2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
74 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
75 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
77 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
78 struct pipe_buffer
*buf
)
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
89 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
90 struct pipe_buffer
*buf
)
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
99 .map
= generic_pipe_buf_map
,
100 .unmap
= generic_pipe_buf_unmap
,
101 .confirm
= generic_pipe_buf_confirm
,
102 .release
= sock_pipe_buf_release
,
103 .steal
= sock_pipe_buf_steal
,
104 .get
= sock_pipe_buf_get
,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
114 * skb_over_panic - private function
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
123 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
126 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
127 skb
->dev
? skb
->dev
->name
: "<NULL>");
132 * skb_under_panic - private function
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
142 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
145 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
146 skb
->dev
? skb
->dev
->name
: "<NULL>");
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
171 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
172 int fclone
, int node
)
174 struct kmem_cache
*cache
;
175 struct skb_shared_info
*shinfo
;
179 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
182 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
187 /* We do our best to align skb_shared_info on a separate cache
188 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
189 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
190 * Both skb->head and skb_shared_info are cache line aligned.
192 size
= SKB_DATA_ALIGN(size
);
193 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
194 data
= kmalloc_node_track_caller(size
, gfp_mask
, node
);
197 /* kmalloc(size) might give us more room than requested.
198 * Put skb_shared_info exactly at the end of allocated zone,
199 * to allow max possible filling before reallocation.
201 size
= SKB_WITH_OVERHEAD(ksize(data
));
202 prefetchw(data
+ size
);
205 * Only clear those fields we need to clear, not those that we will
206 * actually initialise below. Hence, don't put any more fields after
207 * the tail pointer in struct sk_buff!
209 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
210 /* Account for allocated memory : skb + skb->head */
211 skb
->truesize
= SKB_TRUESIZE(size
);
212 atomic_set(&skb
->users
, 1);
215 skb_reset_tail_pointer(skb
);
216 skb
->end
= skb
->tail
+ size
;
217 #ifdef NET_SKBUFF_DATA_USES_OFFSET
218 skb
->mac_header
= ~0U;
221 /* make sure we initialize shinfo sequentially */
222 shinfo
= skb_shinfo(skb
);
223 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
224 atomic_set(&shinfo
->dataref
, 1);
225 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
228 struct sk_buff
*child
= skb
+ 1;
229 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
231 kmemcheck_annotate_bitfield(child
, flags1
);
232 kmemcheck_annotate_bitfield(child
, flags2
);
233 skb
->fclone
= SKB_FCLONE_ORIG
;
234 atomic_set(fclone_ref
, 1);
236 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
241 kmem_cache_free(cache
, skb
);
245 EXPORT_SYMBOL(__alloc_skb
);
248 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
249 * @dev: network device to receive on
250 * @length: length to allocate
251 * @gfp_mask: get_free_pages mask, passed to alloc_skb
253 * Allocate a new &sk_buff and assign it a usage count of one. The
254 * buffer has unspecified headroom built in. Users should allocate
255 * the headroom they think they need without accounting for the
256 * built in space. The built in space is used for optimisations.
258 * %NULL is returned if there is no free memory.
260 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
261 unsigned int length
, gfp_t gfp_mask
)
265 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, NUMA_NO_NODE
);
267 skb_reserve(skb
, NET_SKB_PAD
);
272 EXPORT_SYMBOL(__netdev_alloc_skb
);
274 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
277 skb_fill_page_desc(skb
, i
, page
, off
, size
);
279 skb
->data_len
+= size
;
280 skb
->truesize
+= size
;
282 EXPORT_SYMBOL(skb_add_rx_frag
);
285 * dev_alloc_skb - allocate an skbuff for receiving
286 * @length: length to allocate
288 * Allocate a new &sk_buff and assign it a usage count of one. The
289 * buffer has unspecified headroom built in. Users should allocate
290 * the headroom they think they need without accounting for the
291 * built in space. The built in space is used for optimisations.
293 * %NULL is returned if there is no free memory. Although this function
294 * allocates memory it can be called from an interrupt.
296 struct sk_buff
*dev_alloc_skb(unsigned int length
)
299 * There is more code here than it seems:
300 * __dev_alloc_skb is an inline
302 return __dev_alloc_skb(length
, GFP_ATOMIC
);
304 EXPORT_SYMBOL(dev_alloc_skb
);
306 static void skb_drop_list(struct sk_buff
**listp
)
308 struct sk_buff
*list
= *listp
;
313 struct sk_buff
*this = list
;
319 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
321 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
324 static void skb_clone_fraglist(struct sk_buff
*skb
)
326 struct sk_buff
*list
;
328 skb_walk_frags(skb
, list
)
332 static void skb_release_data(struct sk_buff
*skb
)
335 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
336 &skb_shinfo(skb
)->dataref
)) {
337 if (skb_shinfo(skb
)->nr_frags
) {
339 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
340 skb_frag_unref(skb
, i
);
344 * If skb buf is from userspace, we need to notify the caller
345 * the lower device DMA has done;
347 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
348 struct ubuf_info
*uarg
;
350 uarg
= skb_shinfo(skb
)->destructor_arg
;
352 uarg
->callback(uarg
);
355 if (skb_has_frag_list(skb
))
356 skb_drop_fraglist(skb
);
363 * Free an skbuff by memory without cleaning the state.
365 static void kfree_skbmem(struct sk_buff
*skb
)
367 struct sk_buff
*other
;
368 atomic_t
*fclone_ref
;
370 switch (skb
->fclone
) {
371 case SKB_FCLONE_UNAVAILABLE
:
372 kmem_cache_free(skbuff_head_cache
, skb
);
375 case SKB_FCLONE_ORIG
:
376 fclone_ref
= (atomic_t
*) (skb
+ 2);
377 if (atomic_dec_and_test(fclone_ref
))
378 kmem_cache_free(skbuff_fclone_cache
, skb
);
381 case SKB_FCLONE_CLONE
:
382 fclone_ref
= (atomic_t
*) (skb
+ 1);
385 /* The clone portion is available for
386 * fast-cloning again.
388 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
390 if (atomic_dec_and_test(fclone_ref
))
391 kmem_cache_free(skbuff_fclone_cache
, other
);
396 static void skb_release_head_state(struct sk_buff
*skb
)
400 secpath_put(skb
->sp
);
402 if (skb
->destructor
) {
404 skb
->destructor(skb
);
406 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
407 nf_conntrack_put(skb
->nfct
);
409 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
410 nf_conntrack_put_reasm(skb
->nfct_reasm
);
412 #ifdef CONFIG_BRIDGE_NETFILTER
413 nf_bridge_put(skb
->nf_bridge
);
415 /* XXX: IS this still necessary? - JHS */
416 #ifdef CONFIG_NET_SCHED
418 #ifdef CONFIG_NET_CLS_ACT
424 /* Free everything but the sk_buff shell. */
425 static void skb_release_all(struct sk_buff
*skb
)
427 skb_release_head_state(skb
);
428 skb_release_data(skb
);
432 * __kfree_skb - private function
435 * Free an sk_buff. Release anything attached to the buffer.
436 * Clean the state. This is an internal helper function. Users should
437 * always call kfree_skb
440 void __kfree_skb(struct sk_buff
*skb
)
442 skb_release_all(skb
);
445 EXPORT_SYMBOL(__kfree_skb
);
448 * kfree_skb - free an sk_buff
449 * @skb: buffer to free
451 * Drop a reference to the buffer and free it if the usage count has
454 void kfree_skb(struct sk_buff
*skb
)
458 if (likely(atomic_read(&skb
->users
) == 1))
460 else if (likely(!atomic_dec_and_test(&skb
->users
)))
462 trace_kfree_skb(skb
, __builtin_return_address(0));
465 EXPORT_SYMBOL(kfree_skb
);
468 * consume_skb - free an skbuff
469 * @skb: buffer to free
471 * Drop a ref to the buffer and free it if the usage count has hit zero
472 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
473 * is being dropped after a failure and notes that
475 void consume_skb(struct sk_buff
*skb
)
479 if (likely(atomic_read(&skb
->users
) == 1))
481 else if (likely(!atomic_dec_and_test(&skb
->users
)))
483 trace_consume_skb(skb
);
486 EXPORT_SYMBOL(consume_skb
);
489 * skb_recycle - clean up an skb for reuse
492 * Recycles the skb to be reused as a receive buffer. This
493 * function does any necessary reference count dropping, and
494 * cleans up the skbuff as if it just came from __alloc_skb().
496 void skb_recycle(struct sk_buff
*skb
)
498 struct skb_shared_info
*shinfo
;
500 skb_release_head_state(skb
);
502 shinfo
= skb_shinfo(skb
);
503 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
504 atomic_set(&shinfo
->dataref
, 1);
506 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
507 skb
->data
= skb
->head
+ NET_SKB_PAD
;
508 skb_reset_tail_pointer(skb
);
510 EXPORT_SYMBOL(skb_recycle
);
513 * skb_recycle_check - check if skb can be reused for receive
515 * @skb_size: minimum receive buffer size
517 * Checks that the skb passed in is not shared or cloned, and
518 * that it is linear and its head portion at least as large as
519 * skb_size so that it can be recycled as a receive buffer.
520 * If these conditions are met, this function does any necessary
521 * reference count dropping and cleans up the skbuff as if it
522 * just came from __alloc_skb().
524 bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
526 if (!skb_is_recycleable(skb
, skb_size
))
533 EXPORT_SYMBOL(skb_recycle_check
);
535 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
537 new->tstamp
= old
->tstamp
;
539 new->transport_header
= old
->transport_header
;
540 new->network_header
= old
->network_header
;
541 new->mac_header
= old
->mac_header
;
542 skb_dst_copy(new, old
);
543 new->rxhash
= old
->rxhash
;
544 new->ooo_okay
= old
->ooo_okay
;
545 new->l4_rxhash
= old
->l4_rxhash
;
547 new->sp
= secpath_get(old
->sp
);
549 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
550 new->csum
= old
->csum
;
551 new->local_df
= old
->local_df
;
552 new->pkt_type
= old
->pkt_type
;
553 new->ip_summed
= old
->ip_summed
;
554 skb_copy_queue_mapping(new, old
);
555 new->priority
= old
->priority
;
556 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
557 new->ipvs_property
= old
->ipvs_property
;
559 new->protocol
= old
->protocol
;
560 new->mark
= old
->mark
;
561 new->skb_iif
= old
->skb_iif
;
563 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
564 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
565 new->nf_trace
= old
->nf_trace
;
567 #ifdef CONFIG_NET_SCHED
568 new->tc_index
= old
->tc_index
;
569 #ifdef CONFIG_NET_CLS_ACT
570 new->tc_verd
= old
->tc_verd
;
573 new->vlan_tci
= old
->vlan_tci
;
575 skb_copy_secmark(new, old
);
579 * You should not add any new code to this function. Add it to
580 * __copy_skb_header above instead.
582 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
584 #define C(x) n->x = skb->x
586 n
->next
= n
->prev
= NULL
;
588 __copy_skb_header(n
, skb
);
593 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
596 n
->destructor
= NULL
;
602 atomic_set(&n
->users
, 1);
604 atomic_inc(&(skb_shinfo(skb
)->dataref
));
612 * skb_morph - morph one skb into another
613 * @dst: the skb to receive the contents
614 * @src: the skb to supply the contents
616 * This is identical to skb_clone except that the target skb is
617 * supplied by the user.
619 * The target skb is returned upon exit.
621 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
623 skb_release_all(dst
);
624 return __skb_clone(dst
, src
);
626 EXPORT_SYMBOL_GPL(skb_morph
);
628 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
629 * @skb: the skb to modify
630 * @gfp_mask: allocation priority
632 * This must be called on SKBTX_DEV_ZEROCOPY skb.
633 * It will copy all frags into kernel and drop the reference
634 * to userspace pages.
636 * If this function is called from an interrupt gfp_mask() must be
639 * Returns 0 on success or a negative error code on failure
640 * to allocate kernel memory to copy to.
642 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
645 int num_frags
= skb_shinfo(skb
)->nr_frags
;
646 struct page
*page
, *head
= NULL
;
647 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
649 for (i
= 0; i
< num_frags
; i
++) {
651 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
653 page
= alloc_page(GFP_ATOMIC
);
656 struct page
*next
= (struct page
*)head
->private;
662 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
663 memcpy(page_address(page
),
664 vaddr
+ f
->page_offset
, skb_frag_size(f
));
665 kunmap_skb_frag(vaddr
);
666 page
->private = (unsigned long)head
;
670 /* skb frags release userspace buffers */
671 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
672 skb_frag_unref(skb
, i
);
674 uarg
->callback(uarg
);
676 /* skb frags point to kernel buffers */
677 for (i
= skb_shinfo(skb
)->nr_frags
; i
> 0; i
--) {
678 __skb_fill_page_desc(skb
, i
-1, head
, 0,
679 skb_shinfo(skb
)->frags
[i
- 1].size
);
680 head
= (struct page
*)head
->private;
683 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
689 * skb_clone - duplicate an sk_buff
690 * @skb: buffer to clone
691 * @gfp_mask: allocation priority
693 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
694 * copies share the same packet data but not structure. The new
695 * buffer has a reference count of 1. If the allocation fails the
696 * function returns %NULL otherwise the new buffer is returned.
698 * If this function is called from an interrupt gfp_mask() must be
702 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
706 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
707 if (skb_copy_ubufs(skb
, gfp_mask
))
712 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
713 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
714 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
715 n
->fclone
= SKB_FCLONE_CLONE
;
716 atomic_inc(fclone_ref
);
718 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
722 kmemcheck_annotate_bitfield(n
, flags1
);
723 kmemcheck_annotate_bitfield(n
, flags2
);
724 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
727 return __skb_clone(n
, skb
);
729 EXPORT_SYMBOL(skb_clone
);
731 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
733 #ifndef NET_SKBUFF_DATA_USES_OFFSET
735 * Shift between the two data areas in bytes
737 unsigned long offset
= new->data
- old
->data
;
740 __copy_skb_header(new, old
);
742 #ifndef NET_SKBUFF_DATA_USES_OFFSET
743 /* {transport,network,mac}_header are relative to skb->head */
744 new->transport_header
+= offset
;
745 new->network_header
+= offset
;
746 if (skb_mac_header_was_set(new))
747 new->mac_header
+= offset
;
749 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
750 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
751 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
755 * skb_copy - create private copy of an sk_buff
756 * @skb: buffer to copy
757 * @gfp_mask: allocation priority
759 * Make a copy of both an &sk_buff and its data. This is used when the
760 * caller wishes to modify the data and needs a private copy of the
761 * data to alter. Returns %NULL on failure or the pointer to the buffer
762 * on success. The returned buffer has a reference count of 1.
764 * As by-product this function converts non-linear &sk_buff to linear
765 * one, so that &sk_buff becomes completely private and caller is allowed
766 * to modify all the data of returned buffer. This means that this
767 * function is not recommended for use in circumstances when only
768 * header is going to be modified. Use pskb_copy() instead.
771 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
773 int headerlen
= skb_headroom(skb
);
774 unsigned int size
= (skb_end_pointer(skb
) - skb
->head
) + skb
->data_len
;
775 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
780 /* Set the data pointer */
781 skb_reserve(n
, headerlen
);
782 /* Set the tail pointer and length */
783 skb_put(n
, skb
->len
);
785 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
788 copy_skb_header(n
, skb
);
791 EXPORT_SYMBOL(skb_copy
);
794 * pskb_copy - create copy of an sk_buff with private head.
795 * @skb: buffer to copy
796 * @gfp_mask: allocation priority
798 * Make a copy of both an &sk_buff and part of its data, located
799 * in header. Fragmented data remain shared. This is used when
800 * the caller wishes to modify only header of &sk_buff and needs
801 * private copy of the header to alter. Returns %NULL on failure
802 * or the pointer to the buffer on success.
803 * The returned buffer has a reference count of 1.
806 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
808 unsigned int size
= skb_end_pointer(skb
) - skb
->head
;
809 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
814 /* Set the data pointer */
815 skb_reserve(n
, skb_headroom(skb
));
816 /* Set the tail pointer and length */
817 skb_put(n
, skb_headlen(skb
));
819 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
821 n
->truesize
+= skb
->data_len
;
822 n
->data_len
= skb
->data_len
;
825 if (skb_shinfo(skb
)->nr_frags
) {
828 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
829 if (skb_copy_ubufs(skb
, gfp_mask
)) {
835 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
836 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
837 skb_frag_ref(skb
, i
);
839 skb_shinfo(n
)->nr_frags
= i
;
842 if (skb_has_frag_list(skb
)) {
843 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
844 skb_clone_fraglist(n
);
847 copy_skb_header(n
, skb
);
851 EXPORT_SYMBOL(pskb_copy
);
854 * pskb_expand_head - reallocate header of &sk_buff
855 * @skb: buffer to reallocate
856 * @nhead: room to add at head
857 * @ntail: room to add at tail
858 * @gfp_mask: allocation priority
860 * Expands (or creates identical copy, if &nhead and &ntail are zero)
861 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
862 * reference count of 1. Returns zero in the case of success or error,
863 * if expansion failed. In the last case, &sk_buff is not changed.
865 * All the pointers pointing into skb header may change and must be
866 * reloaded after call to this function.
869 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
874 int size
= nhead
+ (skb_end_pointer(skb
) - skb
->head
) + ntail
;
883 size
= SKB_DATA_ALIGN(size
);
885 /* Check if we can avoid taking references on fragments if we own
886 * the last reference on skb->head. (see skb_release_data())
891 int delta
= skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1;
892 fastpath
= atomic_read(&skb_shinfo(skb
)->dataref
) == delta
;
896 size
+ sizeof(struct skb_shared_info
) <= ksize(skb
->head
)) {
897 memmove(skb
->head
+ size
, skb_shinfo(skb
),
898 offsetof(struct skb_shared_info
,
899 frags
[skb_shinfo(skb
)->nr_frags
]));
900 memmove(skb
->head
+ nhead
, skb
->head
,
901 skb_tail_pointer(skb
) - skb
->head
);
906 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
910 /* Copy only real data... and, alas, header. This should be
911 * optimized for the cases when header is void.
913 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
915 memcpy((struct skb_shared_info
*)(data
+ size
),
917 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
922 /* copy this zero copy skb frags */
923 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
924 if (skb_copy_ubufs(skb
, gfp_mask
))
927 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
928 skb_frag_ref(skb
, i
);
930 if (skb_has_frag_list(skb
))
931 skb_clone_fraglist(skb
);
933 skb_release_data(skb
);
935 off
= (data
+ nhead
) - skb
->head
;
940 #ifdef NET_SKBUFF_DATA_USES_OFFSET
944 skb
->end
= skb
->head
+ size
;
946 /* {transport,network,mac}_header and tail are relative to skb->head */
948 skb
->transport_header
+= off
;
949 skb
->network_header
+= off
;
950 if (skb_mac_header_was_set(skb
))
951 skb
->mac_header
+= off
;
952 /* Only adjust this if it actually is csum_start rather than csum */
953 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
954 skb
->csum_start
+= nhead
;
958 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
966 EXPORT_SYMBOL(pskb_expand_head
);
968 /* Make private copy of skb with writable head and some headroom */
970 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
972 struct sk_buff
*skb2
;
973 int delta
= headroom
- skb_headroom(skb
);
976 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
978 skb2
= skb_clone(skb
, GFP_ATOMIC
);
979 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
987 EXPORT_SYMBOL(skb_realloc_headroom
);
990 * skb_copy_expand - copy and expand sk_buff
991 * @skb: buffer to copy
992 * @newheadroom: new free bytes at head
993 * @newtailroom: new free bytes at tail
994 * @gfp_mask: allocation priority
996 * Make a copy of both an &sk_buff and its data and while doing so
997 * allocate additional space.
999 * This is used when the caller wishes to modify the data and needs a
1000 * private copy of the data to alter as well as more space for new fields.
1001 * Returns %NULL on failure or the pointer to the buffer
1002 * on success. The returned buffer has a reference count of 1.
1004 * You must pass %GFP_ATOMIC as the allocation priority if this function
1005 * is called from an interrupt.
1007 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1008 int newheadroom
, int newtailroom
,
1012 * Allocate the copy buffer
1014 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1016 int oldheadroom
= skb_headroom(skb
);
1017 int head_copy_len
, head_copy_off
;
1023 skb_reserve(n
, newheadroom
);
1025 /* Set the tail pointer and length */
1026 skb_put(n
, skb
->len
);
1028 head_copy_len
= oldheadroom
;
1030 if (newheadroom
<= head_copy_len
)
1031 head_copy_len
= newheadroom
;
1033 head_copy_off
= newheadroom
- head_copy_len
;
1035 /* Copy the linear header and data. */
1036 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1037 skb
->len
+ head_copy_len
))
1040 copy_skb_header(n
, skb
);
1042 off
= newheadroom
- oldheadroom
;
1043 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1044 n
->csum_start
+= off
;
1045 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1046 n
->transport_header
+= off
;
1047 n
->network_header
+= off
;
1048 if (skb_mac_header_was_set(skb
))
1049 n
->mac_header
+= off
;
1054 EXPORT_SYMBOL(skb_copy_expand
);
1057 * skb_pad - zero pad the tail of an skb
1058 * @skb: buffer to pad
1059 * @pad: space to pad
1061 * Ensure that a buffer is followed by a padding area that is zero
1062 * filled. Used by network drivers which may DMA or transfer data
1063 * beyond the buffer end onto the wire.
1065 * May return error in out of memory cases. The skb is freed on error.
1068 int skb_pad(struct sk_buff
*skb
, int pad
)
1073 /* If the skbuff is non linear tailroom is always zero.. */
1074 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1075 memset(skb
->data
+skb
->len
, 0, pad
);
1079 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1080 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1081 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1086 /* FIXME: The use of this function with non-linear skb's really needs
1089 err
= skb_linearize(skb
);
1093 memset(skb
->data
+ skb
->len
, 0, pad
);
1100 EXPORT_SYMBOL(skb_pad
);
1103 * skb_put - add data to a buffer
1104 * @skb: buffer to use
1105 * @len: amount of data to add
1107 * This function extends the used data area of the buffer. If this would
1108 * exceed the total buffer size the kernel will panic. A pointer to the
1109 * first byte of the extra data is returned.
1111 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1113 unsigned char *tmp
= skb_tail_pointer(skb
);
1114 SKB_LINEAR_ASSERT(skb
);
1117 if (unlikely(skb
->tail
> skb
->end
))
1118 skb_over_panic(skb
, len
, __builtin_return_address(0));
1121 EXPORT_SYMBOL(skb_put
);
1124 * skb_push - add data to the start of a buffer
1125 * @skb: buffer to use
1126 * @len: amount of data to add
1128 * This function extends the used data area of the buffer at the buffer
1129 * start. If this would exceed the total buffer headroom the kernel will
1130 * panic. A pointer to the first byte of the extra data is returned.
1132 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1136 if (unlikely(skb
->data
<skb
->head
))
1137 skb_under_panic(skb
, len
, __builtin_return_address(0));
1140 EXPORT_SYMBOL(skb_push
);
1143 * skb_pull - remove data from the start of a buffer
1144 * @skb: buffer to use
1145 * @len: amount of data to remove
1147 * This function removes data from the start of a buffer, returning
1148 * the memory to the headroom. A pointer to the next data in the buffer
1149 * is returned. Once the data has been pulled future pushes will overwrite
1152 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1154 return skb_pull_inline(skb
, len
);
1156 EXPORT_SYMBOL(skb_pull
);
1159 * skb_trim - remove end from a buffer
1160 * @skb: buffer to alter
1163 * Cut the length of a buffer down by removing data from the tail. If
1164 * the buffer is already under the length specified it is not modified.
1165 * The skb must be linear.
1167 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1170 __skb_trim(skb
, len
);
1172 EXPORT_SYMBOL(skb_trim
);
1174 /* Trims skb to length len. It can change skb pointers.
1177 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1179 struct sk_buff
**fragp
;
1180 struct sk_buff
*frag
;
1181 int offset
= skb_headlen(skb
);
1182 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1186 if (skb_cloned(skb
) &&
1187 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1194 for (; i
< nfrags
; i
++) {
1195 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1202 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1205 skb_shinfo(skb
)->nr_frags
= i
;
1207 for (; i
< nfrags
; i
++)
1208 skb_frag_unref(skb
, i
);
1210 if (skb_has_frag_list(skb
))
1211 skb_drop_fraglist(skb
);
1215 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1216 fragp
= &frag
->next
) {
1217 int end
= offset
+ frag
->len
;
1219 if (skb_shared(frag
)) {
1220 struct sk_buff
*nfrag
;
1222 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1223 if (unlikely(!nfrag
))
1226 nfrag
->next
= frag
->next
;
1238 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1242 skb_drop_list(&frag
->next
);
1247 if (len
> skb_headlen(skb
)) {
1248 skb
->data_len
-= skb
->len
- len
;
1253 skb_set_tail_pointer(skb
, len
);
1258 EXPORT_SYMBOL(___pskb_trim
);
1261 * __pskb_pull_tail - advance tail of skb header
1262 * @skb: buffer to reallocate
1263 * @delta: number of bytes to advance tail
1265 * The function makes a sense only on a fragmented &sk_buff,
1266 * it expands header moving its tail forward and copying necessary
1267 * data from fragmented part.
1269 * &sk_buff MUST have reference count of 1.
1271 * Returns %NULL (and &sk_buff does not change) if pull failed
1272 * or value of new tail of skb in the case of success.
1274 * All the pointers pointing into skb header may change and must be
1275 * reloaded after call to this function.
1278 /* Moves tail of skb head forward, copying data from fragmented part,
1279 * when it is necessary.
1280 * 1. It may fail due to malloc failure.
1281 * 2. It may change skb pointers.
1283 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1285 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1287 /* If skb has not enough free space at tail, get new one
1288 * plus 128 bytes for future expansions. If we have enough
1289 * room at tail, reallocate without expansion only if skb is cloned.
1291 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1293 if (eat
> 0 || skb_cloned(skb
)) {
1294 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1299 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1302 /* Optimization: no fragments, no reasons to preestimate
1303 * size of pulled pages. Superb.
1305 if (!skb_has_frag_list(skb
))
1308 /* Estimate size of pulled pages. */
1310 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1311 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1318 /* If we need update frag list, we are in troubles.
1319 * Certainly, it possible to add an offset to skb data,
1320 * but taking into account that pulling is expected to
1321 * be very rare operation, it is worth to fight against
1322 * further bloating skb head and crucify ourselves here instead.
1323 * Pure masohism, indeed. 8)8)
1326 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1327 struct sk_buff
*clone
= NULL
;
1328 struct sk_buff
*insp
= NULL
;
1333 if (list
->len
<= eat
) {
1334 /* Eaten as whole. */
1339 /* Eaten partially. */
1341 if (skb_shared(list
)) {
1342 /* Sucks! We need to fork list. :-( */
1343 clone
= skb_clone(list
, GFP_ATOMIC
);
1349 /* This may be pulled without
1353 if (!pskb_pull(list
, eat
)) {
1361 /* Free pulled out fragments. */
1362 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1363 skb_shinfo(skb
)->frag_list
= list
->next
;
1366 /* And insert new clone at head. */
1369 skb_shinfo(skb
)->frag_list
= clone
;
1372 /* Success! Now we may commit changes to skb data. */
1377 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1378 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1381 skb_frag_unref(skb
, i
);
1384 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1386 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1387 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1393 skb_shinfo(skb
)->nr_frags
= k
;
1396 skb
->data_len
-= delta
;
1398 return skb_tail_pointer(skb
);
1400 EXPORT_SYMBOL(__pskb_pull_tail
);
1403 * skb_copy_bits - copy bits from skb to kernel buffer
1405 * @offset: offset in source
1406 * @to: destination buffer
1407 * @len: number of bytes to copy
1409 * Copy the specified number of bytes from the source skb to the
1410 * destination buffer.
1413 * If its prototype is ever changed,
1414 * check arch/{*}/net/{*}.S files,
1415 * since it is called from BPF assembly code.
1417 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1419 int start
= skb_headlen(skb
);
1420 struct sk_buff
*frag_iter
;
1423 if (offset
> (int)skb
->len
- len
)
1427 if ((copy
= start
- offset
) > 0) {
1430 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1431 if ((len
-= copy
) == 0)
1437 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1440 WARN_ON(start
> offset
+ len
);
1442 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1443 if ((copy
= end
- offset
) > 0) {
1449 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1451 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1452 offset
- start
, copy
);
1453 kunmap_skb_frag(vaddr
);
1455 if ((len
-= copy
) == 0)
1463 skb_walk_frags(skb
, frag_iter
) {
1466 WARN_ON(start
> offset
+ len
);
1468 end
= start
+ frag_iter
->len
;
1469 if ((copy
= end
- offset
) > 0) {
1472 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1474 if ((len
-= copy
) == 0)
1488 EXPORT_SYMBOL(skb_copy_bits
);
1491 * Callback from splice_to_pipe(), if we need to release some pages
1492 * at the end of the spd in case we error'ed out in filling the pipe.
1494 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1496 put_page(spd
->pages
[i
]);
1499 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1500 unsigned int *offset
,
1501 struct sk_buff
*skb
, struct sock
*sk
)
1503 struct page
*p
= sk
->sk_sndmsg_page
;
1508 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1512 off
= sk
->sk_sndmsg_off
= 0;
1513 /* hold one ref to this page until it's full */
1517 off
= sk
->sk_sndmsg_off
;
1518 mlen
= PAGE_SIZE
- off
;
1519 if (mlen
< 64 && mlen
< *len
) {
1524 *len
= min_t(unsigned int, *len
, mlen
);
1527 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1528 sk
->sk_sndmsg_off
+= *len
;
1536 * Fill page/offset/length into spd, if it can hold more pages.
1538 static inline int spd_fill_page(struct splice_pipe_desc
*spd
,
1539 struct pipe_inode_info
*pipe
, struct page
*page
,
1540 unsigned int *len
, unsigned int offset
,
1541 struct sk_buff
*skb
, int linear
,
1544 if (unlikely(spd
->nr_pages
== pipe
->buffers
))
1548 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1554 spd
->pages
[spd
->nr_pages
] = page
;
1555 spd
->partial
[spd
->nr_pages
].len
= *len
;
1556 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1562 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1563 unsigned int *plen
, unsigned int off
)
1568 n
= *poff
/ PAGE_SIZE
;
1570 *page
= nth_page(*page
, n
);
1572 *poff
= *poff
% PAGE_SIZE
;
1576 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1577 unsigned int plen
, unsigned int *off
,
1578 unsigned int *len
, struct sk_buff
*skb
,
1579 struct splice_pipe_desc
*spd
, int linear
,
1581 struct pipe_inode_info
*pipe
)
1586 /* skip this segment if already processed */
1592 /* ignore any bits we already processed */
1594 __segment_seek(&page
, &poff
, &plen
, *off
);
1599 unsigned int flen
= min(*len
, plen
);
1601 /* the linear region may spread across several pages */
1602 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1604 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1607 __segment_seek(&page
, &poff
, &plen
, flen
);
1610 } while (*len
&& plen
);
1616 * Map linear and fragment data from the skb to spd. It reports failure if the
1617 * pipe is full or if we already spliced the requested length.
1619 static int __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1620 unsigned int *offset
, unsigned int *len
,
1621 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1626 * map the linear part
1628 if (__splice_segment(virt_to_page(skb
->data
),
1629 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1631 offset
, len
, skb
, spd
, 1, sk
, pipe
))
1635 * then map the fragments
1637 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1638 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1640 if (__splice_segment(skb_frag_page(f
),
1641 f
->page_offset
, skb_frag_size(f
),
1642 offset
, len
, skb
, spd
, 0, sk
, pipe
))
1650 * Map data from the skb to a pipe. Should handle both the linear part,
1651 * the fragments, and the frag list. It does NOT handle frag lists within
1652 * the frag list, if such a thing exists. We'd probably need to recurse to
1653 * handle that cleanly.
1655 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1656 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1659 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1660 struct page
*pages
[PIPE_DEF_BUFFERS
];
1661 struct splice_pipe_desc spd
= {
1665 .ops
= &sock_pipe_buf_ops
,
1666 .spd_release
= sock_spd_release
,
1668 struct sk_buff
*frag_iter
;
1669 struct sock
*sk
= skb
->sk
;
1672 if (splice_grow_spd(pipe
, &spd
))
1676 * __skb_splice_bits() only fails if the output has no room left,
1677 * so no point in going over the frag_list for the error case.
1679 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1685 * now see if we have a frag_list to map
1687 skb_walk_frags(skb
, frag_iter
) {
1690 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1697 * Drop the socket lock, otherwise we have reverse
1698 * locking dependencies between sk_lock and i_mutex
1699 * here as compared to sendfile(). We enter here
1700 * with the socket lock held, and splice_to_pipe() will
1701 * grab the pipe inode lock. For sendfile() emulation,
1702 * we call into ->sendpage() with the i_mutex lock held
1703 * and networking will grab the socket lock.
1706 ret
= splice_to_pipe(pipe
, &spd
);
1710 splice_shrink_spd(pipe
, &spd
);
1715 * skb_store_bits - store bits from kernel buffer to skb
1716 * @skb: destination buffer
1717 * @offset: offset in destination
1718 * @from: source buffer
1719 * @len: number of bytes to copy
1721 * Copy the specified number of bytes from the source buffer to the
1722 * destination skb. This function handles all the messy bits of
1723 * traversing fragment lists and such.
1726 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1728 int start
= skb_headlen(skb
);
1729 struct sk_buff
*frag_iter
;
1732 if (offset
> (int)skb
->len
- len
)
1735 if ((copy
= start
- offset
) > 0) {
1738 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1739 if ((len
-= copy
) == 0)
1745 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1746 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1749 WARN_ON(start
> offset
+ len
);
1751 end
= start
+ skb_frag_size(frag
);
1752 if ((copy
= end
- offset
) > 0) {
1758 vaddr
= kmap_skb_frag(frag
);
1759 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1761 kunmap_skb_frag(vaddr
);
1763 if ((len
-= copy
) == 0)
1771 skb_walk_frags(skb
, frag_iter
) {
1774 WARN_ON(start
> offset
+ len
);
1776 end
= start
+ frag_iter
->len
;
1777 if ((copy
= end
- offset
) > 0) {
1780 if (skb_store_bits(frag_iter
, offset
- start
,
1783 if ((len
-= copy
) == 0)
1796 EXPORT_SYMBOL(skb_store_bits
);
1798 /* Checksum skb data. */
1800 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1801 int len
, __wsum csum
)
1803 int start
= skb_headlen(skb
);
1804 int i
, copy
= start
- offset
;
1805 struct sk_buff
*frag_iter
;
1808 /* Checksum header. */
1812 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1813 if ((len
-= copy
) == 0)
1819 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1822 WARN_ON(start
> offset
+ len
);
1824 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1825 if ((copy
= end
- offset
) > 0) {
1828 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1832 vaddr
= kmap_skb_frag(frag
);
1833 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1834 offset
- start
, copy
, 0);
1835 kunmap_skb_frag(vaddr
);
1836 csum
= csum_block_add(csum
, csum2
, pos
);
1845 skb_walk_frags(skb
, frag_iter
) {
1848 WARN_ON(start
> offset
+ len
);
1850 end
= start
+ frag_iter
->len
;
1851 if ((copy
= end
- offset
) > 0) {
1855 csum2
= skb_checksum(frag_iter
, offset
- start
,
1857 csum
= csum_block_add(csum
, csum2
, pos
);
1858 if ((len
-= copy
) == 0)
1869 EXPORT_SYMBOL(skb_checksum
);
1871 /* Both of above in one bottle. */
1873 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1874 u8
*to
, int len
, __wsum csum
)
1876 int start
= skb_headlen(skb
);
1877 int i
, copy
= start
- offset
;
1878 struct sk_buff
*frag_iter
;
1885 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1887 if ((len
-= copy
) == 0)
1894 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1897 WARN_ON(start
> offset
+ len
);
1899 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1900 if ((copy
= end
- offset
) > 0) {
1903 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1907 vaddr
= kmap_skb_frag(frag
);
1908 csum2
= csum_partial_copy_nocheck(vaddr
+
1912 kunmap_skb_frag(vaddr
);
1913 csum
= csum_block_add(csum
, csum2
, pos
);
1923 skb_walk_frags(skb
, frag_iter
) {
1927 WARN_ON(start
> offset
+ len
);
1929 end
= start
+ frag_iter
->len
;
1930 if ((copy
= end
- offset
) > 0) {
1933 csum2
= skb_copy_and_csum_bits(frag_iter
,
1936 csum
= csum_block_add(csum
, csum2
, pos
);
1937 if ((len
-= copy
) == 0)
1948 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1950 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1955 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1956 csstart
= skb_checksum_start_offset(skb
);
1958 csstart
= skb_headlen(skb
);
1960 BUG_ON(csstart
> skb_headlen(skb
));
1962 skb_copy_from_linear_data(skb
, to
, csstart
);
1965 if (csstart
!= skb
->len
)
1966 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1967 skb
->len
- csstart
, 0);
1969 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1970 long csstuff
= csstart
+ skb
->csum_offset
;
1972 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1975 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1978 * skb_dequeue - remove from the head of the queue
1979 * @list: list to dequeue from
1981 * Remove the head of the list. The list lock is taken so the function
1982 * may be used safely with other locking list functions. The head item is
1983 * returned or %NULL if the list is empty.
1986 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1988 unsigned long flags
;
1989 struct sk_buff
*result
;
1991 spin_lock_irqsave(&list
->lock
, flags
);
1992 result
= __skb_dequeue(list
);
1993 spin_unlock_irqrestore(&list
->lock
, flags
);
1996 EXPORT_SYMBOL(skb_dequeue
);
1999 * skb_dequeue_tail - remove from the tail of the queue
2000 * @list: list to dequeue from
2002 * Remove the tail of the list. The list lock is taken so the function
2003 * may be used safely with other locking list functions. The tail item is
2004 * returned or %NULL if the list is empty.
2006 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2008 unsigned long flags
;
2009 struct sk_buff
*result
;
2011 spin_lock_irqsave(&list
->lock
, flags
);
2012 result
= __skb_dequeue_tail(list
);
2013 spin_unlock_irqrestore(&list
->lock
, flags
);
2016 EXPORT_SYMBOL(skb_dequeue_tail
);
2019 * skb_queue_purge - empty a list
2020 * @list: list to empty
2022 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2023 * the list and one reference dropped. This function takes the list
2024 * lock and is atomic with respect to other list locking functions.
2026 void skb_queue_purge(struct sk_buff_head
*list
)
2028 struct sk_buff
*skb
;
2029 while ((skb
= skb_dequeue(list
)) != NULL
)
2032 EXPORT_SYMBOL(skb_queue_purge
);
2035 * skb_queue_head - queue a buffer at the list head
2036 * @list: list to use
2037 * @newsk: buffer to queue
2039 * Queue a buffer at the start of the list. This function takes the
2040 * list lock and can be used safely with other locking &sk_buff functions
2043 * A buffer cannot be placed on two lists at the same time.
2045 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2047 unsigned long flags
;
2049 spin_lock_irqsave(&list
->lock
, flags
);
2050 __skb_queue_head(list
, newsk
);
2051 spin_unlock_irqrestore(&list
->lock
, flags
);
2053 EXPORT_SYMBOL(skb_queue_head
);
2056 * skb_queue_tail - queue a buffer at the list tail
2057 * @list: list to use
2058 * @newsk: buffer to queue
2060 * Queue a buffer at the tail of the list. This function takes the
2061 * list lock and can be used safely with other locking &sk_buff functions
2064 * A buffer cannot be placed on two lists at the same time.
2066 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2068 unsigned long flags
;
2070 spin_lock_irqsave(&list
->lock
, flags
);
2071 __skb_queue_tail(list
, newsk
);
2072 spin_unlock_irqrestore(&list
->lock
, flags
);
2074 EXPORT_SYMBOL(skb_queue_tail
);
2077 * skb_unlink - remove a buffer from a list
2078 * @skb: buffer to remove
2079 * @list: list to use
2081 * Remove a packet from a list. The list locks are taken and this
2082 * function is atomic with respect to other list locked calls
2084 * You must know what list the SKB is on.
2086 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2088 unsigned long flags
;
2090 spin_lock_irqsave(&list
->lock
, flags
);
2091 __skb_unlink(skb
, list
);
2092 spin_unlock_irqrestore(&list
->lock
, flags
);
2094 EXPORT_SYMBOL(skb_unlink
);
2097 * skb_append - append a buffer
2098 * @old: buffer to insert after
2099 * @newsk: buffer to insert
2100 * @list: list to use
2102 * Place a packet after a given packet in a list. The list locks are taken
2103 * and this function is atomic with respect to other list locked calls.
2104 * A buffer cannot be placed on two lists at the same time.
2106 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2108 unsigned long flags
;
2110 spin_lock_irqsave(&list
->lock
, flags
);
2111 __skb_queue_after(list
, old
, newsk
);
2112 spin_unlock_irqrestore(&list
->lock
, flags
);
2114 EXPORT_SYMBOL(skb_append
);
2117 * skb_insert - insert a buffer
2118 * @old: buffer to insert before
2119 * @newsk: buffer to insert
2120 * @list: list to use
2122 * Place a packet before a given packet in a list. The list locks are
2123 * taken and this function is atomic with respect to other list locked
2126 * A buffer cannot be placed on two lists at the same time.
2128 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2130 unsigned long flags
;
2132 spin_lock_irqsave(&list
->lock
, flags
);
2133 __skb_insert(newsk
, old
->prev
, old
, list
);
2134 spin_unlock_irqrestore(&list
->lock
, flags
);
2136 EXPORT_SYMBOL(skb_insert
);
2138 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2139 struct sk_buff
* skb1
,
2140 const u32 len
, const int pos
)
2144 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2146 /* And move data appendix as is. */
2147 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2148 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2150 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2151 skb_shinfo(skb
)->nr_frags
= 0;
2152 skb1
->data_len
= skb
->data_len
;
2153 skb1
->len
+= skb1
->data_len
;
2156 skb_set_tail_pointer(skb
, len
);
2159 static inline void skb_split_no_header(struct sk_buff
*skb
,
2160 struct sk_buff
* skb1
,
2161 const u32 len
, int pos
)
2164 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2166 skb_shinfo(skb
)->nr_frags
= 0;
2167 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2169 skb
->data_len
= len
- pos
;
2171 for (i
= 0; i
< nfrags
; i
++) {
2172 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2174 if (pos
+ size
> len
) {
2175 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2179 * We have two variants in this case:
2180 * 1. Move all the frag to the second
2181 * part, if it is possible. F.e.
2182 * this approach is mandatory for TUX,
2183 * where splitting is expensive.
2184 * 2. Split is accurately. We make this.
2186 skb_frag_ref(skb
, i
);
2187 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2188 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2189 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2190 skb_shinfo(skb
)->nr_frags
++;
2194 skb_shinfo(skb
)->nr_frags
++;
2197 skb_shinfo(skb1
)->nr_frags
= k
;
2201 * skb_split - Split fragmented skb to two parts at length len.
2202 * @skb: the buffer to split
2203 * @skb1: the buffer to receive the second part
2204 * @len: new length for skb
2206 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2208 int pos
= skb_headlen(skb
);
2210 if (len
< pos
) /* Split line is inside header. */
2211 skb_split_inside_header(skb
, skb1
, len
, pos
);
2212 else /* Second chunk has no header, nothing to copy. */
2213 skb_split_no_header(skb
, skb1
, len
, pos
);
2215 EXPORT_SYMBOL(skb_split
);
2217 /* Shifting from/to a cloned skb is a no-go.
2219 * Caller cannot keep skb_shinfo related pointers past calling here!
2221 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2223 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2227 * skb_shift - Shifts paged data partially from skb to another
2228 * @tgt: buffer into which tail data gets added
2229 * @skb: buffer from which the paged data comes from
2230 * @shiftlen: shift up to this many bytes
2232 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2233 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2234 * It's up to caller to free skb if everything was shifted.
2236 * If @tgt runs out of frags, the whole operation is aborted.
2238 * Skb cannot include anything else but paged data while tgt is allowed
2239 * to have non-paged data as well.
2241 * TODO: full sized shift could be optimized but that would need
2242 * specialized skb free'er to handle frags without up-to-date nr_frags.
2244 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2246 int from
, to
, merge
, todo
;
2247 struct skb_frag_struct
*fragfrom
, *fragto
;
2249 BUG_ON(shiftlen
> skb
->len
);
2250 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2254 to
= skb_shinfo(tgt
)->nr_frags
;
2255 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2257 /* Actual merge is delayed until the point when we know we can
2258 * commit all, so that we don't have to undo partial changes
2261 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2262 fragfrom
->page_offset
)) {
2267 todo
-= skb_frag_size(fragfrom
);
2269 if (skb_prepare_for_shift(skb
) ||
2270 skb_prepare_for_shift(tgt
))
2273 /* All previous frag pointers might be stale! */
2274 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2275 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2277 skb_frag_size_add(fragto
, shiftlen
);
2278 skb_frag_size_sub(fragfrom
, shiftlen
);
2279 fragfrom
->page_offset
+= shiftlen
;
2287 /* Skip full, not-fitting skb to avoid expensive operations */
2288 if ((shiftlen
== skb
->len
) &&
2289 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2292 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2295 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2296 if (to
== MAX_SKB_FRAGS
)
2299 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2300 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2302 if (todo
>= skb_frag_size(fragfrom
)) {
2303 *fragto
= *fragfrom
;
2304 todo
-= skb_frag_size(fragfrom
);
2309 __skb_frag_ref(fragfrom
);
2310 fragto
->page
= fragfrom
->page
;
2311 fragto
->page_offset
= fragfrom
->page_offset
;
2312 skb_frag_size_set(fragto
, todo
);
2314 fragfrom
->page_offset
+= todo
;
2315 skb_frag_size_sub(fragfrom
, todo
);
2323 /* Ready to "commit" this state change to tgt */
2324 skb_shinfo(tgt
)->nr_frags
= to
;
2327 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2328 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2330 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2331 __skb_frag_unref(fragfrom
);
2334 /* Reposition in the original skb */
2336 while (from
< skb_shinfo(skb
)->nr_frags
)
2337 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2338 skb_shinfo(skb
)->nr_frags
= to
;
2340 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2343 /* Most likely the tgt won't ever need its checksum anymore, skb on
2344 * the other hand might need it if it needs to be resent
2346 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2347 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2349 /* Yak, is it really working this way? Some helper please? */
2350 skb
->len
-= shiftlen
;
2351 skb
->data_len
-= shiftlen
;
2352 skb
->truesize
-= shiftlen
;
2353 tgt
->len
+= shiftlen
;
2354 tgt
->data_len
+= shiftlen
;
2355 tgt
->truesize
+= shiftlen
;
2361 * skb_prepare_seq_read - Prepare a sequential read of skb data
2362 * @skb: the buffer to read
2363 * @from: lower offset of data to be read
2364 * @to: upper offset of data to be read
2365 * @st: state variable
2367 * Initializes the specified state variable. Must be called before
2368 * invoking skb_seq_read() for the first time.
2370 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2371 unsigned int to
, struct skb_seq_state
*st
)
2373 st
->lower_offset
= from
;
2374 st
->upper_offset
= to
;
2375 st
->root_skb
= st
->cur_skb
= skb
;
2376 st
->frag_idx
= st
->stepped_offset
= 0;
2377 st
->frag_data
= NULL
;
2379 EXPORT_SYMBOL(skb_prepare_seq_read
);
2382 * skb_seq_read - Sequentially read skb data
2383 * @consumed: number of bytes consumed by the caller so far
2384 * @data: destination pointer for data to be returned
2385 * @st: state variable
2387 * Reads a block of skb data at &consumed relative to the
2388 * lower offset specified to skb_prepare_seq_read(). Assigns
2389 * the head of the data block to &data and returns the length
2390 * of the block or 0 if the end of the skb data or the upper
2391 * offset has been reached.
2393 * The caller is not required to consume all of the data
2394 * returned, i.e. &consumed is typically set to the number
2395 * of bytes already consumed and the next call to
2396 * skb_seq_read() will return the remaining part of the block.
2398 * Note 1: The size of each block of data returned can be arbitrary,
2399 * this limitation is the cost for zerocopy seqeuental
2400 * reads of potentially non linear data.
2402 * Note 2: Fragment lists within fragments are not implemented
2403 * at the moment, state->root_skb could be replaced with
2404 * a stack for this purpose.
2406 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2407 struct skb_seq_state
*st
)
2409 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2412 if (unlikely(abs_offset
>= st
->upper_offset
))
2416 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2418 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2419 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2420 return block_limit
- abs_offset
;
2423 if (st
->frag_idx
== 0 && !st
->frag_data
)
2424 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2426 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2427 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2428 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2430 if (abs_offset
< block_limit
) {
2432 st
->frag_data
= kmap_skb_frag(frag
);
2434 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2435 (abs_offset
- st
->stepped_offset
);
2437 return block_limit
- abs_offset
;
2440 if (st
->frag_data
) {
2441 kunmap_skb_frag(st
->frag_data
);
2442 st
->frag_data
= NULL
;
2446 st
->stepped_offset
+= skb_frag_size(frag
);
2449 if (st
->frag_data
) {
2450 kunmap_skb_frag(st
->frag_data
);
2451 st
->frag_data
= NULL
;
2454 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2455 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2458 } else if (st
->cur_skb
->next
) {
2459 st
->cur_skb
= st
->cur_skb
->next
;
2466 EXPORT_SYMBOL(skb_seq_read
);
2469 * skb_abort_seq_read - Abort a sequential read of skb data
2470 * @st: state variable
2472 * Must be called if skb_seq_read() was not called until it
2475 void skb_abort_seq_read(struct skb_seq_state
*st
)
2478 kunmap_skb_frag(st
->frag_data
);
2480 EXPORT_SYMBOL(skb_abort_seq_read
);
2482 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2484 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2485 struct ts_config
*conf
,
2486 struct ts_state
*state
)
2488 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2491 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2493 skb_abort_seq_read(TS_SKB_CB(state
));
2497 * skb_find_text - Find a text pattern in skb data
2498 * @skb: the buffer to look in
2499 * @from: search offset
2501 * @config: textsearch configuration
2502 * @state: uninitialized textsearch state variable
2504 * Finds a pattern in the skb data according to the specified
2505 * textsearch configuration. Use textsearch_next() to retrieve
2506 * subsequent occurrences of the pattern. Returns the offset
2507 * to the first occurrence or UINT_MAX if no match was found.
2509 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2510 unsigned int to
, struct ts_config
*config
,
2511 struct ts_state
*state
)
2515 config
->get_next_block
= skb_ts_get_next_block
;
2516 config
->finish
= skb_ts_finish
;
2518 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2520 ret
= textsearch_find(config
, state
);
2521 return (ret
<= to
- from
? ret
: UINT_MAX
);
2523 EXPORT_SYMBOL(skb_find_text
);
2526 * skb_append_datato_frags: - append the user data to a skb
2527 * @sk: sock structure
2528 * @skb: skb structure to be appened with user data.
2529 * @getfrag: call back function to be used for getting the user data
2530 * @from: pointer to user message iov
2531 * @length: length of the iov message
2533 * Description: This procedure append the user data in the fragment part
2534 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2536 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2537 int (*getfrag
)(void *from
, char *to
, int offset
,
2538 int len
, int odd
, struct sk_buff
*skb
),
2539 void *from
, int length
)
2542 skb_frag_t
*frag
= NULL
;
2543 struct page
*page
= NULL
;
2549 /* Return error if we don't have space for new frag */
2550 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2551 if (frg_cnt
>= MAX_SKB_FRAGS
)
2554 /* allocate a new page for next frag */
2555 page
= alloc_pages(sk
->sk_allocation
, 0);
2557 /* If alloc_page fails just return failure and caller will
2558 * free previous allocated pages by doing kfree_skb()
2563 /* initialize the next frag */
2564 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2565 skb
->truesize
+= PAGE_SIZE
;
2566 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2568 /* get the new initialized frag */
2569 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2570 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2572 /* copy the user data to page */
2573 left
= PAGE_SIZE
- frag
->page_offset
;
2574 copy
= (length
> left
)? left
: length
;
2576 ret
= getfrag(from
, skb_frag_address(frag
) + skb_frag_size(frag
),
2577 offset
, copy
, 0, skb
);
2581 /* copy was successful so update the size parameters */
2582 skb_frag_size_add(frag
, copy
);
2584 skb
->data_len
+= copy
;
2588 } while (length
> 0);
2592 EXPORT_SYMBOL(skb_append_datato_frags
);
2595 * skb_pull_rcsum - pull skb and update receive checksum
2596 * @skb: buffer to update
2597 * @len: length of data pulled
2599 * This function performs an skb_pull on the packet and updates
2600 * the CHECKSUM_COMPLETE checksum. It should be used on
2601 * receive path processing instead of skb_pull unless you know
2602 * that the checksum difference is zero (e.g., a valid IP header)
2603 * or you are setting ip_summed to CHECKSUM_NONE.
2605 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2607 BUG_ON(len
> skb
->len
);
2609 BUG_ON(skb
->len
< skb
->data_len
);
2610 skb_postpull_rcsum(skb
, skb
->data
, len
);
2611 return skb
->data
+= len
;
2613 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2616 * skb_segment - Perform protocol segmentation on skb.
2617 * @skb: buffer to segment
2618 * @features: features for the output path (see dev->features)
2620 * This function performs segmentation on the given skb. It returns
2621 * a pointer to the first in a list of new skbs for the segments.
2622 * In case of error it returns ERR_PTR(err).
2624 struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
)
2626 struct sk_buff
*segs
= NULL
;
2627 struct sk_buff
*tail
= NULL
;
2628 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2629 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2630 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2631 unsigned int offset
= doffset
;
2632 unsigned int headroom
;
2634 int sg
= !!(features
& NETIF_F_SG
);
2635 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2640 __skb_push(skb
, doffset
);
2641 headroom
= skb_headroom(skb
);
2642 pos
= skb_headlen(skb
);
2645 struct sk_buff
*nskb
;
2650 len
= skb
->len
- offset
;
2654 hsize
= skb_headlen(skb
) - offset
;
2657 if (hsize
> len
|| !sg
)
2660 if (!hsize
&& i
>= nfrags
) {
2661 BUG_ON(fskb
->len
!= len
);
2664 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2667 if (unlikely(!nskb
))
2670 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2671 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2676 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2678 skb_release_head_state(nskb
);
2679 __skb_push(nskb
, doffset
);
2681 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2684 if (unlikely(!nskb
))
2687 skb_reserve(nskb
, headroom
);
2688 __skb_put(nskb
, doffset
);
2697 __copy_skb_header(nskb
, skb
);
2698 nskb
->mac_len
= skb
->mac_len
;
2700 /* nskb and skb might have different headroom */
2701 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2702 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2704 skb_reset_mac_header(nskb
);
2705 skb_set_network_header(nskb
, skb
->mac_len
);
2706 nskb
->transport_header
= (nskb
->network_header
+
2707 skb_network_header_len(skb
));
2708 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2710 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2714 nskb
->ip_summed
= CHECKSUM_NONE
;
2715 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2721 frag
= skb_shinfo(nskb
)->frags
;
2723 skb_copy_from_linear_data_offset(skb
, offset
,
2724 skb_put(nskb
, hsize
), hsize
);
2726 while (pos
< offset
+ len
&& i
< nfrags
) {
2727 *frag
= skb_shinfo(skb
)->frags
[i
];
2728 __skb_frag_ref(frag
);
2729 size
= skb_frag_size(frag
);
2732 frag
->page_offset
+= offset
- pos
;
2733 skb_frag_size_sub(frag
, offset
- pos
);
2736 skb_shinfo(nskb
)->nr_frags
++;
2738 if (pos
+ size
<= offset
+ len
) {
2742 skb_frag_size_sub(frag
, pos
+ size
- (offset
+ len
));
2749 if (pos
< offset
+ len
) {
2750 struct sk_buff
*fskb2
= fskb
;
2752 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2758 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2764 SKB_FRAG_ASSERT(nskb
);
2765 skb_shinfo(nskb
)->frag_list
= fskb2
;
2769 nskb
->data_len
= len
- hsize
;
2770 nskb
->len
+= nskb
->data_len
;
2771 nskb
->truesize
+= nskb
->data_len
;
2772 } while ((offset
+= len
) < skb
->len
);
2777 while ((skb
= segs
)) {
2781 return ERR_PTR(err
);
2783 EXPORT_SYMBOL_GPL(skb_segment
);
2785 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2787 struct sk_buff
*p
= *head
;
2788 struct sk_buff
*nskb
;
2789 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2790 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2791 unsigned int headroom
;
2792 unsigned int len
= skb_gro_len(skb
);
2793 unsigned int offset
= skb_gro_offset(skb
);
2794 unsigned int headlen
= skb_headlen(skb
);
2796 if (p
->len
+ len
>= 65536)
2799 if (pinfo
->frag_list
)
2801 else if (headlen
<= offset
) {
2804 int i
= skbinfo
->nr_frags
;
2805 int nr_frags
= pinfo
->nr_frags
+ i
;
2809 if (nr_frags
> MAX_SKB_FRAGS
)
2812 pinfo
->nr_frags
= nr_frags
;
2813 skbinfo
->nr_frags
= 0;
2815 frag
= pinfo
->frags
+ nr_frags
;
2816 frag2
= skbinfo
->frags
+ i
;
2821 frag
->page_offset
+= offset
;
2822 skb_frag_size_sub(frag
, offset
);
2824 skb
->truesize
-= skb
->data_len
;
2825 skb
->len
-= skb
->data_len
;
2828 NAPI_GRO_CB(skb
)->free
= 1;
2830 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2833 headroom
= skb_headroom(p
);
2834 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2835 if (unlikely(!nskb
))
2838 __copy_skb_header(nskb
, p
);
2839 nskb
->mac_len
= p
->mac_len
;
2841 skb_reserve(nskb
, headroom
);
2842 __skb_put(nskb
, skb_gro_offset(p
));
2844 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2845 skb_set_network_header(nskb
, skb_network_offset(p
));
2846 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2848 __skb_pull(p
, skb_gro_offset(p
));
2849 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2850 p
->data
- skb_mac_header(p
));
2852 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2853 skb_shinfo(nskb
)->frag_list
= p
;
2854 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
2855 pinfo
->gso_size
= 0;
2856 skb_header_release(p
);
2859 nskb
->data_len
+= p
->len
;
2860 nskb
->truesize
+= p
->len
;
2861 nskb
->len
+= p
->len
;
2864 nskb
->next
= p
->next
;
2870 if (offset
> headlen
) {
2871 unsigned int eat
= offset
- headlen
;
2873 skbinfo
->frags
[0].page_offset
+= eat
;
2874 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
2875 skb
->data_len
-= eat
;
2880 __skb_pull(skb
, offset
);
2882 p
->prev
->next
= skb
;
2884 skb_header_release(skb
);
2887 NAPI_GRO_CB(p
)->count
++;
2892 NAPI_GRO_CB(skb
)->same_flow
= 1;
2895 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2897 void __init
skb_init(void)
2899 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2900 sizeof(struct sk_buff
),
2902 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2904 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2905 (2*sizeof(struct sk_buff
)) +
2908 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2913 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2914 * @skb: Socket buffer containing the buffers to be mapped
2915 * @sg: The scatter-gather list to map into
2916 * @offset: The offset into the buffer's contents to start mapping
2917 * @len: Length of buffer space to be mapped
2919 * Fill the specified scatter-gather list with mappings/pointers into a
2920 * region of the buffer space attached to a socket buffer.
2923 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2925 int start
= skb_headlen(skb
);
2926 int i
, copy
= start
- offset
;
2927 struct sk_buff
*frag_iter
;
2933 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2935 if ((len
-= copy
) == 0)
2940 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2943 WARN_ON(start
> offset
+ len
);
2945 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2946 if ((copy
= end
- offset
) > 0) {
2947 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2951 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
2952 frag
->page_offset
+offset
-start
);
2961 skb_walk_frags(skb
, frag_iter
) {
2964 WARN_ON(start
> offset
+ len
);
2966 end
= start
+ frag_iter
->len
;
2967 if ((copy
= end
- offset
) > 0) {
2970 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
2972 if ((len
-= copy
) == 0)
2982 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2984 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2986 sg_mark_end(&sg
[nsg
- 1]);
2990 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2993 * skb_cow_data - Check that a socket buffer's data buffers are writable
2994 * @skb: The socket buffer to check.
2995 * @tailbits: Amount of trailing space to be added
2996 * @trailer: Returned pointer to the skb where the @tailbits space begins
2998 * Make sure that the data buffers attached to a socket buffer are
2999 * writable. If they are not, private copies are made of the data buffers
3000 * and the socket buffer is set to use these instead.
3002 * If @tailbits is given, make sure that there is space to write @tailbits
3003 * bytes of data beyond current end of socket buffer. @trailer will be
3004 * set to point to the skb in which this space begins.
3006 * The number of scatterlist elements required to completely map the
3007 * COW'd and extended socket buffer will be returned.
3009 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3013 struct sk_buff
*skb1
, **skb_p
;
3015 /* If skb is cloned or its head is paged, reallocate
3016 * head pulling out all the pages (pages are considered not writable
3017 * at the moment even if they are anonymous).
3019 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3020 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3023 /* Easy case. Most of packets will go this way. */
3024 if (!skb_has_frag_list(skb
)) {
3025 /* A little of trouble, not enough of space for trailer.
3026 * This should not happen, when stack is tuned to generate
3027 * good frames. OK, on miss we reallocate and reserve even more
3028 * space, 128 bytes is fair. */
3030 if (skb_tailroom(skb
) < tailbits
&&
3031 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3039 /* Misery. We are in troubles, going to mincer fragments... */
3042 skb_p
= &skb_shinfo(skb
)->frag_list
;
3045 while ((skb1
= *skb_p
) != NULL
) {
3048 /* The fragment is partially pulled by someone,
3049 * this can happen on input. Copy it and everything
3052 if (skb_shared(skb1
))
3055 /* If the skb is the last, worry about trailer. */
3057 if (skb1
->next
== NULL
&& tailbits
) {
3058 if (skb_shinfo(skb1
)->nr_frags
||
3059 skb_has_frag_list(skb1
) ||
3060 skb_tailroom(skb1
) < tailbits
)
3061 ntail
= tailbits
+ 128;
3067 skb_shinfo(skb1
)->nr_frags
||
3068 skb_has_frag_list(skb1
)) {
3069 struct sk_buff
*skb2
;
3071 /* Fuck, we are miserable poor guys... */
3073 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3075 skb2
= skb_copy_expand(skb1
,
3079 if (unlikely(skb2
== NULL
))
3083 skb_set_owner_w(skb2
, skb1
->sk
);
3085 /* Looking around. Are we still alive?
3086 * OK, link new skb, drop old one */
3088 skb2
->next
= skb1
->next
;
3095 skb_p
= &skb1
->next
;
3100 EXPORT_SYMBOL_GPL(skb_cow_data
);
3102 static void sock_rmem_free(struct sk_buff
*skb
)
3104 struct sock
*sk
= skb
->sk
;
3106 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3110 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3112 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3114 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3115 (unsigned)sk
->sk_rcvbuf
)
3120 skb
->destructor
= sock_rmem_free
;
3121 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3123 /* before exiting rcu section, make sure dst is refcounted */
3126 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3127 if (!sock_flag(sk
, SOCK_DEAD
))
3128 sk
->sk_data_ready(sk
, skb
->len
);
3131 EXPORT_SYMBOL(sock_queue_err_skb
);
3133 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3134 struct skb_shared_hwtstamps
*hwtstamps
)
3136 struct sock
*sk
= orig_skb
->sk
;
3137 struct sock_exterr_skb
*serr
;
3138 struct sk_buff
*skb
;
3144 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3149 *skb_hwtstamps(skb
) =
3153 * no hardware time stamps available,
3154 * so keep the shared tx_flags and only
3155 * store software time stamp
3157 skb
->tstamp
= ktime_get_real();
3160 serr
= SKB_EXT_ERR(skb
);
3161 memset(serr
, 0, sizeof(*serr
));
3162 serr
->ee
.ee_errno
= ENOMSG
;
3163 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3165 err
= sock_queue_err_skb(sk
, skb
);
3170 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3174 * skb_partial_csum_set - set up and verify partial csum values for packet
3175 * @skb: the skb to set
3176 * @start: the number of bytes after skb->data to start checksumming.
3177 * @off: the offset from start to place the checksum.
3179 * For untrusted partially-checksummed packets, we need to make sure the values
3180 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3182 * This function checks and sets those values and skb->ip_summed: if this
3183 * returns false you should drop the packet.
3185 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3187 if (unlikely(start
> skb_headlen(skb
)) ||
3188 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3189 if (net_ratelimit())
3191 "bad partial csum: csum=%u/%u len=%u\n",
3192 start
, off
, skb_headlen(skb
));
3195 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3196 skb
->csum_start
= skb_headroom(skb
) + start
;
3197 skb
->csum_offset
= off
;
3200 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3202 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3204 if (net_ratelimit())
3205 pr_warning("%s: received packets cannot be forwarded"
3206 " while LRO is enabled\n", skb
->dev
->name
);
3208 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);