net: skb_segment() provides list head and tail
[linux/fpc-iii.git] / arch / mips / kernel / smp-cps.c
blobe6e16a1d4add0e9b785e99ba992547ad3f169917
1 /*
2 * Copyright (C) 2013 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
11 #include <linux/io.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
17 #include <asm/bcache.h>
18 #include <asm/gic.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mips_mt.h>
22 #include <asm/mipsregs.h>
23 #include <asm/pm-cps.h>
24 #include <asm/r4kcache.h>
25 #include <asm/smp-cps.h>
26 #include <asm/time.h>
27 #include <asm/uasm.h>
29 static DECLARE_BITMAP(core_power, NR_CPUS);
31 struct core_boot_config *mips_cps_core_bootcfg;
33 static unsigned core_vpe_count(unsigned core)
35 unsigned cfg;
37 if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
38 return 1;
40 write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
41 cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
42 return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
45 static void __init cps_smp_setup(void)
47 unsigned int ncores, nvpes, core_vpes;
48 int c, v;
50 /* Detect & record VPE topology */
51 ncores = mips_cm_numcores();
52 pr_info("VPE topology ");
53 for (c = nvpes = 0; c < ncores; c++) {
54 core_vpes = core_vpe_count(c);
55 pr_cont("%c%u", c ? ',' : '{', core_vpes);
57 /* Use the number of VPEs in core 0 for smp_num_siblings */
58 if (!c)
59 smp_num_siblings = core_vpes;
61 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
62 cpu_data[nvpes + v].core = c;
63 #ifdef CONFIG_MIPS_MT_SMP
64 cpu_data[nvpes + v].vpe_id = v;
65 #endif
68 nvpes += core_vpes;
70 pr_cont("} total %u\n", nvpes);
72 /* Indicate present CPUs (CPU being synonymous with VPE) */
73 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
74 set_cpu_possible(v, true);
75 set_cpu_present(v, true);
76 __cpu_number_map[v] = v;
77 __cpu_logical_map[v] = v;
80 /* Set a coherent default CCA (CWB) */
81 change_c0_config(CONF_CM_CMASK, 0x5);
83 /* Core 0 is powered up (we're running on it) */
84 bitmap_set(core_power, 0, 1);
86 /* Initialise core 0 */
87 mips_cps_core_init();
89 /* Make core 0 coherent with everything */
90 write_gcr_cl_coherence(0xff);
93 static void __init cps_prepare_cpus(unsigned int max_cpus)
95 unsigned ncores, core_vpes, c, cca;
96 bool cca_unsuitable;
97 u32 *entry_code;
99 mips_mt_set_cpuoptions();
101 /* Detect whether the CCA is unsuited to multi-core SMP */
102 cca = read_c0_config() & CONF_CM_CMASK;
103 switch (cca) {
104 case 0x4: /* CWBE */
105 case 0x5: /* CWB */
106 /* The CCA is coherent, multi-core is fine */
107 cca_unsuitable = false;
108 break;
110 default:
111 /* CCA is not coherent, multi-core is not usable */
112 cca_unsuitable = true;
115 /* Warn the user if the CCA prevents multi-core */
116 ncores = mips_cm_numcores();
117 if (cca_unsuitable && ncores > 1) {
118 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
119 cca);
121 for_each_present_cpu(c) {
122 if (cpu_data[c].core)
123 set_cpu_present(c, false);
128 * Patch the start of mips_cps_core_entry to provide:
130 * v0 = CM base address
131 * s0 = kseg0 CCA
133 entry_code = (u32 *)&mips_cps_core_entry;
134 UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
135 uasm_i_addiu(&entry_code, 16, 0, cca);
136 blast_dcache_range((unsigned long)&mips_cps_core_entry,
137 (unsigned long)entry_code);
138 bc_wback_inv((unsigned long)&mips_cps_core_entry,
139 (void *)entry_code - (void *)&mips_cps_core_entry);
140 __sync();
142 /* Allocate core boot configuration structs */
143 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
144 GFP_KERNEL);
145 if (!mips_cps_core_bootcfg) {
146 pr_err("Failed to allocate boot config for %u cores\n", ncores);
147 goto err_out;
150 /* Allocate VPE boot configuration structs */
151 for (c = 0; c < ncores; c++) {
152 core_vpes = core_vpe_count(c);
153 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
154 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
155 GFP_KERNEL);
156 if (!mips_cps_core_bootcfg[c].vpe_config) {
157 pr_err("Failed to allocate %u VPE boot configs\n",
158 core_vpes);
159 goto err_out;
163 /* Mark this CPU as booted */
164 atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
165 1 << cpu_vpe_id(&current_cpu_data));
167 return;
168 err_out:
169 /* Clean up allocations */
170 if (mips_cps_core_bootcfg) {
171 for (c = 0; c < ncores; c++)
172 kfree(mips_cps_core_bootcfg[c].vpe_config);
173 kfree(mips_cps_core_bootcfg);
174 mips_cps_core_bootcfg = NULL;
177 /* Effectively disable SMP by declaring CPUs not present */
178 for_each_possible_cpu(c) {
179 if (c == 0)
180 continue;
181 set_cpu_present(c, false);
185 static void boot_core(unsigned core)
187 u32 access;
189 /* Select the appropriate core */
190 write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
192 /* Set its reset vector */
193 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
195 /* Ensure its coherency is disabled */
196 write_gcr_co_coherence(0);
198 /* Ensure the core can access the GCRs */
199 access = read_gcr_access();
200 access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
201 write_gcr_access(access);
203 if (mips_cpc_present()) {
204 /* Reset the core */
205 mips_cpc_lock_other(core);
206 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
207 mips_cpc_unlock_other();
208 } else {
209 /* Take the core out of reset */
210 write_gcr_co_reset_release(0);
213 /* The core is now powered up */
214 bitmap_set(core_power, core, 1);
217 static void remote_vpe_boot(void *dummy)
219 mips_cps_boot_vpes();
222 static void cps_boot_secondary(int cpu, struct task_struct *idle)
224 unsigned core = cpu_data[cpu].core;
225 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
226 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
227 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
228 unsigned int remote;
229 int err;
231 vpe_cfg->pc = (unsigned long)&smp_bootstrap;
232 vpe_cfg->sp = __KSTK_TOS(idle);
233 vpe_cfg->gp = (unsigned long)task_thread_info(idle);
235 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
237 preempt_disable();
239 if (!test_bit(core, core_power)) {
240 /* Boot a VPE on a powered down core */
241 boot_core(core);
242 goto out;
245 if (core != current_cpu_data.core) {
246 /* Boot a VPE on another powered up core */
247 for (remote = 0; remote < NR_CPUS; remote++) {
248 if (cpu_data[remote].core != core)
249 continue;
250 if (cpu_online(remote))
251 break;
253 BUG_ON(remote >= NR_CPUS);
255 err = smp_call_function_single(remote, remote_vpe_boot,
256 NULL, 1);
257 if (err)
258 panic("Failed to call remote CPU\n");
259 goto out;
262 BUG_ON(!cpu_has_mipsmt);
264 /* Boot a VPE on this core */
265 mips_cps_boot_vpes();
266 out:
267 preempt_enable();
270 static void cps_init_secondary(void)
272 /* Disable MT - we only want to run 1 TC per VPE */
273 if (cpu_has_mipsmt)
274 dmt();
276 change_c0_status(ST0_IM, STATUSF_IP3 | STATUSF_IP4 |
277 STATUSF_IP6 | STATUSF_IP7);
280 static void cps_smp_finish(void)
282 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
284 #ifdef CONFIG_MIPS_MT_FPAFF
285 /* If we have an FPU, enroll ourselves in the FPU-full mask */
286 if (cpu_has_fpu)
287 cpu_set(smp_processor_id(), mt_fpu_cpumask);
288 #endif /* CONFIG_MIPS_MT_FPAFF */
290 local_irq_enable();
293 #ifdef CONFIG_HOTPLUG_CPU
295 static int cps_cpu_disable(void)
297 unsigned cpu = smp_processor_id();
298 struct core_boot_config *core_cfg;
300 if (!cpu)
301 return -EBUSY;
303 if (!cps_pm_support_state(CPS_PM_POWER_GATED))
304 return -EINVAL;
306 core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
307 atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
308 smp_mb__after_atomic();
309 set_cpu_online(cpu, false);
310 cpu_clear(cpu, cpu_callin_map);
312 return 0;
315 static DECLARE_COMPLETION(cpu_death_chosen);
316 static unsigned cpu_death_sibling;
317 static enum {
318 CPU_DEATH_HALT,
319 CPU_DEATH_POWER,
320 } cpu_death;
322 void play_dead(void)
324 unsigned cpu, core;
326 local_irq_disable();
327 idle_task_exit();
328 cpu = smp_processor_id();
329 cpu_death = CPU_DEATH_POWER;
331 if (cpu_has_mipsmt) {
332 core = cpu_data[cpu].core;
334 /* Look for another online VPE within the core */
335 for_each_online_cpu(cpu_death_sibling) {
336 if (cpu_data[cpu_death_sibling].core != core)
337 continue;
340 * There is an online VPE within the core. Just halt
341 * this TC and leave the core alone.
343 cpu_death = CPU_DEATH_HALT;
344 break;
348 /* This CPU has chosen its way out */
349 complete(&cpu_death_chosen);
351 if (cpu_death == CPU_DEATH_HALT) {
352 /* Halt this TC */
353 write_c0_tchalt(TCHALT_H);
354 instruction_hazard();
355 } else {
356 /* Power down the core */
357 cps_pm_enter_state(CPS_PM_POWER_GATED);
360 /* This should never be reached */
361 panic("Failed to offline CPU %u", cpu);
364 static void wait_for_sibling_halt(void *ptr_cpu)
366 unsigned cpu = (unsigned)ptr_cpu;
367 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
368 unsigned halted;
369 unsigned long flags;
371 do {
372 local_irq_save(flags);
373 settc(vpe_id);
374 halted = read_tc_c0_tchalt();
375 local_irq_restore(flags);
376 } while (!(halted & TCHALT_H));
379 static void cps_cpu_die(unsigned int cpu)
381 unsigned core = cpu_data[cpu].core;
382 unsigned stat;
383 int err;
385 /* Wait for the cpu to choose its way out */
386 if (!wait_for_completion_timeout(&cpu_death_chosen,
387 msecs_to_jiffies(5000))) {
388 pr_err("CPU%u: didn't offline\n", cpu);
389 return;
393 * Now wait for the CPU to actually offline. Without doing this that
394 * offlining may race with one or more of:
396 * - Onlining the CPU again.
397 * - Powering down the core if another VPE within it is offlined.
398 * - A sibling VPE entering a non-coherent state.
400 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
401 * with which we could race, so do nothing.
403 if (cpu_death == CPU_DEATH_POWER) {
405 * Wait for the core to enter a powered down or clock gated
406 * state, the latter happening when a JTAG probe is connected
407 * in which case the CPC will refuse to power down the core.
409 do {
410 mips_cpc_lock_other(core);
411 stat = read_cpc_co_stat_conf();
412 stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
413 mips_cpc_unlock_other();
414 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
415 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
416 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
418 /* Indicate the core is powered off */
419 bitmap_clear(core_power, core, 1);
420 } else if (cpu_has_mipsmt) {
422 * Have a CPU with access to the offlined CPUs registers wait
423 * for its TC to halt.
425 err = smp_call_function_single(cpu_death_sibling,
426 wait_for_sibling_halt,
427 (void *)cpu, 1);
428 if (err)
429 panic("Failed to call remote sibling CPU\n");
433 #endif /* CONFIG_HOTPLUG_CPU */
435 static struct plat_smp_ops cps_smp_ops = {
436 .smp_setup = cps_smp_setup,
437 .prepare_cpus = cps_prepare_cpus,
438 .boot_secondary = cps_boot_secondary,
439 .init_secondary = cps_init_secondary,
440 .smp_finish = cps_smp_finish,
441 .send_ipi_single = gic_send_ipi_single,
442 .send_ipi_mask = gic_send_ipi_mask,
443 #ifdef CONFIG_HOTPLUG_CPU
444 .cpu_disable = cps_cpu_disable,
445 .cpu_die = cps_cpu_die,
446 #endif
449 bool mips_cps_smp_in_use(void)
451 extern struct plat_smp_ops *mp_ops;
452 return mp_ops == &cps_smp_ops;
455 int register_cps_smp_ops(void)
457 if (!mips_cm_present()) {
458 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
459 return -ENODEV;
462 /* check we have a GIC - we need one for IPIs */
463 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
464 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
465 return -ENODEV;
468 register_smp_ops(&cps_smp_ops);
469 return 0;