staging: vboxvideo: Add vbox_bo_k[un]map helper functions
[linux/fpc-iii.git] / drivers / usb / host / fotg210-hcd.c
blobe64eb47770c8bb0f2b2c89d4abf9d6e3abf85140
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
33 #include <linux/io.h>
35 #include <asm/byteorder.h>
36 #include <asm/irq.h>
37 #include <asm/unaligned.h>
39 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
40 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
41 static const char hcd_name[] = "fotg210_hcd";
43 #undef FOTG210_URB_TRACE
44 #define FOTG210_STATS
46 /* magic numbers that can affect system performance */
47 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
48 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
49 #define FOTG210_TUNE_RL_TT 0
50 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
51 #define FOTG210_TUNE_MULT_TT 1
53 /* Some drivers think it's safe to schedule isochronous transfers more than 256
54 * ms into the future (partly as a result of an old bug in the scheduling
55 * code). In an attempt to avoid trouble, we will use a minimum scheduling
56 * length of 512 frames instead of 256.
58 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
60 /* Initial IRQ latency: faster than hw default */
61 static int log2_irq_thresh; /* 0 to 6 */
62 module_param(log2_irq_thresh, int, S_IRUGO);
63 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
65 /* initial park setting: slower than hw default */
66 static unsigned park;
67 module_param(park, uint, S_IRUGO);
68 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
70 /* for link power management(LPM) feature */
71 static unsigned int hird;
72 module_param(hird, int, S_IRUGO);
73 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
75 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
77 #include "fotg210.h"
79 #define fotg210_dbg(fotg210, fmt, args...) \
80 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
81 #define fotg210_err(fotg210, fmt, args...) \
82 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_info(fotg210, fmt, args...) \
84 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_warn(fotg210, fmt, args...) \
86 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 /* check the values in the HCSPARAMS register (host controller _Structural_
89 * parameters) see EHCI spec, Table 2-4 for each value
91 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
93 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
95 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
96 HCS_N_PORTS(params));
99 /* check the values in the HCCPARAMS register (host controller _Capability_
100 * parameters) see EHCI Spec, Table 2-5 for each value
102 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
104 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
106 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
107 params,
108 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
109 HCC_CANPARK(params) ? " park" : "");
112 static void __maybe_unused
113 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
115 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
116 hc32_to_cpup(fotg210, &qtd->hw_next),
117 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
118 hc32_to_cpup(fotg210, &qtd->hw_token),
119 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
120 if (qtd->hw_buf[1])
121 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
122 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
123 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
124 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
125 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128 static void __maybe_unused
129 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
131 struct fotg210_qh_hw *hw = qh->hw;
133 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
134 hw->hw_next, hw->hw_info1, hw->hw_info2,
135 hw->hw_current);
137 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140 static void __maybe_unused
141 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
143 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
144 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
145 itd->urb);
147 fotg210_dbg(fotg210,
148 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
149 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
150 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
151 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
152 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
158 fotg210_dbg(fotg210,
159 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
160 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
161 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
162 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
163 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
168 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
169 itd->index[0], itd->index[1], itd->index[2],
170 itd->index[3], itd->index[4], itd->index[5],
171 itd->index[6], itd->index[7]);
174 static int __maybe_unused
175 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
177 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
178 label, label[0] ? " " : "", status,
179 (status & STS_ASS) ? " Async" : "",
180 (status & STS_PSS) ? " Periodic" : "",
181 (status & STS_RECL) ? " Recl" : "",
182 (status & STS_HALT) ? " Halt" : "",
183 (status & STS_IAA) ? " IAA" : "",
184 (status & STS_FATAL) ? " FATAL" : "",
185 (status & STS_FLR) ? " FLR" : "",
186 (status & STS_PCD) ? " PCD" : "",
187 (status & STS_ERR) ? " ERR" : "",
188 (status & STS_INT) ? " INT" : "");
191 static int __maybe_unused
192 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
194 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
195 label, label[0] ? " " : "", enable,
196 (enable & STS_IAA) ? " IAA" : "",
197 (enable & STS_FATAL) ? " FATAL" : "",
198 (enable & STS_FLR) ? " FLR" : "",
199 (enable & STS_PCD) ? " PCD" : "",
200 (enable & STS_ERR) ? " ERR" : "",
201 (enable & STS_INT) ? " INT" : "");
204 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
206 static int dbg_command_buf(char *buf, unsigned len, const char *label,
207 u32 command)
209 return scnprintf(buf, len,
210 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
211 label, label[0] ? " " : "", command,
212 (command & CMD_PARK) ? " park" : "(park)",
213 CMD_PARK_CNT(command),
214 (command >> 16) & 0x3f,
215 (command & CMD_IAAD) ? " IAAD" : "",
216 (command & CMD_ASE) ? " Async" : "",
217 (command & CMD_PSE) ? " Periodic" : "",
218 fls_strings[(command >> 2) & 0x3],
219 (command & CMD_RESET) ? " Reset" : "",
220 (command & CMD_RUN) ? "RUN" : "HALT");
223 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
224 u32 status)
226 char *sig;
228 /* signaling state */
229 switch (status & (3 << 10)) {
230 case 0 << 10:
231 sig = "se0";
232 break;
233 case 1 << 10:
234 sig = "k";
235 break; /* low speed */
236 case 2 << 10:
237 sig = "j";
238 break;
239 default:
240 sig = "?";
241 break;
244 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
245 label, label[0] ? " " : "", port, status,
246 status >> 25, /*device address */
247 sig,
248 (status & PORT_RESET) ? " RESET" : "",
249 (status & PORT_SUSPEND) ? " SUSPEND" : "",
250 (status & PORT_RESUME) ? " RESUME" : "",
251 (status & PORT_PEC) ? " PEC" : "",
252 (status & PORT_PE) ? " PE" : "",
253 (status & PORT_CSC) ? " CSC" : "",
254 (status & PORT_CONNECT) ? " CONNECT" : "");
256 return buf;
259 /* functions have the "wrong" filename when they're output... */
260 #define dbg_status(fotg210, label, status) { \
261 char _buf[80]; \
262 dbg_status_buf(_buf, sizeof(_buf), label, status); \
263 fotg210_dbg(fotg210, "%s\n", _buf); \
266 #define dbg_cmd(fotg210, label, command) { \
267 char _buf[80]; \
268 dbg_command_buf(_buf, sizeof(_buf), label, command); \
269 fotg210_dbg(fotg210, "%s\n", _buf); \
272 #define dbg_port(fotg210, label, port, status) { \
273 char _buf[80]; \
274 fotg210_dbg(fotg210, "%s\n", \
275 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 /* troubleshooting help: expose state in debugfs */
279 static int debug_async_open(struct inode *, struct file *);
280 static int debug_periodic_open(struct inode *, struct file *);
281 static int debug_registers_open(struct inode *, struct file *);
282 static int debug_async_open(struct inode *, struct file *);
284 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
285 static int debug_close(struct inode *, struct file *);
287 static const struct file_operations debug_async_fops = {
288 .owner = THIS_MODULE,
289 .open = debug_async_open,
290 .read = debug_output,
291 .release = debug_close,
292 .llseek = default_llseek,
294 static const struct file_operations debug_periodic_fops = {
295 .owner = THIS_MODULE,
296 .open = debug_periodic_open,
297 .read = debug_output,
298 .release = debug_close,
299 .llseek = default_llseek,
301 static const struct file_operations debug_registers_fops = {
302 .owner = THIS_MODULE,
303 .open = debug_registers_open,
304 .read = debug_output,
305 .release = debug_close,
306 .llseek = default_llseek,
309 static struct dentry *fotg210_debug_root;
311 struct debug_buffer {
312 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
313 struct usb_bus *bus;
314 struct mutex mutex; /* protect filling of buffer */
315 size_t count; /* number of characters filled into buffer */
316 char *output_buf;
317 size_t alloc_size;
320 static inline char speed_char(u32 scratch)
322 switch (scratch & (3 << 12)) {
323 case QH_FULL_SPEED:
324 return 'f';
326 case QH_LOW_SPEED:
327 return 'l';
329 case QH_HIGH_SPEED:
330 return 'h';
332 default:
333 return '?';
337 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
339 __u32 v = hc32_to_cpu(fotg210, token);
341 if (v & QTD_STS_ACTIVE)
342 return '*';
343 if (v & QTD_STS_HALT)
344 return '-';
345 if (!IS_SHORT_READ(v))
346 return ' ';
347 /* tries to advance through hw_alt_next */
348 return '/';
351 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
352 char **nextp, unsigned *sizep)
354 u32 scratch;
355 u32 hw_curr;
356 struct fotg210_qtd *td;
357 unsigned temp;
358 unsigned size = *sizep;
359 char *next = *nextp;
360 char mark;
361 __le32 list_end = FOTG210_LIST_END(fotg210);
362 struct fotg210_qh_hw *hw = qh->hw;
364 if (hw->hw_qtd_next == list_end) /* NEC does this */
365 mark = '@';
366 else
367 mark = token_mark(fotg210, hw->hw_token);
368 if (mark == '/') { /* qh_alt_next controls qh advance? */
369 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
370 fotg210->async->hw->hw_alt_next)
371 mark = '#'; /* blocked */
372 else if (hw->hw_alt_next == list_end)
373 mark = '.'; /* use hw_qtd_next */
374 /* else alt_next points to some other qtd */
376 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
377 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
378 temp = scnprintf(next, size,
379 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
380 qh, scratch & 0x007f,
381 speed_char(scratch),
382 (scratch >> 8) & 0x000f,
383 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
384 hc32_to_cpup(fotg210, &hw->hw_token), mark,
385 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
386 ? "data1" : "data0",
387 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
388 size -= temp;
389 next += temp;
391 /* hc may be modifying the list as we read it ... */
392 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
393 scratch = hc32_to_cpup(fotg210, &td->hw_token);
394 mark = ' ';
395 if (hw_curr == td->qtd_dma)
396 mark = '*';
397 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
398 mark = '+';
399 else if (QTD_LENGTH(scratch)) {
400 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
401 mark = '#';
402 else if (td->hw_alt_next != list_end)
403 mark = '/';
405 temp = snprintf(next, size,
406 "\n\t%p%c%s len=%d %08x urb %p",
407 td, mark, ({ char *tmp;
408 switch ((scratch>>8)&0x03) {
409 case 0:
410 tmp = "out";
411 break;
412 case 1:
413 tmp = "in";
414 break;
415 case 2:
416 tmp = "setup";
417 break;
418 default:
419 tmp = "?";
420 break;
421 } tmp; }),
422 (scratch >> 16) & 0x7fff,
423 scratch,
424 td->urb);
425 if (size < temp)
426 temp = size;
427 size -= temp;
428 next += temp;
429 if (temp == size)
430 goto done;
433 temp = snprintf(next, size, "\n");
434 if (size < temp)
435 temp = size;
437 size -= temp;
438 next += temp;
440 done:
441 *sizep = size;
442 *nextp = next;
445 static ssize_t fill_async_buffer(struct debug_buffer *buf)
447 struct usb_hcd *hcd;
448 struct fotg210_hcd *fotg210;
449 unsigned long flags;
450 unsigned temp, size;
451 char *next;
452 struct fotg210_qh *qh;
454 hcd = bus_to_hcd(buf->bus);
455 fotg210 = hcd_to_fotg210(hcd);
456 next = buf->output_buf;
457 size = buf->alloc_size;
459 *next = 0;
461 /* dumps a snapshot of the async schedule.
462 * usually empty except for long-term bulk reads, or head.
463 * one QH per line, and TDs we know about
465 spin_lock_irqsave(&fotg210->lock, flags);
466 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
467 qh = qh->qh_next.qh)
468 qh_lines(fotg210, qh, &next, &size);
469 if (fotg210->async_unlink && size > 0) {
470 temp = scnprintf(next, size, "\nunlink =\n");
471 size -= temp;
472 next += temp;
474 for (qh = fotg210->async_unlink; size > 0 && qh;
475 qh = qh->unlink_next)
476 qh_lines(fotg210, qh, &next, &size);
478 spin_unlock_irqrestore(&fotg210->lock, flags);
480 return strlen(buf->output_buf);
483 /* count tds, get ep direction */
484 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
485 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
487 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
488 struct fotg210_qtd *qtd;
489 char *type = "";
490 unsigned temp = 0;
492 /* count tds, get ep direction */
493 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
494 temp++;
495 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
496 case 0:
497 type = "out";
498 continue;
499 case 1:
500 type = "in";
501 continue;
505 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
506 speed_char(scratch), scratch & 0x007f,
507 (scratch >> 8) & 0x000f, type, qh->usecs,
508 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
511 #define DBG_SCHED_LIMIT 64
512 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
514 struct usb_hcd *hcd;
515 struct fotg210_hcd *fotg210;
516 unsigned long flags;
517 union fotg210_shadow p, *seen;
518 unsigned temp, size, seen_count;
519 char *next;
520 unsigned i;
521 __hc32 tag;
523 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
524 if (!seen)
525 return 0;
527 seen_count = 0;
529 hcd = bus_to_hcd(buf->bus);
530 fotg210 = hcd_to_fotg210(hcd);
531 next = buf->output_buf;
532 size = buf->alloc_size;
534 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
535 size -= temp;
536 next += temp;
538 /* dump a snapshot of the periodic schedule.
539 * iso changes, interrupt usually doesn't.
541 spin_lock_irqsave(&fotg210->lock, flags);
542 for (i = 0; i < fotg210->periodic_size; i++) {
543 p = fotg210->pshadow[i];
544 if (likely(!p.ptr))
545 continue;
547 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
549 temp = scnprintf(next, size, "%4d: ", i);
550 size -= temp;
551 next += temp;
553 do {
554 struct fotg210_qh_hw *hw;
556 switch (hc32_to_cpu(fotg210, tag)) {
557 case Q_TYPE_QH:
558 hw = p.qh->hw;
559 temp = scnprintf(next, size, " qh%d-%04x/%p",
560 p.qh->period,
561 hc32_to_cpup(fotg210,
562 &hw->hw_info2)
563 /* uframe masks */
564 & (QH_CMASK | QH_SMASK),
565 p.qh);
566 size -= temp;
567 next += temp;
568 /* don't repeat what follows this qh */
569 for (temp = 0; temp < seen_count; temp++) {
570 if (seen[temp].ptr != p.ptr)
571 continue;
572 if (p.qh->qh_next.ptr) {
573 temp = scnprintf(next, size,
574 " ...");
575 size -= temp;
576 next += temp;
578 break;
580 /* show more info the first time around */
581 if (temp == seen_count) {
582 temp = output_buf_tds_dir(next,
583 fotg210, hw,
584 p.qh, size);
586 if (seen_count < DBG_SCHED_LIMIT)
587 seen[seen_count++].qh = p.qh;
588 } else
589 temp = 0;
590 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
591 p = p.qh->qh_next;
592 break;
593 case Q_TYPE_FSTN:
594 temp = scnprintf(next, size,
595 " fstn-%8x/%p",
596 p.fstn->hw_prev, p.fstn);
597 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
598 p = p.fstn->fstn_next;
599 break;
600 case Q_TYPE_ITD:
601 temp = scnprintf(next, size,
602 " itd/%p", p.itd);
603 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
604 p = p.itd->itd_next;
605 break;
607 size -= temp;
608 next += temp;
609 } while (p.ptr);
611 temp = scnprintf(next, size, "\n");
612 size -= temp;
613 next += temp;
615 spin_unlock_irqrestore(&fotg210->lock, flags);
616 kfree(seen);
618 return buf->alloc_size - size;
620 #undef DBG_SCHED_LIMIT
622 static const char *rh_state_string(struct fotg210_hcd *fotg210)
624 switch (fotg210->rh_state) {
625 case FOTG210_RH_HALTED:
626 return "halted";
627 case FOTG210_RH_SUSPENDED:
628 return "suspended";
629 case FOTG210_RH_RUNNING:
630 return "running";
631 case FOTG210_RH_STOPPING:
632 return "stopping";
634 return "?";
637 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
639 struct usb_hcd *hcd;
640 struct fotg210_hcd *fotg210;
641 unsigned long flags;
642 unsigned temp, size, i;
643 char *next, scratch[80];
644 static const char fmt[] = "%*s\n";
645 static const char label[] = "";
647 hcd = bus_to_hcd(buf->bus);
648 fotg210 = hcd_to_fotg210(hcd);
649 next = buf->output_buf;
650 size = buf->alloc_size;
652 spin_lock_irqsave(&fotg210->lock, flags);
654 if (!HCD_HW_ACCESSIBLE(hcd)) {
655 size = scnprintf(next, size,
656 "bus %s, device %s\n"
657 "%s\n"
658 "SUSPENDED(no register access)\n",
659 hcd->self.controller->bus->name,
660 dev_name(hcd->self.controller),
661 hcd->product_desc);
662 goto done;
665 /* Capability Registers */
666 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
667 &fotg210->caps->hc_capbase));
668 temp = scnprintf(next, size,
669 "bus %s, device %s\n"
670 "%s\n"
671 "EHCI %x.%02x, rh state %s\n",
672 hcd->self.controller->bus->name,
673 dev_name(hcd->self.controller),
674 hcd->product_desc,
675 i >> 8, i & 0x0ff, rh_state_string(fotg210));
676 size -= temp;
677 next += temp;
679 /* FIXME interpret both types of params */
680 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
681 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
682 size -= temp;
683 next += temp;
685 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
686 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
687 size -= temp;
688 next += temp;
690 /* Operational Registers */
691 temp = dbg_status_buf(scratch, sizeof(scratch), label,
692 fotg210_readl(fotg210, &fotg210->regs->status));
693 temp = scnprintf(next, size, fmt, temp, scratch);
694 size -= temp;
695 next += temp;
697 temp = dbg_command_buf(scratch, sizeof(scratch), label,
698 fotg210_readl(fotg210, &fotg210->regs->command));
699 temp = scnprintf(next, size, fmt, temp, scratch);
700 size -= temp;
701 next += temp;
703 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
704 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
705 temp = scnprintf(next, size, fmt, temp, scratch);
706 size -= temp;
707 next += temp;
709 temp = scnprintf(next, size, "uframe %04x\n",
710 fotg210_read_frame_index(fotg210));
711 size -= temp;
712 next += temp;
714 if (fotg210->async_unlink) {
715 temp = scnprintf(next, size, "async unlink qh %p\n",
716 fotg210->async_unlink);
717 size -= temp;
718 next += temp;
721 #ifdef FOTG210_STATS
722 temp = scnprintf(next, size,
723 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
724 fotg210->stats.normal, fotg210->stats.error,
725 fotg210->stats.iaa, fotg210->stats.lost_iaa);
726 size -= temp;
727 next += temp;
729 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
730 fotg210->stats.complete, fotg210->stats.unlink);
731 size -= temp;
732 next += temp;
733 #endif
735 done:
736 spin_unlock_irqrestore(&fotg210->lock, flags);
738 return buf->alloc_size - size;
741 static struct debug_buffer
742 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
744 struct debug_buffer *buf;
746 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
748 if (buf) {
749 buf->bus = bus;
750 buf->fill_func = fill_func;
751 mutex_init(&buf->mutex);
752 buf->alloc_size = PAGE_SIZE;
755 return buf;
758 static int fill_buffer(struct debug_buffer *buf)
760 int ret = 0;
762 if (!buf->output_buf)
763 buf->output_buf = vmalloc(buf->alloc_size);
765 if (!buf->output_buf) {
766 ret = -ENOMEM;
767 goto out;
770 ret = buf->fill_func(buf);
772 if (ret >= 0) {
773 buf->count = ret;
774 ret = 0;
777 out:
778 return ret;
781 static ssize_t debug_output(struct file *file, char __user *user_buf,
782 size_t len, loff_t *offset)
784 struct debug_buffer *buf = file->private_data;
785 int ret = 0;
787 mutex_lock(&buf->mutex);
788 if (buf->count == 0) {
789 ret = fill_buffer(buf);
790 if (ret != 0) {
791 mutex_unlock(&buf->mutex);
792 goto out;
795 mutex_unlock(&buf->mutex);
797 ret = simple_read_from_buffer(user_buf, len, offset,
798 buf->output_buf, buf->count);
800 out:
801 return ret;
805 static int debug_close(struct inode *inode, struct file *file)
807 struct debug_buffer *buf = file->private_data;
809 if (buf) {
810 vfree(buf->output_buf);
811 kfree(buf);
814 return 0;
816 static int debug_async_open(struct inode *inode, struct file *file)
818 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
820 return file->private_data ? 0 : -ENOMEM;
823 static int debug_periodic_open(struct inode *inode, struct file *file)
825 struct debug_buffer *buf;
827 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
828 if (!buf)
829 return -ENOMEM;
831 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
832 file->private_data = buf;
833 return 0;
836 static int debug_registers_open(struct inode *inode, struct file *file)
838 file->private_data = alloc_buffer(inode->i_private,
839 fill_registers_buffer);
841 return file->private_data ? 0 : -ENOMEM;
844 static inline void create_debug_files(struct fotg210_hcd *fotg210)
846 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
847 struct dentry *root;
849 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
850 fotg210->debug_dir = root;
852 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
853 debugfs_create_file("periodic", S_IRUGO, root, bus,
854 &debug_periodic_fops);
855 debugfs_create_file("registers", S_IRUGO, root, bus,
856 &debug_registers_fops);
859 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
861 debugfs_remove_recursive(fotg210->debug_dir);
864 /* handshake - spin reading hc until handshake completes or fails
865 * @ptr: address of hc register to be read
866 * @mask: bits to look at in result of read
867 * @done: value of those bits when handshake succeeds
868 * @usec: timeout in microseconds
870 * Returns negative errno, or zero on success
872 * Success happens when the "mask" bits have the specified value (hardware
873 * handshake done). There are two failure modes: "usec" have passed (major
874 * hardware flakeout), or the register reads as all-ones (hardware removed).
876 * That last failure should_only happen in cases like physical cardbus eject
877 * before driver shutdown. But it also seems to be caused by bugs in cardbus
878 * bridge shutdown: shutting down the bridge before the devices using it.
880 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
881 u32 mask, u32 done, int usec)
883 u32 result;
885 do {
886 result = fotg210_readl(fotg210, ptr);
887 if (result == ~(u32)0) /* card removed */
888 return -ENODEV;
889 result &= mask;
890 if (result == done)
891 return 0;
892 udelay(1);
893 usec--;
894 } while (usec > 0);
895 return -ETIMEDOUT;
898 /* Force HC to halt state from unknown (EHCI spec section 2.3).
899 * Must be called with interrupts enabled and the lock not held.
901 static int fotg210_halt(struct fotg210_hcd *fotg210)
903 u32 temp;
905 spin_lock_irq(&fotg210->lock);
907 /* disable any irqs left enabled by previous code */
908 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
911 * This routine gets called during probe before fotg210->command
912 * has been initialized, so we can't rely on its value.
914 fotg210->command &= ~CMD_RUN;
915 temp = fotg210_readl(fotg210, &fotg210->regs->command);
916 temp &= ~(CMD_RUN | CMD_IAAD);
917 fotg210_writel(fotg210, temp, &fotg210->regs->command);
919 spin_unlock_irq(&fotg210->lock);
920 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
922 return handshake(fotg210, &fotg210->regs->status,
923 STS_HALT, STS_HALT, 16 * 125);
926 /* Reset a non-running (STS_HALT == 1) controller.
927 * Must be called with interrupts enabled and the lock not held.
929 static int fotg210_reset(struct fotg210_hcd *fotg210)
931 int retval;
932 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
934 /* If the EHCI debug controller is active, special care must be
935 * taken before and after a host controller reset
937 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
938 fotg210->debug = NULL;
940 command |= CMD_RESET;
941 dbg_cmd(fotg210, "reset", command);
942 fotg210_writel(fotg210, command, &fotg210->regs->command);
943 fotg210->rh_state = FOTG210_RH_HALTED;
944 fotg210->next_statechange = jiffies;
945 retval = handshake(fotg210, &fotg210->regs->command,
946 CMD_RESET, 0, 250 * 1000);
948 if (retval)
949 return retval;
951 if (fotg210->debug)
952 dbgp_external_startup(fotg210_to_hcd(fotg210));
954 fotg210->port_c_suspend = fotg210->suspended_ports =
955 fotg210->resuming_ports = 0;
956 return retval;
959 /* Idle the controller (turn off the schedules).
960 * Must be called with interrupts enabled and the lock not held.
962 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
964 u32 temp;
966 if (fotg210->rh_state != FOTG210_RH_RUNNING)
967 return;
969 /* wait for any schedule enables/disables to take effect */
970 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
971 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
972 16 * 125);
974 /* then disable anything that's still active */
975 spin_lock_irq(&fotg210->lock);
976 fotg210->command &= ~(CMD_ASE | CMD_PSE);
977 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
978 spin_unlock_irq(&fotg210->lock);
980 /* hardware can take 16 microframes to turn off ... */
981 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
982 16 * 125);
985 static void end_unlink_async(struct fotg210_hcd *fotg210);
986 static void unlink_empty_async(struct fotg210_hcd *fotg210);
987 static void fotg210_work(struct fotg210_hcd *fotg210);
988 static void start_unlink_intr(struct fotg210_hcd *fotg210,
989 struct fotg210_qh *qh);
990 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
992 /* Set a bit in the USBCMD register */
993 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
995 fotg210->command |= bit;
996 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
998 /* unblock posted write */
999 fotg210_readl(fotg210, &fotg210->regs->command);
1002 /* Clear a bit in the USBCMD register */
1003 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1005 fotg210->command &= ~bit;
1006 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1008 /* unblock posted write */
1009 fotg210_readl(fotg210, &fotg210->regs->command);
1012 /* EHCI timer support... Now using hrtimers.
1014 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1015 * the timer routine runs, it checks each possible event; events that are
1016 * currently enabled and whose expiration time has passed get handled.
1017 * The set of enabled events is stored as a collection of bitflags in
1018 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1019 * increasing delay values (ranging between 1 ms and 100 ms).
1021 * Rather than implementing a sorted list or tree of all pending events,
1022 * we keep track only of the lowest-numbered pending event, in
1023 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1024 * expiration time is set to the timeout value for this event.
1026 * As a result, events might not get handled right away; the actual delay
1027 * could be anywhere up to twice the requested delay. This doesn't
1028 * matter, because none of the events are especially time-critical. The
1029 * ones that matter most all have a delay of 1 ms, so they will be
1030 * handled after 2 ms at most, which is okay. In addition to this, we
1031 * allow for an expiration range of 1 ms.
1034 /* Delay lengths for the hrtimer event types.
1035 * Keep this list sorted by delay length, in the same order as
1036 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1038 static unsigned event_delays_ns[] = {
1039 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1040 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1042 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1043 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1044 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1045 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1046 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1047 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1048 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1051 /* Enable a pending hrtimer event */
1052 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1053 bool resched)
1055 ktime_t *timeout = &fotg210->hr_timeouts[event];
1057 if (resched)
1058 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1059 fotg210->enabled_hrtimer_events |= (1 << event);
1061 /* Track only the lowest-numbered pending event */
1062 if (event < fotg210->next_hrtimer_event) {
1063 fotg210->next_hrtimer_event = event;
1064 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1065 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1070 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1071 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1073 unsigned actual, want;
1075 /* Don't enable anything if the controller isn't running (e.g., died) */
1076 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1077 return;
1079 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1080 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1082 if (want != actual) {
1084 /* Poll again later, but give up after about 20 ms */
1085 if (fotg210->ASS_poll_count++ < 20) {
1086 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1087 true);
1088 return;
1090 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1091 want, actual);
1093 fotg210->ASS_poll_count = 0;
1095 /* The status is up-to-date; restart or stop the schedule as needed */
1096 if (want == 0) { /* Stopped */
1097 if (fotg210->async_count > 0)
1098 fotg210_set_command_bit(fotg210, CMD_ASE);
1100 } else { /* Running */
1101 if (fotg210->async_count == 0) {
1103 /* Turn off the schedule after a while */
1104 fotg210_enable_event(fotg210,
1105 FOTG210_HRTIMER_DISABLE_ASYNC,
1106 true);
1111 /* Turn off the async schedule after a brief delay */
1112 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1114 fotg210_clear_command_bit(fotg210, CMD_ASE);
1118 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1119 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1121 unsigned actual, want;
1123 /* Don't do anything if the controller isn't running (e.g., died) */
1124 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1125 return;
1127 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1128 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1130 if (want != actual) {
1132 /* Poll again later, but give up after about 20 ms */
1133 if (fotg210->PSS_poll_count++ < 20) {
1134 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1135 true);
1136 return;
1138 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1139 want, actual);
1141 fotg210->PSS_poll_count = 0;
1143 /* The status is up-to-date; restart or stop the schedule as needed */
1144 if (want == 0) { /* Stopped */
1145 if (fotg210->periodic_count > 0)
1146 fotg210_set_command_bit(fotg210, CMD_PSE);
1148 } else { /* Running */
1149 if (fotg210->periodic_count == 0) {
1151 /* Turn off the schedule after a while */
1152 fotg210_enable_event(fotg210,
1153 FOTG210_HRTIMER_DISABLE_PERIODIC,
1154 true);
1159 /* Turn off the periodic schedule after a brief delay */
1160 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1162 fotg210_clear_command_bit(fotg210, CMD_PSE);
1166 /* Poll the STS_HALT status bit; see when a dead controller stops */
1167 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1169 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1171 /* Give up after a few milliseconds */
1172 if (fotg210->died_poll_count++ < 5) {
1173 /* Try again later */
1174 fotg210_enable_event(fotg210,
1175 FOTG210_HRTIMER_POLL_DEAD, true);
1176 return;
1178 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1181 /* Clean up the mess */
1182 fotg210->rh_state = FOTG210_RH_HALTED;
1183 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1184 fotg210_work(fotg210);
1185 end_unlink_async(fotg210);
1187 /* Not in process context, so don't try to reset the controller */
1191 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1192 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1194 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1197 * Process all the QHs on the intr_unlink list that were added
1198 * before the current unlink cycle began. The list is in
1199 * temporal order, so stop when we reach the first entry in the
1200 * current cycle. But if the root hub isn't running then
1201 * process all the QHs on the list.
1203 fotg210->intr_unlinking = true;
1204 while (fotg210->intr_unlink) {
1205 struct fotg210_qh *qh = fotg210->intr_unlink;
1207 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1208 break;
1209 fotg210->intr_unlink = qh->unlink_next;
1210 qh->unlink_next = NULL;
1211 end_unlink_intr(fotg210, qh);
1214 /* Handle remaining entries later */
1215 if (fotg210->intr_unlink) {
1216 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1217 true);
1218 ++fotg210->intr_unlink_cycle;
1220 fotg210->intr_unlinking = false;
1224 /* Start another free-iTDs/siTDs cycle */
1225 static void start_free_itds(struct fotg210_hcd *fotg210)
1227 if (!(fotg210->enabled_hrtimer_events &
1228 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1229 fotg210->last_itd_to_free = list_entry(
1230 fotg210->cached_itd_list.prev,
1231 struct fotg210_itd, itd_list);
1232 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1236 /* Wait for controller to stop using old iTDs and siTDs */
1237 static void end_free_itds(struct fotg210_hcd *fotg210)
1239 struct fotg210_itd *itd, *n;
1241 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1242 fotg210->last_itd_to_free = NULL;
1244 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1245 list_del(&itd->itd_list);
1246 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1247 if (itd == fotg210->last_itd_to_free)
1248 break;
1251 if (!list_empty(&fotg210->cached_itd_list))
1252 start_free_itds(fotg210);
1256 /* Handle lost (or very late) IAA interrupts */
1257 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1259 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1260 return;
1263 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1264 * So we need this watchdog, but must protect it against both
1265 * (a) SMP races against real IAA firing and retriggering, and
1266 * (b) clean HC shutdown, when IAA watchdog was pending.
1268 if (fotg210->async_iaa) {
1269 u32 cmd, status;
1271 /* If we get here, IAA is *REALLY* late. It's barely
1272 * conceivable that the system is so busy that CMD_IAAD
1273 * is still legitimately set, so let's be sure it's
1274 * clear before we read STS_IAA. (The HC should clear
1275 * CMD_IAAD when it sets STS_IAA.)
1277 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1280 * If IAA is set here it either legitimately triggered
1281 * after the watchdog timer expired (_way_ late, so we'll
1282 * still count it as lost) ... or a silicon erratum:
1283 * - VIA seems to set IAA without triggering the IRQ;
1284 * - IAAD potentially cleared without setting IAA.
1286 status = fotg210_readl(fotg210, &fotg210->regs->status);
1287 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1288 COUNT(fotg210->stats.lost_iaa);
1289 fotg210_writel(fotg210, STS_IAA,
1290 &fotg210->regs->status);
1293 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1294 status, cmd);
1295 end_unlink_async(fotg210);
1300 /* Enable the I/O watchdog, if appropriate */
1301 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1303 /* Not needed if the controller isn't running or it's already enabled */
1304 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1305 (fotg210->enabled_hrtimer_events &
1306 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1307 return;
1310 * Isochronous transfers always need the watchdog.
1311 * For other sorts we use it only if the flag is set.
1313 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1314 fotg210->async_count + fotg210->intr_count > 0))
1315 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1316 true);
1320 /* Handler functions for the hrtimer event types.
1321 * Keep this array in the same order as the event types indexed by
1322 * enum fotg210_hrtimer_event in fotg210.h.
1324 static void (*event_handlers[])(struct fotg210_hcd *) = {
1325 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1326 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1327 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1328 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1329 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1330 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1331 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1332 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1333 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1334 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1337 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1339 struct fotg210_hcd *fotg210 =
1340 container_of(t, struct fotg210_hcd, hrtimer);
1341 ktime_t now;
1342 unsigned long events;
1343 unsigned long flags;
1344 unsigned e;
1346 spin_lock_irqsave(&fotg210->lock, flags);
1348 events = fotg210->enabled_hrtimer_events;
1349 fotg210->enabled_hrtimer_events = 0;
1350 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1353 * Check each pending event. If its time has expired, handle
1354 * the event; otherwise re-enable it.
1356 now = ktime_get();
1357 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1358 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1359 event_handlers[e](fotg210);
1360 else
1361 fotg210_enable_event(fotg210, e, false);
1364 spin_unlock_irqrestore(&fotg210->lock, flags);
1365 return HRTIMER_NORESTART;
1368 #define fotg210_bus_suspend NULL
1369 #define fotg210_bus_resume NULL
1371 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1372 u32 __iomem *status_reg, int port_status)
1374 if (!(port_status & PORT_CONNECT))
1375 return port_status;
1377 /* if reset finished and it's still not enabled -- handoff */
1378 if (!(port_status & PORT_PE))
1379 /* with integrated TT, there's nobody to hand it to! */
1380 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1381 index + 1);
1382 else
1383 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1384 index + 1);
1386 return port_status;
1390 /* build "status change" packet (one or two bytes) from HC registers */
1392 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1394 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1395 u32 temp, status;
1396 u32 mask;
1397 int retval = 1;
1398 unsigned long flags;
1400 /* init status to no-changes */
1401 buf[0] = 0;
1403 /* Inform the core about resumes-in-progress by returning
1404 * a non-zero value even if there are no status changes.
1406 status = fotg210->resuming_ports;
1408 mask = PORT_CSC | PORT_PEC;
1409 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1411 /* no hub change reports (bit 0) for now (power, ...) */
1413 /* port N changes (bit N)? */
1414 spin_lock_irqsave(&fotg210->lock, flags);
1416 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1419 * Return status information even for ports with OWNER set.
1420 * Otherwise hub_wq wouldn't see the disconnect event when a
1421 * high-speed device is switched over to the companion
1422 * controller by the user.
1425 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1426 (fotg210->reset_done[0] &&
1427 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1428 buf[0] |= 1 << 1;
1429 status = STS_PCD;
1431 /* FIXME autosuspend idle root hubs */
1432 spin_unlock_irqrestore(&fotg210->lock, flags);
1433 return status ? retval : 0;
1436 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1437 struct usb_hub_descriptor *desc)
1439 int ports = HCS_N_PORTS(fotg210->hcs_params);
1440 u16 temp;
1442 desc->bDescriptorType = USB_DT_HUB;
1443 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1444 desc->bHubContrCurrent = 0;
1446 desc->bNbrPorts = ports;
1447 temp = 1 + (ports / 8);
1448 desc->bDescLength = 7 + 2 * temp;
1450 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1451 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1452 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1454 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1455 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1456 desc->wHubCharacteristics = cpu_to_le16(temp);
1459 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1460 u16 wIndex, char *buf, u16 wLength)
1462 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1463 int ports = HCS_N_PORTS(fotg210->hcs_params);
1464 u32 __iomem *status_reg = &fotg210->regs->port_status;
1465 u32 temp, temp1, status;
1466 unsigned long flags;
1467 int retval = 0;
1468 unsigned selector;
1471 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1472 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1473 * (track current state ourselves) ... blink for diagnostics,
1474 * power, "this is the one", etc. EHCI spec supports this.
1477 spin_lock_irqsave(&fotg210->lock, flags);
1478 switch (typeReq) {
1479 case ClearHubFeature:
1480 switch (wValue) {
1481 case C_HUB_LOCAL_POWER:
1482 case C_HUB_OVER_CURRENT:
1483 /* no hub-wide feature/status flags */
1484 break;
1485 default:
1486 goto error;
1488 break;
1489 case ClearPortFeature:
1490 if (!wIndex || wIndex > ports)
1491 goto error;
1492 wIndex--;
1493 temp = fotg210_readl(fotg210, status_reg);
1494 temp &= ~PORT_RWC_BITS;
1497 * Even if OWNER is set, so the port is owned by the
1498 * companion controller, hub_wq needs to be able to clear
1499 * the port-change status bits (especially
1500 * USB_PORT_STAT_C_CONNECTION).
1503 switch (wValue) {
1504 case USB_PORT_FEAT_ENABLE:
1505 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1506 break;
1507 case USB_PORT_FEAT_C_ENABLE:
1508 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1509 break;
1510 case USB_PORT_FEAT_SUSPEND:
1511 if (temp & PORT_RESET)
1512 goto error;
1513 if (!(temp & PORT_SUSPEND))
1514 break;
1515 if ((temp & PORT_PE) == 0)
1516 goto error;
1518 /* resume signaling for 20 msec */
1519 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1520 fotg210->reset_done[wIndex] = jiffies
1521 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1522 break;
1523 case USB_PORT_FEAT_C_SUSPEND:
1524 clear_bit(wIndex, &fotg210->port_c_suspend);
1525 break;
1526 case USB_PORT_FEAT_C_CONNECTION:
1527 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1528 break;
1529 case USB_PORT_FEAT_C_OVER_CURRENT:
1530 fotg210_writel(fotg210, temp | OTGISR_OVC,
1531 &fotg210->regs->otgisr);
1532 break;
1533 case USB_PORT_FEAT_C_RESET:
1534 /* GetPortStatus clears reset */
1535 break;
1536 default:
1537 goto error;
1539 fotg210_readl(fotg210, &fotg210->regs->command);
1540 break;
1541 case GetHubDescriptor:
1542 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1543 buf);
1544 break;
1545 case GetHubStatus:
1546 /* no hub-wide feature/status flags */
1547 memset(buf, 0, 4);
1548 /*cpu_to_le32s ((u32 *) buf); */
1549 break;
1550 case GetPortStatus:
1551 if (!wIndex || wIndex > ports)
1552 goto error;
1553 wIndex--;
1554 status = 0;
1555 temp = fotg210_readl(fotg210, status_reg);
1557 /* wPortChange bits */
1558 if (temp & PORT_CSC)
1559 status |= USB_PORT_STAT_C_CONNECTION << 16;
1560 if (temp & PORT_PEC)
1561 status |= USB_PORT_STAT_C_ENABLE << 16;
1563 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1564 if (temp1 & OTGISR_OVC)
1565 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1567 /* whoever resumes must GetPortStatus to complete it!! */
1568 if (temp & PORT_RESUME) {
1570 /* Remote Wakeup received? */
1571 if (!fotg210->reset_done[wIndex]) {
1572 /* resume signaling for 20 msec */
1573 fotg210->reset_done[wIndex] = jiffies
1574 + msecs_to_jiffies(20);
1575 /* check the port again */
1576 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1577 fotg210->reset_done[wIndex]);
1580 /* resume completed? */
1581 else if (time_after_eq(jiffies,
1582 fotg210->reset_done[wIndex])) {
1583 clear_bit(wIndex, &fotg210->suspended_ports);
1584 set_bit(wIndex, &fotg210->port_c_suspend);
1585 fotg210->reset_done[wIndex] = 0;
1587 /* stop resume signaling */
1588 temp = fotg210_readl(fotg210, status_reg);
1589 fotg210_writel(fotg210, temp &
1590 ~(PORT_RWC_BITS | PORT_RESUME),
1591 status_reg);
1592 clear_bit(wIndex, &fotg210->resuming_ports);
1593 retval = handshake(fotg210, status_reg,
1594 PORT_RESUME, 0, 2000);/* 2ms */
1595 if (retval != 0) {
1596 fotg210_err(fotg210,
1597 "port %d resume error %d\n",
1598 wIndex + 1, retval);
1599 goto error;
1601 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1605 /* whoever resets must GetPortStatus to complete it!! */
1606 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1607 fotg210->reset_done[wIndex])) {
1608 status |= USB_PORT_STAT_C_RESET << 16;
1609 fotg210->reset_done[wIndex] = 0;
1610 clear_bit(wIndex, &fotg210->resuming_ports);
1612 /* force reset to complete */
1613 fotg210_writel(fotg210,
1614 temp & ~(PORT_RWC_BITS | PORT_RESET),
1615 status_reg);
1616 /* REVISIT: some hardware needs 550+ usec to clear
1617 * this bit; seems too long to spin routinely...
1619 retval = handshake(fotg210, status_reg,
1620 PORT_RESET, 0, 1000);
1621 if (retval != 0) {
1622 fotg210_err(fotg210, "port %d reset error %d\n",
1623 wIndex + 1, retval);
1624 goto error;
1627 /* see what we found out */
1628 temp = check_reset_complete(fotg210, wIndex, status_reg,
1629 fotg210_readl(fotg210, status_reg));
1632 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1633 fotg210->reset_done[wIndex] = 0;
1634 clear_bit(wIndex, &fotg210->resuming_ports);
1637 /* transfer dedicated ports to the companion hc */
1638 if ((temp & PORT_CONNECT) &&
1639 test_bit(wIndex, &fotg210->companion_ports)) {
1640 temp &= ~PORT_RWC_BITS;
1641 fotg210_writel(fotg210, temp, status_reg);
1642 fotg210_dbg(fotg210, "port %d --> companion\n",
1643 wIndex + 1);
1644 temp = fotg210_readl(fotg210, status_reg);
1648 * Even if OWNER is set, there's no harm letting hub_wq
1649 * see the wPortStatus values (they should all be 0 except
1650 * for PORT_POWER anyway).
1653 if (temp & PORT_CONNECT) {
1654 status |= USB_PORT_STAT_CONNECTION;
1655 status |= fotg210_port_speed(fotg210, temp);
1657 if (temp & PORT_PE)
1658 status |= USB_PORT_STAT_ENABLE;
1660 /* maybe the port was unsuspended without our knowledge */
1661 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1662 status |= USB_PORT_STAT_SUSPEND;
1663 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1664 clear_bit(wIndex, &fotg210->suspended_ports);
1665 clear_bit(wIndex, &fotg210->resuming_ports);
1666 fotg210->reset_done[wIndex] = 0;
1667 if (temp & PORT_PE)
1668 set_bit(wIndex, &fotg210->port_c_suspend);
1671 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1672 if (temp1 & OTGISR_OVC)
1673 status |= USB_PORT_STAT_OVERCURRENT;
1674 if (temp & PORT_RESET)
1675 status |= USB_PORT_STAT_RESET;
1676 if (test_bit(wIndex, &fotg210->port_c_suspend))
1677 status |= USB_PORT_STAT_C_SUSPEND << 16;
1679 if (status & ~0xffff) /* only if wPortChange is interesting */
1680 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1681 put_unaligned_le32(status, buf);
1682 break;
1683 case SetHubFeature:
1684 switch (wValue) {
1685 case C_HUB_LOCAL_POWER:
1686 case C_HUB_OVER_CURRENT:
1687 /* no hub-wide feature/status flags */
1688 break;
1689 default:
1690 goto error;
1692 break;
1693 case SetPortFeature:
1694 selector = wIndex >> 8;
1695 wIndex &= 0xff;
1697 if (!wIndex || wIndex > ports)
1698 goto error;
1699 wIndex--;
1700 temp = fotg210_readl(fotg210, status_reg);
1701 temp &= ~PORT_RWC_BITS;
1702 switch (wValue) {
1703 case USB_PORT_FEAT_SUSPEND:
1704 if ((temp & PORT_PE) == 0
1705 || (temp & PORT_RESET) != 0)
1706 goto error;
1708 /* After above check the port must be connected.
1709 * Set appropriate bit thus could put phy into low power
1710 * mode if we have hostpc feature
1712 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1713 status_reg);
1714 set_bit(wIndex, &fotg210->suspended_ports);
1715 break;
1716 case USB_PORT_FEAT_RESET:
1717 if (temp & PORT_RESUME)
1718 goto error;
1719 /* line status bits may report this as low speed,
1720 * which can be fine if this root hub has a
1721 * transaction translator built in.
1723 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1724 temp |= PORT_RESET;
1725 temp &= ~PORT_PE;
1728 * caller must wait, then call GetPortStatus
1729 * usb 2.0 spec says 50 ms resets on root
1731 fotg210->reset_done[wIndex] = jiffies
1732 + msecs_to_jiffies(50);
1733 fotg210_writel(fotg210, temp, status_reg);
1734 break;
1736 /* For downstream facing ports (these): one hub port is put
1737 * into test mode according to USB2 11.24.2.13, then the hub
1738 * must be reset (which for root hub now means rmmod+modprobe,
1739 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1740 * about the EHCI-specific stuff.
1742 case USB_PORT_FEAT_TEST:
1743 if (!selector || selector > 5)
1744 goto error;
1745 spin_unlock_irqrestore(&fotg210->lock, flags);
1746 fotg210_quiesce(fotg210);
1747 spin_lock_irqsave(&fotg210->lock, flags);
1749 /* Put all enabled ports into suspend */
1750 temp = fotg210_readl(fotg210, status_reg) &
1751 ~PORT_RWC_BITS;
1752 if (temp & PORT_PE)
1753 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1754 status_reg);
1756 spin_unlock_irqrestore(&fotg210->lock, flags);
1757 fotg210_halt(fotg210);
1758 spin_lock_irqsave(&fotg210->lock, flags);
1760 temp = fotg210_readl(fotg210, status_reg);
1761 temp |= selector << 16;
1762 fotg210_writel(fotg210, temp, status_reg);
1763 break;
1765 default:
1766 goto error;
1768 fotg210_readl(fotg210, &fotg210->regs->command);
1769 break;
1771 default:
1772 error:
1773 /* "stall" on error */
1774 retval = -EPIPE;
1776 spin_unlock_irqrestore(&fotg210->lock, flags);
1777 return retval;
1780 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1781 int portnum)
1783 return;
1786 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1787 int portnum)
1789 return 0;
1792 /* There's basically three types of memory:
1793 * - data used only by the HCD ... kmalloc is fine
1794 * - async and periodic schedules, shared by HC and HCD ... these
1795 * need to use dma_pool or dma_alloc_coherent
1796 * - driver buffers, read/written by HC ... single shot DMA mapped
1798 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1799 * No memory seen by this driver is pageable.
1802 /* Allocate the key transfer structures from the previously allocated pool */
1803 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1804 struct fotg210_qtd *qtd, dma_addr_t dma)
1806 memset(qtd, 0, sizeof(*qtd));
1807 qtd->qtd_dma = dma;
1808 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1809 qtd->hw_next = FOTG210_LIST_END(fotg210);
1810 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1811 INIT_LIST_HEAD(&qtd->qtd_list);
1814 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1815 gfp_t flags)
1817 struct fotg210_qtd *qtd;
1818 dma_addr_t dma;
1820 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1821 if (qtd != NULL)
1822 fotg210_qtd_init(fotg210, qtd, dma);
1824 return qtd;
1827 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1828 struct fotg210_qtd *qtd)
1830 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1834 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1836 /* clean qtds first, and know this is not linked */
1837 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1838 fotg210_dbg(fotg210, "unused qh not empty!\n");
1839 BUG();
1841 if (qh->dummy)
1842 fotg210_qtd_free(fotg210, qh->dummy);
1843 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1844 kfree(qh);
1847 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1848 gfp_t flags)
1850 struct fotg210_qh *qh;
1851 dma_addr_t dma;
1853 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1854 if (!qh)
1855 goto done;
1856 qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1857 if (!qh->hw)
1858 goto fail;
1859 qh->qh_dma = dma;
1860 INIT_LIST_HEAD(&qh->qtd_list);
1862 /* dummy td enables safe urb queuing */
1863 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1864 if (qh->dummy == NULL) {
1865 fotg210_dbg(fotg210, "no dummy td\n");
1866 goto fail1;
1868 done:
1869 return qh;
1870 fail1:
1871 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1872 fail:
1873 kfree(qh);
1874 return NULL;
1877 /* The queue heads and transfer descriptors are managed from pools tied
1878 * to each of the "per device" structures.
1879 * This is the initialisation and cleanup code.
1882 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1884 if (fotg210->async)
1885 qh_destroy(fotg210, fotg210->async);
1886 fotg210->async = NULL;
1888 if (fotg210->dummy)
1889 qh_destroy(fotg210, fotg210->dummy);
1890 fotg210->dummy = NULL;
1892 /* DMA consistent memory and pools */
1893 dma_pool_destroy(fotg210->qtd_pool);
1894 fotg210->qtd_pool = NULL;
1896 dma_pool_destroy(fotg210->qh_pool);
1897 fotg210->qh_pool = NULL;
1899 dma_pool_destroy(fotg210->itd_pool);
1900 fotg210->itd_pool = NULL;
1902 if (fotg210->periodic)
1903 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1904 fotg210->periodic_size * sizeof(u32),
1905 fotg210->periodic, fotg210->periodic_dma);
1906 fotg210->periodic = NULL;
1908 /* shadow periodic table */
1909 kfree(fotg210->pshadow);
1910 fotg210->pshadow = NULL;
1913 /* remember to add cleanup code (above) if you add anything here */
1914 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1916 int i;
1918 /* QTDs for control/bulk/intr transfers */
1919 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1920 fotg210_to_hcd(fotg210)->self.controller,
1921 sizeof(struct fotg210_qtd),
1922 32 /* byte alignment (for hw parts) */,
1923 4096 /* can't cross 4K */);
1924 if (!fotg210->qtd_pool)
1925 goto fail;
1927 /* QHs for control/bulk/intr transfers */
1928 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1929 fotg210_to_hcd(fotg210)->self.controller,
1930 sizeof(struct fotg210_qh_hw),
1931 32 /* byte alignment (for hw parts) */,
1932 4096 /* can't cross 4K */);
1933 if (!fotg210->qh_pool)
1934 goto fail;
1936 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1937 if (!fotg210->async)
1938 goto fail;
1940 /* ITD for high speed ISO transfers */
1941 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1942 fotg210_to_hcd(fotg210)->self.controller,
1943 sizeof(struct fotg210_itd),
1944 64 /* byte alignment (for hw parts) */,
1945 4096 /* can't cross 4K */);
1946 if (!fotg210->itd_pool)
1947 goto fail;
1949 /* Hardware periodic table */
1950 fotg210->periodic = (__le32 *)
1951 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1952 fotg210->periodic_size * sizeof(__le32),
1953 &fotg210->periodic_dma, 0);
1954 if (fotg210->periodic == NULL)
1955 goto fail;
1957 for (i = 0; i < fotg210->periodic_size; i++)
1958 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1960 /* software shadow of hardware table */
1961 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1962 flags);
1963 if (fotg210->pshadow != NULL)
1964 return 0;
1966 fail:
1967 fotg210_dbg(fotg210, "couldn't init memory\n");
1968 fotg210_mem_cleanup(fotg210);
1969 return -ENOMEM;
1971 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1973 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1974 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1975 * buffers needed for the larger number). We use one QH per endpoint, queue
1976 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1978 * ISO traffic uses "ISO TD" (itd) records, and (along with
1979 * interrupts) needs careful scheduling. Performance improvements can be
1980 * an ongoing challenge. That's in "ehci-sched.c".
1982 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1983 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1984 * (b) special fields in qh entries or (c) split iso entries. TTs will
1985 * buffer low/full speed data so the host collects it at high speed.
1988 /* fill a qtd, returning how much of the buffer we were able to queue up */
1989 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1990 dma_addr_t buf, size_t len, int token, int maxpacket)
1992 int i, count;
1993 u64 addr = buf;
1995 /* one buffer entry per 4K ... first might be short or unaligned */
1996 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1997 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1998 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
1999 if (likely(len < count)) /* ... iff needed */
2000 count = len;
2001 else {
2002 buf += 0x1000;
2003 buf &= ~0x0fff;
2005 /* per-qtd limit: from 16K to 20K (best alignment) */
2006 for (i = 1; count < len && i < 5; i++) {
2007 addr = buf;
2008 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2009 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2010 (u32)(addr >> 32));
2011 buf += 0x1000;
2012 if ((count + 0x1000) < len)
2013 count += 0x1000;
2014 else
2015 count = len;
2018 /* short packets may only terminate transfers */
2019 if (count != len)
2020 count -= (count % maxpacket);
2022 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2023 qtd->length = count;
2025 return count;
2028 static inline void qh_update(struct fotg210_hcd *fotg210,
2029 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2031 struct fotg210_qh_hw *hw = qh->hw;
2033 /* writes to an active overlay are unsafe */
2034 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2036 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2037 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2039 /* Except for control endpoints, we make hardware maintain data
2040 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2041 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2042 * ever clear it.
2044 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2045 unsigned is_out, epnum;
2047 is_out = qh->is_out;
2048 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2049 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2050 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2051 usb_settoggle(qh->dev, epnum, is_out, 1);
2055 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2058 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2059 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2060 * recovery (including urb dequeue) would need software changes to a QH...
2062 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2064 struct fotg210_qtd *qtd;
2066 if (list_empty(&qh->qtd_list))
2067 qtd = qh->dummy;
2068 else {
2069 qtd = list_entry(qh->qtd_list.next,
2070 struct fotg210_qtd, qtd_list);
2072 * first qtd may already be partially processed.
2073 * If we come here during unlink, the QH overlay region
2074 * might have reference to the just unlinked qtd. The
2075 * qtd is updated in qh_completions(). Update the QH
2076 * overlay here.
2078 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2079 qh->hw->hw_qtd_next = qtd->hw_next;
2080 qtd = NULL;
2084 if (qtd)
2085 qh_update(fotg210, qh, qtd);
2088 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2090 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2091 struct usb_host_endpoint *ep)
2093 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2094 struct fotg210_qh *qh = ep->hcpriv;
2095 unsigned long flags;
2097 spin_lock_irqsave(&fotg210->lock, flags);
2098 qh->clearing_tt = 0;
2099 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2100 && fotg210->rh_state == FOTG210_RH_RUNNING)
2101 qh_link_async(fotg210, qh);
2102 spin_unlock_irqrestore(&fotg210->lock, flags);
2105 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2106 struct fotg210_qh *qh, struct urb *urb, u32 token)
2109 /* If an async split transaction gets an error or is unlinked,
2110 * the TT buffer may be left in an indeterminate state. We
2111 * have to clear the TT buffer.
2113 * Note: this routine is never called for Isochronous transfers.
2115 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2116 struct usb_device *tt = urb->dev->tt->hub;
2118 dev_dbg(&tt->dev,
2119 "clear tt buffer port %d, a%d ep%d t%08x\n",
2120 urb->dev->ttport, urb->dev->devnum,
2121 usb_pipeendpoint(urb->pipe), token);
2123 if (urb->dev->tt->hub !=
2124 fotg210_to_hcd(fotg210)->self.root_hub) {
2125 if (usb_hub_clear_tt_buffer(urb) == 0)
2126 qh->clearing_tt = 1;
2131 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2132 size_t length, u32 token)
2134 int status = -EINPROGRESS;
2136 /* count IN/OUT bytes, not SETUP (even short packets) */
2137 if (likely(QTD_PID(token) != 2))
2138 urb->actual_length += length - QTD_LENGTH(token);
2140 /* don't modify error codes */
2141 if (unlikely(urb->unlinked))
2142 return status;
2144 /* force cleanup after short read; not always an error */
2145 if (unlikely(IS_SHORT_READ(token)))
2146 status = -EREMOTEIO;
2148 /* serious "can't proceed" faults reported by the hardware */
2149 if (token & QTD_STS_HALT) {
2150 if (token & QTD_STS_BABBLE) {
2151 /* FIXME "must" disable babbling device's port too */
2152 status = -EOVERFLOW;
2153 /* CERR nonzero + halt --> stall */
2154 } else if (QTD_CERR(token)) {
2155 status = -EPIPE;
2157 /* In theory, more than one of the following bits can be set
2158 * since they are sticky and the transaction is retried.
2159 * Which to test first is rather arbitrary.
2161 } else if (token & QTD_STS_MMF) {
2162 /* fs/ls interrupt xfer missed the complete-split */
2163 status = -EPROTO;
2164 } else if (token & QTD_STS_DBE) {
2165 status = (QTD_PID(token) == 1) /* IN ? */
2166 ? -ENOSR /* hc couldn't read data */
2167 : -ECOMM; /* hc couldn't write data */
2168 } else if (token & QTD_STS_XACT) {
2169 /* timeout, bad CRC, wrong PID, etc */
2170 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2171 urb->dev->devpath,
2172 usb_pipeendpoint(urb->pipe),
2173 usb_pipein(urb->pipe) ? "in" : "out");
2174 status = -EPROTO;
2175 } else { /* unknown */
2176 status = -EPROTO;
2179 fotg210_dbg(fotg210,
2180 "dev%d ep%d%s qtd token %08x --> status %d\n",
2181 usb_pipedevice(urb->pipe),
2182 usb_pipeendpoint(urb->pipe),
2183 usb_pipein(urb->pipe) ? "in" : "out",
2184 token, status);
2187 return status;
2190 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2191 int status)
2192 __releases(fotg210->lock)
2193 __acquires(fotg210->lock)
2195 if (likely(urb->hcpriv != NULL)) {
2196 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2198 /* S-mask in a QH means it's an interrupt urb */
2199 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2201 /* ... update hc-wide periodic stats (for usbfs) */
2202 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2206 if (unlikely(urb->unlinked)) {
2207 COUNT(fotg210->stats.unlink);
2208 } else {
2209 /* report non-error and short read status as zero */
2210 if (status == -EINPROGRESS || status == -EREMOTEIO)
2211 status = 0;
2212 COUNT(fotg210->stats.complete);
2215 #ifdef FOTG210_URB_TRACE
2216 fotg210_dbg(fotg210,
2217 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2218 __func__, urb->dev->devpath, urb,
2219 usb_pipeendpoint(urb->pipe),
2220 usb_pipein(urb->pipe) ? "in" : "out",
2221 status,
2222 urb->actual_length, urb->transfer_buffer_length);
2223 #endif
2225 /* complete() can reenter this HCD */
2226 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2227 spin_unlock(&fotg210->lock);
2228 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2229 spin_lock(&fotg210->lock);
2232 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2234 /* Process and free completed qtds for a qh, returning URBs to drivers.
2235 * Chases up to qh->hw_current. Returns number of completions called,
2236 * indicating how much "real" work we did.
2238 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2239 struct fotg210_qh *qh)
2241 struct fotg210_qtd *last, *end = qh->dummy;
2242 struct fotg210_qtd *qtd, *tmp;
2243 int last_status;
2244 int stopped;
2245 unsigned count = 0;
2246 u8 state;
2247 struct fotg210_qh_hw *hw = qh->hw;
2249 if (unlikely(list_empty(&qh->qtd_list)))
2250 return count;
2252 /* completions (or tasks on other cpus) must never clobber HALT
2253 * till we've gone through and cleaned everything up, even when
2254 * they add urbs to this qh's queue or mark them for unlinking.
2256 * NOTE: unlinking expects to be done in queue order.
2258 * It's a bug for qh->qh_state to be anything other than
2259 * QH_STATE_IDLE, unless our caller is scan_async() or
2260 * scan_intr().
2262 state = qh->qh_state;
2263 qh->qh_state = QH_STATE_COMPLETING;
2264 stopped = (state == QH_STATE_IDLE);
2266 rescan:
2267 last = NULL;
2268 last_status = -EINPROGRESS;
2269 qh->needs_rescan = 0;
2271 /* remove de-activated QTDs from front of queue.
2272 * after faults (including short reads), cleanup this urb
2273 * then let the queue advance.
2274 * if queue is stopped, handles unlinks.
2276 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2277 struct urb *urb;
2278 u32 token = 0;
2280 urb = qtd->urb;
2282 /* clean up any state from previous QTD ...*/
2283 if (last) {
2284 if (likely(last->urb != urb)) {
2285 fotg210_urb_done(fotg210, last->urb,
2286 last_status);
2287 count++;
2288 last_status = -EINPROGRESS;
2290 fotg210_qtd_free(fotg210, last);
2291 last = NULL;
2294 /* ignore urbs submitted during completions we reported */
2295 if (qtd == end)
2296 break;
2298 /* hardware copies qtd out of qh overlay */
2299 rmb();
2300 token = hc32_to_cpu(fotg210, qtd->hw_token);
2302 /* always clean up qtds the hc de-activated */
2303 retry_xacterr:
2304 if ((token & QTD_STS_ACTIVE) == 0) {
2306 /* Report Data Buffer Error: non-fatal but useful */
2307 if (token & QTD_STS_DBE)
2308 fotg210_dbg(fotg210,
2309 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2310 urb, usb_endpoint_num(&urb->ep->desc),
2311 usb_endpoint_dir_in(&urb->ep->desc)
2312 ? "in" : "out",
2313 urb->transfer_buffer_length, qtd, qh);
2315 /* on STALL, error, and short reads this urb must
2316 * complete and all its qtds must be recycled.
2318 if ((token & QTD_STS_HALT) != 0) {
2320 /* retry transaction errors until we
2321 * reach the software xacterr limit
2323 if ((token & QTD_STS_XACT) &&
2324 QTD_CERR(token) == 0 &&
2325 ++qh->xacterrs < QH_XACTERR_MAX &&
2326 !urb->unlinked) {
2327 fotg210_dbg(fotg210,
2328 "detected XactErr len %zu/%zu retry %d\n",
2329 qtd->length - QTD_LENGTH(token),
2330 qtd->length,
2331 qh->xacterrs);
2333 /* reset the token in the qtd and the
2334 * qh overlay (which still contains
2335 * the qtd) so that we pick up from
2336 * where we left off
2338 token &= ~QTD_STS_HALT;
2339 token |= QTD_STS_ACTIVE |
2340 (FOTG210_TUNE_CERR << 10);
2341 qtd->hw_token = cpu_to_hc32(fotg210,
2342 token);
2343 wmb();
2344 hw->hw_token = cpu_to_hc32(fotg210,
2345 token);
2346 goto retry_xacterr;
2348 stopped = 1;
2350 /* magic dummy for some short reads; qh won't advance.
2351 * that silicon quirk can kick in with this dummy too.
2353 * other short reads won't stop the queue, including
2354 * control transfers (status stage handles that) or
2355 * most other single-qtd reads ... the queue stops if
2356 * URB_SHORT_NOT_OK was set so the driver submitting
2357 * the urbs could clean it up.
2359 } else if (IS_SHORT_READ(token) &&
2360 !(qtd->hw_alt_next &
2361 FOTG210_LIST_END(fotg210))) {
2362 stopped = 1;
2365 /* stop scanning when we reach qtds the hc is using */
2366 } else if (likely(!stopped
2367 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2368 break;
2370 /* scan the whole queue for unlinks whenever it stops */
2371 } else {
2372 stopped = 1;
2374 /* cancel everything if we halt, suspend, etc */
2375 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2376 last_status = -ESHUTDOWN;
2378 /* this qtd is active; skip it unless a previous qtd
2379 * for its urb faulted, or its urb was canceled.
2381 else if (last_status == -EINPROGRESS && !urb->unlinked)
2382 continue;
2384 /* qh unlinked; token in overlay may be most current */
2385 if (state == QH_STATE_IDLE &&
2386 cpu_to_hc32(fotg210, qtd->qtd_dma)
2387 == hw->hw_current) {
2388 token = hc32_to_cpu(fotg210, hw->hw_token);
2390 /* An unlink may leave an incomplete
2391 * async transaction in the TT buffer.
2392 * We have to clear it.
2394 fotg210_clear_tt_buffer(fotg210, qh, urb,
2395 token);
2399 /* unless we already know the urb's status, collect qtd status
2400 * and update count of bytes transferred. in common short read
2401 * cases with only one data qtd (including control transfers),
2402 * queue processing won't halt. but with two or more qtds (for
2403 * example, with a 32 KB transfer), when the first qtd gets a
2404 * short read the second must be removed by hand.
2406 if (last_status == -EINPROGRESS) {
2407 last_status = qtd_copy_status(fotg210, urb,
2408 qtd->length, token);
2409 if (last_status == -EREMOTEIO &&
2410 (qtd->hw_alt_next &
2411 FOTG210_LIST_END(fotg210)))
2412 last_status = -EINPROGRESS;
2414 /* As part of low/full-speed endpoint-halt processing
2415 * we must clear the TT buffer (11.17.5).
2417 if (unlikely(last_status != -EINPROGRESS &&
2418 last_status != -EREMOTEIO)) {
2419 /* The TT's in some hubs malfunction when they
2420 * receive this request following a STALL (they
2421 * stop sending isochronous packets). Since a
2422 * STALL can't leave the TT buffer in a busy
2423 * state (if you believe Figures 11-48 - 11-51
2424 * in the USB 2.0 spec), we won't clear the TT
2425 * buffer in this case. Strictly speaking this
2426 * is a violation of the spec.
2428 if (last_status != -EPIPE)
2429 fotg210_clear_tt_buffer(fotg210, qh,
2430 urb, token);
2434 /* if we're removing something not at the queue head,
2435 * patch the hardware queue pointer.
2437 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2438 last = list_entry(qtd->qtd_list.prev,
2439 struct fotg210_qtd, qtd_list);
2440 last->hw_next = qtd->hw_next;
2443 /* remove qtd; it's recycled after possible urb completion */
2444 list_del(&qtd->qtd_list);
2445 last = qtd;
2447 /* reinit the xacterr counter for the next qtd */
2448 qh->xacterrs = 0;
2451 /* last urb's completion might still need calling */
2452 if (likely(last != NULL)) {
2453 fotg210_urb_done(fotg210, last->urb, last_status);
2454 count++;
2455 fotg210_qtd_free(fotg210, last);
2458 /* Do we need to rescan for URBs dequeued during a giveback? */
2459 if (unlikely(qh->needs_rescan)) {
2460 /* If the QH is already unlinked, do the rescan now. */
2461 if (state == QH_STATE_IDLE)
2462 goto rescan;
2464 /* Otherwise we have to wait until the QH is fully unlinked.
2465 * Our caller will start an unlink if qh->needs_rescan is
2466 * set. But if an unlink has already started, nothing needs
2467 * to be done.
2469 if (state != QH_STATE_LINKED)
2470 qh->needs_rescan = 0;
2473 /* restore original state; caller must unlink or relink */
2474 qh->qh_state = state;
2476 /* be sure the hardware's done with the qh before refreshing
2477 * it after fault cleanup, or recovering from silicon wrongly
2478 * overlaying the dummy qtd (which reduces DMA chatter).
2480 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2481 switch (state) {
2482 case QH_STATE_IDLE:
2483 qh_refresh(fotg210, qh);
2484 break;
2485 case QH_STATE_LINKED:
2486 /* We won't refresh a QH that's linked (after the HC
2487 * stopped the queue). That avoids a race:
2488 * - HC reads first part of QH;
2489 * - CPU updates that first part and the token;
2490 * - HC reads rest of that QH, including token
2491 * Result: HC gets an inconsistent image, and then
2492 * DMAs to/from the wrong memory (corrupting it).
2494 * That should be rare for interrupt transfers,
2495 * except maybe high bandwidth ...
2498 /* Tell the caller to start an unlink */
2499 qh->needs_rescan = 1;
2500 break;
2501 /* otherwise, unlink already started */
2505 return count;
2508 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2509 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2510 /* ... and packet size, for any kind of endpoint descriptor */
2511 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2513 /* reverse of qh_urb_transaction: free a list of TDs.
2514 * used for cleanup after errors, before HC sees an URB's TDs.
2516 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2517 struct list_head *head)
2519 struct fotg210_qtd *qtd, *temp;
2521 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2522 list_del(&qtd->qtd_list);
2523 fotg210_qtd_free(fotg210, qtd);
2527 /* create a list of filled qtds for this URB; won't link into qh.
2529 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2530 struct urb *urb, struct list_head *head, gfp_t flags)
2532 struct fotg210_qtd *qtd, *qtd_prev;
2533 dma_addr_t buf;
2534 int len, this_sg_len, maxpacket;
2535 int is_input;
2536 u32 token;
2537 int i;
2538 struct scatterlist *sg;
2541 * URBs map to sequences of QTDs: one logical transaction
2543 qtd = fotg210_qtd_alloc(fotg210, flags);
2544 if (unlikely(!qtd))
2545 return NULL;
2546 list_add_tail(&qtd->qtd_list, head);
2547 qtd->urb = urb;
2549 token = QTD_STS_ACTIVE;
2550 token |= (FOTG210_TUNE_CERR << 10);
2551 /* for split transactions, SplitXState initialized to zero */
2553 len = urb->transfer_buffer_length;
2554 is_input = usb_pipein(urb->pipe);
2555 if (usb_pipecontrol(urb->pipe)) {
2556 /* SETUP pid */
2557 qtd_fill(fotg210, qtd, urb->setup_dma,
2558 sizeof(struct usb_ctrlrequest),
2559 token | (2 /* "setup" */ << 8), 8);
2561 /* ... and always at least one more pid */
2562 token ^= QTD_TOGGLE;
2563 qtd_prev = qtd;
2564 qtd = fotg210_qtd_alloc(fotg210, flags);
2565 if (unlikely(!qtd))
2566 goto cleanup;
2567 qtd->urb = urb;
2568 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2569 list_add_tail(&qtd->qtd_list, head);
2571 /* for zero length DATA stages, STATUS is always IN */
2572 if (len == 0)
2573 token |= (1 /* "in" */ << 8);
2577 * data transfer stage: buffer setup
2579 i = urb->num_mapped_sgs;
2580 if (len > 0 && i > 0) {
2581 sg = urb->sg;
2582 buf = sg_dma_address(sg);
2584 /* urb->transfer_buffer_length may be smaller than the
2585 * size of the scatterlist (or vice versa)
2587 this_sg_len = min_t(int, sg_dma_len(sg), len);
2588 } else {
2589 sg = NULL;
2590 buf = urb->transfer_dma;
2591 this_sg_len = len;
2594 if (is_input)
2595 token |= (1 /* "in" */ << 8);
2596 /* else it's already initted to "out" pid (0 << 8) */
2598 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2601 * buffer gets wrapped in one or more qtds;
2602 * last one may be "short" (including zero len)
2603 * and may serve as a control status ack
2605 for (;;) {
2606 int this_qtd_len;
2608 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2609 maxpacket);
2610 this_sg_len -= this_qtd_len;
2611 len -= this_qtd_len;
2612 buf += this_qtd_len;
2615 * short reads advance to a "magic" dummy instead of the next
2616 * qtd ... that forces the queue to stop, for manual cleanup.
2617 * (this will usually be overridden later.)
2619 if (is_input)
2620 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2622 /* qh makes control packets use qtd toggle; maybe switch it */
2623 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2624 token ^= QTD_TOGGLE;
2626 if (likely(this_sg_len <= 0)) {
2627 if (--i <= 0 || len <= 0)
2628 break;
2629 sg = sg_next(sg);
2630 buf = sg_dma_address(sg);
2631 this_sg_len = min_t(int, sg_dma_len(sg), len);
2634 qtd_prev = qtd;
2635 qtd = fotg210_qtd_alloc(fotg210, flags);
2636 if (unlikely(!qtd))
2637 goto cleanup;
2638 qtd->urb = urb;
2639 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2640 list_add_tail(&qtd->qtd_list, head);
2644 * unless the caller requires manual cleanup after short reads,
2645 * have the alt_next mechanism keep the queue running after the
2646 * last data qtd (the only one, for control and most other cases).
2648 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2649 usb_pipecontrol(urb->pipe)))
2650 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2653 * control requests may need a terminating data "status" ack;
2654 * other OUT ones may need a terminating short packet
2655 * (zero length).
2657 if (likely(urb->transfer_buffer_length != 0)) {
2658 int one_more = 0;
2660 if (usb_pipecontrol(urb->pipe)) {
2661 one_more = 1;
2662 token ^= 0x0100; /* "in" <--> "out" */
2663 token |= QTD_TOGGLE; /* force DATA1 */
2664 } else if (usb_pipeout(urb->pipe)
2665 && (urb->transfer_flags & URB_ZERO_PACKET)
2666 && !(urb->transfer_buffer_length % maxpacket)) {
2667 one_more = 1;
2669 if (one_more) {
2670 qtd_prev = qtd;
2671 qtd = fotg210_qtd_alloc(fotg210, flags);
2672 if (unlikely(!qtd))
2673 goto cleanup;
2674 qtd->urb = urb;
2675 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2676 list_add_tail(&qtd->qtd_list, head);
2678 /* never any data in such packets */
2679 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2683 /* by default, enable interrupt on urb completion */
2684 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2685 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2686 return head;
2688 cleanup:
2689 qtd_list_free(fotg210, urb, head);
2690 return NULL;
2693 /* Would be best to create all qh's from config descriptors,
2694 * when each interface/altsetting is established. Unlink
2695 * any previous qh and cancel its urbs first; endpoints are
2696 * implicitly reset then (data toggle too).
2697 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2701 /* Each QH holds a qtd list; a QH is used for everything except iso.
2703 * For interrupt urbs, the scheduler must set the microframe scheduling
2704 * mask(s) each time the QH gets scheduled. For highspeed, that's
2705 * just one microframe in the s-mask. For split interrupt transactions
2706 * there are additional complications: c-mask, maybe FSTNs.
2708 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2709 gfp_t flags)
2711 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2712 u32 info1 = 0, info2 = 0;
2713 int is_input, type;
2714 int maxp = 0;
2715 struct usb_tt *tt = urb->dev->tt;
2716 struct fotg210_qh_hw *hw;
2718 if (!qh)
2719 return qh;
2722 * init endpoint/device data for this QH
2724 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2725 info1 |= usb_pipedevice(urb->pipe) << 0;
2727 is_input = usb_pipein(urb->pipe);
2728 type = usb_pipetype(urb->pipe);
2729 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2731 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2732 * acts like up to 3KB, but is built from smaller packets.
2734 if (max_packet(maxp) > 1024) {
2735 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2736 max_packet(maxp));
2737 goto done;
2740 /* Compute interrupt scheduling parameters just once, and save.
2741 * - allowing for high bandwidth, how many nsec/uframe are used?
2742 * - split transactions need a second CSPLIT uframe; same question
2743 * - splits also need a schedule gap (for full/low speed I/O)
2744 * - qh has a polling interval
2746 * For control/bulk requests, the HC or TT handles these.
2748 if (type == PIPE_INTERRUPT) {
2749 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2750 is_input, 0,
2751 hb_mult(maxp) * max_packet(maxp)));
2752 qh->start = NO_FRAME;
2754 if (urb->dev->speed == USB_SPEED_HIGH) {
2755 qh->c_usecs = 0;
2756 qh->gap_uf = 0;
2758 qh->period = urb->interval >> 3;
2759 if (qh->period == 0 && urb->interval != 1) {
2760 /* NOTE interval 2 or 4 uframes could work.
2761 * But interval 1 scheduling is simpler, and
2762 * includes high bandwidth.
2764 urb->interval = 1;
2765 } else if (qh->period > fotg210->periodic_size) {
2766 qh->period = fotg210->periodic_size;
2767 urb->interval = qh->period << 3;
2769 } else {
2770 int think_time;
2772 /* gap is f(FS/LS transfer times) */
2773 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2774 is_input, 0, maxp) / (125 * 1000);
2776 /* FIXME this just approximates SPLIT/CSPLIT times */
2777 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2778 qh->c_usecs = qh->usecs + HS_USECS(0);
2779 qh->usecs = HS_USECS(1);
2780 } else { /* SPLIT+DATA, gap, CSPLIT */
2781 qh->usecs += HS_USECS(1);
2782 qh->c_usecs = HS_USECS(0);
2785 think_time = tt ? tt->think_time : 0;
2786 qh->tt_usecs = NS_TO_US(think_time +
2787 usb_calc_bus_time(urb->dev->speed,
2788 is_input, 0, max_packet(maxp)));
2789 qh->period = urb->interval;
2790 if (qh->period > fotg210->periodic_size) {
2791 qh->period = fotg210->periodic_size;
2792 urb->interval = qh->period;
2797 /* support for tt scheduling, and access to toggles */
2798 qh->dev = urb->dev;
2800 /* using TT? */
2801 switch (urb->dev->speed) {
2802 case USB_SPEED_LOW:
2803 info1 |= QH_LOW_SPEED;
2804 /* FALL THROUGH */
2806 case USB_SPEED_FULL:
2807 /* EPS 0 means "full" */
2808 if (type != PIPE_INTERRUPT)
2809 info1 |= (FOTG210_TUNE_RL_TT << 28);
2810 if (type == PIPE_CONTROL) {
2811 info1 |= QH_CONTROL_EP; /* for TT */
2812 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2814 info1 |= maxp << 16;
2816 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2818 /* Some Freescale processors have an erratum in which the
2819 * port number in the queue head was 0..N-1 instead of 1..N.
2821 if (fotg210_has_fsl_portno_bug(fotg210))
2822 info2 |= (urb->dev->ttport-1) << 23;
2823 else
2824 info2 |= urb->dev->ttport << 23;
2826 /* set the address of the TT; for TDI's integrated
2827 * root hub tt, leave it zeroed.
2829 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2830 info2 |= tt->hub->devnum << 16;
2832 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2834 break;
2836 case USB_SPEED_HIGH: /* no TT involved */
2837 info1 |= QH_HIGH_SPEED;
2838 if (type == PIPE_CONTROL) {
2839 info1 |= (FOTG210_TUNE_RL_HS << 28);
2840 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2841 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2842 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2843 } else if (type == PIPE_BULK) {
2844 info1 |= (FOTG210_TUNE_RL_HS << 28);
2845 /* The USB spec says that high speed bulk endpoints
2846 * always use 512 byte maxpacket. But some device
2847 * vendors decided to ignore that, and MSFT is happy
2848 * to help them do so. So now people expect to use
2849 * such nonconformant devices with Linux too; sigh.
2851 info1 |= max_packet(maxp) << 16;
2852 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2853 } else { /* PIPE_INTERRUPT */
2854 info1 |= max_packet(maxp) << 16;
2855 info2 |= hb_mult(maxp) << 30;
2857 break;
2858 default:
2859 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2860 urb->dev->speed);
2861 done:
2862 qh_destroy(fotg210, qh);
2863 return NULL;
2866 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2868 /* init as live, toggle clear, advance to dummy */
2869 qh->qh_state = QH_STATE_IDLE;
2870 hw = qh->hw;
2871 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2872 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2873 qh->is_out = !is_input;
2874 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2875 qh_refresh(fotg210, qh);
2876 return qh;
2879 static void enable_async(struct fotg210_hcd *fotg210)
2881 if (fotg210->async_count++)
2882 return;
2884 /* Stop waiting to turn off the async schedule */
2885 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2887 /* Don't start the schedule until ASS is 0 */
2888 fotg210_poll_ASS(fotg210);
2889 turn_on_io_watchdog(fotg210);
2892 static void disable_async(struct fotg210_hcd *fotg210)
2894 if (--fotg210->async_count)
2895 return;
2897 /* The async schedule and async_unlink list are supposed to be empty */
2898 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2900 /* Don't turn off the schedule until ASS is 1 */
2901 fotg210_poll_ASS(fotg210);
2904 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2906 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2908 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2909 struct fotg210_qh *head;
2911 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2912 if (unlikely(qh->clearing_tt))
2913 return;
2915 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2917 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2918 qh_refresh(fotg210, qh);
2920 /* splice right after start */
2921 head = fotg210->async;
2922 qh->qh_next = head->qh_next;
2923 qh->hw->hw_next = head->hw->hw_next;
2924 wmb();
2926 head->qh_next.qh = qh;
2927 head->hw->hw_next = dma;
2929 qh->xacterrs = 0;
2930 qh->qh_state = QH_STATE_LINKED;
2931 /* qtd completions reported later by interrupt */
2933 enable_async(fotg210);
2936 /* For control/bulk/interrupt, return QH with these TDs appended.
2937 * Allocates and initializes the QH if necessary.
2938 * Returns null if it can't allocate a QH it needs to.
2939 * If the QH has TDs (urbs) already, that's great.
2941 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2942 struct urb *urb, struct list_head *qtd_list,
2943 int epnum, void **ptr)
2945 struct fotg210_qh *qh = NULL;
2946 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2948 qh = (struct fotg210_qh *) *ptr;
2949 if (unlikely(qh == NULL)) {
2950 /* can't sleep here, we have fotg210->lock... */
2951 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2952 *ptr = qh;
2954 if (likely(qh != NULL)) {
2955 struct fotg210_qtd *qtd;
2957 if (unlikely(list_empty(qtd_list)))
2958 qtd = NULL;
2959 else
2960 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2961 qtd_list);
2963 /* control qh may need patching ... */
2964 if (unlikely(epnum == 0)) {
2965 /* usb_reset_device() briefly reverts to address 0 */
2966 if (usb_pipedevice(urb->pipe) == 0)
2967 qh->hw->hw_info1 &= ~qh_addr_mask;
2970 /* just one way to queue requests: swap with the dummy qtd.
2971 * only hc or qh_refresh() ever modify the overlay.
2973 if (likely(qtd != NULL)) {
2974 struct fotg210_qtd *dummy;
2975 dma_addr_t dma;
2976 __hc32 token;
2978 /* to avoid racing the HC, use the dummy td instead of
2979 * the first td of our list (becomes new dummy). both
2980 * tds stay deactivated until we're done, when the
2981 * HC is allowed to fetch the old dummy (4.10.2).
2983 token = qtd->hw_token;
2984 qtd->hw_token = HALT_BIT(fotg210);
2986 dummy = qh->dummy;
2988 dma = dummy->qtd_dma;
2989 *dummy = *qtd;
2990 dummy->qtd_dma = dma;
2992 list_del(&qtd->qtd_list);
2993 list_add(&dummy->qtd_list, qtd_list);
2994 list_splice_tail(qtd_list, &qh->qtd_list);
2996 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2997 qh->dummy = qtd;
2999 /* hc must see the new dummy at list end */
3000 dma = qtd->qtd_dma;
3001 qtd = list_entry(qh->qtd_list.prev,
3002 struct fotg210_qtd, qtd_list);
3003 qtd->hw_next = QTD_NEXT(fotg210, dma);
3005 /* let the hc process these next qtds */
3006 wmb();
3007 dummy->hw_token = token;
3009 urb->hcpriv = qh;
3012 return qh;
3015 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3016 struct list_head *qtd_list, gfp_t mem_flags)
3018 int epnum;
3019 unsigned long flags;
3020 struct fotg210_qh *qh = NULL;
3021 int rc;
3023 epnum = urb->ep->desc.bEndpointAddress;
3025 #ifdef FOTG210_URB_TRACE
3027 struct fotg210_qtd *qtd;
3029 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3030 fotg210_dbg(fotg210,
3031 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3032 __func__, urb->dev->devpath, urb,
3033 epnum & 0x0f, (epnum & USB_DIR_IN)
3034 ? "in" : "out",
3035 urb->transfer_buffer_length,
3036 qtd, urb->ep->hcpriv);
3038 #endif
3040 spin_lock_irqsave(&fotg210->lock, flags);
3041 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3042 rc = -ESHUTDOWN;
3043 goto done;
3045 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3046 if (unlikely(rc))
3047 goto done;
3049 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3050 if (unlikely(qh == NULL)) {
3051 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3052 rc = -ENOMEM;
3053 goto done;
3056 /* Control/bulk operations through TTs don't need scheduling,
3057 * the HC and TT handle it when the TT has a buffer ready.
3059 if (likely(qh->qh_state == QH_STATE_IDLE))
3060 qh_link_async(fotg210, qh);
3061 done:
3062 spin_unlock_irqrestore(&fotg210->lock, flags);
3063 if (unlikely(qh == NULL))
3064 qtd_list_free(fotg210, urb, qtd_list);
3065 return rc;
3068 static void single_unlink_async(struct fotg210_hcd *fotg210,
3069 struct fotg210_qh *qh)
3071 struct fotg210_qh *prev;
3073 /* Add to the end of the list of QHs waiting for the next IAAD */
3074 qh->qh_state = QH_STATE_UNLINK;
3075 if (fotg210->async_unlink)
3076 fotg210->async_unlink_last->unlink_next = qh;
3077 else
3078 fotg210->async_unlink = qh;
3079 fotg210->async_unlink_last = qh;
3081 /* Unlink it from the schedule */
3082 prev = fotg210->async;
3083 while (prev->qh_next.qh != qh)
3084 prev = prev->qh_next.qh;
3086 prev->hw->hw_next = qh->hw->hw_next;
3087 prev->qh_next = qh->qh_next;
3088 if (fotg210->qh_scan_next == qh)
3089 fotg210->qh_scan_next = qh->qh_next.qh;
3092 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3095 * Do nothing if an IAA cycle is already running or
3096 * if one will be started shortly.
3098 if (fotg210->async_iaa || fotg210->async_unlinking)
3099 return;
3101 /* Do all the waiting QHs at once */
3102 fotg210->async_iaa = fotg210->async_unlink;
3103 fotg210->async_unlink = NULL;
3105 /* If the controller isn't running, we don't have to wait for it */
3106 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3107 if (!nested) /* Avoid recursion */
3108 end_unlink_async(fotg210);
3110 /* Otherwise start a new IAA cycle */
3111 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3112 /* Make sure the unlinks are all visible to the hardware */
3113 wmb();
3115 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3116 &fotg210->regs->command);
3117 fotg210_readl(fotg210, &fotg210->regs->command);
3118 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3119 true);
3123 /* the async qh for the qtds being unlinked are now gone from the HC */
3125 static void end_unlink_async(struct fotg210_hcd *fotg210)
3127 struct fotg210_qh *qh;
3129 /* Process the idle QHs */
3130 restart:
3131 fotg210->async_unlinking = true;
3132 while (fotg210->async_iaa) {
3133 qh = fotg210->async_iaa;
3134 fotg210->async_iaa = qh->unlink_next;
3135 qh->unlink_next = NULL;
3137 qh->qh_state = QH_STATE_IDLE;
3138 qh->qh_next.qh = NULL;
3140 qh_completions(fotg210, qh);
3141 if (!list_empty(&qh->qtd_list) &&
3142 fotg210->rh_state == FOTG210_RH_RUNNING)
3143 qh_link_async(fotg210, qh);
3144 disable_async(fotg210);
3146 fotg210->async_unlinking = false;
3148 /* Start a new IAA cycle if any QHs are waiting for it */
3149 if (fotg210->async_unlink) {
3150 start_iaa_cycle(fotg210, true);
3151 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3152 goto restart;
3156 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3158 struct fotg210_qh *qh, *next;
3159 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3160 bool check_unlinks_later = false;
3162 /* Unlink all the async QHs that have been empty for a timer cycle */
3163 next = fotg210->async->qh_next.qh;
3164 while (next) {
3165 qh = next;
3166 next = qh->qh_next.qh;
3168 if (list_empty(&qh->qtd_list) &&
3169 qh->qh_state == QH_STATE_LINKED) {
3170 if (!stopped && qh->unlink_cycle ==
3171 fotg210->async_unlink_cycle)
3172 check_unlinks_later = true;
3173 else
3174 single_unlink_async(fotg210, qh);
3178 /* Start a new IAA cycle if any QHs are waiting for it */
3179 if (fotg210->async_unlink)
3180 start_iaa_cycle(fotg210, false);
3182 /* QHs that haven't been empty for long enough will be handled later */
3183 if (check_unlinks_later) {
3184 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3185 true);
3186 ++fotg210->async_unlink_cycle;
3190 /* makes sure the async qh will become idle */
3191 /* caller must own fotg210->lock */
3193 static void start_unlink_async(struct fotg210_hcd *fotg210,
3194 struct fotg210_qh *qh)
3197 * If the QH isn't linked then there's nothing we can do
3198 * unless we were called during a giveback, in which case
3199 * qh_completions() has to deal with it.
3201 if (qh->qh_state != QH_STATE_LINKED) {
3202 if (qh->qh_state == QH_STATE_COMPLETING)
3203 qh->needs_rescan = 1;
3204 return;
3207 single_unlink_async(fotg210, qh);
3208 start_iaa_cycle(fotg210, false);
3211 static void scan_async(struct fotg210_hcd *fotg210)
3213 struct fotg210_qh *qh;
3214 bool check_unlinks_later = false;
3216 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3217 while (fotg210->qh_scan_next) {
3218 qh = fotg210->qh_scan_next;
3219 fotg210->qh_scan_next = qh->qh_next.qh;
3220 rescan:
3221 /* clean any finished work for this qh */
3222 if (!list_empty(&qh->qtd_list)) {
3223 int temp;
3226 * Unlinks could happen here; completion reporting
3227 * drops the lock. That's why fotg210->qh_scan_next
3228 * always holds the next qh to scan; if the next qh
3229 * gets unlinked then fotg210->qh_scan_next is adjusted
3230 * in single_unlink_async().
3232 temp = qh_completions(fotg210, qh);
3233 if (qh->needs_rescan) {
3234 start_unlink_async(fotg210, qh);
3235 } else if (list_empty(&qh->qtd_list)
3236 && qh->qh_state == QH_STATE_LINKED) {
3237 qh->unlink_cycle = fotg210->async_unlink_cycle;
3238 check_unlinks_later = true;
3239 } else if (temp != 0)
3240 goto rescan;
3245 * Unlink empty entries, reducing DMA usage as well
3246 * as HCD schedule-scanning costs. Delay for any qh
3247 * we just scanned, there's a not-unusual case that it
3248 * doesn't stay idle for long.
3250 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3251 !(fotg210->enabled_hrtimer_events &
3252 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3253 fotg210_enable_event(fotg210,
3254 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3255 ++fotg210->async_unlink_cycle;
3258 /* EHCI scheduled transaction support: interrupt, iso, split iso
3259 * These are called "periodic" transactions in the EHCI spec.
3261 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3262 * with the "asynchronous" transaction support (control/bulk transfers).
3263 * The only real difference is in how interrupt transfers are scheduled.
3265 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3266 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3267 * pre-calculated schedule data to make appending to the queue be quick.
3269 static int fotg210_get_frame(struct usb_hcd *hcd);
3271 /* periodic_next_shadow - return "next" pointer on shadow list
3272 * @periodic: host pointer to qh/itd
3273 * @tag: hardware tag for type of this record
3275 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3276 union fotg210_shadow *periodic, __hc32 tag)
3278 switch (hc32_to_cpu(fotg210, tag)) {
3279 case Q_TYPE_QH:
3280 return &periodic->qh->qh_next;
3281 case Q_TYPE_FSTN:
3282 return &periodic->fstn->fstn_next;
3283 default:
3284 return &periodic->itd->itd_next;
3288 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3289 union fotg210_shadow *periodic, __hc32 tag)
3291 switch (hc32_to_cpu(fotg210, tag)) {
3292 /* our fotg210_shadow.qh is actually software part */
3293 case Q_TYPE_QH:
3294 return &periodic->qh->hw->hw_next;
3295 /* others are hw parts */
3296 default:
3297 return periodic->hw_next;
3301 /* caller must hold fotg210->lock */
3302 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3303 void *ptr)
3305 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3306 __hc32 *hw_p = &fotg210->periodic[frame];
3307 union fotg210_shadow here = *prev_p;
3309 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3310 while (here.ptr && here.ptr != ptr) {
3311 prev_p = periodic_next_shadow(fotg210, prev_p,
3312 Q_NEXT_TYPE(fotg210, *hw_p));
3313 hw_p = shadow_next_periodic(fotg210, &here,
3314 Q_NEXT_TYPE(fotg210, *hw_p));
3315 here = *prev_p;
3317 /* an interrupt entry (at list end) could have been shared */
3318 if (!here.ptr)
3319 return;
3321 /* update shadow and hardware lists ... the old "next" pointers
3322 * from ptr may still be in use, the caller updates them.
3324 *prev_p = *periodic_next_shadow(fotg210, &here,
3325 Q_NEXT_TYPE(fotg210, *hw_p));
3327 *hw_p = *shadow_next_periodic(fotg210, &here,
3328 Q_NEXT_TYPE(fotg210, *hw_p));
3331 /* how many of the uframe's 125 usecs are allocated? */
3332 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3333 unsigned frame, unsigned uframe)
3335 __hc32 *hw_p = &fotg210->periodic[frame];
3336 union fotg210_shadow *q = &fotg210->pshadow[frame];
3337 unsigned usecs = 0;
3338 struct fotg210_qh_hw *hw;
3340 while (q->ptr) {
3341 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3342 case Q_TYPE_QH:
3343 hw = q->qh->hw;
3344 /* is it in the S-mask? */
3345 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3346 usecs += q->qh->usecs;
3347 /* ... or C-mask? */
3348 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3349 1 << (8 + uframe)))
3350 usecs += q->qh->c_usecs;
3351 hw_p = &hw->hw_next;
3352 q = &q->qh->qh_next;
3353 break;
3354 /* case Q_TYPE_FSTN: */
3355 default:
3356 /* for "save place" FSTNs, count the relevant INTR
3357 * bandwidth from the previous frame
3359 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3360 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3362 hw_p = &q->fstn->hw_next;
3363 q = &q->fstn->fstn_next;
3364 break;
3365 case Q_TYPE_ITD:
3366 if (q->itd->hw_transaction[uframe])
3367 usecs += q->itd->stream->usecs;
3368 hw_p = &q->itd->hw_next;
3369 q = &q->itd->itd_next;
3370 break;
3373 if (usecs > fotg210->uframe_periodic_max)
3374 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3375 frame * 8 + uframe, usecs);
3376 return usecs;
3379 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3381 if (!dev1->tt || !dev2->tt)
3382 return 0;
3383 if (dev1->tt != dev2->tt)
3384 return 0;
3385 if (dev1->tt->multi)
3386 return dev1->ttport == dev2->ttport;
3387 else
3388 return 1;
3391 /* return true iff the device's transaction translator is available
3392 * for a periodic transfer starting at the specified frame, using
3393 * all the uframes in the mask.
3395 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3396 struct usb_device *dev, unsigned frame, u32 uf_mask)
3398 if (period == 0) /* error */
3399 return 0;
3401 /* note bandwidth wastage: split never follows csplit
3402 * (different dev or endpoint) until the next uframe.
3403 * calling convention doesn't make that distinction.
3405 for (; frame < fotg210->periodic_size; frame += period) {
3406 union fotg210_shadow here;
3407 __hc32 type;
3408 struct fotg210_qh_hw *hw;
3410 here = fotg210->pshadow[frame];
3411 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3412 while (here.ptr) {
3413 switch (hc32_to_cpu(fotg210, type)) {
3414 case Q_TYPE_ITD:
3415 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3416 here = here.itd->itd_next;
3417 continue;
3418 case Q_TYPE_QH:
3419 hw = here.qh->hw;
3420 if (same_tt(dev, here.qh->dev)) {
3421 u32 mask;
3423 mask = hc32_to_cpu(fotg210,
3424 hw->hw_info2);
3425 /* "knows" no gap is needed */
3426 mask |= mask >> 8;
3427 if (mask & uf_mask)
3428 break;
3430 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3431 here = here.qh->qh_next;
3432 continue;
3433 /* case Q_TYPE_FSTN: */
3434 default:
3435 fotg210_dbg(fotg210,
3436 "periodic frame %d bogus type %d\n",
3437 frame, type);
3440 /* collision or error */
3441 return 0;
3445 /* no collision */
3446 return 1;
3449 static void enable_periodic(struct fotg210_hcd *fotg210)
3451 if (fotg210->periodic_count++)
3452 return;
3454 /* Stop waiting to turn off the periodic schedule */
3455 fotg210->enabled_hrtimer_events &=
3456 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3458 /* Don't start the schedule until PSS is 0 */
3459 fotg210_poll_PSS(fotg210);
3460 turn_on_io_watchdog(fotg210);
3463 static void disable_periodic(struct fotg210_hcd *fotg210)
3465 if (--fotg210->periodic_count)
3466 return;
3468 /* Don't turn off the schedule until PSS is 1 */
3469 fotg210_poll_PSS(fotg210);
3472 /* periodic schedule slots have iso tds (normal or split) first, then a
3473 * sparse tree for active interrupt transfers.
3475 * this just links in a qh; caller guarantees uframe masks are set right.
3476 * no FSTN support (yet; fotg210 0.96+)
3478 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3480 unsigned i;
3481 unsigned period = qh->period;
3483 dev_dbg(&qh->dev->dev,
3484 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3485 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3486 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3487 qh->c_usecs);
3489 /* high bandwidth, or otherwise every microframe */
3490 if (period == 0)
3491 period = 1;
3493 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3494 union fotg210_shadow *prev = &fotg210->pshadow[i];
3495 __hc32 *hw_p = &fotg210->periodic[i];
3496 union fotg210_shadow here = *prev;
3497 __hc32 type = 0;
3499 /* skip the iso nodes at list head */
3500 while (here.ptr) {
3501 type = Q_NEXT_TYPE(fotg210, *hw_p);
3502 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3503 break;
3504 prev = periodic_next_shadow(fotg210, prev, type);
3505 hw_p = shadow_next_periodic(fotg210, &here, type);
3506 here = *prev;
3509 /* sorting each branch by period (slow-->fast)
3510 * enables sharing interior tree nodes
3512 while (here.ptr && qh != here.qh) {
3513 if (qh->period > here.qh->period)
3514 break;
3515 prev = &here.qh->qh_next;
3516 hw_p = &here.qh->hw->hw_next;
3517 here = *prev;
3519 /* link in this qh, unless some earlier pass did that */
3520 if (qh != here.qh) {
3521 qh->qh_next = here;
3522 if (here.qh)
3523 qh->hw->hw_next = *hw_p;
3524 wmb();
3525 prev->qh = qh;
3526 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3529 qh->qh_state = QH_STATE_LINKED;
3530 qh->xacterrs = 0;
3532 /* update per-qh bandwidth for usbfs */
3533 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3534 ? ((qh->usecs + qh->c_usecs) / qh->period)
3535 : (qh->usecs * 8);
3537 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3539 /* maybe enable periodic schedule processing */
3540 ++fotg210->intr_count;
3541 enable_periodic(fotg210);
3544 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3545 struct fotg210_qh *qh)
3547 unsigned i;
3548 unsigned period;
3551 * If qh is for a low/full-speed device, simply unlinking it
3552 * could interfere with an ongoing split transaction. To unlink
3553 * it safely would require setting the QH_INACTIVATE bit and
3554 * waiting at least one frame, as described in EHCI 4.12.2.5.
3556 * We won't bother with any of this. Instead, we assume that the
3557 * only reason for unlinking an interrupt QH while the current URB
3558 * is still active is to dequeue all the URBs (flush the whole
3559 * endpoint queue).
3561 * If rebalancing the periodic schedule is ever implemented, this
3562 * approach will no longer be valid.
3565 /* high bandwidth, or otherwise part of every microframe */
3566 period = qh->period;
3567 if (!period)
3568 period = 1;
3570 for (i = qh->start; i < fotg210->periodic_size; i += period)
3571 periodic_unlink(fotg210, i, qh);
3573 /* update per-qh bandwidth for usbfs */
3574 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3575 ? ((qh->usecs + qh->c_usecs) / qh->period)
3576 : (qh->usecs * 8);
3578 dev_dbg(&qh->dev->dev,
3579 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3580 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3581 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3582 qh->c_usecs);
3584 /* qh->qh_next still "live" to HC */
3585 qh->qh_state = QH_STATE_UNLINK;
3586 qh->qh_next.ptr = NULL;
3588 if (fotg210->qh_scan_next == qh)
3589 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3590 struct fotg210_qh, intr_node);
3591 list_del(&qh->intr_node);
3594 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3595 struct fotg210_qh *qh)
3597 /* If the QH isn't linked then there's nothing we can do
3598 * unless we were called during a giveback, in which case
3599 * qh_completions() has to deal with it.
3601 if (qh->qh_state != QH_STATE_LINKED) {
3602 if (qh->qh_state == QH_STATE_COMPLETING)
3603 qh->needs_rescan = 1;
3604 return;
3607 qh_unlink_periodic(fotg210, qh);
3609 /* Make sure the unlinks are visible before starting the timer */
3610 wmb();
3613 * The EHCI spec doesn't say how long it takes the controller to
3614 * stop accessing an unlinked interrupt QH. The timer delay is
3615 * 9 uframes; presumably that will be long enough.
3617 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3619 /* New entries go at the end of the intr_unlink list */
3620 if (fotg210->intr_unlink)
3621 fotg210->intr_unlink_last->unlink_next = qh;
3622 else
3623 fotg210->intr_unlink = qh;
3624 fotg210->intr_unlink_last = qh;
3626 if (fotg210->intr_unlinking)
3627 ; /* Avoid recursive calls */
3628 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3629 fotg210_handle_intr_unlinks(fotg210);
3630 else if (fotg210->intr_unlink == qh) {
3631 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3632 true);
3633 ++fotg210->intr_unlink_cycle;
3637 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3639 struct fotg210_qh_hw *hw = qh->hw;
3640 int rc;
3642 qh->qh_state = QH_STATE_IDLE;
3643 hw->hw_next = FOTG210_LIST_END(fotg210);
3645 qh_completions(fotg210, qh);
3647 /* reschedule QH iff another request is queued */
3648 if (!list_empty(&qh->qtd_list) &&
3649 fotg210->rh_state == FOTG210_RH_RUNNING) {
3650 rc = qh_schedule(fotg210, qh);
3652 /* An error here likely indicates handshake failure
3653 * or no space left in the schedule. Neither fault
3654 * should happen often ...
3656 * FIXME kill the now-dysfunctional queued urbs
3658 if (rc != 0)
3659 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3660 qh, rc);
3663 /* maybe turn off periodic schedule */
3664 --fotg210->intr_count;
3665 disable_periodic(fotg210);
3668 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3669 unsigned uframe, unsigned period, unsigned usecs)
3671 int claimed;
3673 /* complete split running into next frame?
3674 * given FSTN support, we could sometimes check...
3676 if (uframe >= 8)
3677 return 0;
3679 /* convert "usecs we need" to "max already claimed" */
3680 usecs = fotg210->uframe_periodic_max - usecs;
3682 /* we "know" 2 and 4 uframe intervals were rejected; so
3683 * for period 0, check _every_ microframe in the schedule.
3685 if (unlikely(period == 0)) {
3686 do {
3687 for (uframe = 0; uframe < 7; uframe++) {
3688 claimed = periodic_usecs(fotg210, frame,
3689 uframe);
3690 if (claimed > usecs)
3691 return 0;
3693 } while ((frame += 1) < fotg210->periodic_size);
3695 /* just check the specified uframe, at that period */
3696 } else {
3697 do {
3698 claimed = periodic_usecs(fotg210, frame, uframe);
3699 if (claimed > usecs)
3700 return 0;
3701 } while ((frame += period) < fotg210->periodic_size);
3704 /* success! */
3705 return 1;
3708 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3709 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3711 int retval = -ENOSPC;
3712 u8 mask = 0;
3714 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3715 goto done;
3717 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3718 goto done;
3719 if (!qh->c_usecs) {
3720 retval = 0;
3721 *c_maskp = 0;
3722 goto done;
3725 /* Make sure this tt's buffer is also available for CSPLITs.
3726 * We pessimize a bit; probably the typical full speed case
3727 * doesn't need the second CSPLIT.
3729 * NOTE: both SPLIT and CSPLIT could be checked in just
3730 * one smart pass...
3732 mask = 0x03 << (uframe + qh->gap_uf);
3733 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3735 mask |= 1 << uframe;
3736 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3737 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3738 qh->period, qh->c_usecs))
3739 goto done;
3740 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3741 qh->period, qh->c_usecs))
3742 goto done;
3743 retval = 0;
3745 done:
3746 return retval;
3749 /* "first fit" scheduling policy used the first time through,
3750 * or when the previous schedule slot can't be re-used.
3752 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3754 int status;
3755 unsigned uframe;
3756 __hc32 c_mask;
3757 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3758 struct fotg210_qh_hw *hw = qh->hw;
3760 qh_refresh(fotg210, qh);
3761 hw->hw_next = FOTG210_LIST_END(fotg210);
3762 frame = qh->start;
3764 /* reuse the previous schedule slots, if we can */
3765 if (frame < qh->period) {
3766 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3767 status = check_intr_schedule(fotg210, frame, --uframe,
3768 qh, &c_mask);
3769 } else {
3770 uframe = 0;
3771 c_mask = 0;
3772 status = -ENOSPC;
3775 /* else scan the schedule to find a group of slots such that all
3776 * uframes have enough periodic bandwidth available.
3778 if (status) {
3779 /* "normal" case, uframing flexible except with splits */
3780 if (qh->period) {
3781 int i;
3783 for (i = qh->period; status && i > 0; --i) {
3784 frame = ++fotg210->random_frame % qh->period;
3785 for (uframe = 0; uframe < 8; uframe++) {
3786 status = check_intr_schedule(fotg210,
3787 frame, uframe, qh,
3788 &c_mask);
3789 if (status == 0)
3790 break;
3794 /* qh->period == 0 means every uframe */
3795 } else {
3796 frame = 0;
3797 status = check_intr_schedule(fotg210, 0, 0, qh,
3798 &c_mask);
3800 if (status)
3801 goto done;
3802 qh->start = frame;
3804 /* reset S-frame and (maybe) C-frame masks */
3805 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3806 hw->hw_info2 |= qh->period
3807 ? cpu_to_hc32(fotg210, 1 << uframe)
3808 : cpu_to_hc32(fotg210, QH_SMASK);
3809 hw->hw_info2 |= c_mask;
3810 } else
3811 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3813 /* stuff into the periodic schedule */
3814 qh_link_periodic(fotg210, qh);
3815 done:
3816 return status;
3819 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3820 struct list_head *qtd_list, gfp_t mem_flags)
3822 unsigned epnum;
3823 unsigned long flags;
3824 struct fotg210_qh *qh;
3825 int status;
3826 struct list_head empty;
3828 /* get endpoint and transfer/schedule data */
3829 epnum = urb->ep->desc.bEndpointAddress;
3831 spin_lock_irqsave(&fotg210->lock, flags);
3833 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3834 status = -ESHUTDOWN;
3835 goto done_not_linked;
3837 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3838 if (unlikely(status))
3839 goto done_not_linked;
3841 /* get qh and force any scheduling errors */
3842 INIT_LIST_HEAD(&empty);
3843 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3844 if (qh == NULL) {
3845 status = -ENOMEM;
3846 goto done;
3848 if (qh->qh_state == QH_STATE_IDLE) {
3849 status = qh_schedule(fotg210, qh);
3850 if (status)
3851 goto done;
3854 /* then queue the urb's tds to the qh */
3855 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3856 BUG_ON(qh == NULL);
3858 /* ... update usbfs periodic stats */
3859 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3861 done:
3862 if (unlikely(status))
3863 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3864 done_not_linked:
3865 spin_unlock_irqrestore(&fotg210->lock, flags);
3866 if (status)
3867 qtd_list_free(fotg210, urb, qtd_list);
3869 return status;
3872 static void scan_intr(struct fotg210_hcd *fotg210)
3874 struct fotg210_qh *qh;
3876 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3877 &fotg210->intr_qh_list, intr_node) {
3878 rescan:
3879 /* clean any finished work for this qh */
3880 if (!list_empty(&qh->qtd_list)) {
3881 int temp;
3884 * Unlinks could happen here; completion reporting
3885 * drops the lock. That's why fotg210->qh_scan_next
3886 * always holds the next qh to scan; if the next qh
3887 * gets unlinked then fotg210->qh_scan_next is adjusted
3888 * in qh_unlink_periodic().
3890 temp = qh_completions(fotg210, qh);
3891 if (unlikely(qh->needs_rescan ||
3892 (list_empty(&qh->qtd_list) &&
3893 qh->qh_state == QH_STATE_LINKED)))
3894 start_unlink_intr(fotg210, qh);
3895 else if (temp != 0)
3896 goto rescan;
3901 /* fotg210_iso_stream ops work with both ITD and SITD */
3903 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3905 struct fotg210_iso_stream *stream;
3907 stream = kzalloc(sizeof(*stream), mem_flags);
3908 if (likely(stream != NULL)) {
3909 INIT_LIST_HEAD(&stream->td_list);
3910 INIT_LIST_HEAD(&stream->free_list);
3911 stream->next_uframe = -1;
3913 return stream;
3916 static void iso_stream_init(struct fotg210_hcd *fotg210,
3917 struct fotg210_iso_stream *stream, struct usb_device *dev,
3918 int pipe, unsigned interval)
3920 u32 buf1;
3921 unsigned epnum, maxp;
3922 int is_input;
3923 long bandwidth;
3924 unsigned multi;
3927 * this might be a "high bandwidth" highspeed endpoint,
3928 * as encoded in the ep descriptor's wMaxPacket field
3930 epnum = usb_pipeendpoint(pipe);
3931 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3932 maxp = usb_maxpacket(dev, pipe, !is_input);
3933 if (is_input)
3934 buf1 = (1 << 11);
3935 else
3936 buf1 = 0;
3938 maxp = max_packet(maxp);
3939 multi = hb_mult(maxp);
3940 buf1 |= maxp;
3941 maxp *= multi;
3943 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3944 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3945 stream->buf2 = cpu_to_hc32(fotg210, multi);
3947 /* usbfs wants to report the average usecs per frame tied up
3948 * when transfers on this endpoint are scheduled ...
3950 if (dev->speed == USB_SPEED_FULL) {
3951 interval <<= 3;
3952 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3953 is_input, 1, maxp));
3954 stream->usecs /= 8;
3955 } else {
3956 stream->highspeed = 1;
3957 stream->usecs = HS_USECS_ISO(maxp);
3959 bandwidth = stream->usecs * 8;
3960 bandwidth /= interval;
3962 stream->bandwidth = bandwidth;
3963 stream->udev = dev;
3964 stream->bEndpointAddress = is_input | epnum;
3965 stream->interval = interval;
3966 stream->maxp = maxp;
3969 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3970 struct urb *urb)
3972 unsigned epnum;
3973 struct fotg210_iso_stream *stream;
3974 struct usb_host_endpoint *ep;
3975 unsigned long flags;
3977 epnum = usb_pipeendpoint(urb->pipe);
3978 if (usb_pipein(urb->pipe))
3979 ep = urb->dev->ep_in[epnum];
3980 else
3981 ep = urb->dev->ep_out[epnum];
3983 spin_lock_irqsave(&fotg210->lock, flags);
3984 stream = ep->hcpriv;
3986 if (unlikely(stream == NULL)) {
3987 stream = iso_stream_alloc(GFP_ATOMIC);
3988 if (likely(stream != NULL)) {
3989 ep->hcpriv = stream;
3990 stream->ep = ep;
3991 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3992 urb->interval);
3995 /* if dev->ep[epnum] is a QH, hw is set */
3996 } else if (unlikely(stream->hw != NULL)) {
3997 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3998 urb->dev->devpath, epnum,
3999 usb_pipein(urb->pipe) ? "in" : "out");
4000 stream = NULL;
4003 spin_unlock_irqrestore(&fotg210->lock, flags);
4004 return stream;
4007 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4009 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4010 gfp_t mem_flags)
4012 struct fotg210_iso_sched *iso_sched;
4013 int size = sizeof(*iso_sched);
4015 size += packets * sizeof(struct fotg210_iso_packet);
4016 iso_sched = kzalloc(size, mem_flags);
4017 if (likely(iso_sched != NULL))
4018 INIT_LIST_HEAD(&iso_sched->td_list);
4020 return iso_sched;
4023 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4024 struct fotg210_iso_sched *iso_sched,
4025 struct fotg210_iso_stream *stream, struct urb *urb)
4027 unsigned i;
4028 dma_addr_t dma = urb->transfer_dma;
4030 /* how many uframes are needed for these transfers */
4031 iso_sched->span = urb->number_of_packets * stream->interval;
4033 /* figure out per-uframe itd fields that we'll need later
4034 * when we fit new itds into the schedule.
4036 for (i = 0; i < urb->number_of_packets; i++) {
4037 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4038 unsigned length;
4039 dma_addr_t buf;
4040 u32 trans;
4042 length = urb->iso_frame_desc[i].length;
4043 buf = dma + urb->iso_frame_desc[i].offset;
4045 trans = FOTG210_ISOC_ACTIVE;
4046 trans |= buf & 0x0fff;
4047 if (unlikely(((i + 1) == urb->number_of_packets))
4048 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4049 trans |= FOTG210_ITD_IOC;
4050 trans |= length << 16;
4051 uframe->transaction = cpu_to_hc32(fotg210, trans);
4053 /* might need to cross a buffer page within a uframe */
4054 uframe->bufp = (buf & ~(u64)0x0fff);
4055 buf += length;
4056 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4057 uframe->cross = 1;
4061 static void iso_sched_free(struct fotg210_iso_stream *stream,
4062 struct fotg210_iso_sched *iso_sched)
4064 if (!iso_sched)
4065 return;
4066 /* caller must hold fotg210->lock!*/
4067 list_splice(&iso_sched->td_list, &stream->free_list);
4068 kfree(iso_sched);
4071 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4072 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4074 struct fotg210_itd *itd;
4075 dma_addr_t itd_dma;
4076 int i;
4077 unsigned num_itds;
4078 struct fotg210_iso_sched *sched;
4079 unsigned long flags;
4081 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4082 if (unlikely(sched == NULL))
4083 return -ENOMEM;
4085 itd_sched_init(fotg210, sched, stream, urb);
4087 if (urb->interval < 8)
4088 num_itds = 1 + (sched->span + 7) / 8;
4089 else
4090 num_itds = urb->number_of_packets;
4092 /* allocate/init ITDs */
4093 spin_lock_irqsave(&fotg210->lock, flags);
4094 for (i = 0; i < num_itds; i++) {
4097 * Use iTDs from the free list, but not iTDs that may
4098 * still be in use by the hardware.
4100 if (likely(!list_empty(&stream->free_list))) {
4101 itd = list_first_entry(&stream->free_list,
4102 struct fotg210_itd, itd_list);
4103 if (itd->frame == fotg210->now_frame)
4104 goto alloc_itd;
4105 list_del(&itd->itd_list);
4106 itd_dma = itd->itd_dma;
4107 } else {
4108 alloc_itd:
4109 spin_unlock_irqrestore(&fotg210->lock, flags);
4110 itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4111 &itd_dma);
4112 spin_lock_irqsave(&fotg210->lock, flags);
4113 if (!itd) {
4114 iso_sched_free(stream, sched);
4115 spin_unlock_irqrestore(&fotg210->lock, flags);
4116 return -ENOMEM;
4120 itd->itd_dma = itd_dma;
4121 list_add(&itd->itd_list, &sched->td_list);
4123 spin_unlock_irqrestore(&fotg210->lock, flags);
4125 /* temporarily store schedule info in hcpriv */
4126 urb->hcpriv = sched;
4127 urb->error_count = 0;
4128 return 0;
4131 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4132 u8 usecs, u32 period)
4134 uframe %= period;
4135 do {
4136 /* can't commit more than uframe_periodic_max usec */
4137 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4138 > (fotg210->uframe_periodic_max - usecs))
4139 return 0;
4141 /* we know urb->interval is 2^N uframes */
4142 uframe += period;
4143 } while (uframe < mod);
4144 return 1;
4147 /* This scheduler plans almost as far into the future as it has actual
4148 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4149 * "as small as possible" to be cache-friendlier.) That limits the size
4150 * transfers you can stream reliably; avoid more than 64 msec per urb.
4151 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4152 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4153 * and other factors); or more than about 230 msec total (for portability,
4154 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4157 #define SCHEDULE_SLOP 80 /* microframes */
4159 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4160 struct fotg210_iso_stream *stream)
4162 u32 now, next, start, period, span;
4163 int status;
4164 unsigned mod = fotg210->periodic_size << 3;
4165 struct fotg210_iso_sched *sched = urb->hcpriv;
4167 period = urb->interval;
4168 span = sched->span;
4170 if (span > mod - SCHEDULE_SLOP) {
4171 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4172 status = -EFBIG;
4173 goto fail;
4176 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4178 /* Typical case: reuse current schedule, stream is still active.
4179 * Hopefully there are no gaps from the host falling behind
4180 * (irq delays etc), but if there are we'll take the next
4181 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4183 if (likely(!list_empty(&stream->td_list))) {
4184 u32 excess;
4186 /* For high speed devices, allow scheduling within the
4187 * isochronous scheduling threshold. For full speed devices
4188 * and Intel PCI-based controllers, don't (work around for
4189 * Intel ICH9 bug).
4191 if (!stream->highspeed && fotg210->fs_i_thresh)
4192 next = now + fotg210->i_thresh;
4193 else
4194 next = now;
4196 /* Fell behind (by up to twice the slop amount)?
4197 * We decide based on the time of the last currently-scheduled
4198 * slot, not the time of the next available slot.
4200 excess = (stream->next_uframe - period - next) & (mod - 1);
4201 if (excess >= mod - 2 * SCHEDULE_SLOP)
4202 start = next + excess - mod + period *
4203 DIV_ROUND_UP(mod - excess, period);
4204 else
4205 start = next + excess + period;
4206 if (start - now >= mod) {
4207 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4208 urb, start - now - period, period,
4209 mod);
4210 status = -EFBIG;
4211 goto fail;
4215 /* need to schedule; when's the next (u)frame we could start?
4216 * this is bigger than fotg210->i_thresh allows; scheduling itself
4217 * isn't free, the slop should handle reasonably slow cpus. it
4218 * can also help high bandwidth if the dma and irq loads don't
4219 * jump until after the queue is primed.
4221 else {
4222 int done = 0;
4224 start = SCHEDULE_SLOP + (now & ~0x07);
4226 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4228 /* find a uframe slot with enough bandwidth.
4229 * Early uframes are more precious because full-speed
4230 * iso IN transfers can't use late uframes,
4231 * and therefore they should be allocated last.
4233 next = start;
4234 start += period;
4235 do {
4236 start--;
4237 /* check schedule: enough space? */
4238 if (itd_slot_ok(fotg210, mod, start,
4239 stream->usecs, period))
4240 done = 1;
4241 } while (start > next && !done);
4243 /* no room in the schedule */
4244 if (!done) {
4245 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4246 urb, now, now + mod);
4247 status = -ENOSPC;
4248 goto fail;
4252 /* Tried to schedule too far into the future? */
4253 if (unlikely(start - now + span - period >=
4254 mod - 2 * SCHEDULE_SLOP)) {
4255 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4256 urb, start - now, span - period,
4257 mod - 2 * SCHEDULE_SLOP);
4258 status = -EFBIG;
4259 goto fail;
4262 stream->next_uframe = start & (mod - 1);
4264 /* report high speed start in uframes; full speed, in frames */
4265 urb->start_frame = stream->next_uframe;
4266 if (!stream->highspeed)
4267 urb->start_frame >>= 3;
4269 /* Make sure scan_isoc() sees these */
4270 if (fotg210->isoc_count == 0)
4271 fotg210->next_frame = now >> 3;
4272 return 0;
4274 fail:
4275 iso_sched_free(stream, sched);
4276 urb->hcpriv = NULL;
4277 return status;
4280 static inline void itd_init(struct fotg210_hcd *fotg210,
4281 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4283 int i;
4285 /* it's been recently zeroed */
4286 itd->hw_next = FOTG210_LIST_END(fotg210);
4287 itd->hw_bufp[0] = stream->buf0;
4288 itd->hw_bufp[1] = stream->buf1;
4289 itd->hw_bufp[2] = stream->buf2;
4291 for (i = 0; i < 8; i++)
4292 itd->index[i] = -1;
4294 /* All other fields are filled when scheduling */
4297 static inline void itd_patch(struct fotg210_hcd *fotg210,
4298 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4299 unsigned index, u16 uframe)
4301 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4302 unsigned pg = itd->pg;
4304 uframe &= 0x07;
4305 itd->index[uframe] = index;
4307 itd->hw_transaction[uframe] = uf->transaction;
4308 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4309 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4310 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4312 /* iso_frame_desc[].offset must be strictly increasing */
4313 if (unlikely(uf->cross)) {
4314 u64 bufp = uf->bufp + 4096;
4316 itd->pg = ++pg;
4317 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4318 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4322 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4323 struct fotg210_itd *itd)
4325 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4326 __hc32 *hw_p = &fotg210->periodic[frame];
4327 union fotg210_shadow here = *prev;
4328 __hc32 type = 0;
4330 /* skip any iso nodes which might belong to previous microframes */
4331 while (here.ptr) {
4332 type = Q_NEXT_TYPE(fotg210, *hw_p);
4333 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4334 break;
4335 prev = periodic_next_shadow(fotg210, prev, type);
4336 hw_p = shadow_next_periodic(fotg210, &here, type);
4337 here = *prev;
4340 itd->itd_next = here;
4341 itd->hw_next = *hw_p;
4342 prev->itd = itd;
4343 itd->frame = frame;
4344 wmb();
4345 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4348 /* fit urb's itds into the selected schedule slot; activate as needed */
4349 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4350 unsigned mod, struct fotg210_iso_stream *stream)
4352 int packet;
4353 unsigned next_uframe, uframe, frame;
4354 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4355 struct fotg210_itd *itd;
4357 next_uframe = stream->next_uframe & (mod - 1);
4359 if (unlikely(list_empty(&stream->td_list))) {
4360 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4361 += stream->bandwidth;
4362 fotg210_dbg(fotg210,
4363 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4364 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4365 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4366 urb->interval,
4367 next_uframe >> 3, next_uframe & 0x7);
4370 /* fill iTDs uframe by uframe */
4371 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4372 if (itd == NULL) {
4373 /* ASSERT: we have all necessary itds */
4375 /* ASSERT: no itds for this endpoint in this uframe */
4377 itd = list_entry(iso_sched->td_list.next,
4378 struct fotg210_itd, itd_list);
4379 list_move_tail(&itd->itd_list, &stream->td_list);
4380 itd->stream = stream;
4381 itd->urb = urb;
4382 itd_init(fotg210, stream, itd);
4385 uframe = next_uframe & 0x07;
4386 frame = next_uframe >> 3;
4388 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4390 next_uframe += stream->interval;
4391 next_uframe &= mod - 1;
4392 packet++;
4394 /* link completed itds into the schedule */
4395 if (((next_uframe >> 3) != frame)
4396 || packet == urb->number_of_packets) {
4397 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4398 itd);
4399 itd = NULL;
4402 stream->next_uframe = next_uframe;
4404 /* don't need that schedule data any more */
4405 iso_sched_free(stream, iso_sched);
4406 urb->hcpriv = NULL;
4408 ++fotg210->isoc_count;
4409 enable_periodic(fotg210);
4412 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4413 FOTG210_ISOC_XACTERR)
4415 /* Process and recycle a completed ITD. Return true iff its urb completed,
4416 * and hence its completion callback probably added things to the hardware
4417 * schedule.
4419 * Note that we carefully avoid recycling this descriptor until after any
4420 * completion callback runs, so that it won't be reused quickly. That is,
4421 * assuming (a) no more than two urbs per frame on this endpoint, and also
4422 * (b) only this endpoint's completions submit URBs. It seems some silicon
4423 * corrupts things if you reuse completed descriptors very quickly...
4425 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4427 struct urb *urb = itd->urb;
4428 struct usb_iso_packet_descriptor *desc;
4429 u32 t;
4430 unsigned uframe;
4431 int urb_index = -1;
4432 struct fotg210_iso_stream *stream = itd->stream;
4433 struct usb_device *dev;
4434 bool retval = false;
4436 /* for each uframe with a packet */
4437 for (uframe = 0; uframe < 8; uframe++) {
4438 if (likely(itd->index[uframe] == -1))
4439 continue;
4440 urb_index = itd->index[uframe];
4441 desc = &urb->iso_frame_desc[urb_index];
4443 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4444 itd->hw_transaction[uframe] = 0;
4446 /* report transfer status */
4447 if (unlikely(t & ISO_ERRS)) {
4448 urb->error_count++;
4449 if (t & FOTG210_ISOC_BUF_ERR)
4450 desc->status = usb_pipein(urb->pipe)
4451 ? -ENOSR /* hc couldn't read */
4452 : -ECOMM; /* hc couldn't write */
4453 else if (t & FOTG210_ISOC_BABBLE)
4454 desc->status = -EOVERFLOW;
4455 else /* (t & FOTG210_ISOC_XACTERR) */
4456 desc->status = -EPROTO;
4458 /* HC need not update length with this error */
4459 if (!(t & FOTG210_ISOC_BABBLE)) {
4460 desc->actual_length =
4461 fotg210_itdlen(urb, desc, t);
4462 urb->actual_length += desc->actual_length;
4464 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4465 desc->status = 0;
4466 desc->actual_length = fotg210_itdlen(urb, desc, t);
4467 urb->actual_length += desc->actual_length;
4468 } else {
4469 /* URB was too late */
4470 desc->status = -EXDEV;
4474 /* handle completion now? */
4475 if (likely((urb_index + 1) != urb->number_of_packets))
4476 goto done;
4478 /* ASSERT: it's really the last itd for this urb
4479 * list_for_each_entry (itd, &stream->td_list, itd_list)
4480 * BUG_ON (itd->urb == urb);
4483 /* give urb back to the driver; completion often (re)submits */
4484 dev = urb->dev;
4485 fotg210_urb_done(fotg210, urb, 0);
4486 retval = true;
4487 urb = NULL;
4489 --fotg210->isoc_count;
4490 disable_periodic(fotg210);
4492 if (unlikely(list_is_singular(&stream->td_list))) {
4493 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4494 -= stream->bandwidth;
4495 fotg210_dbg(fotg210,
4496 "deschedule devp %s ep%d%s-iso\n",
4497 dev->devpath, stream->bEndpointAddress & 0x0f,
4498 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4501 done:
4502 itd->urb = NULL;
4504 /* Add to the end of the free list for later reuse */
4505 list_move_tail(&itd->itd_list, &stream->free_list);
4507 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4508 if (list_empty(&stream->td_list)) {
4509 list_splice_tail_init(&stream->free_list,
4510 &fotg210->cached_itd_list);
4511 start_free_itds(fotg210);
4514 return retval;
4517 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4518 gfp_t mem_flags)
4520 int status = -EINVAL;
4521 unsigned long flags;
4522 struct fotg210_iso_stream *stream;
4524 /* Get iso_stream head */
4525 stream = iso_stream_find(fotg210, urb);
4526 if (unlikely(stream == NULL)) {
4527 fotg210_dbg(fotg210, "can't get iso stream\n");
4528 return -ENOMEM;
4530 if (unlikely(urb->interval != stream->interval &&
4531 fotg210_port_speed(fotg210, 0) ==
4532 USB_PORT_STAT_HIGH_SPEED)) {
4533 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4534 stream->interval, urb->interval);
4535 goto done;
4538 #ifdef FOTG210_URB_TRACE
4539 fotg210_dbg(fotg210,
4540 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4541 __func__, urb->dev->devpath, urb,
4542 usb_pipeendpoint(urb->pipe),
4543 usb_pipein(urb->pipe) ? "in" : "out",
4544 urb->transfer_buffer_length,
4545 urb->number_of_packets, urb->interval,
4546 stream);
4547 #endif
4549 /* allocate ITDs w/o locking anything */
4550 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4551 if (unlikely(status < 0)) {
4552 fotg210_dbg(fotg210, "can't init itds\n");
4553 goto done;
4556 /* schedule ... need to lock */
4557 spin_lock_irqsave(&fotg210->lock, flags);
4558 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4559 status = -ESHUTDOWN;
4560 goto done_not_linked;
4562 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4563 if (unlikely(status))
4564 goto done_not_linked;
4565 status = iso_stream_schedule(fotg210, urb, stream);
4566 if (likely(status == 0))
4567 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4568 else
4569 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4570 done_not_linked:
4571 spin_unlock_irqrestore(&fotg210->lock, flags);
4572 done:
4573 return status;
4576 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4577 unsigned now_frame, bool live)
4579 unsigned uf;
4580 bool modified;
4581 union fotg210_shadow q, *q_p;
4582 __hc32 type, *hw_p;
4584 /* scan each element in frame's queue for completions */
4585 q_p = &fotg210->pshadow[frame];
4586 hw_p = &fotg210->periodic[frame];
4587 q.ptr = q_p->ptr;
4588 type = Q_NEXT_TYPE(fotg210, *hw_p);
4589 modified = false;
4591 while (q.ptr) {
4592 switch (hc32_to_cpu(fotg210, type)) {
4593 case Q_TYPE_ITD:
4594 /* If this ITD is still active, leave it for
4595 * later processing ... check the next entry.
4596 * No need to check for activity unless the
4597 * frame is current.
4599 if (frame == now_frame && live) {
4600 rmb();
4601 for (uf = 0; uf < 8; uf++) {
4602 if (q.itd->hw_transaction[uf] &
4603 ITD_ACTIVE(fotg210))
4604 break;
4606 if (uf < 8) {
4607 q_p = &q.itd->itd_next;
4608 hw_p = &q.itd->hw_next;
4609 type = Q_NEXT_TYPE(fotg210,
4610 q.itd->hw_next);
4611 q = *q_p;
4612 break;
4616 /* Take finished ITDs out of the schedule
4617 * and process them: recycle, maybe report
4618 * URB completion. HC won't cache the
4619 * pointer for much longer, if at all.
4621 *q_p = q.itd->itd_next;
4622 *hw_p = q.itd->hw_next;
4623 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4624 wmb();
4625 modified = itd_complete(fotg210, q.itd);
4626 q = *q_p;
4627 break;
4628 default:
4629 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4630 type, frame, q.ptr);
4631 /* FALL THROUGH */
4632 case Q_TYPE_QH:
4633 case Q_TYPE_FSTN:
4634 /* End of the iTDs and siTDs */
4635 q.ptr = NULL;
4636 break;
4639 /* assume completion callbacks modify the queue */
4640 if (unlikely(modified && fotg210->isoc_count > 0))
4641 return -EINVAL;
4643 return 0;
4646 static void scan_isoc(struct fotg210_hcd *fotg210)
4648 unsigned uf, now_frame, frame, ret;
4649 unsigned fmask = fotg210->periodic_size - 1;
4650 bool live;
4653 * When running, scan from last scan point up to "now"
4654 * else clean up by scanning everything that's left.
4655 * Touches as few pages as possible: cache-friendly.
4657 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4658 uf = fotg210_read_frame_index(fotg210);
4659 now_frame = (uf >> 3) & fmask;
4660 live = true;
4661 } else {
4662 now_frame = (fotg210->next_frame - 1) & fmask;
4663 live = false;
4665 fotg210->now_frame = now_frame;
4667 frame = fotg210->next_frame;
4668 for (;;) {
4669 ret = 1;
4670 while (ret != 0)
4671 ret = scan_frame_queue(fotg210, frame,
4672 now_frame, live);
4674 /* Stop when we have reached the current frame */
4675 if (frame == now_frame)
4676 break;
4677 frame = (frame + 1) & fmask;
4679 fotg210->next_frame = now_frame;
4682 /* Display / Set uframe_periodic_max
4684 static ssize_t uframe_periodic_max_show(struct device *dev,
4685 struct device_attribute *attr, char *buf)
4687 struct fotg210_hcd *fotg210;
4688 int n;
4690 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4691 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4692 return n;
4696 static ssize_t uframe_periodic_max_store(struct device *dev,
4697 struct device_attribute *attr, const char *buf, size_t count)
4699 struct fotg210_hcd *fotg210;
4700 unsigned uframe_periodic_max;
4701 unsigned frame, uframe;
4702 unsigned short allocated_max;
4703 unsigned long flags;
4704 ssize_t ret;
4706 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4707 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4708 return -EINVAL;
4710 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4711 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4712 uframe_periodic_max);
4713 return -EINVAL;
4716 ret = -EINVAL;
4719 * lock, so that our checking does not race with possible periodic
4720 * bandwidth allocation through submitting new urbs.
4722 spin_lock_irqsave(&fotg210->lock, flags);
4725 * for request to decrease max periodic bandwidth, we have to check
4726 * every microframe in the schedule to see whether the decrease is
4727 * possible.
4729 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4730 allocated_max = 0;
4732 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4733 for (uframe = 0; uframe < 7; ++uframe)
4734 allocated_max = max(allocated_max,
4735 periodic_usecs(fotg210, frame,
4736 uframe));
4738 if (allocated_max > uframe_periodic_max) {
4739 fotg210_info(fotg210,
4740 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4741 allocated_max, uframe_periodic_max);
4742 goto out_unlock;
4746 /* increasing is always ok */
4748 fotg210_info(fotg210,
4749 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4750 100 * uframe_periodic_max/125, uframe_periodic_max);
4752 if (uframe_periodic_max != 100)
4753 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4755 fotg210->uframe_periodic_max = uframe_periodic_max;
4756 ret = count;
4758 out_unlock:
4759 spin_unlock_irqrestore(&fotg210->lock, flags);
4760 return ret;
4763 static DEVICE_ATTR_RW(uframe_periodic_max);
4765 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4767 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4769 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4772 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4774 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4776 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4778 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4779 * The firmware seems to think that powering off is a wakeup event!
4780 * This routine turns off remote wakeup and everything else, on all ports.
4782 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4784 u32 __iomem *status_reg = &fotg210->regs->port_status;
4786 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4789 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4790 * Must be called with interrupts enabled and the lock not held.
4792 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4794 fotg210_halt(fotg210);
4796 spin_lock_irq(&fotg210->lock);
4797 fotg210->rh_state = FOTG210_RH_HALTED;
4798 fotg210_turn_off_all_ports(fotg210);
4799 spin_unlock_irq(&fotg210->lock);
4802 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4803 * This forcibly disables dma and IRQs, helping kexec and other cases
4804 * where the next system software may expect clean state.
4806 static void fotg210_shutdown(struct usb_hcd *hcd)
4808 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4810 spin_lock_irq(&fotg210->lock);
4811 fotg210->shutdown = true;
4812 fotg210->rh_state = FOTG210_RH_STOPPING;
4813 fotg210->enabled_hrtimer_events = 0;
4814 spin_unlock_irq(&fotg210->lock);
4816 fotg210_silence_controller(fotg210);
4818 hrtimer_cancel(&fotg210->hrtimer);
4821 /* fotg210_work is called from some interrupts, timers, and so on.
4822 * it calls driver completion functions, after dropping fotg210->lock.
4824 static void fotg210_work(struct fotg210_hcd *fotg210)
4826 /* another CPU may drop fotg210->lock during a schedule scan while
4827 * it reports urb completions. this flag guards against bogus
4828 * attempts at re-entrant schedule scanning.
4830 if (fotg210->scanning) {
4831 fotg210->need_rescan = true;
4832 return;
4834 fotg210->scanning = true;
4836 rescan:
4837 fotg210->need_rescan = false;
4838 if (fotg210->async_count)
4839 scan_async(fotg210);
4840 if (fotg210->intr_count > 0)
4841 scan_intr(fotg210);
4842 if (fotg210->isoc_count > 0)
4843 scan_isoc(fotg210);
4844 if (fotg210->need_rescan)
4845 goto rescan;
4846 fotg210->scanning = false;
4848 /* the IO watchdog guards against hardware or driver bugs that
4849 * misplace IRQs, and should let us run completely without IRQs.
4850 * such lossage has been observed on both VT6202 and VT8235.
4852 turn_on_io_watchdog(fotg210);
4855 /* Called when the fotg210_hcd module is removed.
4857 static void fotg210_stop(struct usb_hcd *hcd)
4859 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4861 fotg210_dbg(fotg210, "stop\n");
4863 /* no more interrupts ... */
4865 spin_lock_irq(&fotg210->lock);
4866 fotg210->enabled_hrtimer_events = 0;
4867 spin_unlock_irq(&fotg210->lock);
4869 fotg210_quiesce(fotg210);
4870 fotg210_silence_controller(fotg210);
4871 fotg210_reset(fotg210);
4873 hrtimer_cancel(&fotg210->hrtimer);
4874 remove_sysfs_files(fotg210);
4875 remove_debug_files(fotg210);
4877 /* root hub is shut down separately (first, when possible) */
4878 spin_lock_irq(&fotg210->lock);
4879 end_free_itds(fotg210);
4880 spin_unlock_irq(&fotg210->lock);
4881 fotg210_mem_cleanup(fotg210);
4883 #ifdef FOTG210_STATS
4884 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4885 fotg210->stats.normal, fotg210->stats.error,
4886 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4887 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4888 fotg210->stats.complete, fotg210->stats.unlink);
4889 #endif
4891 dbg_status(fotg210, "fotg210_stop completed",
4892 fotg210_readl(fotg210, &fotg210->regs->status));
4895 /* one-time init, only for memory state */
4896 static int hcd_fotg210_init(struct usb_hcd *hcd)
4898 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4899 u32 temp;
4900 int retval;
4901 u32 hcc_params;
4902 struct fotg210_qh_hw *hw;
4904 spin_lock_init(&fotg210->lock);
4907 * keep io watchdog by default, those good HCDs could turn off it later
4909 fotg210->need_io_watchdog = 1;
4911 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4912 fotg210->hrtimer.function = fotg210_hrtimer_func;
4913 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4915 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4918 * by default set standard 80% (== 100 usec/uframe) max periodic
4919 * bandwidth as required by USB 2.0
4921 fotg210->uframe_periodic_max = 100;
4924 * hw default: 1K periodic list heads, one per frame.
4925 * periodic_size can shrink by USBCMD update if hcc_params allows.
4927 fotg210->periodic_size = DEFAULT_I_TDPS;
4928 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4929 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4931 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4932 /* periodic schedule size can be smaller than default */
4933 switch (FOTG210_TUNE_FLS) {
4934 case 0:
4935 fotg210->periodic_size = 1024;
4936 break;
4937 case 1:
4938 fotg210->periodic_size = 512;
4939 break;
4940 case 2:
4941 fotg210->periodic_size = 256;
4942 break;
4943 default:
4944 BUG();
4947 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4948 if (retval < 0)
4949 return retval;
4951 /* controllers may cache some of the periodic schedule ... */
4952 fotg210->i_thresh = 2;
4955 * dedicate a qh for the async ring head, since we couldn't unlink
4956 * a 'real' qh without stopping the async schedule [4.8]. use it
4957 * as the 'reclamation list head' too.
4958 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4959 * from automatically advancing to the next td after short reads.
4961 fotg210->async->qh_next.qh = NULL;
4962 hw = fotg210->async->hw;
4963 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4964 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4965 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4966 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4967 fotg210->async->qh_state = QH_STATE_LINKED;
4968 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4970 /* clear interrupt enables, set irq latency */
4971 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4972 log2_irq_thresh = 0;
4973 temp = 1 << (16 + log2_irq_thresh);
4974 if (HCC_CANPARK(hcc_params)) {
4975 /* HW default park == 3, on hardware that supports it (like
4976 * NVidia and ALI silicon), maximizes throughput on the async
4977 * schedule by avoiding QH fetches between transfers.
4979 * With fast usb storage devices and NForce2, "park" seems to
4980 * make problems: throughput reduction (!), data errors...
4982 if (park) {
4983 park = min_t(unsigned, park, 3);
4984 temp |= CMD_PARK;
4985 temp |= park << 8;
4987 fotg210_dbg(fotg210, "park %d\n", park);
4989 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4990 /* periodic schedule size can be smaller than default */
4991 temp &= ~(3 << 2);
4992 temp |= (FOTG210_TUNE_FLS << 2);
4994 fotg210->command = temp;
4996 /* Accept arbitrarily long scatter-gather lists */
4997 if (!(hcd->driver->flags & HCD_LOCAL_MEM))
4998 hcd->self.sg_tablesize = ~0;
4999 return 0;
5002 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5003 static int fotg210_run(struct usb_hcd *hcd)
5005 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5006 u32 temp;
5007 u32 hcc_params;
5009 hcd->uses_new_polling = 1;
5011 /* EHCI spec section 4.1 */
5013 fotg210_writel(fotg210, fotg210->periodic_dma,
5014 &fotg210->regs->frame_list);
5015 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5016 &fotg210->regs->async_next);
5019 * hcc_params controls whether fotg210->regs->segment must (!!!)
5020 * be used; it constrains QH/ITD/SITD and QTD locations.
5021 * dma_pool consistent memory always uses segment zero.
5022 * streaming mappings for I/O buffers, like pci_map_single(),
5023 * can return segments above 4GB, if the device allows.
5025 * NOTE: the dma mask is visible through dev->dma_mask, so
5026 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5027 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5028 * host side drivers though.
5030 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5033 * Philips, Intel, and maybe others need CMD_RUN before the
5034 * root hub will detect new devices (why?); NEC doesn't
5036 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5037 fotg210->command |= CMD_RUN;
5038 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5039 dbg_cmd(fotg210, "init", fotg210->command);
5042 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5043 * are explicitly handed to companion controller(s), so no TT is
5044 * involved with the root hub. (Except where one is integrated,
5045 * and there's no companion controller unless maybe for USB OTG.)
5047 * Turning on the CF flag will transfer ownership of all ports
5048 * from the companions to the EHCI controller. If any of the
5049 * companions are in the middle of a port reset at the time, it
5050 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5051 * guarantees that no resets are in progress. After we set CF,
5052 * a short delay lets the hardware catch up; new resets shouldn't
5053 * be started before the port switching actions could complete.
5055 down_write(&ehci_cf_port_reset_rwsem);
5056 fotg210->rh_state = FOTG210_RH_RUNNING;
5057 /* unblock posted writes */
5058 fotg210_readl(fotg210, &fotg210->regs->command);
5059 usleep_range(5000, 10000);
5060 up_write(&ehci_cf_port_reset_rwsem);
5061 fotg210->last_periodic_enable = ktime_get_real();
5063 temp = HC_VERSION(fotg210,
5064 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5065 fotg210_info(fotg210,
5066 "USB %x.%x started, EHCI %x.%02x\n",
5067 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5068 temp >> 8, temp & 0xff);
5070 fotg210_writel(fotg210, INTR_MASK,
5071 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5073 /* GRR this is run-once init(), being done every time the HC starts.
5074 * So long as they're part of class devices, we can't do it init()
5075 * since the class device isn't created that early.
5077 create_debug_files(fotg210);
5078 create_sysfs_files(fotg210);
5080 return 0;
5083 static int fotg210_setup(struct usb_hcd *hcd)
5085 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5086 int retval;
5088 fotg210->regs = (void __iomem *)fotg210->caps +
5089 HC_LENGTH(fotg210,
5090 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5091 dbg_hcs_params(fotg210, "reset");
5092 dbg_hcc_params(fotg210, "reset");
5094 /* cache this readonly data; minimize chip reads */
5095 fotg210->hcs_params = fotg210_readl(fotg210,
5096 &fotg210->caps->hcs_params);
5098 fotg210->sbrn = HCD_USB2;
5100 /* data structure init */
5101 retval = hcd_fotg210_init(hcd);
5102 if (retval)
5103 return retval;
5105 retval = fotg210_halt(fotg210);
5106 if (retval)
5107 return retval;
5109 fotg210_reset(fotg210);
5111 return 0;
5114 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5116 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5117 u32 status, masked_status, pcd_status = 0, cmd;
5118 int bh;
5120 spin_lock(&fotg210->lock);
5122 status = fotg210_readl(fotg210, &fotg210->regs->status);
5124 /* e.g. cardbus physical eject */
5125 if (status == ~(u32) 0) {
5126 fotg210_dbg(fotg210, "device removed\n");
5127 goto dead;
5131 * We don't use STS_FLR, but some controllers don't like it to
5132 * remain on, so mask it out along with the other status bits.
5134 masked_status = status & (INTR_MASK | STS_FLR);
5136 /* Shared IRQ? */
5137 if (!masked_status ||
5138 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5139 spin_unlock(&fotg210->lock);
5140 return IRQ_NONE;
5143 /* clear (just) interrupts */
5144 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5145 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5146 bh = 0;
5148 /* unrequested/ignored: Frame List Rollover */
5149 dbg_status(fotg210, "irq", status);
5151 /* INT, ERR, and IAA interrupt rates can be throttled */
5153 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5154 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5155 if (likely((status & STS_ERR) == 0))
5156 COUNT(fotg210->stats.normal);
5157 else
5158 COUNT(fotg210->stats.error);
5159 bh = 1;
5162 /* complete the unlinking of some qh [4.15.2.3] */
5163 if (status & STS_IAA) {
5165 /* Turn off the IAA watchdog */
5166 fotg210->enabled_hrtimer_events &=
5167 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5170 * Mild optimization: Allow another IAAD to reset the
5171 * hrtimer, if one occurs before the next expiration.
5172 * In theory we could always cancel the hrtimer, but
5173 * tests show that about half the time it will be reset
5174 * for some other event anyway.
5176 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5177 ++fotg210->next_hrtimer_event;
5179 /* guard against (alleged) silicon errata */
5180 if (cmd & CMD_IAAD)
5181 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5182 if (fotg210->async_iaa) {
5183 COUNT(fotg210->stats.iaa);
5184 end_unlink_async(fotg210);
5185 } else
5186 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5189 /* remote wakeup [4.3.1] */
5190 if (status & STS_PCD) {
5191 int pstatus;
5192 u32 __iomem *status_reg = &fotg210->regs->port_status;
5194 /* kick root hub later */
5195 pcd_status = status;
5197 /* resume root hub? */
5198 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5199 usb_hcd_resume_root_hub(hcd);
5201 pstatus = fotg210_readl(fotg210, status_reg);
5203 if (test_bit(0, &fotg210->suspended_ports) &&
5204 ((pstatus & PORT_RESUME) ||
5205 !(pstatus & PORT_SUSPEND)) &&
5206 (pstatus & PORT_PE) &&
5207 fotg210->reset_done[0] == 0) {
5209 /* start 20 msec resume signaling from this port,
5210 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5211 * stop that signaling. Use 5 ms extra for safety,
5212 * like usb_port_resume() does.
5214 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5215 set_bit(0, &fotg210->resuming_ports);
5216 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5217 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5221 /* PCI errors [4.15.2.4] */
5222 if (unlikely((status & STS_FATAL) != 0)) {
5223 fotg210_err(fotg210, "fatal error\n");
5224 dbg_cmd(fotg210, "fatal", cmd);
5225 dbg_status(fotg210, "fatal", status);
5226 dead:
5227 usb_hc_died(hcd);
5229 /* Don't let the controller do anything more */
5230 fotg210->shutdown = true;
5231 fotg210->rh_state = FOTG210_RH_STOPPING;
5232 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5233 fotg210_writel(fotg210, fotg210->command,
5234 &fotg210->regs->command);
5235 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5236 fotg210_handle_controller_death(fotg210);
5238 /* Handle completions when the controller stops */
5239 bh = 0;
5242 if (bh)
5243 fotg210_work(fotg210);
5244 spin_unlock(&fotg210->lock);
5245 if (pcd_status)
5246 usb_hcd_poll_rh_status(hcd);
5247 return IRQ_HANDLED;
5250 /* non-error returns are a promise to giveback() the urb later
5251 * we drop ownership so next owner (or urb unlink) can get it
5253 * urb + dev is in hcd.self.controller.urb_list
5254 * we're queueing TDs onto software and hardware lists
5256 * hcd-specific init for hcpriv hasn't been done yet
5258 * NOTE: control, bulk, and interrupt share the same code to append TDs
5259 * to a (possibly active) QH, and the same QH scanning code.
5261 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5262 gfp_t mem_flags)
5264 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5265 struct list_head qtd_list;
5267 INIT_LIST_HEAD(&qtd_list);
5269 switch (usb_pipetype(urb->pipe)) {
5270 case PIPE_CONTROL:
5271 /* qh_completions() code doesn't handle all the fault cases
5272 * in multi-TD control transfers. Even 1KB is rare anyway.
5274 if (urb->transfer_buffer_length > (16 * 1024))
5275 return -EMSGSIZE;
5276 /* FALLTHROUGH */
5277 /* case PIPE_BULK: */
5278 default:
5279 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5280 return -ENOMEM;
5281 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5283 case PIPE_INTERRUPT:
5284 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5285 return -ENOMEM;
5286 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5288 case PIPE_ISOCHRONOUS:
5289 return itd_submit(fotg210, urb, mem_flags);
5293 /* remove from hardware lists
5294 * completions normally happen asynchronously
5297 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5299 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5300 struct fotg210_qh *qh;
5301 unsigned long flags;
5302 int rc;
5304 spin_lock_irqsave(&fotg210->lock, flags);
5305 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5306 if (rc)
5307 goto done;
5309 switch (usb_pipetype(urb->pipe)) {
5310 /* case PIPE_CONTROL: */
5311 /* case PIPE_BULK:*/
5312 default:
5313 qh = (struct fotg210_qh *) urb->hcpriv;
5314 if (!qh)
5315 break;
5316 switch (qh->qh_state) {
5317 case QH_STATE_LINKED:
5318 case QH_STATE_COMPLETING:
5319 start_unlink_async(fotg210, qh);
5320 break;
5321 case QH_STATE_UNLINK:
5322 case QH_STATE_UNLINK_WAIT:
5323 /* already started */
5324 break;
5325 case QH_STATE_IDLE:
5326 /* QH might be waiting for a Clear-TT-Buffer */
5327 qh_completions(fotg210, qh);
5328 break;
5330 break;
5332 case PIPE_INTERRUPT:
5333 qh = (struct fotg210_qh *) urb->hcpriv;
5334 if (!qh)
5335 break;
5336 switch (qh->qh_state) {
5337 case QH_STATE_LINKED:
5338 case QH_STATE_COMPLETING:
5339 start_unlink_intr(fotg210, qh);
5340 break;
5341 case QH_STATE_IDLE:
5342 qh_completions(fotg210, qh);
5343 break;
5344 default:
5345 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5346 qh, qh->qh_state);
5347 goto done;
5349 break;
5351 case PIPE_ISOCHRONOUS:
5352 /* itd... */
5354 /* wait till next completion, do it then. */
5355 /* completion irqs can wait up to 1024 msec, */
5356 break;
5358 done:
5359 spin_unlock_irqrestore(&fotg210->lock, flags);
5360 return rc;
5363 /* bulk qh holds the data toggle */
5365 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5366 struct usb_host_endpoint *ep)
5368 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5369 unsigned long flags;
5370 struct fotg210_qh *qh, *tmp;
5372 /* ASSERT: any requests/urbs are being unlinked */
5373 /* ASSERT: nobody can be submitting urbs for this any more */
5375 rescan:
5376 spin_lock_irqsave(&fotg210->lock, flags);
5377 qh = ep->hcpriv;
5378 if (!qh)
5379 goto done;
5381 /* endpoints can be iso streams. for now, we don't
5382 * accelerate iso completions ... so spin a while.
5384 if (qh->hw == NULL) {
5385 struct fotg210_iso_stream *stream = ep->hcpriv;
5387 if (!list_empty(&stream->td_list))
5388 goto idle_timeout;
5390 /* BUG_ON(!list_empty(&stream->free_list)); */
5391 kfree(stream);
5392 goto done;
5395 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5396 qh->qh_state = QH_STATE_IDLE;
5397 switch (qh->qh_state) {
5398 case QH_STATE_LINKED:
5399 case QH_STATE_COMPLETING:
5400 for (tmp = fotg210->async->qh_next.qh;
5401 tmp && tmp != qh;
5402 tmp = tmp->qh_next.qh)
5403 continue;
5404 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5405 * may already be unlinked.
5407 if (tmp)
5408 start_unlink_async(fotg210, qh);
5409 /* FALL THROUGH */
5410 case QH_STATE_UNLINK: /* wait for hw to finish? */
5411 case QH_STATE_UNLINK_WAIT:
5412 idle_timeout:
5413 spin_unlock_irqrestore(&fotg210->lock, flags);
5414 schedule_timeout_uninterruptible(1);
5415 goto rescan;
5416 case QH_STATE_IDLE: /* fully unlinked */
5417 if (qh->clearing_tt)
5418 goto idle_timeout;
5419 if (list_empty(&qh->qtd_list)) {
5420 qh_destroy(fotg210, qh);
5421 break;
5423 /* fall through */
5424 default:
5425 /* caller was supposed to have unlinked any requests;
5426 * that's not our job. just leak this memory.
5428 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5429 qh, ep->desc.bEndpointAddress, qh->qh_state,
5430 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5431 break;
5433 done:
5434 ep->hcpriv = NULL;
5435 spin_unlock_irqrestore(&fotg210->lock, flags);
5438 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5439 struct usb_host_endpoint *ep)
5441 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5442 struct fotg210_qh *qh;
5443 int eptype = usb_endpoint_type(&ep->desc);
5444 int epnum = usb_endpoint_num(&ep->desc);
5445 int is_out = usb_endpoint_dir_out(&ep->desc);
5446 unsigned long flags;
5448 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5449 return;
5451 spin_lock_irqsave(&fotg210->lock, flags);
5452 qh = ep->hcpriv;
5454 /* For Bulk and Interrupt endpoints we maintain the toggle state
5455 * in the hardware; the toggle bits in udev aren't used at all.
5456 * When an endpoint is reset by usb_clear_halt() we must reset
5457 * the toggle bit in the QH.
5459 if (qh) {
5460 usb_settoggle(qh->dev, epnum, is_out, 0);
5461 if (!list_empty(&qh->qtd_list)) {
5462 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5463 } else if (qh->qh_state == QH_STATE_LINKED ||
5464 qh->qh_state == QH_STATE_COMPLETING) {
5466 /* The toggle value in the QH can't be updated
5467 * while the QH is active. Unlink it now;
5468 * re-linking will call qh_refresh().
5470 if (eptype == USB_ENDPOINT_XFER_BULK)
5471 start_unlink_async(fotg210, qh);
5472 else
5473 start_unlink_intr(fotg210, qh);
5476 spin_unlock_irqrestore(&fotg210->lock, flags);
5479 static int fotg210_get_frame(struct usb_hcd *hcd)
5481 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5483 return (fotg210_read_frame_index(fotg210) >> 3) %
5484 fotg210->periodic_size;
5487 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5488 * because its registers (and irq) are shared between host/gadget/otg
5489 * functions and in order to facilitate role switching we cannot
5490 * give the fotg210 driver exclusive access to those.
5492 MODULE_DESCRIPTION(DRIVER_DESC);
5493 MODULE_AUTHOR(DRIVER_AUTHOR);
5494 MODULE_LICENSE("GPL");
5496 static const struct hc_driver fotg210_fotg210_hc_driver = {
5497 .description = hcd_name,
5498 .product_desc = "Faraday USB2.0 Host Controller",
5499 .hcd_priv_size = sizeof(struct fotg210_hcd),
5502 * generic hardware linkage
5504 .irq = fotg210_irq,
5505 .flags = HCD_MEMORY | HCD_USB2,
5508 * basic lifecycle operations
5510 .reset = hcd_fotg210_init,
5511 .start = fotg210_run,
5512 .stop = fotg210_stop,
5513 .shutdown = fotg210_shutdown,
5516 * managing i/o requests and associated device resources
5518 .urb_enqueue = fotg210_urb_enqueue,
5519 .urb_dequeue = fotg210_urb_dequeue,
5520 .endpoint_disable = fotg210_endpoint_disable,
5521 .endpoint_reset = fotg210_endpoint_reset,
5524 * scheduling support
5526 .get_frame_number = fotg210_get_frame,
5529 * root hub support
5531 .hub_status_data = fotg210_hub_status_data,
5532 .hub_control = fotg210_hub_control,
5533 .bus_suspend = fotg210_bus_suspend,
5534 .bus_resume = fotg210_bus_resume,
5536 .relinquish_port = fotg210_relinquish_port,
5537 .port_handed_over = fotg210_port_handed_over,
5539 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5542 static void fotg210_init(struct fotg210_hcd *fotg210)
5544 u32 value;
5546 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5547 &fotg210->regs->gmir);
5549 value = ioread32(&fotg210->regs->otgcsr);
5550 value &= ~OTGCSR_A_BUS_DROP;
5551 value |= OTGCSR_A_BUS_REQ;
5552 iowrite32(value, &fotg210->regs->otgcsr);
5556 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5558 * Allocates basic resources for this USB host controller, and
5559 * then invokes the start() method for the HCD associated with it
5560 * through the hotplug entry's driver_data.
5562 static int fotg210_hcd_probe(struct platform_device *pdev)
5564 struct device *dev = &pdev->dev;
5565 struct usb_hcd *hcd;
5566 struct resource *res;
5567 int irq;
5568 int retval = -ENODEV;
5569 struct fotg210_hcd *fotg210;
5571 if (usb_disabled())
5572 return -ENODEV;
5574 pdev->dev.power.power_state = PMSG_ON;
5576 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5577 if (!res) {
5578 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5579 dev_name(dev));
5580 return -ENODEV;
5583 irq = res->start;
5585 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5586 dev_name(dev));
5587 if (!hcd) {
5588 dev_err(dev, "failed to create hcd with err %d\n", retval);
5589 retval = -ENOMEM;
5590 goto fail_create_hcd;
5593 hcd->has_tt = 1;
5595 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5596 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5597 if (IS_ERR(hcd->regs)) {
5598 retval = PTR_ERR(hcd->regs);
5599 goto failed;
5602 hcd->rsrc_start = res->start;
5603 hcd->rsrc_len = resource_size(res);
5605 fotg210 = hcd_to_fotg210(hcd);
5607 fotg210->caps = hcd->regs;
5609 retval = fotg210_setup(hcd);
5610 if (retval)
5611 goto failed;
5613 fotg210_init(fotg210);
5615 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5616 if (retval) {
5617 dev_err(dev, "failed to add hcd with err %d\n", retval);
5618 goto failed;
5620 device_wakeup_enable(hcd->self.controller);
5622 return retval;
5624 failed:
5625 usb_put_hcd(hcd);
5626 fail_create_hcd:
5627 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5628 return retval;
5632 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5633 * @dev: USB Host Controller being removed
5636 static int fotg210_hcd_remove(struct platform_device *pdev)
5638 struct device *dev = &pdev->dev;
5639 struct usb_hcd *hcd = dev_get_drvdata(dev);
5641 if (!hcd)
5642 return 0;
5644 usb_remove_hcd(hcd);
5645 usb_put_hcd(hcd);
5647 return 0;
5650 static struct platform_driver fotg210_hcd_driver = {
5651 .driver = {
5652 .name = "fotg210-hcd",
5654 .probe = fotg210_hcd_probe,
5655 .remove = fotg210_hcd_remove,
5658 static int __init fotg210_hcd_init(void)
5660 int retval = 0;
5662 if (usb_disabled())
5663 return -ENODEV;
5665 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5666 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5667 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5668 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5669 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5671 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5672 hcd_name, sizeof(struct fotg210_qh),
5673 sizeof(struct fotg210_qtd),
5674 sizeof(struct fotg210_itd));
5676 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5678 retval = platform_driver_register(&fotg210_hcd_driver);
5679 if (retval < 0)
5680 goto clean;
5681 return retval;
5683 clean:
5684 debugfs_remove(fotg210_debug_root);
5685 fotg210_debug_root = NULL;
5687 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5688 return retval;
5690 module_init(fotg210_hcd_init);
5692 static void __exit fotg210_hcd_cleanup(void)
5694 platform_driver_unregister(&fotg210_hcd_driver);
5695 debugfs_remove(fotg210_debug_root);
5696 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5698 module_exit(fotg210_hcd_cleanup);