nfs: take extra reference to fl->fl_file when running a setlk
[linux/fpc-iii.git] / net / ceph / messenger.c
blob56a65536c8f140b373e14997256b7ddea34c1659
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
86 * connection states
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag)
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 BUG_ON(!con_flag_valid(con_flag));
123 clear_bit(con_flag, &con->flags);
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 BUG_ON(!con_flag_valid(con_flag));
130 set_bit(con_flag, &con->flags);
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 BUG_ON(!con_flag_valid(con_flag));
137 return test_bit(con_flag, &con->flags);
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
143 BUG_ON(!con_flag_valid(con_flag));
145 return test_and_clear_bit(con_flag, &con->flags);
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
151 BUG_ON(!con_flag_valid(con_flag));
153 return test_and_set_bit(con_flag, &con->flags);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193 static struct page *zero_page; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 int i;
198 char *s;
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 s = addr_str[i];
205 switch (ss->ss_family) {
206 case AF_INET:
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
209 break;
211 case AF_INET6:
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
214 break;
216 default:
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 ss->ss_family);
221 return s;
223 EXPORT_SYMBOL(ceph_pr_addr);
225 static void encode_my_addr(struct ceph_messenger *msgr)
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct *ceph_msgr_wq;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg),
241 __alignof__(struct ceph_msg), 0, NULL);
243 if (!ceph_msg_cache)
244 return -ENOMEM;
246 BUG_ON(ceph_msg_data_cache);
247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data),
249 __alignof__(struct ceph_msg_data),
250 0, NULL);
251 if (ceph_msg_data_cache)
252 return 0;
254 kmem_cache_destroy(ceph_msg_cache);
255 ceph_msg_cache = NULL;
257 return -ENOMEM;
260 static void ceph_msgr_slab_exit(void)
262 BUG_ON(!ceph_msg_data_cache);
263 kmem_cache_destroy(ceph_msg_data_cache);
264 ceph_msg_data_cache = NULL;
266 BUG_ON(!ceph_msg_cache);
267 kmem_cache_destroy(ceph_msg_cache);
268 ceph_msg_cache = NULL;
271 static void _ceph_msgr_exit(void)
273 if (ceph_msgr_wq) {
274 destroy_workqueue(ceph_msgr_wq);
275 ceph_msgr_wq = NULL;
278 ceph_msgr_slab_exit();
280 BUG_ON(zero_page == NULL);
281 kunmap(zero_page);
282 page_cache_release(zero_page);
283 zero_page = NULL;
286 int ceph_msgr_init(void)
288 BUG_ON(zero_page != NULL);
289 zero_page = ZERO_PAGE(0);
290 page_cache_get(zero_page);
292 if (ceph_msgr_slab_init())
293 return -ENOMEM;
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 if (ceph_msgr_wq)
301 return 0;
303 pr_err("msgr_init failed to create workqueue\n");
304 _ceph_msgr_exit();
306 return -ENOMEM;
308 EXPORT_SYMBOL(ceph_msgr_init);
310 void ceph_msgr_exit(void)
312 BUG_ON(ceph_msgr_wq == NULL);
314 _ceph_msgr_exit();
316 EXPORT_SYMBOL(ceph_msgr_exit);
318 void ceph_msgr_flush(void)
320 flush_workqueue(ceph_msgr_wq);
322 EXPORT_SYMBOL(ceph_msgr_flush);
324 /* Connection socket state transition functions */
326 static void con_sock_state_init(struct ceph_connection *con)
328 int old_state;
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 printk("%s: unexpected old state %d\n", __func__, old_state);
333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 CON_SOCK_STATE_CLOSED);
337 static void con_sock_state_connecting(struct ceph_connection *con)
339 int old_state;
341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 printk("%s: unexpected old state %d\n", __func__, old_state);
344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 CON_SOCK_STATE_CONNECTING);
348 static void con_sock_state_connected(struct ceph_connection *con)
350 int old_state;
352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CONNECTED);
359 static void con_sock_state_closing(struct ceph_connection *con)
361 int old_state;
363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 old_state != CON_SOCK_STATE_CONNECTED &&
366 old_state != CON_SOCK_STATE_CLOSING))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSING);
372 static void con_sock_state_closed(struct ceph_connection *con)
374 int old_state;
376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 old_state != CON_SOCK_STATE_CLOSING &&
379 old_state != CON_SOCK_STATE_CONNECTING &&
380 old_state != CON_SOCK_STATE_CLOSED))
381 printk("%s: unexpected old state %d\n", __func__, old_state);
382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 CON_SOCK_STATE_CLOSED);
387 * socket callback functions
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
393 struct ceph_connection *con = sk->sk_user_data;
394 if (atomic_read(&con->msgr->stopping)) {
395 return;
398 if (sk->sk_state != TCP_CLOSE_WAIT) {
399 dout("%s on %p state = %lu, queueing work\n", __func__,
400 con, con->state);
401 queue_con(con);
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
408 struct ceph_connection *con = sk->sk_user_data;
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 if (sk_stream_is_writeable(sk)) {
419 dout("%s %p queueing write work\n", __func__, con);
420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 queue_con(con);
423 } else {
424 dout("%s %p nothing to write\n", __func__, con);
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
431 struct ceph_connection *con = sk->sk_user_data;
433 dout("%s %p state = %lu sk_state = %u\n", __func__,
434 con, con->state, sk->sk_state);
436 switch (sk->sk_state) {
437 case TCP_CLOSE:
438 dout("%s TCP_CLOSE\n", __func__);
439 case TCP_CLOSE_WAIT:
440 dout("%s TCP_CLOSE_WAIT\n", __func__);
441 con_sock_state_closing(con);
442 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 queue_con(con);
444 break;
445 case TCP_ESTABLISHED:
446 dout("%s TCP_ESTABLISHED\n", __func__);
447 con_sock_state_connected(con);
448 queue_con(con);
449 break;
450 default: /* Everything else is uninteresting */
451 break;
456 * set up socket callbacks
458 static void set_sock_callbacks(struct socket *sock,
459 struct ceph_connection *con)
461 struct sock *sk = sock->sk;
462 sk->sk_user_data = con;
463 sk->sk_data_ready = ceph_sock_data_ready;
464 sk->sk_write_space = ceph_sock_write_space;
465 sk->sk_state_change = ceph_sock_state_change;
470 * socket helpers
474 * initiate connection to a remote socket.
476 static int ceph_tcp_connect(struct ceph_connection *con)
478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 struct socket *sock;
480 int ret;
482 BUG_ON(con->sock);
483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 IPPROTO_TCP, &sock);
485 if (ret)
486 return ret;
487 sock->sk->sk_allocation = GFP_NOFS;
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
493 set_sock_callbacks(sock, con);
495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497 con_sock_state_connecting(con);
498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 O_NONBLOCK);
500 if (ret == -EINPROGRESS) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con->peer_addr.in_addr),
503 sock->sk->sk_state);
504 } else if (ret < 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 sock_release(sock);
508 con->error_msg = "connect error";
510 return ret;
513 con->sock = sock;
514 return 0;
517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
519 struct kvec iov = {buf, len};
520 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 int r;
523 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
524 if (r == -EAGAIN)
525 r = 0;
526 return r;
529 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
530 int page_offset, size_t length)
532 void *kaddr;
533 int ret;
535 BUG_ON(page_offset + length > PAGE_SIZE);
537 kaddr = kmap(page);
538 BUG_ON(!kaddr);
539 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
540 kunmap(page);
542 return ret;
546 * write something. @more is true if caller will be sending more data
547 * shortly.
549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
550 size_t kvlen, size_t len, int more)
552 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
553 int r;
555 if (more)
556 msg.msg_flags |= MSG_MORE;
557 else
558 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
560 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
561 if (r == -EAGAIN)
562 r = 0;
563 return r;
566 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 int offset, size_t size, bool more)
569 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
570 int ret;
572 ret = kernel_sendpage(sock, page, offset, size, flags);
573 if (ret == -EAGAIN)
574 ret = 0;
576 return ret;
579 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
580 int offset, size_t size, bool more)
582 int ret;
583 struct kvec iov;
585 /* sendpage cannot properly handle pages with page_count == 0,
586 * we need to fallback to sendmsg if that's the case */
587 if (page_count(page) >= 1)
588 return __ceph_tcp_sendpage(sock, page, offset, size, more);
590 iov.iov_base = kmap(page) + offset;
591 iov.iov_len = size;
592 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
593 kunmap(page);
595 return ret;
599 * Shutdown/close the socket for the given connection.
601 static int con_close_socket(struct ceph_connection *con)
603 int rc = 0;
605 dout("con_close_socket on %p sock %p\n", con, con->sock);
606 if (con->sock) {
607 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
608 sock_release(con->sock);
609 con->sock = NULL;
613 * Forcibly clear the SOCK_CLOSED flag. It gets set
614 * independent of the connection mutex, and we could have
615 * received a socket close event before we had the chance to
616 * shut the socket down.
618 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
620 con_sock_state_closed(con);
621 return rc;
625 * Reset a connection. Discard all incoming and outgoing messages
626 * and clear *_seq state.
628 static void ceph_msg_remove(struct ceph_msg *msg)
630 list_del_init(&msg->list_head);
631 BUG_ON(msg->con == NULL);
632 msg->con->ops->put(msg->con);
633 msg->con = NULL;
635 ceph_msg_put(msg);
637 static void ceph_msg_remove_list(struct list_head *head)
639 while (!list_empty(head)) {
640 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
641 list_head);
642 ceph_msg_remove(msg);
646 static void reset_connection(struct ceph_connection *con)
648 /* reset connection, out_queue, msg_ and connect_seq */
649 /* discard existing out_queue and msg_seq */
650 dout("reset_connection %p\n", con);
651 ceph_msg_remove_list(&con->out_queue);
652 ceph_msg_remove_list(&con->out_sent);
654 if (con->in_msg) {
655 BUG_ON(con->in_msg->con != con);
656 con->in_msg->con = NULL;
657 ceph_msg_put(con->in_msg);
658 con->in_msg = NULL;
659 con->ops->put(con);
662 con->connect_seq = 0;
663 con->out_seq = 0;
664 if (con->out_msg) {
665 ceph_msg_put(con->out_msg);
666 con->out_msg = NULL;
668 con->in_seq = 0;
669 con->in_seq_acked = 0;
673 * mark a peer down. drop any open connections.
675 void ceph_con_close(struct ceph_connection *con)
677 mutex_lock(&con->mutex);
678 dout("con_close %p peer %s\n", con,
679 ceph_pr_addr(&con->peer_addr.in_addr));
680 con->state = CON_STATE_CLOSED;
682 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
683 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
684 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
685 con_flag_clear(con, CON_FLAG_BACKOFF);
687 reset_connection(con);
688 con->peer_global_seq = 0;
689 cancel_con(con);
690 con_close_socket(con);
691 mutex_unlock(&con->mutex);
693 EXPORT_SYMBOL(ceph_con_close);
696 * Reopen a closed connection, with a new peer address.
698 void ceph_con_open(struct ceph_connection *con,
699 __u8 entity_type, __u64 entity_num,
700 struct ceph_entity_addr *addr)
702 mutex_lock(&con->mutex);
703 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
705 WARN_ON(con->state != CON_STATE_CLOSED);
706 con->state = CON_STATE_PREOPEN;
708 con->peer_name.type = (__u8) entity_type;
709 con->peer_name.num = cpu_to_le64(entity_num);
711 memcpy(&con->peer_addr, addr, sizeof(*addr));
712 con->delay = 0; /* reset backoff memory */
713 mutex_unlock(&con->mutex);
714 queue_con(con);
716 EXPORT_SYMBOL(ceph_con_open);
719 * return true if this connection ever successfully opened
721 bool ceph_con_opened(struct ceph_connection *con)
723 return con->connect_seq > 0;
727 * initialize a new connection.
729 void ceph_con_init(struct ceph_connection *con, void *private,
730 const struct ceph_connection_operations *ops,
731 struct ceph_messenger *msgr)
733 dout("con_init %p\n", con);
734 memset(con, 0, sizeof(*con));
735 con->private = private;
736 con->ops = ops;
737 con->msgr = msgr;
739 con_sock_state_init(con);
741 mutex_init(&con->mutex);
742 INIT_LIST_HEAD(&con->out_queue);
743 INIT_LIST_HEAD(&con->out_sent);
744 INIT_DELAYED_WORK(&con->work, con_work);
746 con->state = CON_STATE_CLOSED;
748 EXPORT_SYMBOL(ceph_con_init);
752 * We maintain a global counter to order connection attempts. Get
753 * a unique seq greater than @gt.
755 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
757 u32 ret;
759 spin_lock(&msgr->global_seq_lock);
760 if (msgr->global_seq < gt)
761 msgr->global_seq = gt;
762 ret = ++msgr->global_seq;
763 spin_unlock(&msgr->global_seq_lock);
764 return ret;
767 static void con_out_kvec_reset(struct ceph_connection *con)
769 con->out_kvec_left = 0;
770 con->out_kvec_bytes = 0;
771 con->out_kvec_cur = &con->out_kvec[0];
774 static void con_out_kvec_add(struct ceph_connection *con,
775 size_t size, void *data)
777 int index;
779 index = con->out_kvec_left;
780 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
782 con->out_kvec[index].iov_len = size;
783 con->out_kvec[index].iov_base = data;
784 con->out_kvec_left++;
785 con->out_kvec_bytes += size;
788 #ifdef CONFIG_BLOCK
791 * For a bio data item, a piece is whatever remains of the next
792 * entry in the current bio iovec, or the first entry in the next
793 * bio in the list.
795 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
796 size_t length)
798 struct ceph_msg_data *data = cursor->data;
799 struct bio *bio;
801 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
803 bio = data->bio;
804 BUG_ON(!bio);
806 cursor->resid = min(length, data->bio_length);
807 cursor->bio = bio;
808 cursor->bvec_iter = bio->bi_iter;
809 cursor->last_piece =
810 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
813 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
814 size_t *page_offset,
815 size_t *length)
817 struct ceph_msg_data *data = cursor->data;
818 struct bio *bio;
819 struct bio_vec bio_vec;
821 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
823 bio = cursor->bio;
824 BUG_ON(!bio);
826 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
828 *page_offset = (size_t) bio_vec.bv_offset;
829 BUG_ON(*page_offset >= PAGE_SIZE);
830 if (cursor->last_piece) /* pagelist offset is always 0 */
831 *length = cursor->resid;
832 else
833 *length = (size_t) bio_vec.bv_len;
834 BUG_ON(*length > cursor->resid);
835 BUG_ON(*page_offset + *length > PAGE_SIZE);
837 return bio_vec.bv_page;
840 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
841 size_t bytes)
843 struct bio *bio;
844 struct bio_vec bio_vec;
846 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
848 bio = cursor->bio;
849 BUG_ON(!bio);
851 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
853 /* Advance the cursor offset */
855 BUG_ON(cursor->resid < bytes);
856 cursor->resid -= bytes;
858 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
860 if (bytes < bio_vec.bv_len)
861 return false; /* more bytes to process in this segment */
863 /* Move on to the next segment, and possibly the next bio */
865 if (!cursor->bvec_iter.bi_size) {
866 bio = bio->bi_next;
867 cursor->bio = bio;
868 if (bio)
869 cursor->bvec_iter = bio->bi_iter;
870 else
871 memset(&cursor->bvec_iter, 0,
872 sizeof(cursor->bvec_iter));
875 if (!cursor->last_piece) {
876 BUG_ON(!cursor->resid);
877 BUG_ON(!bio);
878 /* A short read is OK, so use <= rather than == */
879 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
880 cursor->last_piece = true;
883 return true;
885 #endif /* CONFIG_BLOCK */
888 * For a page array, a piece comes from the first page in the array
889 * that has not already been fully consumed.
891 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
892 size_t length)
894 struct ceph_msg_data *data = cursor->data;
895 int page_count;
897 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
899 BUG_ON(!data->pages);
900 BUG_ON(!data->length);
902 cursor->resid = min(length, data->length);
903 page_count = calc_pages_for(data->alignment, (u64)data->length);
904 cursor->page_offset = data->alignment & ~PAGE_MASK;
905 cursor->page_index = 0;
906 BUG_ON(page_count > (int)USHRT_MAX);
907 cursor->page_count = (unsigned short)page_count;
908 BUG_ON(length > SIZE_MAX - cursor->page_offset);
909 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
912 static struct page *
913 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
914 size_t *page_offset, size_t *length)
916 struct ceph_msg_data *data = cursor->data;
918 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
920 BUG_ON(cursor->page_index >= cursor->page_count);
921 BUG_ON(cursor->page_offset >= PAGE_SIZE);
923 *page_offset = cursor->page_offset;
924 if (cursor->last_piece)
925 *length = cursor->resid;
926 else
927 *length = PAGE_SIZE - *page_offset;
929 return data->pages[cursor->page_index];
932 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
933 size_t bytes)
935 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
937 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
939 /* Advance the cursor page offset */
941 cursor->resid -= bytes;
942 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
943 if (!bytes || cursor->page_offset)
944 return false; /* more bytes to process in the current page */
946 if (!cursor->resid)
947 return false; /* no more data */
949 /* Move on to the next page; offset is already at 0 */
951 BUG_ON(cursor->page_index >= cursor->page_count);
952 cursor->page_index++;
953 cursor->last_piece = cursor->resid <= PAGE_SIZE;
955 return true;
959 * For a pagelist, a piece is whatever remains to be consumed in the
960 * first page in the list, or the front of the next page.
962 static void
963 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
964 size_t length)
966 struct ceph_msg_data *data = cursor->data;
967 struct ceph_pagelist *pagelist;
968 struct page *page;
970 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
972 pagelist = data->pagelist;
973 BUG_ON(!pagelist);
975 if (!length)
976 return; /* pagelist can be assigned but empty */
978 BUG_ON(list_empty(&pagelist->head));
979 page = list_first_entry(&pagelist->head, struct page, lru);
981 cursor->resid = min(length, pagelist->length);
982 cursor->page = page;
983 cursor->offset = 0;
984 cursor->last_piece = cursor->resid <= PAGE_SIZE;
987 static struct page *
988 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
989 size_t *page_offset, size_t *length)
991 struct ceph_msg_data *data = cursor->data;
992 struct ceph_pagelist *pagelist;
994 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
996 pagelist = data->pagelist;
997 BUG_ON(!pagelist);
999 BUG_ON(!cursor->page);
1000 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1002 /* offset of first page in pagelist is always 0 */
1003 *page_offset = cursor->offset & ~PAGE_MASK;
1004 if (cursor->last_piece)
1005 *length = cursor->resid;
1006 else
1007 *length = PAGE_SIZE - *page_offset;
1009 return cursor->page;
1012 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1013 size_t bytes)
1015 struct ceph_msg_data *data = cursor->data;
1016 struct ceph_pagelist *pagelist;
1018 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1020 pagelist = data->pagelist;
1021 BUG_ON(!pagelist);
1023 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1024 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1026 /* Advance the cursor offset */
1028 cursor->resid -= bytes;
1029 cursor->offset += bytes;
1030 /* offset of first page in pagelist is always 0 */
1031 if (!bytes || cursor->offset & ~PAGE_MASK)
1032 return false; /* more bytes to process in the current page */
1034 if (!cursor->resid)
1035 return false; /* no more data */
1037 /* Move on to the next page */
1039 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1040 cursor->page = list_entry_next(cursor->page, lru);
1041 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1043 return true;
1047 * Message data is handled (sent or received) in pieces, where each
1048 * piece resides on a single page. The network layer might not
1049 * consume an entire piece at once. A data item's cursor keeps
1050 * track of which piece is next to process and how much remains to
1051 * be processed in that piece. It also tracks whether the current
1052 * piece is the last one in the data item.
1054 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1056 size_t length = cursor->total_resid;
1058 switch (cursor->data->type) {
1059 case CEPH_MSG_DATA_PAGELIST:
1060 ceph_msg_data_pagelist_cursor_init(cursor, length);
1061 break;
1062 case CEPH_MSG_DATA_PAGES:
1063 ceph_msg_data_pages_cursor_init(cursor, length);
1064 break;
1065 #ifdef CONFIG_BLOCK
1066 case CEPH_MSG_DATA_BIO:
1067 ceph_msg_data_bio_cursor_init(cursor, length);
1068 break;
1069 #endif /* CONFIG_BLOCK */
1070 case CEPH_MSG_DATA_NONE:
1071 default:
1072 /* BUG(); */
1073 break;
1075 cursor->need_crc = true;
1078 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1080 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1081 struct ceph_msg_data *data;
1083 BUG_ON(!length);
1084 BUG_ON(length > msg->data_length);
1085 BUG_ON(list_empty(&msg->data));
1087 cursor->data_head = &msg->data;
1088 cursor->total_resid = length;
1089 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1090 cursor->data = data;
1092 __ceph_msg_data_cursor_init(cursor);
1096 * Return the page containing the next piece to process for a given
1097 * data item, and supply the page offset and length of that piece.
1098 * Indicate whether this is the last piece in this data item.
1100 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1101 size_t *page_offset, size_t *length,
1102 bool *last_piece)
1104 struct page *page;
1106 switch (cursor->data->type) {
1107 case CEPH_MSG_DATA_PAGELIST:
1108 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1109 break;
1110 case CEPH_MSG_DATA_PAGES:
1111 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1112 break;
1113 #ifdef CONFIG_BLOCK
1114 case CEPH_MSG_DATA_BIO:
1115 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1116 break;
1117 #endif /* CONFIG_BLOCK */
1118 case CEPH_MSG_DATA_NONE:
1119 default:
1120 page = NULL;
1121 break;
1123 BUG_ON(!page);
1124 BUG_ON(*page_offset + *length > PAGE_SIZE);
1125 BUG_ON(!*length);
1126 if (last_piece)
1127 *last_piece = cursor->last_piece;
1129 return page;
1133 * Returns true if the result moves the cursor on to the next piece
1134 * of the data item.
1136 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1137 size_t bytes)
1139 bool new_piece;
1141 BUG_ON(bytes > cursor->resid);
1142 switch (cursor->data->type) {
1143 case CEPH_MSG_DATA_PAGELIST:
1144 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1145 break;
1146 case CEPH_MSG_DATA_PAGES:
1147 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1148 break;
1149 #ifdef CONFIG_BLOCK
1150 case CEPH_MSG_DATA_BIO:
1151 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1152 break;
1153 #endif /* CONFIG_BLOCK */
1154 case CEPH_MSG_DATA_NONE:
1155 default:
1156 BUG();
1157 break;
1159 cursor->total_resid -= bytes;
1161 if (!cursor->resid && cursor->total_resid) {
1162 WARN_ON(!cursor->last_piece);
1163 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1164 cursor->data = list_entry_next(cursor->data, links);
1165 __ceph_msg_data_cursor_init(cursor);
1166 new_piece = true;
1168 cursor->need_crc = new_piece;
1170 return new_piece;
1173 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1175 BUG_ON(!msg);
1176 BUG_ON(!data_len);
1178 /* Initialize data cursor */
1180 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1184 * Prepare footer for currently outgoing message, and finish things
1185 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1187 static void prepare_write_message_footer(struct ceph_connection *con)
1189 struct ceph_msg *m = con->out_msg;
1190 int v = con->out_kvec_left;
1192 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1194 dout("prepare_write_message_footer %p\n", con);
1195 con->out_kvec_is_msg = true;
1196 con->out_kvec[v].iov_base = &m->footer;
1197 con->out_kvec[v].iov_len = sizeof(m->footer);
1198 con->out_kvec_bytes += sizeof(m->footer);
1199 con->out_kvec_left++;
1200 con->out_more = m->more_to_follow;
1201 con->out_msg_done = true;
1205 * Prepare headers for the next outgoing message.
1207 static void prepare_write_message(struct ceph_connection *con)
1209 struct ceph_msg *m;
1210 u32 crc;
1212 con_out_kvec_reset(con);
1213 con->out_kvec_is_msg = true;
1214 con->out_msg_done = false;
1216 /* Sneak an ack in there first? If we can get it into the same
1217 * TCP packet that's a good thing. */
1218 if (con->in_seq > con->in_seq_acked) {
1219 con->in_seq_acked = con->in_seq;
1220 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1221 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1222 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1223 &con->out_temp_ack);
1226 BUG_ON(list_empty(&con->out_queue));
1227 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1228 con->out_msg = m;
1229 BUG_ON(m->con != con);
1231 /* put message on sent list */
1232 ceph_msg_get(m);
1233 list_move_tail(&m->list_head, &con->out_sent);
1236 * only assign outgoing seq # if we haven't sent this message
1237 * yet. if it is requeued, resend with it's original seq.
1239 if (m->needs_out_seq) {
1240 m->hdr.seq = cpu_to_le64(++con->out_seq);
1241 m->needs_out_seq = false;
1243 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1245 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1246 m, con->out_seq, le16_to_cpu(m->hdr.type),
1247 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1248 m->data_length);
1249 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1251 /* tag + hdr + front + middle */
1252 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1253 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1254 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1256 if (m->middle)
1257 con_out_kvec_add(con, m->middle->vec.iov_len,
1258 m->middle->vec.iov_base);
1260 /* fill in crc (except data pages), footer */
1261 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1262 con->out_msg->hdr.crc = cpu_to_le32(crc);
1263 con->out_msg->footer.flags = 0;
1265 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1266 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1267 if (m->middle) {
1268 crc = crc32c(0, m->middle->vec.iov_base,
1269 m->middle->vec.iov_len);
1270 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1271 } else
1272 con->out_msg->footer.middle_crc = 0;
1273 dout("%s front_crc %u middle_crc %u\n", __func__,
1274 le32_to_cpu(con->out_msg->footer.front_crc),
1275 le32_to_cpu(con->out_msg->footer.middle_crc));
1277 /* is there a data payload? */
1278 con->out_msg->footer.data_crc = 0;
1279 if (m->data_length) {
1280 prepare_message_data(con->out_msg, m->data_length);
1281 con->out_more = 1; /* data + footer will follow */
1282 } else {
1283 /* no, queue up footer too and be done */
1284 prepare_write_message_footer(con);
1287 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1291 * Prepare an ack.
1293 static void prepare_write_ack(struct ceph_connection *con)
1295 dout("prepare_write_ack %p %llu -> %llu\n", con,
1296 con->in_seq_acked, con->in_seq);
1297 con->in_seq_acked = con->in_seq;
1299 con_out_kvec_reset(con);
1301 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1303 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1304 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1305 &con->out_temp_ack);
1307 con->out_more = 1; /* more will follow.. eventually.. */
1308 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1312 * Prepare to share the seq during handshake
1314 static void prepare_write_seq(struct ceph_connection *con)
1316 dout("prepare_write_seq %p %llu -> %llu\n", con,
1317 con->in_seq_acked, con->in_seq);
1318 con->in_seq_acked = con->in_seq;
1320 con_out_kvec_reset(con);
1322 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1323 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1324 &con->out_temp_ack);
1326 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1330 * Prepare to write keepalive byte.
1332 static void prepare_write_keepalive(struct ceph_connection *con)
1334 dout("prepare_write_keepalive %p\n", con);
1335 con_out_kvec_reset(con);
1336 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1337 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341 * Connection negotiation.
1344 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1345 int *auth_proto)
1347 struct ceph_auth_handshake *auth;
1349 if (!con->ops->get_authorizer) {
1350 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1351 con->out_connect.authorizer_len = 0;
1352 return NULL;
1355 /* Can't hold the mutex while getting authorizer */
1356 mutex_unlock(&con->mutex);
1357 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1358 mutex_lock(&con->mutex);
1360 if (IS_ERR(auth))
1361 return auth;
1362 if (con->state != CON_STATE_NEGOTIATING)
1363 return ERR_PTR(-EAGAIN);
1365 con->auth_reply_buf = auth->authorizer_reply_buf;
1366 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1367 return auth;
1371 * We connected to a peer and are saying hello.
1373 static void prepare_write_banner(struct ceph_connection *con)
1375 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1376 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1377 &con->msgr->my_enc_addr);
1379 con->out_more = 0;
1380 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1383 static int prepare_write_connect(struct ceph_connection *con)
1385 unsigned int global_seq = get_global_seq(con->msgr, 0);
1386 int proto;
1387 int auth_proto;
1388 struct ceph_auth_handshake *auth;
1390 switch (con->peer_name.type) {
1391 case CEPH_ENTITY_TYPE_MON:
1392 proto = CEPH_MONC_PROTOCOL;
1393 break;
1394 case CEPH_ENTITY_TYPE_OSD:
1395 proto = CEPH_OSDC_PROTOCOL;
1396 break;
1397 case CEPH_ENTITY_TYPE_MDS:
1398 proto = CEPH_MDSC_PROTOCOL;
1399 break;
1400 default:
1401 BUG();
1404 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1405 con->connect_seq, global_seq, proto);
1407 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1408 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1409 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1410 con->out_connect.global_seq = cpu_to_le32(global_seq);
1411 con->out_connect.protocol_version = cpu_to_le32(proto);
1412 con->out_connect.flags = 0;
1414 auth_proto = CEPH_AUTH_UNKNOWN;
1415 auth = get_connect_authorizer(con, &auth_proto);
1416 if (IS_ERR(auth))
1417 return PTR_ERR(auth);
1419 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1420 con->out_connect.authorizer_len = auth ?
1421 cpu_to_le32(auth->authorizer_buf_len) : 0;
1423 con_out_kvec_add(con, sizeof (con->out_connect),
1424 &con->out_connect);
1425 if (auth && auth->authorizer_buf_len)
1426 con_out_kvec_add(con, auth->authorizer_buf_len,
1427 auth->authorizer_buf);
1429 con->out_more = 0;
1430 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1432 return 0;
1436 * write as much of pending kvecs to the socket as we can.
1437 * 1 -> done
1438 * 0 -> socket full, but more to do
1439 * <0 -> error
1441 static int write_partial_kvec(struct ceph_connection *con)
1443 int ret;
1445 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1446 while (con->out_kvec_bytes > 0) {
1447 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1448 con->out_kvec_left, con->out_kvec_bytes,
1449 con->out_more);
1450 if (ret <= 0)
1451 goto out;
1452 con->out_kvec_bytes -= ret;
1453 if (con->out_kvec_bytes == 0)
1454 break; /* done */
1456 /* account for full iov entries consumed */
1457 while (ret >= con->out_kvec_cur->iov_len) {
1458 BUG_ON(!con->out_kvec_left);
1459 ret -= con->out_kvec_cur->iov_len;
1460 con->out_kvec_cur++;
1461 con->out_kvec_left--;
1463 /* and for a partially-consumed entry */
1464 if (ret) {
1465 con->out_kvec_cur->iov_len -= ret;
1466 con->out_kvec_cur->iov_base += ret;
1469 con->out_kvec_left = 0;
1470 con->out_kvec_is_msg = false;
1471 ret = 1;
1472 out:
1473 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1474 con->out_kvec_bytes, con->out_kvec_left, ret);
1475 return ret; /* done! */
1478 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1479 unsigned int page_offset,
1480 unsigned int length)
1482 char *kaddr;
1484 kaddr = kmap(page);
1485 BUG_ON(kaddr == NULL);
1486 crc = crc32c(crc, kaddr + page_offset, length);
1487 kunmap(page);
1489 return crc;
1492 * Write as much message data payload as we can. If we finish, queue
1493 * up the footer.
1494 * 1 -> done, footer is now queued in out_kvec[].
1495 * 0 -> socket full, but more to do
1496 * <0 -> error
1498 static int write_partial_message_data(struct ceph_connection *con)
1500 struct ceph_msg *msg = con->out_msg;
1501 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1502 bool do_datacrc = !con->msgr->nocrc;
1503 u32 crc;
1505 dout("%s %p msg %p\n", __func__, con, msg);
1507 if (list_empty(&msg->data))
1508 return -EINVAL;
1511 * Iterate through each page that contains data to be
1512 * written, and send as much as possible for each.
1514 * If we are calculating the data crc (the default), we will
1515 * need to map the page. If we have no pages, they have
1516 * been revoked, so use the zero page.
1518 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1519 while (cursor->resid) {
1520 struct page *page;
1521 size_t page_offset;
1522 size_t length;
1523 bool last_piece;
1524 bool need_crc;
1525 int ret;
1527 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1528 &last_piece);
1529 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1530 length, last_piece);
1531 if (ret <= 0) {
1532 if (do_datacrc)
1533 msg->footer.data_crc = cpu_to_le32(crc);
1535 return ret;
1537 if (do_datacrc && cursor->need_crc)
1538 crc = ceph_crc32c_page(crc, page, page_offset, length);
1539 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1542 dout("%s %p msg %p done\n", __func__, con, msg);
1544 /* prepare and queue up footer, too */
1545 if (do_datacrc)
1546 msg->footer.data_crc = cpu_to_le32(crc);
1547 else
1548 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1549 con_out_kvec_reset(con);
1550 prepare_write_message_footer(con);
1552 return 1; /* must return > 0 to indicate success */
1556 * write some zeros
1558 static int write_partial_skip(struct ceph_connection *con)
1560 int ret;
1562 while (con->out_skip > 0) {
1563 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1565 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1566 if (ret <= 0)
1567 goto out;
1568 con->out_skip -= ret;
1570 ret = 1;
1571 out:
1572 return ret;
1576 * Prepare to read connection handshake, or an ack.
1578 static void prepare_read_banner(struct ceph_connection *con)
1580 dout("prepare_read_banner %p\n", con);
1581 con->in_base_pos = 0;
1584 static void prepare_read_connect(struct ceph_connection *con)
1586 dout("prepare_read_connect %p\n", con);
1587 con->in_base_pos = 0;
1590 static void prepare_read_ack(struct ceph_connection *con)
1592 dout("prepare_read_ack %p\n", con);
1593 con->in_base_pos = 0;
1596 static void prepare_read_seq(struct ceph_connection *con)
1598 dout("prepare_read_seq %p\n", con);
1599 con->in_base_pos = 0;
1600 con->in_tag = CEPH_MSGR_TAG_SEQ;
1603 static void prepare_read_tag(struct ceph_connection *con)
1605 dout("prepare_read_tag %p\n", con);
1606 con->in_base_pos = 0;
1607 con->in_tag = CEPH_MSGR_TAG_READY;
1611 * Prepare to read a message.
1613 static int prepare_read_message(struct ceph_connection *con)
1615 dout("prepare_read_message %p\n", con);
1616 BUG_ON(con->in_msg != NULL);
1617 con->in_base_pos = 0;
1618 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1619 return 0;
1623 static int read_partial(struct ceph_connection *con,
1624 int end, int size, void *object)
1626 while (con->in_base_pos < end) {
1627 int left = end - con->in_base_pos;
1628 int have = size - left;
1629 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1630 if (ret <= 0)
1631 return ret;
1632 con->in_base_pos += ret;
1634 return 1;
1639 * Read all or part of the connect-side handshake on a new connection
1641 static int read_partial_banner(struct ceph_connection *con)
1643 int size;
1644 int end;
1645 int ret;
1647 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1649 /* peer's banner */
1650 size = strlen(CEPH_BANNER);
1651 end = size;
1652 ret = read_partial(con, end, size, con->in_banner);
1653 if (ret <= 0)
1654 goto out;
1656 size = sizeof (con->actual_peer_addr);
1657 end += size;
1658 ret = read_partial(con, end, size, &con->actual_peer_addr);
1659 if (ret <= 0)
1660 goto out;
1662 size = sizeof (con->peer_addr_for_me);
1663 end += size;
1664 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1665 if (ret <= 0)
1666 goto out;
1668 out:
1669 return ret;
1672 static int read_partial_connect(struct ceph_connection *con)
1674 int size;
1675 int end;
1676 int ret;
1678 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1680 size = sizeof (con->in_reply);
1681 end = size;
1682 ret = read_partial(con, end, size, &con->in_reply);
1683 if (ret <= 0)
1684 goto out;
1686 size = le32_to_cpu(con->in_reply.authorizer_len);
1687 end += size;
1688 ret = read_partial(con, end, size, con->auth_reply_buf);
1689 if (ret <= 0)
1690 goto out;
1692 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1693 con, (int)con->in_reply.tag,
1694 le32_to_cpu(con->in_reply.connect_seq),
1695 le32_to_cpu(con->in_reply.global_seq));
1696 out:
1697 return ret;
1702 * Verify the hello banner looks okay.
1704 static int verify_hello(struct ceph_connection *con)
1706 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1707 pr_err("connect to %s got bad banner\n",
1708 ceph_pr_addr(&con->peer_addr.in_addr));
1709 con->error_msg = "protocol error, bad banner";
1710 return -1;
1712 return 0;
1715 static bool addr_is_blank(struct sockaddr_storage *ss)
1717 switch (ss->ss_family) {
1718 case AF_INET:
1719 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1720 case AF_INET6:
1721 return
1722 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1723 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1724 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1725 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1727 return false;
1730 static int addr_port(struct sockaddr_storage *ss)
1732 switch (ss->ss_family) {
1733 case AF_INET:
1734 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1735 case AF_INET6:
1736 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1738 return 0;
1741 static void addr_set_port(struct sockaddr_storage *ss, int p)
1743 switch (ss->ss_family) {
1744 case AF_INET:
1745 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1746 break;
1747 case AF_INET6:
1748 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1749 break;
1754 * Unlike other *_pton function semantics, zero indicates success.
1756 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1757 char delim, const char **ipend)
1759 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1760 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1762 memset(ss, 0, sizeof(*ss));
1764 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1765 ss->ss_family = AF_INET;
1766 return 0;
1769 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1770 ss->ss_family = AF_INET6;
1771 return 0;
1774 return -EINVAL;
1778 * Extract hostname string and resolve using kernel DNS facility.
1780 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1781 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1782 struct sockaddr_storage *ss, char delim, const char **ipend)
1784 const char *end, *delim_p;
1785 char *colon_p, *ip_addr = NULL;
1786 int ip_len, ret;
1789 * The end of the hostname occurs immediately preceding the delimiter or
1790 * the port marker (':') where the delimiter takes precedence.
1792 delim_p = memchr(name, delim, namelen);
1793 colon_p = memchr(name, ':', namelen);
1795 if (delim_p && colon_p)
1796 end = delim_p < colon_p ? delim_p : colon_p;
1797 else if (!delim_p && colon_p)
1798 end = colon_p;
1799 else {
1800 end = delim_p;
1801 if (!end) /* case: hostname:/ */
1802 end = name + namelen;
1805 if (end <= name)
1806 return -EINVAL;
1808 /* do dns_resolve upcall */
1809 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1810 if (ip_len > 0)
1811 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1812 else
1813 ret = -ESRCH;
1815 kfree(ip_addr);
1817 *ipend = end;
1819 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1820 ret, ret ? "failed" : ceph_pr_addr(ss));
1822 return ret;
1824 #else
1825 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1826 struct sockaddr_storage *ss, char delim, const char **ipend)
1828 return -EINVAL;
1830 #endif
1833 * Parse a server name (IP or hostname). If a valid IP address is not found
1834 * then try to extract a hostname to resolve using userspace DNS upcall.
1836 static int ceph_parse_server_name(const char *name, size_t namelen,
1837 struct sockaddr_storage *ss, char delim, const char **ipend)
1839 int ret;
1841 ret = ceph_pton(name, namelen, ss, delim, ipend);
1842 if (ret)
1843 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1845 return ret;
1849 * Parse an ip[:port] list into an addr array. Use the default
1850 * monitor port if a port isn't specified.
1852 int ceph_parse_ips(const char *c, const char *end,
1853 struct ceph_entity_addr *addr,
1854 int max_count, int *count)
1856 int i, ret = -EINVAL;
1857 const char *p = c;
1859 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1860 for (i = 0; i < max_count; i++) {
1861 const char *ipend;
1862 struct sockaddr_storage *ss = &addr[i].in_addr;
1863 int port;
1864 char delim = ',';
1866 if (*p == '[') {
1867 delim = ']';
1868 p++;
1871 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1872 if (ret)
1873 goto bad;
1874 ret = -EINVAL;
1876 p = ipend;
1878 if (delim == ']') {
1879 if (*p != ']') {
1880 dout("missing matching ']'\n");
1881 goto bad;
1883 p++;
1886 /* port? */
1887 if (p < end && *p == ':') {
1888 port = 0;
1889 p++;
1890 while (p < end && *p >= '0' && *p <= '9') {
1891 port = (port * 10) + (*p - '0');
1892 p++;
1894 if (port == 0)
1895 port = CEPH_MON_PORT;
1896 else if (port > 65535)
1897 goto bad;
1898 } else {
1899 port = CEPH_MON_PORT;
1902 addr_set_port(ss, port);
1904 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1906 if (p == end)
1907 break;
1908 if (*p != ',')
1909 goto bad;
1910 p++;
1913 if (p != end)
1914 goto bad;
1916 if (count)
1917 *count = i + 1;
1918 return 0;
1920 bad:
1921 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1922 return ret;
1924 EXPORT_SYMBOL(ceph_parse_ips);
1926 static int process_banner(struct ceph_connection *con)
1928 dout("process_banner on %p\n", con);
1930 if (verify_hello(con) < 0)
1931 return -1;
1933 ceph_decode_addr(&con->actual_peer_addr);
1934 ceph_decode_addr(&con->peer_addr_for_me);
1937 * Make sure the other end is who we wanted. note that the other
1938 * end may not yet know their ip address, so if it's 0.0.0.0, give
1939 * them the benefit of the doubt.
1941 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1942 sizeof(con->peer_addr)) != 0 &&
1943 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1944 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1945 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1946 ceph_pr_addr(&con->peer_addr.in_addr),
1947 (int)le32_to_cpu(con->peer_addr.nonce),
1948 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1949 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1950 con->error_msg = "wrong peer at address";
1951 return -1;
1955 * did we learn our address?
1957 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1958 int port = addr_port(&con->msgr->inst.addr.in_addr);
1960 memcpy(&con->msgr->inst.addr.in_addr,
1961 &con->peer_addr_for_me.in_addr,
1962 sizeof(con->peer_addr_for_me.in_addr));
1963 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1964 encode_my_addr(con->msgr);
1965 dout("process_banner learned my addr is %s\n",
1966 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1969 return 0;
1972 static int process_connect(struct ceph_connection *con)
1974 u64 sup_feat = con->msgr->supported_features;
1975 u64 req_feat = con->msgr->required_features;
1976 u64 server_feat = ceph_sanitize_features(
1977 le64_to_cpu(con->in_reply.features));
1978 int ret;
1980 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1982 switch (con->in_reply.tag) {
1983 case CEPH_MSGR_TAG_FEATURES:
1984 pr_err("%s%lld %s feature set mismatch,"
1985 " my %llx < server's %llx, missing %llx\n",
1986 ENTITY_NAME(con->peer_name),
1987 ceph_pr_addr(&con->peer_addr.in_addr),
1988 sup_feat, server_feat, server_feat & ~sup_feat);
1989 con->error_msg = "missing required protocol features";
1990 reset_connection(con);
1991 return -1;
1993 case CEPH_MSGR_TAG_BADPROTOVER:
1994 pr_err("%s%lld %s protocol version mismatch,"
1995 " my %d != server's %d\n",
1996 ENTITY_NAME(con->peer_name),
1997 ceph_pr_addr(&con->peer_addr.in_addr),
1998 le32_to_cpu(con->out_connect.protocol_version),
1999 le32_to_cpu(con->in_reply.protocol_version));
2000 con->error_msg = "protocol version mismatch";
2001 reset_connection(con);
2002 return -1;
2004 case CEPH_MSGR_TAG_BADAUTHORIZER:
2005 con->auth_retry++;
2006 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2007 con->auth_retry);
2008 if (con->auth_retry == 2) {
2009 con->error_msg = "connect authorization failure";
2010 return -1;
2012 con_out_kvec_reset(con);
2013 ret = prepare_write_connect(con);
2014 if (ret < 0)
2015 return ret;
2016 prepare_read_connect(con);
2017 break;
2019 case CEPH_MSGR_TAG_RESETSESSION:
2021 * If we connected with a large connect_seq but the peer
2022 * has no record of a session with us (no connection, or
2023 * connect_seq == 0), they will send RESETSESION to indicate
2024 * that they must have reset their session, and may have
2025 * dropped messages.
2027 dout("process_connect got RESET peer seq %u\n",
2028 le32_to_cpu(con->in_reply.connect_seq));
2029 pr_err("%s%lld %s connection reset\n",
2030 ENTITY_NAME(con->peer_name),
2031 ceph_pr_addr(&con->peer_addr.in_addr));
2032 reset_connection(con);
2033 con_out_kvec_reset(con);
2034 ret = prepare_write_connect(con);
2035 if (ret < 0)
2036 return ret;
2037 prepare_read_connect(con);
2039 /* Tell ceph about it. */
2040 mutex_unlock(&con->mutex);
2041 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2042 if (con->ops->peer_reset)
2043 con->ops->peer_reset(con);
2044 mutex_lock(&con->mutex);
2045 if (con->state != CON_STATE_NEGOTIATING)
2046 return -EAGAIN;
2047 break;
2049 case CEPH_MSGR_TAG_RETRY_SESSION:
2051 * If we sent a smaller connect_seq than the peer has, try
2052 * again with a larger value.
2054 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2055 le32_to_cpu(con->out_connect.connect_seq),
2056 le32_to_cpu(con->in_reply.connect_seq));
2057 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2058 con_out_kvec_reset(con);
2059 ret = prepare_write_connect(con);
2060 if (ret < 0)
2061 return ret;
2062 prepare_read_connect(con);
2063 break;
2065 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2067 * If we sent a smaller global_seq than the peer has, try
2068 * again with a larger value.
2070 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2071 con->peer_global_seq,
2072 le32_to_cpu(con->in_reply.global_seq));
2073 get_global_seq(con->msgr,
2074 le32_to_cpu(con->in_reply.global_seq));
2075 con_out_kvec_reset(con);
2076 ret = prepare_write_connect(con);
2077 if (ret < 0)
2078 return ret;
2079 prepare_read_connect(con);
2080 break;
2082 case CEPH_MSGR_TAG_SEQ:
2083 case CEPH_MSGR_TAG_READY:
2084 if (req_feat & ~server_feat) {
2085 pr_err("%s%lld %s protocol feature mismatch,"
2086 " my required %llx > server's %llx, need %llx\n",
2087 ENTITY_NAME(con->peer_name),
2088 ceph_pr_addr(&con->peer_addr.in_addr),
2089 req_feat, server_feat, req_feat & ~server_feat);
2090 con->error_msg = "missing required protocol features";
2091 reset_connection(con);
2092 return -1;
2095 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2096 con->state = CON_STATE_OPEN;
2097 con->auth_retry = 0; /* we authenticated; clear flag */
2098 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2099 con->connect_seq++;
2100 con->peer_features = server_feat;
2101 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2102 con->peer_global_seq,
2103 le32_to_cpu(con->in_reply.connect_seq),
2104 con->connect_seq);
2105 WARN_ON(con->connect_seq !=
2106 le32_to_cpu(con->in_reply.connect_seq));
2108 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2109 con_flag_set(con, CON_FLAG_LOSSYTX);
2111 con->delay = 0; /* reset backoff memory */
2113 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2114 prepare_write_seq(con);
2115 prepare_read_seq(con);
2116 } else {
2117 prepare_read_tag(con);
2119 break;
2121 case CEPH_MSGR_TAG_WAIT:
2123 * If there is a connection race (we are opening
2124 * connections to each other), one of us may just have
2125 * to WAIT. This shouldn't happen if we are the
2126 * client.
2128 pr_err("process_connect got WAIT as client\n");
2129 con->error_msg = "protocol error, got WAIT as client";
2130 return -1;
2132 default:
2133 pr_err("connect protocol error, will retry\n");
2134 con->error_msg = "protocol error, garbage tag during connect";
2135 return -1;
2137 return 0;
2142 * read (part of) an ack
2144 static int read_partial_ack(struct ceph_connection *con)
2146 int size = sizeof (con->in_temp_ack);
2147 int end = size;
2149 return read_partial(con, end, size, &con->in_temp_ack);
2153 * We can finally discard anything that's been acked.
2155 static void process_ack(struct ceph_connection *con)
2157 struct ceph_msg *m;
2158 u64 ack = le64_to_cpu(con->in_temp_ack);
2159 u64 seq;
2161 while (!list_empty(&con->out_sent)) {
2162 m = list_first_entry(&con->out_sent, struct ceph_msg,
2163 list_head);
2164 seq = le64_to_cpu(m->hdr.seq);
2165 if (seq > ack)
2166 break;
2167 dout("got ack for seq %llu type %d at %p\n", seq,
2168 le16_to_cpu(m->hdr.type), m);
2169 m->ack_stamp = jiffies;
2170 ceph_msg_remove(m);
2172 prepare_read_tag(con);
2176 static int read_partial_message_section(struct ceph_connection *con,
2177 struct kvec *section,
2178 unsigned int sec_len, u32 *crc)
2180 int ret, left;
2182 BUG_ON(!section);
2184 while (section->iov_len < sec_len) {
2185 BUG_ON(section->iov_base == NULL);
2186 left = sec_len - section->iov_len;
2187 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2188 section->iov_len, left);
2189 if (ret <= 0)
2190 return ret;
2191 section->iov_len += ret;
2193 if (section->iov_len == sec_len)
2194 *crc = crc32c(0, section->iov_base, section->iov_len);
2196 return 1;
2199 static int read_partial_msg_data(struct ceph_connection *con)
2201 struct ceph_msg *msg = con->in_msg;
2202 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2203 const bool do_datacrc = !con->msgr->nocrc;
2204 struct page *page;
2205 size_t page_offset;
2206 size_t length;
2207 u32 crc = 0;
2208 int ret;
2210 BUG_ON(!msg);
2211 if (list_empty(&msg->data))
2212 return -EIO;
2214 if (do_datacrc)
2215 crc = con->in_data_crc;
2216 while (cursor->resid) {
2217 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2218 NULL);
2219 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2220 if (ret <= 0) {
2221 if (do_datacrc)
2222 con->in_data_crc = crc;
2224 return ret;
2227 if (do_datacrc)
2228 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2229 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2231 if (do_datacrc)
2232 con->in_data_crc = crc;
2234 return 1; /* must return > 0 to indicate success */
2238 * read (part of) a message.
2240 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2242 static int read_partial_message(struct ceph_connection *con)
2244 struct ceph_msg *m = con->in_msg;
2245 int size;
2246 int end;
2247 int ret;
2248 unsigned int front_len, middle_len, data_len;
2249 bool do_datacrc = !con->msgr->nocrc;
2250 u64 seq;
2251 u32 crc;
2253 dout("read_partial_message con %p msg %p\n", con, m);
2255 /* header */
2256 size = sizeof (con->in_hdr);
2257 end = size;
2258 ret = read_partial(con, end, size, &con->in_hdr);
2259 if (ret <= 0)
2260 return ret;
2262 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2263 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2264 pr_err("read_partial_message bad hdr "
2265 " crc %u != expected %u\n",
2266 crc, con->in_hdr.crc);
2267 return -EBADMSG;
2270 front_len = le32_to_cpu(con->in_hdr.front_len);
2271 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2272 return -EIO;
2273 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2274 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2275 return -EIO;
2276 data_len = le32_to_cpu(con->in_hdr.data_len);
2277 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2278 return -EIO;
2280 /* verify seq# */
2281 seq = le64_to_cpu(con->in_hdr.seq);
2282 if ((s64)seq - (s64)con->in_seq < 1) {
2283 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2284 ENTITY_NAME(con->peer_name),
2285 ceph_pr_addr(&con->peer_addr.in_addr),
2286 seq, con->in_seq + 1);
2287 con->in_base_pos = -front_len - middle_len - data_len -
2288 sizeof(m->footer);
2289 con->in_tag = CEPH_MSGR_TAG_READY;
2290 return 0;
2291 } else if ((s64)seq - (s64)con->in_seq > 1) {
2292 pr_err("read_partial_message bad seq %lld expected %lld\n",
2293 seq, con->in_seq + 1);
2294 con->error_msg = "bad message sequence # for incoming message";
2295 return -EBADMSG;
2298 /* allocate message? */
2299 if (!con->in_msg) {
2300 int skip = 0;
2302 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2303 front_len, data_len);
2304 ret = ceph_con_in_msg_alloc(con, &skip);
2305 if (ret < 0)
2306 return ret;
2308 BUG_ON(!con->in_msg ^ skip);
2309 if (con->in_msg && data_len > con->in_msg->data_length) {
2310 pr_warn("%s skipping long message (%u > %zd)\n",
2311 __func__, data_len, con->in_msg->data_length);
2312 ceph_msg_put(con->in_msg);
2313 con->in_msg = NULL;
2314 skip = 1;
2316 if (skip) {
2317 /* skip this message */
2318 dout("alloc_msg said skip message\n");
2319 con->in_base_pos = -front_len - middle_len - data_len -
2320 sizeof(m->footer);
2321 con->in_tag = CEPH_MSGR_TAG_READY;
2322 con->in_seq++;
2323 return 0;
2326 BUG_ON(!con->in_msg);
2327 BUG_ON(con->in_msg->con != con);
2328 m = con->in_msg;
2329 m->front.iov_len = 0; /* haven't read it yet */
2330 if (m->middle)
2331 m->middle->vec.iov_len = 0;
2333 /* prepare for data payload, if any */
2335 if (data_len)
2336 prepare_message_data(con->in_msg, data_len);
2339 /* front */
2340 ret = read_partial_message_section(con, &m->front, front_len,
2341 &con->in_front_crc);
2342 if (ret <= 0)
2343 return ret;
2345 /* middle */
2346 if (m->middle) {
2347 ret = read_partial_message_section(con, &m->middle->vec,
2348 middle_len,
2349 &con->in_middle_crc);
2350 if (ret <= 0)
2351 return ret;
2354 /* (page) data */
2355 if (data_len) {
2356 ret = read_partial_msg_data(con);
2357 if (ret <= 0)
2358 return ret;
2361 /* footer */
2362 size = sizeof (m->footer);
2363 end += size;
2364 ret = read_partial(con, end, size, &m->footer);
2365 if (ret <= 0)
2366 return ret;
2368 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2369 m, front_len, m->footer.front_crc, middle_len,
2370 m->footer.middle_crc, data_len, m->footer.data_crc);
2372 /* crc ok? */
2373 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2374 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2375 m, con->in_front_crc, m->footer.front_crc);
2376 return -EBADMSG;
2378 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2379 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2380 m, con->in_middle_crc, m->footer.middle_crc);
2381 return -EBADMSG;
2383 if (do_datacrc &&
2384 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2385 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2386 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2387 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2388 return -EBADMSG;
2391 return 1; /* done! */
2395 * Process message. This happens in the worker thread. The callback should
2396 * be careful not to do anything that waits on other incoming messages or it
2397 * may deadlock.
2399 static void process_message(struct ceph_connection *con)
2401 struct ceph_msg *msg;
2403 BUG_ON(con->in_msg->con != con);
2404 con->in_msg->con = NULL;
2405 msg = con->in_msg;
2406 con->in_msg = NULL;
2407 con->ops->put(con);
2409 /* if first message, set peer_name */
2410 if (con->peer_name.type == 0)
2411 con->peer_name = msg->hdr.src;
2413 con->in_seq++;
2414 mutex_unlock(&con->mutex);
2416 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2417 msg, le64_to_cpu(msg->hdr.seq),
2418 ENTITY_NAME(msg->hdr.src),
2419 le16_to_cpu(msg->hdr.type),
2420 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2421 le32_to_cpu(msg->hdr.front_len),
2422 le32_to_cpu(msg->hdr.data_len),
2423 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2424 con->ops->dispatch(con, msg);
2426 mutex_lock(&con->mutex);
2431 * Write something to the socket. Called in a worker thread when the
2432 * socket appears to be writeable and we have something ready to send.
2434 static int try_write(struct ceph_connection *con)
2436 int ret = 1;
2438 dout("try_write start %p state %lu\n", con, con->state);
2440 more:
2441 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2443 /* open the socket first? */
2444 if (con->state == CON_STATE_PREOPEN) {
2445 BUG_ON(con->sock);
2446 con->state = CON_STATE_CONNECTING;
2448 con_out_kvec_reset(con);
2449 prepare_write_banner(con);
2450 prepare_read_banner(con);
2452 BUG_ON(con->in_msg);
2453 con->in_tag = CEPH_MSGR_TAG_READY;
2454 dout("try_write initiating connect on %p new state %lu\n",
2455 con, con->state);
2456 ret = ceph_tcp_connect(con);
2457 if (ret < 0) {
2458 con->error_msg = "connect error";
2459 goto out;
2463 more_kvec:
2464 /* kvec data queued? */
2465 if (con->out_skip) {
2466 ret = write_partial_skip(con);
2467 if (ret <= 0)
2468 goto out;
2470 if (con->out_kvec_left) {
2471 ret = write_partial_kvec(con);
2472 if (ret <= 0)
2473 goto out;
2476 /* msg pages? */
2477 if (con->out_msg) {
2478 if (con->out_msg_done) {
2479 ceph_msg_put(con->out_msg);
2480 con->out_msg = NULL; /* we're done with this one */
2481 goto do_next;
2484 ret = write_partial_message_data(con);
2485 if (ret == 1)
2486 goto more_kvec; /* we need to send the footer, too! */
2487 if (ret == 0)
2488 goto out;
2489 if (ret < 0) {
2490 dout("try_write write_partial_message_data err %d\n",
2491 ret);
2492 goto out;
2496 do_next:
2497 if (con->state == CON_STATE_OPEN) {
2498 /* is anything else pending? */
2499 if (!list_empty(&con->out_queue)) {
2500 prepare_write_message(con);
2501 goto more;
2503 if (con->in_seq > con->in_seq_acked) {
2504 prepare_write_ack(con);
2505 goto more;
2507 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2508 prepare_write_keepalive(con);
2509 goto more;
2513 /* Nothing to do! */
2514 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2515 dout("try_write nothing else to write.\n");
2516 ret = 0;
2517 out:
2518 dout("try_write done on %p ret %d\n", con, ret);
2519 return ret;
2525 * Read what we can from the socket.
2527 static int try_read(struct ceph_connection *con)
2529 int ret = -1;
2531 more:
2532 dout("try_read start on %p state %lu\n", con, con->state);
2533 if (con->state != CON_STATE_CONNECTING &&
2534 con->state != CON_STATE_NEGOTIATING &&
2535 con->state != CON_STATE_OPEN)
2536 return 0;
2538 BUG_ON(!con->sock);
2540 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2541 con->in_base_pos);
2543 if (con->state == CON_STATE_CONNECTING) {
2544 dout("try_read connecting\n");
2545 ret = read_partial_banner(con);
2546 if (ret <= 0)
2547 goto out;
2548 ret = process_banner(con);
2549 if (ret < 0)
2550 goto out;
2552 con->state = CON_STATE_NEGOTIATING;
2555 * Received banner is good, exchange connection info.
2556 * Do not reset out_kvec, as sending our banner raced
2557 * with receiving peer banner after connect completed.
2559 ret = prepare_write_connect(con);
2560 if (ret < 0)
2561 goto out;
2562 prepare_read_connect(con);
2564 /* Send connection info before awaiting response */
2565 goto out;
2568 if (con->state == CON_STATE_NEGOTIATING) {
2569 dout("try_read negotiating\n");
2570 ret = read_partial_connect(con);
2571 if (ret <= 0)
2572 goto out;
2573 ret = process_connect(con);
2574 if (ret < 0)
2575 goto out;
2576 goto more;
2579 WARN_ON(con->state != CON_STATE_OPEN);
2581 if (con->in_base_pos < 0) {
2583 * skipping + discarding content.
2585 * FIXME: there must be a better way to do this!
2587 static char buf[SKIP_BUF_SIZE];
2588 int skip = min((int) sizeof (buf), -con->in_base_pos);
2590 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2591 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2592 if (ret <= 0)
2593 goto out;
2594 con->in_base_pos += ret;
2595 if (con->in_base_pos)
2596 goto more;
2598 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2600 * what's next?
2602 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2603 if (ret <= 0)
2604 goto out;
2605 dout("try_read got tag %d\n", (int)con->in_tag);
2606 switch (con->in_tag) {
2607 case CEPH_MSGR_TAG_MSG:
2608 prepare_read_message(con);
2609 break;
2610 case CEPH_MSGR_TAG_ACK:
2611 prepare_read_ack(con);
2612 break;
2613 case CEPH_MSGR_TAG_CLOSE:
2614 con_close_socket(con);
2615 con->state = CON_STATE_CLOSED;
2616 goto out;
2617 default:
2618 goto bad_tag;
2621 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2622 ret = read_partial_message(con);
2623 if (ret <= 0) {
2624 switch (ret) {
2625 case -EBADMSG:
2626 con->error_msg = "bad crc";
2627 ret = -EIO;
2628 break;
2629 case -EIO:
2630 con->error_msg = "io error";
2631 break;
2633 goto out;
2635 if (con->in_tag == CEPH_MSGR_TAG_READY)
2636 goto more;
2637 process_message(con);
2638 if (con->state == CON_STATE_OPEN)
2639 prepare_read_tag(con);
2640 goto more;
2642 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2643 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2645 * the final handshake seq exchange is semantically
2646 * equivalent to an ACK
2648 ret = read_partial_ack(con);
2649 if (ret <= 0)
2650 goto out;
2651 process_ack(con);
2652 goto more;
2655 out:
2656 dout("try_read done on %p ret %d\n", con, ret);
2657 return ret;
2659 bad_tag:
2660 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2661 con->error_msg = "protocol error, garbage tag";
2662 ret = -1;
2663 goto out;
2668 * Atomically queue work on a connection after the specified delay.
2669 * Bump @con reference to avoid races with connection teardown.
2670 * Returns 0 if work was queued, or an error code otherwise.
2672 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2674 if (!con->ops->get(con)) {
2675 dout("%s %p ref count 0\n", __func__, con);
2676 return -ENOENT;
2679 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2680 dout("%s %p - already queued\n", __func__, con);
2681 con->ops->put(con);
2682 return -EBUSY;
2685 dout("%s %p %lu\n", __func__, con, delay);
2686 return 0;
2689 static void queue_con(struct ceph_connection *con)
2691 (void) queue_con_delay(con, 0);
2694 static void cancel_con(struct ceph_connection *con)
2696 if (cancel_delayed_work(&con->work)) {
2697 dout("%s %p\n", __func__, con);
2698 con->ops->put(con);
2702 static bool con_sock_closed(struct ceph_connection *con)
2704 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2705 return false;
2707 #define CASE(x) \
2708 case CON_STATE_ ## x: \
2709 con->error_msg = "socket closed (con state " #x ")"; \
2710 break;
2712 switch (con->state) {
2713 CASE(CLOSED);
2714 CASE(PREOPEN);
2715 CASE(CONNECTING);
2716 CASE(NEGOTIATING);
2717 CASE(OPEN);
2718 CASE(STANDBY);
2719 default:
2720 pr_warn("%s con %p unrecognized state %lu\n",
2721 __func__, con, con->state);
2722 con->error_msg = "unrecognized con state";
2723 BUG();
2724 break;
2726 #undef CASE
2728 return true;
2731 static bool con_backoff(struct ceph_connection *con)
2733 int ret;
2735 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2736 return false;
2738 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2739 if (ret) {
2740 dout("%s: con %p FAILED to back off %lu\n", __func__,
2741 con, con->delay);
2742 BUG_ON(ret == -ENOENT);
2743 con_flag_set(con, CON_FLAG_BACKOFF);
2746 return true;
2749 /* Finish fault handling; con->mutex must *not* be held here */
2751 static void con_fault_finish(struct ceph_connection *con)
2754 * in case we faulted due to authentication, invalidate our
2755 * current tickets so that we can get new ones.
2757 if (con->auth_retry && con->ops->invalidate_authorizer) {
2758 dout("calling invalidate_authorizer()\n");
2759 con->ops->invalidate_authorizer(con);
2762 if (con->ops->fault)
2763 con->ops->fault(con);
2767 * Do some work on a connection. Drop a connection ref when we're done.
2769 static void con_work(struct work_struct *work)
2771 struct ceph_connection *con = container_of(work, struct ceph_connection,
2772 work.work);
2773 bool fault;
2775 mutex_lock(&con->mutex);
2776 while (true) {
2777 int ret;
2779 if ((fault = con_sock_closed(con))) {
2780 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2781 break;
2783 if (con_backoff(con)) {
2784 dout("%s: con %p BACKOFF\n", __func__, con);
2785 break;
2787 if (con->state == CON_STATE_STANDBY) {
2788 dout("%s: con %p STANDBY\n", __func__, con);
2789 break;
2791 if (con->state == CON_STATE_CLOSED) {
2792 dout("%s: con %p CLOSED\n", __func__, con);
2793 BUG_ON(con->sock);
2794 break;
2796 if (con->state == CON_STATE_PREOPEN) {
2797 dout("%s: con %p PREOPEN\n", __func__, con);
2798 BUG_ON(con->sock);
2801 ret = try_read(con);
2802 if (ret < 0) {
2803 if (ret == -EAGAIN)
2804 continue;
2805 con->error_msg = "socket error on read";
2806 fault = true;
2807 break;
2810 ret = try_write(con);
2811 if (ret < 0) {
2812 if (ret == -EAGAIN)
2813 continue;
2814 con->error_msg = "socket error on write";
2815 fault = true;
2818 break; /* If we make it to here, we're done */
2820 if (fault)
2821 con_fault(con);
2822 mutex_unlock(&con->mutex);
2824 if (fault)
2825 con_fault_finish(con);
2827 con->ops->put(con);
2831 * Generic error/fault handler. A retry mechanism is used with
2832 * exponential backoff
2834 static void con_fault(struct ceph_connection *con)
2836 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2837 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2838 dout("fault %p state %lu to peer %s\n",
2839 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2841 WARN_ON(con->state != CON_STATE_CONNECTING &&
2842 con->state != CON_STATE_NEGOTIATING &&
2843 con->state != CON_STATE_OPEN);
2845 con_close_socket(con);
2847 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2848 dout("fault on LOSSYTX channel, marking CLOSED\n");
2849 con->state = CON_STATE_CLOSED;
2850 return;
2853 if (con->in_msg) {
2854 BUG_ON(con->in_msg->con != con);
2855 con->in_msg->con = NULL;
2856 ceph_msg_put(con->in_msg);
2857 con->in_msg = NULL;
2858 con->ops->put(con);
2861 /* Requeue anything that hasn't been acked */
2862 list_splice_init(&con->out_sent, &con->out_queue);
2864 /* If there are no messages queued or keepalive pending, place
2865 * the connection in a STANDBY state */
2866 if (list_empty(&con->out_queue) &&
2867 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2868 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2869 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2870 con->state = CON_STATE_STANDBY;
2871 } else {
2872 /* retry after a delay. */
2873 con->state = CON_STATE_PREOPEN;
2874 if (con->delay == 0)
2875 con->delay = BASE_DELAY_INTERVAL;
2876 else if (con->delay < MAX_DELAY_INTERVAL)
2877 con->delay *= 2;
2878 con_flag_set(con, CON_FLAG_BACKOFF);
2879 queue_con(con);
2886 * initialize a new messenger instance
2888 void ceph_messenger_init(struct ceph_messenger *msgr,
2889 struct ceph_entity_addr *myaddr,
2890 u64 supported_features,
2891 u64 required_features,
2892 bool nocrc)
2894 msgr->supported_features = supported_features;
2895 msgr->required_features = required_features;
2897 spin_lock_init(&msgr->global_seq_lock);
2899 if (myaddr)
2900 msgr->inst.addr = *myaddr;
2902 /* select a random nonce */
2903 msgr->inst.addr.type = 0;
2904 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2905 encode_my_addr(msgr);
2906 msgr->nocrc = nocrc;
2908 atomic_set(&msgr->stopping, 0);
2910 dout("%s %p\n", __func__, msgr);
2912 EXPORT_SYMBOL(ceph_messenger_init);
2914 static void clear_standby(struct ceph_connection *con)
2916 /* come back from STANDBY? */
2917 if (con->state == CON_STATE_STANDBY) {
2918 dout("clear_standby %p and ++connect_seq\n", con);
2919 con->state = CON_STATE_PREOPEN;
2920 con->connect_seq++;
2921 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2922 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2927 * Queue up an outgoing message on the given connection.
2929 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2931 /* set src+dst */
2932 msg->hdr.src = con->msgr->inst.name;
2933 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2934 msg->needs_out_seq = true;
2936 mutex_lock(&con->mutex);
2938 if (con->state == CON_STATE_CLOSED) {
2939 dout("con_send %p closed, dropping %p\n", con, msg);
2940 ceph_msg_put(msg);
2941 mutex_unlock(&con->mutex);
2942 return;
2945 BUG_ON(msg->con != NULL);
2946 msg->con = con->ops->get(con);
2947 BUG_ON(msg->con == NULL);
2949 BUG_ON(!list_empty(&msg->list_head));
2950 list_add_tail(&msg->list_head, &con->out_queue);
2951 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2952 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2953 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2954 le32_to_cpu(msg->hdr.front_len),
2955 le32_to_cpu(msg->hdr.middle_len),
2956 le32_to_cpu(msg->hdr.data_len));
2958 clear_standby(con);
2959 mutex_unlock(&con->mutex);
2961 /* if there wasn't anything waiting to send before, queue
2962 * new work */
2963 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2964 queue_con(con);
2966 EXPORT_SYMBOL(ceph_con_send);
2969 * Revoke a message that was previously queued for send
2971 void ceph_msg_revoke(struct ceph_msg *msg)
2973 struct ceph_connection *con = msg->con;
2975 if (!con)
2976 return; /* Message not in our possession */
2978 mutex_lock(&con->mutex);
2979 if (!list_empty(&msg->list_head)) {
2980 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2981 list_del_init(&msg->list_head);
2982 BUG_ON(msg->con == NULL);
2983 msg->con->ops->put(msg->con);
2984 msg->con = NULL;
2985 msg->hdr.seq = 0;
2987 ceph_msg_put(msg);
2989 if (con->out_msg == msg) {
2990 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2991 con->out_msg = NULL;
2992 if (con->out_kvec_is_msg) {
2993 con->out_skip = con->out_kvec_bytes;
2994 con->out_kvec_is_msg = false;
2996 msg->hdr.seq = 0;
2998 ceph_msg_put(msg);
3000 mutex_unlock(&con->mutex);
3004 * Revoke a message that we may be reading data into
3006 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3008 struct ceph_connection *con;
3010 BUG_ON(msg == NULL);
3011 if (!msg->con) {
3012 dout("%s msg %p null con\n", __func__, msg);
3014 return; /* Message not in our possession */
3017 con = msg->con;
3018 mutex_lock(&con->mutex);
3019 if (con->in_msg == msg) {
3020 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3021 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3022 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3024 /* skip rest of message */
3025 dout("%s %p msg %p revoked\n", __func__, con, msg);
3026 con->in_base_pos = con->in_base_pos -
3027 sizeof(struct ceph_msg_header) -
3028 front_len -
3029 middle_len -
3030 data_len -
3031 sizeof(struct ceph_msg_footer);
3032 ceph_msg_put(con->in_msg);
3033 con->in_msg = NULL;
3034 con->in_tag = CEPH_MSGR_TAG_READY;
3035 con->in_seq++;
3036 } else {
3037 dout("%s %p in_msg %p msg %p no-op\n",
3038 __func__, con, con->in_msg, msg);
3040 mutex_unlock(&con->mutex);
3044 * Queue a keepalive byte to ensure the tcp connection is alive.
3046 void ceph_con_keepalive(struct ceph_connection *con)
3048 dout("con_keepalive %p\n", con);
3049 mutex_lock(&con->mutex);
3050 clear_standby(con);
3051 mutex_unlock(&con->mutex);
3052 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3053 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3054 queue_con(con);
3056 EXPORT_SYMBOL(ceph_con_keepalive);
3058 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3060 struct ceph_msg_data *data;
3062 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3063 return NULL;
3065 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3066 if (data)
3067 data->type = type;
3068 INIT_LIST_HEAD(&data->links);
3070 return data;
3073 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3075 if (!data)
3076 return;
3078 WARN_ON(!list_empty(&data->links));
3079 if (data->type == CEPH_MSG_DATA_PAGELIST)
3080 ceph_pagelist_release(data->pagelist);
3081 kmem_cache_free(ceph_msg_data_cache, data);
3084 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3085 size_t length, size_t alignment)
3087 struct ceph_msg_data *data;
3089 BUG_ON(!pages);
3090 BUG_ON(!length);
3092 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3093 BUG_ON(!data);
3094 data->pages = pages;
3095 data->length = length;
3096 data->alignment = alignment & ~PAGE_MASK;
3098 list_add_tail(&data->links, &msg->data);
3099 msg->data_length += length;
3101 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3103 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3104 struct ceph_pagelist *pagelist)
3106 struct ceph_msg_data *data;
3108 BUG_ON(!pagelist);
3109 BUG_ON(!pagelist->length);
3111 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3112 BUG_ON(!data);
3113 data->pagelist = pagelist;
3115 list_add_tail(&data->links, &msg->data);
3116 msg->data_length += pagelist->length;
3118 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3120 #ifdef CONFIG_BLOCK
3121 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3122 size_t length)
3124 struct ceph_msg_data *data;
3126 BUG_ON(!bio);
3128 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3129 BUG_ON(!data);
3130 data->bio = bio;
3131 data->bio_length = length;
3133 list_add_tail(&data->links, &msg->data);
3134 msg->data_length += length;
3136 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3137 #endif /* CONFIG_BLOCK */
3140 * construct a new message with given type, size
3141 * the new msg has a ref count of 1.
3143 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3144 bool can_fail)
3146 struct ceph_msg *m;
3148 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3149 if (m == NULL)
3150 goto out;
3152 m->hdr.type = cpu_to_le16(type);
3153 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3154 m->hdr.front_len = cpu_to_le32(front_len);
3156 INIT_LIST_HEAD(&m->list_head);
3157 kref_init(&m->kref);
3158 INIT_LIST_HEAD(&m->data);
3160 /* front */
3161 if (front_len) {
3162 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3163 if (m->front.iov_base == NULL) {
3164 dout("ceph_msg_new can't allocate %d bytes\n",
3165 front_len);
3166 goto out2;
3168 } else {
3169 m->front.iov_base = NULL;
3171 m->front_alloc_len = m->front.iov_len = front_len;
3173 dout("ceph_msg_new %p front %d\n", m, front_len);
3174 return m;
3176 out2:
3177 ceph_msg_put(m);
3178 out:
3179 if (!can_fail) {
3180 pr_err("msg_new can't create type %d front %d\n", type,
3181 front_len);
3182 WARN_ON(1);
3183 } else {
3184 dout("msg_new can't create type %d front %d\n", type,
3185 front_len);
3187 return NULL;
3189 EXPORT_SYMBOL(ceph_msg_new);
3192 * Allocate "middle" portion of a message, if it is needed and wasn't
3193 * allocated by alloc_msg. This allows us to read a small fixed-size
3194 * per-type header in the front and then gracefully fail (i.e.,
3195 * propagate the error to the caller based on info in the front) when
3196 * the middle is too large.
3198 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3200 int type = le16_to_cpu(msg->hdr.type);
3201 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3203 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3204 ceph_msg_type_name(type), middle_len);
3205 BUG_ON(!middle_len);
3206 BUG_ON(msg->middle);
3208 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3209 if (!msg->middle)
3210 return -ENOMEM;
3211 return 0;
3215 * Allocate a message for receiving an incoming message on a
3216 * connection, and save the result in con->in_msg. Uses the
3217 * connection's private alloc_msg op if available.
3219 * Returns 0 on success, or a negative error code.
3221 * On success, if we set *skip = 1:
3222 * - the next message should be skipped and ignored.
3223 * - con->in_msg == NULL
3224 * or if we set *skip = 0:
3225 * - con->in_msg is non-null.
3226 * On error (ENOMEM, EAGAIN, ...),
3227 * - con->in_msg == NULL
3229 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3231 struct ceph_msg_header *hdr = &con->in_hdr;
3232 int middle_len = le32_to_cpu(hdr->middle_len);
3233 struct ceph_msg *msg;
3234 int ret = 0;
3236 BUG_ON(con->in_msg != NULL);
3237 BUG_ON(!con->ops->alloc_msg);
3239 mutex_unlock(&con->mutex);
3240 msg = con->ops->alloc_msg(con, hdr, skip);
3241 mutex_lock(&con->mutex);
3242 if (con->state != CON_STATE_OPEN) {
3243 if (msg)
3244 ceph_msg_put(msg);
3245 return -EAGAIN;
3247 if (msg) {
3248 BUG_ON(*skip);
3249 con->in_msg = msg;
3250 con->in_msg->con = con->ops->get(con);
3251 BUG_ON(con->in_msg->con == NULL);
3252 } else {
3254 * Null message pointer means either we should skip
3255 * this message or we couldn't allocate memory. The
3256 * former is not an error.
3258 if (*skip)
3259 return 0;
3260 con->error_msg = "error allocating memory for incoming message";
3262 return -ENOMEM;
3264 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3266 if (middle_len && !con->in_msg->middle) {
3267 ret = ceph_alloc_middle(con, con->in_msg);
3268 if (ret < 0) {
3269 ceph_msg_put(con->in_msg);
3270 con->in_msg = NULL;
3274 return ret;
3279 * Free a generically kmalloc'd message.
3281 static void ceph_msg_free(struct ceph_msg *m)
3283 dout("%s %p\n", __func__, m);
3284 ceph_kvfree(m->front.iov_base);
3285 kmem_cache_free(ceph_msg_cache, m);
3288 static void ceph_msg_release(struct kref *kref)
3290 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3291 LIST_HEAD(data);
3292 struct list_head *links;
3293 struct list_head *next;
3295 dout("%s %p\n", __func__, m);
3296 WARN_ON(!list_empty(&m->list_head));
3298 /* drop middle, data, if any */
3299 if (m->middle) {
3300 ceph_buffer_put(m->middle);
3301 m->middle = NULL;
3304 list_splice_init(&m->data, &data);
3305 list_for_each_safe(links, next, &data) {
3306 struct ceph_msg_data *data;
3308 data = list_entry(links, struct ceph_msg_data, links);
3309 list_del_init(links);
3310 ceph_msg_data_destroy(data);
3312 m->data_length = 0;
3314 if (m->pool)
3315 ceph_msgpool_put(m->pool, m);
3316 else
3317 ceph_msg_free(m);
3320 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3322 dout("%s %p (was %d)\n", __func__, msg,
3323 atomic_read(&msg->kref.refcount));
3324 kref_get(&msg->kref);
3325 return msg;
3327 EXPORT_SYMBOL(ceph_msg_get);
3329 void ceph_msg_put(struct ceph_msg *msg)
3331 dout("%s %p (was %d)\n", __func__, msg,
3332 atomic_read(&msg->kref.refcount));
3333 kref_put(&msg->kref, ceph_msg_release);
3335 EXPORT_SYMBOL(ceph_msg_put);
3337 void ceph_msg_dump(struct ceph_msg *msg)
3339 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3340 msg->front_alloc_len, msg->data_length);
3341 print_hex_dump(KERN_DEBUG, "header: ",
3342 DUMP_PREFIX_OFFSET, 16, 1,
3343 &msg->hdr, sizeof(msg->hdr), true);
3344 print_hex_dump(KERN_DEBUG, " front: ",
3345 DUMP_PREFIX_OFFSET, 16, 1,
3346 msg->front.iov_base, msg->front.iov_len, true);
3347 if (msg->middle)
3348 print_hex_dump(KERN_DEBUG, "middle: ",
3349 DUMP_PREFIX_OFFSET, 16, 1,
3350 msg->middle->vec.iov_base,
3351 msg->middle->vec.iov_len, true);
3352 print_hex_dump(KERN_DEBUG, "footer: ",
3353 DUMP_PREFIX_OFFSET, 16, 1,
3354 &msg->footer, sizeof(msg->footer), true);
3356 EXPORT_SYMBOL(ceph_msg_dump);