONFIG_BLOCK */
888 * For a page array, a piece comes from the first page in the array
889 * that has not already been fully consumed.
891 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
894 struct ceph_msg_data
*data
= cursor
->data
;
897 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
899 BUG_ON(!data
->pages
);
900 BUG_ON(!data
->length
);
902 cursor
->resid
= min(length
, data
->length
);
903 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
904 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
905 cursor
->page_index
= 0;
906 BUG_ON(page_count
> (int)USHRT_MAX
);
907 cursor
->page_count
= (unsigned short)page_count
;
908 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
909 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
913 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
914 size_t *page_offset
, size_t *length
)
916 struct ceph_msg_data
*data
= cursor
->data
;
918 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
920 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
921 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
923 *page_offset
= cursor
->page_offset
;
924 if (cursor
->last_piece
)
925 *length
= cursor
->resid
;
927 *length
= PAGE_SIZE
- *page_offset
;
929 return data
->pages
[cursor
->page_index
];
932 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
935 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
937 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
939 /* Advance the cursor page offset */
941 cursor
->resid
-= bytes
;
942 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
943 if (!bytes
|| cursor
->page_offset
)
944 return false; /* more bytes to process in the current page */
947 return false; /* no more data */
949 /* Move on to the next page; offset is already at 0 */
951 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
952 cursor
->page_index
++;
953 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
959 * For a pagelist, a piece is whatever remains to be consumed in the
960 * first page in the list, or the front of the next page.
963 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
966 struct ceph_msg_data
*data
= cursor
->data
;
967 struct ceph_pagelist
*pagelist
;
970 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
972 pagelist
= data
->pagelist
;
976 return; /* pagelist can be assigned but empty */
978 BUG_ON(list_empty(&pagelist
->head
));
979 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
981 cursor
->resid
= min(length
, pagelist
->length
);
984 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
988 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
989 size_t *page_offset
, size_t *length
)
991 struct ceph_msg_data
*data
= cursor
->data
;
992 struct ceph_pagelist
*pagelist
;
994 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
996 pagelist
= data
->pagelist
;
999 BUG_ON(!cursor
->page
);
1000 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1002 /* offset of first page in pagelist is always 0 */
1003 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1004 if (cursor
->last_piece
)
1005 *length
= cursor
->resid
;
1007 *length
= PAGE_SIZE
- *page_offset
;
1009 return cursor
->page
;
1012 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1015 struct ceph_msg_data
*data
= cursor
->data
;
1016 struct ceph_pagelist
*pagelist
;
1018 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1020 pagelist
= data
->pagelist
;
1023 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1024 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1026 /* Advance the cursor offset */
1028 cursor
->resid
-= bytes
;
1029 cursor
->offset
+= bytes
;
1030 /* offset of first page in pagelist is always 0 */
1031 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1032 return false; /* more bytes to process in the current page */
1035 return false; /* no more data */
1037 /* Move on to the next page */
1039 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1040 cursor
->page
= list_entry_next(cursor
->page
, lru
);
1041 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1047 * Message data is handled (sent or received) in pieces, where each
1048 * piece resides on a single page. The network layer might not
1049 * consume an entire piece at once. A data item's cursor keeps
1050 * track of which piece is next to process and how much remains to
1051 * be processed in that piece. It also tracks whether the current
1052 * piece is the last one in the data item.
1054 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1056 size_t length
= cursor
->total_resid
;
1058 switch (cursor
->data
->type
) {
1059 case CEPH_MSG_DATA_PAGELIST
:
1060 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1062 case CEPH_MSG_DATA_PAGES
:
1063 ceph_msg_data_pages_cursor_init(cursor
, length
);
1066 case CEPH_MSG_DATA_BIO
:
1067 ceph_msg_data_bio_cursor_init(cursor
, length
);
1069 #endif /* CONFIG_BLOCK */
1070 case CEPH_MSG_DATA_NONE
:
1075 cursor
->need_crc
= true;
1078 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1080 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1081 struct ceph_msg_data
*data
;
1084 BUG_ON(length
> msg
->data_length
);
1085 BUG_ON(list_empty(&msg
->data
));
1087 cursor
->data_head
= &msg
->data
;
1088 cursor
->total_resid
= length
;
1089 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1090 cursor
->data
= data
;
1092 __ceph_msg_data_cursor_init(cursor
);
1096 * Return the page containing the next piece to process for a given
1097 * data item, and supply the page offset and length of that piece.
1098 * Indicate whether this is the last piece in this data item.
1100 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1101 size_t *page_offset
, size_t *length
,
1106 switch (cursor
->data
->type
) {
1107 case CEPH_MSG_DATA_PAGELIST
:
1108 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1110 case CEPH_MSG_DATA_PAGES
:
1111 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1114 case CEPH_MSG_DATA_BIO
:
1115 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1117 #endif /* CONFIG_BLOCK */
1118 case CEPH_MSG_DATA_NONE
:
1124 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1127 *last_piece
= cursor
->last_piece
;
1133 * Returns true if the result moves the cursor on to the next piece
1136 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1141 BUG_ON(bytes
> cursor
->resid
);
1142 switch (cursor
->data
->type
) {
1143 case CEPH_MSG_DATA_PAGELIST
:
1144 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1146 case CEPH_MSG_DATA_PAGES
:
1147 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1150 case CEPH_MSG_DATA_BIO
:
1151 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1153 #endif /* CONFIG_BLOCK */
1154 case CEPH_MSG_DATA_NONE
:
1159 cursor
->total_resid
-= bytes
;
1161 if (!cursor
->resid
&& cursor
->total_resid
) {
1162 WARN_ON(!cursor
->last_piece
);
1163 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1164 cursor
->data
= list_entry_next(cursor
->data
, links
);
1165 __ceph_msg_data_cursor_init(cursor
);
1168 cursor
->need_crc
= new_piece
;
1173 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1178 /* Initialize data cursor */
1180 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1184 * Prepare footer for currently outgoing message, and finish things
1185 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1187 static void prepare_write_message_footer(struct ceph_connection
*con
)
1189 struct ceph_msg
*m
= con
->out_msg
;
1190 int v
= con
->out_kvec_left
;
1192 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1194 dout("prepare_write_message_footer %p\n", con
);
1195 con
->out_kvec_is_msg
= true;
1196 con
->out_kvec
[v
].iov_base
= &m
->footer
;
1197 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
1198 con
->out_kvec_bytes
+= sizeof(m
->footer
);
1199 con
->out_kvec_left
++;
1200 con
->out_more
= m
->more_to_follow
;
1201 con
->out_msg_done
= true;
1205 * Prepare headers for the next outgoing message.
1207 static void prepare_write_message(struct ceph_connection
*con
)
1212 con_out_kvec_reset(con
);
1213 con
->out_kvec_is_msg
= true;
1214 con
->out_msg_done
= false;
1216 /* Sneak an ack in there first? If we can get it into the same
1217 * TCP packet that's a good thing. */
1218 if (con
->in_seq
> con
->in_seq_acked
) {
1219 con
->in_seq_acked
= con
->in_seq
;
1220 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1221 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1222 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1223 &con
->out_temp_ack
);
1226 BUG_ON(list_empty(&con
->out_queue
));
1227 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1229 BUG_ON(m
->con
!= con
);
1231 /* put message on sent list */
1233 list_move_tail(&m
->list_head
, &con
->out_sent
);
1236 * only assign outgoing seq # if we haven't sent this message
1237 * yet. if it is requeued, resend with it's original seq.
1239 if (m
->needs_out_seq
) {
1240 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1241 m
->needs_out_seq
= false;
1243 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1245 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1246 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1247 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1249 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1251 /* tag + hdr + front + middle */
1252 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1253 con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
1254 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1257 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1258 m
->middle
->vec
.iov_base
);
1260 /* fill in crc (except data pages), footer */
1261 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1262 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1263 con
->out_msg
->footer
.flags
= 0;
1265 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1266 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1268 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1269 m
->middle
->vec
.iov_len
);
1270 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1272 con
->out_msg
->footer
.middle_crc
= 0;
1273 dout("%s front_crc %u middle_crc %u\n", __func__
,
1274 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1275 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1277 /* is there a data payload? */
1278 con
->out_msg
->footer
.data_crc
= 0;
1279 if (m
->data_length
) {
1280 prepare_message_data(con
->out_msg
, m
->data_length
);
1281 con
->out_more
= 1; /* data + footer will follow */
1283 /* no, queue up footer too and be done */
1284 prepare_write_message_footer(con
);
1287 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1293 static void prepare_write_ack(struct ceph_connection
*con
)
1295 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1296 con
->in_seq_acked
, con
->in_seq
);
1297 con
->in_seq_acked
= con
->in_seq
;
1299 con_out_kvec_reset(con
);
1301 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1303 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1304 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1305 &con
->out_temp_ack
);
1307 con
->out_more
= 1; /* more will follow.. eventually.. */
1308 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1312 * Prepare to share the seq during handshake
1314 static void prepare_write_seq(struct ceph_connection
*con
)
1316 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1317 con
->in_seq_acked
, con
->in_seq
);
1318 con
->in_seq_acked
= con
->in_seq
;
1320 con_out_kvec_reset(con
);
1322 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1323 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1324 &con
->out_temp_ack
);
1326 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1330 * Prepare to write keepalive byte.
1332 static void prepare_write_keepalive(struct ceph_connection
*con
)
1334 dout("prepare_write_keepalive %p\n", con
);
1335 con_out_kvec_reset(con
);
1336 con_out_kvec_add(con
, sizeof (tag_keepalive
), &tag_keepalive
);
1337 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1341 * Connection negotiation.
1344 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1347 struct ceph_auth_handshake
*auth
;
1349 if (!con
->ops
->get_authorizer
) {
1350 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1351 con
->out_connect
.authorizer_len
= 0;
1355 /* Can't hold the mutex while getting authorizer */
1356 mutex_unlock(&con
->mutex
);
1357 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1358 mutex_lock(&con
->mutex
);
1362 if (con
->state
!= CON_STATE_NEGOTIATING
)
1363 return ERR_PTR(-EAGAIN
);
1365 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1366 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1371 * We connected to a peer and are saying hello.
1373 static void prepare_write_banner(struct ceph_connection
*con
)
1375 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1376 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1377 &con
->msgr
->my_enc_addr
);
1380 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1383 static int prepare_write_connect(struct ceph_connection
*con
)
1385 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1388 struct ceph_auth_handshake
*auth
;
1390 switch (con
->peer_name
.type
) {
1391 case CEPH_ENTITY_TYPE_MON
:
1392 proto
= CEPH_MONC_PROTOCOL
;
1394 case CEPH_ENTITY_TYPE_OSD
:
1395 proto
= CEPH_OSDC_PROTOCOL
;
1397 case CEPH_ENTITY_TYPE_MDS
:
1398 proto
= CEPH_MDSC_PROTOCOL
;
1404 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1405 con
->connect_seq
, global_seq
, proto
);
1407 con
->out_connect
.features
= cpu_to_le64(con
->msgr
->supported_features
);
1408 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1409 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1410 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1411 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1412 con
->out_connect
.flags
= 0;
1414 auth_proto
= CEPH_AUTH_UNKNOWN
;
1415 auth
= get_connect_authorizer(con
, &auth_proto
);
1417 return PTR_ERR(auth
);
1419 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1420 con
->out_connect
.authorizer_len
= auth
?
1421 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1423 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1425 if (auth
&& auth
->authorizer_buf_len
)
1426 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1427 auth
->authorizer_buf
);
1430 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1436 * write as much of pending kvecs to the socket as we can.
1438 * 0 -> socket full, but more to do
1441 static int write_partial_kvec(struct ceph_connection
*con
)
1445 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1446 while (con
->out_kvec_bytes
> 0) {
1447 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1448 con
->out_kvec_left
, con
->out_kvec_bytes
,
1452 con
->out_kvec_bytes
-= ret
;
1453 if (con
->out_kvec_bytes
== 0)
1456 /* account for full iov entries consumed */
1457 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1458 BUG_ON(!con
->out_kvec_left
);
1459 ret
-= con
->out_kvec_cur
->iov_len
;
1460 con
->out_kvec_cur
++;
1461 con
->out_kvec_left
--;
1463 /* and for a partially-consumed entry */
1465 con
->out_kvec_cur
->iov_len
-= ret
;
1466 con
->out_kvec_cur
->iov_base
+= ret
;
1469 con
->out_kvec_left
= 0;
1470 con
->out_kvec_is_msg
= false;
1473 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1474 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1475 return ret
; /* done! */
1478 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1479 unsigned int page_offset
,
1480 unsigned int length
)
1485 BUG_ON(kaddr
== NULL
);
1486 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1492 * Write as much message data payload as we can. If we finish, queue
1494 * 1 -> done, footer is now queued in out_kvec[].
1495 * 0 -> socket full, but more to do
1498 static int write_partial_message_data(struct ceph_connection
*con
)
1500 struct ceph_msg
*msg
= con
->out_msg
;
1501 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1502 bool do_datacrc
= !con
->msgr
->nocrc
;
1505 dout("%s %p msg %p\n", __func__
, con
, msg
);
1507 if (list_empty(&msg
->data
))
1511 * Iterate through each page that contains data to be
1512 * written, and send as much as possible for each.
1514 * If we are calculating the data crc (the default), we will
1515 * need to map the page. If we have no pages, they have
1516 * been revoked, so use the zero page.
1518 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1519 while (cursor
->resid
) {
1527 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
1529 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1530 length
, last_piece
);
1533 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1537 if (do_datacrc
&& cursor
->need_crc
)
1538 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1539 need_crc
= ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
1542 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1544 /* prepare and queue up footer, too */
1546 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1548 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1549 con_out_kvec_reset(con
);
1550 prepare_write_message_footer(con
);
1552 return 1; /* must return > 0 to indicate success */
1558 static int write_partial_skip(struct ceph_connection
*con
)
1562 while (con
->out_skip
> 0) {
1563 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1565 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1568 con
->out_skip
-= ret
;
1576 * Prepare to read connection handshake, or an ack.
1578 static void prepare_read_banner(struct ceph_connection
*con
)
1580 dout("prepare_read_banner %p\n", con
);
1581 con
->in_base_pos
= 0;
1584 static void prepare_read_connect(struct ceph_connection
*con
)
1586 dout("prepare_read_connect %p\n", con
);
1587 con
->in_base_pos
= 0;
1590 static void prepare_read_ack(struct ceph_connection
*con
)
1592 dout("prepare_read_ack %p\n", con
);
1593 con
->in_base_pos
= 0;
1596 static void prepare_read_seq(struct ceph_connection
*con
)
1598 dout("prepare_read_seq %p\n", con
);
1599 con
->in_base_pos
= 0;
1600 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1603 static void prepare_read_tag(struct ceph_connection
*con
)
1605 dout("prepare_read_tag %p\n", con
);
1606 con
->in_base_pos
= 0;
1607 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1611 * Prepare to read a message.
1613 static int prepare_read_message(struct ceph_connection
*con
)
1615 dout("prepare_read_message %p\n", con
);
1616 BUG_ON(con
->in_msg
!= NULL
);
1617 con
->in_base_pos
= 0;
1618 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1623 static int read_partial(struct ceph_connection
*con
,
1624 int end
, int size
, void *object
)
1626 while (con
->in_base_pos
< end
) {
1627 int left
= end
- con
->in_base_pos
;
1628 int have
= size
- left
;
1629 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1632 con
->in_base_pos
+= ret
;
1639 * Read all or part of the connect-side handshake on a new connection
1641 static int read_partial_banner(struct ceph_connection
*con
)
1647 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1650 size
= strlen(CEPH_BANNER
);
1652 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1656 size
= sizeof (con
->actual_peer_addr
);
1658 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1662 size
= sizeof (con
->peer_addr_for_me
);
1664 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1672 static int read_partial_connect(struct ceph_connection
*con
)
1678 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1680 size
= sizeof (con
->in_reply
);
1682 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1686 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1688 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1692 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1693 con
, (int)con
->in_reply
.tag
,
1694 le32_to_cpu(con
->in_reply
.connect_seq
),
1695 le32_to_cpu(con
->in_reply
.global_seq
));
1702 * Verify the hello banner looks okay.
1704 static int verify_hello(struct ceph_connection
*con
)
1706 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1707 pr_err("connect to %s got bad banner\n",
1708 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1709 con
->error_msg
= "protocol error, bad banner";
1715 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1717 switch (ss
->ss_family
) {
1719 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1722 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1723 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1724 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1725 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1730 static int addr_port(struct sockaddr_storage
*ss
)
1732 switch (ss
->ss_family
) {
1734 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1736 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1741 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1743 switch (ss
->ss_family
) {
1745 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1748 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1754 * Unlike other *_pton function semantics, zero indicates success.
1756 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1757 char delim
, const char **ipend
)
1759 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1760 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1762 memset(ss
, 0, sizeof(*ss
));
1764 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1765 ss
->ss_family
= AF_INET
;
1769 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1770 ss
->ss_family
= AF_INET6
;
1778 * Extract hostname string and resolve using kernel DNS facility.
1780 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1781 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1782 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1784 const char *end
, *delim_p
;
1785 char *colon_p
, *ip_addr
= NULL
;
1789 * The end of the hostname occurs immediately preceding the delimiter or
1790 * the port marker (':') where the delimiter takes precedence.
1792 delim_p
= memchr(name
, delim
, namelen
);
1793 colon_p
= memchr(name
, ':', namelen
);
1795 if (delim_p
&& colon_p
)
1796 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1797 else if (!delim_p
&& colon_p
)
1801 if (!end
) /* case: hostname:/ */
1802 end
= name
+ namelen
;
1808 /* do dns_resolve upcall */
1809 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1811 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1819 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1820 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1825 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1826 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1833 * Parse a server name (IP or hostname). If a valid IP address is not found
1834 * then try to extract a hostname to resolve using userspace DNS upcall.
1836 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1837 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1841 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1843 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1849 * Parse an ip[:port] list into an addr array. Use the default
1850 * monitor port if a port isn't specified.
1852 int ceph_parse_ips(const char *c
, const char *end
,
1853 struct ceph_entity_addr
*addr
,
1854 int max_count
, int *count
)
1856 int i
, ret
= -EINVAL
;
1859 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1860 for (i
= 0; i
< max_count
; i
++) {
1862 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1871 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1880 dout("missing matching ']'\n");
1887 if (p
< end
&& *p
== ':') {
1890 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1891 port
= (port
* 10) + (*p
- '0');
1895 port
= CEPH_MON_PORT
;
1896 else if (port
> 65535)
1899 port
= CEPH_MON_PORT
;
1902 addr_set_port(ss
, port
);
1904 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1921 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1924 EXPORT_SYMBOL(ceph_parse_ips
);
1926 static int process_banner(struct ceph_connection
*con
)
1928 dout("process_banner on %p\n", con
);
1930 if (verify_hello(con
) < 0)
1933 ceph_decode_addr(&con
->actual_peer_addr
);
1934 ceph_decode_addr(&con
->peer_addr_for_me
);
1937 * Make sure the other end is who we wanted. note that the other
1938 * end may not yet know their ip address, so if it's 0.0.0.0, give
1939 * them the benefit of the doubt.
1941 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1942 sizeof(con
->peer_addr
)) != 0 &&
1943 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1944 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1945 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1946 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1947 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1948 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1949 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1950 con
->error_msg
= "wrong peer at address";
1955 * did we learn our address?
1957 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1958 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1960 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1961 &con
->peer_addr_for_me
.in_addr
,
1962 sizeof(con
->peer_addr_for_me
.in_addr
));
1963 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1964 encode_my_addr(con
->msgr
);
1965 dout("process_banner learned my addr is %s\n",
1966 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1972 static int process_connect(struct ceph_connection
*con
)
1974 u64 sup_feat
= con
->msgr
->supported_features
;
1975 u64 req_feat
= con
->msgr
->required_features
;
1976 u64 server_feat
= ceph_sanitize_features(
1977 le64_to_cpu(con
->in_reply
.features
));
1980 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1982 switch (con
->in_reply
.tag
) {
1983 case CEPH_MSGR_TAG_FEATURES
:
1984 pr_err("%s%lld %s feature set mismatch,"
1985 " my %llx < server's %llx, missing %llx\n",
1986 ENTITY_NAME(con
->peer_name
),
1987 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1988 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1989 con
->error_msg
= "missing required protocol features";
1990 reset_connection(con
);
1993 case CEPH_MSGR_TAG_BADPROTOVER
:
1994 pr_err("%s%lld %s protocol version mismatch,"
1995 " my %d != server's %d\n",
1996 ENTITY_NAME(con
->peer_name
),
1997 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1998 le32_to_cpu(con
->out_connect
.protocol_version
),
1999 le32_to_cpu(con
->in_reply
.protocol_version
));
2000 con
->error_msg
= "protocol version mismatch";
2001 reset_connection(con
);
2004 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2006 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2008 if (con
->auth_retry
== 2) {
2009 con
->error_msg
= "connect authorization failure";
2012 con_out_kvec_reset(con
);
2013 ret
= prepare_write_connect(con
);
2016 prepare_read_connect(con
);
2019 case CEPH_MSGR_TAG_RESETSESSION
:
2021 * If we connected with a large connect_seq but the peer
2022 * has no record of a session with us (no connection, or
2023 * connect_seq == 0), they will send RESETSESION to indicate
2024 * that they must have reset their session, and may have
2027 dout("process_connect got RESET peer seq %u\n",
2028 le32_to_cpu(con
->in_reply
.connect_seq
));
2029 pr_err("%s%lld %s connection reset\n",
2030 ENTITY_NAME(con
->peer_name
),
2031 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2032 reset_connection(con
);
2033 con_out_kvec_reset(con
);
2034 ret
= prepare_write_connect(con
);
2037 prepare_read_connect(con
);
2039 /* Tell ceph about it. */
2040 mutex_unlock(&con
->mutex
);
2041 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2042 if (con
->ops
->peer_reset
)
2043 con
->ops
->peer_reset(con
);
2044 mutex_lock(&con
->mutex
);
2045 if (con
->state
!= CON_STATE_NEGOTIATING
)
2049 case CEPH_MSGR_TAG_RETRY_SESSION
:
2051 * If we sent a smaller connect_seq than the peer has, try
2052 * again with a larger value.
2054 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2055 le32_to_cpu(con
->out_connect
.connect_seq
),
2056 le32_to_cpu(con
->in_reply
.connect_seq
));
2057 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2058 con_out_kvec_reset(con
);
2059 ret
= prepare_write_connect(con
);
2062 prepare_read_connect(con
);
2065 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2067 * If we sent a smaller global_seq than the peer has, try
2068 * again with a larger value.
2070 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2071 con
->peer_global_seq
,
2072 le32_to_cpu(con
->in_reply
.global_seq
));
2073 get_global_seq(con
->msgr
,
2074 le32_to_cpu(con
->in_reply
.global_seq
));
2075 con_out_kvec_reset(con
);
2076 ret
= prepare_write_connect(con
);
2079 prepare_read_connect(con
);
2082 case CEPH_MSGR_TAG_SEQ
:
2083 case CEPH_MSGR_TAG_READY
:
2084 if (req_feat
& ~server_feat
) {
2085 pr_err("%s%lld %s protocol feature mismatch,"
2086 " my required %llx > server's %llx, need %llx\n",
2087 ENTITY_NAME(con
->peer_name
),
2088 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2089 req_feat
, server_feat
, req_feat
& ~server_feat
);
2090 con
->error_msg
= "missing required protocol features";
2091 reset_connection(con
);
2095 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2096 con
->state
= CON_STATE_OPEN
;
2097 con
->auth_retry
= 0; /* we authenticated; clear flag */
2098 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2100 con
->peer_features
= server_feat
;
2101 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2102 con
->peer_global_seq
,
2103 le32_to_cpu(con
->in_reply
.connect_seq
),
2105 WARN_ON(con
->connect_seq
!=
2106 le32_to_cpu(con
->in_reply
.connect_seq
));
2108 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2109 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2111 con
->delay
= 0; /* reset backoff memory */
2113 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2114 prepare_write_seq(con
);
2115 prepare_read_seq(con
);
2117 prepare_read_tag(con
);
2121 case CEPH_MSGR_TAG_WAIT
:
2123 * If there is a connection race (we are opening
2124 * connections to each other), one of us may just have
2125 * to WAIT. This shouldn't happen if we are the
2128 pr_err("process_connect got WAIT as client\n");
2129 con
->error_msg
= "protocol error, got WAIT as client";
2133 pr_err("connect protocol error, will retry\n");
2134 con
->error_msg
= "protocol error, garbage tag during connect";
2142 * read (part of) an ack
2144 static int read_partial_ack(struct ceph_connection
*con
)
2146 int size
= sizeof (con
->in_temp_ack
);
2149 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2153 * We can finally discard anything that's been acked.
2155 static void process_ack(struct ceph_connection
*con
)
2158 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2161 while (!list_empty(&con
->out_sent
)) {
2162 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2164 seq
= le64_to_cpu(m
->hdr
.seq
);
2167 dout("got ack for seq %llu type %d at %p\n", seq
,
2168 le16_to_cpu(m
->hdr
.type
), m
);
2169 m
->ack_stamp
= jiffies
;
2172 prepare_read_tag(con
);
2176 static int read_partial_message_section(struct ceph_connection
*con
,
2177 struct kvec
*section
,
2178 unsigned int sec_len
, u32
*crc
)
2184 while (section
->iov_len
< sec_len
) {
2185 BUG_ON(section
->iov_base
== NULL
);
2186 left
= sec_len
- section
->iov_len
;
2187 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2188 section
->iov_len
, left
);
2191 section
->iov_len
+= ret
;
2193 if (section
->iov_len
== sec_len
)
2194 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2199 static int read_partial_msg_data(struct ceph_connection
*con
)
2201 struct ceph_msg
*msg
= con
->in_msg
;
2202 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2203 const bool do_datacrc
= !con
->msgr
->nocrc
;
2211 if (list_empty(&msg
->data
))
2215 crc
= con
->in_data_crc
;
2216 while (cursor
->resid
) {
2217 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
2219 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2222 con
->in_data_crc
= crc
;
2228 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2229 (void) ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
2232 con
->in_data_crc
= crc
;
2234 return 1; /* must return > 0 to indicate success */
2238 * read (part of) a message.
2240 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2242 static int read_partial_message(struct ceph_connection
*con
)
2244 struct ceph_msg
*m
= con
->in_msg
;
2248 unsigned int front_len
, middle_len
, data_len
;
2249 bool do_datacrc
= !con
->msgr
->nocrc
;
2253 dout("read_partial_message con %p msg %p\n", con
, m
);
2256 size
= sizeof (con
->in_hdr
);
2258 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2262 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2263 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2264 pr_err("read_partial_message bad hdr "
2265 " crc %u != expected %u\n",
2266 crc
, con
->in_hdr
.crc
);
2270 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2271 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2273 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2274 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2276 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2277 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2281 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2282 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2283 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2284 ENTITY_NAME(con
->peer_name
),
2285 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2286 seq
, con
->in_seq
+ 1);
2287 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2289 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2291 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2292 pr_err("read_partial_message bad seq %lld expected %lld\n",
2293 seq
, con
->in_seq
+ 1);
2294 con
->error_msg
= "bad message sequence # for incoming message";
2298 /* allocate message? */
2302 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2303 front_len
, data_len
);
2304 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2308 BUG_ON(!con
->in_msg
^ skip
);
2309 if (con
->in_msg
&& data_len
> con
->in_msg
->data_length
) {
2310 pr_warn("%s skipping long message (%u > %zd)\n",
2311 __func__
, data_len
, con
->in_msg
->data_length
);
2312 ceph_msg_put(con
->in_msg
);
2317 /* skip this message */
2318 dout("alloc_msg said skip message\n");
2319 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2321 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2326 BUG_ON(!con
->in_msg
);
2327 BUG_ON(con
->in_msg
->con
!= con
);
2329 m
->front
.iov_len
= 0; /* haven't read it yet */
2331 m
->middle
->vec
.iov_len
= 0;
2333 /* prepare for data payload, if any */
2336 prepare_message_data(con
->in_msg
, data_len
);
2340 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2341 &con
->in_front_crc
);
2347 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2349 &con
->in_middle_crc
);
2356 ret
= read_partial_msg_data(con
);
2362 size
= sizeof (m
->footer
);
2364 ret
= read_partial(con
, end
, size
, &m
->footer
);
2368 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2369 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2370 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2373 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2374 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2375 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2378 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2379 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2380 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2384 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2385 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2386 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2387 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2391 return 1; /* done! */
2395 * Process message. This happens in the worker thread. The callback should
2396 * be careful not to do anything that waits on other incoming messages or it
2399 static void process_message(struct ceph_connection
*con
)
2401 struct ceph_msg
*msg
;
2403 BUG_ON(con
->in_msg
->con
!= con
);
2404 con
->in_msg
->con
= NULL
;
2409 /* if first message, set peer_name */
2410 if (con
->peer_name
.type
== 0)
2411 con
->peer_name
= msg
->hdr
.src
;
2414 mutex_unlock(&con
->mutex
);
2416 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2417 msg
, le64_to_cpu(msg
->hdr
.seq
),
2418 ENTITY_NAME(msg
->hdr
.src
),
2419 le16_to_cpu(msg
->hdr
.type
),
2420 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2421 le32_to_cpu(msg
->hdr
.front_len
),
2422 le32_to_cpu(msg
->hdr
.data_len
),
2423 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2424 con
->ops
->dispatch(con
, msg
);
2426 mutex_lock(&con
->mutex
);
2431 * Write something to the socket. Called in a worker thread when the
2432 * socket appears to be writeable and we have something ready to send.
2434 static int try_write(struct ceph_connection
*con
)
2438 dout("try_write start %p state %lu\n", con
, con
->state
);
2441 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2443 /* open the socket first? */
2444 if (con
->state
== CON_STATE_PREOPEN
) {
2446 con
->state
= CON_STATE_CONNECTING
;
2448 con_out_kvec_reset(con
);
2449 prepare_write_banner(con
);
2450 prepare_read_banner(con
);
2452 BUG_ON(con
->in_msg
);
2453 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2454 dout("try_write initiating connect on %p new state %lu\n",
2456 ret
= ceph_tcp_connect(con
);
2458 con
->error_msg
= "connect error";
2464 /* kvec data queued? */
2465 if (con
->out_skip
) {
2466 ret
= write_partial_skip(con
);
2470 if (con
->out_kvec_left
) {
2471 ret
= write_partial_kvec(con
);
2478 if (con
->out_msg_done
) {
2479 ceph_msg_put(con
->out_msg
);
2480 con
->out_msg
= NULL
; /* we're done with this one */
2484 ret
= write_partial_message_data(con
);
2486 goto more_kvec
; /* we need to send the footer, too! */
2490 dout("try_write write_partial_message_data err %d\n",
2497 if (con
->state
== CON_STATE_OPEN
) {
2498 /* is anything else pending? */
2499 if (!list_empty(&con
->out_queue
)) {
2500 prepare_write_message(con
);
2503 if (con
->in_seq
> con
->in_seq_acked
) {
2504 prepare_write_ack(con
);
2507 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2508 prepare_write_keepalive(con
);
2513 /* Nothing to do! */
2514 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2515 dout("try_write nothing else to write.\n");
2518 dout("try_write done on %p ret %d\n", con
, ret
);
2525 * Read what we can from the socket.
2527 static int try_read(struct ceph_connection
*con
)
2532 dout("try_read start on %p state %lu\n", con
, con
->state
);
2533 if (con
->state
!= CON_STATE_CONNECTING
&&
2534 con
->state
!= CON_STATE_NEGOTIATING
&&
2535 con
->state
!= CON_STATE_OPEN
)
2540 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2543 if (con
->state
== CON_STATE_CONNECTING
) {
2544 dout("try_read connecting\n");
2545 ret
= read_partial_banner(con
);
2548 ret
= process_banner(con
);
2552 con
->state
= CON_STATE_NEGOTIATING
;
2555 * Received banner is good, exchange connection info.
2556 * Do not reset out_kvec, as sending our banner raced
2557 * with receiving peer banner after connect completed.
2559 ret
= prepare_write_connect(con
);
2562 prepare_read_connect(con
);
2564 /* Send connection info before awaiting response */
2568 if (con
->state
== CON_STATE_NEGOTIATING
) {
2569 dout("try_read negotiating\n");
2570 ret
= read_partial_connect(con
);
2573 ret
= process_connect(con
);
2579 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2581 if (con
->in_base_pos
< 0) {
2583 * skipping + discarding content.
2585 * FIXME: there must be a better way to do this!
2587 static char buf
[SKIP_BUF_SIZE
];
2588 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2590 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2591 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2594 con
->in_base_pos
+= ret
;
2595 if (con
->in_base_pos
)
2598 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2602 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2605 dout("try_read got tag %d\n", (int)con
->in_tag
);
2606 switch (con
->in_tag
) {
2607 case CEPH_MSGR_TAG_MSG
:
2608 prepare_read_message(con
);
2610 case CEPH_MSGR_TAG_ACK
:
2611 prepare_read_ack(con
);
2613 case CEPH_MSGR_TAG_CLOSE
:
2614 con_close_socket(con
);
2615 con
->state
= CON_STATE_CLOSED
;
2621 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2622 ret
= read_partial_message(con
);
2626 con
->error_msg
= "bad crc";
2630 con
->error_msg
= "io error";
2635 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2637 process_message(con
);
2638 if (con
->state
== CON_STATE_OPEN
)
2639 prepare_read_tag(con
);
2642 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2643 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2645 * the final handshake seq exchange is semantically
2646 * equivalent to an ACK
2648 ret
= read_partial_ack(con
);
2656 dout("try_read done on %p ret %d\n", con
, ret
);
2660 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2661 con
->error_msg
= "protocol error, garbage tag";
2668 * Atomically queue work on a connection after the specified delay.
2669 * Bump @con reference to avoid races with connection teardown.
2670 * Returns 0 if work was queued, or an error code otherwise.
2672 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2674 if (!con
->ops
->get(con
)) {
2675 dout("%s %p ref count 0\n", __func__
, con
);
2679 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2680 dout("%s %p - already queued\n", __func__
, con
);
2685 dout("%s %p %lu\n", __func__
, con
, delay
);
2689 static void queue_con(struct ceph_connection
*con
)
2691 (void) queue_con_delay(con
, 0);
2694 static void cancel_con(struct ceph_connection
*con
)
2696 if (cancel_delayed_work(&con
->work
)) {
2697 dout("%s %p\n", __func__
, con
);
2702 static bool con_sock_closed(struct ceph_connection
*con
)
2704 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2708 case CON_STATE_ ## x: \
2709 con->error_msg = "socket closed (con state " #x ")"; \
2712 switch (con
->state
) {
2720 pr_warn("%s con %p unrecognized state %lu\n",
2721 __func__
, con
, con
->state
);
2722 con
->error_msg
= "unrecognized con state";
2731 static bool con_backoff(struct ceph_connection
*con
)
2735 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2738 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2740 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2742 BUG_ON(ret
== -ENOENT
);
2743 con_flag_set(con
, CON_FLAG_BACKOFF
);
2749 /* Finish fault handling; con->mutex must *not* be held here */
2751 static void con_fault_finish(struct ceph_connection
*con
)
2754 * in case we faulted due to authentication, invalidate our
2755 * current tickets so that we can get new ones.
2757 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2758 dout("calling invalidate_authorizer()\n");
2759 con
->ops
->invalidate_authorizer(con
);
2762 if (con
->ops
->fault
)
2763 con
->ops
->fault(con
);
2767 * Do some work on a connection. Drop a connection ref when we're done.
2769 static void con_work(struct work_struct
*work
)
2771 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2775 mutex_lock(&con
->mutex
);
2779 if ((fault
= con_sock_closed(con
))) {
2780 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2783 if (con_backoff(con
)) {
2784 dout("%s: con %p BACKOFF\n", __func__
, con
);
2787 if (con
->state
== CON_STATE_STANDBY
) {
2788 dout("%s: con %p STANDBY\n", __func__
, con
);
2791 if (con
->state
== CON_STATE_CLOSED
) {
2792 dout("%s: con %p CLOSED\n", __func__
, con
);
2796 if (con
->state
== CON_STATE_PREOPEN
) {
2797 dout("%s: con %p PREOPEN\n", __func__
, con
);
2801 ret
= try_read(con
);
2805 con
->error_msg
= "socket error on read";
2810 ret
= try_write(con
);
2814 con
->error_msg
= "socket error on write";
2818 break; /* If we make it to here, we're done */
2822 mutex_unlock(&con
->mutex
);
2825 con_fault_finish(con
);
2831 * Generic error/fault handler. A retry mechanism is used with
2832 * exponential backoff
2834 static void con_fault(struct ceph_connection
*con
)
2836 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2837 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2838 dout("fault %p state %lu to peer %s\n",
2839 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2841 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2842 con
->state
!= CON_STATE_NEGOTIATING
&&
2843 con
->state
!= CON_STATE_OPEN
);
2845 con_close_socket(con
);
2847 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2848 dout("fault on LOSSYTX channel, marking CLOSED\n");
2849 con
->state
= CON_STATE_CLOSED
;
2854 BUG_ON(con
->in_msg
->con
!= con
);
2855 con
->in_msg
->con
= NULL
;
2856 ceph_msg_put(con
->in_msg
);
2861 /* Requeue anything that hasn't been acked */
2862 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2864 /* If there are no messages queued or keepalive pending, place
2865 * the connection in a STANDBY state */
2866 if (list_empty(&con
->out_queue
) &&
2867 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2868 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2869 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2870 con
->state
= CON_STATE_STANDBY
;
2872 /* retry after a delay. */
2873 con
->state
= CON_STATE_PREOPEN
;
2874 if (con
->delay
== 0)
2875 con
->delay
= BASE_DELAY_INTERVAL
;
2876 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2878 con_flag_set(con
, CON_FLAG_BACKOFF
);
2886 * initialize a new messenger instance
2888 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2889 struct ceph_entity_addr
*myaddr
,
2890 u64 supported_features
,
2891 u64 required_features
,
2894 msgr
->supported_features
= supported_features
;
2895 msgr
->required_features
= required_features
;
2897 spin_lock_init(&msgr
->global_seq_lock
);
2900 msgr
->inst
.addr
= *myaddr
;
2902 /* select a random nonce */
2903 msgr
->inst
.addr
.type
= 0;
2904 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2905 encode_my_addr(msgr
);
2906 msgr
->nocrc
= nocrc
;
2908 atomic_set(&msgr
->stopping
, 0);
2910 dout("%s %p\n", __func__
, msgr
);
2912 EXPORT_SYMBOL(ceph_messenger_init
);
2914 static void clear_standby(struct ceph_connection
*con
)
2916 /* come back from STANDBY? */
2917 if (con
->state
== CON_STATE_STANDBY
) {
2918 dout("clear_standby %p and ++connect_seq\n", con
);
2919 con
->state
= CON_STATE_PREOPEN
;
2921 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
2922 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
2927 * Queue up an outgoing message on the given connection.
2929 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2932 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2933 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2934 msg
->needs_out_seq
= true;
2936 mutex_lock(&con
->mutex
);
2938 if (con
->state
== CON_STATE_CLOSED
) {
2939 dout("con_send %p closed, dropping %p\n", con
, msg
);
2941 mutex_unlock(&con
->mutex
);
2945 BUG_ON(msg
->con
!= NULL
);
2946 msg
->con
= con
->ops
->get(con
);
2947 BUG_ON(msg
->con
== NULL
);
2949 BUG_ON(!list_empty(&msg
->list_head
));
2950 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2951 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2952 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2953 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2954 le32_to_cpu(msg
->hdr
.front_len
),
2955 le32_to_cpu(msg
->hdr
.middle_len
),
2956 le32_to_cpu(msg
->hdr
.data_len
));
2959 mutex_unlock(&con
->mutex
);
2961 /* if there wasn't anything waiting to send before, queue
2963 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
2966 EXPORT_SYMBOL(ceph_con_send
);
2969 * Revoke a message that was previously queued for send
2971 void ceph_msg_revoke(struct ceph_msg
*msg
)
2973 struct ceph_connection
*con
= msg
->con
;
2976 return; /* Message not in our possession */
2978 mutex_lock(&con
->mutex
);
2979 if (!list_empty(&msg
->list_head
)) {
2980 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
2981 list_del_init(&msg
->list_head
);
2982 BUG_ON(msg
->con
== NULL
);
2983 msg
->con
->ops
->put(msg
->con
);
2989 if (con
->out_msg
== msg
) {
2990 dout("%s %p msg %p - was sending\n", __func__
, con
, msg
);
2991 con
->out_msg
= NULL
;
2992 if (con
->out_kvec_is_msg
) {
2993 con
->out_skip
= con
->out_kvec_bytes
;
2994 con
->out_kvec_is_msg
= false;
3000 mutex_unlock(&con
->mutex
);
3004 * Revoke a message that we may be reading data into
3006 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3008 struct ceph_connection
*con
;
3010 BUG_ON(msg
== NULL
);
3012 dout("%s msg %p null con\n", __func__
, msg
);
3014 return; /* Message not in our possession */
3018 mutex_lock(&con
->mutex
);
3019 if (con
->in_msg
== msg
) {
3020 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3021 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3022 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3024 /* skip rest of message */
3025 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3026 con
->in_base_pos
= con
->in_base_pos
-
3027 sizeof(struct ceph_msg_header
) -
3031 sizeof(struct ceph_msg_footer
);
3032 ceph_msg_put(con
->in_msg
);
3034 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3037 dout("%s %p in_msg %p msg %p no-op\n",
3038 __func__
, con
, con
->in_msg
, msg
);
3040 mutex_unlock(&con
->mutex
);
3044 * Queue a keepalive byte to ensure the tcp connection is alive.
3046 void ceph_con_keepalive(struct ceph_connection
*con
)
3048 dout("con_keepalive %p\n", con
);
3049 mutex_lock(&con
->mutex
);
3051 mutex_unlock(&con
->mutex
);
3052 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3053 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3056 EXPORT_SYMBOL(ceph_con_keepalive
);
3058 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3060 struct ceph_msg_data
*data
;
3062 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3065 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3068 INIT_LIST_HEAD(&data
->links
);
3073 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3078 WARN_ON(!list_empty(&data
->links
));
3079 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3080 ceph_pagelist_release(data
->pagelist
);
3081 kmem_cache_free(ceph_msg_data_cache
, data
);
3084 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3085 size_t length
, size_t alignment
)
3087 struct ceph_msg_data
*data
;
3092 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3094 data
->pages
= pages
;
3095 data
->length
= length
;
3096 data
->alignment
= alignment
& ~PAGE_MASK
;
3098 list_add_tail(&data
->links
, &msg
->data
);
3099 msg
->data_length
+= length
;
3101 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3103 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3104 struct ceph_pagelist
*pagelist
)
3106 struct ceph_msg_data
*data
;
3109 BUG_ON(!pagelist
->length
);
3111 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3113 data
->pagelist
= pagelist
;
3115 list_add_tail(&data
->links
, &msg
->data
);
3116 msg
->data_length
+= pagelist
->length
;
3118 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3121 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3124 struct ceph_msg_data
*data
;
3128 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3131 data
->bio_length
= length
;
3133 list_add_tail(&data
->links
, &msg
->data
);
3134 msg
->data_length
+= length
;
3136 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3137 #endif /* CONFIG_BLOCK */
3140 * construct a new message with given type, size
3141 * the new msg has a ref count of 1.
3143 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3148 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3152 m
->hdr
.type
= cpu_to_le16(type
);
3153 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3154 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3156 INIT_LIST_HEAD(&m
->list_head
);
3157 kref_init(&m
->kref
);
3158 INIT_LIST_HEAD(&m
->data
);
3162 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3163 if (m
->front
.iov_base
== NULL
) {
3164 dout("ceph_msg_new can't allocate %d bytes\n",
3169 m
->front
.iov_base
= NULL
;
3171 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3173 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3180 pr_err("msg_new can't create type %d front %d\n", type
,
3184 dout("msg_new can't create type %d front %d\n", type
,
3189 EXPORT_SYMBOL(ceph_msg_new
);
3192 * Allocate "middle" portion of a message, if it is needed and wasn't
3193 * allocated by alloc_msg. This allows us to read a small fixed-size
3194 * per-type header in the front and then gracefully fail (i.e.,
3195 * propagate the error to the caller based on info in the front) when
3196 * the middle is too large.
3198 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3200 int type
= le16_to_cpu(msg
->hdr
.type
);
3201 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3203 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3204 ceph_msg_type_name(type
), middle_len
);
3205 BUG_ON(!middle_len
);
3206 BUG_ON(msg
->middle
);
3208 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3215 * Allocate a message for receiving an incoming message on a
3216 * connection, and save the result in con->in_msg. Uses the
3217 * connection's private alloc_msg op if available.
3219 * Returns 0 on success, or a negative error code.
3221 * On success, if we set *skip = 1:
3222 * - the next message should be skipped and ignored.
3223 * - con->in_msg == NULL
3224 * or if we set *skip = 0:
3225 * - con->in_msg is non-null.
3226 * On error (ENOMEM, EAGAIN, ...),
3227 * - con->in_msg == NULL
3229 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3231 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3232 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3233 struct ceph_msg
*msg
;
3236 BUG_ON(con
->in_msg
!= NULL
);
3237 BUG_ON(!con
->ops
->alloc_msg
);
3239 mutex_unlock(&con
->mutex
);
3240 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3241 mutex_lock(&con
->mutex
);
3242 if (con
->state
!= CON_STATE_OPEN
) {
3250 con
->in_msg
->con
= con
->ops
->get(con
);
3251 BUG_ON(con
->in_msg
->con
== NULL
);
3254 * Null message pointer means either we should skip
3255 * this message or we couldn't allocate memory. The
3256 * former is not an error.
3260 con
->error_msg
= "error allocating memory for incoming message";
3264 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3266 if (middle_len
&& !con
->in_msg
->middle
) {
3267 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3269 ceph_msg_put(con
->in_msg
);
3279 * Free a generically kmalloc'd message.
3281 static void ceph_msg_free(struct ceph_msg
*m
)
3283 dout("%s %p\n", __func__
, m
);
3284 ceph_kvfree(m
->front
.iov_base
);
3285 kmem_cache_free(ceph_msg_cache
, m
);
3288 static void ceph_msg_release(struct kref
*kref
)
3290 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3292 struct list_head
*links
;
3293 struct list_head
*next
;
3295 dout("%s %p\n", __func__
, m
);
3296 WARN_ON(!list_empty(&m
->list_head
));
3298 /* drop middle, data, if any */
3300 ceph_buffer_put(m
->middle
);
3304 list_splice_init(&m
->data
, &data
);
3305 list_for_each_safe(links
, next
, &data
) {
3306 struct ceph_msg_data
*data
;
3308 data
= list_entry(links
, struct ceph_msg_data
, links
);
3309 list_del_init(links
);
3310 ceph_msg_data_destroy(data
);
3315 ceph_msgpool_put(m
->pool
, m
);
3320 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3322 dout("%s %p (was %d)\n", __func__
, msg
,
3323 atomic_read(&msg
->kref
.refcount
));
3324 kref_get(&msg
->kref
);
3327 EXPORT_SYMBOL(ceph_msg_get
);
3329 void ceph_msg_put(struct ceph_msg
*msg
)
3331 dout("%s %p (was %d)\n", __func__
, msg
,
3332 atomic_read(&msg
->kref
.refcount
));
3333 kref_put(&msg
->kref
, ceph_msg_release
);
3335 EXPORT_SYMBOL(ceph_msg_put
);
3337 void ceph_msg_dump(struct ceph_msg
*msg
)
3339 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3340 msg
->front_alloc_len
, msg
->data_length
);
3341 print_hex_dump(KERN_DEBUG
, "header: ",
3342 DUMP_PREFIX_OFFSET
, 16, 1,
3343 &msg
->hdr
, sizeof(msg
->hdr
), true);
3344 print_hex_dump(KERN_DEBUG
, " front: ",
3345 DUMP_PREFIX_OFFSET
, 16, 1,
3346 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3348 print_hex_dump(KERN_DEBUG
, "middle: ",
3349 DUMP_PREFIX_OFFSET
, 16, 1,
3350 msg
->middle
->vec
.iov_base
,
3351 msg
->middle
->vec
.iov_len
, true);
3352 print_hex_dump(KERN_DEBUG
, "footer: ",
3353 DUMP_PREFIX_OFFSET
, 16, 1,
3354 &msg
->footer
, sizeof(msg
->footer
), true);
3356 EXPORT_SYMBOL(ceph_msg_dump
);