2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bug.h>
16 #include <linux/compiler.h>
17 #include <linux/context_tracking.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/kexec.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/kallsyms.h>
28 #include <linux/bootmem.h>
29 #include <linux/interrupt.h>
30 #include <linux/ptrace.h>
31 #include <linux/kgdb.h>
32 #include <linux/kdebug.h>
33 #include <linux/kprobes.h>
34 #include <linux/notifier.h>
35 #include <linux/kdb.h>
36 #include <linux/irq.h>
37 #include <linux/perf_event.h>
39 #include <asm/bootinfo.h>
40 #include <asm/branch.h>
41 #include <asm/break.h>
44 #include <asm/cpu-type.h>
47 #include <asm/fpu_emulator.h>
49 #include <asm/mipsregs.h>
50 #include <asm/mipsmtregs.h>
51 #include <asm/module.h>
53 #include <asm/pgtable.h>
54 #include <asm/ptrace.h>
55 #include <asm/sections.h>
56 #include <asm/tlbdebug.h>
57 #include <asm/traps.h>
58 #include <asm/uaccess.h>
59 #include <asm/watch.h>
60 #include <asm/mmu_context.h>
61 #include <asm/types.h>
62 #include <asm/stacktrace.h>
65 extern void check_wait(void);
66 extern asmlinkage
void rollback_handle_int(void);
67 extern asmlinkage
void handle_int(void);
68 extern u32 handle_tlbl
[];
69 extern u32 handle_tlbs
[];
70 extern u32 handle_tlbm
[];
71 extern asmlinkage
void handle_adel(void);
72 extern asmlinkage
void handle_ades(void);
73 extern asmlinkage
void handle_ibe(void);
74 extern asmlinkage
void handle_dbe(void);
75 extern asmlinkage
void handle_sys(void);
76 extern asmlinkage
void handle_bp(void);
77 extern asmlinkage
void handle_ri(void);
78 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
79 extern asmlinkage
void handle_ri_rdhwr(void);
80 extern asmlinkage
void handle_cpu(void);
81 extern asmlinkage
void handle_ov(void);
82 extern asmlinkage
void handle_tr(void);
83 extern asmlinkage
void handle_msa_fpe(void);
84 extern asmlinkage
void handle_fpe(void);
85 extern asmlinkage
void handle_ftlb(void);
86 extern asmlinkage
void handle_msa(void);
87 extern asmlinkage
void handle_mdmx(void);
88 extern asmlinkage
void handle_watch(void);
89 extern asmlinkage
void handle_mt(void);
90 extern asmlinkage
void handle_dsp(void);
91 extern asmlinkage
void handle_mcheck(void);
92 extern asmlinkage
void handle_reserved(void);
93 extern void tlb_do_page_fault_0(void);
95 void (*board_be_init
)(void);
96 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
97 void (*board_nmi_handler_setup
)(void);
98 void (*board_ejtag_handler_setup
)(void);
99 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
100 void (*board_ebase_setup
)(void);
101 void(*board_cache_error_setup
)(void);
103 static void show_raw_backtrace(unsigned long reg29
)
105 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
108 printk("Call Trace:");
109 #ifdef CONFIG_KALLSYMS
112 while (!kstack_end(sp
)) {
113 unsigned long __user
*p
=
114 (unsigned long __user
*)(unsigned long)sp
++;
115 if (__get_user(addr
, p
)) {
116 printk(" (Bad stack address)");
119 if (__kernel_text_address(addr
))
125 #ifdef CONFIG_KALLSYMS
127 static int __init
set_raw_show_trace(char *str
)
132 __setup("raw_show_trace", set_raw_show_trace
);
135 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
137 unsigned long sp
= regs
->regs
[29];
138 unsigned long ra
= regs
->regs
[31];
139 unsigned long pc
= regs
->cp0_epc
;
144 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
145 show_raw_backtrace(sp
);
148 printk("Call Trace:\n");
151 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
157 * This routine abuses get_user()/put_user() to reference pointers
158 * with at least a bit of error checking ...
160 static void show_stacktrace(struct task_struct
*task
,
161 const struct pt_regs
*regs
)
163 const int field
= 2 * sizeof(unsigned long);
166 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
170 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
171 if (i
&& ((i
% (64 / field
)) == 0))
178 if (__get_user(stackdata
, sp
++)) {
179 printk(" (Bad stack address)");
183 printk(" %0*lx", field
, stackdata
);
187 show_backtrace(task
, regs
);
190 void show_stack(struct task_struct
*task
, unsigned long *sp
)
194 regs
.regs
[29] = (unsigned long)sp
;
198 if (task
&& task
!= current
) {
199 regs
.regs
[29] = task
->thread
.reg29
;
201 regs
.cp0_epc
= task
->thread
.reg31
;
202 #ifdef CONFIG_KGDB_KDB
203 } else if (atomic_read(&kgdb_active
) != -1 &&
205 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
206 #endif /* CONFIG_KGDB_KDB */
208 prepare_frametrace(®s
);
211 show_stacktrace(task
, ®s
);
214 static void show_code(unsigned int __user
*pc
)
217 unsigned short __user
*pc16
= NULL
;
221 if ((unsigned long)pc
& 1)
222 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
223 for(i
= -3 ; i
< 6 ; i
++) {
225 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
226 printk(" (Bad address in epc)\n");
229 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
233 static void __show_regs(const struct pt_regs
*regs
)
235 const int field
= 2 * sizeof(unsigned long);
236 unsigned int cause
= regs
->cp0_cause
;
239 show_regs_print_info(KERN_DEFAULT
);
242 * Saved main processor registers
244 for (i
= 0; i
< 32; ) {
248 printk(" %0*lx", field
, 0UL);
249 else if (i
== 26 || i
== 27)
250 printk(" %*s", field
, "");
252 printk(" %0*lx", field
, regs
->regs
[i
]);
259 #ifdef CONFIG_CPU_HAS_SMARTMIPS
260 printk("Acx : %0*lx\n", field
, regs
->acx
);
262 printk("Hi : %0*lx\n", field
, regs
->hi
);
263 printk("Lo : %0*lx\n", field
, regs
->lo
);
266 * Saved cp0 registers
268 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
269 (void *) regs
->cp0_epc
);
270 printk(" %s\n", print_tainted());
271 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
272 (void *) regs
->regs
[31]);
274 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
277 if (regs
->cp0_status
& ST0_KUO
)
279 if (regs
->cp0_status
& ST0_IEO
)
281 if (regs
->cp0_status
& ST0_KUP
)
283 if (regs
->cp0_status
& ST0_IEP
)
285 if (regs
->cp0_status
& ST0_KUC
)
287 if (regs
->cp0_status
& ST0_IEC
)
289 } else if (cpu_has_4kex
) {
290 if (regs
->cp0_status
& ST0_KX
)
292 if (regs
->cp0_status
& ST0_SX
)
294 if (regs
->cp0_status
& ST0_UX
)
296 switch (regs
->cp0_status
& ST0_KSU
) {
301 printk("SUPERVISOR ");
310 if (regs
->cp0_status
& ST0_ERL
)
312 if (regs
->cp0_status
& ST0_EXL
)
314 if (regs
->cp0_status
& ST0_IE
)
319 printk("Cause : %08x\n", cause
);
321 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
322 if (1 <= cause
&& cause
<= 5)
323 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
325 printk("PrId : %08x (%s)\n", read_c0_prid(),
330 * FIXME: really the generic show_regs should take a const pointer argument.
332 void show_regs(struct pt_regs
*regs
)
334 __show_regs((struct pt_regs
*)regs
);
337 void show_registers(struct pt_regs
*regs
)
339 const int field
= 2 * sizeof(unsigned long);
340 mm_segment_t old_fs
= get_fs();
344 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
345 current
->comm
, current
->pid
, current_thread_info(), current
,
346 field
, current_thread_info()->tp_value
);
347 if (cpu_has_userlocal
) {
350 tls
= read_c0_userlocal();
351 if (tls
!= current_thread_info()->tp_value
)
352 printk("*HwTLS: %0*lx\n", field
, tls
);
355 if (!user_mode(regs
))
356 /* Necessary for getting the correct stack content */
358 show_stacktrace(current
, regs
);
359 show_code((unsigned int __user
*) regs
->cp0_epc
);
364 static int regs_to_trapnr(struct pt_regs
*regs
)
366 return (regs
->cp0_cause
>> 2) & 0x1f;
369 static DEFINE_RAW_SPINLOCK(die_lock
);
371 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
373 static int die_counter
;
378 if (notify_die(DIE_OOPS
, str
, regs
, 0, regs_to_trapnr(regs
),
379 SIGSEGV
) == NOTIFY_STOP
)
383 raw_spin_lock_irq(&die_lock
);
386 printk("%s[#%d]:\n", str
, ++die_counter
);
387 show_registers(regs
);
388 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
389 raw_spin_unlock_irq(&die_lock
);
394 panic("Fatal exception in interrupt");
397 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds");
399 panic("Fatal exception");
402 if (regs
&& kexec_should_crash(current
))
408 extern struct exception_table_entry __start___dbe_table
[];
409 extern struct exception_table_entry __stop___dbe_table
[];
412 " .section __dbe_table, \"a\"\n"
415 /* Given an address, look for it in the exception tables. */
416 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
418 const struct exception_table_entry
*e
;
420 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
422 e
= search_module_dbetables(addr
);
426 asmlinkage
void do_be(struct pt_regs
*regs
)
428 const int field
= 2 * sizeof(unsigned long);
429 const struct exception_table_entry
*fixup
= NULL
;
430 int data
= regs
->cp0_cause
& 4;
431 int action
= MIPS_BE_FATAL
;
432 enum ctx_state prev_state
;
434 prev_state
= exception_enter();
435 /* XXX For now. Fixme, this searches the wrong table ... */
436 if (data
&& !user_mode(regs
))
437 fixup
= search_dbe_tables(exception_epc(regs
));
440 action
= MIPS_BE_FIXUP
;
442 if (board_be_handler
)
443 action
= board_be_handler(regs
, fixup
!= NULL
);
446 case MIPS_BE_DISCARD
:
450 regs
->cp0_epc
= fixup
->nextinsn
;
459 * Assume it would be too dangerous to continue ...
461 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
462 data
? "Data" : "Instruction",
463 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
464 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, regs_to_trapnr(regs
),
465 SIGBUS
) == NOTIFY_STOP
)
468 die_if_kernel("Oops", regs
);
469 force_sig(SIGBUS
, current
);
472 exception_exit(prev_state
);
476 * ll/sc, rdhwr, sync emulation
479 #define OPCODE 0xfc000000
480 #define BASE 0x03e00000
481 #define RT 0x001f0000
482 #define OFFSET 0x0000ffff
483 #define LL 0xc0000000
484 #define SC 0xe0000000
485 #define SPEC0 0x00000000
486 #define SPEC3 0x7c000000
487 #define RD 0x0000f800
488 #define FUNC 0x0000003f
489 #define SYNC 0x0000000f
490 #define RDHWR 0x0000003b
492 /* microMIPS definitions */
493 #define MM_POOL32A_FUNC 0xfc00ffff
494 #define MM_RDHWR 0x00006b3c
495 #define MM_RS 0x001f0000
496 #define MM_RT 0x03e00000
499 * The ll_bit is cleared by r*_switch.S
503 struct task_struct
*ll_task
;
505 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
507 unsigned long value
, __user
*vaddr
;
511 * analyse the ll instruction that just caused a ri exception
512 * and put the referenced address to addr.
515 /* sign extend offset */
516 offset
= opcode
& OFFSET
;
520 vaddr
= (unsigned long __user
*)
521 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
523 if ((unsigned long)vaddr
& 3)
525 if (get_user(value
, vaddr
))
530 if (ll_task
== NULL
|| ll_task
== current
) {
539 regs
->regs
[(opcode
& RT
) >> 16] = value
;
544 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
546 unsigned long __user
*vaddr
;
551 * analyse the sc instruction that just caused a ri exception
552 * and put the referenced address to addr.
555 /* sign extend offset */
556 offset
= opcode
& OFFSET
;
560 vaddr
= (unsigned long __user
*)
561 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
562 reg
= (opcode
& RT
) >> 16;
564 if ((unsigned long)vaddr
& 3)
569 if (ll_bit
== 0 || ll_task
!= current
) {
577 if (put_user(regs
->regs
[reg
], vaddr
))
586 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
587 * opcodes are supposed to result in coprocessor unusable exceptions if
588 * executed on ll/sc-less processors. That's the theory. In practice a
589 * few processors such as NEC's VR4100 throw reserved instruction exceptions
590 * instead, so we're doing the emulation thing in both exception handlers.
592 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
594 if ((opcode
& OPCODE
) == LL
) {
595 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
597 return simulate_ll(regs
, opcode
);
599 if ((opcode
& OPCODE
) == SC
) {
600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
602 return simulate_sc(regs
, opcode
);
605 return -1; /* Must be something else ... */
609 * Simulate trapping 'rdhwr' instructions to provide user accessible
610 * registers not implemented in hardware.
612 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
614 struct thread_info
*ti
= task_thread_info(current
);
616 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
619 case 0: /* CPU number */
620 regs
->regs
[rt
] = smp_processor_id();
622 case 1: /* SYNCI length */
623 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
624 current_cpu_data
.icache
.linesz
);
626 case 2: /* Read count register */
627 regs
->regs
[rt
] = read_c0_count();
629 case 3: /* Count register resolution */
630 switch (current_cpu_type()) {
640 regs
->regs
[rt
] = ti
->tp_value
;
647 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
649 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
650 int rd
= (opcode
& RD
) >> 11;
651 int rt
= (opcode
& RT
) >> 16;
653 simulate_rdhwr(regs
, rd
, rt
);
661 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned short opcode
)
663 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
664 int rd
= (opcode
& MM_RS
) >> 16;
665 int rt
= (opcode
& MM_RT
) >> 21;
666 simulate_rdhwr(regs
, rd
, rt
);
674 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
676 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
677 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
682 return -1; /* Must be something else ... */
685 asmlinkage
void do_ov(struct pt_regs
*regs
)
687 enum ctx_state prev_state
;
690 prev_state
= exception_enter();
691 die_if_kernel("Integer overflow", regs
);
693 info
.si_code
= FPE_INTOVF
;
694 info
.si_signo
= SIGFPE
;
696 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
697 force_sig_info(SIGFPE
, &info
, current
);
698 exception_exit(prev_state
);
701 int process_fpemu_return(int sig
, void __user
*fault_addr
)
703 if (sig
== SIGSEGV
|| sig
== SIGBUS
) {
704 struct siginfo si
= {0};
705 si
.si_addr
= fault_addr
;
707 if (sig
== SIGSEGV
) {
708 down_read(¤t
->mm
->mmap_sem
);
709 if (find_vma(current
->mm
, (unsigned long)fault_addr
))
710 si
.si_code
= SEGV_ACCERR
;
712 si
.si_code
= SEGV_MAPERR
;
713 up_read(¤t
->mm
->mmap_sem
);
715 si
.si_code
= BUS_ADRERR
;
717 force_sig_info(sig
, &si
, current
);
720 force_sig(sig
, current
);
728 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
730 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
732 enum ctx_state prev_state
;
733 siginfo_t info
= {0};
735 prev_state
= exception_enter();
736 if (notify_die(DIE_FP
, "FP exception", regs
, 0, regs_to_trapnr(regs
),
737 SIGFPE
) == NOTIFY_STOP
)
739 die_if_kernel("FP exception in kernel code", regs
);
741 if (fcr31
& FPU_CSR_UNI_X
) {
743 void __user
*fault_addr
= NULL
;
746 * Unimplemented operation exception. If we've got the full
747 * software emulator on-board, let's use it...
749 * Force FPU to dump state into task/thread context. We're
750 * moving a lot of data here for what is probably a single
751 * instruction, but the alternative is to pre-decode the FP
752 * register operands before invoking the emulator, which seems
753 * a bit extreme for what should be an infrequent event.
755 /* Ensure 'resume' not overwrite saved fp context again. */
758 /* Run the emulator */
759 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
763 * We can't allow the emulated instruction to leave any of
764 * the cause bit set in $fcr31.
766 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
768 /* Restore the hardware register state */
769 own_fpu(1); /* Using the FPU again. */
771 /* If something went wrong, signal */
772 process_fpemu_return(sig
, fault_addr
);
775 } else if (fcr31
& FPU_CSR_INV_X
)
776 info
.si_code
= FPE_FLTINV
;
777 else if (fcr31
& FPU_CSR_DIV_X
)
778 info
.si_code
= FPE_FLTDIV
;
779 else if (fcr31
& FPU_CSR_OVF_X
)
780 info
.si_code
= FPE_FLTOVF
;
781 else if (fcr31
& FPU_CSR_UDF_X
)
782 info
.si_code
= FPE_FLTUND
;
783 else if (fcr31
& FPU_CSR_INE_X
)
784 info
.si_code
= FPE_FLTRES
;
786 info
.si_code
= __SI_FAULT
;
787 info
.si_signo
= SIGFPE
;
789 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
790 force_sig_info(SIGFPE
, &info
, current
);
793 exception_exit(prev_state
);
796 static void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
802 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
803 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
805 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
807 if (notify_die(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
),
808 SIGTRAP
) == NOTIFY_STOP
)
812 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
813 * insns, even for trap and break codes that indicate arithmetic
814 * failures. Weird ...
815 * But should we continue the brokenness??? --macro
820 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
821 die_if_kernel(b
, regs
);
822 if (code
== BRK_DIVZERO
)
823 info
.si_code
= FPE_INTDIV
;
825 info
.si_code
= FPE_INTOVF
;
826 info
.si_signo
= SIGFPE
;
828 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
829 force_sig_info(SIGFPE
, &info
, current
);
832 die_if_kernel("Kernel bug detected", regs
);
833 force_sig(SIGTRAP
, current
);
837 * Address errors may be deliberately induced by the FPU
838 * emulator to retake control of the CPU after executing the
839 * instruction in the delay slot of an emulated branch.
841 * Terminate if exception was recognized as a delay slot return
842 * otherwise handle as normal.
844 if (do_dsemulret(regs
))
847 die_if_kernel("Math emu break/trap", regs
);
848 force_sig(SIGTRAP
, current
);
851 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
852 die_if_kernel(b
, regs
);
853 force_sig(SIGTRAP
, current
);
857 asmlinkage
void do_bp(struct pt_regs
*regs
)
859 unsigned int opcode
, bcode
;
860 enum ctx_state prev_state
;
866 if (!user_mode(regs
))
869 prev_state
= exception_enter();
870 if (get_isa16_mode(regs
->cp0_epc
)) {
872 epc
= exception_epc(regs
);
874 if ((__get_user(instr
[0], (u16 __user
*)msk_isa16_mode(epc
)) ||
875 (__get_user(instr
[1], (u16 __user
*)msk_isa16_mode(epc
+ 2)))))
877 opcode
= (instr
[0] << 16) | instr
[1];
880 if (__get_user(instr
[0],
881 (u16 __user
*)msk_isa16_mode(epc
)))
883 bcode
= (instr
[0] >> 6) & 0x3f;
884 do_trap_or_bp(regs
, bcode
, "Break");
888 if (__get_user(opcode
,
889 (unsigned int __user
*) exception_epc(regs
)))
894 * There is the ancient bug in the MIPS assemblers that the break
895 * code starts left to bit 16 instead to bit 6 in the opcode.
896 * Gas is bug-compatible, but not always, grrr...
897 * We handle both cases with a simple heuristics. --macro
899 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
900 if (bcode
>= (1 << 10))
904 * notify the kprobe handlers, if instruction is likely to
909 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
910 regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
914 case BRK_KPROBE_SSTEPBP
:
915 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
916 regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
924 do_trap_or_bp(regs
, bcode
, "Break");
928 exception_exit(prev_state
);
932 force_sig(SIGSEGV
, current
);
936 asmlinkage
void do_tr(struct pt_regs
*regs
)
938 u32 opcode
, tcode
= 0;
939 enum ctx_state prev_state
;
942 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
945 if (!user_mode(regs
))
948 prev_state
= exception_enter();
949 if (get_isa16_mode(regs
->cp0_epc
)) {
950 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
951 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
953 opcode
= (instr
[0] << 16) | instr
[1];
954 /* Immediate versions don't provide a code. */
955 if (!(opcode
& OPCODE
))
956 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
958 if (__get_user(opcode
, (u32 __user
*)epc
))
960 /* Immediate versions don't provide a code. */
961 if (!(opcode
& OPCODE
))
962 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
965 do_trap_or_bp(regs
, tcode
, "Trap");
969 exception_exit(prev_state
);
973 force_sig(SIGSEGV
, current
);
977 asmlinkage
void do_ri(struct pt_regs
*regs
)
979 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
980 unsigned long old_epc
= regs
->cp0_epc
;
981 unsigned long old31
= regs
->regs
[31];
982 enum ctx_state prev_state
;
983 unsigned int opcode
= 0;
986 prev_state
= exception_enter();
987 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, regs_to_trapnr(regs
),
988 SIGILL
) == NOTIFY_STOP
)
991 die_if_kernel("Reserved instruction in kernel code", regs
);
993 if (unlikely(compute_return_epc(regs
) < 0))
996 if (get_isa16_mode(regs
->cp0_epc
)) {
997 unsigned short mmop
[2] = { 0 };
999 if (unlikely(get_user(mmop
[0], epc
) < 0))
1001 if (unlikely(get_user(mmop
[1], epc
) < 0))
1003 opcode
= (mmop
[0] << 16) | mmop
[1];
1006 status
= simulate_rdhwr_mm(regs
, opcode
);
1008 if (unlikely(get_user(opcode
, epc
) < 0))
1011 if (!cpu_has_llsc
&& status
< 0)
1012 status
= simulate_llsc(regs
, opcode
);
1015 status
= simulate_rdhwr_normal(regs
, opcode
);
1018 status
= simulate_sync(regs
, opcode
);
1024 if (unlikely(status
> 0)) {
1025 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1026 regs
->regs
[31] = old31
;
1027 force_sig(status
, current
);
1031 exception_exit(prev_state
);
1035 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1036 * emulated more than some threshold number of instructions, force migration to
1037 * a "CPU" that has FP support.
1039 static void mt_ase_fp_affinity(void)
1041 #ifdef CONFIG_MIPS_MT_FPAFF
1042 if (mt_fpemul_threshold
> 0 &&
1043 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
1045 * If there's no FPU present, or if the application has already
1046 * restricted the allowed set to exclude any CPUs with FPUs,
1047 * we'll skip the procedure.
1049 if (cpus_intersects(current
->cpus_allowed
, mt_fpu_cpumask
)) {
1052 current
->thread
.user_cpus_allowed
1053 = current
->cpus_allowed
;
1054 cpus_and(tmask
, current
->cpus_allowed
,
1056 set_cpus_allowed_ptr(current
, &tmask
);
1057 set_thread_flag(TIF_FPUBOUND
);
1060 #endif /* CONFIG_MIPS_MT_FPAFF */
1064 * No lock; only written during early bootup by CPU 0.
1066 static RAW_NOTIFIER_HEAD(cu2_chain
);
1068 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1070 return raw_notifier_chain_register(&cu2_chain
, nb
);
1073 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1075 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1078 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1081 struct pt_regs
*regs
= data
;
1083 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1084 "instruction", regs
);
1085 force_sig(SIGILL
, current
);
1090 static int enable_restore_fp_context(int msa
)
1092 int err
, was_fpu_owner
, prior_msa
;
1095 /* First time FP context user. */
1101 set_thread_flag(TIF_USEDMSA
);
1102 set_thread_flag(TIF_MSA_CTX_LIVE
);
1111 * This task has formerly used the FP context.
1113 * If this thread has no live MSA vector context then we can simply
1114 * restore the scalar FP context. If it has live MSA vector context
1115 * (that is, it has or may have used MSA since last performing a
1116 * function call) then we'll need to restore the vector context. This
1117 * applies even if we're currently only executing a scalar FP
1118 * instruction. This is because if we were to later execute an MSA
1119 * instruction then we'd either have to:
1121 * - Restore the vector context & clobber any registers modified by
1122 * scalar FP instructions between now & then.
1126 * - Not restore the vector context & lose the most significant bits
1127 * of all vector registers.
1129 * Neither of those options is acceptable. We cannot restore the least
1130 * significant bits of the registers now & only restore the most
1131 * significant bits later because the most significant bits of any
1132 * vector registers whose aliased FP register is modified now will have
1133 * been zeroed. We'd have no way to know that when restoring the vector
1134 * context & thus may load an outdated value for the most significant
1135 * bits of a vector register.
1137 if (!msa
&& !thread_msa_context_live())
1141 * This task is using or has previously used MSA. Thus we require
1142 * that Status.FR == 1.
1145 was_fpu_owner
= is_fpu_owner();
1146 err
= own_fpu_inatomic(0);
1151 write_msa_csr(current
->thread
.fpu
.msacsr
);
1152 set_thread_flag(TIF_USEDMSA
);
1155 * If this is the first time that the task is using MSA and it has
1156 * previously used scalar FP in this time slice then we already nave
1157 * FP context which we shouldn't clobber. We do however need to clear
1158 * the upper 64b of each vector register so that this task has no
1159 * opportunity to see data left behind by another.
1161 prior_msa
= test_and_set_thread_flag(TIF_MSA_CTX_LIVE
);
1162 if (!prior_msa
&& was_fpu_owner
) {
1170 * Restore the least significant 64b of each vector register
1171 * from the existing scalar FP context.
1173 _restore_fp(current
);
1176 * The task has not formerly used MSA, so clear the upper 64b
1177 * of each vector register such that it cannot see data left
1178 * behind by another task.
1182 /* We need to restore the vector context. */
1183 restore_msa(current
);
1185 /* Restore the scalar FP control & status register */
1187 asm volatile("ctc1 %0, $31" : : "r"(current
->thread
.fpu
.fcr31
));
1196 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1198 enum ctx_state prev_state
;
1199 unsigned int __user
*epc
;
1200 unsigned long old_epc
, old31
;
1201 unsigned int opcode
;
1204 unsigned long __maybe_unused flags
;
1206 prev_state
= exception_enter();
1207 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1210 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1214 epc
= (unsigned int __user
*)exception_epc(regs
);
1215 old_epc
= regs
->cp0_epc
;
1216 old31
= regs
->regs
[31];
1220 if (unlikely(compute_return_epc(regs
) < 0))
1223 if (get_isa16_mode(regs
->cp0_epc
)) {
1224 unsigned short mmop
[2] = { 0 };
1226 if (unlikely(get_user(mmop
[0], epc
) < 0))
1228 if (unlikely(get_user(mmop
[1], epc
) < 0))
1230 opcode
= (mmop
[0] << 16) | mmop
[1];
1233 status
= simulate_rdhwr_mm(regs
, opcode
);
1235 if (unlikely(get_user(opcode
, epc
) < 0))
1238 if (!cpu_has_llsc
&& status
< 0)
1239 status
= simulate_llsc(regs
, opcode
);
1242 status
= simulate_rdhwr_normal(regs
, opcode
);
1248 if (unlikely(status
> 0)) {
1249 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1250 regs
->regs
[31] = old31
;
1251 force_sig(status
, current
);
1258 * Old (MIPS I and MIPS II) processors will set this code
1259 * for COP1X opcode instructions that replaced the original
1260 * COP3 space. We don't limit COP1 space instructions in
1261 * the emulator according to the CPU ISA, so we want to
1262 * treat COP1X instructions consistently regardless of which
1263 * code the CPU chose. Therefore we redirect this trap to
1264 * the FP emulator too.
1266 * Then some newer FPU-less processors use this code
1267 * erroneously too, so they are covered by this choice
1270 if (raw_cpu_has_fpu
)
1275 err
= enable_restore_fp_context(0);
1277 if (!raw_cpu_has_fpu
|| err
) {
1279 void __user
*fault_addr
= NULL
;
1280 sig
= fpu_emulator_cop1Handler(regs
,
1281 ¤t
->thread
.fpu
,
1283 if (!process_fpemu_return(sig
, fault_addr
) && !err
)
1284 mt_ase_fp_affinity();
1290 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1294 force_sig(SIGILL
, current
);
1297 exception_exit(prev_state
);
1300 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
)
1302 enum ctx_state prev_state
;
1304 prev_state
= exception_enter();
1305 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1306 force_sig(SIGFPE
, current
);
1307 exception_exit(prev_state
);
1310 asmlinkage
void do_msa(struct pt_regs
*regs
)
1312 enum ctx_state prev_state
;
1315 prev_state
= exception_enter();
1317 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1318 force_sig(SIGILL
, current
);
1322 die_if_kernel("do_msa invoked from kernel context!", regs
);
1324 err
= enable_restore_fp_context(1);
1326 force_sig(SIGILL
, current
);
1328 exception_exit(prev_state
);
1331 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1333 enum ctx_state prev_state
;
1335 prev_state
= exception_enter();
1336 force_sig(SIGILL
, current
);
1337 exception_exit(prev_state
);
1341 * Called with interrupts disabled.
1343 asmlinkage
void do_watch(struct pt_regs
*regs
)
1345 enum ctx_state prev_state
;
1348 prev_state
= exception_enter();
1350 * Clear WP (bit 22) bit of cause register so we don't loop
1353 cause
= read_c0_cause();
1354 cause
&= ~(1 << 22);
1355 write_c0_cause(cause
);
1358 * If the current thread has the watch registers loaded, save
1359 * their values and send SIGTRAP. Otherwise another thread
1360 * left the registers set, clear them and continue.
1362 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1363 mips_read_watch_registers();
1365 force_sig(SIGTRAP
, current
);
1367 mips_clear_watch_registers();
1370 exception_exit(prev_state
);
1373 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1375 const int field
= 2 * sizeof(unsigned long);
1376 int multi_match
= regs
->cp0_status
& ST0_TS
;
1377 enum ctx_state prev_state
;
1379 prev_state
= exception_enter();
1383 printk("Index : %0x\n", read_c0_index());
1384 printk("Pagemask: %0x\n", read_c0_pagemask());
1385 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
1386 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
1387 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
1392 show_code((unsigned int __user
*) regs
->cp0_epc
);
1395 * Some chips may have other causes of machine check (e.g. SB1
1398 panic("Caught Machine Check exception - %scaused by multiple "
1399 "matching entries in the TLB.",
1400 (multi_match
) ? "" : "not ");
1403 asmlinkage
void do_mt(struct pt_regs
*regs
)
1407 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1408 >> VPECONTROL_EXCPT_SHIFT
;
1411 printk(KERN_DEBUG
"Thread Underflow\n");
1414 printk(KERN_DEBUG
"Thread Overflow\n");
1417 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1420 printk(KERN_DEBUG
"Gating Storage Exception\n");
1423 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1426 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1429 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1433 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1435 force_sig(SIGILL
, current
);
1439 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1442 panic("Unexpected DSP exception");
1444 force_sig(SIGILL
, current
);
1447 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1450 * Game over - no way to handle this if it ever occurs. Most probably
1451 * caused by a new unknown cpu type or after another deadly
1452 * hard/software error.
1455 panic("Caught reserved exception %ld - should not happen.",
1456 (regs
->cp0_cause
& 0x7f) >> 2);
1459 static int __initdata l1parity
= 1;
1460 static int __init
nol1parity(char *s
)
1465 __setup("nol1par", nol1parity
);
1466 static int __initdata l2parity
= 1;
1467 static int __init
nol2parity(char *s
)
1472 __setup("nol2par", nol2parity
);
1475 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1476 * it different ways.
1478 static inline void parity_protection_init(void)
1480 switch (current_cpu_type()) {
1486 case CPU_INTERAPTIV
:
1490 #define ERRCTL_PE 0x80000000
1491 #define ERRCTL_L2P 0x00800000
1492 unsigned long errctl
;
1493 unsigned int l1parity_present
, l2parity_present
;
1495 errctl
= read_c0_ecc();
1496 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1498 /* probe L1 parity support */
1499 write_c0_ecc(errctl
| ERRCTL_PE
);
1500 back_to_back_c0_hazard();
1501 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1503 /* probe L2 parity support */
1504 write_c0_ecc(errctl
|ERRCTL_L2P
);
1505 back_to_back_c0_hazard();
1506 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1508 if (l1parity_present
&& l2parity_present
) {
1510 errctl
|= ERRCTL_PE
;
1511 if (l1parity
^ l2parity
)
1512 errctl
|= ERRCTL_L2P
;
1513 } else if (l1parity_present
) {
1515 errctl
|= ERRCTL_PE
;
1516 } else if (l2parity_present
) {
1518 errctl
|= ERRCTL_L2P
;
1520 /* No parity available */
1523 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1525 write_c0_ecc(errctl
);
1526 back_to_back_c0_hazard();
1527 errctl
= read_c0_ecc();
1528 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1530 if (l1parity_present
)
1531 printk(KERN_INFO
"Cache parity protection %sabled\n",
1532 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1534 if (l2parity_present
) {
1535 if (l1parity_present
&& l1parity
)
1536 errctl
^= ERRCTL_L2P
;
1537 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1538 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1546 write_c0_ecc(0x80000000);
1547 back_to_back_c0_hazard();
1548 /* Set the PE bit (bit 31) in the c0_errctl register. */
1549 printk(KERN_INFO
"Cache parity protection %sabled\n",
1550 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1554 /* Clear the DE bit (bit 16) in the c0_status register. */
1555 printk(KERN_INFO
"Enable cache parity protection for "
1556 "MIPS 20KC/25KF CPUs.\n");
1557 clear_c0_status(ST0_DE
);
1564 asmlinkage
void cache_parity_error(void)
1566 const int field
= 2 * sizeof(unsigned long);
1567 unsigned int reg_val
;
1569 /* For the moment, report the problem and hang. */
1570 printk("Cache error exception:\n");
1571 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1572 reg_val
= read_c0_cacheerr();
1573 printk("c0_cacheerr == %08x\n", reg_val
);
1575 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1576 reg_val
& (1<<30) ? "secondary" : "primary",
1577 reg_val
& (1<<31) ? "data" : "insn");
1578 if (cpu_has_mips_r2
&&
1579 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1580 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1581 reg_val
& (1<<29) ? "ED " : "",
1582 reg_val
& (1<<28) ? "ET " : "",
1583 reg_val
& (1<<27) ? "ES " : "",
1584 reg_val
& (1<<26) ? "EE " : "",
1585 reg_val
& (1<<25) ? "EB " : "",
1586 reg_val
& (1<<24) ? "EI " : "",
1587 reg_val
& (1<<23) ? "E1 " : "",
1588 reg_val
& (1<<22) ? "E0 " : "");
1590 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1591 reg_val
& (1<<29) ? "ED " : "",
1592 reg_val
& (1<<28) ? "ET " : "",
1593 reg_val
& (1<<26) ? "EE " : "",
1594 reg_val
& (1<<25) ? "EB " : "",
1595 reg_val
& (1<<24) ? "EI " : "",
1596 reg_val
& (1<<23) ? "E1 " : "",
1597 reg_val
& (1<<22) ? "E0 " : "");
1599 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1601 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1602 if (reg_val
& (1<<22))
1603 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1605 if (reg_val
& (1<<23))
1606 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1609 panic("Can't handle the cache error!");
1612 asmlinkage
void do_ftlb(void)
1614 const int field
= 2 * sizeof(unsigned long);
1615 unsigned int reg_val
;
1617 /* For the moment, report the problem and hang. */
1618 if (cpu_has_mips_r2
&&
1619 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1620 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1622 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1623 reg_val
= read_c0_cacheerr();
1624 pr_err("c0_cacheerr == %08x\n", reg_val
);
1626 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1627 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1629 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1630 reg_val
& (1<<30) ? "secondary" : "primary",
1631 reg_val
& (1<<31) ? "data" : "insn");
1634 pr_err("FTLB error exception\n");
1636 /* Just print the cacheerr bits for now */
1637 cache_parity_error();
1641 * SDBBP EJTAG debug exception handler.
1642 * We skip the instruction and return to the next instruction.
1644 void ejtag_exception_handler(struct pt_regs
*regs
)
1646 const int field
= 2 * sizeof(unsigned long);
1647 unsigned long depc
, old_epc
, old_ra
;
1650 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1651 depc
= read_c0_depc();
1652 debug
= read_c0_debug();
1653 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1654 if (debug
& 0x80000000) {
1656 * In branch delay slot.
1657 * We cheat a little bit here and use EPC to calculate the
1658 * debug return address (DEPC). EPC is restored after the
1661 old_epc
= regs
->cp0_epc
;
1662 old_ra
= regs
->regs
[31];
1663 regs
->cp0_epc
= depc
;
1664 compute_return_epc(regs
);
1665 depc
= regs
->cp0_epc
;
1666 regs
->cp0_epc
= old_epc
;
1667 regs
->regs
[31] = old_ra
;
1670 write_c0_depc(depc
);
1673 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1674 write_c0_debug(debug
| 0x100);
1679 * NMI exception handler.
1680 * No lock; only written during early bootup by CPU 0.
1682 static RAW_NOTIFIER_HEAD(nmi_chain
);
1684 int register_nmi_notifier(struct notifier_block
*nb
)
1686 return raw_notifier_chain_register(&nmi_chain
, nb
);
1689 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1693 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1695 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1696 smp_processor_id(), regs
->cp0_epc
);
1697 regs
->cp0_epc
= read_c0_errorepc();
1701 #define VECTORSPACING 0x100 /* for EI/VI mode */
1703 unsigned long ebase
;
1704 unsigned long exception_handlers
[32];
1705 unsigned long vi_handlers
[64];
1707 void __init
*set_except_vector(int n
, void *addr
)
1709 unsigned long handler
= (unsigned long) addr
;
1710 unsigned long old_handler
;
1712 #ifdef CONFIG_CPU_MICROMIPS
1714 * Only the TLB handlers are cache aligned with an even
1715 * address. All other handlers are on an odd address and
1716 * require no modification. Otherwise, MIPS32 mode will
1717 * be entered when handling any TLB exceptions. That
1718 * would be bad...since we must stay in microMIPS mode.
1720 if (!(handler
& 0x1))
1723 old_handler
= xchg(&exception_handlers
[n
], handler
);
1725 if (n
== 0 && cpu_has_divec
) {
1726 #ifdef CONFIG_CPU_MICROMIPS
1727 unsigned long jump_mask
= ~((1 << 27) - 1);
1729 unsigned long jump_mask
= ~((1 << 28) - 1);
1731 u32
*buf
= (u32
*)(ebase
+ 0x200);
1732 unsigned int k0
= 26;
1733 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1734 uasm_i_j(&buf
, handler
& ~jump_mask
);
1737 UASM_i_LA(&buf
, k0
, handler
);
1738 uasm_i_jr(&buf
, k0
);
1741 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1743 return (void *)old_handler
;
1746 static void do_default_vi(void)
1748 show_regs(get_irq_regs());
1749 panic("Caught unexpected vectored interrupt.");
1752 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1754 unsigned long handler
;
1755 unsigned long old_handler
= vi_handlers
[n
];
1756 int srssets
= current_cpu_data
.srsets
;
1760 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1763 handler
= (unsigned long) do_default_vi
;
1766 handler
= (unsigned long) addr
;
1767 vi_handlers
[n
] = handler
;
1769 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1772 panic("Shadow register set %d not supported", srs
);
1775 if (board_bind_eic_interrupt
)
1776 board_bind_eic_interrupt(n
, srs
);
1777 } else if (cpu_has_vint
) {
1778 /* SRSMap is only defined if shadow sets are implemented */
1780 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1785 * If no shadow set is selected then use the default handler
1786 * that does normal register saving and standard interrupt exit
1788 extern char except_vec_vi
, except_vec_vi_lui
;
1789 extern char except_vec_vi_ori
, except_vec_vi_end
;
1790 extern char rollback_except_vec_vi
;
1791 char *vec_start
= using_rollback_handler() ?
1792 &rollback_except_vec_vi
: &except_vec_vi
;
1793 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1794 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
1795 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
1797 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1798 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1800 const int handler_len
= &except_vec_vi_end
- vec_start
;
1802 if (handler_len
> VECTORSPACING
) {
1804 * Sigh... panicing won't help as the console
1805 * is probably not configured :(
1807 panic("VECTORSPACING too small");
1810 set_handler(((unsigned long)b
- ebase
), vec_start
,
1811 #ifdef CONFIG_CPU_MICROMIPS
1816 h
= (u16
*)(b
+ lui_offset
);
1817 *h
= (handler
>> 16) & 0xffff;
1818 h
= (u16
*)(b
+ ori_offset
);
1819 *h
= (handler
& 0xffff);
1820 local_flush_icache_range((unsigned long)b
,
1821 (unsigned long)(b
+handler_len
));
1825 * In other cases jump directly to the interrupt handler. It
1826 * is the handler's responsibility to save registers if required
1827 * (eg hi/lo) and return from the exception using "eret".
1833 #ifdef CONFIG_CPU_MICROMIPS
1834 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
1836 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
1838 h
[0] = (insn
>> 16) & 0xffff;
1839 h
[1] = insn
& 0xffff;
1842 local_flush_icache_range((unsigned long)b
,
1843 (unsigned long)(b
+8));
1846 return (void *)old_handler
;
1849 void *set_vi_handler(int n
, vi_handler_t addr
)
1851 return set_vi_srs_handler(n
, addr
, 0);
1854 extern void tlb_init(void);
1859 int cp0_compare_irq
;
1860 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
1861 int cp0_compare_irq_shift
;
1864 * Performance counter IRQ or -1 if shared with timer
1866 int cp0_perfcount_irq
;
1867 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
1871 static int __init
ulri_disable(char *s
)
1873 pr_info("Disabling ulri\n");
1878 __setup("noulri", ulri_disable
);
1880 /* configure STATUS register */
1881 static void configure_status(void)
1884 * Disable coprocessors and select 32-bit or 64-bit addressing
1885 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1886 * flag that some firmware may have left set and the TS bit (for
1887 * IP27). Set XX for ISA IV code to work.
1889 unsigned int status_set
= ST0_CU0
;
1891 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1893 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
1894 status_set
|= ST0_XX
;
1896 status_set
|= ST0_MX
;
1898 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1902 /* configure HWRENA register */
1903 static void configure_hwrena(void)
1905 unsigned int hwrena
= cpu_hwrena_impl_bits
;
1907 if (cpu_has_mips_r2
)
1908 hwrena
|= 0x0000000f;
1910 if (!noulri
&& cpu_has_userlocal
)
1911 hwrena
|= (1 << 29);
1914 write_c0_hwrena(hwrena
);
1917 static void configure_exception_vector(void)
1919 if (cpu_has_veic
|| cpu_has_vint
) {
1920 unsigned long sr
= set_c0_status(ST0_BEV
);
1921 write_c0_ebase(ebase
);
1922 write_c0_status(sr
);
1923 /* Setting vector spacing enables EI/VI mode */
1924 change_c0_intctl(0x3e0, VECTORSPACING
);
1926 if (cpu_has_divec
) {
1927 if (cpu_has_mipsmt
) {
1928 unsigned int vpflags
= dvpe();
1929 set_c0_cause(CAUSEF_IV
);
1932 set_c0_cause(CAUSEF_IV
);
1936 void per_cpu_trap_init(bool is_boot_cpu
)
1938 unsigned int cpu
= smp_processor_id();
1943 configure_exception_vector();
1946 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1948 * o read IntCtl.IPTI to determine the timer interrupt
1949 * o read IntCtl.IPPCI to determine the performance counter interrupt
1951 if (cpu_has_mips_r2
) {
1952 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
1953 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
1954 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
1955 if (cp0_perfcount_irq
== cp0_compare_irq
)
1956 cp0_perfcount_irq
= -1;
1958 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
1959 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
1960 cp0_perfcount_irq
= -1;
1963 if (!cpu_data
[cpu
].asid_cache
)
1964 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1966 atomic_inc(&init_mm
.mm_count
);
1967 current
->active_mm
= &init_mm
;
1968 BUG_ON(current
->mm
);
1969 enter_lazy_tlb(&init_mm
, current
);
1971 /* Boot CPU's cache setup in setup_arch(). */
1975 TLBMISS_HANDLER_SETUP();
1978 /* Install CPU exception handler */
1979 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
1981 #ifdef CONFIG_CPU_MICROMIPS
1982 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
1984 memcpy((void *)(ebase
+ offset
), addr
, size
);
1986 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1989 static char panic_null_cerr
[] =
1990 "Trying to set NULL cache error exception handler";
1993 * Install uncached CPU exception handler.
1994 * This is suitable only for the cache error exception which is the only
1995 * exception handler that is being run uncached.
1997 void set_uncached_handler(unsigned long offset
, void *addr
,
2000 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
2003 panic(panic_null_cerr
);
2005 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2008 static int __initdata rdhwr_noopt
;
2009 static int __init
set_rdhwr_noopt(char *str
)
2015 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2017 void __init
trap_init(void)
2019 extern char except_vec3_generic
;
2020 extern char except_vec4
;
2021 extern char except_vec3_r4000
;
2026 #if defined(CONFIG_KGDB)
2027 if (kgdb_early_setup
)
2028 return; /* Already done */
2031 if (cpu_has_veic
|| cpu_has_vint
) {
2032 unsigned long size
= 0x200 + VECTORSPACING
*64;
2033 ebase
= (unsigned long)
2034 __alloc_bootmem(size
, 1 << fls(size
), 0);
2036 #ifdef CONFIG_KVM_GUEST
2037 #define KVM_GUEST_KSEG0 0x40000000
2038 ebase
= KVM_GUEST_KSEG0
;
2042 if (cpu_has_mips_r2
)
2043 ebase
+= (read_c0_ebase() & 0x3ffff000);
2046 if (cpu_has_mmips
) {
2047 unsigned int config3
= read_c0_config3();
2049 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2050 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2052 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2055 if (board_ebase_setup
)
2056 board_ebase_setup();
2057 per_cpu_trap_init(true);
2060 * Copy the generic exception handlers to their final destination.
2061 * This will be overriden later as suitable for a particular
2064 set_handler(0x180, &except_vec3_generic
, 0x80);
2067 * Setup default vectors
2069 for (i
= 0; i
<= 31; i
++)
2070 set_except_vector(i
, handle_reserved
);
2073 * Copy the EJTAG debug exception vector handler code to it's final
2076 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2077 board_ejtag_handler_setup();
2080 * Only some CPUs have the watch exceptions.
2083 set_except_vector(23, handle_watch
);
2086 * Initialise interrupt handlers
2088 if (cpu_has_veic
|| cpu_has_vint
) {
2089 int nvec
= cpu_has_veic
? 64 : 8;
2090 for (i
= 0; i
< nvec
; i
++)
2091 set_vi_handler(i
, NULL
);
2093 else if (cpu_has_divec
)
2094 set_handler(0x200, &except_vec4
, 0x8);
2097 * Some CPUs can enable/disable for cache parity detection, but does
2098 * it different ways.
2100 parity_protection_init();
2103 * The Data Bus Errors / Instruction Bus Errors are signaled
2104 * by external hardware. Therefore these two exceptions
2105 * may have board specific handlers.
2110 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2112 set_except_vector(1, handle_tlbm
);
2113 set_except_vector(2, handle_tlbl
);
2114 set_except_vector(3, handle_tlbs
);
2116 set_except_vector(4, handle_adel
);
2117 set_except_vector(5, handle_ades
);
2119 set_except_vector(6, handle_ibe
);
2120 set_except_vector(7, handle_dbe
);
2122 set_except_vector(8, handle_sys
);
2123 set_except_vector(9, handle_bp
);
2124 set_except_vector(10, rdhwr_noopt
? handle_ri
:
2125 (cpu_has_vtag_icache
?
2126 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
2127 set_except_vector(11, handle_cpu
);
2128 set_except_vector(12, handle_ov
);
2129 set_except_vector(13, handle_tr
);
2130 set_except_vector(14, handle_msa_fpe
);
2132 if (current_cpu_type() == CPU_R6000
||
2133 current_cpu_type() == CPU_R6000A
) {
2135 * The R6000 is the only R-series CPU that features a machine
2136 * check exception (similar to the R4000 cache error) and
2137 * unaligned ldc1/sdc1 exception. The handlers have not been
2138 * written yet. Well, anyway there is no R6000 machine on the
2139 * current list of targets for Linux/MIPS.
2140 * (Duh, crap, there is someone with a triple R6k machine)
2142 //set_except_vector(14, handle_mc);
2143 //set_except_vector(15, handle_ndc);
2147 if (board_nmi_handler_setup
)
2148 board_nmi_handler_setup();
2150 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2151 set_except_vector(15, handle_fpe
);
2153 set_except_vector(16, handle_ftlb
);
2155 if (cpu_has_rixiex
) {
2156 set_except_vector(19, tlb_do_page_fault_0
);
2157 set_except_vector(20, tlb_do_page_fault_0
);
2160 set_except_vector(21, handle_msa
);
2161 set_except_vector(22, handle_mdmx
);
2164 set_except_vector(24, handle_mcheck
);
2167 set_except_vector(25, handle_mt
);
2169 set_except_vector(26, handle_dsp
);
2171 if (board_cache_error_setup
)
2172 board_cache_error_setup();
2175 /* Special exception: R4[04]00 uses also the divec space. */
2176 set_handler(0x180, &except_vec3_r4000
, 0x100);
2177 else if (cpu_has_4kex
)
2178 set_handler(0x180, &except_vec3_generic
, 0x80);
2180 set_handler(0x080, &except_vec3_generic
, 0x80);
2182 local_flush_icache_range(ebase
, ebase
+ 0x400);
2184 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2186 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */
2189 static int trap_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
2193 case CPU_PM_ENTER_FAILED
:
2197 configure_exception_vector();
2199 /* Restore register with CPU number for TLB handlers */
2200 TLBMISS_HANDLER_RESTORE();
2208 static struct notifier_block trap_pm_notifier_block
= {
2209 .notifier_call
= trap_pm_notifier
,
2212 static int __init
trap_pm_init(void)
2214 return cpu_pm_register_notifier(&trap_pm_notifier_block
);
2216 arch_initcall(trap_pm_init
);