1 .. SPDX-License-Identifier: GPL-2.0
5 =====================================================================
6 Deprecated Interfaces, Language Features, Attributes, and Conventions
7 =====================================================================
9 In a perfect world, it would be possible to convert all instances of
10 some deprecated API into the new API and entirely remove the old API in
11 a single development cycle. However, due to the size of the kernel, the
12 maintainership hierarchy, and timing, it's not always feasible to do these
13 kinds of conversions at once. This means that new instances may sneak into
14 the kernel while old ones are being removed, only making the amount of
15 work to remove the API grow. In order to educate developers about what
16 has been deprecated and why, this list has been created as a place to
17 point when uses of deprecated things are proposed for inclusion in the
22 While this attribute does visually mark an interface as deprecated,
23 it `does not produce warnings during builds any more
24 <https://git.kernel.org/linus/771c035372a036f83353eef46dbb829780330234>`_
25 because one of the standing goals of the kernel is to build without
26 warnings and no one was actually doing anything to remove these deprecated
27 interfaces. While using `__deprecated` is nice to note an old API in
28 a header file, it isn't the full solution. Such interfaces must either
29 be fully removed from the kernel, or added to this file to discourage
30 others from using them in the future.
32 open-coded arithmetic in allocator arguments
33 --------------------------------------------
34 Dynamic size calculations (especially multiplication) should not be
35 performed in memory allocator (or similar) function arguments due to the
36 risk of them overflowing. This could lead to values wrapping around and a
37 smaller allocation being made than the caller was expecting. Using those
38 allocations could lead to linear overflows of heap memory and other
39 misbehaviors. (One exception to this is literal values where the compiler
40 can warn if they might overflow. Though using literals for arguments as
41 suggested below is also harmless.)
43 For example, do not use ``count * size`` as an argument, as in::
45 foo = kmalloc(count * size, GFP_KERNEL);
47 Instead, the 2-factor form of the allocator should be used::
49 foo = kmalloc_array(count, size, GFP_KERNEL);
51 If no 2-factor form is available, the saturate-on-overflow helpers should
54 bar = vmalloc(array_size(count, size));
56 Another common case to avoid is calculating the size of a structure with
57 a trailing array of others structures, as in::
59 header = kzalloc(sizeof(*header) + count * sizeof(*header->item),
62 Instead, use the helper::
64 header = kzalloc(struct_size(header, item, count), GFP_KERNEL);
66 See :c:func:`array_size`, :c:func:`array3_size`, and :c:func:`struct_size`,
67 for more details as well as the related :c:func:`check_add_overflow` and
68 :c:func:`check_mul_overflow` family of functions.
70 simple_strtol(), simple_strtoll(), simple_strtoul(), simple_strtoull()
71 ----------------------------------------------------------------------
72 The :c:func:`simple_strtol`, :c:func:`simple_strtoll`,
73 :c:func:`simple_strtoul`, and :c:func:`simple_strtoull` functions
74 explicitly ignore overflows, which may lead to unexpected results
75 in callers. The respective :c:func:`kstrtol`, :c:func:`kstrtoll`,
76 :c:func:`kstrtoul`, and :c:func:`kstrtoull` functions tend to be the
77 correct replacements, though note that those require the string to be
78 NUL or newline terminated.
82 :c:func:`strcpy` performs no bounds checking on the destination
83 buffer. This could result in linear overflows beyond the
84 end of the buffer, leading to all kinds of misbehaviors. While
85 `CONFIG_FORTIFY_SOURCE=y` and various compiler flags help reduce the
86 risk of using this function, there is no good reason to add new uses of
87 this function. The safe replacement is :c:func:`strscpy`.
89 strncpy() on NUL-terminated strings
90 -----------------------------------
91 Use of :c:func:`strncpy` does not guarantee that the destination buffer
92 will be NUL terminated. This can lead to various linear read overflows
93 and other misbehavior due to the missing termination. It also NUL-pads the
94 destination buffer if the source contents are shorter than the destination
95 buffer size, which may be a needless performance penalty for callers using
96 only NUL-terminated strings. The safe replacement is :c:func:`strscpy`.
97 (Users of :c:func:`strscpy` still needing NUL-padding will need an
98 explicit :c:func:`memset` added.)
100 If a caller is using non-NUL-terminated strings, :c:func:`strncpy()` can
101 still be used, but destinations should be marked with the `__nonstring
102 <https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html>`_
103 attribute to avoid future compiler warnings.
107 :c:func:`strlcpy` reads the entire source buffer first, possibly exceeding
108 the given limit of bytes to copy. This is inefficient and can lead to
109 linear read overflows if a source string is not NUL-terminated. The
110 safe replacement is :c:func:`strscpy`.
112 Variable Length Arrays (VLAs)
113 -----------------------------
114 Using stack VLAs produces much worse machine code than statically
115 sized stack arrays. While these non-trivial `performance issues
116 <https://git.kernel.org/linus/02361bc77888>`_ are reason enough to
117 eliminate VLAs, they are also a security risk. Dynamic growth of a stack
118 array may exceed the remaining memory in the stack segment. This could
119 lead to a crash, possible overwriting sensitive contents at the end of the
120 stack (when built without `CONFIG_THREAD_INFO_IN_TASK=y`), or overwriting
121 memory adjacent to the stack (when built without `CONFIG_VMAP_STACK=y`)
123 Implicit switch case fall-through
124 ---------------------------------
125 The C language allows switch cases to "fall through" when
126 a "break" statement is missing at the end of a case. This,
127 however, introduces ambiguity in the code, as it's not always
128 clear if the missing break is intentional or a bug. As there
129 have been a long list of flaws `due to missing "break" statements
130 <https://cwe.mitre.org/data/definitions/484.html>`_, we no longer allow
131 "implicit fall-through". In order to identify an intentional fall-through
132 case, we have adopted the marking used by static analyzers: a comment
133 saying `/* Fall through */`. Once the C++17 `__attribute__((fallthrough))`
134 is more widely handled by C compilers, static analyzers, and IDEs, we can
135 switch to using that instead.