1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
33 #define DRV_MODULE_NAME "n2_crypto"
34 #define DRV_MODULE_VERSION "0.2"
35 #define DRV_MODULE_RELDATE "July 28, 2011"
37 static const char version
[] =
38 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION
);
45 #define N2_CRA_PRIORITY 200
47 static DEFINE_MUTEX(spu_lock
);
51 unsigned long qhandle
;
58 struct list_head jobs
;
65 struct list_head list
;
68 static struct spu_queue
**cpu_to_cwq
;
69 static struct spu_queue
**cpu_to_mau
;
71 static unsigned long spu_next_offset(struct spu_queue
*q
, unsigned long off
)
73 if (q
->q_type
== HV_NCS_QTYPE_MAU
) {
74 off
+= MAU_ENTRY_SIZE
;
75 if (off
== (MAU_ENTRY_SIZE
* MAU_NUM_ENTRIES
))
78 off
+= CWQ_ENTRY_SIZE
;
79 if (off
== (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
))
85 struct n2_request_common
{
86 struct list_head entry
;
89 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
91 /* An async job request records the final tail value it used in
92 * n2_request_common->offset, test to see if that offset is in
93 * the range old_head, new_head, inclusive.
95 static inline bool job_finished(struct spu_queue
*q
, unsigned int offset
,
96 unsigned long old_head
, unsigned long new_head
)
98 if (old_head
<= new_head
) {
99 if (offset
> old_head
&& offset
<= new_head
)
102 if (offset
> old_head
|| offset
<= new_head
)
108 /* When the HEAD marker is unequal to the actual HEAD, we get
109 * a virtual device INO interrupt. We should process the
110 * completed CWQ entries and adjust the HEAD marker to clear
113 static irqreturn_t
cwq_intr(int irq
, void *dev_id
)
115 unsigned long off
, new_head
, hv_ret
;
116 struct spu_queue
*q
= dev_id
;
118 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
119 smp_processor_id(), q
->qhandle
);
123 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &new_head
);
125 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
126 smp_processor_id(), new_head
, hv_ret
);
128 for (off
= q
->head
; off
!= new_head
; off
= spu_next_offset(q
, off
)) {
132 hv_ret
= sun4v_ncs_sethead_marker(q
->qhandle
, new_head
);
133 if (hv_ret
== HV_EOK
)
136 spin_unlock(&q
->lock
);
141 static irqreturn_t
mau_intr(int irq
, void *dev_id
)
143 struct spu_queue
*q
= dev_id
;
144 unsigned long head
, hv_ret
;
148 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
149 smp_processor_id(), q
->qhandle
);
151 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &head
);
153 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
154 smp_processor_id(), head
, hv_ret
);
156 sun4v_ncs_sethead_marker(q
->qhandle
, head
);
158 spin_unlock(&q
->lock
);
163 static void *spu_queue_next(struct spu_queue
*q
, void *cur
)
165 return q
->q
+ spu_next_offset(q
, cur
- q
->q
);
168 static int spu_queue_num_free(struct spu_queue
*q
)
170 unsigned long head
= q
->head
;
171 unsigned long tail
= q
->tail
;
172 unsigned long end
= (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
);
178 diff
= (end
- tail
) + head
;
180 return (diff
/ CWQ_ENTRY_SIZE
) - 1;
183 static void *spu_queue_alloc(struct spu_queue
*q
, int num_entries
)
185 int avail
= spu_queue_num_free(q
);
187 if (avail
>= num_entries
)
188 return q
->q
+ q
->tail
;
193 static unsigned long spu_queue_submit(struct spu_queue
*q
, void *last
)
195 unsigned long hv_ret
, new_tail
;
197 new_tail
= spu_next_offset(q
, last
- q
->q
);
199 hv_ret
= sun4v_ncs_settail(q
->qhandle
, new_tail
);
200 if (hv_ret
== HV_EOK
)
205 static u64
control_word_base(unsigned int len
, unsigned int hmac_key_len
,
206 int enc_type
, int auth_type
,
207 unsigned int hash_len
,
208 bool sfas
, bool sob
, bool eob
, bool encrypt
,
211 u64 word
= (len
- 1) & CONTROL_LEN
;
213 word
|= ((u64
) opcode
<< CONTROL_OPCODE_SHIFT
);
214 word
|= ((u64
) enc_type
<< CONTROL_ENC_TYPE_SHIFT
);
215 word
|= ((u64
) auth_type
<< CONTROL_AUTH_TYPE_SHIFT
);
217 word
|= CONTROL_STORE_FINAL_AUTH_STATE
;
219 word
|= CONTROL_START_OF_BLOCK
;
221 word
|= CONTROL_END_OF_BLOCK
;
223 word
|= CONTROL_ENCRYPT
;
225 word
|= ((u64
) (hmac_key_len
- 1)) << CONTROL_HMAC_KEY_LEN_SHIFT
;
227 word
|= ((u64
) (hash_len
- 1)) << CONTROL_HASH_LEN_SHIFT
;
233 static inline bool n2_should_run_async(struct spu_queue
*qp
, int this_len
)
235 if (this_len
>= 64 ||
236 qp
->head
!= qp
->tail
)
242 struct n2_ahash_alg
{
243 struct list_head entry
;
245 const u32
*hash_init
;
250 struct ahash_alg alg
;
253 static inline struct n2_ahash_alg
*n2_ahash_alg(struct crypto_tfm
*tfm
)
255 struct crypto_alg
*alg
= tfm
->__crt_alg
;
256 struct ahash_alg
*ahash_alg
;
258 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
260 return container_of(ahash_alg
, struct n2_ahash_alg
, alg
);
264 const char *child_alg
;
265 struct n2_ahash_alg derived
;
268 static inline struct n2_hmac_alg
*n2_hmac_alg(struct crypto_tfm
*tfm
)
270 struct crypto_alg
*alg
= tfm
->__crt_alg
;
271 struct ahash_alg
*ahash_alg
;
273 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
275 return container_of(ahash_alg
, struct n2_hmac_alg
, derived
.alg
);
279 struct crypto_ahash
*fallback_tfm
;
282 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
285 struct n2_hash_ctx base
;
287 struct crypto_shash
*child_shash
;
290 unsigned char hash_key
[N2_HASH_KEY_MAX
];
293 struct n2_hash_req_ctx
{
295 struct md5_state md5
;
296 struct sha1_state sha1
;
297 struct sha256_state sha256
;
300 struct ahash_request fallback_req
;
303 static int n2_hash_async_init(struct ahash_request
*req
)
305 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
306 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
307 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
309 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
310 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
312 return crypto_ahash_init(&rctx
->fallback_req
);
315 static int n2_hash_async_update(struct ahash_request
*req
)
317 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
318 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
319 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
321 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
322 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
323 rctx
->fallback_req
.nbytes
= req
->nbytes
;
324 rctx
->fallback_req
.src
= req
->src
;
326 return crypto_ahash_update(&rctx
->fallback_req
);
329 static int n2_hash_async_final(struct ahash_request
*req
)
331 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
332 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
333 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
335 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
336 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
337 rctx
->fallback_req
.result
= req
->result
;
339 return crypto_ahash_final(&rctx
->fallback_req
);
342 static int n2_hash_async_finup(struct ahash_request
*req
)
344 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
345 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
346 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
348 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
349 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
350 rctx
->fallback_req
.nbytes
= req
->nbytes
;
351 rctx
->fallback_req
.src
= req
->src
;
352 rctx
->fallback_req
.result
= req
->result
;
354 return crypto_ahash_finup(&rctx
->fallback_req
);
357 static int n2_hash_cra_init(struct crypto_tfm
*tfm
)
359 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
360 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
361 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
362 struct crypto_ahash
*fallback_tfm
;
365 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
366 CRYPTO_ALG_NEED_FALLBACK
);
367 if (IS_ERR(fallback_tfm
)) {
368 pr_warning("Fallback driver '%s' could not be loaded!\n",
369 fallback_driver_name
);
370 err
= PTR_ERR(fallback_tfm
);
374 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
375 crypto_ahash_reqsize(fallback_tfm
)));
377 ctx
->fallback_tfm
= fallback_tfm
;
384 static void n2_hash_cra_exit(struct crypto_tfm
*tfm
)
386 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
387 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
389 crypto_free_ahash(ctx
->fallback_tfm
);
392 static int n2_hmac_cra_init(struct crypto_tfm
*tfm
)
394 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
395 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
396 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
397 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(tfm
);
398 struct crypto_ahash
*fallback_tfm
;
399 struct crypto_shash
*child_shash
;
402 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
403 CRYPTO_ALG_NEED_FALLBACK
);
404 if (IS_ERR(fallback_tfm
)) {
405 pr_warning("Fallback driver '%s' could not be loaded!\n",
406 fallback_driver_name
);
407 err
= PTR_ERR(fallback_tfm
);
411 child_shash
= crypto_alloc_shash(n2alg
->child_alg
, 0, 0);
412 if (IS_ERR(child_shash
)) {
413 pr_warning("Child shash '%s' could not be loaded!\n",
415 err
= PTR_ERR(child_shash
);
416 goto out_free_fallback
;
419 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
420 crypto_ahash_reqsize(fallback_tfm
)));
422 ctx
->child_shash
= child_shash
;
423 ctx
->base
.fallback_tfm
= fallback_tfm
;
427 crypto_free_ahash(fallback_tfm
);
433 static void n2_hmac_cra_exit(struct crypto_tfm
*tfm
)
435 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
436 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
438 crypto_free_ahash(ctx
->base
.fallback_tfm
);
439 crypto_free_shash(ctx
->child_shash
);
442 static int n2_hmac_async_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
445 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
446 struct crypto_shash
*child_shash
= ctx
->child_shash
;
447 struct crypto_ahash
*fallback_tfm
;
448 SHASH_DESC_ON_STACK(shash
, child_shash
);
451 fallback_tfm
= ctx
->base
.fallback_tfm
;
452 err
= crypto_ahash_setkey(fallback_tfm
, key
, keylen
);
456 shash
->tfm
= child_shash
;
457 shash
->flags
= crypto_ahash_get_flags(tfm
) &
458 CRYPTO_TFM_REQ_MAY_SLEEP
;
460 bs
= crypto_shash_blocksize(child_shash
);
461 ds
= crypto_shash_digestsize(child_shash
);
462 BUG_ON(ds
> N2_HASH_KEY_MAX
);
464 err
= crypto_shash_digest(shash
, key
, keylen
,
469 } else if (keylen
<= N2_HASH_KEY_MAX
)
470 memcpy(ctx
->hash_key
, key
, keylen
);
472 ctx
->hash_key_len
= keylen
;
477 static unsigned long wait_for_tail(struct spu_queue
*qp
)
479 unsigned long head
, hv_ret
;
482 hv_ret
= sun4v_ncs_gethead(qp
->qhandle
, &head
);
483 if (hv_ret
!= HV_EOK
) {
484 pr_err("Hypervisor error on gethead\n");
487 if (head
== qp
->tail
) {
495 static unsigned long submit_and_wait_for_tail(struct spu_queue
*qp
,
496 struct cwq_initial_entry
*ent
)
498 unsigned long hv_ret
= spu_queue_submit(qp
, ent
);
500 if (hv_ret
== HV_EOK
)
501 hv_ret
= wait_for_tail(qp
);
506 static int n2_do_async_digest(struct ahash_request
*req
,
507 unsigned int auth_type
, unsigned int digest_size
,
508 unsigned int result_size
, void *hash_loc
,
509 unsigned long auth_key
, unsigned int auth_key_len
)
511 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
512 struct cwq_initial_entry
*ent
;
513 struct crypto_hash_walk walk
;
514 struct spu_queue
*qp
;
519 /* The total effective length of the operation may not
522 if (unlikely(req
->nbytes
> (1 << 16))) {
523 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
524 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
526 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
527 rctx
->fallback_req
.base
.flags
=
528 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
529 rctx
->fallback_req
.nbytes
= req
->nbytes
;
530 rctx
->fallback_req
.src
= req
->src
;
531 rctx
->fallback_req
.result
= req
->result
;
533 return crypto_ahash_digest(&rctx
->fallback_req
);
536 nbytes
= crypto_hash_walk_first(req
, &walk
);
539 qp
= cpu_to_cwq
[cpu
];
543 spin_lock_irqsave(&qp
->lock
, flags
);
545 /* XXX can do better, improve this later by doing a by-hand scatterlist
548 ent
= qp
->q
+ qp
->tail
;
550 ent
->control
= control_word_base(nbytes
, auth_key_len
, 0,
551 auth_type
, digest_size
,
552 false, true, false, false,
555 ent
->src_addr
= __pa(walk
.data
);
556 ent
->auth_key_addr
= auth_key
;
557 ent
->auth_iv_addr
= __pa(hash_loc
);
558 ent
->final_auth_state_addr
= 0UL;
559 ent
->enc_key_addr
= 0UL;
560 ent
->enc_iv_addr
= 0UL;
561 ent
->dest_addr
= __pa(hash_loc
);
563 nbytes
= crypto_hash_walk_done(&walk
, 0);
565 ent
= spu_queue_next(qp
, ent
);
567 ent
->control
= (nbytes
- 1);
568 ent
->src_addr
= __pa(walk
.data
);
569 ent
->auth_key_addr
= 0UL;
570 ent
->auth_iv_addr
= 0UL;
571 ent
->final_auth_state_addr
= 0UL;
572 ent
->enc_key_addr
= 0UL;
573 ent
->enc_iv_addr
= 0UL;
574 ent
->dest_addr
= 0UL;
576 nbytes
= crypto_hash_walk_done(&walk
, 0);
578 ent
->control
|= CONTROL_END_OF_BLOCK
;
580 if (submit_and_wait_for_tail(qp
, ent
) != HV_EOK
)
585 spin_unlock_irqrestore(&qp
->lock
, flags
);
588 memcpy(req
->result
, hash_loc
, result_size
);
595 static int n2_hash_async_digest(struct ahash_request
*req
)
597 struct n2_ahash_alg
*n2alg
= n2_ahash_alg(req
->base
.tfm
);
598 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
601 ds
= n2alg
->digest_size
;
602 if (unlikely(req
->nbytes
== 0)) {
603 memcpy(req
->result
, n2alg
->hash_zero
, ds
);
606 memcpy(&rctx
->u
, n2alg
->hash_init
, n2alg
->hw_op_hashsz
);
608 return n2_do_async_digest(req
, n2alg
->auth_type
,
609 n2alg
->hw_op_hashsz
, ds
,
613 static int n2_hmac_async_digest(struct ahash_request
*req
)
615 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(req
->base
.tfm
);
616 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
617 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
618 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
621 ds
= n2alg
->derived
.digest_size
;
622 if (unlikely(req
->nbytes
== 0) ||
623 unlikely(ctx
->hash_key_len
> N2_HASH_KEY_MAX
)) {
624 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
625 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
627 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
628 rctx
->fallback_req
.base
.flags
=
629 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
630 rctx
->fallback_req
.nbytes
= req
->nbytes
;
631 rctx
->fallback_req
.src
= req
->src
;
632 rctx
->fallback_req
.result
= req
->result
;
634 return crypto_ahash_digest(&rctx
->fallback_req
);
636 memcpy(&rctx
->u
, n2alg
->derived
.hash_init
,
637 n2alg
->derived
.hw_op_hashsz
);
639 return n2_do_async_digest(req
, n2alg
->derived
.hmac_type
,
640 n2alg
->derived
.hw_op_hashsz
, ds
,
642 __pa(&ctx
->hash_key
),
646 struct n2_cipher_context
{
650 u8 aes
[AES_MAX_KEY_SIZE
];
651 u8 des
[DES_KEY_SIZE
];
652 u8 des3
[3 * DES_KEY_SIZE
];
653 u8 arc4
[258]; /* S-box, X, Y */
657 #define N2_CHUNK_ARR_LEN 16
659 struct n2_crypto_chunk
{
660 struct list_head entry
;
661 unsigned long iv_paddr
: 44;
662 unsigned long arr_len
: 20;
663 unsigned long dest_paddr
;
664 unsigned long dest_final
;
666 unsigned long src_paddr
: 44;
667 unsigned long src_len
: 20;
668 } arr
[N2_CHUNK_ARR_LEN
];
671 struct n2_request_context
{
672 struct ablkcipher_walk walk
;
673 struct list_head chunk_list
;
674 struct n2_crypto_chunk chunk
;
678 /* The SPU allows some level of flexibility for partial cipher blocks
679 * being specified in a descriptor.
681 * It merely requires that every descriptor's length field is at least
682 * as large as the cipher block size. This means that a cipher block
683 * can span at most 2 descriptors. However, this does not allow a
684 * partial block to span into the final descriptor as that would
685 * violate the rule (since every descriptor's length must be at lest
686 * the block size). So, for example, assuming an 8 byte block size:
688 * 0xe --> 0xa --> 0x8
690 * is a valid length sequence, whereas:
692 * 0xe --> 0xb --> 0x7
694 * is not a valid sequence.
697 struct n2_cipher_alg
{
698 struct list_head entry
;
700 struct crypto_alg alg
;
703 static inline struct n2_cipher_alg
*n2_cipher_alg(struct crypto_tfm
*tfm
)
705 struct crypto_alg
*alg
= tfm
->__crt_alg
;
707 return container_of(alg
, struct n2_cipher_alg
, alg
);
710 struct n2_cipher_request_context
{
711 struct ablkcipher_walk walk
;
714 static int n2_aes_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
717 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
718 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
719 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
721 ctx
->enc_type
= (n2alg
->enc_type
& ENC_TYPE_CHAINING_MASK
);
724 case AES_KEYSIZE_128
:
725 ctx
->enc_type
|= ENC_TYPE_ALG_AES128
;
727 case AES_KEYSIZE_192
:
728 ctx
->enc_type
|= ENC_TYPE_ALG_AES192
;
730 case AES_KEYSIZE_256
:
731 ctx
->enc_type
|= ENC_TYPE_ALG_AES256
;
734 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
738 ctx
->key_len
= keylen
;
739 memcpy(ctx
->key
.aes
, key
, keylen
);
743 static int n2_des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
746 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
747 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
748 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
749 u32 tmp
[DES_EXPKEY_WORDS
];
752 ctx
->enc_type
= n2alg
->enc_type
;
754 if (keylen
!= DES_KEY_SIZE
) {
755 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
759 err
= des_ekey(tmp
, key
);
760 if (err
== 0 && (tfm
->crt_flags
& CRYPTO_TFM_REQ_WEAK_KEY
)) {
761 tfm
->crt_flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
765 ctx
->key_len
= keylen
;
766 memcpy(ctx
->key
.des
, key
, keylen
);
770 static int n2_3des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
773 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
774 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
775 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
777 ctx
->enc_type
= n2alg
->enc_type
;
779 if (keylen
!= (3 * DES_KEY_SIZE
)) {
780 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
783 ctx
->key_len
= keylen
;
784 memcpy(ctx
->key
.des3
, key
, keylen
);
788 static int n2_arc4_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
791 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
792 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
793 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
794 u8
*s
= ctx
->key
.arc4
;
799 ctx
->enc_type
= n2alg
->enc_type
;
804 for (i
= 0; i
< 256; i
++)
806 for (i
= 0; i
< 256; i
++) {
808 j
= (j
+ key
[k
] + a
) & 0xff;
818 static inline int cipher_descriptor_len(int nbytes
, unsigned int block_size
)
820 int this_len
= nbytes
;
822 this_len
-= (nbytes
& (block_size
- 1));
823 return this_len
> (1 << 16) ? (1 << 16) : this_len
;
826 static int __n2_crypt_chunk(struct crypto_tfm
*tfm
, struct n2_crypto_chunk
*cp
,
827 struct spu_queue
*qp
, bool encrypt
)
829 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
830 struct cwq_initial_entry
*ent
;
834 ent
= spu_queue_alloc(qp
, cp
->arr_len
);
836 pr_info("queue_alloc() of %d fails\n",
841 in_place
= (cp
->dest_paddr
== cp
->arr
[0].src_paddr
);
843 ent
->control
= control_word_base(cp
->arr
[0].src_len
,
844 0, ctx
->enc_type
, 0, 0,
845 false, true, false, encrypt
,
847 (in_place
? OPCODE_INPLACE_BIT
: 0));
848 ent
->src_addr
= cp
->arr
[0].src_paddr
;
849 ent
->auth_key_addr
= 0UL;
850 ent
->auth_iv_addr
= 0UL;
851 ent
->final_auth_state_addr
= 0UL;
852 ent
->enc_key_addr
= __pa(&ctx
->key
);
853 ent
->enc_iv_addr
= cp
->iv_paddr
;
854 ent
->dest_addr
= (in_place
? 0UL : cp
->dest_paddr
);
856 for (i
= 1; i
< cp
->arr_len
; i
++) {
857 ent
= spu_queue_next(qp
, ent
);
859 ent
->control
= cp
->arr
[i
].src_len
- 1;
860 ent
->src_addr
= cp
->arr
[i
].src_paddr
;
861 ent
->auth_key_addr
= 0UL;
862 ent
->auth_iv_addr
= 0UL;
863 ent
->final_auth_state_addr
= 0UL;
864 ent
->enc_key_addr
= 0UL;
865 ent
->enc_iv_addr
= 0UL;
866 ent
->dest_addr
= 0UL;
868 ent
->control
|= CONTROL_END_OF_BLOCK
;
870 return (spu_queue_submit(qp
, ent
) != HV_EOK
) ? -EINVAL
: 0;
873 static int n2_compute_chunks(struct ablkcipher_request
*req
)
875 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
876 struct ablkcipher_walk
*walk
= &rctx
->walk
;
877 struct n2_crypto_chunk
*chunk
;
878 unsigned long dest_prev
;
879 unsigned int tot_len
;
883 ablkcipher_walk_init(walk
, req
->dst
, req
->src
, req
->nbytes
);
884 err
= ablkcipher_walk_phys(req
, walk
);
888 INIT_LIST_HEAD(&rctx
->chunk_list
);
890 chunk
= &rctx
->chunk
;
891 INIT_LIST_HEAD(&chunk
->entry
);
893 chunk
->iv_paddr
= 0UL;
895 chunk
->dest_paddr
= 0UL;
897 prev_in_place
= false;
901 while ((nbytes
= walk
->nbytes
) != 0) {
902 unsigned long dest_paddr
, src_paddr
;
906 src_paddr
= (page_to_phys(walk
->src
.page
) +
908 dest_paddr
= (page_to_phys(walk
->dst
.page
) +
910 in_place
= (src_paddr
== dest_paddr
);
911 this_len
= cipher_descriptor_len(nbytes
, walk
->blocksize
);
913 if (chunk
->arr_len
!= 0) {
914 if (in_place
!= prev_in_place
||
916 dest_paddr
!= dest_prev
) ||
917 chunk
->arr_len
== N2_CHUNK_ARR_LEN
||
918 tot_len
+ this_len
> (1 << 16)) {
919 chunk
->dest_final
= dest_prev
;
920 list_add_tail(&chunk
->entry
,
922 chunk
= kzalloc(sizeof(*chunk
), GFP_ATOMIC
);
927 INIT_LIST_HEAD(&chunk
->entry
);
930 if (chunk
->arr_len
== 0) {
931 chunk
->dest_paddr
= dest_paddr
;
934 chunk
->arr
[chunk
->arr_len
].src_paddr
= src_paddr
;
935 chunk
->arr
[chunk
->arr_len
].src_len
= this_len
;
938 dest_prev
= dest_paddr
+ this_len
;
939 prev_in_place
= in_place
;
942 err
= ablkcipher_walk_done(req
, walk
, nbytes
- this_len
);
946 if (!err
&& chunk
->arr_len
!= 0) {
947 chunk
->dest_final
= dest_prev
;
948 list_add_tail(&chunk
->entry
, &rctx
->chunk_list
);
954 static void n2_chunk_complete(struct ablkcipher_request
*req
, void *final_iv
)
956 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
957 struct n2_crypto_chunk
*c
, *tmp
;
960 memcpy(rctx
->walk
.iv
, final_iv
, rctx
->walk
.blocksize
);
962 ablkcipher_walk_complete(&rctx
->walk
);
963 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
965 if (unlikely(c
!= &rctx
->chunk
))
971 static int n2_do_ecb(struct ablkcipher_request
*req
, bool encrypt
)
973 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
974 struct crypto_tfm
*tfm
= req
->base
.tfm
;
975 int err
= n2_compute_chunks(req
);
976 struct n2_crypto_chunk
*c
, *tmp
;
977 unsigned long flags
, hv_ret
;
978 struct spu_queue
*qp
;
983 qp
= cpu_to_cwq
[get_cpu()];
988 spin_lock_irqsave(&qp
->lock
, flags
);
990 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
991 err
= __n2_crypt_chunk(tfm
, c
, qp
, encrypt
);
995 if (unlikely(c
!= &rctx
->chunk
))
999 hv_ret
= wait_for_tail(qp
);
1000 if (hv_ret
!= HV_EOK
)
1004 spin_unlock_irqrestore(&qp
->lock
, flags
);
1009 n2_chunk_complete(req
, NULL
);
1013 static int n2_encrypt_ecb(struct ablkcipher_request
*req
)
1015 return n2_do_ecb(req
, true);
1018 static int n2_decrypt_ecb(struct ablkcipher_request
*req
)
1020 return n2_do_ecb(req
, false);
1023 static int n2_do_chaining(struct ablkcipher_request
*req
, bool encrypt
)
1025 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
1026 struct crypto_tfm
*tfm
= req
->base
.tfm
;
1027 unsigned long flags
, hv_ret
, iv_paddr
;
1028 int err
= n2_compute_chunks(req
);
1029 struct n2_crypto_chunk
*c
, *tmp
;
1030 struct spu_queue
*qp
;
1031 void *final_iv_addr
;
1033 final_iv_addr
= NULL
;
1038 qp
= cpu_to_cwq
[get_cpu()];
1043 spin_lock_irqsave(&qp
->lock
, flags
);
1046 iv_paddr
= __pa(rctx
->walk
.iv
);
1047 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
,
1049 c
->iv_paddr
= iv_paddr
;
1050 err
= __n2_crypt_chunk(tfm
, c
, qp
, true);
1053 iv_paddr
= c
->dest_final
- rctx
->walk
.blocksize
;
1054 list_del(&c
->entry
);
1055 if (unlikely(c
!= &rctx
->chunk
))
1058 final_iv_addr
= __va(iv_paddr
);
1060 list_for_each_entry_safe_reverse(c
, tmp
, &rctx
->chunk_list
,
1062 if (c
== &rctx
->chunk
) {
1063 iv_paddr
= __pa(rctx
->walk
.iv
);
1065 iv_paddr
= (tmp
->arr
[tmp
->arr_len
-1].src_paddr
+
1066 tmp
->arr
[tmp
->arr_len
-1].src_len
-
1067 rctx
->walk
.blocksize
);
1069 if (!final_iv_addr
) {
1072 pa
= (c
->arr
[c
->arr_len
-1].src_paddr
+
1073 c
->arr
[c
->arr_len
-1].src_len
-
1074 rctx
->walk
.blocksize
);
1075 final_iv_addr
= rctx
->temp_iv
;
1076 memcpy(rctx
->temp_iv
, __va(pa
),
1077 rctx
->walk
.blocksize
);
1079 c
->iv_paddr
= iv_paddr
;
1080 err
= __n2_crypt_chunk(tfm
, c
, qp
, false);
1083 list_del(&c
->entry
);
1084 if (unlikely(c
!= &rctx
->chunk
))
1089 hv_ret
= wait_for_tail(qp
);
1090 if (hv_ret
!= HV_EOK
)
1094 spin_unlock_irqrestore(&qp
->lock
, flags
);
1099 n2_chunk_complete(req
, err
? NULL
: final_iv_addr
);
1103 static int n2_encrypt_chaining(struct ablkcipher_request
*req
)
1105 return n2_do_chaining(req
, true);
1108 static int n2_decrypt_chaining(struct ablkcipher_request
*req
)
1110 return n2_do_chaining(req
, false);
1113 struct n2_cipher_tmpl
{
1115 const char *drv_name
;
1118 struct ablkcipher_alg ablkcipher
;
1121 static const struct n2_cipher_tmpl cipher_tmpls
[] = {
1122 /* ARC4: only ECB is supported (chaining bits ignored) */
1123 { .name
= "ecb(arc4)",
1124 .drv_name
= "ecb-arc4",
1126 .enc_type
= (ENC_TYPE_ALG_RC4_STREAM
|
1127 ENC_TYPE_CHAINING_ECB
),
1131 .setkey
= n2_arc4_setkey
,
1132 .encrypt
= n2_encrypt_ecb
,
1133 .decrypt
= n2_decrypt_ecb
,
1137 /* DES: ECB CBC and CFB are supported */
1138 { .name
= "ecb(des)",
1139 .drv_name
= "ecb-des",
1140 .block_size
= DES_BLOCK_SIZE
,
1141 .enc_type
= (ENC_TYPE_ALG_DES
|
1142 ENC_TYPE_CHAINING_ECB
),
1144 .min_keysize
= DES_KEY_SIZE
,
1145 .max_keysize
= DES_KEY_SIZE
,
1146 .setkey
= n2_des_setkey
,
1147 .encrypt
= n2_encrypt_ecb
,
1148 .decrypt
= n2_decrypt_ecb
,
1151 { .name
= "cbc(des)",
1152 .drv_name
= "cbc-des",
1153 .block_size
= DES_BLOCK_SIZE
,
1154 .enc_type
= (ENC_TYPE_ALG_DES
|
1155 ENC_TYPE_CHAINING_CBC
),
1157 .ivsize
= DES_BLOCK_SIZE
,
1158 .min_keysize
= DES_KEY_SIZE
,
1159 .max_keysize
= DES_KEY_SIZE
,
1160 .setkey
= n2_des_setkey
,
1161 .encrypt
= n2_encrypt_chaining
,
1162 .decrypt
= n2_decrypt_chaining
,
1165 { .name
= "cfb(des)",
1166 .drv_name
= "cfb-des",
1167 .block_size
= DES_BLOCK_SIZE
,
1168 .enc_type
= (ENC_TYPE_ALG_DES
|
1169 ENC_TYPE_CHAINING_CFB
),
1171 .min_keysize
= DES_KEY_SIZE
,
1172 .max_keysize
= DES_KEY_SIZE
,
1173 .setkey
= n2_des_setkey
,
1174 .encrypt
= n2_encrypt_chaining
,
1175 .decrypt
= n2_decrypt_chaining
,
1179 /* 3DES: ECB CBC and CFB are supported */
1180 { .name
= "ecb(des3_ede)",
1181 .drv_name
= "ecb-3des",
1182 .block_size
= DES_BLOCK_SIZE
,
1183 .enc_type
= (ENC_TYPE_ALG_3DES
|
1184 ENC_TYPE_CHAINING_ECB
),
1186 .min_keysize
= 3 * DES_KEY_SIZE
,
1187 .max_keysize
= 3 * DES_KEY_SIZE
,
1188 .setkey
= n2_3des_setkey
,
1189 .encrypt
= n2_encrypt_ecb
,
1190 .decrypt
= n2_decrypt_ecb
,
1193 { .name
= "cbc(des3_ede)",
1194 .drv_name
= "cbc-3des",
1195 .block_size
= DES_BLOCK_SIZE
,
1196 .enc_type
= (ENC_TYPE_ALG_3DES
|
1197 ENC_TYPE_CHAINING_CBC
),
1199 .ivsize
= DES_BLOCK_SIZE
,
1200 .min_keysize
= 3 * DES_KEY_SIZE
,
1201 .max_keysize
= 3 * DES_KEY_SIZE
,
1202 .setkey
= n2_3des_setkey
,
1203 .encrypt
= n2_encrypt_chaining
,
1204 .decrypt
= n2_decrypt_chaining
,
1207 { .name
= "cfb(des3_ede)",
1208 .drv_name
= "cfb-3des",
1209 .block_size
= DES_BLOCK_SIZE
,
1210 .enc_type
= (ENC_TYPE_ALG_3DES
|
1211 ENC_TYPE_CHAINING_CFB
),
1213 .min_keysize
= 3 * DES_KEY_SIZE
,
1214 .max_keysize
= 3 * DES_KEY_SIZE
,
1215 .setkey
= n2_3des_setkey
,
1216 .encrypt
= n2_encrypt_chaining
,
1217 .decrypt
= n2_decrypt_chaining
,
1220 /* AES: ECB CBC and CTR are supported */
1221 { .name
= "ecb(aes)",
1222 .drv_name
= "ecb-aes",
1223 .block_size
= AES_BLOCK_SIZE
,
1224 .enc_type
= (ENC_TYPE_ALG_AES128
|
1225 ENC_TYPE_CHAINING_ECB
),
1227 .min_keysize
= AES_MIN_KEY_SIZE
,
1228 .max_keysize
= AES_MAX_KEY_SIZE
,
1229 .setkey
= n2_aes_setkey
,
1230 .encrypt
= n2_encrypt_ecb
,
1231 .decrypt
= n2_decrypt_ecb
,
1234 { .name
= "cbc(aes)",
1235 .drv_name
= "cbc-aes",
1236 .block_size
= AES_BLOCK_SIZE
,
1237 .enc_type
= (ENC_TYPE_ALG_AES128
|
1238 ENC_TYPE_CHAINING_CBC
),
1240 .ivsize
= AES_BLOCK_SIZE
,
1241 .min_keysize
= AES_MIN_KEY_SIZE
,
1242 .max_keysize
= AES_MAX_KEY_SIZE
,
1243 .setkey
= n2_aes_setkey
,
1244 .encrypt
= n2_encrypt_chaining
,
1245 .decrypt
= n2_decrypt_chaining
,
1248 { .name
= "ctr(aes)",
1249 .drv_name
= "ctr-aes",
1250 .block_size
= AES_BLOCK_SIZE
,
1251 .enc_type
= (ENC_TYPE_ALG_AES128
|
1252 ENC_TYPE_CHAINING_COUNTER
),
1254 .ivsize
= AES_BLOCK_SIZE
,
1255 .min_keysize
= AES_MIN_KEY_SIZE
,
1256 .max_keysize
= AES_MAX_KEY_SIZE
,
1257 .setkey
= n2_aes_setkey
,
1258 .encrypt
= n2_encrypt_chaining
,
1259 .decrypt
= n2_encrypt_chaining
,
1264 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1266 static LIST_HEAD(cipher_algs
);
1268 struct n2_hash_tmpl
{
1270 const u8
*hash_zero
;
1271 const u32
*hash_init
;
1279 static const u32 md5_init
[MD5_HASH_WORDS
] = {
1280 cpu_to_le32(MD5_H0
),
1281 cpu_to_le32(MD5_H1
),
1282 cpu_to_le32(MD5_H2
),
1283 cpu_to_le32(MD5_H3
),
1285 static const u32 sha1_init
[SHA1_DIGEST_SIZE
/ 4] = {
1286 SHA1_H0
, SHA1_H1
, SHA1_H2
, SHA1_H3
, SHA1_H4
,
1288 static const u32 sha256_init
[SHA256_DIGEST_SIZE
/ 4] = {
1289 SHA256_H0
, SHA256_H1
, SHA256_H2
, SHA256_H3
,
1290 SHA256_H4
, SHA256_H5
, SHA256_H6
, SHA256_H7
,
1292 static const u32 sha224_init
[SHA256_DIGEST_SIZE
/ 4] = {
1293 SHA224_H0
, SHA224_H1
, SHA224_H2
, SHA224_H3
,
1294 SHA224_H4
, SHA224_H5
, SHA224_H6
, SHA224_H7
,
1297 static const struct n2_hash_tmpl hash_tmpls
[] = {
1299 .hash_zero
= md5_zero_message_hash
,
1300 .hash_init
= md5_init
,
1301 .auth_type
= AUTH_TYPE_MD5
,
1302 .hmac_type
= AUTH_TYPE_HMAC_MD5
,
1303 .hw_op_hashsz
= MD5_DIGEST_SIZE
,
1304 .digest_size
= MD5_DIGEST_SIZE
,
1305 .block_size
= MD5_HMAC_BLOCK_SIZE
},
1307 .hash_zero
= sha1_zero_message_hash
,
1308 .hash_init
= sha1_init
,
1309 .auth_type
= AUTH_TYPE_SHA1
,
1310 .hmac_type
= AUTH_TYPE_HMAC_SHA1
,
1311 .hw_op_hashsz
= SHA1_DIGEST_SIZE
,
1312 .digest_size
= SHA1_DIGEST_SIZE
,
1313 .block_size
= SHA1_BLOCK_SIZE
},
1315 .hash_zero
= sha256_zero_message_hash
,
1316 .hash_init
= sha256_init
,
1317 .auth_type
= AUTH_TYPE_SHA256
,
1318 .hmac_type
= AUTH_TYPE_HMAC_SHA256
,
1319 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1320 .digest_size
= SHA256_DIGEST_SIZE
,
1321 .block_size
= SHA256_BLOCK_SIZE
},
1323 .hash_zero
= sha224_zero_message_hash
,
1324 .hash_init
= sha224_init
,
1325 .auth_type
= AUTH_TYPE_SHA256
,
1326 .hmac_type
= AUTH_TYPE_RESERVED
,
1327 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1328 .digest_size
= SHA224_DIGEST_SIZE
,
1329 .block_size
= SHA224_BLOCK_SIZE
},
1331 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1333 static LIST_HEAD(ahash_algs
);
1334 static LIST_HEAD(hmac_algs
);
1336 static int algs_registered
;
1338 static void __n2_unregister_algs(void)
1340 struct n2_cipher_alg
*cipher
, *cipher_tmp
;
1341 struct n2_ahash_alg
*alg
, *alg_tmp
;
1342 struct n2_hmac_alg
*hmac
, *hmac_tmp
;
1344 list_for_each_entry_safe(cipher
, cipher_tmp
, &cipher_algs
, entry
) {
1345 crypto_unregister_alg(&cipher
->alg
);
1346 list_del(&cipher
->entry
);
1349 list_for_each_entry_safe(hmac
, hmac_tmp
, &hmac_algs
, derived
.entry
) {
1350 crypto_unregister_ahash(&hmac
->derived
.alg
);
1351 list_del(&hmac
->derived
.entry
);
1354 list_for_each_entry_safe(alg
, alg_tmp
, &ahash_algs
, entry
) {
1355 crypto_unregister_ahash(&alg
->alg
);
1356 list_del(&alg
->entry
);
1361 static int n2_cipher_cra_init(struct crypto_tfm
*tfm
)
1363 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct n2_request_context
);
1367 static int __n2_register_one_cipher(const struct n2_cipher_tmpl
*tmpl
)
1369 struct n2_cipher_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1370 struct crypto_alg
*alg
;
1378 snprintf(alg
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1379 snprintf(alg
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->drv_name
);
1380 alg
->cra_priority
= N2_CRA_PRIORITY
;
1381 alg
->cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1382 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
;
1383 alg
->cra_blocksize
= tmpl
->block_size
;
1384 p
->enc_type
= tmpl
->enc_type
;
1385 alg
->cra_ctxsize
= sizeof(struct n2_cipher_context
);
1386 alg
->cra_type
= &crypto_ablkcipher_type
;
1387 alg
->cra_u
.ablkcipher
= tmpl
->ablkcipher
;
1388 alg
->cra_init
= n2_cipher_cra_init
;
1389 alg
->cra_module
= THIS_MODULE
;
1391 list_add(&p
->entry
, &cipher_algs
);
1392 err
= crypto_register_alg(alg
);
1394 pr_err("%s alg registration failed\n", alg
->cra_name
);
1395 list_del(&p
->entry
);
1398 pr_info("%s alg registered\n", alg
->cra_name
);
1403 static int __n2_register_one_hmac(struct n2_ahash_alg
*n2ahash
)
1405 struct n2_hmac_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1406 struct ahash_alg
*ahash
;
1407 struct crypto_alg
*base
;
1413 p
->child_alg
= n2ahash
->alg
.halg
.base
.cra_name
;
1414 memcpy(&p
->derived
, n2ahash
, sizeof(struct n2_ahash_alg
));
1415 INIT_LIST_HEAD(&p
->derived
.entry
);
1417 ahash
= &p
->derived
.alg
;
1418 ahash
->digest
= n2_hmac_async_digest
;
1419 ahash
->setkey
= n2_hmac_async_setkey
;
1421 base
= &ahash
->halg
.base
;
1422 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "hmac(%s)", p
->child_alg
);
1423 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "hmac-%s-n2", p
->child_alg
);
1425 base
->cra_ctxsize
= sizeof(struct n2_hmac_ctx
);
1426 base
->cra_init
= n2_hmac_cra_init
;
1427 base
->cra_exit
= n2_hmac_cra_exit
;
1429 list_add(&p
->derived
.entry
, &hmac_algs
);
1430 err
= crypto_register_ahash(ahash
);
1432 pr_err("%s alg registration failed\n", base
->cra_name
);
1433 list_del(&p
->derived
.entry
);
1436 pr_info("%s alg registered\n", base
->cra_name
);
1441 static int __n2_register_one_ahash(const struct n2_hash_tmpl
*tmpl
)
1443 struct n2_ahash_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1444 struct hash_alg_common
*halg
;
1445 struct crypto_alg
*base
;
1446 struct ahash_alg
*ahash
;
1452 p
->hash_zero
= tmpl
->hash_zero
;
1453 p
->hash_init
= tmpl
->hash_init
;
1454 p
->auth_type
= tmpl
->auth_type
;
1455 p
->hmac_type
= tmpl
->hmac_type
;
1456 p
->hw_op_hashsz
= tmpl
->hw_op_hashsz
;
1457 p
->digest_size
= tmpl
->digest_size
;
1460 ahash
->init
= n2_hash_async_init
;
1461 ahash
->update
= n2_hash_async_update
;
1462 ahash
->final
= n2_hash_async_final
;
1463 ahash
->finup
= n2_hash_async_finup
;
1464 ahash
->digest
= n2_hash_async_digest
;
1466 halg
= &ahash
->halg
;
1467 halg
->digestsize
= tmpl
->digest_size
;
1470 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1471 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->name
);
1472 base
->cra_priority
= N2_CRA_PRIORITY
;
1473 base
->cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
1474 CRYPTO_ALG_KERN_DRIVER_ONLY
|
1475 CRYPTO_ALG_NEED_FALLBACK
;
1476 base
->cra_blocksize
= tmpl
->block_size
;
1477 base
->cra_ctxsize
= sizeof(struct n2_hash_ctx
);
1478 base
->cra_module
= THIS_MODULE
;
1479 base
->cra_init
= n2_hash_cra_init
;
1480 base
->cra_exit
= n2_hash_cra_exit
;
1482 list_add(&p
->entry
, &ahash_algs
);
1483 err
= crypto_register_ahash(ahash
);
1485 pr_err("%s alg registration failed\n", base
->cra_name
);
1486 list_del(&p
->entry
);
1489 pr_info("%s alg registered\n", base
->cra_name
);
1491 if (!err
&& p
->hmac_type
!= AUTH_TYPE_RESERVED
)
1492 err
= __n2_register_one_hmac(p
);
1496 static int n2_register_algs(void)
1500 mutex_lock(&spu_lock
);
1501 if (algs_registered
++)
1504 for (i
= 0; i
< NUM_HASH_TMPLS
; i
++) {
1505 err
= __n2_register_one_ahash(&hash_tmpls
[i
]);
1507 __n2_unregister_algs();
1511 for (i
= 0; i
< NUM_CIPHER_TMPLS
; i
++) {
1512 err
= __n2_register_one_cipher(&cipher_tmpls
[i
]);
1514 __n2_unregister_algs();
1520 mutex_unlock(&spu_lock
);
1524 static void n2_unregister_algs(void)
1526 mutex_lock(&spu_lock
);
1527 if (!--algs_registered
)
1528 __n2_unregister_algs();
1529 mutex_unlock(&spu_lock
);
1532 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1533 * a devino. This isn't very useful to us because all of the
1534 * interrupts listed in the device_node have been translated to
1535 * Linux virtual IRQ cookie numbers.
1537 * So we have to back-translate, going through the 'intr' and 'ino'
1538 * property tables of the n2cp MDESC node, matching it with the OF
1539 * 'interrupts' property entries, in order to to figure out which
1540 * devino goes to which already-translated IRQ.
1542 static int find_devino_index(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1543 unsigned long dev_ino
)
1545 const unsigned int *dev_intrs
;
1549 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1550 if (ip
->ino_table
[i
].ino
== dev_ino
)
1553 if (i
== ip
->num_intrs
)
1556 intr
= ip
->ino_table
[i
].intr
;
1558 dev_intrs
= of_get_property(dev
->dev
.of_node
, "interrupts", NULL
);
1562 for (i
= 0; i
< dev
->archdata
.num_irqs
; i
++) {
1563 if (dev_intrs
[i
] == intr
)
1570 static int spu_map_ino(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1571 const char *irq_name
, struct spu_queue
*p
,
1572 irq_handler_t handler
)
1577 herr
= sun4v_ncs_qhandle_to_devino(p
->qhandle
, &p
->devino
);
1581 index
= find_devino_index(dev
, ip
, p
->devino
);
1585 p
->irq
= dev
->archdata
.irqs
[index
];
1587 sprintf(p
->irq_name
, "%s-%d", irq_name
, index
);
1589 return request_irq(p
->irq
, handler
, 0, p
->irq_name
, p
);
1592 static struct kmem_cache
*queue_cache
[2];
1594 static void *new_queue(unsigned long q_type
)
1596 return kmem_cache_zalloc(queue_cache
[q_type
- 1], GFP_KERNEL
);
1599 static void free_queue(void *p
, unsigned long q_type
)
1601 kmem_cache_free(queue_cache
[q_type
- 1], p
);
1604 static int queue_cache_init(void)
1606 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1607 queue_cache
[HV_NCS_QTYPE_MAU
- 1] =
1608 kmem_cache_create("mau_queue",
1611 MAU_ENTRY_SIZE
, 0, NULL
);
1612 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1615 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1])
1616 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] =
1617 kmem_cache_create("cwq_queue",
1620 CWQ_ENTRY_SIZE
, 0, NULL
);
1621 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1]) {
1622 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1623 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1629 static void queue_cache_destroy(void)
1631 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1632 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_CWQ
- 1]);
1633 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1634 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] = NULL
;
1637 static int spu_queue_register(struct spu_queue
*p
, unsigned long q_type
)
1639 cpumask_var_t old_allowed
;
1640 unsigned long hv_ret
;
1642 if (cpumask_empty(&p
->sharing
))
1645 if (!alloc_cpumask_var(&old_allowed
, GFP_KERNEL
))
1648 cpumask_copy(old_allowed
, ¤t
->cpus_allowed
);
1650 set_cpus_allowed_ptr(current
, &p
->sharing
);
1652 hv_ret
= sun4v_ncs_qconf(q_type
, __pa(p
->q
),
1653 CWQ_NUM_ENTRIES
, &p
->qhandle
);
1655 sun4v_ncs_sethead_marker(p
->qhandle
, 0);
1657 set_cpus_allowed_ptr(current
, old_allowed
);
1659 free_cpumask_var(old_allowed
);
1661 return (hv_ret
? -EINVAL
: 0);
1664 static int spu_queue_setup(struct spu_queue
*p
)
1668 p
->q
= new_queue(p
->q_type
);
1672 err
= spu_queue_register(p
, p
->q_type
);
1674 free_queue(p
->q
, p
->q_type
);
1681 static void spu_queue_destroy(struct spu_queue
*p
)
1683 unsigned long hv_ret
;
1688 hv_ret
= sun4v_ncs_qconf(p
->q_type
, p
->qhandle
, 0, &p
->qhandle
);
1691 free_queue(p
->q
, p
->q_type
);
1694 static void spu_list_destroy(struct list_head
*list
)
1696 struct spu_queue
*p
, *n
;
1698 list_for_each_entry_safe(p
, n
, list
, list
) {
1701 for (i
= 0; i
< NR_CPUS
; i
++) {
1702 if (cpu_to_cwq
[i
] == p
)
1703 cpu_to_cwq
[i
] = NULL
;
1707 free_irq(p
->irq
, p
);
1710 spu_queue_destroy(p
);
1716 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1717 * gathering cpu membership information.
1719 static int spu_mdesc_walk_arcs(struct mdesc_handle
*mdesc
,
1720 struct platform_device
*dev
,
1721 u64 node
, struct spu_queue
*p
,
1722 struct spu_queue
**table
)
1726 mdesc_for_each_arc(arc
, mdesc
, node
, MDESC_ARC_TYPE_BACK
) {
1727 u64 tgt
= mdesc_arc_target(mdesc
, arc
);
1728 const char *name
= mdesc_node_name(mdesc
, tgt
);
1731 if (strcmp(name
, "cpu"))
1733 id
= mdesc_get_property(mdesc
, tgt
, "id", NULL
);
1734 if (table
[*id
] != NULL
) {
1735 dev_err(&dev
->dev
, "%s: SPU cpu slot already set.\n",
1736 dev
->dev
.of_node
->full_name
);
1739 cpumask_set_cpu(*id
, &p
->sharing
);
1745 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1746 static int handle_exec_unit(struct spu_mdesc_info
*ip
, struct list_head
*list
,
1747 struct platform_device
*dev
, struct mdesc_handle
*mdesc
,
1748 u64 node
, const char *iname
, unsigned long q_type
,
1749 irq_handler_t handler
, struct spu_queue
**table
)
1751 struct spu_queue
*p
;
1754 p
= kzalloc(sizeof(struct spu_queue
), GFP_KERNEL
);
1756 dev_err(&dev
->dev
, "%s: Could not allocate SPU queue.\n",
1757 dev
->dev
.of_node
->full_name
);
1761 cpumask_clear(&p
->sharing
);
1762 spin_lock_init(&p
->lock
);
1764 INIT_LIST_HEAD(&p
->jobs
);
1765 list_add(&p
->list
, list
);
1767 err
= spu_mdesc_walk_arcs(mdesc
, dev
, node
, p
, table
);
1771 err
= spu_queue_setup(p
);
1775 return spu_map_ino(dev
, ip
, iname
, p
, handler
);
1778 static int spu_mdesc_scan(struct mdesc_handle
*mdesc
, struct platform_device
*dev
,
1779 struct spu_mdesc_info
*ip
, struct list_head
*list
,
1780 const char *exec_name
, unsigned long q_type
,
1781 irq_handler_t handler
, struct spu_queue
**table
)
1786 mdesc_for_each_node_by_name(mdesc
, node
, "exec-unit") {
1789 type
= mdesc_get_property(mdesc
, node
, "type", NULL
);
1790 if (!type
|| strcmp(type
, exec_name
))
1793 err
= handle_exec_unit(ip
, list
, dev
, mdesc
, node
,
1794 exec_name
, q_type
, handler
, table
);
1796 spu_list_destroy(list
);
1804 static int get_irq_props(struct mdesc_handle
*mdesc
, u64 node
,
1805 struct spu_mdesc_info
*ip
)
1811 ino
= mdesc_get_property(mdesc
, node
, "ino", &ino_len
);
1813 printk("NO 'ino'\n");
1817 ip
->num_intrs
= ino_len
/ sizeof(u64
);
1818 ip
->ino_table
= kzalloc((sizeof(struct ino_blob
) *
1824 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1825 struct ino_blob
*b
= &ip
->ino_table
[i
];
1833 static int grab_mdesc_irq_props(struct mdesc_handle
*mdesc
,
1834 struct platform_device
*dev
,
1835 struct spu_mdesc_info
*ip
,
1836 const char *node_name
)
1838 const unsigned int *reg
;
1841 reg
= of_get_property(dev
->dev
.of_node
, "reg", NULL
);
1845 mdesc_for_each_node_by_name(mdesc
, node
, "virtual-device") {
1849 name
= mdesc_get_property(mdesc
, node
, "name", NULL
);
1850 if (!name
|| strcmp(name
, node_name
))
1852 chdl
= mdesc_get_property(mdesc
, node
, "cfg-handle", NULL
);
1853 if (!chdl
|| (*chdl
!= *reg
))
1855 ip
->cfg_handle
= *chdl
;
1856 return get_irq_props(mdesc
, node
, ip
);
1862 static unsigned long n2_spu_hvapi_major
;
1863 static unsigned long n2_spu_hvapi_minor
;
1865 static int n2_spu_hvapi_register(void)
1869 n2_spu_hvapi_major
= 2;
1870 n2_spu_hvapi_minor
= 0;
1872 err
= sun4v_hvapi_register(HV_GRP_NCS
,
1874 &n2_spu_hvapi_minor
);
1877 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1879 n2_spu_hvapi_minor
);
1884 static void n2_spu_hvapi_unregister(void)
1886 sun4v_hvapi_unregister(HV_GRP_NCS
);
1889 static int global_ref
;
1891 static int grab_global_resources(void)
1895 mutex_lock(&spu_lock
);
1900 err
= n2_spu_hvapi_register();
1904 err
= queue_cache_init();
1906 goto out_hvapi_release
;
1909 cpu_to_cwq
= kzalloc(sizeof(struct spu_queue
*) * NR_CPUS
,
1912 goto out_queue_cache_destroy
;
1914 cpu_to_mau
= kzalloc(sizeof(struct spu_queue
*) * NR_CPUS
,
1917 goto out_free_cwq_table
;
1924 mutex_unlock(&spu_lock
);
1931 out_queue_cache_destroy
:
1932 queue_cache_destroy();
1935 n2_spu_hvapi_unregister();
1939 static void release_global_resources(void)
1941 mutex_lock(&spu_lock
);
1942 if (!--global_ref
) {
1949 queue_cache_destroy();
1950 n2_spu_hvapi_unregister();
1952 mutex_unlock(&spu_lock
);
1955 static struct n2_crypto
*alloc_n2cp(void)
1957 struct n2_crypto
*np
= kzalloc(sizeof(struct n2_crypto
), GFP_KERNEL
);
1960 INIT_LIST_HEAD(&np
->cwq_list
);
1965 static void free_n2cp(struct n2_crypto
*np
)
1967 if (np
->cwq_info
.ino_table
) {
1968 kfree(np
->cwq_info
.ino_table
);
1969 np
->cwq_info
.ino_table
= NULL
;
1975 static void n2_spu_driver_version(void)
1977 static int n2_spu_version_printed
;
1979 if (n2_spu_version_printed
++ == 0)
1980 pr_info("%s", version
);
1983 static int n2_crypto_probe(struct platform_device
*dev
)
1985 struct mdesc_handle
*mdesc
;
1986 const char *full_name
;
1987 struct n2_crypto
*np
;
1990 n2_spu_driver_version();
1992 full_name
= dev
->dev
.of_node
->full_name
;
1993 pr_info("Found N2CP at %s\n", full_name
);
1997 dev_err(&dev
->dev
, "%s: Unable to allocate n2cp.\n",
2002 err
= grab_global_resources();
2004 dev_err(&dev
->dev
, "%s: Unable to grab "
2005 "global resources.\n", full_name
);
2009 mdesc
= mdesc_grab();
2012 dev_err(&dev
->dev
, "%s: Unable to grab MDESC.\n",
2015 goto out_free_global
;
2017 err
= grab_mdesc_irq_props(mdesc
, dev
, &np
->cwq_info
, "n2cp");
2019 dev_err(&dev
->dev
, "%s: Unable to grab IRQ props.\n",
2021 mdesc_release(mdesc
);
2022 goto out_free_global
;
2025 err
= spu_mdesc_scan(mdesc
, dev
, &np
->cwq_info
, &np
->cwq_list
,
2026 "cwq", HV_NCS_QTYPE_CWQ
, cwq_intr
,
2028 mdesc_release(mdesc
);
2031 dev_err(&dev
->dev
, "%s: CWQ MDESC scan failed.\n",
2033 goto out_free_global
;
2036 err
= n2_register_algs();
2038 dev_err(&dev
->dev
, "%s: Unable to register algorithms.\n",
2040 goto out_free_spu_list
;
2043 dev_set_drvdata(&dev
->dev
, np
);
2048 spu_list_destroy(&np
->cwq_list
);
2051 release_global_resources();
2059 static int n2_crypto_remove(struct platform_device
*dev
)
2061 struct n2_crypto
*np
= dev_get_drvdata(&dev
->dev
);
2063 n2_unregister_algs();
2065 spu_list_destroy(&np
->cwq_list
);
2067 release_global_resources();
2074 static struct n2_mau
*alloc_ncp(void)
2076 struct n2_mau
*mp
= kzalloc(sizeof(struct n2_mau
), GFP_KERNEL
);
2079 INIT_LIST_HEAD(&mp
->mau_list
);
2084 static void free_ncp(struct n2_mau
*mp
)
2086 if (mp
->mau_info
.ino_table
) {
2087 kfree(mp
->mau_info
.ino_table
);
2088 mp
->mau_info
.ino_table
= NULL
;
2094 static int n2_mau_probe(struct platform_device
*dev
)
2096 struct mdesc_handle
*mdesc
;
2097 const char *full_name
;
2101 n2_spu_driver_version();
2103 full_name
= dev
->dev
.of_node
->full_name
;
2104 pr_info("Found NCP at %s\n", full_name
);
2108 dev_err(&dev
->dev
, "%s: Unable to allocate ncp.\n",
2113 err
= grab_global_resources();
2115 dev_err(&dev
->dev
, "%s: Unable to grab "
2116 "global resources.\n", full_name
);
2120 mdesc
= mdesc_grab();
2123 dev_err(&dev
->dev
, "%s: Unable to grab MDESC.\n",
2126 goto out_free_global
;
2129 err
= grab_mdesc_irq_props(mdesc
, dev
, &mp
->mau_info
, "ncp");
2131 dev_err(&dev
->dev
, "%s: Unable to grab IRQ props.\n",
2133 mdesc_release(mdesc
);
2134 goto out_free_global
;
2137 err
= spu_mdesc_scan(mdesc
, dev
, &mp
->mau_info
, &mp
->mau_list
,
2138 "mau", HV_NCS_QTYPE_MAU
, mau_intr
,
2140 mdesc_release(mdesc
);
2143 dev_err(&dev
->dev
, "%s: MAU MDESC scan failed.\n",
2145 goto out_free_global
;
2148 dev_set_drvdata(&dev
->dev
, mp
);
2153 release_global_resources();
2161 static int n2_mau_remove(struct platform_device
*dev
)
2163 struct n2_mau
*mp
= dev_get_drvdata(&dev
->dev
);
2165 spu_list_destroy(&mp
->mau_list
);
2167 release_global_resources();
2174 static struct of_device_id n2_crypto_match
[] = {
2177 .compatible
= "SUNW,n2-cwq",
2181 .compatible
= "SUNW,vf-cwq",
2185 .compatible
= "SUNW,kt-cwq",
2190 MODULE_DEVICE_TABLE(of
, n2_crypto_match
);
2192 static struct platform_driver n2_crypto_driver
= {
2195 .of_match_table
= n2_crypto_match
,
2197 .probe
= n2_crypto_probe
,
2198 .remove
= n2_crypto_remove
,
2201 static struct of_device_id n2_mau_match
[] = {
2204 .compatible
= "SUNW,n2-mau",
2208 .compatible
= "SUNW,vf-mau",
2212 .compatible
= "SUNW,kt-mau",
2217 MODULE_DEVICE_TABLE(of
, n2_mau_match
);
2219 static struct platform_driver n2_mau_driver
= {
2222 .of_match_table
= n2_mau_match
,
2224 .probe
= n2_mau_probe
,
2225 .remove
= n2_mau_remove
,
2228 static struct platform_driver
* const drivers
[] = {
2233 static int __init
n2_init(void)
2235 return platform_register_drivers(drivers
, ARRAY_SIZE(drivers
));
2238 static void __exit
n2_exit(void)
2240 platform_unregister_drivers(drivers
, ARRAY_SIZE(drivers
));
2243 module_init(n2_init
);
2244 module_exit(n2_exit
);