Input: xpad - add support for Xbox1 PDP Camo series gamepad
[linux/fpc-iii.git] / drivers / media / platform / vsp1 / vsp1_video.c
blob743aa0febc0992338bd7fa54fd3ba97343ddbd4f
1 /*
2 * vsp1_video.c -- R-Car VSP1 Video Node
4 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/v4l2-mediabus.h>
19 #include <linux/videodev2.h>
20 #include <linux/wait.h>
22 #include <media/media-entity.h>
23 #include <media/v4l2-dev.h>
24 #include <media/v4l2-fh.h>
25 #include <media/v4l2-ioctl.h>
26 #include <media/v4l2-subdev.h>
27 #include <media/videobuf2-v4l2.h>
28 #include <media/videobuf2-dma-contig.h>
30 #include "vsp1.h"
31 #include "vsp1_bru.h"
32 #include "vsp1_dl.h"
33 #include "vsp1_entity.h"
34 #include "vsp1_pipe.h"
35 #include "vsp1_rwpf.h"
36 #include "vsp1_uds.h"
37 #include "vsp1_video.h"
39 #define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV
40 #define VSP1_VIDEO_DEF_WIDTH 1024
41 #define VSP1_VIDEO_DEF_HEIGHT 768
43 #define VSP1_VIDEO_MIN_WIDTH 2U
44 #define VSP1_VIDEO_MAX_WIDTH 8190U
45 #define VSP1_VIDEO_MIN_HEIGHT 2U
46 #define VSP1_VIDEO_MAX_HEIGHT 8190U
48 /* -----------------------------------------------------------------------------
49 * Helper functions
52 static struct v4l2_subdev *
53 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
55 struct media_pad *remote;
57 remote = media_entity_remote_pad(local);
58 if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
59 return NULL;
61 if (pad)
62 *pad = remote->index;
64 return media_entity_to_v4l2_subdev(remote->entity);
67 static int vsp1_video_verify_format(struct vsp1_video *video)
69 struct v4l2_subdev_format fmt;
70 struct v4l2_subdev *subdev;
71 int ret;
73 subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
74 if (subdev == NULL)
75 return -EINVAL;
77 fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
78 ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
79 if (ret < 0)
80 return ret == -ENOIOCTLCMD ? -EINVAL : ret;
82 if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
83 video->rwpf->format.height != fmt.format.height ||
84 video->rwpf->format.width != fmt.format.width)
85 return -EINVAL;
87 return 0;
90 static int __vsp1_video_try_format(struct vsp1_video *video,
91 struct v4l2_pix_format_mplane *pix,
92 const struct vsp1_format_info **fmtinfo)
94 static const u32 xrgb_formats[][2] = {
95 { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
96 { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
97 { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
98 { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
101 const struct vsp1_format_info *info;
102 unsigned int width = pix->width;
103 unsigned int height = pix->height;
104 unsigned int i;
106 /* Backward compatibility: replace deprecated RGB formats by their XRGB
107 * equivalent. This selects the format older userspace applications want
108 * while still exposing the new format.
110 for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
111 if (xrgb_formats[i][0] == pix->pixelformat) {
112 pix->pixelformat = xrgb_formats[i][1];
113 break;
117 /* Retrieve format information and select the default format if the
118 * requested format isn't supported.
120 info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
121 if (info == NULL)
122 info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
124 pix->pixelformat = info->fourcc;
125 pix->colorspace = V4L2_COLORSPACE_SRGB;
126 pix->field = V4L2_FIELD_NONE;
127 memset(pix->reserved, 0, sizeof(pix->reserved));
129 /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
130 width = round_down(width, info->hsub);
131 height = round_down(height, info->vsub);
133 /* Clamp the width and height. */
134 pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
135 pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
136 VSP1_VIDEO_MAX_HEIGHT);
138 /* Compute and clamp the stride and image size. While not documented in
139 * the datasheet, strides not aligned to a multiple of 128 bytes result
140 * in image corruption.
142 for (i = 0; i < min(info->planes, 2U); ++i) {
143 unsigned int hsub = i > 0 ? info->hsub : 1;
144 unsigned int vsub = i > 0 ? info->vsub : 1;
145 unsigned int align = 128;
146 unsigned int bpl;
148 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
149 pix->width / hsub * info->bpp[i] / 8,
150 round_down(65535U, align));
152 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
153 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
154 * pix->height / vsub;
157 if (info->planes == 3) {
158 /* The second and third planes must have the same stride. */
159 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
160 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
163 pix->num_planes = info->planes;
165 if (fmtinfo)
166 *fmtinfo = info;
168 return 0;
171 /* -----------------------------------------------------------------------------
172 * VSP1 Partition Algorithm support
175 static void vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
177 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
178 const struct v4l2_mbus_framefmt *format;
179 struct vsp1_entity *entity;
180 unsigned int div_size;
182 format = vsp1_entity_get_pad_format(&pipe->output->entity,
183 pipe->output->entity.config,
184 RWPF_PAD_SOURCE);
185 div_size = format->width;
187 /* Gen2 hardware doesn't require image partitioning. */
188 if (vsp1->info->gen == 2) {
189 pipe->div_size = div_size;
190 pipe->partitions = 1;
191 return;
194 list_for_each_entry(entity, &pipe->entities, list_pipe) {
195 unsigned int entity_max = VSP1_VIDEO_MAX_WIDTH;
197 if (entity->ops->max_width) {
198 entity_max = entity->ops->max_width(entity, pipe);
199 if (entity_max)
200 div_size = min(div_size, entity_max);
204 pipe->div_size = div_size;
205 pipe->partitions = DIV_ROUND_UP(format->width, div_size);
209 * vsp1_video_partition - Calculate the active partition output window
211 * @div_size: pre-determined maximum partition division size
212 * @index: partition index
214 * Returns a v4l2_rect describing the partition window.
216 static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe,
217 unsigned int div_size,
218 unsigned int index)
220 const struct v4l2_mbus_framefmt *format;
221 struct v4l2_rect partition;
222 unsigned int modulus;
224 format = vsp1_entity_get_pad_format(&pipe->output->entity,
225 pipe->output->entity.config,
226 RWPF_PAD_SOURCE);
228 /* A single partition simply processes the output size in full. */
229 if (pipe->partitions <= 1) {
230 partition.left = 0;
231 partition.top = 0;
232 partition.width = format->width;
233 partition.height = format->height;
234 return partition;
237 /* Initialise the partition with sane starting conditions. */
238 partition.left = index * div_size;
239 partition.top = 0;
240 partition.width = div_size;
241 partition.height = format->height;
243 modulus = format->width % div_size;
246 * We need to prevent the last partition from being smaller than the
247 * *minimum* width of the hardware capabilities.
249 * If the modulus is less than half of the partition size,
250 * the penultimate partition is reduced to half, which is added
251 * to the final partition: |1234|1234|1234|12|341|
252 * to prevents this: |1234|1234|1234|1234|1|.
254 if (modulus) {
256 * pipe->partitions is 1 based, whilst index is a 0 based index.
257 * Normalise this locally.
259 unsigned int partitions = pipe->partitions - 1;
261 if (modulus < div_size / 2) {
262 if (index == partitions - 1) {
263 /* Halve the penultimate partition. */
264 partition.width = div_size / 2;
265 } else if (index == partitions) {
266 /* Increase the final partition. */
267 partition.width = (div_size / 2) + modulus;
268 partition.left -= div_size / 2;
270 } else if (index == partitions) {
271 partition.width = modulus;
275 return partition;
278 /* -----------------------------------------------------------------------------
279 * Pipeline Management
283 * vsp1_video_complete_buffer - Complete the current buffer
284 * @video: the video node
286 * This function completes the current buffer by filling its sequence number,
287 * time stamp and payload size, and hands it back to the videobuf core.
289 * When operating in DU output mode (deep pipeline to the DU through the LIF),
290 * the VSP1 needs to constantly supply frames to the display. In that case, if
291 * no other buffer is queued, reuse the one that has just been processed instead
292 * of handing it back to the videobuf core.
294 * Return the next queued buffer or NULL if the queue is empty.
296 static struct vsp1_vb2_buffer *
297 vsp1_video_complete_buffer(struct vsp1_video *video)
299 struct vsp1_pipeline *pipe = video->rwpf->pipe;
300 struct vsp1_vb2_buffer *next = NULL;
301 struct vsp1_vb2_buffer *done;
302 unsigned long flags;
303 unsigned int i;
305 spin_lock_irqsave(&video->irqlock, flags);
307 if (list_empty(&video->irqqueue)) {
308 spin_unlock_irqrestore(&video->irqlock, flags);
309 return NULL;
312 done = list_first_entry(&video->irqqueue,
313 struct vsp1_vb2_buffer, queue);
315 /* In DU output mode reuse the buffer if the list is singular. */
316 if (pipe->lif && list_is_singular(&video->irqqueue)) {
317 spin_unlock_irqrestore(&video->irqlock, flags);
318 return done;
321 list_del(&done->queue);
323 if (!list_empty(&video->irqqueue))
324 next = list_first_entry(&video->irqqueue,
325 struct vsp1_vb2_buffer, queue);
327 spin_unlock_irqrestore(&video->irqlock, flags);
329 done->buf.sequence = pipe->sequence;
330 done->buf.vb2_buf.timestamp = ktime_get_ns();
331 for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
332 vb2_set_plane_payload(&done->buf.vb2_buf, i,
333 vb2_plane_size(&done->buf.vb2_buf, i));
334 vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
336 return next;
339 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
340 struct vsp1_rwpf *rwpf)
342 struct vsp1_video *video = rwpf->video;
343 struct vsp1_vb2_buffer *buf;
345 buf = vsp1_video_complete_buffer(video);
346 if (buf == NULL)
347 return;
349 video->rwpf->mem = buf->mem;
350 pipe->buffers_ready |= 1 << video->pipe_index;
353 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
354 struct vsp1_dl_list *dl)
356 struct vsp1_entity *entity;
358 pipe->partition = vsp1_video_partition(pipe, pipe->div_size,
359 pipe->current_partition);
361 list_for_each_entry(entity, &pipe->entities, list_pipe) {
362 if (entity->ops->configure)
363 entity->ops->configure(entity, pipe, dl,
364 VSP1_ENTITY_PARAMS_PARTITION);
368 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
370 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
371 struct vsp1_entity *entity;
373 if (!pipe->dl)
374 pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
377 * Start with the runtime parameters as the configure operation can
378 * compute/cache information needed when configuring partitions. This
379 * is the case with flipping in the WPF.
381 list_for_each_entry(entity, &pipe->entities, list_pipe) {
382 if (entity->ops->configure)
383 entity->ops->configure(entity, pipe, pipe->dl,
384 VSP1_ENTITY_PARAMS_RUNTIME);
387 /* Run the first partition */
388 pipe->current_partition = 0;
389 vsp1_video_pipeline_run_partition(pipe, pipe->dl);
391 /* Process consecutive partitions as necessary */
392 for (pipe->current_partition = 1;
393 pipe->current_partition < pipe->partitions;
394 pipe->current_partition++) {
395 struct vsp1_dl_list *dl;
398 * Partition configuration operations will utilise
399 * the pipe->current_partition variable to determine
400 * the work they should complete.
402 dl = vsp1_dl_list_get(pipe->output->dlm);
405 * An incomplete chain will still function, but output only
406 * the partitions that had a dl available. The frame end
407 * interrupt will be marked on the last dl in the chain.
409 if (!dl) {
410 dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
411 break;
414 vsp1_video_pipeline_run_partition(pipe, dl);
415 vsp1_dl_list_add_chain(pipe->dl, dl);
418 /* Complete, and commit the head display list. */
419 vsp1_dl_list_commit(pipe->dl);
420 pipe->dl = NULL;
422 vsp1_pipeline_run(pipe);
425 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe)
427 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
428 enum vsp1_pipeline_state state;
429 unsigned long flags;
430 unsigned int i;
432 spin_lock_irqsave(&pipe->irqlock, flags);
434 /* Complete buffers on all video nodes. */
435 for (i = 0; i < vsp1->info->rpf_count; ++i) {
436 if (!pipe->inputs[i])
437 continue;
439 vsp1_video_frame_end(pipe, pipe->inputs[i]);
442 vsp1_video_frame_end(pipe, pipe->output);
444 state = pipe->state;
445 pipe->state = VSP1_PIPELINE_STOPPED;
447 /* If a stop has been requested, mark the pipeline as stopped and
448 * return. Otherwise restart the pipeline if ready.
450 if (state == VSP1_PIPELINE_STOPPING)
451 wake_up(&pipe->wq);
452 else if (vsp1_pipeline_ready(pipe))
453 vsp1_video_pipeline_run(pipe);
455 spin_unlock_irqrestore(&pipe->irqlock, flags);
458 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
459 struct vsp1_rwpf *input,
460 struct vsp1_rwpf *output)
462 struct media_entity_enum ent_enum;
463 struct vsp1_entity *entity;
464 struct media_pad *pad;
465 bool bru_found = false;
466 int ret;
468 ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
469 if (ret < 0)
470 return ret;
472 pad = media_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
474 while (1) {
475 if (pad == NULL) {
476 ret = -EPIPE;
477 goto out;
480 /* We've reached a video node, that shouldn't have happened. */
481 if (!is_media_entity_v4l2_subdev(pad->entity)) {
482 ret = -EPIPE;
483 goto out;
486 entity = to_vsp1_entity(
487 media_entity_to_v4l2_subdev(pad->entity));
489 /* A BRU is present in the pipeline, store the BRU input pad
490 * number in the input RPF for use when configuring the RPF.
492 if (entity->type == VSP1_ENTITY_BRU) {
493 struct vsp1_bru *bru = to_bru(&entity->subdev);
495 bru->inputs[pad->index].rpf = input;
496 input->bru_input = pad->index;
498 bru_found = true;
501 /* We've reached the WPF, we're done. */
502 if (entity->type == VSP1_ENTITY_WPF)
503 break;
505 /* Ensure the branch has no loop. */
506 if (media_entity_enum_test_and_set(&ent_enum,
507 &entity->subdev.entity)) {
508 ret = -EPIPE;
509 goto out;
512 /* UDS can't be chained. */
513 if (entity->type == VSP1_ENTITY_UDS) {
514 if (pipe->uds) {
515 ret = -EPIPE;
516 goto out;
519 pipe->uds = entity;
520 pipe->uds_input = bru_found ? pipe->bru
521 : &input->entity;
524 /* Follow the source link. The link setup operations ensure
525 * that the output fan-out can't be more than one, there is thus
526 * no need to verify here that only a single source link is
527 * activated.
529 pad = &entity->pads[entity->source_pad];
530 pad = media_entity_remote_pad(pad);
533 /* The last entity must be the output WPF. */
534 if (entity != &output->entity)
535 ret = -EPIPE;
537 out:
538 media_entity_enum_cleanup(&ent_enum);
540 return ret;
543 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
544 struct vsp1_video *video)
546 struct media_entity_graph graph;
547 struct media_entity *entity = &video->video.entity;
548 struct media_device *mdev = entity->graph_obj.mdev;
549 unsigned int i;
550 int ret;
552 /* Walk the graph to locate the entities and video nodes. */
553 ret = media_entity_graph_walk_init(&graph, mdev);
554 if (ret)
555 return ret;
557 media_entity_graph_walk_start(&graph, entity);
559 while ((entity = media_entity_graph_walk_next(&graph))) {
560 struct v4l2_subdev *subdev;
561 struct vsp1_rwpf *rwpf;
562 struct vsp1_entity *e;
564 if (!is_media_entity_v4l2_subdev(entity))
565 continue;
567 subdev = media_entity_to_v4l2_subdev(entity);
568 e = to_vsp1_entity(subdev);
569 list_add_tail(&e->list_pipe, &pipe->entities);
571 if (e->type == VSP1_ENTITY_RPF) {
572 rwpf = to_rwpf(subdev);
573 pipe->inputs[rwpf->entity.index] = rwpf;
574 rwpf->video->pipe_index = ++pipe->num_inputs;
575 rwpf->pipe = pipe;
576 } else if (e->type == VSP1_ENTITY_WPF) {
577 rwpf = to_rwpf(subdev);
578 pipe->output = rwpf;
579 rwpf->video->pipe_index = 0;
580 rwpf->pipe = pipe;
581 } else if (e->type == VSP1_ENTITY_LIF) {
582 pipe->lif = e;
583 } else if (e->type == VSP1_ENTITY_BRU) {
584 pipe->bru = e;
588 media_entity_graph_walk_cleanup(&graph);
590 /* We need one output and at least one input. */
591 if (pipe->num_inputs == 0 || !pipe->output)
592 return -EPIPE;
594 /* Follow links downstream for each input and make sure the graph
595 * contains no loop and that all branches end at the output WPF.
597 for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
598 if (!pipe->inputs[i])
599 continue;
601 ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
602 pipe->output);
603 if (ret < 0)
604 return ret;
607 return 0;
610 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
611 struct vsp1_video *video)
613 vsp1_pipeline_init(pipe);
615 pipe->frame_end = vsp1_video_pipeline_frame_end;
617 return vsp1_video_pipeline_build(pipe, video);
620 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
622 struct vsp1_pipeline *pipe;
623 int ret;
625 /* Get a pipeline object for the video node. If a pipeline has already
626 * been allocated just increment its reference count and return it.
627 * Otherwise allocate a new pipeline and initialize it, it will be freed
628 * when the last reference is released.
630 if (!video->rwpf->pipe) {
631 pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
632 if (!pipe)
633 return ERR_PTR(-ENOMEM);
635 ret = vsp1_video_pipeline_init(pipe, video);
636 if (ret < 0) {
637 vsp1_pipeline_reset(pipe);
638 kfree(pipe);
639 return ERR_PTR(ret);
641 } else {
642 pipe = video->rwpf->pipe;
643 kref_get(&pipe->kref);
646 return pipe;
649 static void vsp1_video_pipeline_release(struct kref *kref)
651 struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
653 vsp1_pipeline_reset(pipe);
654 kfree(pipe);
657 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
659 struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
661 mutex_lock(&mdev->graph_mutex);
662 kref_put(&pipe->kref, vsp1_video_pipeline_release);
663 mutex_unlock(&mdev->graph_mutex);
666 /* -----------------------------------------------------------------------------
667 * videobuf2 Queue Operations
670 static int
671 vsp1_video_queue_setup(struct vb2_queue *vq,
672 unsigned int *nbuffers, unsigned int *nplanes,
673 unsigned int sizes[], struct device *alloc_devs[])
675 struct vsp1_video *video = vb2_get_drv_priv(vq);
676 const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
677 unsigned int i;
679 if (*nplanes) {
680 if (*nplanes != format->num_planes)
681 return -EINVAL;
683 for (i = 0; i < *nplanes; i++)
684 if (sizes[i] < format->plane_fmt[i].sizeimage)
685 return -EINVAL;
686 return 0;
689 *nplanes = format->num_planes;
691 for (i = 0; i < format->num_planes; ++i)
692 sizes[i] = format->plane_fmt[i].sizeimage;
694 return 0;
697 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
699 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
700 struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
701 struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
702 const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
703 unsigned int i;
705 if (vb->num_planes < format->num_planes)
706 return -EINVAL;
708 for (i = 0; i < vb->num_planes; ++i) {
709 buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
711 if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
712 return -EINVAL;
715 for ( ; i < 3; ++i)
716 buf->mem.addr[i] = 0;
718 return 0;
721 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
723 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
724 struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
725 struct vsp1_pipeline *pipe = video->rwpf->pipe;
726 struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
727 unsigned long flags;
728 bool empty;
730 spin_lock_irqsave(&video->irqlock, flags);
731 empty = list_empty(&video->irqqueue);
732 list_add_tail(&buf->queue, &video->irqqueue);
733 spin_unlock_irqrestore(&video->irqlock, flags);
735 if (!empty)
736 return;
738 spin_lock_irqsave(&pipe->irqlock, flags);
740 video->rwpf->mem = buf->mem;
741 pipe->buffers_ready |= 1 << video->pipe_index;
743 if (vb2_is_streaming(&video->queue) &&
744 vsp1_pipeline_ready(pipe))
745 vsp1_video_pipeline_run(pipe);
747 spin_unlock_irqrestore(&pipe->irqlock, flags);
750 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
752 struct vsp1_entity *entity;
754 /* Determine this pipelines sizes for image partitioning support. */
755 vsp1_video_pipeline_setup_partitions(pipe);
757 /* Prepare the display list. */
758 pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
759 if (!pipe->dl)
760 return -ENOMEM;
762 if (pipe->uds) {
763 struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
765 /* If a BRU is present in the pipeline before the UDS, the alpha
766 * component doesn't need to be scaled as the BRU output alpha
767 * value is fixed to 255. Otherwise we need to scale the alpha
768 * component only when available at the input RPF.
770 if (pipe->uds_input->type == VSP1_ENTITY_BRU) {
771 uds->scale_alpha = false;
772 } else {
773 struct vsp1_rwpf *rpf =
774 to_rwpf(&pipe->uds_input->subdev);
776 uds->scale_alpha = rpf->fmtinfo->alpha;
780 list_for_each_entry(entity, &pipe->entities, list_pipe) {
781 vsp1_entity_route_setup(entity, pipe->dl);
783 if (entity->ops->configure)
784 entity->ops->configure(entity, pipe, pipe->dl,
785 VSP1_ENTITY_PARAMS_INIT);
788 return 0;
791 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
793 struct vsp1_video *video = vb2_get_drv_priv(vq);
794 struct vsp1_pipeline *pipe = video->rwpf->pipe;
795 bool start_pipeline = false;
796 unsigned long flags;
797 int ret;
799 mutex_lock(&pipe->lock);
800 if (pipe->stream_count == pipe->num_inputs) {
801 ret = vsp1_video_setup_pipeline(pipe);
802 if (ret < 0) {
803 mutex_unlock(&pipe->lock);
804 return ret;
807 start_pipeline = true;
810 pipe->stream_count++;
811 mutex_unlock(&pipe->lock);
814 * vsp1_pipeline_ready() is not sufficient to establish that all streams
815 * are prepared and the pipeline is configured, as multiple streams
816 * can race through streamon with buffers already queued; Therefore we
817 * don't even attempt to start the pipeline until the last stream has
818 * called through here.
820 if (!start_pipeline)
821 return 0;
823 spin_lock_irqsave(&pipe->irqlock, flags);
824 if (vsp1_pipeline_ready(pipe))
825 vsp1_video_pipeline_run(pipe);
826 spin_unlock_irqrestore(&pipe->irqlock, flags);
828 return 0;
831 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
833 struct vsp1_video *video = vb2_get_drv_priv(vq);
834 struct vsp1_pipeline *pipe = video->rwpf->pipe;
835 struct vsp1_vb2_buffer *buffer;
836 unsigned long flags;
837 int ret;
840 * Clear the buffers ready flag to make sure the device won't be started
841 * by a QBUF on the video node on the other side of the pipeline.
843 spin_lock_irqsave(&video->irqlock, flags);
844 pipe->buffers_ready &= ~(1 << video->pipe_index);
845 spin_unlock_irqrestore(&video->irqlock, flags);
847 mutex_lock(&pipe->lock);
848 if (--pipe->stream_count == pipe->num_inputs) {
849 /* Stop the pipeline. */
850 ret = vsp1_pipeline_stop(pipe);
851 if (ret == -ETIMEDOUT)
852 dev_err(video->vsp1->dev, "pipeline stop timeout\n");
854 vsp1_dl_list_put(pipe->dl);
855 pipe->dl = NULL;
857 mutex_unlock(&pipe->lock);
859 media_entity_pipeline_stop(&video->video.entity);
860 vsp1_video_pipeline_put(pipe);
862 /* Remove all buffers from the IRQ queue. */
863 spin_lock_irqsave(&video->irqlock, flags);
864 list_for_each_entry(buffer, &video->irqqueue, queue)
865 vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
866 INIT_LIST_HEAD(&video->irqqueue);
867 spin_unlock_irqrestore(&video->irqlock, flags);
870 static const struct vb2_ops vsp1_video_queue_qops = {
871 .queue_setup = vsp1_video_queue_setup,
872 .buf_prepare = vsp1_video_buffer_prepare,
873 .buf_queue = vsp1_video_buffer_queue,
874 .wait_prepare = vb2_ops_wait_prepare,
875 .wait_finish = vb2_ops_wait_finish,
876 .start_streaming = vsp1_video_start_streaming,
877 .stop_streaming = vsp1_video_stop_streaming,
880 /* -----------------------------------------------------------------------------
881 * V4L2 ioctls
884 static int
885 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
887 struct v4l2_fh *vfh = file->private_data;
888 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
890 cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
891 | V4L2_CAP_VIDEO_CAPTURE_MPLANE
892 | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
894 if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
895 cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
896 | V4L2_CAP_STREAMING;
897 else
898 cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
899 | V4L2_CAP_STREAMING;
901 strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
902 strlcpy(cap->card, video->video.name, sizeof(cap->card));
903 snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
904 dev_name(video->vsp1->dev));
906 return 0;
909 static int
910 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
912 struct v4l2_fh *vfh = file->private_data;
913 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
915 if (format->type != video->queue.type)
916 return -EINVAL;
918 mutex_lock(&video->lock);
919 format->fmt.pix_mp = video->rwpf->format;
920 mutex_unlock(&video->lock);
922 return 0;
925 static int
926 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
928 struct v4l2_fh *vfh = file->private_data;
929 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
931 if (format->type != video->queue.type)
932 return -EINVAL;
934 return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
937 static int
938 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
940 struct v4l2_fh *vfh = file->private_data;
941 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
942 const struct vsp1_format_info *info;
943 int ret;
945 if (format->type != video->queue.type)
946 return -EINVAL;
948 ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
949 if (ret < 0)
950 return ret;
952 mutex_lock(&video->lock);
954 if (vb2_is_busy(&video->queue)) {
955 ret = -EBUSY;
956 goto done;
959 video->rwpf->format = format->fmt.pix_mp;
960 video->rwpf->fmtinfo = info;
962 done:
963 mutex_unlock(&video->lock);
964 return ret;
967 static int
968 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
970 struct v4l2_fh *vfh = file->private_data;
971 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
972 struct media_device *mdev = &video->vsp1->media_dev;
973 struct vsp1_pipeline *pipe;
974 int ret;
976 if (video->queue.owner && video->queue.owner != file->private_data)
977 return -EBUSY;
979 /* Get a pipeline for the video node and start streaming on it. No link
980 * touching an entity in the pipeline can be activated or deactivated
981 * once streaming is started.
983 mutex_lock(&mdev->graph_mutex);
985 pipe = vsp1_video_pipeline_get(video);
986 if (IS_ERR(pipe)) {
987 mutex_unlock(&mdev->graph_mutex);
988 return PTR_ERR(pipe);
991 ret = __media_entity_pipeline_start(&video->video.entity, &pipe->pipe);
992 if (ret < 0) {
993 mutex_unlock(&mdev->graph_mutex);
994 goto err_pipe;
997 mutex_unlock(&mdev->graph_mutex);
999 /* Verify that the configured format matches the output of the connected
1000 * subdev.
1002 ret = vsp1_video_verify_format(video);
1003 if (ret < 0)
1004 goto err_stop;
1006 /* Start the queue. */
1007 ret = vb2_streamon(&video->queue, type);
1008 if (ret < 0)
1009 goto err_stop;
1011 return 0;
1013 err_stop:
1014 media_entity_pipeline_stop(&video->video.entity);
1015 err_pipe:
1016 vsp1_video_pipeline_put(pipe);
1017 return ret;
1020 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1021 .vidioc_querycap = vsp1_video_querycap,
1022 .vidioc_g_fmt_vid_cap_mplane = vsp1_video_get_format,
1023 .vidioc_s_fmt_vid_cap_mplane = vsp1_video_set_format,
1024 .vidioc_try_fmt_vid_cap_mplane = vsp1_video_try_format,
1025 .vidioc_g_fmt_vid_out_mplane = vsp1_video_get_format,
1026 .vidioc_s_fmt_vid_out_mplane = vsp1_video_set_format,
1027 .vidioc_try_fmt_vid_out_mplane = vsp1_video_try_format,
1028 .vidioc_reqbufs = vb2_ioctl_reqbufs,
1029 .vidioc_querybuf = vb2_ioctl_querybuf,
1030 .vidioc_qbuf = vb2_ioctl_qbuf,
1031 .vidioc_dqbuf = vb2_ioctl_dqbuf,
1032 .vidioc_create_bufs = vb2_ioctl_create_bufs,
1033 .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1034 .vidioc_streamon = vsp1_video_streamon,
1035 .vidioc_streamoff = vb2_ioctl_streamoff,
1038 /* -----------------------------------------------------------------------------
1039 * V4L2 File Operations
1042 static int vsp1_video_open(struct file *file)
1044 struct vsp1_video *video = video_drvdata(file);
1045 struct v4l2_fh *vfh;
1046 int ret = 0;
1048 vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1049 if (vfh == NULL)
1050 return -ENOMEM;
1052 v4l2_fh_init(vfh, &video->video);
1053 v4l2_fh_add(vfh);
1055 file->private_data = vfh;
1057 ret = vsp1_device_get(video->vsp1);
1058 if (ret < 0) {
1059 v4l2_fh_del(vfh);
1060 kfree(vfh);
1063 return ret;
1066 static int vsp1_video_release(struct file *file)
1068 struct vsp1_video *video = video_drvdata(file);
1069 struct v4l2_fh *vfh = file->private_data;
1071 mutex_lock(&video->lock);
1072 if (video->queue.owner == vfh) {
1073 vb2_queue_release(&video->queue);
1074 video->queue.owner = NULL;
1076 mutex_unlock(&video->lock);
1078 vsp1_device_put(video->vsp1);
1080 v4l2_fh_release(file);
1082 file->private_data = NULL;
1084 return 0;
1087 static const struct v4l2_file_operations vsp1_video_fops = {
1088 .owner = THIS_MODULE,
1089 .unlocked_ioctl = video_ioctl2,
1090 .open = vsp1_video_open,
1091 .release = vsp1_video_release,
1092 .poll = vb2_fop_poll,
1093 .mmap = vb2_fop_mmap,
1096 /* -----------------------------------------------------------------------------
1097 * Initialization and Cleanup
1100 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1101 struct vsp1_rwpf *rwpf)
1103 struct vsp1_video *video;
1104 const char *direction;
1105 int ret;
1107 video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1108 if (!video)
1109 return ERR_PTR(-ENOMEM);
1111 rwpf->video = video;
1113 video->vsp1 = vsp1;
1114 video->rwpf = rwpf;
1116 if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1117 direction = "input";
1118 video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1119 video->pad.flags = MEDIA_PAD_FL_SOURCE;
1120 video->video.vfl_dir = VFL_DIR_TX;
1121 } else {
1122 direction = "output";
1123 video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1124 video->pad.flags = MEDIA_PAD_FL_SINK;
1125 video->video.vfl_dir = VFL_DIR_RX;
1128 mutex_init(&video->lock);
1129 spin_lock_init(&video->irqlock);
1130 INIT_LIST_HEAD(&video->irqqueue);
1132 /* Initialize the media entity... */
1133 ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1134 if (ret < 0)
1135 return ERR_PTR(ret);
1137 /* ... and the format ... */
1138 rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1139 rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1140 rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1141 __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1143 /* ... and the video node... */
1144 video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1145 video->video.fops = &vsp1_video_fops;
1146 snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1147 rwpf->entity.subdev.name, direction);
1148 video->video.vfl_type = VFL_TYPE_GRABBER;
1149 video->video.release = video_device_release_empty;
1150 video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1152 video_set_drvdata(&video->video, video);
1154 video->queue.type = video->type;
1155 video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1156 video->queue.lock = &video->lock;
1157 video->queue.drv_priv = video;
1158 video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1159 video->queue.ops = &vsp1_video_queue_qops;
1160 video->queue.mem_ops = &vb2_dma_contig_memops;
1161 video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1162 video->queue.dev = video->vsp1->dev;
1163 ret = vb2_queue_init(&video->queue);
1164 if (ret < 0) {
1165 dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1166 goto error;
1169 /* ... and register the video device. */
1170 video->video.queue = &video->queue;
1171 ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
1172 if (ret < 0) {
1173 dev_err(video->vsp1->dev, "failed to register video device\n");
1174 goto error;
1177 return video;
1179 error:
1180 vsp1_video_cleanup(video);
1181 return ERR_PTR(ret);
1184 void vsp1_video_cleanup(struct vsp1_video *video)
1186 if (video_is_registered(&video->video))
1187 video_unregister_device(&video->video);
1189 media_entity_cleanup(&video->video.entity);