net: skb_segment() provides list head and tail
[linux/fpc-iii.git] / arch / mips / kernel / traps.c
blob22b19c2750447418d5133df5d2d01f40e4b5ca85
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bug.h>
16 #include <linux/compiler.h>
17 #include <linux/context_tracking.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/kexec.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/mm.h>
24 #include <linux/sched.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/kallsyms.h>
28 #include <linux/bootmem.h>
29 #include <linux/interrupt.h>
30 #include <linux/ptrace.h>
31 #include <linux/kgdb.h>
32 #include <linux/kdebug.h>
33 #include <linux/kprobes.h>
34 #include <linux/notifier.h>
35 #include <linux/kdb.h>
36 #include <linux/irq.h>
37 #include <linux/perf_event.h>
39 #include <asm/bootinfo.h>
40 #include <asm/branch.h>
41 #include <asm/break.h>
42 #include <asm/cop2.h>
43 #include <asm/cpu.h>
44 #include <asm/cpu-type.h>
45 #include <asm/dsp.h>
46 #include <asm/fpu.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/idle.h>
49 #include <asm/mipsregs.h>
50 #include <asm/mipsmtregs.h>
51 #include <asm/module.h>
52 #include <asm/msa.h>
53 #include <asm/pgtable.h>
54 #include <asm/ptrace.h>
55 #include <asm/sections.h>
56 #include <asm/tlbdebug.h>
57 #include <asm/traps.h>
58 #include <asm/uaccess.h>
59 #include <asm/watch.h>
60 #include <asm/mmu_context.h>
61 #include <asm/types.h>
62 #include <asm/stacktrace.h>
63 #include <asm/uasm.h>
65 extern void check_wait(void);
66 extern asmlinkage void rollback_handle_int(void);
67 extern asmlinkage void handle_int(void);
68 extern u32 handle_tlbl[];
69 extern u32 handle_tlbs[];
70 extern u32 handle_tlbm[];
71 extern asmlinkage void handle_adel(void);
72 extern asmlinkage void handle_ades(void);
73 extern asmlinkage void handle_ibe(void);
74 extern asmlinkage void handle_dbe(void);
75 extern asmlinkage void handle_sys(void);
76 extern asmlinkage void handle_bp(void);
77 extern asmlinkage void handle_ri(void);
78 extern asmlinkage void handle_ri_rdhwr_vivt(void);
79 extern asmlinkage void handle_ri_rdhwr(void);
80 extern asmlinkage void handle_cpu(void);
81 extern asmlinkage void handle_ov(void);
82 extern asmlinkage void handle_tr(void);
83 extern asmlinkage void handle_msa_fpe(void);
84 extern asmlinkage void handle_fpe(void);
85 extern asmlinkage void handle_ftlb(void);
86 extern asmlinkage void handle_msa(void);
87 extern asmlinkage void handle_mdmx(void);
88 extern asmlinkage void handle_watch(void);
89 extern asmlinkage void handle_mt(void);
90 extern asmlinkage void handle_dsp(void);
91 extern asmlinkage void handle_mcheck(void);
92 extern asmlinkage void handle_reserved(void);
93 extern void tlb_do_page_fault_0(void);
95 void (*board_be_init)(void);
96 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
97 void (*board_nmi_handler_setup)(void);
98 void (*board_ejtag_handler_setup)(void);
99 void (*board_bind_eic_interrupt)(int irq, int regset);
100 void (*board_ebase_setup)(void);
101 void(*board_cache_error_setup)(void);
103 static void show_raw_backtrace(unsigned long reg29)
105 unsigned long *sp = (unsigned long *)(reg29 & ~3);
106 unsigned long addr;
108 printk("Call Trace:");
109 #ifdef CONFIG_KALLSYMS
110 printk("\n");
111 #endif
112 while (!kstack_end(sp)) {
113 unsigned long __user *p =
114 (unsigned long __user *)(unsigned long)sp++;
115 if (__get_user(addr, p)) {
116 printk(" (Bad stack address)");
117 break;
119 if (__kernel_text_address(addr))
120 print_ip_sym(addr);
122 printk("\n");
125 #ifdef CONFIG_KALLSYMS
126 int raw_show_trace;
127 static int __init set_raw_show_trace(char *str)
129 raw_show_trace = 1;
130 return 1;
132 __setup("raw_show_trace", set_raw_show_trace);
133 #endif
135 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
137 unsigned long sp = regs->regs[29];
138 unsigned long ra = regs->regs[31];
139 unsigned long pc = regs->cp0_epc;
141 if (!task)
142 task = current;
144 if (raw_show_trace || !__kernel_text_address(pc)) {
145 show_raw_backtrace(sp);
146 return;
148 printk("Call Trace:\n");
149 do {
150 print_ip_sym(pc);
151 pc = unwind_stack(task, &sp, pc, &ra);
152 } while (pc);
153 printk("\n");
157 * This routine abuses get_user()/put_user() to reference pointers
158 * with at least a bit of error checking ...
160 static void show_stacktrace(struct task_struct *task,
161 const struct pt_regs *regs)
163 const int field = 2 * sizeof(unsigned long);
164 long stackdata;
165 int i;
166 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
168 printk("Stack :");
169 i = 0;
170 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
171 if (i && ((i % (64 / field)) == 0))
172 printk("\n ");
173 if (i > 39) {
174 printk(" ...");
175 break;
178 if (__get_user(stackdata, sp++)) {
179 printk(" (Bad stack address)");
180 break;
183 printk(" %0*lx", field, stackdata);
184 i++;
186 printk("\n");
187 show_backtrace(task, regs);
190 void show_stack(struct task_struct *task, unsigned long *sp)
192 struct pt_regs regs;
193 if (sp) {
194 regs.regs[29] = (unsigned long)sp;
195 regs.regs[31] = 0;
196 regs.cp0_epc = 0;
197 } else {
198 if (task && task != current) {
199 regs.regs[29] = task->thread.reg29;
200 regs.regs[31] = 0;
201 regs.cp0_epc = task->thread.reg31;
202 #ifdef CONFIG_KGDB_KDB
203 } else if (atomic_read(&kgdb_active) != -1 &&
204 kdb_current_regs) {
205 memcpy(&regs, kdb_current_regs, sizeof(regs));
206 #endif /* CONFIG_KGDB_KDB */
207 } else {
208 prepare_frametrace(&regs);
211 show_stacktrace(task, &regs);
214 static void show_code(unsigned int __user *pc)
216 long i;
217 unsigned short __user *pc16 = NULL;
219 printk("\nCode:");
221 if ((unsigned long)pc & 1)
222 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
223 for(i = -3 ; i < 6 ; i++) {
224 unsigned int insn;
225 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
226 printk(" (Bad address in epc)\n");
227 break;
229 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
233 static void __show_regs(const struct pt_regs *regs)
235 const int field = 2 * sizeof(unsigned long);
236 unsigned int cause = regs->cp0_cause;
237 int i;
239 show_regs_print_info(KERN_DEFAULT);
242 * Saved main processor registers
244 for (i = 0; i < 32; ) {
245 if ((i % 4) == 0)
246 printk("$%2d :", i);
247 if (i == 0)
248 printk(" %0*lx", field, 0UL);
249 else if (i == 26 || i == 27)
250 printk(" %*s", field, "");
251 else
252 printk(" %0*lx", field, regs->regs[i]);
254 i++;
255 if ((i % 4) == 0)
256 printk("\n");
259 #ifdef CONFIG_CPU_HAS_SMARTMIPS
260 printk("Acx : %0*lx\n", field, regs->acx);
261 #endif
262 printk("Hi : %0*lx\n", field, regs->hi);
263 printk("Lo : %0*lx\n", field, regs->lo);
266 * Saved cp0 registers
268 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
269 (void *) regs->cp0_epc);
270 printk(" %s\n", print_tainted());
271 printk("ra : %0*lx %pS\n", field, regs->regs[31],
272 (void *) regs->regs[31]);
274 printk("Status: %08x ", (uint32_t) regs->cp0_status);
276 if (cpu_has_3kex) {
277 if (regs->cp0_status & ST0_KUO)
278 printk("KUo ");
279 if (regs->cp0_status & ST0_IEO)
280 printk("IEo ");
281 if (regs->cp0_status & ST0_KUP)
282 printk("KUp ");
283 if (regs->cp0_status & ST0_IEP)
284 printk("IEp ");
285 if (regs->cp0_status & ST0_KUC)
286 printk("KUc ");
287 if (regs->cp0_status & ST0_IEC)
288 printk("IEc ");
289 } else if (cpu_has_4kex) {
290 if (regs->cp0_status & ST0_KX)
291 printk("KX ");
292 if (regs->cp0_status & ST0_SX)
293 printk("SX ");
294 if (regs->cp0_status & ST0_UX)
295 printk("UX ");
296 switch (regs->cp0_status & ST0_KSU) {
297 case KSU_USER:
298 printk("USER ");
299 break;
300 case KSU_SUPERVISOR:
301 printk("SUPERVISOR ");
302 break;
303 case KSU_KERNEL:
304 printk("KERNEL ");
305 break;
306 default:
307 printk("BAD_MODE ");
308 break;
310 if (regs->cp0_status & ST0_ERL)
311 printk("ERL ");
312 if (regs->cp0_status & ST0_EXL)
313 printk("EXL ");
314 if (regs->cp0_status & ST0_IE)
315 printk("IE ");
317 printk("\n");
319 printk("Cause : %08x\n", cause);
321 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
322 if (1 <= cause && cause <= 5)
323 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
325 printk("PrId : %08x (%s)\n", read_c0_prid(),
326 cpu_name_string());
330 * FIXME: really the generic show_regs should take a const pointer argument.
332 void show_regs(struct pt_regs *regs)
334 __show_regs((struct pt_regs *)regs);
337 void show_registers(struct pt_regs *regs)
339 const int field = 2 * sizeof(unsigned long);
340 mm_segment_t old_fs = get_fs();
342 __show_regs(regs);
343 print_modules();
344 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
345 current->comm, current->pid, current_thread_info(), current,
346 field, current_thread_info()->tp_value);
347 if (cpu_has_userlocal) {
348 unsigned long tls;
350 tls = read_c0_userlocal();
351 if (tls != current_thread_info()->tp_value)
352 printk("*HwTLS: %0*lx\n", field, tls);
355 if (!user_mode(regs))
356 /* Necessary for getting the correct stack content */
357 set_fs(KERNEL_DS);
358 show_stacktrace(current, regs);
359 show_code((unsigned int __user *) regs->cp0_epc);
360 printk("\n");
361 set_fs(old_fs);
364 static int regs_to_trapnr(struct pt_regs *regs)
366 return (regs->cp0_cause >> 2) & 0x1f;
369 static DEFINE_RAW_SPINLOCK(die_lock);
371 void __noreturn die(const char *str, struct pt_regs *regs)
373 static int die_counter;
374 int sig = SIGSEGV;
376 oops_enter();
378 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
379 SIGSEGV) == NOTIFY_STOP)
380 sig = 0;
382 console_verbose();
383 raw_spin_lock_irq(&die_lock);
384 bust_spinlocks(1);
386 printk("%s[#%d]:\n", str, ++die_counter);
387 show_registers(regs);
388 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
389 raw_spin_unlock_irq(&die_lock);
391 oops_exit();
393 if (in_interrupt())
394 panic("Fatal exception in interrupt");
396 if (panic_on_oops) {
397 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
398 ssleep(5);
399 panic("Fatal exception");
402 if (regs && kexec_should_crash(current))
403 crash_kexec(regs);
405 do_exit(sig);
408 extern struct exception_table_entry __start___dbe_table[];
409 extern struct exception_table_entry __stop___dbe_table[];
411 __asm__(
412 " .section __dbe_table, \"a\"\n"
413 " .previous \n");
415 /* Given an address, look for it in the exception tables. */
416 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
418 const struct exception_table_entry *e;
420 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
421 if (!e)
422 e = search_module_dbetables(addr);
423 return e;
426 asmlinkage void do_be(struct pt_regs *regs)
428 const int field = 2 * sizeof(unsigned long);
429 const struct exception_table_entry *fixup = NULL;
430 int data = regs->cp0_cause & 4;
431 int action = MIPS_BE_FATAL;
432 enum ctx_state prev_state;
434 prev_state = exception_enter();
435 /* XXX For now. Fixme, this searches the wrong table ... */
436 if (data && !user_mode(regs))
437 fixup = search_dbe_tables(exception_epc(regs));
439 if (fixup)
440 action = MIPS_BE_FIXUP;
442 if (board_be_handler)
443 action = board_be_handler(regs, fixup != NULL);
445 switch (action) {
446 case MIPS_BE_DISCARD:
447 goto out;
448 case MIPS_BE_FIXUP:
449 if (fixup) {
450 regs->cp0_epc = fixup->nextinsn;
451 goto out;
453 break;
454 default:
455 break;
459 * Assume it would be too dangerous to continue ...
461 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
462 data ? "Data" : "Instruction",
463 field, regs->cp0_epc, field, regs->regs[31]);
464 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
465 SIGBUS) == NOTIFY_STOP)
466 goto out;
468 die_if_kernel("Oops", regs);
469 force_sig(SIGBUS, current);
471 out:
472 exception_exit(prev_state);
476 * ll/sc, rdhwr, sync emulation
479 #define OPCODE 0xfc000000
480 #define BASE 0x03e00000
481 #define RT 0x001f0000
482 #define OFFSET 0x0000ffff
483 #define LL 0xc0000000
484 #define SC 0xe0000000
485 #define SPEC0 0x00000000
486 #define SPEC3 0x7c000000
487 #define RD 0x0000f800
488 #define FUNC 0x0000003f
489 #define SYNC 0x0000000f
490 #define RDHWR 0x0000003b
492 /* microMIPS definitions */
493 #define MM_POOL32A_FUNC 0xfc00ffff
494 #define MM_RDHWR 0x00006b3c
495 #define MM_RS 0x001f0000
496 #define MM_RT 0x03e00000
499 * The ll_bit is cleared by r*_switch.S
502 unsigned int ll_bit;
503 struct task_struct *ll_task;
505 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
507 unsigned long value, __user *vaddr;
508 long offset;
511 * analyse the ll instruction that just caused a ri exception
512 * and put the referenced address to addr.
515 /* sign extend offset */
516 offset = opcode & OFFSET;
517 offset <<= 16;
518 offset >>= 16;
520 vaddr = (unsigned long __user *)
521 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
523 if ((unsigned long)vaddr & 3)
524 return SIGBUS;
525 if (get_user(value, vaddr))
526 return SIGSEGV;
528 preempt_disable();
530 if (ll_task == NULL || ll_task == current) {
531 ll_bit = 1;
532 } else {
533 ll_bit = 0;
535 ll_task = current;
537 preempt_enable();
539 regs->regs[(opcode & RT) >> 16] = value;
541 return 0;
544 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
546 unsigned long __user *vaddr;
547 unsigned long reg;
548 long offset;
551 * analyse the sc instruction that just caused a ri exception
552 * and put the referenced address to addr.
555 /* sign extend offset */
556 offset = opcode & OFFSET;
557 offset <<= 16;
558 offset >>= 16;
560 vaddr = (unsigned long __user *)
561 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
562 reg = (opcode & RT) >> 16;
564 if ((unsigned long)vaddr & 3)
565 return SIGBUS;
567 preempt_disable();
569 if (ll_bit == 0 || ll_task != current) {
570 regs->regs[reg] = 0;
571 preempt_enable();
572 return 0;
575 preempt_enable();
577 if (put_user(regs->regs[reg], vaddr))
578 return SIGSEGV;
580 regs->regs[reg] = 1;
582 return 0;
586 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
587 * opcodes are supposed to result in coprocessor unusable exceptions if
588 * executed on ll/sc-less processors. That's the theory. In practice a
589 * few processors such as NEC's VR4100 throw reserved instruction exceptions
590 * instead, so we're doing the emulation thing in both exception handlers.
592 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
594 if ((opcode & OPCODE) == LL) {
595 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
596 1, regs, 0);
597 return simulate_ll(regs, opcode);
599 if ((opcode & OPCODE) == SC) {
600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
601 1, regs, 0);
602 return simulate_sc(regs, opcode);
605 return -1; /* Must be something else ... */
609 * Simulate trapping 'rdhwr' instructions to provide user accessible
610 * registers not implemented in hardware.
612 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
614 struct thread_info *ti = task_thread_info(current);
616 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
617 1, regs, 0);
618 switch (rd) {
619 case 0: /* CPU number */
620 regs->regs[rt] = smp_processor_id();
621 return 0;
622 case 1: /* SYNCI length */
623 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
624 current_cpu_data.icache.linesz);
625 return 0;
626 case 2: /* Read count register */
627 regs->regs[rt] = read_c0_count();
628 return 0;
629 case 3: /* Count register resolution */
630 switch (current_cpu_type()) {
631 case CPU_20KC:
632 case CPU_25KF:
633 regs->regs[rt] = 1;
634 break;
635 default:
636 regs->regs[rt] = 2;
638 return 0;
639 case 29:
640 regs->regs[rt] = ti->tp_value;
641 return 0;
642 default:
643 return -1;
647 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
649 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
650 int rd = (opcode & RD) >> 11;
651 int rt = (opcode & RT) >> 16;
653 simulate_rdhwr(regs, rd, rt);
654 return 0;
657 /* Not ours. */
658 return -1;
661 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
663 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
664 int rd = (opcode & MM_RS) >> 16;
665 int rt = (opcode & MM_RT) >> 21;
666 simulate_rdhwr(regs, rd, rt);
667 return 0;
670 /* Not ours. */
671 return -1;
674 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
676 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
677 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
678 1, regs, 0);
679 return 0;
682 return -1; /* Must be something else ... */
685 asmlinkage void do_ov(struct pt_regs *regs)
687 enum ctx_state prev_state;
688 siginfo_t info;
690 prev_state = exception_enter();
691 die_if_kernel("Integer overflow", regs);
693 info.si_code = FPE_INTOVF;
694 info.si_signo = SIGFPE;
695 info.si_errno = 0;
696 info.si_addr = (void __user *) regs->cp0_epc;
697 force_sig_info(SIGFPE, &info, current);
698 exception_exit(prev_state);
701 int process_fpemu_return(int sig, void __user *fault_addr)
703 if (sig == SIGSEGV || sig == SIGBUS) {
704 struct siginfo si = {0};
705 si.si_addr = fault_addr;
706 si.si_signo = sig;
707 if (sig == SIGSEGV) {
708 down_read(&current->mm->mmap_sem);
709 if (find_vma(current->mm, (unsigned long)fault_addr))
710 si.si_code = SEGV_ACCERR;
711 else
712 si.si_code = SEGV_MAPERR;
713 up_read(&current->mm->mmap_sem);
714 } else {
715 si.si_code = BUS_ADRERR;
717 force_sig_info(sig, &si, current);
718 return 1;
719 } else if (sig) {
720 force_sig(sig, current);
721 return 1;
722 } else {
723 return 0;
728 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
730 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
732 enum ctx_state prev_state;
733 siginfo_t info = {0};
735 prev_state = exception_enter();
736 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
737 SIGFPE) == NOTIFY_STOP)
738 goto out;
739 die_if_kernel("FP exception in kernel code", regs);
741 if (fcr31 & FPU_CSR_UNI_X) {
742 int sig;
743 void __user *fault_addr = NULL;
746 * Unimplemented operation exception. If we've got the full
747 * software emulator on-board, let's use it...
749 * Force FPU to dump state into task/thread context. We're
750 * moving a lot of data here for what is probably a single
751 * instruction, but the alternative is to pre-decode the FP
752 * register operands before invoking the emulator, which seems
753 * a bit extreme for what should be an infrequent event.
755 /* Ensure 'resume' not overwrite saved fp context again. */
756 lose_fpu(1);
758 /* Run the emulator */
759 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
760 &fault_addr);
763 * We can't allow the emulated instruction to leave any of
764 * the cause bit set in $fcr31.
766 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
768 /* Restore the hardware register state */
769 own_fpu(1); /* Using the FPU again. */
771 /* If something went wrong, signal */
772 process_fpemu_return(sig, fault_addr);
774 goto out;
775 } else if (fcr31 & FPU_CSR_INV_X)
776 info.si_code = FPE_FLTINV;
777 else if (fcr31 & FPU_CSR_DIV_X)
778 info.si_code = FPE_FLTDIV;
779 else if (fcr31 & FPU_CSR_OVF_X)
780 info.si_code = FPE_FLTOVF;
781 else if (fcr31 & FPU_CSR_UDF_X)
782 info.si_code = FPE_FLTUND;
783 else if (fcr31 & FPU_CSR_INE_X)
784 info.si_code = FPE_FLTRES;
785 else
786 info.si_code = __SI_FAULT;
787 info.si_signo = SIGFPE;
788 info.si_errno = 0;
789 info.si_addr = (void __user *) regs->cp0_epc;
790 force_sig_info(SIGFPE, &info, current);
792 out:
793 exception_exit(prev_state);
796 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
797 const char *str)
799 siginfo_t info;
800 char b[40];
802 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
803 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
804 return;
805 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
807 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
808 SIGTRAP) == NOTIFY_STOP)
809 return;
812 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
813 * insns, even for trap and break codes that indicate arithmetic
814 * failures. Weird ...
815 * But should we continue the brokenness??? --macro
817 switch (code) {
818 case BRK_OVERFLOW:
819 case BRK_DIVZERO:
820 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
821 die_if_kernel(b, regs);
822 if (code == BRK_DIVZERO)
823 info.si_code = FPE_INTDIV;
824 else
825 info.si_code = FPE_INTOVF;
826 info.si_signo = SIGFPE;
827 info.si_errno = 0;
828 info.si_addr = (void __user *) regs->cp0_epc;
829 force_sig_info(SIGFPE, &info, current);
830 break;
831 case BRK_BUG:
832 die_if_kernel("Kernel bug detected", regs);
833 force_sig(SIGTRAP, current);
834 break;
835 case BRK_MEMU:
837 * Address errors may be deliberately induced by the FPU
838 * emulator to retake control of the CPU after executing the
839 * instruction in the delay slot of an emulated branch.
841 * Terminate if exception was recognized as a delay slot return
842 * otherwise handle as normal.
844 if (do_dsemulret(regs))
845 return;
847 die_if_kernel("Math emu break/trap", regs);
848 force_sig(SIGTRAP, current);
849 break;
850 default:
851 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
852 die_if_kernel(b, regs);
853 force_sig(SIGTRAP, current);
857 asmlinkage void do_bp(struct pt_regs *regs)
859 unsigned int opcode, bcode;
860 enum ctx_state prev_state;
861 unsigned long epc;
862 u16 instr[2];
863 mm_segment_t seg;
865 seg = get_fs();
866 if (!user_mode(regs))
867 set_fs(KERNEL_DS);
869 prev_state = exception_enter();
870 if (get_isa16_mode(regs->cp0_epc)) {
871 /* Calculate EPC. */
872 epc = exception_epc(regs);
873 if (cpu_has_mmips) {
874 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
875 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
876 goto out_sigsegv;
877 opcode = (instr[0] << 16) | instr[1];
878 } else {
879 /* MIPS16e mode */
880 if (__get_user(instr[0],
881 (u16 __user *)msk_isa16_mode(epc)))
882 goto out_sigsegv;
883 bcode = (instr[0] >> 6) & 0x3f;
884 do_trap_or_bp(regs, bcode, "Break");
885 goto out;
887 } else {
888 if (__get_user(opcode,
889 (unsigned int __user *) exception_epc(regs)))
890 goto out_sigsegv;
894 * There is the ancient bug in the MIPS assemblers that the break
895 * code starts left to bit 16 instead to bit 6 in the opcode.
896 * Gas is bug-compatible, but not always, grrr...
897 * We handle both cases with a simple heuristics. --macro
899 bcode = ((opcode >> 6) & ((1 << 20) - 1));
900 if (bcode >= (1 << 10))
901 bcode >>= 10;
904 * notify the kprobe handlers, if instruction is likely to
905 * pertain to them.
907 switch (bcode) {
908 case BRK_KPROBE_BP:
909 if (notify_die(DIE_BREAK, "debug", regs, bcode,
910 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
911 goto out;
912 else
913 break;
914 case BRK_KPROBE_SSTEPBP:
915 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
916 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
917 goto out;
918 else
919 break;
920 default:
921 break;
924 do_trap_or_bp(regs, bcode, "Break");
926 out:
927 set_fs(seg);
928 exception_exit(prev_state);
929 return;
931 out_sigsegv:
932 force_sig(SIGSEGV, current);
933 goto out;
936 asmlinkage void do_tr(struct pt_regs *regs)
938 u32 opcode, tcode = 0;
939 enum ctx_state prev_state;
940 u16 instr[2];
941 mm_segment_t seg;
942 unsigned long epc = msk_isa16_mode(exception_epc(regs));
944 seg = get_fs();
945 if (!user_mode(regs))
946 set_fs(get_ds());
948 prev_state = exception_enter();
949 if (get_isa16_mode(regs->cp0_epc)) {
950 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
951 __get_user(instr[1], (u16 __user *)(epc + 2)))
952 goto out_sigsegv;
953 opcode = (instr[0] << 16) | instr[1];
954 /* Immediate versions don't provide a code. */
955 if (!(opcode & OPCODE))
956 tcode = (opcode >> 12) & ((1 << 4) - 1);
957 } else {
958 if (__get_user(opcode, (u32 __user *)epc))
959 goto out_sigsegv;
960 /* Immediate versions don't provide a code. */
961 if (!(opcode & OPCODE))
962 tcode = (opcode >> 6) & ((1 << 10) - 1);
965 do_trap_or_bp(regs, tcode, "Trap");
967 out:
968 set_fs(seg);
969 exception_exit(prev_state);
970 return;
972 out_sigsegv:
973 force_sig(SIGSEGV, current);
974 goto out;
977 asmlinkage void do_ri(struct pt_regs *regs)
979 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
980 unsigned long old_epc = regs->cp0_epc;
981 unsigned long old31 = regs->regs[31];
982 enum ctx_state prev_state;
983 unsigned int opcode = 0;
984 int status = -1;
986 prev_state = exception_enter();
987 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
988 SIGILL) == NOTIFY_STOP)
989 goto out;
991 die_if_kernel("Reserved instruction in kernel code", regs);
993 if (unlikely(compute_return_epc(regs) < 0))
994 goto out;
996 if (get_isa16_mode(regs->cp0_epc)) {
997 unsigned short mmop[2] = { 0 };
999 if (unlikely(get_user(mmop[0], epc) < 0))
1000 status = SIGSEGV;
1001 if (unlikely(get_user(mmop[1], epc) < 0))
1002 status = SIGSEGV;
1003 opcode = (mmop[0] << 16) | mmop[1];
1005 if (status < 0)
1006 status = simulate_rdhwr_mm(regs, opcode);
1007 } else {
1008 if (unlikely(get_user(opcode, epc) < 0))
1009 status = SIGSEGV;
1011 if (!cpu_has_llsc && status < 0)
1012 status = simulate_llsc(regs, opcode);
1014 if (status < 0)
1015 status = simulate_rdhwr_normal(regs, opcode);
1017 if (status < 0)
1018 status = simulate_sync(regs, opcode);
1021 if (status < 0)
1022 status = SIGILL;
1024 if (unlikely(status > 0)) {
1025 regs->cp0_epc = old_epc; /* Undo skip-over. */
1026 regs->regs[31] = old31;
1027 force_sig(status, current);
1030 out:
1031 exception_exit(prev_state);
1035 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1036 * emulated more than some threshold number of instructions, force migration to
1037 * a "CPU" that has FP support.
1039 static void mt_ase_fp_affinity(void)
1041 #ifdef CONFIG_MIPS_MT_FPAFF
1042 if (mt_fpemul_threshold > 0 &&
1043 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1045 * If there's no FPU present, or if the application has already
1046 * restricted the allowed set to exclude any CPUs with FPUs,
1047 * we'll skip the procedure.
1049 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1050 cpumask_t tmask;
1052 current->thread.user_cpus_allowed
1053 = current->cpus_allowed;
1054 cpus_and(tmask, current->cpus_allowed,
1055 mt_fpu_cpumask);
1056 set_cpus_allowed_ptr(current, &tmask);
1057 set_thread_flag(TIF_FPUBOUND);
1060 #endif /* CONFIG_MIPS_MT_FPAFF */
1064 * No lock; only written during early bootup by CPU 0.
1066 static RAW_NOTIFIER_HEAD(cu2_chain);
1068 int __ref register_cu2_notifier(struct notifier_block *nb)
1070 return raw_notifier_chain_register(&cu2_chain, nb);
1073 int cu2_notifier_call_chain(unsigned long val, void *v)
1075 return raw_notifier_call_chain(&cu2_chain, val, v);
1078 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1079 void *data)
1081 struct pt_regs *regs = data;
1083 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1084 "instruction", regs);
1085 force_sig(SIGILL, current);
1087 return NOTIFY_OK;
1090 static int enable_restore_fp_context(int msa)
1092 int err, was_fpu_owner, prior_msa;
1094 if (!used_math()) {
1095 /* First time FP context user. */
1096 preempt_disable();
1097 err = init_fpu();
1098 if (msa && !err) {
1099 enable_msa();
1100 _init_msa_upper();
1101 set_thread_flag(TIF_USEDMSA);
1102 set_thread_flag(TIF_MSA_CTX_LIVE);
1104 preempt_enable();
1105 if (!err)
1106 set_used_math();
1107 return err;
1111 * This task has formerly used the FP context.
1113 * If this thread has no live MSA vector context then we can simply
1114 * restore the scalar FP context. If it has live MSA vector context
1115 * (that is, it has or may have used MSA since last performing a
1116 * function call) then we'll need to restore the vector context. This
1117 * applies even if we're currently only executing a scalar FP
1118 * instruction. This is because if we were to later execute an MSA
1119 * instruction then we'd either have to:
1121 * - Restore the vector context & clobber any registers modified by
1122 * scalar FP instructions between now & then.
1124 * or
1126 * - Not restore the vector context & lose the most significant bits
1127 * of all vector registers.
1129 * Neither of those options is acceptable. We cannot restore the least
1130 * significant bits of the registers now & only restore the most
1131 * significant bits later because the most significant bits of any
1132 * vector registers whose aliased FP register is modified now will have
1133 * been zeroed. We'd have no way to know that when restoring the vector
1134 * context & thus may load an outdated value for the most significant
1135 * bits of a vector register.
1137 if (!msa && !thread_msa_context_live())
1138 return own_fpu(1);
1141 * This task is using or has previously used MSA. Thus we require
1142 * that Status.FR == 1.
1144 preempt_disable();
1145 was_fpu_owner = is_fpu_owner();
1146 err = own_fpu_inatomic(0);
1147 if (err)
1148 goto out;
1150 enable_msa();
1151 write_msa_csr(current->thread.fpu.msacsr);
1152 set_thread_flag(TIF_USEDMSA);
1155 * If this is the first time that the task is using MSA and it has
1156 * previously used scalar FP in this time slice then we already nave
1157 * FP context which we shouldn't clobber. We do however need to clear
1158 * the upper 64b of each vector register so that this task has no
1159 * opportunity to see data left behind by another.
1161 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1162 if (!prior_msa && was_fpu_owner) {
1163 _init_msa_upper();
1165 goto out;
1168 if (!prior_msa) {
1170 * Restore the least significant 64b of each vector register
1171 * from the existing scalar FP context.
1173 _restore_fp(current);
1176 * The task has not formerly used MSA, so clear the upper 64b
1177 * of each vector register such that it cannot see data left
1178 * behind by another task.
1180 _init_msa_upper();
1181 } else {
1182 /* We need to restore the vector context. */
1183 restore_msa(current);
1185 /* Restore the scalar FP control & status register */
1186 if (!was_fpu_owner)
1187 asm volatile("ctc1 %0, $31" : : "r"(current->thread.fpu.fcr31));
1190 out:
1191 preempt_enable();
1193 return 0;
1196 asmlinkage void do_cpu(struct pt_regs *regs)
1198 enum ctx_state prev_state;
1199 unsigned int __user *epc;
1200 unsigned long old_epc, old31;
1201 unsigned int opcode;
1202 unsigned int cpid;
1203 int status, err;
1204 unsigned long __maybe_unused flags;
1206 prev_state = exception_enter();
1207 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1209 if (cpid != 2)
1210 die_if_kernel("do_cpu invoked from kernel context!", regs);
1212 switch (cpid) {
1213 case 0:
1214 epc = (unsigned int __user *)exception_epc(regs);
1215 old_epc = regs->cp0_epc;
1216 old31 = regs->regs[31];
1217 opcode = 0;
1218 status = -1;
1220 if (unlikely(compute_return_epc(regs) < 0))
1221 goto out;
1223 if (get_isa16_mode(regs->cp0_epc)) {
1224 unsigned short mmop[2] = { 0 };
1226 if (unlikely(get_user(mmop[0], epc) < 0))
1227 status = SIGSEGV;
1228 if (unlikely(get_user(mmop[1], epc) < 0))
1229 status = SIGSEGV;
1230 opcode = (mmop[0] << 16) | mmop[1];
1232 if (status < 0)
1233 status = simulate_rdhwr_mm(regs, opcode);
1234 } else {
1235 if (unlikely(get_user(opcode, epc) < 0))
1236 status = SIGSEGV;
1238 if (!cpu_has_llsc && status < 0)
1239 status = simulate_llsc(regs, opcode);
1241 if (status < 0)
1242 status = simulate_rdhwr_normal(regs, opcode);
1245 if (status < 0)
1246 status = SIGILL;
1248 if (unlikely(status > 0)) {
1249 regs->cp0_epc = old_epc; /* Undo skip-over. */
1250 regs->regs[31] = old31;
1251 force_sig(status, current);
1254 goto out;
1256 case 3:
1258 * Old (MIPS I and MIPS II) processors will set this code
1259 * for COP1X opcode instructions that replaced the original
1260 * COP3 space. We don't limit COP1 space instructions in
1261 * the emulator according to the CPU ISA, so we want to
1262 * treat COP1X instructions consistently regardless of which
1263 * code the CPU chose. Therefore we redirect this trap to
1264 * the FP emulator too.
1266 * Then some newer FPU-less processors use this code
1267 * erroneously too, so they are covered by this choice
1268 * as well.
1270 if (raw_cpu_has_fpu)
1271 break;
1272 /* Fall through. */
1274 case 1:
1275 err = enable_restore_fp_context(0);
1277 if (!raw_cpu_has_fpu || err) {
1278 int sig;
1279 void __user *fault_addr = NULL;
1280 sig = fpu_emulator_cop1Handler(regs,
1281 &current->thread.fpu,
1282 0, &fault_addr);
1283 if (!process_fpemu_return(sig, fault_addr) && !err)
1284 mt_ase_fp_affinity();
1287 goto out;
1289 case 2:
1290 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1291 goto out;
1294 force_sig(SIGILL, current);
1296 out:
1297 exception_exit(prev_state);
1300 asmlinkage void do_msa_fpe(struct pt_regs *regs)
1302 enum ctx_state prev_state;
1304 prev_state = exception_enter();
1305 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1306 force_sig(SIGFPE, current);
1307 exception_exit(prev_state);
1310 asmlinkage void do_msa(struct pt_regs *regs)
1312 enum ctx_state prev_state;
1313 int err;
1315 prev_state = exception_enter();
1317 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1318 force_sig(SIGILL, current);
1319 goto out;
1322 die_if_kernel("do_msa invoked from kernel context!", regs);
1324 err = enable_restore_fp_context(1);
1325 if (err)
1326 force_sig(SIGILL, current);
1327 out:
1328 exception_exit(prev_state);
1331 asmlinkage void do_mdmx(struct pt_regs *regs)
1333 enum ctx_state prev_state;
1335 prev_state = exception_enter();
1336 force_sig(SIGILL, current);
1337 exception_exit(prev_state);
1341 * Called with interrupts disabled.
1343 asmlinkage void do_watch(struct pt_regs *regs)
1345 enum ctx_state prev_state;
1346 u32 cause;
1348 prev_state = exception_enter();
1350 * Clear WP (bit 22) bit of cause register so we don't loop
1351 * forever.
1353 cause = read_c0_cause();
1354 cause &= ~(1 << 22);
1355 write_c0_cause(cause);
1358 * If the current thread has the watch registers loaded, save
1359 * their values and send SIGTRAP. Otherwise another thread
1360 * left the registers set, clear them and continue.
1362 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1363 mips_read_watch_registers();
1364 local_irq_enable();
1365 force_sig(SIGTRAP, current);
1366 } else {
1367 mips_clear_watch_registers();
1368 local_irq_enable();
1370 exception_exit(prev_state);
1373 asmlinkage void do_mcheck(struct pt_regs *regs)
1375 const int field = 2 * sizeof(unsigned long);
1376 int multi_match = regs->cp0_status & ST0_TS;
1377 enum ctx_state prev_state;
1379 prev_state = exception_enter();
1380 show_regs(regs);
1382 if (multi_match) {
1383 printk("Index : %0x\n", read_c0_index());
1384 printk("Pagemask: %0x\n", read_c0_pagemask());
1385 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1386 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1387 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1388 printk("\n");
1389 dump_tlb_all();
1392 show_code((unsigned int __user *) regs->cp0_epc);
1395 * Some chips may have other causes of machine check (e.g. SB1
1396 * graduation timer)
1398 panic("Caught Machine Check exception - %scaused by multiple "
1399 "matching entries in the TLB.",
1400 (multi_match) ? "" : "not ");
1403 asmlinkage void do_mt(struct pt_regs *regs)
1405 int subcode;
1407 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1408 >> VPECONTROL_EXCPT_SHIFT;
1409 switch (subcode) {
1410 case 0:
1411 printk(KERN_DEBUG "Thread Underflow\n");
1412 break;
1413 case 1:
1414 printk(KERN_DEBUG "Thread Overflow\n");
1415 break;
1416 case 2:
1417 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1418 break;
1419 case 3:
1420 printk(KERN_DEBUG "Gating Storage Exception\n");
1421 break;
1422 case 4:
1423 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1424 break;
1425 case 5:
1426 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1427 break;
1428 default:
1429 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1430 subcode);
1431 break;
1433 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1435 force_sig(SIGILL, current);
1439 asmlinkage void do_dsp(struct pt_regs *regs)
1441 if (cpu_has_dsp)
1442 panic("Unexpected DSP exception");
1444 force_sig(SIGILL, current);
1447 asmlinkage void do_reserved(struct pt_regs *regs)
1450 * Game over - no way to handle this if it ever occurs. Most probably
1451 * caused by a new unknown cpu type or after another deadly
1452 * hard/software error.
1454 show_regs(regs);
1455 panic("Caught reserved exception %ld - should not happen.",
1456 (regs->cp0_cause & 0x7f) >> 2);
1459 static int __initdata l1parity = 1;
1460 static int __init nol1parity(char *s)
1462 l1parity = 0;
1463 return 1;
1465 __setup("nol1par", nol1parity);
1466 static int __initdata l2parity = 1;
1467 static int __init nol2parity(char *s)
1469 l2parity = 0;
1470 return 1;
1472 __setup("nol2par", nol2parity);
1475 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1476 * it different ways.
1478 static inline void parity_protection_init(void)
1480 switch (current_cpu_type()) {
1481 case CPU_24K:
1482 case CPU_34K:
1483 case CPU_74K:
1484 case CPU_1004K:
1485 case CPU_1074K:
1486 case CPU_INTERAPTIV:
1487 case CPU_PROAPTIV:
1488 case CPU_P5600:
1490 #define ERRCTL_PE 0x80000000
1491 #define ERRCTL_L2P 0x00800000
1492 unsigned long errctl;
1493 unsigned int l1parity_present, l2parity_present;
1495 errctl = read_c0_ecc();
1496 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1498 /* probe L1 parity support */
1499 write_c0_ecc(errctl | ERRCTL_PE);
1500 back_to_back_c0_hazard();
1501 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1503 /* probe L2 parity support */
1504 write_c0_ecc(errctl|ERRCTL_L2P);
1505 back_to_back_c0_hazard();
1506 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1508 if (l1parity_present && l2parity_present) {
1509 if (l1parity)
1510 errctl |= ERRCTL_PE;
1511 if (l1parity ^ l2parity)
1512 errctl |= ERRCTL_L2P;
1513 } else if (l1parity_present) {
1514 if (l1parity)
1515 errctl |= ERRCTL_PE;
1516 } else if (l2parity_present) {
1517 if (l2parity)
1518 errctl |= ERRCTL_L2P;
1519 } else {
1520 /* No parity available */
1523 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1525 write_c0_ecc(errctl);
1526 back_to_back_c0_hazard();
1527 errctl = read_c0_ecc();
1528 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1530 if (l1parity_present)
1531 printk(KERN_INFO "Cache parity protection %sabled\n",
1532 (errctl & ERRCTL_PE) ? "en" : "dis");
1534 if (l2parity_present) {
1535 if (l1parity_present && l1parity)
1536 errctl ^= ERRCTL_L2P;
1537 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1538 (errctl & ERRCTL_L2P) ? "en" : "dis");
1541 break;
1543 case CPU_5KC:
1544 case CPU_5KE:
1545 case CPU_LOONGSON1:
1546 write_c0_ecc(0x80000000);
1547 back_to_back_c0_hazard();
1548 /* Set the PE bit (bit 31) in the c0_errctl register. */
1549 printk(KERN_INFO "Cache parity protection %sabled\n",
1550 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1551 break;
1552 case CPU_20KC:
1553 case CPU_25KF:
1554 /* Clear the DE bit (bit 16) in the c0_status register. */
1555 printk(KERN_INFO "Enable cache parity protection for "
1556 "MIPS 20KC/25KF CPUs.\n");
1557 clear_c0_status(ST0_DE);
1558 break;
1559 default:
1560 break;
1564 asmlinkage void cache_parity_error(void)
1566 const int field = 2 * sizeof(unsigned long);
1567 unsigned int reg_val;
1569 /* For the moment, report the problem and hang. */
1570 printk("Cache error exception:\n");
1571 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1572 reg_val = read_c0_cacheerr();
1573 printk("c0_cacheerr == %08x\n", reg_val);
1575 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1576 reg_val & (1<<30) ? "secondary" : "primary",
1577 reg_val & (1<<31) ? "data" : "insn");
1578 if (cpu_has_mips_r2 &&
1579 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1580 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1581 reg_val & (1<<29) ? "ED " : "",
1582 reg_val & (1<<28) ? "ET " : "",
1583 reg_val & (1<<27) ? "ES " : "",
1584 reg_val & (1<<26) ? "EE " : "",
1585 reg_val & (1<<25) ? "EB " : "",
1586 reg_val & (1<<24) ? "EI " : "",
1587 reg_val & (1<<23) ? "E1 " : "",
1588 reg_val & (1<<22) ? "E0 " : "");
1589 } else {
1590 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1591 reg_val & (1<<29) ? "ED " : "",
1592 reg_val & (1<<28) ? "ET " : "",
1593 reg_val & (1<<26) ? "EE " : "",
1594 reg_val & (1<<25) ? "EB " : "",
1595 reg_val & (1<<24) ? "EI " : "",
1596 reg_val & (1<<23) ? "E1 " : "",
1597 reg_val & (1<<22) ? "E0 " : "");
1599 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1601 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1602 if (reg_val & (1<<22))
1603 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1605 if (reg_val & (1<<23))
1606 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1607 #endif
1609 panic("Can't handle the cache error!");
1612 asmlinkage void do_ftlb(void)
1614 const int field = 2 * sizeof(unsigned long);
1615 unsigned int reg_val;
1617 /* For the moment, report the problem and hang. */
1618 if (cpu_has_mips_r2 &&
1619 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1620 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1621 read_c0_ecc());
1622 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1623 reg_val = read_c0_cacheerr();
1624 pr_err("c0_cacheerr == %08x\n", reg_val);
1626 if ((reg_val & 0xc0000000) == 0xc0000000) {
1627 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1628 } else {
1629 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1630 reg_val & (1<<30) ? "secondary" : "primary",
1631 reg_val & (1<<31) ? "data" : "insn");
1633 } else {
1634 pr_err("FTLB error exception\n");
1636 /* Just print the cacheerr bits for now */
1637 cache_parity_error();
1641 * SDBBP EJTAG debug exception handler.
1642 * We skip the instruction and return to the next instruction.
1644 void ejtag_exception_handler(struct pt_regs *regs)
1646 const int field = 2 * sizeof(unsigned long);
1647 unsigned long depc, old_epc, old_ra;
1648 unsigned int debug;
1650 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1651 depc = read_c0_depc();
1652 debug = read_c0_debug();
1653 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1654 if (debug & 0x80000000) {
1656 * In branch delay slot.
1657 * We cheat a little bit here and use EPC to calculate the
1658 * debug return address (DEPC). EPC is restored after the
1659 * calculation.
1661 old_epc = regs->cp0_epc;
1662 old_ra = regs->regs[31];
1663 regs->cp0_epc = depc;
1664 compute_return_epc(regs);
1665 depc = regs->cp0_epc;
1666 regs->cp0_epc = old_epc;
1667 regs->regs[31] = old_ra;
1668 } else
1669 depc += 4;
1670 write_c0_depc(depc);
1672 #if 0
1673 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1674 write_c0_debug(debug | 0x100);
1675 #endif
1679 * NMI exception handler.
1680 * No lock; only written during early bootup by CPU 0.
1682 static RAW_NOTIFIER_HEAD(nmi_chain);
1684 int register_nmi_notifier(struct notifier_block *nb)
1686 return raw_notifier_chain_register(&nmi_chain, nb);
1689 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1691 char str[100];
1693 raw_notifier_call_chain(&nmi_chain, 0, regs);
1694 bust_spinlocks(1);
1695 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1696 smp_processor_id(), regs->cp0_epc);
1697 regs->cp0_epc = read_c0_errorepc();
1698 die(str, regs);
1701 #define VECTORSPACING 0x100 /* for EI/VI mode */
1703 unsigned long ebase;
1704 unsigned long exception_handlers[32];
1705 unsigned long vi_handlers[64];
1707 void __init *set_except_vector(int n, void *addr)
1709 unsigned long handler = (unsigned long) addr;
1710 unsigned long old_handler;
1712 #ifdef CONFIG_CPU_MICROMIPS
1714 * Only the TLB handlers are cache aligned with an even
1715 * address. All other handlers are on an odd address and
1716 * require no modification. Otherwise, MIPS32 mode will
1717 * be entered when handling any TLB exceptions. That
1718 * would be bad...since we must stay in microMIPS mode.
1720 if (!(handler & 0x1))
1721 handler |= 1;
1722 #endif
1723 old_handler = xchg(&exception_handlers[n], handler);
1725 if (n == 0 && cpu_has_divec) {
1726 #ifdef CONFIG_CPU_MICROMIPS
1727 unsigned long jump_mask = ~((1 << 27) - 1);
1728 #else
1729 unsigned long jump_mask = ~((1 << 28) - 1);
1730 #endif
1731 u32 *buf = (u32 *)(ebase + 0x200);
1732 unsigned int k0 = 26;
1733 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1734 uasm_i_j(&buf, handler & ~jump_mask);
1735 uasm_i_nop(&buf);
1736 } else {
1737 UASM_i_LA(&buf, k0, handler);
1738 uasm_i_jr(&buf, k0);
1739 uasm_i_nop(&buf);
1741 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1743 return (void *)old_handler;
1746 static void do_default_vi(void)
1748 show_regs(get_irq_regs());
1749 panic("Caught unexpected vectored interrupt.");
1752 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1754 unsigned long handler;
1755 unsigned long old_handler = vi_handlers[n];
1756 int srssets = current_cpu_data.srsets;
1757 u16 *h;
1758 unsigned char *b;
1760 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1762 if (addr == NULL) {
1763 handler = (unsigned long) do_default_vi;
1764 srs = 0;
1765 } else
1766 handler = (unsigned long) addr;
1767 vi_handlers[n] = handler;
1769 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1771 if (srs >= srssets)
1772 panic("Shadow register set %d not supported", srs);
1774 if (cpu_has_veic) {
1775 if (board_bind_eic_interrupt)
1776 board_bind_eic_interrupt(n, srs);
1777 } else if (cpu_has_vint) {
1778 /* SRSMap is only defined if shadow sets are implemented */
1779 if (srssets > 1)
1780 change_c0_srsmap(0xf << n*4, srs << n*4);
1783 if (srs == 0) {
1785 * If no shadow set is selected then use the default handler
1786 * that does normal register saving and standard interrupt exit
1788 extern char except_vec_vi, except_vec_vi_lui;
1789 extern char except_vec_vi_ori, except_vec_vi_end;
1790 extern char rollback_except_vec_vi;
1791 char *vec_start = using_rollback_handler() ?
1792 &rollback_except_vec_vi : &except_vec_vi;
1793 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1794 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1795 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1796 #else
1797 const int lui_offset = &except_vec_vi_lui - vec_start;
1798 const int ori_offset = &except_vec_vi_ori - vec_start;
1799 #endif
1800 const int handler_len = &except_vec_vi_end - vec_start;
1802 if (handler_len > VECTORSPACING) {
1804 * Sigh... panicing won't help as the console
1805 * is probably not configured :(
1807 panic("VECTORSPACING too small");
1810 set_handler(((unsigned long)b - ebase), vec_start,
1811 #ifdef CONFIG_CPU_MICROMIPS
1812 (handler_len - 1));
1813 #else
1814 handler_len);
1815 #endif
1816 h = (u16 *)(b + lui_offset);
1817 *h = (handler >> 16) & 0xffff;
1818 h = (u16 *)(b + ori_offset);
1819 *h = (handler & 0xffff);
1820 local_flush_icache_range((unsigned long)b,
1821 (unsigned long)(b+handler_len));
1823 else {
1825 * In other cases jump directly to the interrupt handler. It
1826 * is the handler's responsibility to save registers if required
1827 * (eg hi/lo) and return from the exception using "eret".
1829 u32 insn;
1831 h = (u16 *)b;
1832 /* j handler */
1833 #ifdef CONFIG_CPU_MICROMIPS
1834 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1835 #else
1836 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1837 #endif
1838 h[0] = (insn >> 16) & 0xffff;
1839 h[1] = insn & 0xffff;
1840 h[2] = 0;
1841 h[3] = 0;
1842 local_flush_icache_range((unsigned long)b,
1843 (unsigned long)(b+8));
1846 return (void *)old_handler;
1849 void *set_vi_handler(int n, vi_handler_t addr)
1851 return set_vi_srs_handler(n, addr, 0);
1854 extern void tlb_init(void);
1857 * Timer interrupt
1859 int cp0_compare_irq;
1860 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1861 int cp0_compare_irq_shift;
1864 * Performance counter IRQ or -1 if shared with timer
1866 int cp0_perfcount_irq;
1867 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1869 static int noulri;
1871 static int __init ulri_disable(char *s)
1873 pr_info("Disabling ulri\n");
1874 noulri = 1;
1876 return 1;
1878 __setup("noulri", ulri_disable);
1880 /* configure STATUS register */
1881 static void configure_status(void)
1884 * Disable coprocessors and select 32-bit or 64-bit addressing
1885 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1886 * flag that some firmware may have left set and the TS bit (for
1887 * IP27). Set XX for ISA IV code to work.
1889 unsigned int status_set = ST0_CU0;
1890 #ifdef CONFIG_64BIT
1891 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1892 #endif
1893 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1894 status_set |= ST0_XX;
1895 if (cpu_has_dsp)
1896 status_set |= ST0_MX;
1898 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1899 status_set);
1902 /* configure HWRENA register */
1903 static void configure_hwrena(void)
1905 unsigned int hwrena = cpu_hwrena_impl_bits;
1907 if (cpu_has_mips_r2)
1908 hwrena |= 0x0000000f;
1910 if (!noulri && cpu_has_userlocal)
1911 hwrena |= (1 << 29);
1913 if (hwrena)
1914 write_c0_hwrena(hwrena);
1917 static void configure_exception_vector(void)
1919 if (cpu_has_veic || cpu_has_vint) {
1920 unsigned long sr = set_c0_status(ST0_BEV);
1921 write_c0_ebase(ebase);
1922 write_c0_status(sr);
1923 /* Setting vector spacing enables EI/VI mode */
1924 change_c0_intctl(0x3e0, VECTORSPACING);
1926 if (cpu_has_divec) {
1927 if (cpu_has_mipsmt) {
1928 unsigned int vpflags = dvpe();
1929 set_c0_cause(CAUSEF_IV);
1930 evpe(vpflags);
1931 } else
1932 set_c0_cause(CAUSEF_IV);
1936 void per_cpu_trap_init(bool is_boot_cpu)
1938 unsigned int cpu = smp_processor_id();
1940 configure_status();
1941 configure_hwrena();
1943 configure_exception_vector();
1946 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1948 * o read IntCtl.IPTI to determine the timer interrupt
1949 * o read IntCtl.IPPCI to determine the performance counter interrupt
1951 if (cpu_has_mips_r2) {
1952 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1953 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1954 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1955 if (cp0_perfcount_irq == cp0_compare_irq)
1956 cp0_perfcount_irq = -1;
1957 } else {
1958 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1959 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1960 cp0_perfcount_irq = -1;
1963 if (!cpu_data[cpu].asid_cache)
1964 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1966 atomic_inc(&init_mm.mm_count);
1967 current->active_mm = &init_mm;
1968 BUG_ON(current->mm);
1969 enter_lazy_tlb(&init_mm, current);
1971 /* Boot CPU's cache setup in setup_arch(). */
1972 if (!is_boot_cpu)
1973 cpu_cache_init();
1974 tlb_init();
1975 TLBMISS_HANDLER_SETUP();
1978 /* Install CPU exception handler */
1979 void set_handler(unsigned long offset, void *addr, unsigned long size)
1981 #ifdef CONFIG_CPU_MICROMIPS
1982 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1983 #else
1984 memcpy((void *)(ebase + offset), addr, size);
1985 #endif
1986 local_flush_icache_range(ebase + offset, ebase + offset + size);
1989 static char panic_null_cerr[] =
1990 "Trying to set NULL cache error exception handler";
1993 * Install uncached CPU exception handler.
1994 * This is suitable only for the cache error exception which is the only
1995 * exception handler that is being run uncached.
1997 void set_uncached_handler(unsigned long offset, void *addr,
1998 unsigned long size)
2000 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2002 if (!addr)
2003 panic(panic_null_cerr);
2005 memcpy((void *)(uncached_ebase + offset), addr, size);
2008 static int __initdata rdhwr_noopt;
2009 static int __init set_rdhwr_noopt(char *str)
2011 rdhwr_noopt = 1;
2012 return 1;
2015 __setup("rdhwr_noopt", set_rdhwr_noopt);
2017 void __init trap_init(void)
2019 extern char except_vec3_generic;
2020 extern char except_vec4;
2021 extern char except_vec3_r4000;
2022 unsigned long i;
2024 check_wait();
2026 #if defined(CONFIG_KGDB)
2027 if (kgdb_early_setup)
2028 return; /* Already done */
2029 #endif
2031 if (cpu_has_veic || cpu_has_vint) {
2032 unsigned long size = 0x200 + VECTORSPACING*64;
2033 ebase = (unsigned long)
2034 __alloc_bootmem(size, 1 << fls(size), 0);
2035 } else {
2036 #ifdef CONFIG_KVM_GUEST
2037 #define KVM_GUEST_KSEG0 0x40000000
2038 ebase = KVM_GUEST_KSEG0;
2039 #else
2040 ebase = CKSEG0;
2041 #endif
2042 if (cpu_has_mips_r2)
2043 ebase += (read_c0_ebase() & 0x3ffff000);
2046 if (cpu_has_mmips) {
2047 unsigned int config3 = read_c0_config3();
2049 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2050 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2051 else
2052 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2055 if (board_ebase_setup)
2056 board_ebase_setup();
2057 per_cpu_trap_init(true);
2060 * Copy the generic exception handlers to their final destination.
2061 * This will be overriden later as suitable for a particular
2062 * configuration.
2064 set_handler(0x180, &except_vec3_generic, 0x80);
2067 * Setup default vectors
2069 for (i = 0; i <= 31; i++)
2070 set_except_vector(i, handle_reserved);
2073 * Copy the EJTAG debug exception vector handler code to it's final
2074 * destination.
2076 if (cpu_has_ejtag && board_ejtag_handler_setup)
2077 board_ejtag_handler_setup();
2080 * Only some CPUs have the watch exceptions.
2082 if (cpu_has_watch)
2083 set_except_vector(23, handle_watch);
2086 * Initialise interrupt handlers
2088 if (cpu_has_veic || cpu_has_vint) {
2089 int nvec = cpu_has_veic ? 64 : 8;
2090 for (i = 0; i < nvec; i++)
2091 set_vi_handler(i, NULL);
2093 else if (cpu_has_divec)
2094 set_handler(0x200, &except_vec4, 0x8);
2097 * Some CPUs can enable/disable for cache parity detection, but does
2098 * it different ways.
2100 parity_protection_init();
2103 * The Data Bus Errors / Instruction Bus Errors are signaled
2104 * by external hardware. Therefore these two exceptions
2105 * may have board specific handlers.
2107 if (board_be_init)
2108 board_be_init();
2110 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2111 : handle_int);
2112 set_except_vector(1, handle_tlbm);
2113 set_except_vector(2, handle_tlbl);
2114 set_except_vector(3, handle_tlbs);
2116 set_except_vector(4, handle_adel);
2117 set_except_vector(5, handle_ades);
2119 set_except_vector(6, handle_ibe);
2120 set_except_vector(7, handle_dbe);
2122 set_except_vector(8, handle_sys);
2123 set_except_vector(9, handle_bp);
2124 set_except_vector(10, rdhwr_noopt ? handle_ri :
2125 (cpu_has_vtag_icache ?
2126 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2127 set_except_vector(11, handle_cpu);
2128 set_except_vector(12, handle_ov);
2129 set_except_vector(13, handle_tr);
2130 set_except_vector(14, handle_msa_fpe);
2132 if (current_cpu_type() == CPU_R6000 ||
2133 current_cpu_type() == CPU_R6000A) {
2135 * The R6000 is the only R-series CPU that features a machine
2136 * check exception (similar to the R4000 cache error) and
2137 * unaligned ldc1/sdc1 exception. The handlers have not been
2138 * written yet. Well, anyway there is no R6000 machine on the
2139 * current list of targets for Linux/MIPS.
2140 * (Duh, crap, there is someone with a triple R6k machine)
2142 //set_except_vector(14, handle_mc);
2143 //set_except_vector(15, handle_ndc);
2147 if (board_nmi_handler_setup)
2148 board_nmi_handler_setup();
2150 if (cpu_has_fpu && !cpu_has_nofpuex)
2151 set_except_vector(15, handle_fpe);
2153 set_except_vector(16, handle_ftlb);
2155 if (cpu_has_rixiex) {
2156 set_except_vector(19, tlb_do_page_fault_0);
2157 set_except_vector(20, tlb_do_page_fault_0);
2160 set_except_vector(21, handle_msa);
2161 set_except_vector(22, handle_mdmx);
2163 if (cpu_has_mcheck)
2164 set_except_vector(24, handle_mcheck);
2166 if (cpu_has_mipsmt)
2167 set_except_vector(25, handle_mt);
2169 set_except_vector(26, handle_dsp);
2171 if (board_cache_error_setup)
2172 board_cache_error_setup();
2174 if (cpu_has_vce)
2175 /* Special exception: R4[04]00 uses also the divec space. */
2176 set_handler(0x180, &except_vec3_r4000, 0x100);
2177 else if (cpu_has_4kex)
2178 set_handler(0x180, &except_vec3_generic, 0x80);
2179 else
2180 set_handler(0x080, &except_vec3_generic, 0x80);
2182 local_flush_icache_range(ebase, ebase + 0x400);
2184 sort_extable(__start___dbe_table, __stop___dbe_table);
2186 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2189 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2190 void *v)
2192 switch (cmd) {
2193 case CPU_PM_ENTER_FAILED:
2194 case CPU_PM_EXIT:
2195 configure_status();
2196 configure_hwrena();
2197 configure_exception_vector();
2199 /* Restore register with CPU number for TLB handlers */
2200 TLBMISS_HANDLER_RESTORE();
2202 break;
2205 return NOTIFY_OK;
2208 static struct notifier_block trap_pm_notifier_block = {
2209 .notifier_call = trap_pm_notifier,
2212 static int __init trap_pm_init(void)
2214 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2216 arch_initcall(trap_pm_init);