drm: Use srcu to protect drm_device.unplugged
[linux/fpc-iii.git] / lib / rhashtable.c
blob3825c30aaa36985e2e73c5d657bae3455b674cd9
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
32 #define HASH_DEFAULT_SIZE 64UL
33 #define HASH_MIN_SIZE 4U
34 #define BUCKET_LOCKS_PER_CPU 32UL
36 union nested_table {
37 union nested_table __rcu *table;
38 struct rhash_head __rcu *bucket;
41 static u32 head_hashfn(struct rhashtable *ht,
42 const struct bucket_table *tbl,
43 const struct rhash_head *he)
45 return rht_head_hashfn(ht, tbl, he, ht->p);
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
53 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
59 spinlock_t *lock = rht_bucket_lock(tbl, hash);
61 return (debug_locks) ? lockdep_is_held(lock) : 1;
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
70 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71 const unsigned int len = 1 << shift;
72 unsigned int i;
74 ntbl = rcu_dereference_raw(ntbl->table);
75 if (!ntbl)
76 return;
78 if (size > len) {
79 size >>= shift;
80 for (i = 0; i < len; i++)
81 nested_table_free(ntbl + i, size);
84 kfree(ntbl);
87 static void nested_bucket_table_free(const struct bucket_table *tbl)
89 unsigned int size = tbl->size >> tbl->nest;
90 unsigned int len = 1 << tbl->nest;
91 union nested_table *ntbl;
92 unsigned int i;
94 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
96 for (i = 0; i < len; i++)
97 nested_table_free(ntbl + i, size);
99 kfree(ntbl);
102 static void bucket_table_free(const struct bucket_table *tbl)
104 if (tbl->nest)
105 nested_bucket_table_free(tbl);
107 free_bucket_spinlocks(tbl->locks);
108 kvfree(tbl);
111 static void bucket_table_free_rcu(struct rcu_head *head)
113 bucket_table_free(container_of(head, struct bucket_table, rcu));
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 union nested_table __rcu **prev,
118 unsigned int shifted,
119 unsigned int nhash)
121 union nested_table *ntbl;
122 int i;
124 ntbl = rcu_dereference(*prev);
125 if (ntbl)
126 return ntbl;
128 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
130 if (ntbl && shifted) {
131 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
132 INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
133 (i << shifted) | nhash);
136 rcu_assign_pointer(*prev, ntbl);
138 return ntbl;
141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
142 size_t nbuckets,
143 gfp_t gfp)
145 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
146 struct bucket_table *tbl;
147 size_t size;
149 if (nbuckets < (1 << (shift + 1)))
150 return NULL;
152 size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
154 tbl = kzalloc(size, gfp);
155 if (!tbl)
156 return NULL;
158 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
159 0, 0)) {
160 kfree(tbl);
161 return NULL;
164 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
166 return tbl;
169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
170 size_t nbuckets,
171 gfp_t gfp)
173 struct bucket_table *tbl = NULL;
174 size_t size, max_locks;
175 int i;
177 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
178 if (gfp != GFP_KERNEL)
179 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
180 else
181 tbl = kvzalloc(size, gfp);
183 size = nbuckets;
185 if (tbl == NULL && gfp != GFP_KERNEL) {
186 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
187 nbuckets = 0;
189 if (tbl == NULL)
190 return NULL;
192 tbl->size = size;
194 max_locks = size >> 1;
195 if (tbl->nest)
196 max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
198 if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
199 ht->p.locks_mul, gfp) < 0) {
200 bucket_table_free(tbl);
201 return NULL;
204 INIT_LIST_HEAD(&tbl->walkers);
206 tbl->hash_rnd = get_random_u32();
208 for (i = 0; i < nbuckets; i++)
209 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
211 return tbl;
214 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
215 struct bucket_table *tbl)
217 struct bucket_table *new_tbl;
219 do {
220 new_tbl = tbl;
221 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
222 } while (tbl);
224 return new_tbl;
227 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
229 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
230 struct bucket_table *new_tbl = rhashtable_last_table(ht,
231 rht_dereference_rcu(old_tbl->future_tbl, ht));
232 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
233 int err = -EAGAIN;
234 struct rhash_head *head, *next, *entry;
235 spinlock_t *new_bucket_lock;
236 unsigned int new_hash;
238 if (new_tbl->nest)
239 goto out;
241 err = -ENOENT;
243 rht_for_each(entry, old_tbl, old_hash) {
244 err = 0;
245 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
247 if (rht_is_a_nulls(next))
248 break;
250 pprev = &entry->next;
253 if (err)
254 goto out;
256 new_hash = head_hashfn(ht, new_tbl, entry);
258 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
260 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
261 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
262 new_tbl, new_hash);
264 RCU_INIT_POINTER(entry->next, head);
266 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
267 spin_unlock(new_bucket_lock);
269 rcu_assign_pointer(*pprev, next);
271 out:
272 return err;
275 static int rhashtable_rehash_chain(struct rhashtable *ht,
276 unsigned int old_hash)
278 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
279 spinlock_t *old_bucket_lock;
280 int err;
282 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
284 spin_lock_bh(old_bucket_lock);
285 while (!(err = rhashtable_rehash_one(ht, old_hash)))
288 if (err == -ENOENT) {
289 old_tbl->rehash++;
290 err = 0;
292 spin_unlock_bh(old_bucket_lock);
294 return err;
297 static int rhashtable_rehash_attach(struct rhashtable *ht,
298 struct bucket_table *old_tbl,
299 struct bucket_table *new_tbl)
301 /* Protect future_tbl using the first bucket lock. */
302 spin_lock_bh(old_tbl->locks);
304 /* Did somebody beat us to it? */
305 if (rcu_access_pointer(old_tbl->future_tbl)) {
306 spin_unlock_bh(old_tbl->locks);
307 return -EEXIST;
310 /* Make insertions go into the new, empty table right away. Deletions
311 * and lookups will be attempted in both tables until we synchronize.
313 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
315 spin_unlock_bh(old_tbl->locks);
317 return 0;
320 static int rhashtable_rehash_table(struct rhashtable *ht)
322 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
323 struct bucket_table *new_tbl;
324 struct rhashtable_walker *walker;
325 unsigned int old_hash;
326 int err;
328 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
329 if (!new_tbl)
330 return 0;
332 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
333 err = rhashtable_rehash_chain(ht, old_hash);
334 if (err)
335 return err;
338 /* Publish the new table pointer. */
339 rcu_assign_pointer(ht->tbl, new_tbl);
341 spin_lock(&ht->lock);
342 list_for_each_entry(walker, &old_tbl->walkers, list)
343 walker->tbl = NULL;
344 spin_unlock(&ht->lock);
346 /* Wait for readers. All new readers will see the new
347 * table, and thus no references to the old table will
348 * remain.
350 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
352 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
355 static int rhashtable_rehash_alloc(struct rhashtable *ht,
356 struct bucket_table *old_tbl,
357 unsigned int size)
359 struct bucket_table *new_tbl;
360 int err;
362 ASSERT_RHT_MUTEX(ht);
364 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
365 if (new_tbl == NULL)
366 return -ENOMEM;
368 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
369 if (err)
370 bucket_table_free(new_tbl);
372 return err;
376 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
377 * @ht: the hash table to shrink
379 * This function shrinks the hash table to fit, i.e., the smallest
380 * size would not cause it to expand right away automatically.
382 * The caller must ensure that no concurrent resizing occurs by holding
383 * ht->mutex.
385 * The caller must ensure that no concurrent table mutations take place.
386 * It is however valid to have concurrent lookups if they are RCU protected.
388 * It is valid to have concurrent insertions and deletions protected by per
389 * bucket locks or concurrent RCU protected lookups and traversals.
391 static int rhashtable_shrink(struct rhashtable *ht)
393 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
394 unsigned int nelems = atomic_read(&ht->nelems);
395 unsigned int size = 0;
397 if (nelems)
398 size = roundup_pow_of_two(nelems * 3 / 2);
399 if (size < ht->p.min_size)
400 size = ht->p.min_size;
402 if (old_tbl->size <= size)
403 return 0;
405 if (rht_dereference(old_tbl->future_tbl, ht))
406 return -EEXIST;
408 return rhashtable_rehash_alloc(ht, old_tbl, size);
411 static void rht_deferred_worker(struct work_struct *work)
413 struct rhashtable *ht;
414 struct bucket_table *tbl;
415 int err = 0;
417 ht = container_of(work, struct rhashtable, run_work);
418 mutex_lock(&ht->mutex);
420 tbl = rht_dereference(ht->tbl, ht);
421 tbl = rhashtable_last_table(ht, tbl);
423 if (rht_grow_above_75(ht, tbl))
424 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
425 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
426 err = rhashtable_shrink(ht);
427 else if (tbl->nest)
428 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
430 if (!err)
431 err = rhashtable_rehash_table(ht);
433 mutex_unlock(&ht->mutex);
435 if (err)
436 schedule_work(&ht->run_work);
439 static int rhashtable_insert_rehash(struct rhashtable *ht,
440 struct bucket_table *tbl)
442 struct bucket_table *old_tbl;
443 struct bucket_table *new_tbl;
444 unsigned int size;
445 int err;
447 old_tbl = rht_dereference_rcu(ht->tbl, ht);
449 size = tbl->size;
451 err = -EBUSY;
453 if (rht_grow_above_75(ht, tbl))
454 size *= 2;
455 /* Do not schedule more than one rehash */
456 else if (old_tbl != tbl)
457 goto fail;
459 err = -ENOMEM;
461 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
462 if (new_tbl == NULL)
463 goto fail;
465 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
466 if (err) {
467 bucket_table_free(new_tbl);
468 if (err == -EEXIST)
469 err = 0;
470 } else
471 schedule_work(&ht->run_work);
473 return err;
475 fail:
476 /* Do not fail the insert if someone else did a rehash. */
477 if (likely(rcu_dereference_raw(tbl->future_tbl)))
478 return 0;
480 /* Schedule async rehash to retry allocation in process context. */
481 if (err == -ENOMEM)
482 schedule_work(&ht->run_work);
484 return err;
487 static void *rhashtable_lookup_one(struct rhashtable *ht,
488 struct bucket_table *tbl, unsigned int hash,
489 const void *key, struct rhash_head *obj)
491 struct rhashtable_compare_arg arg = {
492 .ht = ht,
493 .key = key,
495 struct rhash_head __rcu **pprev;
496 struct rhash_head *head;
497 int elasticity;
499 elasticity = RHT_ELASTICITY;
500 pprev = rht_bucket_var(tbl, hash);
501 rht_for_each_continue(head, *pprev, tbl, hash) {
502 struct rhlist_head *list;
503 struct rhlist_head *plist;
505 elasticity--;
506 if (!key ||
507 (ht->p.obj_cmpfn ?
508 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
509 rhashtable_compare(&arg, rht_obj(ht, head))))
510 continue;
512 if (!ht->rhlist)
513 return rht_obj(ht, head);
515 list = container_of(obj, struct rhlist_head, rhead);
516 plist = container_of(head, struct rhlist_head, rhead);
518 RCU_INIT_POINTER(list->next, plist);
519 head = rht_dereference_bucket(head->next, tbl, hash);
520 RCU_INIT_POINTER(list->rhead.next, head);
521 rcu_assign_pointer(*pprev, obj);
523 return NULL;
526 if (elasticity <= 0)
527 return ERR_PTR(-EAGAIN);
529 return ERR_PTR(-ENOENT);
532 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
533 struct bucket_table *tbl,
534 unsigned int hash,
535 struct rhash_head *obj,
536 void *data)
538 struct rhash_head __rcu **pprev;
539 struct bucket_table *new_tbl;
540 struct rhash_head *head;
542 if (!IS_ERR_OR_NULL(data))
543 return ERR_PTR(-EEXIST);
545 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
546 return ERR_CAST(data);
548 new_tbl = rcu_dereference(tbl->future_tbl);
549 if (new_tbl)
550 return new_tbl;
552 if (PTR_ERR(data) != -ENOENT)
553 return ERR_CAST(data);
555 if (unlikely(rht_grow_above_max(ht, tbl)))
556 return ERR_PTR(-E2BIG);
558 if (unlikely(rht_grow_above_100(ht, tbl)))
559 return ERR_PTR(-EAGAIN);
561 pprev = rht_bucket_insert(ht, tbl, hash);
562 if (!pprev)
563 return ERR_PTR(-ENOMEM);
565 head = rht_dereference_bucket(*pprev, tbl, hash);
567 RCU_INIT_POINTER(obj->next, head);
568 if (ht->rhlist) {
569 struct rhlist_head *list;
571 list = container_of(obj, struct rhlist_head, rhead);
572 RCU_INIT_POINTER(list->next, NULL);
575 rcu_assign_pointer(*pprev, obj);
577 atomic_inc(&ht->nelems);
578 if (rht_grow_above_75(ht, tbl))
579 schedule_work(&ht->run_work);
581 return NULL;
584 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
585 struct rhash_head *obj)
587 struct bucket_table *new_tbl;
588 struct bucket_table *tbl;
589 unsigned int hash;
590 spinlock_t *lock;
591 void *data;
593 tbl = rcu_dereference(ht->tbl);
595 /* All insertions must grab the oldest table containing
596 * the hashed bucket that is yet to be rehashed.
598 for (;;) {
599 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
600 lock = rht_bucket_lock(tbl, hash);
601 spin_lock_bh(lock);
603 if (tbl->rehash <= hash)
604 break;
606 spin_unlock_bh(lock);
607 tbl = rcu_dereference(tbl->future_tbl);
610 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
611 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
612 if (PTR_ERR(new_tbl) != -EEXIST)
613 data = ERR_CAST(new_tbl);
615 while (!IS_ERR_OR_NULL(new_tbl)) {
616 tbl = new_tbl;
617 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
618 spin_lock_nested(rht_bucket_lock(tbl, hash),
619 SINGLE_DEPTH_NESTING);
621 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
622 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
623 if (PTR_ERR(new_tbl) != -EEXIST)
624 data = ERR_CAST(new_tbl);
626 spin_unlock(rht_bucket_lock(tbl, hash));
629 spin_unlock_bh(lock);
631 if (PTR_ERR(data) == -EAGAIN)
632 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
633 -EAGAIN);
635 return data;
638 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
639 struct rhash_head *obj)
641 void *data;
643 do {
644 rcu_read_lock();
645 data = rhashtable_try_insert(ht, key, obj);
646 rcu_read_unlock();
647 } while (PTR_ERR(data) == -EAGAIN);
649 return data;
651 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
654 * rhashtable_walk_enter - Initialise an iterator
655 * @ht: Table to walk over
656 * @iter: Hash table Iterator
658 * This function prepares a hash table walk.
660 * Note that if you restart a walk after rhashtable_walk_stop you
661 * may see the same object twice. Also, you may miss objects if
662 * there are removals in between rhashtable_walk_stop and the next
663 * call to rhashtable_walk_start.
665 * For a completely stable walk you should construct your own data
666 * structure outside the hash table.
668 * This function may sleep so you must not call it from interrupt
669 * context or with spin locks held.
671 * You must call rhashtable_walk_exit after this function returns.
673 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
675 iter->ht = ht;
676 iter->p = NULL;
677 iter->slot = 0;
678 iter->skip = 0;
679 iter->end_of_table = 0;
681 spin_lock(&ht->lock);
682 iter->walker.tbl =
683 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
684 list_add(&iter->walker.list, &iter->walker.tbl->walkers);
685 spin_unlock(&ht->lock);
687 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
690 * rhashtable_walk_exit - Free an iterator
691 * @iter: Hash table Iterator
693 * This function frees resources allocated by rhashtable_walk_init.
695 void rhashtable_walk_exit(struct rhashtable_iter *iter)
697 spin_lock(&iter->ht->lock);
698 if (iter->walker.tbl)
699 list_del(&iter->walker.list);
700 spin_unlock(&iter->ht->lock);
702 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
705 * rhashtable_walk_start_check - Start a hash table walk
706 * @iter: Hash table iterator
708 * Start a hash table walk at the current iterator position. Note that we take
709 * the RCU lock in all cases including when we return an error. So you must
710 * always call rhashtable_walk_stop to clean up.
712 * Returns zero if successful.
714 * Returns -EAGAIN if resize event occured. Note that the iterator
715 * will rewind back to the beginning and you may use it immediately
716 * by calling rhashtable_walk_next.
718 * rhashtable_walk_start is defined as an inline variant that returns
719 * void. This is preferred in cases where the caller would ignore
720 * resize events and always continue.
722 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
723 __acquires(RCU)
725 struct rhashtable *ht = iter->ht;
727 rcu_read_lock();
729 spin_lock(&ht->lock);
730 if (iter->walker.tbl)
731 list_del(&iter->walker.list);
732 spin_unlock(&ht->lock);
734 if (!iter->walker.tbl && !iter->end_of_table) {
735 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
736 return -EAGAIN;
739 return 0;
741 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
744 * __rhashtable_walk_find_next - Find the next element in a table (or the first
745 * one in case of a new walk).
747 * @iter: Hash table iterator
749 * Returns the found object or NULL when the end of the table is reached.
751 * Returns -EAGAIN if resize event occurred.
753 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
755 struct bucket_table *tbl = iter->walker.tbl;
756 struct rhlist_head *list = iter->list;
757 struct rhashtable *ht = iter->ht;
758 struct rhash_head *p = iter->p;
759 bool rhlist = ht->rhlist;
761 if (!tbl)
762 return NULL;
764 for (; iter->slot < tbl->size; iter->slot++) {
765 int skip = iter->skip;
767 rht_for_each_rcu(p, tbl, iter->slot) {
768 if (rhlist) {
769 list = container_of(p, struct rhlist_head,
770 rhead);
771 do {
772 if (!skip)
773 goto next;
774 skip--;
775 list = rcu_dereference(list->next);
776 } while (list);
778 continue;
780 if (!skip)
781 break;
782 skip--;
785 next:
786 if (!rht_is_a_nulls(p)) {
787 iter->skip++;
788 iter->p = p;
789 iter->list = list;
790 return rht_obj(ht, rhlist ? &list->rhead : p);
793 iter->skip = 0;
796 iter->p = NULL;
798 /* Ensure we see any new tables. */
799 smp_rmb();
801 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
802 if (iter->walker.tbl) {
803 iter->slot = 0;
804 iter->skip = 0;
805 return ERR_PTR(-EAGAIN);
806 } else {
807 iter->end_of_table = true;
810 return NULL;
814 * rhashtable_walk_next - Return the next object and advance the iterator
815 * @iter: Hash table iterator
817 * Note that you must call rhashtable_walk_stop when you are finished
818 * with the walk.
820 * Returns the next object or NULL when the end of the table is reached.
822 * Returns -EAGAIN if resize event occurred. Note that the iterator
823 * will rewind back to the beginning and you may continue to use it.
825 void *rhashtable_walk_next(struct rhashtable_iter *iter)
827 struct rhlist_head *list = iter->list;
828 struct rhashtable *ht = iter->ht;
829 struct rhash_head *p = iter->p;
830 bool rhlist = ht->rhlist;
832 if (p) {
833 if (!rhlist || !(list = rcu_dereference(list->next))) {
834 p = rcu_dereference(p->next);
835 list = container_of(p, struct rhlist_head, rhead);
837 if (!rht_is_a_nulls(p)) {
838 iter->skip++;
839 iter->p = p;
840 iter->list = list;
841 return rht_obj(ht, rhlist ? &list->rhead : p);
844 /* At the end of this slot, switch to next one and then find
845 * next entry from that point.
847 iter->skip = 0;
848 iter->slot++;
851 return __rhashtable_walk_find_next(iter);
853 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
856 * rhashtable_walk_peek - Return the next object but don't advance the iterator
857 * @iter: Hash table iterator
859 * Returns the next object or NULL when the end of the table is reached.
861 * Returns -EAGAIN if resize event occurred. Note that the iterator
862 * will rewind back to the beginning and you may continue to use it.
864 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
866 struct rhlist_head *list = iter->list;
867 struct rhashtable *ht = iter->ht;
868 struct rhash_head *p = iter->p;
870 if (p)
871 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
873 /* No object found in current iter, find next one in the table. */
875 if (iter->skip) {
876 /* A nonzero skip value points to the next entry in the table
877 * beyond that last one that was found. Decrement skip so
878 * we find the current value. __rhashtable_walk_find_next
879 * will restore the original value of skip assuming that
880 * the table hasn't changed.
882 iter->skip--;
885 return __rhashtable_walk_find_next(iter);
887 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
890 * rhashtable_walk_stop - Finish a hash table walk
891 * @iter: Hash table iterator
893 * Finish a hash table walk. Does not reset the iterator to the start of the
894 * hash table.
896 void rhashtable_walk_stop(struct rhashtable_iter *iter)
897 __releases(RCU)
899 struct rhashtable *ht;
900 struct bucket_table *tbl = iter->walker.tbl;
902 if (!tbl)
903 goto out;
905 ht = iter->ht;
907 spin_lock(&ht->lock);
908 if (tbl->rehash < tbl->size)
909 list_add(&iter->walker.list, &tbl->walkers);
910 else
911 iter->walker.tbl = NULL;
912 spin_unlock(&ht->lock);
914 iter->p = NULL;
916 out:
917 rcu_read_unlock();
919 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
921 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
923 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
924 (unsigned long)params->min_size);
927 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
929 return jhash2(key, length, seed);
933 * rhashtable_init - initialize a new hash table
934 * @ht: hash table to be initialized
935 * @params: configuration parameters
937 * Initializes a new hash table based on the provided configuration
938 * parameters. A table can be configured either with a variable or
939 * fixed length key:
941 * Configuration Example 1: Fixed length keys
942 * struct test_obj {
943 * int key;
944 * void * my_member;
945 * struct rhash_head node;
946 * };
948 * struct rhashtable_params params = {
949 * .head_offset = offsetof(struct test_obj, node),
950 * .key_offset = offsetof(struct test_obj, key),
951 * .key_len = sizeof(int),
952 * .hashfn = jhash,
953 * .nulls_base = (1U << RHT_BASE_SHIFT),
954 * };
956 * Configuration Example 2: Variable length keys
957 * struct test_obj {
958 * [...]
959 * struct rhash_head node;
960 * };
962 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
964 * struct test_obj *obj = data;
966 * return [... hash ...];
969 * struct rhashtable_params params = {
970 * .head_offset = offsetof(struct test_obj, node),
971 * .hashfn = jhash,
972 * .obj_hashfn = my_hash_fn,
973 * };
975 int rhashtable_init(struct rhashtable *ht,
976 const struct rhashtable_params *params)
978 struct bucket_table *tbl;
979 size_t size;
981 size = HASH_DEFAULT_SIZE;
983 if ((!params->key_len && !params->obj_hashfn) ||
984 (params->obj_hashfn && !params->obj_cmpfn))
985 return -EINVAL;
987 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
988 return -EINVAL;
990 memset(ht, 0, sizeof(*ht));
991 mutex_init(&ht->mutex);
992 spin_lock_init(&ht->lock);
993 memcpy(&ht->p, params, sizeof(*params));
995 if (params->min_size)
996 ht->p.min_size = roundup_pow_of_two(params->min_size);
998 /* Cap total entries at 2^31 to avoid nelems overflow. */
999 ht->max_elems = 1u << 31;
1001 if (params->max_size) {
1002 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1003 if (ht->p.max_size < ht->max_elems / 2)
1004 ht->max_elems = ht->p.max_size * 2;
1007 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1009 if (params->nelem_hint)
1010 size = rounded_hashtable_size(&ht->p);
1012 if (params->locks_mul)
1013 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1014 else
1015 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1017 ht->key_len = ht->p.key_len;
1018 if (!params->hashfn) {
1019 ht->p.hashfn = jhash;
1021 if (!(ht->key_len & (sizeof(u32) - 1))) {
1022 ht->key_len /= sizeof(u32);
1023 ht->p.hashfn = rhashtable_jhash2;
1027 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1028 if (tbl == NULL)
1029 return -ENOMEM;
1031 atomic_set(&ht->nelems, 0);
1033 RCU_INIT_POINTER(ht->tbl, tbl);
1035 INIT_WORK(&ht->run_work, rht_deferred_worker);
1037 return 0;
1039 EXPORT_SYMBOL_GPL(rhashtable_init);
1042 * rhltable_init - initialize a new hash list table
1043 * @hlt: hash list table to be initialized
1044 * @params: configuration parameters
1046 * Initializes a new hash list table.
1048 * See documentation for rhashtable_init.
1050 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1052 int err;
1054 /* No rhlist NULLs marking for now. */
1055 if (params->nulls_base)
1056 return -EINVAL;
1058 err = rhashtable_init(&hlt->ht, params);
1059 hlt->ht.rhlist = true;
1060 return err;
1062 EXPORT_SYMBOL_GPL(rhltable_init);
1064 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1065 void (*free_fn)(void *ptr, void *arg),
1066 void *arg)
1068 struct rhlist_head *list;
1070 if (!ht->rhlist) {
1071 free_fn(rht_obj(ht, obj), arg);
1072 return;
1075 list = container_of(obj, struct rhlist_head, rhead);
1076 do {
1077 obj = &list->rhead;
1078 list = rht_dereference(list->next, ht);
1079 free_fn(rht_obj(ht, obj), arg);
1080 } while (list);
1084 * rhashtable_free_and_destroy - free elements and destroy hash table
1085 * @ht: the hash table to destroy
1086 * @free_fn: callback to release resources of element
1087 * @arg: pointer passed to free_fn
1089 * Stops an eventual async resize. If defined, invokes free_fn for each
1090 * element to releasal resources. Please note that RCU protected
1091 * readers may still be accessing the elements. Releasing of resources
1092 * must occur in a compatible manner. Then frees the bucket array.
1094 * This function will eventually sleep to wait for an async resize
1095 * to complete. The caller is responsible that no further write operations
1096 * occurs in parallel.
1098 void rhashtable_free_and_destroy(struct rhashtable *ht,
1099 void (*free_fn)(void *ptr, void *arg),
1100 void *arg)
1102 struct bucket_table *tbl;
1103 unsigned int i;
1105 cancel_work_sync(&ht->run_work);
1107 mutex_lock(&ht->mutex);
1108 tbl = rht_dereference(ht->tbl, ht);
1109 if (free_fn) {
1110 for (i = 0; i < tbl->size; i++) {
1111 struct rhash_head *pos, *next;
1113 for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1114 next = !rht_is_a_nulls(pos) ?
1115 rht_dereference(pos->next, ht) : NULL;
1116 !rht_is_a_nulls(pos);
1117 pos = next,
1118 next = !rht_is_a_nulls(pos) ?
1119 rht_dereference(pos->next, ht) : NULL)
1120 rhashtable_free_one(ht, pos, free_fn, arg);
1124 bucket_table_free(tbl);
1125 mutex_unlock(&ht->mutex);
1127 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1129 void rhashtable_destroy(struct rhashtable *ht)
1131 return rhashtable_free_and_destroy(ht, NULL, NULL);
1133 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1135 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1136 unsigned int hash)
1138 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1139 static struct rhash_head __rcu *rhnull =
1140 (struct rhash_head __rcu *)NULLS_MARKER(0);
1141 unsigned int index = hash & ((1 << tbl->nest) - 1);
1142 unsigned int size = tbl->size >> tbl->nest;
1143 unsigned int subhash = hash;
1144 union nested_table *ntbl;
1146 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1147 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1148 subhash >>= tbl->nest;
1150 while (ntbl && size > (1 << shift)) {
1151 index = subhash & ((1 << shift) - 1);
1152 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1153 tbl, hash);
1154 size >>= shift;
1155 subhash >>= shift;
1158 if (!ntbl)
1159 return &rhnull;
1161 return &ntbl[subhash].bucket;
1164 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1166 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1167 struct bucket_table *tbl,
1168 unsigned int hash)
1170 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1171 unsigned int index = hash & ((1 << tbl->nest) - 1);
1172 unsigned int size = tbl->size >> tbl->nest;
1173 union nested_table *ntbl;
1174 unsigned int shifted;
1175 unsigned int nhash;
1177 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1178 hash >>= tbl->nest;
1179 nhash = index;
1180 shifted = tbl->nest;
1181 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1182 size <= (1 << shift) ? shifted : 0, nhash);
1184 while (ntbl && size > (1 << shift)) {
1185 index = hash & ((1 << shift) - 1);
1186 size >>= shift;
1187 hash >>= shift;
1188 nhash |= index << shifted;
1189 shifted += shift;
1190 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1191 size <= (1 << shift) ? shifted : 0,
1192 nhash);
1195 if (!ntbl)
1196 return NULL;
1198 return &ntbl[hash].bucket;
1201 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);