1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
35 #include <asm/byteorder.h>
37 #include <asm/unaligned.h>
39 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
40 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
41 static const char hcd_name
[] = "fotg210_hcd";
43 #undef FOTG210_URB_TRACE
46 /* magic numbers that can affect system performance */
47 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
48 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
49 #define FOTG210_TUNE_RL_TT 0
50 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
51 #define FOTG210_TUNE_MULT_TT 1
53 /* Some drivers think it's safe to schedule isochronous transfers more than 256
54 * ms into the future (partly as a result of an old bug in the scheduling
55 * code). In an attempt to avoid trouble, we will use a minimum scheduling
56 * length of 512 frames instead of 256.
58 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
60 /* Initial IRQ latency: faster than hw default */
61 static int log2_irq_thresh
; /* 0 to 6 */
62 module_param(log2_irq_thresh
, int, S_IRUGO
);
63 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
65 /* initial park setting: slower than hw default */
67 module_param(park
, uint
, S_IRUGO
);
68 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
70 /* for link power management(LPM) feature */
71 static unsigned int hird
;
72 module_param(hird
, int, S_IRUGO
);
73 MODULE_PARM_DESC(hird
, "host initiated resume duration, +1 for each 75us");
75 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
79 #define fotg210_dbg(fotg210, fmt, args...) \
80 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
81 #define fotg210_err(fotg210, fmt, args...) \
82 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_info(fotg210, fmt, args...) \
84 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_warn(fotg210, fmt, args...) \
86 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 /* check the values in the HCSPARAMS register (host controller _Structural_
89 * parameters) see EHCI spec, Table 2-4 for each value
91 static void dbg_hcs_params(struct fotg210_hcd
*fotg210
, char *label
)
93 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
95 fotg210_dbg(fotg210
, "%s hcs_params 0x%x ports=%d\n", label
, params
,
99 /* check the values in the HCCPARAMS register (host controller _Capability_
100 * parameters) see EHCI Spec, Table 2-5 for each value
102 static void dbg_hcc_params(struct fotg210_hcd
*fotg210
, char *label
)
104 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
106 fotg210_dbg(fotg210
, "%s hcc_params %04x uframes %s%s\n", label
,
108 HCC_PGM_FRAMELISTLEN(params
) ? "256/512/1024" : "1024",
109 HCC_CANPARK(params
) ? " park" : "");
112 static void __maybe_unused
113 dbg_qtd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
)
115 fotg210_dbg(fotg210
, "%s td %p n%08x %08x t%08x p0=%08x\n", label
, qtd
,
116 hc32_to_cpup(fotg210
, &qtd
->hw_next
),
117 hc32_to_cpup(fotg210
, &qtd
->hw_alt_next
),
118 hc32_to_cpup(fotg210
, &qtd
->hw_token
),
119 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[0]));
121 fotg210_dbg(fotg210
, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
122 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[1]),
123 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[2]),
124 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[3]),
125 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[4]));
128 static void __maybe_unused
129 dbg_qh(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
131 struct fotg210_qh_hw
*hw
= qh
->hw
;
133 fotg210_dbg(fotg210
, "%s qh %p n%08x info %x %x qtd %x\n", label
, qh
,
134 hw
->hw_next
, hw
->hw_info1
, hw
->hw_info2
,
137 dbg_qtd("overlay", fotg210
, (struct fotg210_qtd
*) &hw
->hw_qtd_next
);
140 static void __maybe_unused
141 dbg_itd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
143 fotg210_dbg(fotg210
, "%s[%d] itd %p, next %08x, urb %p\n", label
,
144 itd
->frame
, itd
, hc32_to_cpu(fotg210
, itd
->hw_next
),
148 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
149 hc32_to_cpu(fotg210
, itd
->hw_transaction
[0]),
150 hc32_to_cpu(fotg210
, itd
->hw_transaction
[1]),
151 hc32_to_cpu(fotg210
, itd
->hw_transaction
[2]),
152 hc32_to_cpu(fotg210
, itd
->hw_transaction
[3]),
153 hc32_to_cpu(fotg210
, itd
->hw_transaction
[4]),
154 hc32_to_cpu(fotg210
, itd
->hw_transaction
[5]),
155 hc32_to_cpu(fotg210
, itd
->hw_transaction
[6]),
156 hc32_to_cpu(fotg210
, itd
->hw_transaction
[7]));
159 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
160 hc32_to_cpu(fotg210
, itd
->hw_bufp
[0]),
161 hc32_to_cpu(fotg210
, itd
->hw_bufp
[1]),
162 hc32_to_cpu(fotg210
, itd
->hw_bufp
[2]),
163 hc32_to_cpu(fotg210
, itd
->hw_bufp
[3]),
164 hc32_to_cpu(fotg210
, itd
->hw_bufp
[4]),
165 hc32_to_cpu(fotg210
, itd
->hw_bufp
[5]),
166 hc32_to_cpu(fotg210
, itd
->hw_bufp
[6]));
168 fotg210_dbg(fotg210
, " index: %d %d %d %d %d %d %d %d\n",
169 itd
->index
[0], itd
->index
[1], itd
->index
[2],
170 itd
->index
[3], itd
->index
[4], itd
->index
[5],
171 itd
->index
[6], itd
->index
[7]);
174 static int __maybe_unused
175 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
177 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
178 label
, label
[0] ? " " : "", status
,
179 (status
& STS_ASS
) ? " Async" : "",
180 (status
& STS_PSS
) ? " Periodic" : "",
181 (status
& STS_RECL
) ? " Recl" : "",
182 (status
& STS_HALT
) ? " Halt" : "",
183 (status
& STS_IAA
) ? " IAA" : "",
184 (status
& STS_FATAL
) ? " FATAL" : "",
185 (status
& STS_FLR
) ? " FLR" : "",
186 (status
& STS_PCD
) ? " PCD" : "",
187 (status
& STS_ERR
) ? " ERR" : "",
188 (status
& STS_INT
) ? " INT" : "");
191 static int __maybe_unused
192 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
194 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
195 label
, label
[0] ? " " : "", enable
,
196 (enable
& STS_IAA
) ? " IAA" : "",
197 (enable
& STS_FATAL
) ? " FATAL" : "",
198 (enable
& STS_FLR
) ? " FLR" : "",
199 (enable
& STS_PCD
) ? " PCD" : "",
200 (enable
& STS_ERR
) ? " ERR" : "",
201 (enable
& STS_INT
) ? " INT" : "");
204 static const char *const fls_strings
[] = { "1024", "512", "256", "??" };
206 static int dbg_command_buf(char *buf
, unsigned len
, const char *label
,
209 return scnprintf(buf
, len
,
210 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
211 label
, label
[0] ? " " : "", command
,
212 (command
& CMD_PARK
) ? " park" : "(park)",
213 CMD_PARK_CNT(command
),
214 (command
>> 16) & 0x3f,
215 (command
& CMD_IAAD
) ? " IAAD" : "",
216 (command
& CMD_ASE
) ? " Async" : "",
217 (command
& CMD_PSE
) ? " Periodic" : "",
218 fls_strings
[(command
>> 2) & 0x3],
219 (command
& CMD_RESET
) ? " Reset" : "",
220 (command
& CMD_RUN
) ? "RUN" : "HALT");
223 static char *dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
,
228 /* signaling state */
229 switch (status
& (3 << 10)) {
235 break; /* low speed */
244 scnprintf(buf
, len
, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
245 label
, label
[0] ? " " : "", port
, status
,
246 status
>> 25, /*device address */
248 (status
& PORT_RESET
) ? " RESET" : "",
249 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
250 (status
& PORT_RESUME
) ? " RESUME" : "",
251 (status
& PORT_PEC
) ? " PEC" : "",
252 (status
& PORT_PE
) ? " PE" : "",
253 (status
& PORT_CSC
) ? " CSC" : "",
254 (status
& PORT_CONNECT
) ? " CONNECT" : "");
259 /* functions have the "wrong" filename when they're output... */
260 #define dbg_status(fotg210, label, status) { \
262 dbg_status_buf(_buf, sizeof(_buf), label, status); \
263 fotg210_dbg(fotg210, "%s\n", _buf); \
266 #define dbg_cmd(fotg210, label, command) { \
268 dbg_command_buf(_buf, sizeof(_buf), label, command); \
269 fotg210_dbg(fotg210, "%s\n", _buf); \
272 #define dbg_port(fotg210, label, port, status) { \
274 fotg210_dbg(fotg210, "%s\n", \
275 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 /* troubleshooting help: expose state in debugfs */
279 static int debug_async_open(struct inode
*, struct file
*);
280 static int debug_periodic_open(struct inode
*, struct file
*);
281 static int debug_registers_open(struct inode
*, struct file
*);
282 static int debug_async_open(struct inode
*, struct file
*);
284 static ssize_t
debug_output(struct file
*, char __user
*, size_t, loff_t
*);
285 static int debug_close(struct inode
*, struct file
*);
287 static const struct file_operations debug_async_fops
= {
288 .owner
= THIS_MODULE
,
289 .open
= debug_async_open
,
290 .read
= debug_output
,
291 .release
= debug_close
,
292 .llseek
= default_llseek
,
294 static const struct file_operations debug_periodic_fops
= {
295 .owner
= THIS_MODULE
,
296 .open
= debug_periodic_open
,
297 .read
= debug_output
,
298 .release
= debug_close
,
299 .llseek
= default_llseek
,
301 static const struct file_operations debug_registers_fops
= {
302 .owner
= THIS_MODULE
,
303 .open
= debug_registers_open
,
304 .read
= debug_output
,
305 .release
= debug_close
,
306 .llseek
= default_llseek
,
309 static struct dentry
*fotg210_debug_root
;
311 struct debug_buffer
{
312 ssize_t (*fill_func
)(struct debug_buffer
*); /* fill method */
314 struct mutex mutex
; /* protect filling of buffer */
315 size_t count
; /* number of characters filled into buffer */
320 static inline char speed_char(u32 scratch
)
322 switch (scratch
& (3 << 12)) {
337 static inline char token_mark(struct fotg210_hcd
*fotg210
, __hc32 token
)
339 __u32 v
= hc32_to_cpu(fotg210
, token
);
341 if (v
& QTD_STS_ACTIVE
)
343 if (v
& QTD_STS_HALT
)
345 if (!IS_SHORT_READ(v
))
347 /* tries to advance through hw_alt_next */
351 static void qh_lines(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
,
352 char **nextp
, unsigned *sizep
)
356 struct fotg210_qtd
*td
;
358 unsigned size
= *sizep
;
361 __le32 list_end
= FOTG210_LIST_END(fotg210
);
362 struct fotg210_qh_hw
*hw
= qh
->hw
;
364 if (hw
->hw_qtd_next
== list_end
) /* NEC does this */
367 mark
= token_mark(fotg210
, hw
->hw_token
);
368 if (mark
== '/') { /* qh_alt_next controls qh advance? */
369 if ((hw
->hw_alt_next
& QTD_MASK(fotg210
)) ==
370 fotg210
->async
->hw
->hw_alt_next
)
371 mark
= '#'; /* blocked */
372 else if (hw
->hw_alt_next
== list_end
)
373 mark
= '.'; /* use hw_qtd_next */
374 /* else alt_next points to some other qtd */
376 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
377 hw_curr
= (mark
== '*') ? hc32_to_cpup(fotg210
, &hw
->hw_current
) : 0;
378 temp
= scnprintf(next
, size
,
379 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
380 qh
, scratch
& 0x007f,
382 (scratch
>> 8) & 0x000f,
383 scratch
, hc32_to_cpup(fotg210
, &hw
->hw_info2
),
384 hc32_to_cpup(fotg210
, &hw
->hw_token
), mark
,
385 (cpu_to_hc32(fotg210
, QTD_TOGGLE
) & hw
->hw_token
)
387 (hc32_to_cpup(fotg210
, &hw
->hw_alt_next
) >> 1) & 0x0f);
391 /* hc may be modifying the list as we read it ... */
392 list_for_each_entry(td
, &qh
->qtd_list
, qtd_list
) {
393 scratch
= hc32_to_cpup(fotg210
, &td
->hw_token
);
395 if (hw_curr
== td
->qtd_dma
)
397 else if (hw
->hw_qtd_next
== cpu_to_hc32(fotg210
, td
->qtd_dma
))
399 else if (QTD_LENGTH(scratch
)) {
400 if (td
->hw_alt_next
== fotg210
->async
->hw
->hw_alt_next
)
402 else if (td
->hw_alt_next
!= list_end
)
405 temp
= snprintf(next
, size
,
406 "\n\t%p%c%s len=%d %08x urb %p",
407 td
, mark
, ({ char *tmp
;
408 switch ((scratch
>>8)&0x03) {
422 (scratch
>> 16) & 0x7fff,
433 temp
= snprintf(next
, size
, "\n");
445 static ssize_t
fill_async_buffer(struct debug_buffer
*buf
)
448 struct fotg210_hcd
*fotg210
;
452 struct fotg210_qh
*qh
;
454 hcd
= bus_to_hcd(buf
->bus
);
455 fotg210
= hcd_to_fotg210(hcd
);
456 next
= buf
->output_buf
;
457 size
= buf
->alloc_size
;
461 /* dumps a snapshot of the async schedule.
462 * usually empty except for long-term bulk reads, or head.
463 * one QH per line, and TDs we know about
465 spin_lock_irqsave(&fotg210
->lock
, flags
);
466 for (qh
= fotg210
->async
->qh_next
.qh
; size
> 0 && qh
;
468 qh_lines(fotg210
, qh
, &next
, &size
);
469 if (fotg210
->async_unlink
&& size
> 0) {
470 temp
= scnprintf(next
, size
, "\nunlink =\n");
474 for (qh
= fotg210
->async_unlink
; size
> 0 && qh
;
475 qh
= qh
->unlink_next
)
476 qh_lines(fotg210
, qh
, &next
, &size
);
478 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
480 return strlen(buf
->output_buf
);
483 /* count tds, get ep direction */
484 static unsigned output_buf_tds_dir(char *buf
, struct fotg210_hcd
*fotg210
,
485 struct fotg210_qh_hw
*hw
, struct fotg210_qh
*qh
, unsigned size
)
487 u32 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
488 struct fotg210_qtd
*qtd
;
492 /* count tds, get ep direction */
493 list_for_each_entry(qtd
, &qh
->qtd_list
, qtd_list
) {
495 switch ((hc32_to_cpu(fotg210
, qtd
->hw_token
) >> 8) & 0x03) {
505 return scnprintf(buf
, size
, "(%c%d ep%d%s [%d/%d] q%d p%d)",
506 speed_char(scratch
), scratch
& 0x007f,
507 (scratch
>> 8) & 0x000f, type
, qh
->usecs
,
508 qh
->c_usecs
, temp
, (scratch
>> 16) & 0x7ff);
511 #define DBG_SCHED_LIMIT 64
512 static ssize_t
fill_periodic_buffer(struct debug_buffer
*buf
)
515 struct fotg210_hcd
*fotg210
;
517 union fotg210_shadow p
, *seen
;
518 unsigned temp
, size
, seen_count
;
523 seen
= kmalloc_array(DBG_SCHED_LIMIT
, sizeof(*seen
), GFP_ATOMIC
);
529 hcd
= bus_to_hcd(buf
->bus
);
530 fotg210
= hcd_to_fotg210(hcd
);
531 next
= buf
->output_buf
;
532 size
= buf
->alloc_size
;
534 temp
= scnprintf(next
, size
, "size = %d\n", fotg210
->periodic_size
);
538 /* dump a snapshot of the periodic schedule.
539 * iso changes, interrupt usually doesn't.
541 spin_lock_irqsave(&fotg210
->lock
, flags
);
542 for (i
= 0; i
< fotg210
->periodic_size
; i
++) {
543 p
= fotg210
->pshadow
[i
];
547 tag
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[i
]);
549 temp
= scnprintf(next
, size
, "%4d: ", i
);
554 struct fotg210_qh_hw
*hw
;
556 switch (hc32_to_cpu(fotg210
, tag
)) {
559 temp
= scnprintf(next
, size
, " qh%d-%04x/%p",
561 hc32_to_cpup(fotg210
,
564 & (QH_CMASK
| QH_SMASK
),
568 /* don't repeat what follows this qh */
569 for (temp
= 0; temp
< seen_count
; temp
++) {
570 if (seen
[temp
].ptr
!= p
.ptr
)
572 if (p
.qh
->qh_next
.ptr
) {
573 temp
= scnprintf(next
, size
,
580 /* show more info the first time around */
581 if (temp
== seen_count
) {
582 temp
= output_buf_tds_dir(next
,
586 if (seen_count
< DBG_SCHED_LIMIT
)
587 seen
[seen_count
++].qh
= p
.qh
;
590 tag
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
594 temp
= scnprintf(next
, size
,
596 p
.fstn
->hw_prev
, p
.fstn
);
597 tag
= Q_NEXT_TYPE(fotg210
, p
.fstn
->hw_next
);
598 p
= p
.fstn
->fstn_next
;
601 temp
= scnprintf(next
, size
,
603 tag
= Q_NEXT_TYPE(fotg210
, p
.itd
->hw_next
);
611 temp
= scnprintf(next
, size
, "\n");
615 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
618 return buf
->alloc_size
- size
;
620 #undef DBG_SCHED_LIMIT
622 static const char *rh_state_string(struct fotg210_hcd
*fotg210
)
624 switch (fotg210
->rh_state
) {
625 case FOTG210_RH_HALTED
:
627 case FOTG210_RH_SUSPENDED
:
629 case FOTG210_RH_RUNNING
:
631 case FOTG210_RH_STOPPING
:
637 static ssize_t
fill_registers_buffer(struct debug_buffer
*buf
)
640 struct fotg210_hcd
*fotg210
;
642 unsigned temp
, size
, i
;
643 char *next
, scratch
[80];
644 static const char fmt
[] = "%*s\n";
645 static const char label
[] = "";
647 hcd
= bus_to_hcd(buf
->bus
);
648 fotg210
= hcd_to_fotg210(hcd
);
649 next
= buf
->output_buf
;
650 size
= buf
->alloc_size
;
652 spin_lock_irqsave(&fotg210
->lock
, flags
);
654 if (!HCD_HW_ACCESSIBLE(hcd
)) {
655 size
= scnprintf(next
, size
,
656 "bus %s, device %s\n"
658 "SUSPENDED(no register access)\n",
659 hcd
->self
.controller
->bus
->name
,
660 dev_name(hcd
->self
.controller
),
665 /* Capability Registers */
666 i
= HC_VERSION(fotg210
, fotg210_readl(fotg210
,
667 &fotg210
->caps
->hc_capbase
));
668 temp
= scnprintf(next
, size
,
669 "bus %s, device %s\n"
671 "EHCI %x.%02x, rh state %s\n",
672 hcd
->self
.controller
->bus
->name
,
673 dev_name(hcd
->self
.controller
),
675 i
>> 8, i
& 0x0ff, rh_state_string(fotg210
));
679 /* FIXME interpret both types of params */
680 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
681 temp
= scnprintf(next
, size
, "structural params 0x%08x\n", i
);
685 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
686 temp
= scnprintf(next
, size
, "capability params 0x%08x\n", i
);
690 /* Operational Registers */
691 temp
= dbg_status_buf(scratch
, sizeof(scratch
), label
,
692 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
693 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
697 temp
= dbg_command_buf(scratch
, sizeof(scratch
), label
,
698 fotg210_readl(fotg210
, &fotg210
->regs
->command
));
699 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
703 temp
= dbg_intr_buf(scratch
, sizeof(scratch
), label
,
704 fotg210_readl(fotg210
, &fotg210
->regs
->intr_enable
));
705 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
709 temp
= scnprintf(next
, size
, "uframe %04x\n",
710 fotg210_read_frame_index(fotg210
));
714 if (fotg210
->async_unlink
) {
715 temp
= scnprintf(next
, size
, "async unlink qh %p\n",
716 fotg210
->async_unlink
);
722 temp
= scnprintf(next
, size
,
723 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
724 fotg210
->stats
.normal
, fotg210
->stats
.error
,
725 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
729 temp
= scnprintf(next
, size
, "complete %ld unlink %ld\n",
730 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
736 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
738 return buf
->alloc_size
- size
;
741 static struct debug_buffer
742 *alloc_buffer(struct usb_bus
*bus
, ssize_t (*fill_func
)(struct debug_buffer
*))
744 struct debug_buffer
*buf
;
746 buf
= kzalloc(sizeof(struct debug_buffer
), GFP_KERNEL
);
750 buf
->fill_func
= fill_func
;
751 mutex_init(&buf
->mutex
);
752 buf
->alloc_size
= PAGE_SIZE
;
758 static int fill_buffer(struct debug_buffer
*buf
)
762 if (!buf
->output_buf
)
763 buf
->output_buf
= vmalloc(buf
->alloc_size
);
765 if (!buf
->output_buf
) {
770 ret
= buf
->fill_func(buf
);
781 static ssize_t
debug_output(struct file
*file
, char __user
*user_buf
,
782 size_t len
, loff_t
*offset
)
784 struct debug_buffer
*buf
= file
->private_data
;
787 mutex_lock(&buf
->mutex
);
788 if (buf
->count
== 0) {
789 ret
= fill_buffer(buf
);
791 mutex_unlock(&buf
->mutex
);
795 mutex_unlock(&buf
->mutex
);
797 ret
= simple_read_from_buffer(user_buf
, len
, offset
,
798 buf
->output_buf
, buf
->count
);
805 static int debug_close(struct inode
*inode
, struct file
*file
)
807 struct debug_buffer
*buf
= file
->private_data
;
810 vfree(buf
->output_buf
);
816 static int debug_async_open(struct inode
*inode
, struct file
*file
)
818 file
->private_data
= alloc_buffer(inode
->i_private
, fill_async_buffer
);
820 return file
->private_data
? 0 : -ENOMEM
;
823 static int debug_periodic_open(struct inode
*inode
, struct file
*file
)
825 struct debug_buffer
*buf
;
827 buf
= alloc_buffer(inode
->i_private
, fill_periodic_buffer
);
831 buf
->alloc_size
= (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE
;
832 file
->private_data
= buf
;
836 static int debug_registers_open(struct inode
*inode
, struct file
*file
)
838 file
->private_data
= alloc_buffer(inode
->i_private
,
839 fill_registers_buffer
);
841 return file
->private_data
? 0 : -ENOMEM
;
844 static inline void create_debug_files(struct fotg210_hcd
*fotg210
)
846 struct usb_bus
*bus
= &fotg210_to_hcd(fotg210
)->self
;
849 root
= debugfs_create_dir(bus
->bus_name
, fotg210_debug_root
);
850 fotg210
->debug_dir
= root
;
852 debugfs_create_file("async", S_IRUGO
, root
, bus
, &debug_async_fops
);
853 debugfs_create_file("periodic", S_IRUGO
, root
, bus
,
854 &debug_periodic_fops
);
855 debugfs_create_file("registers", S_IRUGO
, root
, bus
,
856 &debug_registers_fops
);
859 static inline void remove_debug_files(struct fotg210_hcd
*fotg210
)
861 debugfs_remove_recursive(fotg210
->debug_dir
);
864 /* handshake - spin reading hc until handshake completes or fails
865 * @ptr: address of hc register to be read
866 * @mask: bits to look at in result of read
867 * @done: value of those bits when handshake succeeds
868 * @usec: timeout in microseconds
870 * Returns negative errno, or zero on success
872 * Success happens when the "mask" bits have the specified value (hardware
873 * handshake done). There are two failure modes: "usec" have passed (major
874 * hardware flakeout), or the register reads as all-ones (hardware removed).
876 * That last failure should_only happen in cases like physical cardbus eject
877 * before driver shutdown. But it also seems to be caused by bugs in cardbus
878 * bridge shutdown: shutting down the bridge before the devices using it.
880 static int handshake(struct fotg210_hcd
*fotg210
, void __iomem
*ptr
,
881 u32 mask
, u32 done
, int usec
)
886 result
= fotg210_readl(fotg210
, ptr
);
887 if (result
== ~(u32
)0) /* card removed */
898 /* Force HC to halt state from unknown (EHCI spec section 2.3).
899 * Must be called with interrupts enabled and the lock not held.
901 static int fotg210_halt(struct fotg210_hcd
*fotg210
)
905 spin_lock_irq(&fotg210
->lock
);
907 /* disable any irqs left enabled by previous code */
908 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
911 * This routine gets called during probe before fotg210->command
912 * has been initialized, so we can't rely on its value.
914 fotg210
->command
&= ~CMD_RUN
;
915 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
916 temp
&= ~(CMD_RUN
| CMD_IAAD
);
917 fotg210_writel(fotg210
, temp
, &fotg210
->regs
->command
);
919 spin_unlock_irq(&fotg210
->lock
);
920 synchronize_irq(fotg210_to_hcd(fotg210
)->irq
);
922 return handshake(fotg210
, &fotg210
->regs
->status
,
923 STS_HALT
, STS_HALT
, 16 * 125);
926 /* Reset a non-running (STS_HALT == 1) controller.
927 * Must be called with interrupts enabled and the lock not held.
929 static int fotg210_reset(struct fotg210_hcd
*fotg210
)
932 u32 command
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
934 /* If the EHCI debug controller is active, special care must be
935 * taken before and after a host controller reset
937 if (fotg210
->debug
&& !dbgp_reset_prep(fotg210_to_hcd(fotg210
)))
938 fotg210
->debug
= NULL
;
940 command
|= CMD_RESET
;
941 dbg_cmd(fotg210
, "reset", command
);
942 fotg210_writel(fotg210
, command
, &fotg210
->regs
->command
);
943 fotg210
->rh_state
= FOTG210_RH_HALTED
;
944 fotg210
->next_statechange
= jiffies
;
945 retval
= handshake(fotg210
, &fotg210
->regs
->command
,
946 CMD_RESET
, 0, 250 * 1000);
952 dbgp_external_startup(fotg210_to_hcd(fotg210
));
954 fotg210
->port_c_suspend
= fotg210
->suspended_ports
=
955 fotg210
->resuming_ports
= 0;
959 /* Idle the controller (turn off the schedules).
960 * Must be called with interrupts enabled and the lock not held.
962 static void fotg210_quiesce(struct fotg210_hcd
*fotg210
)
966 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
969 /* wait for any schedule enables/disables to take effect */
970 temp
= (fotg210
->command
<< 10) & (STS_ASS
| STS_PSS
);
971 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, temp
,
974 /* then disable anything that's still active */
975 spin_lock_irq(&fotg210
->lock
);
976 fotg210
->command
&= ~(CMD_ASE
| CMD_PSE
);
977 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
978 spin_unlock_irq(&fotg210
->lock
);
980 /* hardware can take 16 microframes to turn off ... */
981 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, 0,
985 static void end_unlink_async(struct fotg210_hcd
*fotg210
);
986 static void unlink_empty_async(struct fotg210_hcd
*fotg210
);
987 static void fotg210_work(struct fotg210_hcd
*fotg210
);
988 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
989 struct fotg210_qh
*qh
);
990 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
992 /* Set a bit in the USBCMD register */
993 static void fotg210_set_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
995 fotg210
->command
|= bit
;
996 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
998 /* unblock posted write */
999 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1002 /* Clear a bit in the USBCMD register */
1003 static void fotg210_clear_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1005 fotg210
->command
&= ~bit
;
1006 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1008 /* unblock posted write */
1009 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1012 /* EHCI timer support... Now using hrtimers.
1014 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1015 * the timer routine runs, it checks each possible event; events that are
1016 * currently enabled and whose expiration time has passed get handled.
1017 * The set of enabled events is stored as a collection of bitflags in
1018 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1019 * increasing delay values (ranging between 1 ms and 100 ms).
1021 * Rather than implementing a sorted list or tree of all pending events,
1022 * we keep track only of the lowest-numbered pending event, in
1023 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1024 * expiration time is set to the timeout value for this event.
1026 * As a result, events might not get handled right away; the actual delay
1027 * could be anywhere up to twice the requested delay. This doesn't
1028 * matter, because none of the events are especially time-critical. The
1029 * ones that matter most all have a delay of 1 ms, so they will be
1030 * handled after 2 ms at most, which is okay. In addition to this, we
1031 * allow for an expiration range of 1 ms.
1034 /* Delay lengths for the hrtimer event types.
1035 * Keep this list sorted by delay length, in the same order as
1036 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1038 static unsigned event_delays_ns
[] = {
1039 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_ASS */
1040 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_PSS */
1041 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_DEAD */
1042 1125 * NSEC_PER_USEC
, /* FOTG210_HRTIMER_UNLINK_INTR */
1043 2 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_FREE_ITDS */
1044 6 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1045 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1046 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1047 15 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1048 100 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1051 /* Enable a pending hrtimer event */
1052 static void fotg210_enable_event(struct fotg210_hcd
*fotg210
, unsigned event
,
1055 ktime_t
*timeout
= &fotg210
->hr_timeouts
[event
];
1058 *timeout
= ktime_add(ktime_get(), event_delays_ns
[event
]);
1059 fotg210
->enabled_hrtimer_events
|= (1 << event
);
1061 /* Track only the lowest-numbered pending event */
1062 if (event
< fotg210
->next_hrtimer_event
) {
1063 fotg210
->next_hrtimer_event
= event
;
1064 hrtimer_start_range_ns(&fotg210
->hrtimer
, *timeout
,
1065 NSEC_PER_MSEC
, HRTIMER_MODE_ABS
);
1070 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1071 static void fotg210_poll_ASS(struct fotg210_hcd
*fotg210
)
1073 unsigned actual
, want
;
1075 /* Don't enable anything if the controller isn't running (e.g., died) */
1076 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1079 want
= (fotg210
->command
& CMD_ASE
) ? STS_ASS
: 0;
1080 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_ASS
;
1082 if (want
!= actual
) {
1084 /* Poll again later, but give up after about 20 ms */
1085 if (fotg210
->ASS_poll_count
++ < 20) {
1086 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_ASS
,
1090 fotg210_dbg(fotg210
, "Waited too long for the async schedule status (%x/%x), giving up\n",
1093 fotg210
->ASS_poll_count
= 0;
1095 /* The status is up-to-date; restart or stop the schedule as needed */
1096 if (want
== 0) { /* Stopped */
1097 if (fotg210
->async_count
> 0)
1098 fotg210_set_command_bit(fotg210
, CMD_ASE
);
1100 } else { /* Running */
1101 if (fotg210
->async_count
== 0) {
1103 /* Turn off the schedule after a while */
1104 fotg210_enable_event(fotg210
,
1105 FOTG210_HRTIMER_DISABLE_ASYNC
,
1111 /* Turn off the async schedule after a brief delay */
1112 static void fotg210_disable_ASE(struct fotg210_hcd
*fotg210
)
1114 fotg210_clear_command_bit(fotg210
, CMD_ASE
);
1118 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1119 static void fotg210_poll_PSS(struct fotg210_hcd
*fotg210
)
1121 unsigned actual
, want
;
1123 /* Don't do anything if the controller isn't running (e.g., died) */
1124 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1127 want
= (fotg210
->command
& CMD_PSE
) ? STS_PSS
: 0;
1128 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_PSS
;
1130 if (want
!= actual
) {
1132 /* Poll again later, but give up after about 20 ms */
1133 if (fotg210
->PSS_poll_count
++ < 20) {
1134 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_PSS
,
1138 fotg210_dbg(fotg210
, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1141 fotg210
->PSS_poll_count
= 0;
1143 /* The status is up-to-date; restart or stop the schedule as needed */
1144 if (want
== 0) { /* Stopped */
1145 if (fotg210
->periodic_count
> 0)
1146 fotg210_set_command_bit(fotg210
, CMD_PSE
);
1148 } else { /* Running */
1149 if (fotg210
->periodic_count
== 0) {
1151 /* Turn off the schedule after a while */
1152 fotg210_enable_event(fotg210
,
1153 FOTG210_HRTIMER_DISABLE_PERIODIC
,
1159 /* Turn off the periodic schedule after a brief delay */
1160 static void fotg210_disable_PSE(struct fotg210_hcd
*fotg210
)
1162 fotg210_clear_command_bit(fotg210
, CMD_PSE
);
1166 /* Poll the STS_HALT status bit; see when a dead controller stops */
1167 static void fotg210_handle_controller_death(struct fotg210_hcd
*fotg210
)
1169 if (!(fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_HALT
)) {
1171 /* Give up after a few milliseconds */
1172 if (fotg210
->died_poll_count
++ < 5) {
1173 /* Try again later */
1174 fotg210_enable_event(fotg210
,
1175 FOTG210_HRTIMER_POLL_DEAD
, true);
1178 fotg210_warn(fotg210
, "Waited too long for the controller to stop, giving up\n");
1181 /* Clean up the mess */
1182 fotg210
->rh_state
= FOTG210_RH_HALTED
;
1183 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
1184 fotg210_work(fotg210
);
1185 end_unlink_async(fotg210
);
1187 /* Not in process context, so don't try to reset the controller */
1191 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1192 static void fotg210_handle_intr_unlinks(struct fotg210_hcd
*fotg210
)
1194 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
1197 * Process all the QHs on the intr_unlink list that were added
1198 * before the current unlink cycle began. The list is in
1199 * temporal order, so stop when we reach the first entry in the
1200 * current cycle. But if the root hub isn't running then
1201 * process all the QHs on the list.
1203 fotg210
->intr_unlinking
= true;
1204 while (fotg210
->intr_unlink
) {
1205 struct fotg210_qh
*qh
= fotg210
->intr_unlink
;
1207 if (!stopped
&& qh
->unlink_cycle
== fotg210
->intr_unlink_cycle
)
1209 fotg210
->intr_unlink
= qh
->unlink_next
;
1210 qh
->unlink_next
= NULL
;
1211 end_unlink_intr(fotg210
, qh
);
1214 /* Handle remaining entries later */
1215 if (fotg210
->intr_unlink
) {
1216 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
1218 ++fotg210
->intr_unlink_cycle
;
1220 fotg210
->intr_unlinking
= false;
1224 /* Start another free-iTDs/siTDs cycle */
1225 static void start_free_itds(struct fotg210_hcd
*fotg210
)
1227 if (!(fotg210
->enabled_hrtimer_events
&
1228 BIT(FOTG210_HRTIMER_FREE_ITDS
))) {
1229 fotg210
->last_itd_to_free
= list_entry(
1230 fotg210
->cached_itd_list
.prev
,
1231 struct fotg210_itd
, itd_list
);
1232 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_FREE_ITDS
, true);
1236 /* Wait for controller to stop using old iTDs and siTDs */
1237 static void end_free_itds(struct fotg210_hcd
*fotg210
)
1239 struct fotg210_itd
*itd
, *n
;
1241 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
1242 fotg210
->last_itd_to_free
= NULL
;
1244 list_for_each_entry_safe(itd
, n
, &fotg210
->cached_itd_list
, itd_list
) {
1245 list_del(&itd
->itd_list
);
1246 dma_pool_free(fotg210
->itd_pool
, itd
, itd
->itd_dma
);
1247 if (itd
== fotg210
->last_itd_to_free
)
1251 if (!list_empty(&fotg210
->cached_itd_list
))
1252 start_free_itds(fotg210
);
1256 /* Handle lost (or very late) IAA interrupts */
1257 static void fotg210_iaa_watchdog(struct fotg210_hcd
*fotg210
)
1259 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1263 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1264 * So we need this watchdog, but must protect it against both
1265 * (a) SMP races against real IAA firing and retriggering, and
1266 * (b) clean HC shutdown, when IAA watchdog was pending.
1268 if (fotg210
->async_iaa
) {
1271 /* If we get here, IAA is *REALLY* late. It's barely
1272 * conceivable that the system is so busy that CMD_IAAD
1273 * is still legitimately set, so let's be sure it's
1274 * clear before we read STS_IAA. (The HC should clear
1275 * CMD_IAAD when it sets STS_IAA.)
1277 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1280 * If IAA is set here it either legitimately triggered
1281 * after the watchdog timer expired (_way_ late, so we'll
1282 * still count it as lost) ... or a silicon erratum:
1283 * - VIA seems to set IAA without triggering the IRQ;
1284 * - IAAD potentially cleared without setting IAA.
1286 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
1287 if ((status
& STS_IAA
) || !(cmd
& CMD_IAAD
)) {
1288 COUNT(fotg210
->stats
.lost_iaa
);
1289 fotg210_writel(fotg210
, STS_IAA
,
1290 &fotg210
->regs
->status
);
1293 fotg210_dbg(fotg210
, "IAA watchdog: status %x cmd %x\n",
1295 end_unlink_async(fotg210
);
1300 /* Enable the I/O watchdog, if appropriate */
1301 static void turn_on_io_watchdog(struct fotg210_hcd
*fotg210
)
1303 /* Not needed if the controller isn't running or it's already enabled */
1304 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
||
1305 (fotg210
->enabled_hrtimer_events
&
1306 BIT(FOTG210_HRTIMER_IO_WATCHDOG
)))
1310 * Isochronous transfers always need the watchdog.
1311 * For other sorts we use it only if the flag is set.
1313 if (fotg210
->isoc_count
> 0 || (fotg210
->need_io_watchdog
&&
1314 fotg210
->async_count
+ fotg210
->intr_count
> 0))
1315 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IO_WATCHDOG
,
1320 /* Handler functions for the hrtimer event types.
1321 * Keep this array in the same order as the event types indexed by
1322 * enum fotg210_hrtimer_event in fotg210.h.
1324 static void (*event_handlers
[])(struct fotg210_hcd
*) = {
1325 fotg210_poll_ASS
, /* FOTG210_HRTIMER_POLL_ASS */
1326 fotg210_poll_PSS
, /* FOTG210_HRTIMER_POLL_PSS */
1327 fotg210_handle_controller_death
, /* FOTG210_HRTIMER_POLL_DEAD */
1328 fotg210_handle_intr_unlinks
, /* FOTG210_HRTIMER_UNLINK_INTR */
1329 end_free_itds
, /* FOTG210_HRTIMER_FREE_ITDS */
1330 unlink_empty_async
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1331 fotg210_iaa_watchdog
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1332 fotg210_disable_PSE
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1333 fotg210_disable_ASE
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1334 fotg210_work
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1337 static enum hrtimer_restart
fotg210_hrtimer_func(struct hrtimer
*t
)
1339 struct fotg210_hcd
*fotg210
=
1340 container_of(t
, struct fotg210_hcd
, hrtimer
);
1342 unsigned long events
;
1343 unsigned long flags
;
1346 spin_lock_irqsave(&fotg210
->lock
, flags
);
1348 events
= fotg210
->enabled_hrtimer_events
;
1349 fotg210
->enabled_hrtimer_events
= 0;
1350 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
1353 * Check each pending event. If its time has expired, handle
1354 * the event; otherwise re-enable it.
1357 for_each_set_bit(e
, &events
, FOTG210_HRTIMER_NUM_EVENTS
) {
1358 if (ktime_compare(now
, fotg210
->hr_timeouts
[e
]) >= 0)
1359 event_handlers
[e
](fotg210
);
1361 fotg210_enable_event(fotg210
, e
, false);
1364 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1365 return HRTIMER_NORESTART
;
1368 #define fotg210_bus_suspend NULL
1369 #define fotg210_bus_resume NULL
1371 static int check_reset_complete(struct fotg210_hcd
*fotg210
, int index
,
1372 u32 __iomem
*status_reg
, int port_status
)
1374 if (!(port_status
& PORT_CONNECT
))
1377 /* if reset finished and it's still not enabled -- handoff */
1378 if (!(port_status
& PORT_PE
))
1379 /* with integrated TT, there's nobody to hand it to! */
1380 fotg210_dbg(fotg210
, "Failed to enable port %d on root hub TT\n",
1383 fotg210_dbg(fotg210
, "port %d reset complete, port enabled\n",
1390 /* build "status change" packet (one or two bytes) from HC registers */
1392 static int fotg210_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
1394 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1398 unsigned long flags
;
1400 /* init status to no-changes */
1403 /* Inform the core about resumes-in-progress by returning
1404 * a non-zero value even if there are no status changes.
1406 status
= fotg210
->resuming_ports
;
1408 mask
= PORT_CSC
| PORT_PEC
;
1409 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1411 /* no hub change reports (bit 0) for now (power, ...) */
1413 /* port N changes (bit N)? */
1414 spin_lock_irqsave(&fotg210
->lock
, flags
);
1416 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->port_status
);
1419 * Return status information even for ports with OWNER set.
1420 * Otherwise hub_wq wouldn't see the disconnect event when a
1421 * high-speed device is switched over to the companion
1422 * controller by the user.
1425 if ((temp
& mask
) != 0 || test_bit(0, &fotg210
->port_c_suspend
) ||
1426 (fotg210
->reset_done
[0] &&
1427 time_after_eq(jiffies
, fotg210
->reset_done
[0]))) {
1431 /* FIXME autosuspend idle root hubs */
1432 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1433 return status
? retval
: 0;
1436 static void fotg210_hub_descriptor(struct fotg210_hcd
*fotg210
,
1437 struct usb_hub_descriptor
*desc
)
1439 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1442 desc
->bDescriptorType
= USB_DT_HUB
;
1443 desc
->bPwrOn2PwrGood
= 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1444 desc
->bHubContrCurrent
= 0;
1446 desc
->bNbrPorts
= ports
;
1447 temp
= 1 + (ports
/ 8);
1448 desc
->bDescLength
= 7 + 2 * temp
;
1450 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1451 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
1452 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
1454 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
1455 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
1456 desc
->wHubCharacteristics
= cpu_to_le16(temp
);
1459 static int fotg210_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
,
1460 u16 wIndex
, char *buf
, u16 wLength
)
1462 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1463 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1464 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
1465 u32 temp
, temp1
, status
;
1466 unsigned long flags
;
1471 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1472 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1473 * (track current state ourselves) ... blink for diagnostics,
1474 * power, "this is the one", etc. EHCI spec supports this.
1477 spin_lock_irqsave(&fotg210
->lock
, flags
);
1479 case ClearHubFeature
:
1481 case C_HUB_LOCAL_POWER
:
1482 case C_HUB_OVER_CURRENT
:
1483 /* no hub-wide feature/status flags */
1489 case ClearPortFeature
:
1490 if (!wIndex
|| wIndex
> ports
)
1493 temp
= fotg210_readl(fotg210
, status_reg
);
1494 temp
&= ~PORT_RWC_BITS
;
1497 * Even if OWNER is set, so the port is owned by the
1498 * companion controller, hub_wq needs to be able to clear
1499 * the port-change status bits (especially
1500 * USB_PORT_STAT_C_CONNECTION).
1504 case USB_PORT_FEAT_ENABLE
:
1505 fotg210_writel(fotg210
, temp
& ~PORT_PE
, status_reg
);
1507 case USB_PORT_FEAT_C_ENABLE
:
1508 fotg210_writel(fotg210
, temp
| PORT_PEC
, status_reg
);
1510 case USB_PORT_FEAT_SUSPEND
:
1511 if (temp
& PORT_RESET
)
1513 if (!(temp
& PORT_SUSPEND
))
1515 if ((temp
& PORT_PE
) == 0)
1518 /* resume signaling for 20 msec */
1519 fotg210_writel(fotg210
, temp
| PORT_RESUME
, status_reg
);
1520 fotg210
->reset_done
[wIndex
] = jiffies
1521 + msecs_to_jiffies(USB_RESUME_TIMEOUT
);
1523 case USB_PORT_FEAT_C_SUSPEND
:
1524 clear_bit(wIndex
, &fotg210
->port_c_suspend
);
1526 case USB_PORT_FEAT_C_CONNECTION
:
1527 fotg210_writel(fotg210
, temp
| PORT_CSC
, status_reg
);
1529 case USB_PORT_FEAT_C_OVER_CURRENT
:
1530 fotg210_writel(fotg210
, temp
| OTGISR_OVC
,
1531 &fotg210
->regs
->otgisr
);
1533 case USB_PORT_FEAT_C_RESET
:
1534 /* GetPortStatus clears reset */
1539 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1541 case GetHubDescriptor
:
1542 fotg210_hub_descriptor(fotg210
, (struct usb_hub_descriptor
*)
1546 /* no hub-wide feature/status flags */
1548 /*cpu_to_le32s ((u32 *) buf); */
1551 if (!wIndex
|| wIndex
> ports
)
1555 temp
= fotg210_readl(fotg210
, status_reg
);
1557 /* wPortChange bits */
1558 if (temp
& PORT_CSC
)
1559 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
1560 if (temp
& PORT_PEC
)
1561 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
1563 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1564 if (temp1
& OTGISR_OVC
)
1565 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
1567 /* whoever resumes must GetPortStatus to complete it!! */
1568 if (temp
& PORT_RESUME
) {
1570 /* Remote Wakeup received? */
1571 if (!fotg210
->reset_done
[wIndex
]) {
1572 /* resume signaling for 20 msec */
1573 fotg210
->reset_done
[wIndex
] = jiffies
1574 + msecs_to_jiffies(20);
1575 /* check the port again */
1576 mod_timer(&fotg210_to_hcd(fotg210
)->rh_timer
,
1577 fotg210
->reset_done
[wIndex
]);
1580 /* resume completed? */
1581 else if (time_after_eq(jiffies
,
1582 fotg210
->reset_done
[wIndex
])) {
1583 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1584 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1585 fotg210
->reset_done
[wIndex
] = 0;
1587 /* stop resume signaling */
1588 temp
= fotg210_readl(fotg210
, status_reg
);
1589 fotg210_writel(fotg210
, temp
&
1590 ~(PORT_RWC_BITS
| PORT_RESUME
),
1592 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1593 retval
= handshake(fotg210
, status_reg
,
1594 PORT_RESUME
, 0, 2000);/* 2ms */
1596 fotg210_err(fotg210
,
1597 "port %d resume error %d\n",
1598 wIndex
+ 1, retval
);
1601 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
1605 /* whoever resets must GetPortStatus to complete it!! */
1606 if ((temp
& PORT_RESET
) && time_after_eq(jiffies
,
1607 fotg210
->reset_done
[wIndex
])) {
1608 status
|= USB_PORT_STAT_C_RESET
<< 16;
1609 fotg210
->reset_done
[wIndex
] = 0;
1610 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1612 /* force reset to complete */
1613 fotg210_writel(fotg210
,
1614 temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
1616 /* REVISIT: some hardware needs 550+ usec to clear
1617 * this bit; seems too long to spin routinely...
1619 retval
= handshake(fotg210
, status_reg
,
1620 PORT_RESET
, 0, 1000);
1622 fotg210_err(fotg210
, "port %d reset error %d\n",
1623 wIndex
+ 1, retval
);
1627 /* see what we found out */
1628 temp
= check_reset_complete(fotg210
, wIndex
, status_reg
,
1629 fotg210_readl(fotg210
, status_reg
));
1632 if (!(temp
& (PORT_RESUME
|PORT_RESET
))) {
1633 fotg210
->reset_done
[wIndex
] = 0;
1634 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1637 /* transfer dedicated ports to the companion hc */
1638 if ((temp
& PORT_CONNECT
) &&
1639 test_bit(wIndex
, &fotg210
->companion_ports
)) {
1640 temp
&= ~PORT_RWC_BITS
;
1641 fotg210_writel(fotg210
, temp
, status_reg
);
1642 fotg210_dbg(fotg210
, "port %d --> companion\n",
1644 temp
= fotg210_readl(fotg210
, status_reg
);
1648 * Even if OWNER is set, there's no harm letting hub_wq
1649 * see the wPortStatus values (they should all be 0 except
1650 * for PORT_POWER anyway).
1653 if (temp
& PORT_CONNECT
) {
1654 status
|= USB_PORT_STAT_CONNECTION
;
1655 status
|= fotg210_port_speed(fotg210
, temp
);
1658 status
|= USB_PORT_STAT_ENABLE
;
1660 /* maybe the port was unsuspended without our knowledge */
1661 if (temp
& (PORT_SUSPEND
|PORT_RESUME
)) {
1662 status
|= USB_PORT_STAT_SUSPEND
;
1663 } else if (test_bit(wIndex
, &fotg210
->suspended_ports
)) {
1664 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1665 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1666 fotg210
->reset_done
[wIndex
] = 0;
1668 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1671 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1672 if (temp1
& OTGISR_OVC
)
1673 status
|= USB_PORT_STAT_OVERCURRENT
;
1674 if (temp
& PORT_RESET
)
1675 status
|= USB_PORT_STAT_RESET
;
1676 if (test_bit(wIndex
, &fotg210
->port_c_suspend
))
1677 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
1679 if (status
& ~0xffff) /* only if wPortChange is interesting */
1680 dbg_port(fotg210
, "GetStatus", wIndex
+ 1, temp
);
1681 put_unaligned_le32(status
, buf
);
1685 case C_HUB_LOCAL_POWER
:
1686 case C_HUB_OVER_CURRENT
:
1687 /* no hub-wide feature/status flags */
1693 case SetPortFeature
:
1694 selector
= wIndex
>> 8;
1697 if (!wIndex
|| wIndex
> ports
)
1700 temp
= fotg210_readl(fotg210
, status_reg
);
1701 temp
&= ~PORT_RWC_BITS
;
1703 case USB_PORT_FEAT_SUSPEND
:
1704 if ((temp
& PORT_PE
) == 0
1705 || (temp
& PORT_RESET
) != 0)
1708 /* After above check the port must be connected.
1709 * Set appropriate bit thus could put phy into low power
1710 * mode if we have hostpc feature
1712 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1714 set_bit(wIndex
, &fotg210
->suspended_ports
);
1716 case USB_PORT_FEAT_RESET
:
1717 if (temp
& PORT_RESUME
)
1719 /* line status bits may report this as low speed,
1720 * which can be fine if this root hub has a
1721 * transaction translator built in.
1723 fotg210_dbg(fotg210
, "port %d reset\n", wIndex
+ 1);
1728 * caller must wait, then call GetPortStatus
1729 * usb 2.0 spec says 50 ms resets on root
1731 fotg210
->reset_done
[wIndex
] = jiffies
1732 + msecs_to_jiffies(50);
1733 fotg210_writel(fotg210
, temp
, status_reg
);
1736 /* For downstream facing ports (these): one hub port is put
1737 * into test mode according to USB2 11.24.2.13, then the hub
1738 * must be reset (which for root hub now means rmmod+modprobe,
1739 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1740 * about the EHCI-specific stuff.
1742 case USB_PORT_FEAT_TEST
:
1743 if (!selector
|| selector
> 5)
1745 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1746 fotg210_quiesce(fotg210
);
1747 spin_lock_irqsave(&fotg210
->lock
, flags
);
1749 /* Put all enabled ports into suspend */
1750 temp
= fotg210_readl(fotg210
, status_reg
) &
1753 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1756 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1757 fotg210_halt(fotg210
);
1758 spin_lock_irqsave(&fotg210
->lock
, flags
);
1760 temp
= fotg210_readl(fotg210
, status_reg
);
1761 temp
|= selector
<< 16;
1762 fotg210_writel(fotg210
, temp
, status_reg
);
1768 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1773 /* "stall" on error */
1776 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1780 static void __maybe_unused
fotg210_relinquish_port(struct usb_hcd
*hcd
,
1786 static int __maybe_unused
fotg210_port_handed_over(struct usb_hcd
*hcd
,
1792 /* There's basically three types of memory:
1793 * - data used only by the HCD ... kmalloc is fine
1794 * - async and periodic schedules, shared by HC and HCD ... these
1795 * need to use dma_pool or dma_alloc_coherent
1796 * - driver buffers, read/written by HC ... single shot DMA mapped
1798 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1799 * No memory seen by this driver is pageable.
1802 /* Allocate the key transfer structures from the previously allocated pool */
1803 static inline void fotg210_qtd_init(struct fotg210_hcd
*fotg210
,
1804 struct fotg210_qtd
*qtd
, dma_addr_t dma
)
1806 memset(qtd
, 0, sizeof(*qtd
));
1808 qtd
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
1809 qtd
->hw_next
= FOTG210_LIST_END(fotg210
);
1810 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
1811 INIT_LIST_HEAD(&qtd
->qtd_list
);
1814 static struct fotg210_qtd
*fotg210_qtd_alloc(struct fotg210_hcd
*fotg210
,
1817 struct fotg210_qtd
*qtd
;
1820 qtd
= dma_pool_alloc(fotg210
->qtd_pool
, flags
, &dma
);
1822 fotg210_qtd_init(fotg210
, qtd
, dma
);
1827 static inline void fotg210_qtd_free(struct fotg210_hcd
*fotg210
,
1828 struct fotg210_qtd
*qtd
)
1830 dma_pool_free(fotg210
->qtd_pool
, qtd
, qtd
->qtd_dma
);
1834 static void qh_destroy(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
1836 /* clean qtds first, and know this is not linked */
1837 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1838 fotg210_dbg(fotg210
, "unused qh not empty!\n");
1842 fotg210_qtd_free(fotg210
, qh
->dummy
);
1843 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1847 static struct fotg210_qh
*fotg210_qh_alloc(struct fotg210_hcd
*fotg210
,
1850 struct fotg210_qh
*qh
;
1853 qh
= kzalloc(sizeof(*qh
), GFP_ATOMIC
);
1856 qh
->hw
= dma_pool_zalloc(fotg210
->qh_pool
, flags
, &dma
);
1860 INIT_LIST_HEAD(&qh
->qtd_list
);
1862 /* dummy td enables safe urb queuing */
1863 qh
->dummy
= fotg210_qtd_alloc(fotg210
, flags
);
1864 if (qh
->dummy
== NULL
) {
1865 fotg210_dbg(fotg210
, "no dummy td\n");
1871 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1877 /* The queue heads and transfer descriptors are managed from pools tied
1878 * to each of the "per device" structures.
1879 * This is the initialisation and cleanup code.
1882 static void fotg210_mem_cleanup(struct fotg210_hcd
*fotg210
)
1885 qh_destroy(fotg210
, fotg210
->async
);
1886 fotg210
->async
= NULL
;
1889 qh_destroy(fotg210
, fotg210
->dummy
);
1890 fotg210
->dummy
= NULL
;
1892 /* DMA consistent memory and pools */
1893 dma_pool_destroy(fotg210
->qtd_pool
);
1894 fotg210
->qtd_pool
= NULL
;
1896 dma_pool_destroy(fotg210
->qh_pool
);
1897 fotg210
->qh_pool
= NULL
;
1899 dma_pool_destroy(fotg210
->itd_pool
);
1900 fotg210
->itd_pool
= NULL
;
1902 if (fotg210
->periodic
)
1903 dma_free_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1904 fotg210
->periodic_size
* sizeof(u32
),
1905 fotg210
->periodic
, fotg210
->periodic_dma
);
1906 fotg210
->periodic
= NULL
;
1908 /* shadow periodic table */
1909 kfree(fotg210
->pshadow
);
1910 fotg210
->pshadow
= NULL
;
1913 /* remember to add cleanup code (above) if you add anything here */
1914 static int fotg210_mem_init(struct fotg210_hcd
*fotg210
, gfp_t flags
)
1918 /* QTDs for control/bulk/intr transfers */
1919 fotg210
->qtd_pool
= dma_pool_create("fotg210_qtd",
1920 fotg210_to_hcd(fotg210
)->self
.controller
,
1921 sizeof(struct fotg210_qtd
),
1922 32 /* byte alignment (for hw parts) */,
1923 4096 /* can't cross 4K */);
1924 if (!fotg210
->qtd_pool
)
1927 /* QHs for control/bulk/intr transfers */
1928 fotg210
->qh_pool
= dma_pool_create("fotg210_qh",
1929 fotg210_to_hcd(fotg210
)->self
.controller
,
1930 sizeof(struct fotg210_qh_hw
),
1931 32 /* byte alignment (for hw parts) */,
1932 4096 /* can't cross 4K */);
1933 if (!fotg210
->qh_pool
)
1936 fotg210
->async
= fotg210_qh_alloc(fotg210
, flags
);
1937 if (!fotg210
->async
)
1940 /* ITD for high speed ISO transfers */
1941 fotg210
->itd_pool
= dma_pool_create("fotg210_itd",
1942 fotg210_to_hcd(fotg210
)->self
.controller
,
1943 sizeof(struct fotg210_itd
),
1944 64 /* byte alignment (for hw parts) */,
1945 4096 /* can't cross 4K */);
1946 if (!fotg210
->itd_pool
)
1949 /* Hardware periodic table */
1950 fotg210
->periodic
= (__le32
*)
1951 dma_alloc_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1952 fotg210
->periodic_size
* sizeof(__le32
),
1953 &fotg210
->periodic_dma
, 0);
1954 if (fotg210
->periodic
== NULL
)
1957 for (i
= 0; i
< fotg210
->periodic_size
; i
++)
1958 fotg210
->periodic
[i
] = FOTG210_LIST_END(fotg210
);
1960 /* software shadow of hardware table */
1961 fotg210
->pshadow
= kcalloc(fotg210
->periodic_size
, sizeof(void *),
1963 if (fotg210
->pshadow
!= NULL
)
1967 fotg210_dbg(fotg210
, "couldn't init memory\n");
1968 fotg210_mem_cleanup(fotg210
);
1971 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1973 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1974 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1975 * buffers needed for the larger number). We use one QH per endpoint, queue
1976 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1978 * ISO traffic uses "ISO TD" (itd) records, and (along with
1979 * interrupts) needs careful scheduling. Performance improvements can be
1980 * an ongoing challenge. That's in "ehci-sched.c".
1982 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1983 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1984 * (b) special fields in qh entries or (c) split iso entries. TTs will
1985 * buffer low/full speed data so the host collects it at high speed.
1988 /* fill a qtd, returning how much of the buffer we were able to queue up */
1989 static int qtd_fill(struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
,
1990 dma_addr_t buf
, size_t len
, int token
, int maxpacket
)
1995 /* one buffer entry per 4K ... first might be short or unaligned */
1996 qtd
->hw_buf
[0] = cpu_to_hc32(fotg210
, (u32
)addr
);
1997 qtd
->hw_buf_hi
[0] = cpu_to_hc32(fotg210
, (u32
)(addr
>> 32));
1998 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
1999 if (likely(len
< count
)) /* ... iff needed */
2005 /* per-qtd limit: from 16K to 20K (best alignment) */
2006 for (i
= 1; count
< len
&& i
< 5; i
++) {
2008 qtd
->hw_buf
[i
] = cpu_to_hc32(fotg210
, (u32
)addr
);
2009 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(fotg210
,
2012 if ((count
+ 0x1000) < len
)
2018 /* short packets may only terminate transfers */
2020 count
-= (count
% maxpacket
);
2022 qtd
->hw_token
= cpu_to_hc32(fotg210
, (count
<< 16) | token
);
2023 qtd
->length
= count
;
2028 static inline void qh_update(struct fotg210_hcd
*fotg210
,
2029 struct fotg210_qh
*qh
, struct fotg210_qtd
*qtd
)
2031 struct fotg210_qh_hw
*hw
= qh
->hw
;
2033 /* writes to an active overlay are unsafe */
2034 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2036 hw
->hw_qtd_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2037 hw
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2039 /* Except for control endpoints, we make hardware maintain data
2040 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2041 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2044 if (!(hw
->hw_info1
& cpu_to_hc32(fotg210
, QH_TOGGLE_CTL
))) {
2045 unsigned is_out
, epnum
;
2047 is_out
= qh
->is_out
;
2048 epnum
= (hc32_to_cpup(fotg210
, &hw
->hw_info1
) >> 8) & 0x0f;
2049 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
2050 hw
->hw_token
&= ~cpu_to_hc32(fotg210
, QTD_TOGGLE
);
2051 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
2055 hw
->hw_token
&= cpu_to_hc32(fotg210
, QTD_TOGGLE
| QTD_STS_PING
);
2058 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2059 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2060 * recovery (including urb dequeue) would need software changes to a QH...
2062 static void qh_refresh(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2064 struct fotg210_qtd
*qtd
;
2066 if (list_empty(&qh
->qtd_list
))
2069 qtd
= list_entry(qh
->qtd_list
.next
,
2070 struct fotg210_qtd
, qtd_list
);
2072 * first qtd may already be partially processed.
2073 * If we come here during unlink, the QH overlay region
2074 * might have reference to the just unlinked qtd. The
2075 * qtd is updated in qh_completions(). Update the QH
2078 if (cpu_to_hc32(fotg210
, qtd
->qtd_dma
) == qh
->hw
->hw_current
) {
2079 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
2085 qh_update(fotg210
, qh
, qtd
);
2088 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2090 static void fotg210_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
2091 struct usb_host_endpoint
*ep
)
2093 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
2094 struct fotg210_qh
*qh
= ep
->hcpriv
;
2095 unsigned long flags
;
2097 spin_lock_irqsave(&fotg210
->lock
, flags
);
2098 qh
->clearing_tt
= 0;
2099 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
2100 && fotg210
->rh_state
== FOTG210_RH_RUNNING
)
2101 qh_link_async(fotg210
, qh
);
2102 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
2105 static void fotg210_clear_tt_buffer(struct fotg210_hcd
*fotg210
,
2106 struct fotg210_qh
*qh
, struct urb
*urb
, u32 token
)
2109 /* If an async split transaction gets an error or is unlinked,
2110 * the TT buffer may be left in an indeterminate state. We
2111 * have to clear the TT buffer.
2113 * Note: this routine is never called for Isochronous transfers.
2115 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
2116 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
2119 "clear tt buffer port %d, a%d ep%d t%08x\n",
2120 urb
->dev
->ttport
, urb
->dev
->devnum
,
2121 usb_pipeendpoint(urb
->pipe
), token
);
2123 if (urb
->dev
->tt
->hub
!=
2124 fotg210_to_hcd(fotg210
)->self
.root_hub
) {
2125 if (usb_hub_clear_tt_buffer(urb
) == 0)
2126 qh
->clearing_tt
= 1;
2131 static int qtd_copy_status(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2132 size_t length
, u32 token
)
2134 int status
= -EINPROGRESS
;
2136 /* count IN/OUT bytes, not SETUP (even short packets) */
2137 if (likely(QTD_PID(token
) != 2))
2138 urb
->actual_length
+= length
- QTD_LENGTH(token
);
2140 /* don't modify error codes */
2141 if (unlikely(urb
->unlinked
))
2144 /* force cleanup after short read; not always an error */
2145 if (unlikely(IS_SHORT_READ(token
)))
2146 status
= -EREMOTEIO
;
2148 /* serious "can't proceed" faults reported by the hardware */
2149 if (token
& QTD_STS_HALT
) {
2150 if (token
& QTD_STS_BABBLE
) {
2151 /* FIXME "must" disable babbling device's port too */
2152 status
= -EOVERFLOW
;
2153 /* CERR nonzero + halt --> stall */
2154 } else if (QTD_CERR(token
)) {
2157 /* In theory, more than one of the following bits can be set
2158 * since they are sticky and the transaction is retried.
2159 * Which to test first is rather arbitrary.
2161 } else if (token
& QTD_STS_MMF
) {
2162 /* fs/ls interrupt xfer missed the complete-split */
2164 } else if (token
& QTD_STS_DBE
) {
2165 status
= (QTD_PID(token
) == 1) /* IN ? */
2166 ? -ENOSR
/* hc couldn't read data */
2167 : -ECOMM
; /* hc couldn't write data */
2168 } else if (token
& QTD_STS_XACT
) {
2169 /* timeout, bad CRC, wrong PID, etc */
2170 fotg210_dbg(fotg210
, "devpath %s ep%d%s 3strikes\n",
2172 usb_pipeendpoint(urb
->pipe
),
2173 usb_pipein(urb
->pipe
) ? "in" : "out");
2175 } else { /* unknown */
2179 fotg210_dbg(fotg210
,
2180 "dev%d ep%d%s qtd token %08x --> status %d\n",
2181 usb_pipedevice(urb
->pipe
),
2182 usb_pipeendpoint(urb
->pipe
),
2183 usb_pipein(urb
->pipe
) ? "in" : "out",
2190 static void fotg210_urb_done(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2192 __releases(fotg210
->lock
)
2193 __acquires(fotg210
->lock
)
2195 if (likely(urb
->hcpriv
!= NULL
)) {
2196 struct fotg210_qh
*qh
= (struct fotg210_qh
*) urb
->hcpriv
;
2198 /* S-mask in a QH means it's an interrupt urb */
2199 if ((qh
->hw
->hw_info2
& cpu_to_hc32(fotg210
, QH_SMASK
)) != 0) {
2201 /* ... update hc-wide periodic stats (for usbfs) */
2202 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
--;
2206 if (unlikely(urb
->unlinked
)) {
2207 COUNT(fotg210
->stats
.unlink
);
2209 /* report non-error and short read status as zero */
2210 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
2212 COUNT(fotg210
->stats
.complete
);
2215 #ifdef FOTG210_URB_TRACE
2216 fotg210_dbg(fotg210
,
2217 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2218 __func__
, urb
->dev
->devpath
, urb
,
2219 usb_pipeendpoint(urb
->pipe
),
2220 usb_pipein(urb
->pipe
) ? "in" : "out",
2222 urb
->actual_length
, urb
->transfer_buffer_length
);
2225 /* complete() can reenter this HCD */
2226 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
2227 spin_unlock(&fotg210
->lock
);
2228 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210
), urb
, status
);
2229 spin_lock(&fotg210
->lock
);
2232 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2234 /* Process and free completed qtds for a qh, returning URBs to drivers.
2235 * Chases up to qh->hw_current. Returns number of completions called,
2236 * indicating how much "real" work we did.
2238 static unsigned qh_completions(struct fotg210_hcd
*fotg210
,
2239 struct fotg210_qh
*qh
)
2241 struct fotg210_qtd
*last
, *end
= qh
->dummy
;
2242 struct fotg210_qtd
*qtd
, *tmp
;
2247 struct fotg210_qh_hw
*hw
= qh
->hw
;
2249 if (unlikely(list_empty(&qh
->qtd_list
)))
2252 /* completions (or tasks on other cpus) must never clobber HALT
2253 * till we've gone through and cleaned everything up, even when
2254 * they add urbs to this qh's queue or mark them for unlinking.
2256 * NOTE: unlinking expects to be done in queue order.
2258 * It's a bug for qh->qh_state to be anything other than
2259 * QH_STATE_IDLE, unless our caller is scan_async() or
2262 state
= qh
->qh_state
;
2263 qh
->qh_state
= QH_STATE_COMPLETING
;
2264 stopped
= (state
== QH_STATE_IDLE
);
2268 last_status
= -EINPROGRESS
;
2269 qh
->needs_rescan
= 0;
2271 /* remove de-activated QTDs from front of queue.
2272 * after faults (including short reads), cleanup this urb
2273 * then let the queue advance.
2274 * if queue is stopped, handles unlinks.
2276 list_for_each_entry_safe(qtd
, tmp
, &qh
->qtd_list
, qtd_list
) {
2282 /* clean up any state from previous QTD ...*/
2284 if (likely(last
->urb
!= urb
)) {
2285 fotg210_urb_done(fotg210
, last
->urb
,
2288 last_status
= -EINPROGRESS
;
2290 fotg210_qtd_free(fotg210
, last
);
2294 /* ignore urbs submitted during completions we reported */
2298 /* hardware copies qtd out of qh overlay */
2300 token
= hc32_to_cpu(fotg210
, qtd
->hw_token
);
2302 /* always clean up qtds the hc de-activated */
2304 if ((token
& QTD_STS_ACTIVE
) == 0) {
2306 /* Report Data Buffer Error: non-fatal but useful */
2307 if (token
& QTD_STS_DBE
)
2308 fotg210_dbg(fotg210
,
2309 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2310 urb
, usb_endpoint_num(&urb
->ep
->desc
),
2311 usb_endpoint_dir_in(&urb
->ep
->desc
)
2313 urb
->transfer_buffer_length
, qtd
, qh
);
2315 /* on STALL, error, and short reads this urb must
2316 * complete and all its qtds must be recycled.
2318 if ((token
& QTD_STS_HALT
) != 0) {
2320 /* retry transaction errors until we
2321 * reach the software xacterr limit
2323 if ((token
& QTD_STS_XACT
) &&
2324 QTD_CERR(token
) == 0 &&
2325 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
2327 fotg210_dbg(fotg210
,
2328 "detected XactErr len %zu/%zu retry %d\n",
2329 qtd
->length
- QTD_LENGTH(token
),
2333 /* reset the token in the qtd and the
2334 * qh overlay (which still contains
2335 * the qtd) so that we pick up from
2338 token
&= ~QTD_STS_HALT
;
2339 token
|= QTD_STS_ACTIVE
|
2340 (FOTG210_TUNE_CERR
<< 10);
2341 qtd
->hw_token
= cpu_to_hc32(fotg210
,
2344 hw
->hw_token
= cpu_to_hc32(fotg210
,
2350 /* magic dummy for some short reads; qh won't advance.
2351 * that silicon quirk can kick in with this dummy too.
2353 * other short reads won't stop the queue, including
2354 * control transfers (status stage handles that) or
2355 * most other single-qtd reads ... the queue stops if
2356 * URB_SHORT_NOT_OK was set so the driver submitting
2357 * the urbs could clean it up.
2359 } else if (IS_SHORT_READ(token
) &&
2360 !(qtd
->hw_alt_next
&
2361 FOTG210_LIST_END(fotg210
))) {
2365 /* stop scanning when we reach qtds the hc is using */
2366 } else if (likely(!stopped
2367 && fotg210
->rh_state
>= FOTG210_RH_RUNNING
)) {
2370 /* scan the whole queue for unlinks whenever it stops */
2374 /* cancel everything if we halt, suspend, etc */
2375 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
2376 last_status
= -ESHUTDOWN
;
2378 /* this qtd is active; skip it unless a previous qtd
2379 * for its urb faulted, or its urb was canceled.
2381 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
2384 /* qh unlinked; token in overlay may be most current */
2385 if (state
== QH_STATE_IDLE
&&
2386 cpu_to_hc32(fotg210
, qtd
->qtd_dma
)
2387 == hw
->hw_current
) {
2388 token
= hc32_to_cpu(fotg210
, hw
->hw_token
);
2390 /* An unlink may leave an incomplete
2391 * async transaction in the TT buffer.
2392 * We have to clear it.
2394 fotg210_clear_tt_buffer(fotg210
, qh
, urb
,
2399 /* unless we already know the urb's status, collect qtd status
2400 * and update count of bytes transferred. in common short read
2401 * cases with only one data qtd (including control transfers),
2402 * queue processing won't halt. but with two or more qtds (for
2403 * example, with a 32 KB transfer), when the first qtd gets a
2404 * short read the second must be removed by hand.
2406 if (last_status
== -EINPROGRESS
) {
2407 last_status
= qtd_copy_status(fotg210
, urb
,
2408 qtd
->length
, token
);
2409 if (last_status
== -EREMOTEIO
&&
2411 FOTG210_LIST_END(fotg210
)))
2412 last_status
= -EINPROGRESS
;
2414 /* As part of low/full-speed endpoint-halt processing
2415 * we must clear the TT buffer (11.17.5).
2417 if (unlikely(last_status
!= -EINPROGRESS
&&
2418 last_status
!= -EREMOTEIO
)) {
2419 /* The TT's in some hubs malfunction when they
2420 * receive this request following a STALL (they
2421 * stop sending isochronous packets). Since a
2422 * STALL can't leave the TT buffer in a busy
2423 * state (if you believe Figures 11-48 - 11-51
2424 * in the USB 2.0 spec), we won't clear the TT
2425 * buffer in this case. Strictly speaking this
2426 * is a violation of the spec.
2428 if (last_status
!= -EPIPE
)
2429 fotg210_clear_tt_buffer(fotg210
, qh
,
2434 /* if we're removing something not at the queue head,
2435 * patch the hardware queue pointer.
2437 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
2438 last
= list_entry(qtd
->qtd_list
.prev
,
2439 struct fotg210_qtd
, qtd_list
);
2440 last
->hw_next
= qtd
->hw_next
;
2443 /* remove qtd; it's recycled after possible urb completion */
2444 list_del(&qtd
->qtd_list
);
2447 /* reinit the xacterr counter for the next qtd */
2451 /* last urb's completion might still need calling */
2452 if (likely(last
!= NULL
)) {
2453 fotg210_urb_done(fotg210
, last
->urb
, last_status
);
2455 fotg210_qtd_free(fotg210
, last
);
2458 /* Do we need to rescan for URBs dequeued during a giveback? */
2459 if (unlikely(qh
->needs_rescan
)) {
2460 /* If the QH is already unlinked, do the rescan now. */
2461 if (state
== QH_STATE_IDLE
)
2464 /* Otherwise we have to wait until the QH is fully unlinked.
2465 * Our caller will start an unlink if qh->needs_rescan is
2466 * set. But if an unlink has already started, nothing needs
2469 if (state
!= QH_STATE_LINKED
)
2470 qh
->needs_rescan
= 0;
2473 /* restore original state; caller must unlink or relink */
2474 qh
->qh_state
= state
;
2476 /* be sure the hardware's done with the qh before refreshing
2477 * it after fault cleanup, or recovering from silicon wrongly
2478 * overlaying the dummy qtd (which reduces DMA chatter).
2480 if (stopped
!= 0 || hw
->hw_qtd_next
== FOTG210_LIST_END(fotg210
)) {
2483 qh_refresh(fotg210
, qh
);
2485 case QH_STATE_LINKED
:
2486 /* We won't refresh a QH that's linked (after the HC
2487 * stopped the queue). That avoids a race:
2488 * - HC reads first part of QH;
2489 * - CPU updates that first part and the token;
2490 * - HC reads rest of that QH, including token
2491 * Result: HC gets an inconsistent image, and then
2492 * DMAs to/from the wrong memory (corrupting it).
2494 * That should be rare for interrupt transfers,
2495 * except maybe high bandwidth ...
2498 /* Tell the caller to start an unlink */
2499 qh
->needs_rescan
= 1;
2501 /* otherwise, unlink already started */
2508 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2509 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2510 /* ... and packet size, for any kind of endpoint descriptor */
2511 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2513 /* reverse of qh_urb_transaction: free a list of TDs.
2514 * used for cleanup after errors, before HC sees an URB's TDs.
2516 static void qtd_list_free(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2517 struct list_head
*head
)
2519 struct fotg210_qtd
*qtd
, *temp
;
2521 list_for_each_entry_safe(qtd
, temp
, head
, qtd_list
) {
2522 list_del(&qtd
->qtd_list
);
2523 fotg210_qtd_free(fotg210
, qtd
);
2527 /* create a list of filled qtds for this URB; won't link into qh.
2529 static struct list_head
*qh_urb_transaction(struct fotg210_hcd
*fotg210
,
2530 struct urb
*urb
, struct list_head
*head
, gfp_t flags
)
2532 struct fotg210_qtd
*qtd
, *qtd_prev
;
2534 int len
, this_sg_len
, maxpacket
;
2538 struct scatterlist
*sg
;
2541 * URBs map to sequences of QTDs: one logical transaction
2543 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2546 list_add_tail(&qtd
->qtd_list
, head
);
2549 token
= QTD_STS_ACTIVE
;
2550 token
|= (FOTG210_TUNE_CERR
<< 10);
2551 /* for split transactions, SplitXState initialized to zero */
2553 len
= urb
->transfer_buffer_length
;
2554 is_input
= usb_pipein(urb
->pipe
);
2555 if (usb_pipecontrol(urb
->pipe
)) {
2557 qtd_fill(fotg210
, qtd
, urb
->setup_dma
,
2558 sizeof(struct usb_ctrlrequest
),
2559 token
| (2 /* "setup" */ << 8), 8);
2561 /* ... and always at least one more pid */
2562 token
^= QTD_TOGGLE
;
2564 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2568 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2569 list_add_tail(&qtd
->qtd_list
, head
);
2571 /* for zero length DATA stages, STATUS is always IN */
2573 token
|= (1 /* "in" */ << 8);
2577 * data transfer stage: buffer setup
2579 i
= urb
->num_mapped_sgs
;
2580 if (len
> 0 && i
> 0) {
2582 buf
= sg_dma_address(sg
);
2584 /* urb->transfer_buffer_length may be smaller than the
2585 * size of the scatterlist (or vice versa)
2587 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2590 buf
= urb
->transfer_dma
;
2595 token
|= (1 /* "in" */ << 8);
2596 /* else it's already initted to "out" pid (0 << 8) */
2598 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
2601 * buffer gets wrapped in one or more qtds;
2602 * last one may be "short" (including zero len)
2603 * and may serve as a control status ack
2608 this_qtd_len
= qtd_fill(fotg210
, qtd
, buf
, this_sg_len
, token
,
2610 this_sg_len
-= this_qtd_len
;
2611 len
-= this_qtd_len
;
2612 buf
+= this_qtd_len
;
2615 * short reads advance to a "magic" dummy instead of the next
2616 * qtd ... that forces the queue to stop, for manual cleanup.
2617 * (this will usually be overridden later.)
2620 qtd
->hw_alt_next
= fotg210
->async
->hw
->hw_alt_next
;
2622 /* qh makes control packets use qtd toggle; maybe switch it */
2623 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
2624 token
^= QTD_TOGGLE
;
2626 if (likely(this_sg_len
<= 0)) {
2627 if (--i
<= 0 || len
<= 0)
2630 buf
= sg_dma_address(sg
);
2631 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2635 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2639 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2640 list_add_tail(&qtd
->qtd_list
, head
);
2644 * unless the caller requires manual cleanup after short reads,
2645 * have the alt_next mechanism keep the queue running after the
2646 * last data qtd (the only one, for control and most other cases).
2648 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0 ||
2649 usb_pipecontrol(urb
->pipe
)))
2650 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2653 * control requests may need a terminating data "status" ack;
2654 * other OUT ones may need a terminating short packet
2657 if (likely(urb
->transfer_buffer_length
!= 0)) {
2660 if (usb_pipecontrol(urb
->pipe
)) {
2662 token
^= 0x0100; /* "in" <--> "out" */
2663 token
|= QTD_TOGGLE
; /* force DATA1 */
2664 } else if (usb_pipeout(urb
->pipe
)
2665 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
2666 && !(urb
->transfer_buffer_length
% maxpacket
)) {
2671 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2675 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2676 list_add_tail(&qtd
->qtd_list
, head
);
2678 /* never any data in such packets */
2679 qtd_fill(fotg210
, qtd
, 0, 0, token
, 0);
2683 /* by default, enable interrupt on urb completion */
2684 if (likely(!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
2685 qtd
->hw_token
|= cpu_to_hc32(fotg210
, QTD_IOC
);
2689 qtd_list_free(fotg210
, urb
, head
);
2693 /* Would be best to create all qh's from config descriptors,
2694 * when each interface/altsetting is established. Unlink
2695 * any previous qh and cancel its urbs first; endpoints are
2696 * implicitly reset then (data toggle too).
2697 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2701 /* Each QH holds a qtd list; a QH is used for everything except iso.
2703 * For interrupt urbs, the scheduler must set the microframe scheduling
2704 * mask(s) each time the QH gets scheduled. For highspeed, that's
2705 * just one microframe in the s-mask. For split interrupt transactions
2706 * there are additional complications: c-mask, maybe FSTNs.
2708 static struct fotg210_qh
*qh_make(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2711 struct fotg210_qh
*qh
= fotg210_qh_alloc(fotg210
, flags
);
2712 u32 info1
= 0, info2
= 0;
2715 struct usb_tt
*tt
= urb
->dev
->tt
;
2716 struct fotg210_qh_hw
*hw
;
2722 * init endpoint/device data for this QH
2724 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
2725 info1
|= usb_pipedevice(urb
->pipe
) << 0;
2727 is_input
= usb_pipein(urb
->pipe
);
2728 type
= usb_pipetype(urb
->pipe
);
2729 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
2731 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2732 * acts like up to 3KB, but is built from smaller packets.
2734 if (max_packet(maxp
) > 1024) {
2735 fotg210_dbg(fotg210
, "bogus qh maxpacket %d\n",
2740 /* Compute interrupt scheduling parameters just once, and save.
2741 * - allowing for high bandwidth, how many nsec/uframe are used?
2742 * - split transactions need a second CSPLIT uframe; same question
2743 * - splits also need a schedule gap (for full/low speed I/O)
2744 * - qh has a polling interval
2746 * For control/bulk requests, the HC or TT handles these.
2748 if (type
== PIPE_INTERRUPT
) {
2749 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
2751 hb_mult(maxp
) * max_packet(maxp
)));
2752 qh
->start
= NO_FRAME
;
2754 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
2758 qh
->period
= urb
->interval
>> 3;
2759 if (qh
->period
== 0 && urb
->interval
!= 1) {
2760 /* NOTE interval 2 or 4 uframes could work.
2761 * But interval 1 scheduling is simpler, and
2762 * includes high bandwidth.
2765 } else if (qh
->period
> fotg210
->periodic_size
) {
2766 qh
->period
= fotg210
->periodic_size
;
2767 urb
->interval
= qh
->period
<< 3;
2772 /* gap is f(FS/LS transfer times) */
2773 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
2774 is_input
, 0, maxp
) / (125 * 1000);
2776 /* FIXME this just approximates SPLIT/CSPLIT times */
2777 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
2778 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
2779 qh
->usecs
= HS_USECS(1);
2780 } else { /* SPLIT+DATA, gap, CSPLIT */
2781 qh
->usecs
+= HS_USECS(1);
2782 qh
->c_usecs
= HS_USECS(0);
2785 think_time
= tt
? tt
->think_time
: 0;
2786 qh
->tt_usecs
= NS_TO_US(think_time
+
2787 usb_calc_bus_time(urb
->dev
->speed
,
2788 is_input
, 0, max_packet(maxp
)));
2789 qh
->period
= urb
->interval
;
2790 if (qh
->period
> fotg210
->periodic_size
) {
2791 qh
->period
= fotg210
->periodic_size
;
2792 urb
->interval
= qh
->period
;
2797 /* support for tt scheduling, and access to toggles */
2801 switch (urb
->dev
->speed
) {
2803 info1
|= QH_LOW_SPEED
;
2806 case USB_SPEED_FULL
:
2807 /* EPS 0 means "full" */
2808 if (type
!= PIPE_INTERRUPT
)
2809 info1
|= (FOTG210_TUNE_RL_TT
<< 28);
2810 if (type
== PIPE_CONTROL
) {
2811 info1
|= QH_CONTROL_EP
; /* for TT */
2812 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2814 info1
|= maxp
<< 16;
2816 info2
|= (FOTG210_TUNE_MULT_TT
<< 30);
2818 /* Some Freescale processors have an erratum in which the
2819 * port number in the queue head was 0..N-1 instead of 1..N.
2821 if (fotg210_has_fsl_portno_bug(fotg210
))
2822 info2
|= (urb
->dev
->ttport
-1) << 23;
2824 info2
|= urb
->dev
->ttport
<< 23;
2826 /* set the address of the TT; for TDI's integrated
2827 * root hub tt, leave it zeroed.
2829 if (tt
&& tt
->hub
!= fotg210_to_hcd(fotg210
)->self
.root_hub
)
2830 info2
|= tt
->hub
->devnum
<< 16;
2832 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2836 case USB_SPEED_HIGH
: /* no TT involved */
2837 info1
|= QH_HIGH_SPEED
;
2838 if (type
== PIPE_CONTROL
) {
2839 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2840 info1
|= 64 << 16; /* usb2 fixed maxpacket */
2841 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2842 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2843 } else if (type
== PIPE_BULK
) {
2844 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2845 /* The USB spec says that high speed bulk endpoints
2846 * always use 512 byte maxpacket. But some device
2847 * vendors decided to ignore that, and MSFT is happy
2848 * to help them do so. So now people expect to use
2849 * such nonconformant devices with Linux too; sigh.
2851 info1
|= max_packet(maxp
) << 16;
2852 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2853 } else { /* PIPE_INTERRUPT */
2854 info1
|= max_packet(maxp
) << 16;
2855 info2
|= hb_mult(maxp
) << 30;
2859 fotg210_dbg(fotg210
, "bogus dev %p speed %d\n", urb
->dev
,
2862 qh_destroy(fotg210
, qh
);
2866 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2868 /* init as live, toggle clear, advance to dummy */
2869 qh
->qh_state
= QH_STATE_IDLE
;
2871 hw
->hw_info1
= cpu_to_hc32(fotg210
, info1
);
2872 hw
->hw_info2
= cpu_to_hc32(fotg210
, info2
);
2873 qh
->is_out
= !is_input
;
2874 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
2875 qh_refresh(fotg210
, qh
);
2879 static void enable_async(struct fotg210_hcd
*fotg210
)
2881 if (fotg210
->async_count
++)
2884 /* Stop waiting to turn off the async schedule */
2885 fotg210
->enabled_hrtimer_events
&= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC
);
2887 /* Don't start the schedule until ASS is 0 */
2888 fotg210_poll_ASS(fotg210
);
2889 turn_on_io_watchdog(fotg210
);
2892 static void disable_async(struct fotg210_hcd
*fotg210
)
2894 if (--fotg210
->async_count
)
2897 /* The async schedule and async_unlink list are supposed to be empty */
2898 WARN_ON(fotg210
->async
->qh_next
.qh
|| fotg210
->async_unlink
);
2900 /* Don't turn off the schedule until ASS is 1 */
2901 fotg210_poll_ASS(fotg210
);
2904 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2906 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2908 __hc32 dma
= QH_NEXT(fotg210
, qh
->qh_dma
);
2909 struct fotg210_qh
*head
;
2911 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2912 if (unlikely(qh
->clearing_tt
))
2915 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2917 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2918 qh_refresh(fotg210
, qh
);
2920 /* splice right after start */
2921 head
= fotg210
->async
;
2922 qh
->qh_next
= head
->qh_next
;
2923 qh
->hw
->hw_next
= head
->hw
->hw_next
;
2926 head
->qh_next
.qh
= qh
;
2927 head
->hw
->hw_next
= dma
;
2930 qh
->qh_state
= QH_STATE_LINKED
;
2931 /* qtd completions reported later by interrupt */
2933 enable_async(fotg210
);
2936 /* For control/bulk/interrupt, return QH with these TDs appended.
2937 * Allocates and initializes the QH if necessary.
2938 * Returns null if it can't allocate a QH it needs to.
2939 * If the QH has TDs (urbs) already, that's great.
2941 static struct fotg210_qh
*qh_append_tds(struct fotg210_hcd
*fotg210
,
2942 struct urb
*urb
, struct list_head
*qtd_list
,
2943 int epnum
, void **ptr
)
2945 struct fotg210_qh
*qh
= NULL
;
2946 __hc32 qh_addr_mask
= cpu_to_hc32(fotg210
, 0x7f);
2948 qh
= (struct fotg210_qh
*) *ptr
;
2949 if (unlikely(qh
== NULL
)) {
2950 /* can't sleep here, we have fotg210->lock... */
2951 qh
= qh_make(fotg210
, urb
, GFP_ATOMIC
);
2954 if (likely(qh
!= NULL
)) {
2955 struct fotg210_qtd
*qtd
;
2957 if (unlikely(list_empty(qtd_list
)))
2960 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
,
2963 /* control qh may need patching ... */
2964 if (unlikely(epnum
== 0)) {
2965 /* usb_reset_device() briefly reverts to address 0 */
2966 if (usb_pipedevice(urb
->pipe
) == 0)
2967 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
2970 /* just one way to queue requests: swap with the dummy qtd.
2971 * only hc or qh_refresh() ever modify the overlay.
2973 if (likely(qtd
!= NULL
)) {
2974 struct fotg210_qtd
*dummy
;
2978 /* to avoid racing the HC, use the dummy td instead of
2979 * the first td of our list (becomes new dummy). both
2980 * tds stay deactivated until we're done, when the
2981 * HC is allowed to fetch the old dummy (4.10.2).
2983 token
= qtd
->hw_token
;
2984 qtd
->hw_token
= HALT_BIT(fotg210
);
2988 dma
= dummy
->qtd_dma
;
2990 dummy
->qtd_dma
= dma
;
2992 list_del(&qtd
->qtd_list
);
2993 list_add(&dummy
->qtd_list
, qtd_list
);
2994 list_splice_tail(qtd_list
, &qh
->qtd_list
);
2996 fotg210_qtd_init(fotg210
, qtd
, qtd
->qtd_dma
);
2999 /* hc must see the new dummy at list end */
3001 qtd
= list_entry(qh
->qtd_list
.prev
,
3002 struct fotg210_qtd
, qtd_list
);
3003 qtd
->hw_next
= QTD_NEXT(fotg210
, dma
);
3005 /* let the hc process these next qtds */
3007 dummy
->hw_token
= token
;
3015 static int submit_async(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3016 struct list_head
*qtd_list
, gfp_t mem_flags
)
3019 unsigned long flags
;
3020 struct fotg210_qh
*qh
= NULL
;
3023 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3025 #ifdef FOTG210_URB_TRACE
3027 struct fotg210_qtd
*qtd
;
3029 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
, qtd_list
);
3030 fotg210_dbg(fotg210
,
3031 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3032 __func__
, urb
->dev
->devpath
, urb
,
3033 epnum
& 0x0f, (epnum
& USB_DIR_IN
)
3035 urb
->transfer_buffer_length
,
3036 qtd
, urb
->ep
->hcpriv
);
3040 spin_lock_irqsave(&fotg210
->lock
, flags
);
3041 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3045 rc
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3049 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3050 if (unlikely(qh
== NULL
)) {
3051 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3056 /* Control/bulk operations through TTs don't need scheduling,
3057 * the HC and TT handle it when the TT has a buffer ready.
3059 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
3060 qh_link_async(fotg210
, qh
);
3062 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3063 if (unlikely(qh
== NULL
))
3064 qtd_list_free(fotg210
, urb
, qtd_list
);
3068 static void single_unlink_async(struct fotg210_hcd
*fotg210
,
3069 struct fotg210_qh
*qh
)
3071 struct fotg210_qh
*prev
;
3073 /* Add to the end of the list of QHs waiting for the next IAAD */
3074 qh
->qh_state
= QH_STATE_UNLINK
;
3075 if (fotg210
->async_unlink
)
3076 fotg210
->async_unlink_last
->unlink_next
= qh
;
3078 fotg210
->async_unlink
= qh
;
3079 fotg210
->async_unlink_last
= qh
;
3081 /* Unlink it from the schedule */
3082 prev
= fotg210
->async
;
3083 while (prev
->qh_next
.qh
!= qh
)
3084 prev
= prev
->qh_next
.qh
;
3086 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
3087 prev
->qh_next
= qh
->qh_next
;
3088 if (fotg210
->qh_scan_next
== qh
)
3089 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3092 static void start_iaa_cycle(struct fotg210_hcd
*fotg210
, bool nested
)
3095 * Do nothing if an IAA cycle is already running or
3096 * if one will be started shortly.
3098 if (fotg210
->async_iaa
|| fotg210
->async_unlinking
)
3101 /* Do all the waiting QHs at once */
3102 fotg210
->async_iaa
= fotg210
->async_unlink
;
3103 fotg210
->async_unlink
= NULL
;
3105 /* If the controller isn't running, we don't have to wait for it */
3106 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
)) {
3107 if (!nested
) /* Avoid recursion */
3108 end_unlink_async(fotg210
);
3110 /* Otherwise start a new IAA cycle */
3111 } else if (likely(fotg210
->rh_state
== FOTG210_RH_RUNNING
)) {
3112 /* Make sure the unlinks are all visible to the hardware */
3115 fotg210_writel(fotg210
, fotg210
->command
| CMD_IAAD
,
3116 &fotg210
->regs
->command
);
3117 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
3118 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IAA_WATCHDOG
,
3123 /* the async qh for the qtds being unlinked are now gone from the HC */
3125 static void end_unlink_async(struct fotg210_hcd
*fotg210
)
3127 struct fotg210_qh
*qh
;
3129 /* Process the idle QHs */
3131 fotg210
->async_unlinking
= true;
3132 while (fotg210
->async_iaa
) {
3133 qh
= fotg210
->async_iaa
;
3134 fotg210
->async_iaa
= qh
->unlink_next
;
3135 qh
->unlink_next
= NULL
;
3137 qh
->qh_state
= QH_STATE_IDLE
;
3138 qh
->qh_next
.qh
= NULL
;
3140 qh_completions(fotg210
, qh
);
3141 if (!list_empty(&qh
->qtd_list
) &&
3142 fotg210
->rh_state
== FOTG210_RH_RUNNING
)
3143 qh_link_async(fotg210
, qh
);
3144 disable_async(fotg210
);
3146 fotg210
->async_unlinking
= false;
3148 /* Start a new IAA cycle if any QHs are waiting for it */
3149 if (fotg210
->async_unlink
) {
3150 start_iaa_cycle(fotg210
, true);
3151 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
))
3156 static void unlink_empty_async(struct fotg210_hcd
*fotg210
)
3158 struct fotg210_qh
*qh
, *next
;
3159 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
3160 bool check_unlinks_later
= false;
3162 /* Unlink all the async QHs that have been empty for a timer cycle */
3163 next
= fotg210
->async
->qh_next
.qh
;
3166 next
= qh
->qh_next
.qh
;
3168 if (list_empty(&qh
->qtd_list
) &&
3169 qh
->qh_state
== QH_STATE_LINKED
) {
3170 if (!stopped
&& qh
->unlink_cycle
==
3171 fotg210
->async_unlink_cycle
)
3172 check_unlinks_later
= true;
3174 single_unlink_async(fotg210
, qh
);
3178 /* Start a new IAA cycle if any QHs are waiting for it */
3179 if (fotg210
->async_unlink
)
3180 start_iaa_cycle(fotg210
, false);
3182 /* QHs that haven't been empty for long enough will be handled later */
3183 if (check_unlinks_later
) {
3184 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_ASYNC_UNLINKS
,
3186 ++fotg210
->async_unlink_cycle
;
3190 /* makes sure the async qh will become idle */
3191 /* caller must own fotg210->lock */
3193 static void start_unlink_async(struct fotg210_hcd
*fotg210
,
3194 struct fotg210_qh
*qh
)
3197 * If the QH isn't linked then there's nothing we can do
3198 * unless we were called during a giveback, in which case
3199 * qh_completions() has to deal with it.
3201 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3202 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3203 qh
->needs_rescan
= 1;
3207 single_unlink_async(fotg210
, qh
);
3208 start_iaa_cycle(fotg210
, false);
3211 static void scan_async(struct fotg210_hcd
*fotg210
)
3213 struct fotg210_qh
*qh
;
3214 bool check_unlinks_later
= false;
3216 fotg210
->qh_scan_next
= fotg210
->async
->qh_next
.qh
;
3217 while (fotg210
->qh_scan_next
) {
3218 qh
= fotg210
->qh_scan_next
;
3219 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3221 /* clean any finished work for this qh */
3222 if (!list_empty(&qh
->qtd_list
)) {
3226 * Unlinks could happen here; completion reporting
3227 * drops the lock. That's why fotg210->qh_scan_next
3228 * always holds the next qh to scan; if the next qh
3229 * gets unlinked then fotg210->qh_scan_next is adjusted
3230 * in single_unlink_async().
3232 temp
= qh_completions(fotg210
, qh
);
3233 if (qh
->needs_rescan
) {
3234 start_unlink_async(fotg210
, qh
);
3235 } else if (list_empty(&qh
->qtd_list
)
3236 && qh
->qh_state
== QH_STATE_LINKED
) {
3237 qh
->unlink_cycle
= fotg210
->async_unlink_cycle
;
3238 check_unlinks_later
= true;
3239 } else if (temp
!= 0)
3245 * Unlink empty entries, reducing DMA usage as well
3246 * as HCD schedule-scanning costs. Delay for any qh
3247 * we just scanned, there's a not-unusual case that it
3248 * doesn't stay idle for long.
3250 if (check_unlinks_later
&& fotg210
->rh_state
== FOTG210_RH_RUNNING
&&
3251 !(fotg210
->enabled_hrtimer_events
&
3252 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS
))) {
3253 fotg210_enable_event(fotg210
,
3254 FOTG210_HRTIMER_ASYNC_UNLINKS
, true);
3255 ++fotg210
->async_unlink_cycle
;
3258 /* EHCI scheduled transaction support: interrupt, iso, split iso
3259 * These are called "periodic" transactions in the EHCI spec.
3261 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3262 * with the "asynchronous" transaction support (control/bulk transfers).
3263 * The only real difference is in how interrupt transfers are scheduled.
3265 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3266 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3267 * pre-calculated schedule data to make appending to the queue be quick.
3269 static int fotg210_get_frame(struct usb_hcd
*hcd
);
3271 /* periodic_next_shadow - return "next" pointer on shadow list
3272 * @periodic: host pointer to qh/itd
3273 * @tag: hardware tag for type of this record
3275 static union fotg210_shadow
*periodic_next_shadow(struct fotg210_hcd
*fotg210
,
3276 union fotg210_shadow
*periodic
, __hc32 tag
)
3278 switch (hc32_to_cpu(fotg210
, tag
)) {
3280 return &periodic
->qh
->qh_next
;
3282 return &periodic
->fstn
->fstn_next
;
3284 return &periodic
->itd
->itd_next
;
3288 static __hc32
*shadow_next_periodic(struct fotg210_hcd
*fotg210
,
3289 union fotg210_shadow
*periodic
, __hc32 tag
)
3291 switch (hc32_to_cpu(fotg210
, tag
)) {
3292 /* our fotg210_shadow.qh is actually software part */
3294 return &periodic
->qh
->hw
->hw_next
;
3295 /* others are hw parts */
3297 return periodic
->hw_next
;
3301 /* caller must hold fotg210->lock */
3302 static void periodic_unlink(struct fotg210_hcd
*fotg210
, unsigned frame
,
3305 union fotg210_shadow
*prev_p
= &fotg210
->pshadow
[frame
];
3306 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3307 union fotg210_shadow here
= *prev_p
;
3309 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3310 while (here
.ptr
&& here
.ptr
!= ptr
) {
3311 prev_p
= periodic_next_shadow(fotg210
, prev_p
,
3312 Q_NEXT_TYPE(fotg210
, *hw_p
));
3313 hw_p
= shadow_next_periodic(fotg210
, &here
,
3314 Q_NEXT_TYPE(fotg210
, *hw_p
));
3317 /* an interrupt entry (at list end) could have been shared */
3321 /* update shadow and hardware lists ... the old "next" pointers
3322 * from ptr may still be in use, the caller updates them.
3324 *prev_p
= *periodic_next_shadow(fotg210
, &here
,
3325 Q_NEXT_TYPE(fotg210
, *hw_p
));
3327 *hw_p
= *shadow_next_periodic(fotg210
, &here
,
3328 Q_NEXT_TYPE(fotg210
, *hw_p
));
3331 /* how many of the uframe's 125 usecs are allocated? */
3332 static unsigned short periodic_usecs(struct fotg210_hcd
*fotg210
,
3333 unsigned frame
, unsigned uframe
)
3335 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3336 union fotg210_shadow
*q
= &fotg210
->pshadow
[frame
];
3338 struct fotg210_qh_hw
*hw
;
3341 switch (hc32_to_cpu(fotg210
, Q_NEXT_TYPE(fotg210
, *hw_p
))) {
3344 /* is it in the S-mask? */
3345 if (hw
->hw_info2
& cpu_to_hc32(fotg210
, 1 << uframe
))
3346 usecs
+= q
->qh
->usecs
;
3347 /* ... or C-mask? */
3348 if (hw
->hw_info2
& cpu_to_hc32(fotg210
,
3350 usecs
+= q
->qh
->c_usecs
;
3351 hw_p
= &hw
->hw_next
;
3352 q
= &q
->qh
->qh_next
;
3354 /* case Q_TYPE_FSTN: */
3356 /* for "save place" FSTNs, count the relevant INTR
3357 * bandwidth from the previous frame
3359 if (q
->fstn
->hw_prev
!= FOTG210_LIST_END(fotg210
))
3360 fotg210_dbg(fotg210
, "ignoring FSTN cost ...\n");
3362 hw_p
= &q
->fstn
->hw_next
;
3363 q
= &q
->fstn
->fstn_next
;
3366 if (q
->itd
->hw_transaction
[uframe
])
3367 usecs
+= q
->itd
->stream
->usecs
;
3368 hw_p
= &q
->itd
->hw_next
;
3369 q
= &q
->itd
->itd_next
;
3373 if (usecs
> fotg210
->uframe_periodic_max
)
3374 fotg210_err(fotg210
, "uframe %d sched overrun: %d usecs\n",
3375 frame
* 8 + uframe
, usecs
);
3379 static int same_tt(struct usb_device
*dev1
, struct usb_device
*dev2
)
3381 if (!dev1
->tt
|| !dev2
->tt
)
3383 if (dev1
->tt
!= dev2
->tt
)
3385 if (dev1
->tt
->multi
)
3386 return dev1
->ttport
== dev2
->ttport
;
3391 /* return true iff the device's transaction translator is available
3392 * for a periodic transfer starting at the specified frame, using
3393 * all the uframes in the mask.
3395 static int tt_no_collision(struct fotg210_hcd
*fotg210
, unsigned period
,
3396 struct usb_device
*dev
, unsigned frame
, u32 uf_mask
)
3398 if (period
== 0) /* error */
3401 /* note bandwidth wastage: split never follows csplit
3402 * (different dev or endpoint) until the next uframe.
3403 * calling convention doesn't make that distinction.
3405 for (; frame
< fotg210
->periodic_size
; frame
+= period
) {
3406 union fotg210_shadow here
;
3408 struct fotg210_qh_hw
*hw
;
3410 here
= fotg210
->pshadow
[frame
];
3411 type
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[frame
]);
3413 switch (hc32_to_cpu(fotg210
, type
)) {
3415 type
= Q_NEXT_TYPE(fotg210
, here
.itd
->hw_next
);
3416 here
= here
.itd
->itd_next
;
3420 if (same_tt(dev
, here
.qh
->dev
)) {
3423 mask
= hc32_to_cpu(fotg210
,
3425 /* "knows" no gap is needed */
3430 type
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
3431 here
= here
.qh
->qh_next
;
3433 /* case Q_TYPE_FSTN: */
3435 fotg210_dbg(fotg210
,
3436 "periodic frame %d bogus type %d\n",
3440 /* collision or error */
3449 static void enable_periodic(struct fotg210_hcd
*fotg210
)
3451 if (fotg210
->periodic_count
++)
3454 /* Stop waiting to turn off the periodic schedule */
3455 fotg210
->enabled_hrtimer_events
&=
3456 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC
);
3458 /* Don't start the schedule until PSS is 0 */
3459 fotg210_poll_PSS(fotg210
);
3460 turn_on_io_watchdog(fotg210
);
3463 static void disable_periodic(struct fotg210_hcd
*fotg210
)
3465 if (--fotg210
->periodic_count
)
3468 /* Don't turn off the schedule until PSS is 1 */
3469 fotg210_poll_PSS(fotg210
);
3472 /* periodic schedule slots have iso tds (normal or split) first, then a
3473 * sparse tree for active interrupt transfers.
3475 * this just links in a qh; caller guarantees uframe masks are set right.
3476 * no FSTN support (yet; fotg210 0.96+)
3478 static void qh_link_periodic(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3481 unsigned period
= qh
->period
;
3483 dev_dbg(&qh
->dev
->dev
,
3484 "link qh%d-%04x/%p start %d [%d/%d us]\n", period
,
3485 hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3486 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3489 /* high bandwidth, or otherwise every microframe */
3493 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
) {
3494 union fotg210_shadow
*prev
= &fotg210
->pshadow
[i
];
3495 __hc32
*hw_p
= &fotg210
->periodic
[i
];
3496 union fotg210_shadow here
= *prev
;
3499 /* skip the iso nodes at list head */
3501 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
3502 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
3504 prev
= periodic_next_shadow(fotg210
, prev
, type
);
3505 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
3509 /* sorting each branch by period (slow-->fast)
3510 * enables sharing interior tree nodes
3512 while (here
.ptr
&& qh
!= here
.qh
) {
3513 if (qh
->period
> here
.qh
->period
)
3515 prev
= &here
.qh
->qh_next
;
3516 hw_p
= &here
.qh
->hw
->hw_next
;
3519 /* link in this qh, unless some earlier pass did that */
3520 if (qh
!= here
.qh
) {
3523 qh
->hw
->hw_next
= *hw_p
;
3526 *hw_p
= QH_NEXT(fotg210
, qh
->qh_dma
);
3529 qh
->qh_state
= QH_STATE_LINKED
;
3532 /* update per-qh bandwidth for usbfs */
3533 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
+= qh
->period
3534 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3537 list_add(&qh
->intr_node
, &fotg210
->intr_qh_list
);
3539 /* maybe enable periodic schedule processing */
3540 ++fotg210
->intr_count
;
3541 enable_periodic(fotg210
);
3544 static void qh_unlink_periodic(struct fotg210_hcd
*fotg210
,
3545 struct fotg210_qh
*qh
)
3551 * If qh is for a low/full-speed device, simply unlinking it
3552 * could interfere with an ongoing split transaction. To unlink
3553 * it safely would require setting the QH_INACTIVATE bit and
3554 * waiting at least one frame, as described in EHCI 4.12.2.5.
3556 * We won't bother with any of this. Instead, we assume that the
3557 * only reason for unlinking an interrupt QH while the current URB
3558 * is still active is to dequeue all the URBs (flush the whole
3561 * If rebalancing the periodic schedule is ever implemented, this
3562 * approach will no longer be valid.
3565 /* high bandwidth, or otherwise part of every microframe */
3566 period
= qh
->period
;
3570 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
)
3571 periodic_unlink(fotg210
, i
, qh
);
3573 /* update per-qh bandwidth for usbfs */
3574 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
-= qh
->period
3575 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3578 dev_dbg(&qh
->dev
->dev
,
3579 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3580 qh
->period
, hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3581 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3584 /* qh->qh_next still "live" to HC */
3585 qh
->qh_state
= QH_STATE_UNLINK
;
3586 qh
->qh_next
.ptr
= NULL
;
3588 if (fotg210
->qh_scan_next
== qh
)
3589 fotg210
->qh_scan_next
= list_entry(qh
->intr_node
.next
,
3590 struct fotg210_qh
, intr_node
);
3591 list_del(&qh
->intr_node
);
3594 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
3595 struct fotg210_qh
*qh
)
3597 /* If the QH isn't linked then there's nothing we can do
3598 * unless we were called during a giveback, in which case
3599 * qh_completions() has to deal with it.
3601 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3602 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3603 qh
->needs_rescan
= 1;
3607 qh_unlink_periodic(fotg210
, qh
);
3609 /* Make sure the unlinks are visible before starting the timer */
3613 * The EHCI spec doesn't say how long it takes the controller to
3614 * stop accessing an unlinked interrupt QH. The timer delay is
3615 * 9 uframes; presumably that will be long enough.
3617 qh
->unlink_cycle
= fotg210
->intr_unlink_cycle
;
3619 /* New entries go at the end of the intr_unlink list */
3620 if (fotg210
->intr_unlink
)
3621 fotg210
->intr_unlink_last
->unlink_next
= qh
;
3623 fotg210
->intr_unlink
= qh
;
3624 fotg210
->intr_unlink_last
= qh
;
3626 if (fotg210
->intr_unlinking
)
3627 ; /* Avoid recursive calls */
3628 else if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
3629 fotg210_handle_intr_unlinks(fotg210
);
3630 else if (fotg210
->intr_unlink
== qh
) {
3631 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
3633 ++fotg210
->intr_unlink_cycle
;
3637 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3639 struct fotg210_qh_hw
*hw
= qh
->hw
;
3642 qh
->qh_state
= QH_STATE_IDLE
;
3643 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3645 qh_completions(fotg210
, qh
);
3647 /* reschedule QH iff another request is queued */
3648 if (!list_empty(&qh
->qtd_list
) &&
3649 fotg210
->rh_state
== FOTG210_RH_RUNNING
) {
3650 rc
= qh_schedule(fotg210
, qh
);
3652 /* An error here likely indicates handshake failure
3653 * or no space left in the schedule. Neither fault
3654 * should happen often ...
3656 * FIXME kill the now-dysfunctional queued urbs
3659 fotg210_err(fotg210
, "can't reschedule qh %p, err %d\n",
3663 /* maybe turn off periodic schedule */
3664 --fotg210
->intr_count
;
3665 disable_periodic(fotg210
);
3668 static int check_period(struct fotg210_hcd
*fotg210
, unsigned frame
,
3669 unsigned uframe
, unsigned period
, unsigned usecs
)
3673 /* complete split running into next frame?
3674 * given FSTN support, we could sometimes check...
3679 /* convert "usecs we need" to "max already claimed" */
3680 usecs
= fotg210
->uframe_periodic_max
- usecs
;
3682 /* we "know" 2 and 4 uframe intervals were rejected; so
3683 * for period 0, check _every_ microframe in the schedule.
3685 if (unlikely(period
== 0)) {
3687 for (uframe
= 0; uframe
< 7; uframe
++) {
3688 claimed
= periodic_usecs(fotg210
, frame
,
3690 if (claimed
> usecs
)
3693 } while ((frame
+= 1) < fotg210
->periodic_size
);
3695 /* just check the specified uframe, at that period */
3698 claimed
= periodic_usecs(fotg210
, frame
, uframe
);
3699 if (claimed
> usecs
)
3701 } while ((frame
+= period
) < fotg210
->periodic_size
);
3708 static int check_intr_schedule(struct fotg210_hcd
*fotg210
, unsigned frame
,
3709 unsigned uframe
, const struct fotg210_qh
*qh
, __hc32
*c_maskp
)
3711 int retval
= -ENOSPC
;
3714 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
3717 if (!check_period(fotg210
, frame
, uframe
, qh
->period
, qh
->usecs
))
3725 /* Make sure this tt's buffer is also available for CSPLITs.
3726 * We pessimize a bit; probably the typical full speed case
3727 * doesn't need the second CSPLIT.
3729 * NOTE: both SPLIT and CSPLIT could be checked in just
3732 mask
= 0x03 << (uframe
+ qh
->gap_uf
);
3733 *c_maskp
= cpu_to_hc32(fotg210
, mask
<< 8);
3735 mask
|= 1 << uframe
;
3736 if (tt_no_collision(fotg210
, qh
->period
, qh
->dev
, frame
, mask
)) {
3737 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
+ 1,
3738 qh
->period
, qh
->c_usecs
))
3740 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
,
3741 qh
->period
, qh
->c_usecs
))
3749 /* "first fit" scheduling policy used the first time through,
3750 * or when the previous schedule slot can't be re-used.
3752 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3757 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
3758 struct fotg210_qh_hw
*hw
= qh
->hw
;
3760 qh_refresh(fotg210
, qh
);
3761 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3764 /* reuse the previous schedule slots, if we can */
3765 if (frame
< qh
->period
) {
3766 uframe
= ffs(hc32_to_cpup(fotg210
, &hw
->hw_info2
) & QH_SMASK
);
3767 status
= check_intr_schedule(fotg210
, frame
, --uframe
,
3775 /* else scan the schedule to find a group of slots such that all
3776 * uframes have enough periodic bandwidth available.
3779 /* "normal" case, uframing flexible except with splits */
3783 for (i
= qh
->period
; status
&& i
> 0; --i
) {
3784 frame
= ++fotg210
->random_frame
% qh
->period
;
3785 for (uframe
= 0; uframe
< 8; uframe
++) {
3786 status
= check_intr_schedule(fotg210
,
3794 /* qh->period == 0 means every uframe */
3797 status
= check_intr_schedule(fotg210
, 0, 0, qh
,
3804 /* reset S-frame and (maybe) C-frame masks */
3805 hw
->hw_info2
&= cpu_to_hc32(fotg210
, ~(QH_CMASK
| QH_SMASK
));
3806 hw
->hw_info2
|= qh
->period
3807 ? cpu_to_hc32(fotg210
, 1 << uframe
)
3808 : cpu_to_hc32(fotg210
, QH_SMASK
);
3809 hw
->hw_info2
|= c_mask
;
3811 fotg210_dbg(fotg210
, "reused qh %p schedule\n", qh
);
3813 /* stuff into the periodic schedule */
3814 qh_link_periodic(fotg210
, qh
);
3819 static int intr_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3820 struct list_head
*qtd_list
, gfp_t mem_flags
)
3823 unsigned long flags
;
3824 struct fotg210_qh
*qh
;
3826 struct list_head empty
;
3828 /* get endpoint and transfer/schedule data */
3829 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3831 spin_lock_irqsave(&fotg210
->lock
, flags
);
3833 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3834 status
= -ESHUTDOWN
;
3835 goto done_not_linked
;
3837 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3838 if (unlikely(status
))
3839 goto done_not_linked
;
3841 /* get qh and force any scheduling errors */
3842 INIT_LIST_HEAD(&empty
);
3843 qh
= qh_append_tds(fotg210
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
3848 if (qh
->qh_state
== QH_STATE_IDLE
) {
3849 status
= qh_schedule(fotg210
, qh
);
3854 /* then queue the urb's tds to the qh */
3855 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3858 /* ... update usbfs periodic stats */
3859 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
++;
3862 if (unlikely(status
))
3863 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3865 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3867 qtd_list_free(fotg210
, urb
, qtd_list
);
3872 static void scan_intr(struct fotg210_hcd
*fotg210
)
3874 struct fotg210_qh
*qh
;
3876 list_for_each_entry_safe(qh
, fotg210
->qh_scan_next
,
3877 &fotg210
->intr_qh_list
, intr_node
) {
3879 /* clean any finished work for this qh */
3880 if (!list_empty(&qh
->qtd_list
)) {
3884 * Unlinks could happen here; completion reporting
3885 * drops the lock. That's why fotg210->qh_scan_next
3886 * always holds the next qh to scan; if the next qh
3887 * gets unlinked then fotg210->qh_scan_next is adjusted
3888 * in qh_unlink_periodic().
3890 temp
= qh_completions(fotg210
, qh
);
3891 if (unlikely(qh
->needs_rescan
||
3892 (list_empty(&qh
->qtd_list
) &&
3893 qh
->qh_state
== QH_STATE_LINKED
)))
3894 start_unlink_intr(fotg210
, qh
);
3901 /* fotg210_iso_stream ops work with both ITD and SITD */
3903 static struct fotg210_iso_stream
*iso_stream_alloc(gfp_t mem_flags
)
3905 struct fotg210_iso_stream
*stream
;
3907 stream
= kzalloc(sizeof(*stream
), mem_flags
);
3908 if (likely(stream
!= NULL
)) {
3909 INIT_LIST_HEAD(&stream
->td_list
);
3910 INIT_LIST_HEAD(&stream
->free_list
);
3911 stream
->next_uframe
= -1;
3916 static void iso_stream_init(struct fotg210_hcd
*fotg210
,
3917 struct fotg210_iso_stream
*stream
, struct usb_device
*dev
,
3918 int pipe
, unsigned interval
)
3921 unsigned epnum
, maxp
;
3927 * this might be a "high bandwidth" highspeed endpoint,
3928 * as encoded in the ep descriptor's wMaxPacket field
3930 epnum
= usb_pipeendpoint(pipe
);
3931 is_input
= usb_pipein(pipe
) ? USB_DIR_IN
: 0;
3932 maxp
= usb_maxpacket(dev
, pipe
, !is_input
);
3938 maxp
= max_packet(maxp
);
3939 multi
= hb_mult(maxp
);
3943 stream
->buf0
= cpu_to_hc32(fotg210
, (epnum
<< 8) | dev
->devnum
);
3944 stream
->buf1
= cpu_to_hc32(fotg210
, buf1
);
3945 stream
->buf2
= cpu_to_hc32(fotg210
, multi
);
3947 /* usbfs wants to report the average usecs per frame tied up
3948 * when transfers on this endpoint are scheduled ...
3950 if (dev
->speed
== USB_SPEED_FULL
) {
3952 stream
->usecs
= NS_TO_US(usb_calc_bus_time(dev
->speed
,
3953 is_input
, 1, maxp
));
3956 stream
->highspeed
= 1;
3957 stream
->usecs
= HS_USECS_ISO(maxp
);
3959 bandwidth
= stream
->usecs
* 8;
3960 bandwidth
/= interval
;
3962 stream
->bandwidth
= bandwidth
;
3964 stream
->bEndpointAddress
= is_input
| epnum
;
3965 stream
->interval
= interval
;
3966 stream
->maxp
= maxp
;
3969 static struct fotg210_iso_stream
*iso_stream_find(struct fotg210_hcd
*fotg210
,
3973 struct fotg210_iso_stream
*stream
;
3974 struct usb_host_endpoint
*ep
;
3975 unsigned long flags
;
3977 epnum
= usb_pipeendpoint(urb
->pipe
);
3978 if (usb_pipein(urb
->pipe
))
3979 ep
= urb
->dev
->ep_in
[epnum
];
3981 ep
= urb
->dev
->ep_out
[epnum
];
3983 spin_lock_irqsave(&fotg210
->lock
, flags
);
3984 stream
= ep
->hcpriv
;
3986 if (unlikely(stream
== NULL
)) {
3987 stream
= iso_stream_alloc(GFP_ATOMIC
);
3988 if (likely(stream
!= NULL
)) {
3989 ep
->hcpriv
= stream
;
3991 iso_stream_init(fotg210
, stream
, urb
->dev
, urb
->pipe
,
3995 /* if dev->ep[epnum] is a QH, hw is set */
3996 } else if (unlikely(stream
->hw
!= NULL
)) {
3997 fotg210_dbg(fotg210
, "dev %s ep%d%s, not iso??\n",
3998 urb
->dev
->devpath
, epnum
,
3999 usb_pipein(urb
->pipe
) ? "in" : "out");
4003 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4007 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4009 static struct fotg210_iso_sched
*iso_sched_alloc(unsigned packets
,
4012 struct fotg210_iso_sched
*iso_sched
;
4013 int size
= sizeof(*iso_sched
);
4015 size
+= packets
* sizeof(struct fotg210_iso_packet
);
4016 iso_sched
= kzalloc(size
, mem_flags
);
4017 if (likely(iso_sched
!= NULL
))
4018 INIT_LIST_HEAD(&iso_sched
->td_list
);
4023 static inline void itd_sched_init(struct fotg210_hcd
*fotg210
,
4024 struct fotg210_iso_sched
*iso_sched
,
4025 struct fotg210_iso_stream
*stream
, struct urb
*urb
)
4028 dma_addr_t dma
= urb
->transfer_dma
;
4030 /* how many uframes are needed for these transfers */
4031 iso_sched
->span
= urb
->number_of_packets
* stream
->interval
;
4033 /* figure out per-uframe itd fields that we'll need later
4034 * when we fit new itds into the schedule.
4036 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4037 struct fotg210_iso_packet
*uframe
= &iso_sched
->packet
[i
];
4042 length
= urb
->iso_frame_desc
[i
].length
;
4043 buf
= dma
+ urb
->iso_frame_desc
[i
].offset
;
4045 trans
= FOTG210_ISOC_ACTIVE
;
4046 trans
|= buf
& 0x0fff;
4047 if (unlikely(((i
+ 1) == urb
->number_of_packets
))
4048 && !(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4049 trans
|= FOTG210_ITD_IOC
;
4050 trans
|= length
<< 16;
4051 uframe
->transaction
= cpu_to_hc32(fotg210
, trans
);
4053 /* might need to cross a buffer page within a uframe */
4054 uframe
->bufp
= (buf
& ~(u64
)0x0fff);
4056 if (unlikely((uframe
->bufp
!= (buf
& ~(u64
)0x0fff))))
4061 static void iso_sched_free(struct fotg210_iso_stream
*stream
,
4062 struct fotg210_iso_sched
*iso_sched
)
4066 /* caller must hold fotg210->lock!*/
4067 list_splice(&iso_sched
->td_list
, &stream
->free_list
);
4071 static int itd_urb_transaction(struct fotg210_iso_stream
*stream
,
4072 struct fotg210_hcd
*fotg210
, struct urb
*urb
, gfp_t mem_flags
)
4074 struct fotg210_itd
*itd
;
4078 struct fotg210_iso_sched
*sched
;
4079 unsigned long flags
;
4081 sched
= iso_sched_alloc(urb
->number_of_packets
, mem_flags
);
4082 if (unlikely(sched
== NULL
))
4085 itd_sched_init(fotg210
, sched
, stream
, urb
);
4087 if (urb
->interval
< 8)
4088 num_itds
= 1 + (sched
->span
+ 7) / 8;
4090 num_itds
= urb
->number_of_packets
;
4092 /* allocate/init ITDs */
4093 spin_lock_irqsave(&fotg210
->lock
, flags
);
4094 for (i
= 0; i
< num_itds
; i
++) {
4097 * Use iTDs from the free list, but not iTDs that may
4098 * still be in use by the hardware.
4100 if (likely(!list_empty(&stream
->free_list
))) {
4101 itd
= list_first_entry(&stream
->free_list
,
4102 struct fotg210_itd
, itd_list
);
4103 if (itd
->frame
== fotg210
->now_frame
)
4105 list_del(&itd
->itd_list
);
4106 itd_dma
= itd
->itd_dma
;
4109 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4110 itd
= dma_pool_zalloc(fotg210
->itd_pool
, mem_flags
,
4112 spin_lock_irqsave(&fotg210
->lock
, flags
);
4114 iso_sched_free(stream
, sched
);
4115 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4120 itd
->itd_dma
= itd_dma
;
4121 list_add(&itd
->itd_list
, &sched
->td_list
);
4123 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4125 /* temporarily store schedule info in hcpriv */
4126 urb
->hcpriv
= sched
;
4127 urb
->error_count
= 0;
4131 static inline int itd_slot_ok(struct fotg210_hcd
*fotg210
, u32 mod
, u32 uframe
,
4132 u8 usecs
, u32 period
)
4136 /* can't commit more than uframe_periodic_max usec */
4137 if (periodic_usecs(fotg210
, uframe
>> 3, uframe
& 0x7)
4138 > (fotg210
->uframe_periodic_max
- usecs
))
4141 /* we know urb->interval is 2^N uframes */
4143 } while (uframe
< mod
);
4147 /* This scheduler plans almost as far into the future as it has actual
4148 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4149 * "as small as possible" to be cache-friendlier.) That limits the size
4150 * transfers you can stream reliably; avoid more than 64 msec per urb.
4151 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4152 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4153 * and other factors); or more than about 230 msec total (for portability,
4154 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4157 #define SCHEDULE_SLOP 80 /* microframes */
4159 static int iso_stream_schedule(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4160 struct fotg210_iso_stream
*stream
)
4162 u32 now
, next
, start
, period
, span
;
4164 unsigned mod
= fotg210
->periodic_size
<< 3;
4165 struct fotg210_iso_sched
*sched
= urb
->hcpriv
;
4167 period
= urb
->interval
;
4170 if (span
> mod
- SCHEDULE_SLOP
) {
4171 fotg210_dbg(fotg210
, "iso request %p too long\n", urb
);
4176 now
= fotg210_read_frame_index(fotg210
) & (mod
- 1);
4178 /* Typical case: reuse current schedule, stream is still active.
4179 * Hopefully there are no gaps from the host falling behind
4180 * (irq delays etc), but if there are we'll take the next
4181 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4183 if (likely(!list_empty(&stream
->td_list
))) {
4186 /* For high speed devices, allow scheduling within the
4187 * isochronous scheduling threshold. For full speed devices
4188 * and Intel PCI-based controllers, don't (work around for
4191 if (!stream
->highspeed
&& fotg210
->fs_i_thresh
)
4192 next
= now
+ fotg210
->i_thresh
;
4196 /* Fell behind (by up to twice the slop amount)?
4197 * We decide based on the time of the last currently-scheduled
4198 * slot, not the time of the next available slot.
4200 excess
= (stream
->next_uframe
- period
- next
) & (mod
- 1);
4201 if (excess
>= mod
- 2 * SCHEDULE_SLOP
)
4202 start
= next
+ excess
- mod
+ period
*
4203 DIV_ROUND_UP(mod
- excess
, period
);
4205 start
= next
+ excess
+ period
;
4206 if (start
- now
>= mod
) {
4207 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4208 urb
, start
- now
- period
, period
,
4215 /* need to schedule; when's the next (u)frame we could start?
4216 * this is bigger than fotg210->i_thresh allows; scheduling itself
4217 * isn't free, the slop should handle reasonably slow cpus. it
4218 * can also help high bandwidth if the dma and irq loads don't
4219 * jump until after the queue is primed.
4224 start
= SCHEDULE_SLOP
+ (now
& ~0x07);
4226 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4228 /* find a uframe slot with enough bandwidth.
4229 * Early uframes are more precious because full-speed
4230 * iso IN transfers can't use late uframes,
4231 * and therefore they should be allocated last.
4237 /* check schedule: enough space? */
4238 if (itd_slot_ok(fotg210
, mod
, start
,
4239 stream
->usecs
, period
))
4241 } while (start
> next
&& !done
);
4243 /* no room in the schedule */
4245 fotg210_dbg(fotg210
, "iso resched full %p (now %d max %d)\n",
4246 urb
, now
, now
+ mod
);
4252 /* Tried to schedule too far into the future? */
4253 if (unlikely(start
- now
+ span
- period
>=
4254 mod
- 2 * SCHEDULE_SLOP
)) {
4255 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4256 urb
, start
- now
, span
- period
,
4257 mod
- 2 * SCHEDULE_SLOP
);
4262 stream
->next_uframe
= start
& (mod
- 1);
4264 /* report high speed start in uframes; full speed, in frames */
4265 urb
->start_frame
= stream
->next_uframe
;
4266 if (!stream
->highspeed
)
4267 urb
->start_frame
>>= 3;
4269 /* Make sure scan_isoc() sees these */
4270 if (fotg210
->isoc_count
== 0)
4271 fotg210
->next_frame
= now
>> 3;
4275 iso_sched_free(stream
, sched
);
4280 static inline void itd_init(struct fotg210_hcd
*fotg210
,
4281 struct fotg210_iso_stream
*stream
, struct fotg210_itd
*itd
)
4285 /* it's been recently zeroed */
4286 itd
->hw_next
= FOTG210_LIST_END(fotg210
);
4287 itd
->hw_bufp
[0] = stream
->buf0
;
4288 itd
->hw_bufp
[1] = stream
->buf1
;
4289 itd
->hw_bufp
[2] = stream
->buf2
;
4291 for (i
= 0; i
< 8; i
++)
4294 /* All other fields are filled when scheduling */
4297 static inline void itd_patch(struct fotg210_hcd
*fotg210
,
4298 struct fotg210_itd
*itd
, struct fotg210_iso_sched
*iso_sched
,
4299 unsigned index
, u16 uframe
)
4301 struct fotg210_iso_packet
*uf
= &iso_sched
->packet
[index
];
4302 unsigned pg
= itd
->pg
;
4305 itd
->index
[uframe
] = index
;
4307 itd
->hw_transaction
[uframe
] = uf
->transaction
;
4308 itd
->hw_transaction
[uframe
] |= cpu_to_hc32(fotg210
, pg
<< 12);
4309 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, uf
->bufp
& ~(u32
)0);
4310 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(uf
->bufp
>> 32));
4312 /* iso_frame_desc[].offset must be strictly increasing */
4313 if (unlikely(uf
->cross
)) {
4314 u64 bufp
= uf
->bufp
+ 4096;
4317 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, bufp
& ~(u32
)0);
4318 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(bufp
>> 32));
4322 static inline void itd_link(struct fotg210_hcd
*fotg210
, unsigned frame
,
4323 struct fotg210_itd
*itd
)
4325 union fotg210_shadow
*prev
= &fotg210
->pshadow
[frame
];
4326 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
4327 union fotg210_shadow here
= *prev
;
4330 /* skip any iso nodes which might belong to previous microframes */
4332 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4333 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
4335 prev
= periodic_next_shadow(fotg210
, prev
, type
);
4336 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
4340 itd
->itd_next
= here
;
4341 itd
->hw_next
= *hw_p
;
4345 *hw_p
= cpu_to_hc32(fotg210
, itd
->itd_dma
| Q_TYPE_ITD
);
4348 /* fit urb's itds into the selected schedule slot; activate as needed */
4349 static void itd_link_urb(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4350 unsigned mod
, struct fotg210_iso_stream
*stream
)
4353 unsigned next_uframe
, uframe
, frame
;
4354 struct fotg210_iso_sched
*iso_sched
= urb
->hcpriv
;
4355 struct fotg210_itd
*itd
;
4357 next_uframe
= stream
->next_uframe
& (mod
- 1);
4359 if (unlikely(list_empty(&stream
->td_list
))) {
4360 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4361 += stream
->bandwidth
;
4362 fotg210_dbg(fotg210
,
4363 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4364 urb
->dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4365 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out",
4367 next_uframe
>> 3, next_uframe
& 0x7);
4370 /* fill iTDs uframe by uframe */
4371 for (packet
= 0, itd
= NULL
; packet
< urb
->number_of_packets
;) {
4373 /* ASSERT: we have all necessary itds */
4375 /* ASSERT: no itds for this endpoint in this uframe */
4377 itd
= list_entry(iso_sched
->td_list
.next
,
4378 struct fotg210_itd
, itd_list
);
4379 list_move_tail(&itd
->itd_list
, &stream
->td_list
);
4380 itd
->stream
= stream
;
4382 itd_init(fotg210
, stream
, itd
);
4385 uframe
= next_uframe
& 0x07;
4386 frame
= next_uframe
>> 3;
4388 itd_patch(fotg210
, itd
, iso_sched
, packet
, uframe
);
4390 next_uframe
+= stream
->interval
;
4391 next_uframe
&= mod
- 1;
4394 /* link completed itds into the schedule */
4395 if (((next_uframe
>> 3) != frame
)
4396 || packet
== urb
->number_of_packets
) {
4397 itd_link(fotg210
, frame
& (fotg210
->periodic_size
- 1),
4402 stream
->next_uframe
= next_uframe
;
4404 /* don't need that schedule data any more */
4405 iso_sched_free(stream
, iso_sched
);
4408 ++fotg210
->isoc_count
;
4409 enable_periodic(fotg210
);
4412 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4413 FOTG210_ISOC_XACTERR)
4415 /* Process and recycle a completed ITD. Return true iff its urb completed,
4416 * and hence its completion callback probably added things to the hardware
4419 * Note that we carefully avoid recycling this descriptor until after any
4420 * completion callback runs, so that it won't be reused quickly. That is,
4421 * assuming (a) no more than two urbs per frame on this endpoint, and also
4422 * (b) only this endpoint's completions submit URBs. It seems some silicon
4423 * corrupts things if you reuse completed descriptors very quickly...
4425 static bool itd_complete(struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
4427 struct urb
*urb
= itd
->urb
;
4428 struct usb_iso_packet_descriptor
*desc
;
4432 struct fotg210_iso_stream
*stream
= itd
->stream
;
4433 struct usb_device
*dev
;
4434 bool retval
= false;
4436 /* for each uframe with a packet */
4437 for (uframe
= 0; uframe
< 8; uframe
++) {
4438 if (likely(itd
->index
[uframe
] == -1))
4440 urb_index
= itd
->index
[uframe
];
4441 desc
= &urb
->iso_frame_desc
[urb_index
];
4443 t
= hc32_to_cpup(fotg210
, &itd
->hw_transaction
[uframe
]);
4444 itd
->hw_transaction
[uframe
] = 0;
4446 /* report transfer status */
4447 if (unlikely(t
& ISO_ERRS
)) {
4449 if (t
& FOTG210_ISOC_BUF_ERR
)
4450 desc
->status
= usb_pipein(urb
->pipe
)
4451 ? -ENOSR
/* hc couldn't read */
4452 : -ECOMM
; /* hc couldn't write */
4453 else if (t
& FOTG210_ISOC_BABBLE
)
4454 desc
->status
= -EOVERFLOW
;
4455 else /* (t & FOTG210_ISOC_XACTERR) */
4456 desc
->status
= -EPROTO
;
4458 /* HC need not update length with this error */
4459 if (!(t
& FOTG210_ISOC_BABBLE
)) {
4460 desc
->actual_length
=
4461 fotg210_itdlen(urb
, desc
, t
);
4462 urb
->actual_length
+= desc
->actual_length
;
4464 } else if (likely((t
& FOTG210_ISOC_ACTIVE
) == 0)) {
4466 desc
->actual_length
= fotg210_itdlen(urb
, desc
, t
);
4467 urb
->actual_length
+= desc
->actual_length
;
4469 /* URB was too late */
4470 desc
->status
= -EXDEV
;
4474 /* handle completion now? */
4475 if (likely((urb_index
+ 1) != urb
->number_of_packets
))
4478 /* ASSERT: it's really the last itd for this urb
4479 * list_for_each_entry (itd, &stream->td_list, itd_list)
4480 * BUG_ON (itd->urb == urb);
4483 /* give urb back to the driver; completion often (re)submits */
4485 fotg210_urb_done(fotg210
, urb
, 0);
4489 --fotg210
->isoc_count
;
4490 disable_periodic(fotg210
);
4492 if (unlikely(list_is_singular(&stream
->td_list
))) {
4493 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4494 -= stream
->bandwidth
;
4495 fotg210_dbg(fotg210
,
4496 "deschedule devp %s ep%d%s-iso\n",
4497 dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4498 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out");
4504 /* Add to the end of the free list for later reuse */
4505 list_move_tail(&itd
->itd_list
, &stream
->free_list
);
4507 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4508 if (list_empty(&stream
->td_list
)) {
4509 list_splice_tail_init(&stream
->free_list
,
4510 &fotg210
->cached_itd_list
);
4511 start_free_itds(fotg210
);
4517 static int itd_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4520 int status
= -EINVAL
;
4521 unsigned long flags
;
4522 struct fotg210_iso_stream
*stream
;
4524 /* Get iso_stream head */
4525 stream
= iso_stream_find(fotg210
, urb
);
4526 if (unlikely(stream
== NULL
)) {
4527 fotg210_dbg(fotg210
, "can't get iso stream\n");
4530 if (unlikely(urb
->interval
!= stream
->interval
&&
4531 fotg210_port_speed(fotg210
, 0) ==
4532 USB_PORT_STAT_HIGH_SPEED
)) {
4533 fotg210_dbg(fotg210
, "can't change iso interval %d --> %d\n",
4534 stream
->interval
, urb
->interval
);
4538 #ifdef FOTG210_URB_TRACE
4539 fotg210_dbg(fotg210
,
4540 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4541 __func__
, urb
->dev
->devpath
, urb
,
4542 usb_pipeendpoint(urb
->pipe
),
4543 usb_pipein(urb
->pipe
) ? "in" : "out",
4544 urb
->transfer_buffer_length
,
4545 urb
->number_of_packets
, urb
->interval
,
4549 /* allocate ITDs w/o locking anything */
4550 status
= itd_urb_transaction(stream
, fotg210
, urb
, mem_flags
);
4551 if (unlikely(status
< 0)) {
4552 fotg210_dbg(fotg210
, "can't init itds\n");
4556 /* schedule ... need to lock */
4557 spin_lock_irqsave(&fotg210
->lock
, flags
);
4558 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
4559 status
= -ESHUTDOWN
;
4560 goto done_not_linked
;
4562 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
4563 if (unlikely(status
))
4564 goto done_not_linked
;
4565 status
= iso_stream_schedule(fotg210
, urb
, stream
);
4566 if (likely(status
== 0))
4567 itd_link_urb(fotg210
, urb
, fotg210
->periodic_size
<< 3, stream
);
4569 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
4571 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4576 static inline int scan_frame_queue(struct fotg210_hcd
*fotg210
, unsigned frame
,
4577 unsigned now_frame
, bool live
)
4581 union fotg210_shadow q
, *q_p
;
4584 /* scan each element in frame's queue for completions */
4585 q_p
= &fotg210
->pshadow
[frame
];
4586 hw_p
= &fotg210
->periodic
[frame
];
4588 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4592 switch (hc32_to_cpu(fotg210
, type
)) {
4594 /* If this ITD is still active, leave it for
4595 * later processing ... check the next entry.
4596 * No need to check for activity unless the
4599 if (frame
== now_frame
&& live
) {
4601 for (uf
= 0; uf
< 8; uf
++) {
4602 if (q
.itd
->hw_transaction
[uf
] &
4603 ITD_ACTIVE(fotg210
))
4607 q_p
= &q
.itd
->itd_next
;
4608 hw_p
= &q
.itd
->hw_next
;
4609 type
= Q_NEXT_TYPE(fotg210
,
4616 /* Take finished ITDs out of the schedule
4617 * and process them: recycle, maybe report
4618 * URB completion. HC won't cache the
4619 * pointer for much longer, if at all.
4621 *q_p
= q
.itd
->itd_next
;
4622 *hw_p
= q
.itd
->hw_next
;
4623 type
= Q_NEXT_TYPE(fotg210
, q
.itd
->hw_next
);
4625 modified
= itd_complete(fotg210
, q
.itd
);
4629 fotg210_dbg(fotg210
, "corrupt type %d frame %d shadow %p\n",
4630 type
, frame
, q
.ptr
);
4634 /* End of the iTDs and siTDs */
4639 /* assume completion callbacks modify the queue */
4640 if (unlikely(modified
&& fotg210
->isoc_count
> 0))
4646 static void scan_isoc(struct fotg210_hcd
*fotg210
)
4648 unsigned uf
, now_frame
, frame
, ret
;
4649 unsigned fmask
= fotg210
->periodic_size
- 1;
4653 * When running, scan from last scan point up to "now"
4654 * else clean up by scanning everything that's left.
4655 * Touches as few pages as possible: cache-friendly.
4657 if (fotg210
->rh_state
>= FOTG210_RH_RUNNING
) {
4658 uf
= fotg210_read_frame_index(fotg210
);
4659 now_frame
= (uf
>> 3) & fmask
;
4662 now_frame
= (fotg210
->next_frame
- 1) & fmask
;
4665 fotg210
->now_frame
= now_frame
;
4667 frame
= fotg210
->next_frame
;
4671 ret
= scan_frame_queue(fotg210
, frame
,
4674 /* Stop when we have reached the current frame */
4675 if (frame
== now_frame
)
4677 frame
= (frame
+ 1) & fmask
;
4679 fotg210
->next_frame
= now_frame
;
4682 /* Display / Set uframe_periodic_max
4684 static ssize_t
uframe_periodic_max_show(struct device
*dev
,
4685 struct device_attribute
*attr
, char *buf
)
4687 struct fotg210_hcd
*fotg210
;
4690 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4691 n
= scnprintf(buf
, PAGE_SIZE
, "%d\n", fotg210
->uframe_periodic_max
);
4696 static ssize_t
uframe_periodic_max_store(struct device
*dev
,
4697 struct device_attribute
*attr
, const char *buf
, size_t count
)
4699 struct fotg210_hcd
*fotg210
;
4700 unsigned uframe_periodic_max
;
4701 unsigned frame
, uframe
;
4702 unsigned short allocated_max
;
4703 unsigned long flags
;
4706 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4707 if (kstrtouint(buf
, 0, &uframe_periodic_max
) < 0)
4710 if (uframe_periodic_max
< 100 || uframe_periodic_max
>= 125) {
4711 fotg210_info(fotg210
, "rejecting invalid request for uframe_periodic_max=%u\n",
4712 uframe_periodic_max
);
4719 * lock, so that our checking does not race with possible periodic
4720 * bandwidth allocation through submitting new urbs.
4722 spin_lock_irqsave(&fotg210
->lock
, flags
);
4725 * for request to decrease max periodic bandwidth, we have to check
4726 * every microframe in the schedule to see whether the decrease is
4729 if (uframe_periodic_max
< fotg210
->uframe_periodic_max
) {
4732 for (frame
= 0; frame
< fotg210
->periodic_size
; ++frame
)
4733 for (uframe
= 0; uframe
< 7; ++uframe
)
4734 allocated_max
= max(allocated_max
,
4735 periodic_usecs(fotg210
, frame
,
4738 if (allocated_max
> uframe_periodic_max
) {
4739 fotg210_info(fotg210
,
4740 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4741 allocated_max
, uframe_periodic_max
);
4746 /* increasing is always ok */
4748 fotg210_info(fotg210
,
4749 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4750 100 * uframe_periodic_max
/125, uframe_periodic_max
);
4752 if (uframe_periodic_max
!= 100)
4753 fotg210_warn(fotg210
, "max periodic bandwidth set is non-standard\n");
4755 fotg210
->uframe_periodic_max
= uframe_periodic_max
;
4759 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4763 static DEVICE_ATTR_RW(uframe_periodic_max
);
4765 static inline int create_sysfs_files(struct fotg210_hcd
*fotg210
)
4767 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4769 return device_create_file(controller
, &dev_attr_uframe_periodic_max
);
4772 static inline void remove_sysfs_files(struct fotg210_hcd
*fotg210
)
4774 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4776 device_remove_file(controller
, &dev_attr_uframe_periodic_max
);
4778 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4779 * The firmware seems to think that powering off is a wakeup event!
4780 * This routine turns off remote wakeup and everything else, on all ports.
4782 static void fotg210_turn_off_all_ports(struct fotg210_hcd
*fotg210
)
4784 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
4786 fotg210_writel(fotg210
, PORT_RWC_BITS
, status_reg
);
4789 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4790 * Must be called with interrupts enabled and the lock not held.
4792 static void fotg210_silence_controller(struct fotg210_hcd
*fotg210
)
4794 fotg210_halt(fotg210
);
4796 spin_lock_irq(&fotg210
->lock
);
4797 fotg210
->rh_state
= FOTG210_RH_HALTED
;
4798 fotg210_turn_off_all_ports(fotg210
);
4799 spin_unlock_irq(&fotg210
->lock
);
4802 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4803 * This forcibly disables dma and IRQs, helping kexec and other cases
4804 * where the next system software may expect clean state.
4806 static void fotg210_shutdown(struct usb_hcd
*hcd
)
4808 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4810 spin_lock_irq(&fotg210
->lock
);
4811 fotg210
->shutdown
= true;
4812 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
4813 fotg210
->enabled_hrtimer_events
= 0;
4814 spin_unlock_irq(&fotg210
->lock
);
4816 fotg210_silence_controller(fotg210
);
4818 hrtimer_cancel(&fotg210
->hrtimer
);
4821 /* fotg210_work is called from some interrupts, timers, and so on.
4822 * it calls driver completion functions, after dropping fotg210->lock.
4824 static void fotg210_work(struct fotg210_hcd
*fotg210
)
4826 /* another CPU may drop fotg210->lock during a schedule scan while
4827 * it reports urb completions. this flag guards against bogus
4828 * attempts at re-entrant schedule scanning.
4830 if (fotg210
->scanning
) {
4831 fotg210
->need_rescan
= true;
4834 fotg210
->scanning
= true;
4837 fotg210
->need_rescan
= false;
4838 if (fotg210
->async_count
)
4839 scan_async(fotg210
);
4840 if (fotg210
->intr_count
> 0)
4842 if (fotg210
->isoc_count
> 0)
4844 if (fotg210
->need_rescan
)
4846 fotg210
->scanning
= false;
4848 /* the IO watchdog guards against hardware or driver bugs that
4849 * misplace IRQs, and should let us run completely without IRQs.
4850 * such lossage has been observed on both VT6202 and VT8235.
4852 turn_on_io_watchdog(fotg210
);
4855 /* Called when the fotg210_hcd module is removed.
4857 static void fotg210_stop(struct usb_hcd
*hcd
)
4859 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4861 fotg210_dbg(fotg210
, "stop\n");
4863 /* no more interrupts ... */
4865 spin_lock_irq(&fotg210
->lock
);
4866 fotg210
->enabled_hrtimer_events
= 0;
4867 spin_unlock_irq(&fotg210
->lock
);
4869 fotg210_quiesce(fotg210
);
4870 fotg210_silence_controller(fotg210
);
4871 fotg210_reset(fotg210
);
4873 hrtimer_cancel(&fotg210
->hrtimer
);
4874 remove_sysfs_files(fotg210
);
4875 remove_debug_files(fotg210
);
4877 /* root hub is shut down separately (first, when possible) */
4878 spin_lock_irq(&fotg210
->lock
);
4879 end_free_itds(fotg210
);
4880 spin_unlock_irq(&fotg210
->lock
);
4881 fotg210_mem_cleanup(fotg210
);
4883 #ifdef FOTG210_STATS
4884 fotg210_dbg(fotg210
, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4885 fotg210
->stats
.normal
, fotg210
->stats
.error
,
4886 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
4887 fotg210_dbg(fotg210
, "complete %ld unlink %ld\n",
4888 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
4891 dbg_status(fotg210
, "fotg210_stop completed",
4892 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
4895 /* one-time init, only for memory state */
4896 static int hcd_fotg210_init(struct usb_hcd
*hcd
)
4898 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4902 struct fotg210_qh_hw
*hw
;
4904 spin_lock_init(&fotg210
->lock
);
4907 * keep io watchdog by default, those good HCDs could turn off it later
4909 fotg210
->need_io_watchdog
= 1;
4911 hrtimer_init(&fotg210
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
4912 fotg210
->hrtimer
.function
= fotg210_hrtimer_func
;
4913 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
4915 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
4918 * by default set standard 80% (== 100 usec/uframe) max periodic
4919 * bandwidth as required by USB 2.0
4921 fotg210
->uframe_periodic_max
= 100;
4924 * hw default: 1K periodic list heads, one per frame.
4925 * periodic_size can shrink by USBCMD update if hcc_params allows.
4927 fotg210
->periodic_size
= DEFAULT_I_TDPS
;
4928 INIT_LIST_HEAD(&fotg210
->intr_qh_list
);
4929 INIT_LIST_HEAD(&fotg210
->cached_itd_list
);
4931 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4932 /* periodic schedule size can be smaller than default */
4933 switch (FOTG210_TUNE_FLS
) {
4935 fotg210
->periodic_size
= 1024;
4938 fotg210
->periodic_size
= 512;
4941 fotg210
->periodic_size
= 256;
4947 retval
= fotg210_mem_init(fotg210
, GFP_KERNEL
);
4951 /* controllers may cache some of the periodic schedule ... */
4952 fotg210
->i_thresh
= 2;
4955 * dedicate a qh for the async ring head, since we couldn't unlink
4956 * a 'real' qh without stopping the async schedule [4.8]. use it
4957 * as the 'reclamation list head' too.
4958 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4959 * from automatically advancing to the next td after short reads.
4961 fotg210
->async
->qh_next
.qh
= NULL
;
4962 hw
= fotg210
->async
->hw
;
4963 hw
->hw_next
= QH_NEXT(fotg210
, fotg210
->async
->qh_dma
);
4964 hw
->hw_info1
= cpu_to_hc32(fotg210
, QH_HEAD
);
4965 hw
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
4966 hw
->hw_qtd_next
= FOTG210_LIST_END(fotg210
);
4967 fotg210
->async
->qh_state
= QH_STATE_LINKED
;
4968 hw
->hw_alt_next
= QTD_NEXT(fotg210
, fotg210
->async
->dummy
->qtd_dma
);
4970 /* clear interrupt enables, set irq latency */
4971 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
4972 log2_irq_thresh
= 0;
4973 temp
= 1 << (16 + log2_irq_thresh
);
4974 if (HCC_CANPARK(hcc_params
)) {
4975 /* HW default park == 3, on hardware that supports it (like
4976 * NVidia and ALI silicon), maximizes throughput on the async
4977 * schedule by avoiding QH fetches between transfers.
4979 * With fast usb storage devices and NForce2, "park" seems to
4980 * make problems: throughput reduction (!), data errors...
4983 park
= min_t(unsigned, park
, 3);
4987 fotg210_dbg(fotg210
, "park %d\n", park
);
4989 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4990 /* periodic schedule size can be smaller than default */
4992 temp
|= (FOTG210_TUNE_FLS
<< 2);
4994 fotg210
->command
= temp
;
4996 /* Accept arbitrarily long scatter-gather lists */
4997 if (!(hcd
->driver
->flags
& HCD_LOCAL_MEM
))
4998 hcd
->self
.sg_tablesize
= ~0;
5002 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5003 static int fotg210_run(struct usb_hcd
*hcd
)
5005 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5009 hcd
->uses_new_polling
= 1;
5011 /* EHCI spec section 4.1 */
5013 fotg210_writel(fotg210
, fotg210
->periodic_dma
,
5014 &fotg210
->regs
->frame_list
);
5015 fotg210_writel(fotg210
, (u32
)fotg210
->async
->qh_dma
,
5016 &fotg210
->regs
->async_next
);
5019 * hcc_params controls whether fotg210->regs->segment must (!!!)
5020 * be used; it constrains QH/ITD/SITD and QTD locations.
5021 * dma_pool consistent memory always uses segment zero.
5022 * streaming mappings for I/O buffers, like pci_map_single(),
5023 * can return segments above 4GB, if the device allows.
5025 * NOTE: the dma mask is visible through dev->dma_mask, so
5026 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5027 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5028 * host side drivers though.
5030 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
5033 * Philips, Intel, and maybe others need CMD_RUN before the
5034 * root hub will detect new devices (why?); NEC doesn't
5036 fotg210
->command
&= ~(CMD_IAAD
|CMD_PSE
|CMD_ASE
|CMD_RESET
);
5037 fotg210
->command
|= CMD_RUN
;
5038 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
5039 dbg_cmd(fotg210
, "init", fotg210
->command
);
5042 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5043 * are explicitly handed to companion controller(s), so no TT is
5044 * involved with the root hub. (Except where one is integrated,
5045 * and there's no companion controller unless maybe for USB OTG.)
5047 * Turning on the CF flag will transfer ownership of all ports
5048 * from the companions to the EHCI controller. If any of the
5049 * companions are in the middle of a port reset at the time, it
5050 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5051 * guarantees that no resets are in progress. After we set CF,
5052 * a short delay lets the hardware catch up; new resets shouldn't
5053 * be started before the port switching actions could complete.
5055 down_write(&ehci_cf_port_reset_rwsem
);
5056 fotg210
->rh_state
= FOTG210_RH_RUNNING
;
5057 /* unblock posted writes */
5058 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5059 usleep_range(5000, 10000);
5060 up_write(&ehci_cf_port_reset_rwsem
);
5061 fotg210
->last_periodic_enable
= ktime_get_real();
5063 temp
= HC_VERSION(fotg210
,
5064 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5065 fotg210_info(fotg210
,
5066 "USB %x.%x started, EHCI %x.%02x\n",
5067 ((fotg210
->sbrn
& 0xf0) >> 4), (fotg210
->sbrn
& 0x0f),
5068 temp
>> 8, temp
& 0xff);
5070 fotg210_writel(fotg210
, INTR_MASK
,
5071 &fotg210
->regs
->intr_enable
); /* Turn On Interrupts */
5073 /* GRR this is run-once init(), being done every time the HC starts.
5074 * So long as they're part of class devices, we can't do it init()
5075 * since the class device isn't created that early.
5077 create_debug_files(fotg210
);
5078 create_sysfs_files(fotg210
);
5083 static int fotg210_setup(struct usb_hcd
*hcd
)
5085 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5088 fotg210
->regs
= (void __iomem
*)fotg210
->caps
+
5090 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5091 dbg_hcs_params(fotg210
, "reset");
5092 dbg_hcc_params(fotg210
, "reset");
5094 /* cache this readonly data; minimize chip reads */
5095 fotg210
->hcs_params
= fotg210_readl(fotg210
,
5096 &fotg210
->caps
->hcs_params
);
5098 fotg210
->sbrn
= HCD_USB2
;
5100 /* data structure init */
5101 retval
= hcd_fotg210_init(hcd
);
5105 retval
= fotg210_halt(fotg210
);
5109 fotg210_reset(fotg210
);
5114 static irqreturn_t
fotg210_irq(struct usb_hcd
*hcd
)
5116 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5117 u32 status
, masked_status
, pcd_status
= 0, cmd
;
5120 spin_lock(&fotg210
->lock
);
5122 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
5124 /* e.g. cardbus physical eject */
5125 if (status
== ~(u32
) 0) {
5126 fotg210_dbg(fotg210
, "device removed\n");
5131 * We don't use STS_FLR, but some controllers don't like it to
5132 * remain on, so mask it out along with the other status bits.
5134 masked_status
= status
& (INTR_MASK
| STS_FLR
);
5137 if (!masked_status
||
5138 unlikely(fotg210
->rh_state
== FOTG210_RH_HALTED
)) {
5139 spin_unlock(&fotg210
->lock
);
5143 /* clear (just) interrupts */
5144 fotg210_writel(fotg210
, masked_status
, &fotg210
->regs
->status
);
5145 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5148 /* unrequested/ignored: Frame List Rollover */
5149 dbg_status(fotg210
, "irq", status
);
5151 /* INT, ERR, and IAA interrupt rates can be throttled */
5153 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5154 if (likely((status
& (STS_INT
|STS_ERR
)) != 0)) {
5155 if (likely((status
& STS_ERR
) == 0))
5156 COUNT(fotg210
->stats
.normal
);
5158 COUNT(fotg210
->stats
.error
);
5162 /* complete the unlinking of some qh [4.15.2.3] */
5163 if (status
& STS_IAA
) {
5165 /* Turn off the IAA watchdog */
5166 fotg210
->enabled_hrtimer_events
&=
5167 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG
);
5170 * Mild optimization: Allow another IAAD to reset the
5171 * hrtimer, if one occurs before the next expiration.
5172 * In theory we could always cancel the hrtimer, but
5173 * tests show that about half the time it will be reset
5174 * for some other event anyway.
5176 if (fotg210
->next_hrtimer_event
== FOTG210_HRTIMER_IAA_WATCHDOG
)
5177 ++fotg210
->next_hrtimer_event
;
5179 /* guard against (alleged) silicon errata */
5181 fotg210_dbg(fotg210
, "IAA with IAAD still set?\n");
5182 if (fotg210
->async_iaa
) {
5183 COUNT(fotg210
->stats
.iaa
);
5184 end_unlink_async(fotg210
);
5186 fotg210_dbg(fotg210
, "IAA with nothing unlinked?\n");
5189 /* remote wakeup [4.3.1] */
5190 if (status
& STS_PCD
) {
5192 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
5194 /* kick root hub later */
5195 pcd_status
= status
;
5197 /* resume root hub? */
5198 if (fotg210
->rh_state
== FOTG210_RH_SUSPENDED
)
5199 usb_hcd_resume_root_hub(hcd
);
5201 pstatus
= fotg210_readl(fotg210
, status_reg
);
5203 if (test_bit(0, &fotg210
->suspended_ports
) &&
5204 ((pstatus
& PORT_RESUME
) ||
5205 !(pstatus
& PORT_SUSPEND
)) &&
5206 (pstatus
& PORT_PE
) &&
5207 fotg210
->reset_done
[0] == 0) {
5209 /* start 20 msec resume signaling from this port,
5210 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5211 * stop that signaling. Use 5 ms extra for safety,
5212 * like usb_port_resume() does.
5214 fotg210
->reset_done
[0] = jiffies
+ msecs_to_jiffies(25);
5215 set_bit(0, &fotg210
->resuming_ports
);
5216 fotg210_dbg(fotg210
, "port 1 remote wakeup\n");
5217 mod_timer(&hcd
->rh_timer
, fotg210
->reset_done
[0]);
5221 /* PCI errors [4.15.2.4] */
5222 if (unlikely((status
& STS_FATAL
) != 0)) {
5223 fotg210_err(fotg210
, "fatal error\n");
5224 dbg_cmd(fotg210
, "fatal", cmd
);
5225 dbg_status(fotg210
, "fatal", status
);
5229 /* Don't let the controller do anything more */
5230 fotg210
->shutdown
= true;
5231 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
5232 fotg210
->command
&= ~(CMD_RUN
| CMD_ASE
| CMD_PSE
);
5233 fotg210_writel(fotg210
, fotg210
->command
,
5234 &fotg210
->regs
->command
);
5235 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
5236 fotg210_handle_controller_death(fotg210
);
5238 /* Handle completions when the controller stops */
5243 fotg210_work(fotg210
);
5244 spin_unlock(&fotg210
->lock
);
5246 usb_hcd_poll_rh_status(hcd
);
5250 /* non-error returns are a promise to giveback() the urb later
5251 * we drop ownership so next owner (or urb unlink) can get it
5253 * urb + dev is in hcd.self.controller.urb_list
5254 * we're queueing TDs onto software and hardware lists
5256 * hcd-specific init for hcpriv hasn't been done yet
5258 * NOTE: control, bulk, and interrupt share the same code to append TDs
5259 * to a (possibly active) QH, and the same QH scanning code.
5261 static int fotg210_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
5264 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5265 struct list_head qtd_list
;
5267 INIT_LIST_HEAD(&qtd_list
);
5269 switch (usb_pipetype(urb
->pipe
)) {
5271 /* qh_completions() code doesn't handle all the fault cases
5272 * in multi-TD control transfers. Even 1KB is rare anyway.
5274 if (urb
->transfer_buffer_length
> (16 * 1024))
5277 /* case PIPE_BULK: */
5279 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5281 return submit_async(fotg210
, urb
, &qtd_list
, mem_flags
);
5283 case PIPE_INTERRUPT
:
5284 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5286 return intr_submit(fotg210
, urb
, &qtd_list
, mem_flags
);
5288 case PIPE_ISOCHRONOUS
:
5289 return itd_submit(fotg210
, urb
, mem_flags
);
5293 /* remove from hardware lists
5294 * completions normally happen asynchronously
5297 static int fotg210_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
5299 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5300 struct fotg210_qh
*qh
;
5301 unsigned long flags
;
5304 spin_lock_irqsave(&fotg210
->lock
, flags
);
5305 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
5309 switch (usb_pipetype(urb
->pipe
)) {
5310 /* case PIPE_CONTROL: */
5311 /* case PIPE_BULK:*/
5313 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5316 switch (qh
->qh_state
) {
5317 case QH_STATE_LINKED
:
5318 case QH_STATE_COMPLETING
:
5319 start_unlink_async(fotg210
, qh
);
5321 case QH_STATE_UNLINK
:
5322 case QH_STATE_UNLINK_WAIT
:
5323 /* already started */
5326 /* QH might be waiting for a Clear-TT-Buffer */
5327 qh_completions(fotg210
, qh
);
5332 case PIPE_INTERRUPT
:
5333 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5336 switch (qh
->qh_state
) {
5337 case QH_STATE_LINKED
:
5338 case QH_STATE_COMPLETING
:
5339 start_unlink_intr(fotg210
, qh
);
5342 qh_completions(fotg210
, qh
);
5345 fotg210_dbg(fotg210
, "bogus qh %p state %d\n",
5351 case PIPE_ISOCHRONOUS
:
5354 /* wait till next completion, do it then. */
5355 /* completion irqs can wait up to 1024 msec, */
5359 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5363 /* bulk qh holds the data toggle */
5365 static void fotg210_endpoint_disable(struct usb_hcd
*hcd
,
5366 struct usb_host_endpoint
*ep
)
5368 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5369 unsigned long flags
;
5370 struct fotg210_qh
*qh
, *tmp
;
5372 /* ASSERT: any requests/urbs are being unlinked */
5373 /* ASSERT: nobody can be submitting urbs for this any more */
5376 spin_lock_irqsave(&fotg210
->lock
, flags
);
5381 /* endpoints can be iso streams. for now, we don't
5382 * accelerate iso completions ... so spin a while.
5384 if (qh
->hw
== NULL
) {
5385 struct fotg210_iso_stream
*stream
= ep
->hcpriv
;
5387 if (!list_empty(&stream
->td_list
))
5390 /* BUG_ON(!list_empty(&stream->free_list)); */
5395 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
5396 qh
->qh_state
= QH_STATE_IDLE
;
5397 switch (qh
->qh_state
) {
5398 case QH_STATE_LINKED
:
5399 case QH_STATE_COMPLETING
:
5400 for (tmp
= fotg210
->async
->qh_next
.qh
;
5402 tmp
= tmp
->qh_next
.qh
)
5404 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5405 * may already be unlinked.
5408 start_unlink_async(fotg210
, qh
);
5410 case QH_STATE_UNLINK
: /* wait for hw to finish? */
5411 case QH_STATE_UNLINK_WAIT
:
5413 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5414 schedule_timeout_uninterruptible(1);
5416 case QH_STATE_IDLE
: /* fully unlinked */
5417 if (qh
->clearing_tt
)
5419 if (list_empty(&qh
->qtd_list
)) {
5420 qh_destroy(fotg210
, qh
);
5425 /* caller was supposed to have unlinked any requests;
5426 * that's not our job. just leak this memory.
5428 fotg210_err(fotg210
, "qh %p (#%02x) state %d%s\n",
5429 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
5430 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
5435 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5438 static void fotg210_endpoint_reset(struct usb_hcd
*hcd
,
5439 struct usb_host_endpoint
*ep
)
5441 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5442 struct fotg210_qh
*qh
;
5443 int eptype
= usb_endpoint_type(&ep
->desc
);
5444 int epnum
= usb_endpoint_num(&ep
->desc
);
5445 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
5446 unsigned long flags
;
5448 if (eptype
!= USB_ENDPOINT_XFER_BULK
&& eptype
!= USB_ENDPOINT_XFER_INT
)
5451 spin_lock_irqsave(&fotg210
->lock
, flags
);
5454 /* For Bulk and Interrupt endpoints we maintain the toggle state
5455 * in the hardware; the toggle bits in udev aren't used at all.
5456 * When an endpoint is reset by usb_clear_halt() we must reset
5457 * the toggle bit in the QH.
5460 usb_settoggle(qh
->dev
, epnum
, is_out
, 0);
5461 if (!list_empty(&qh
->qtd_list
)) {
5462 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5463 } else if (qh
->qh_state
== QH_STATE_LINKED
||
5464 qh
->qh_state
== QH_STATE_COMPLETING
) {
5466 /* The toggle value in the QH can't be updated
5467 * while the QH is active. Unlink it now;
5468 * re-linking will call qh_refresh().
5470 if (eptype
== USB_ENDPOINT_XFER_BULK
)
5471 start_unlink_async(fotg210
, qh
);
5473 start_unlink_intr(fotg210
, qh
);
5476 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5479 static int fotg210_get_frame(struct usb_hcd
*hcd
)
5481 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5483 return (fotg210_read_frame_index(fotg210
) >> 3) %
5484 fotg210
->periodic_size
;
5487 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5488 * because its registers (and irq) are shared between host/gadget/otg
5489 * functions and in order to facilitate role switching we cannot
5490 * give the fotg210 driver exclusive access to those.
5492 MODULE_DESCRIPTION(DRIVER_DESC
);
5493 MODULE_AUTHOR(DRIVER_AUTHOR
);
5494 MODULE_LICENSE("GPL");
5496 static const struct hc_driver fotg210_fotg210_hc_driver
= {
5497 .description
= hcd_name
,
5498 .product_desc
= "Faraday USB2.0 Host Controller",
5499 .hcd_priv_size
= sizeof(struct fotg210_hcd
),
5502 * generic hardware linkage
5505 .flags
= HCD_MEMORY
| HCD_USB2
,
5508 * basic lifecycle operations
5510 .reset
= hcd_fotg210_init
,
5511 .start
= fotg210_run
,
5512 .stop
= fotg210_stop
,
5513 .shutdown
= fotg210_shutdown
,
5516 * managing i/o requests and associated device resources
5518 .urb_enqueue
= fotg210_urb_enqueue
,
5519 .urb_dequeue
= fotg210_urb_dequeue
,
5520 .endpoint_disable
= fotg210_endpoint_disable
,
5521 .endpoint_reset
= fotg210_endpoint_reset
,
5524 * scheduling support
5526 .get_frame_number
= fotg210_get_frame
,
5531 .hub_status_data
= fotg210_hub_status_data
,
5532 .hub_control
= fotg210_hub_control
,
5533 .bus_suspend
= fotg210_bus_suspend
,
5534 .bus_resume
= fotg210_bus_resume
,
5536 .relinquish_port
= fotg210_relinquish_port
,
5537 .port_handed_over
= fotg210_port_handed_over
,
5539 .clear_tt_buffer_complete
= fotg210_clear_tt_buffer_complete
,
5542 static void fotg210_init(struct fotg210_hcd
*fotg210
)
5546 iowrite32(GMIR_MDEV_INT
| GMIR_MOTG_INT
| GMIR_INT_POLARITY
,
5547 &fotg210
->regs
->gmir
);
5549 value
= ioread32(&fotg210
->regs
->otgcsr
);
5550 value
&= ~OTGCSR_A_BUS_DROP
;
5551 value
|= OTGCSR_A_BUS_REQ
;
5552 iowrite32(value
, &fotg210
->regs
->otgcsr
);
5556 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5558 * Allocates basic resources for this USB host controller, and
5559 * then invokes the start() method for the HCD associated with it
5560 * through the hotplug entry's driver_data.
5562 static int fotg210_hcd_probe(struct platform_device
*pdev
)
5564 struct device
*dev
= &pdev
->dev
;
5565 struct usb_hcd
*hcd
;
5566 struct resource
*res
;
5568 int retval
= -ENODEV
;
5569 struct fotg210_hcd
*fotg210
;
5574 pdev
->dev
.power
.power_state
= PMSG_ON
;
5576 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
5578 dev_err(dev
, "Found HC with no IRQ. Check %s setup!\n",
5585 hcd
= usb_create_hcd(&fotg210_fotg210_hc_driver
, dev
,
5588 dev_err(dev
, "failed to create hcd with err %d\n", retval
);
5590 goto fail_create_hcd
;
5595 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5596 hcd
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
5597 if (IS_ERR(hcd
->regs
)) {
5598 retval
= PTR_ERR(hcd
->regs
);
5602 hcd
->rsrc_start
= res
->start
;
5603 hcd
->rsrc_len
= resource_size(res
);
5605 fotg210
= hcd_to_fotg210(hcd
);
5607 fotg210
->caps
= hcd
->regs
;
5609 retval
= fotg210_setup(hcd
);
5613 fotg210_init(fotg210
);
5615 retval
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
5617 dev_err(dev
, "failed to add hcd with err %d\n", retval
);
5620 device_wakeup_enable(hcd
->self
.controller
);
5627 dev_err(dev
, "init %s fail, %d\n", dev_name(dev
), retval
);
5632 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5633 * @dev: USB Host Controller being removed
5636 static int fotg210_hcd_remove(struct platform_device
*pdev
)
5638 struct device
*dev
= &pdev
->dev
;
5639 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
5644 usb_remove_hcd(hcd
);
5650 static struct platform_driver fotg210_hcd_driver
= {
5652 .name
= "fotg210-hcd",
5654 .probe
= fotg210_hcd_probe
,
5655 .remove
= fotg210_hcd_remove
,
5658 static int __init
fotg210_hcd_init(void)
5665 pr_info("%s: " DRIVER_DESC
"\n", hcd_name
);
5666 set_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5667 if (test_bit(USB_UHCI_LOADED
, &usb_hcds_loaded
) ||
5668 test_bit(USB_OHCI_LOADED
, &usb_hcds_loaded
))
5669 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5671 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5672 hcd_name
, sizeof(struct fotg210_qh
),
5673 sizeof(struct fotg210_qtd
),
5674 sizeof(struct fotg210_itd
));
5676 fotg210_debug_root
= debugfs_create_dir("fotg210", usb_debug_root
);
5678 retval
= platform_driver_register(&fotg210_hcd_driver
);
5684 debugfs_remove(fotg210_debug_root
);
5685 fotg210_debug_root
= NULL
;
5687 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5690 module_init(fotg210_hcd_init
);
5692 static void __exit
fotg210_hcd_cleanup(void)
5694 platform_driver_unregister(&fotg210_hcd_driver
);
5695 debugfs_remove(fotg210_debug_root
);
5696 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5698 module_exit(fotg210_hcd_cleanup
);