2 * Driver for mt2063 Micronas tuner
4 * Copyright (c) 2011 Mauro Carvalho Chehab
6 * This driver came from a driver originally written by:
7 * Henry Wang <Henry.wang@AzureWave.com>
8 * Made publicly available by Terratec, at:
9 * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
10 * The original driver's license is GPL, as declared with MODULE_LICENSE()
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation under version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/videodev2.h>
27 #include <linux/gcd.h>
31 static unsigned int debug
;
32 module_param(debug
, int, 0644);
33 MODULE_PARM_DESC(debug
, "Set Verbosity level");
35 #define dprintk(level, fmt, arg...) do { \
37 printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
41 /* positive error codes used internally */
43 /* Info: Unavoidable LO-related spur may be present in the output */
44 #define MT2063_SPUR_PRESENT_ERR (0x00800000)
46 /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
47 #define MT2063_SPUR_CNT_MASK (0x001f0000)
48 #define MT2063_SPUR_SHIFT (16)
50 /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
51 #define MT2063_UPC_RANGE (0x04000000)
53 /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
54 #define MT2063_DNC_RANGE (0x08000000)
57 * Constant defining the version of the following structure
58 * and therefore the API for this code.
60 * When compiling the tuner driver, the preprocessor will
61 * check against this version number to make sure that
62 * it matches the version that the tuner driver knows about.
65 /* DECT Frequency Avoidance */
66 #define MT2063_DECT_AVOID_US_FREQS 0x00000001
68 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
70 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
72 #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
74 enum MT2063_DECT_Avoid_Type
{
75 MT2063_NO_DECT_AVOIDANCE
= 0, /* Do not create DECT exclusion zones. */
76 MT2063_AVOID_US_DECT
= MT2063_DECT_AVOID_US_FREQS
, /* Avoid US DECT frequencies. */
77 MT2063_AVOID_EURO_DECT
= MT2063_DECT_AVOID_EURO_FREQS
, /* Avoid European DECT frequencies. */
78 MT2063_AVOID_BOTH
/* Avoid both regions. Not typically used. */
81 #define MT2063_MAX_ZONES 48
83 struct MT2063_ExclZone_t
{
86 struct MT2063_ExclZone_t
*next_
;
90 * Structure of data needed for Spur Avoidance
92 struct MT2063_AvoidSpursData_t
{
104 u32 f_LO1_FracN_Avoid
;
105 u32 f_LO2_FracN_Avoid
;
107 u32 f_min_LO_Separation
;
110 enum MT2063_DECT_Avoid_Type avoidDECT
;
115 struct MT2063_ExclZone_t
*freeZones
;
116 struct MT2063_ExclZone_t
*usedZones
;
117 struct MT2063_ExclZone_t MT2063_ExclZones
[MT2063_MAX_ZONES
];
121 * Parameter for function MT2063_SetPowerMask that specifies the power down
122 * of various sections of the MT2063.
124 enum MT2063_Mask_Bits
{
125 MT2063_REG_SD
= 0x0040, /* Shutdown regulator */
126 MT2063_SRO_SD
= 0x0020, /* Shutdown SRO */
127 MT2063_AFC_SD
= 0x0010, /* Shutdown AFC A/D */
128 MT2063_PD_SD
= 0x0002, /* Enable power detector shutdown */
129 MT2063_PDADC_SD
= 0x0001, /* Enable power detector A/D shutdown */
130 MT2063_VCO_SD
= 0x8000, /* Enable VCO shutdown */
131 MT2063_LTX_SD
= 0x4000, /* Enable LTX shutdown */
132 MT2063_LT1_SD
= 0x2000, /* Enable LT1 shutdown */
133 MT2063_LNA_SD
= 0x1000, /* Enable LNA shutdown */
134 MT2063_UPC_SD
= 0x0800, /* Enable upconverter shutdown */
135 MT2063_DNC_SD
= 0x0400, /* Enable downconverter shutdown */
136 MT2063_VGA_SD
= 0x0200, /* Enable VGA shutdown */
137 MT2063_AMP_SD
= 0x0100, /* Enable AMP shutdown */
138 MT2063_ALL_SD
= 0xFF73, /* All shutdown bits for this tuner */
139 MT2063_NONE_SD
= 0x0000 /* No shutdown bits */
143 * Possible values for MT2063_DNC_OUTPUT
145 enum MT2063_DNC_Output_Enable
{
153 * Two-wire serial bus subaddresses of the tuner registers.
154 * Also known as the tuner's register addresses.
156 enum MT2063_Register_Offsets
{
157 MT2063_REG_PART_REV
= 0, /* 0x00: Part/Rev Code */
158 MT2063_REG_LO1CQ_1
, /* 0x01: LO1C Queued Byte 1 */
159 MT2063_REG_LO1CQ_2
, /* 0x02: LO1C Queued Byte 2 */
160 MT2063_REG_LO2CQ_1
, /* 0x03: LO2C Queued Byte 1 */
161 MT2063_REG_LO2CQ_2
, /* 0x04: LO2C Queued Byte 2 */
162 MT2063_REG_LO2CQ_3
, /* 0x05: LO2C Queued Byte 3 */
163 MT2063_REG_RSVD_06
, /* 0x06: Reserved */
164 MT2063_REG_LO_STATUS
, /* 0x07: LO Status */
165 MT2063_REG_FIFFC
, /* 0x08: FIFF Center */
166 MT2063_REG_CLEARTUNE
, /* 0x09: ClearTune Filter */
167 MT2063_REG_ADC_OUT
, /* 0x0A: ADC_OUT */
168 MT2063_REG_LO1C_1
, /* 0x0B: LO1C Byte 1 */
169 MT2063_REG_LO1C_2
, /* 0x0C: LO1C Byte 2 */
170 MT2063_REG_LO2C_1
, /* 0x0D: LO2C Byte 1 */
171 MT2063_REG_LO2C_2
, /* 0x0E: LO2C Byte 2 */
172 MT2063_REG_LO2C_3
, /* 0x0F: LO2C Byte 3 */
173 MT2063_REG_RSVD_10
, /* 0x10: Reserved */
174 MT2063_REG_PWR_1
, /* 0x11: PWR Byte 1 */
175 MT2063_REG_PWR_2
, /* 0x12: PWR Byte 2 */
176 MT2063_REG_TEMP_STATUS
, /* 0x13: Temp Status */
177 MT2063_REG_XO_STATUS
, /* 0x14: Crystal Status */
178 MT2063_REG_RF_STATUS
, /* 0x15: RF Attn Status */
179 MT2063_REG_FIF_STATUS
, /* 0x16: FIF Attn Status */
180 MT2063_REG_LNA_OV
, /* 0x17: LNA Attn Override */
181 MT2063_REG_RF_OV
, /* 0x18: RF Attn Override */
182 MT2063_REG_FIF_OV
, /* 0x19: FIF Attn Override */
183 MT2063_REG_LNA_TGT
, /* 0x1A: Reserved */
184 MT2063_REG_PD1_TGT
, /* 0x1B: Pwr Det 1 Target */
185 MT2063_REG_PD2_TGT
, /* 0x1C: Pwr Det 2 Target */
186 MT2063_REG_RSVD_1D
, /* 0x1D: Reserved */
187 MT2063_REG_RSVD_1E
, /* 0x1E: Reserved */
188 MT2063_REG_RSVD_1F
, /* 0x1F: Reserved */
189 MT2063_REG_RSVD_20
, /* 0x20: Reserved */
190 MT2063_REG_BYP_CTRL
, /* 0x21: Bypass Control */
191 MT2063_REG_RSVD_22
, /* 0x22: Reserved */
192 MT2063_REG_RSVD_23
, /* 0x23: Reserved */
193 MT2063_REG_RSVD_24
, /* 0x24: Reserved */
194 MT2063_REG_RSVD_25
, /* 0x25: Reserved */
195 MT2063_REG_RSVD_26
, /* 0x26: Reserved */
196 MT2063_REG_RSVD_27
, /* 0x27: Reserved */
197 MT2063_REG_FIFF_CTRL
, /* 0x28: FIFF Control */
198 MT2063_REG_FIFF_OFFSET
, /* 0x29: FIFF Offset */
199 MT2063_REG_CTUNE_CTRL
, /* 0x2A: Reserved */
200 MT2063_REG_CTUNE_OV
, /* 0x2B: Reserved */
201 MT2063_REG_CTRL_2C
, /* 0x2C: Reserved */
202 MT2063_REG_FIFF_CTRL2
, /* 0x2D: Fiff Control */
203 MT2063_REG_RSVD_2E
, /* 0x2E: Reserved */
204 MT2063_REG_DNC_GAIN
, /* 0x2F: DNC Control */
205 MT2063_REG_VGA_GAIN
, /* 0x30: VGA Gain Ctrl */
206 MT2063_REG_RSVD_31
, /* 0x31: Reserved */
207 MT2063_REG_TEMP_SEL
, /* 0x32: Temperature Selection */
208 MT2063_REG_RSVD_33
, /* 0x33: Reserved */
209 MT2063_REG_RSVD_34
, /* 0x34: Reserved */
210 MT2063_REG_RSVD_35
, /* 0x35: Reserved */
211 MT2063_REG_RSVD_36
, /* 0x36: Reserved */
212 MT2063_REG_RSVD_37
, /* 0x37: Reserved */
213 MT2063_REG_RSVD_38
, /* 0x38: Reserved */
214 MT2063_REG_RSVD_39
, /* 0x39: Reserved */
215 MT2063_REG_RSVD_3A
, /* 0x3A: Reserved */
216 MT2063_REG_RSVD_3B
, /* 0x3B: Reserved */
217 MT2063_REG_RSVD_3C
, /* 0x3C: Reserved */
221 struct mt2063_state
{
222 struct i2c_adapter
*i2c
;
226 const struct mt2063_config
*config
;
227 struct dvb_tuner_ops ops
;
228 struct dvb_frontend
*frontend
;
236 struct MT2063_AvoidSpursData_t AS_Data
;
242 u8 reg
[MT2063_REG_END_REGS
];
246 * mt2063_write - Write data into the I2C bus
248 static int mt2063_write(struct mt2063_state
*state
, u8 reg
, u8
*data
, u32 len
)
250 struct dvb_frontend
*fe
= state
->frontend
;
253 struct i2c_msg msg
= {
254 .addr
= state
->config
->tuner_address
,
263 memcpy(msg
.buf
+ 1, data
, len
);
265 if (fe
->ops
.i2c_gate_ctrl
)
266 fe
->ops
.i2c_gate_ctrl(fe
, 1);
267 ret
= i2c_transfer(state
->i2c
, &msg
, 1);
268 if (fe
->ops
.i2c_gate_ctrl
)
269 fe
->ops
.i2c_gate_ctrl(fe
, 0);
272 printk(KERN_ERR
"%s error ret=%d\n", __func__
, ret
);
278 * mt2063_write - Write register data into the I2C bus, caching the value
280 static int mt2063_setreg(struct mt2063_state
*state
, u8 reg
, u8 val
)
286 if (reg
>= MT2063_REG_END_REGS
)
289 status
= mt2063_write(state
, reg
, &val
, 1);
293 state
->reg
[reg
] = val
;
299 * mt2063_read - Read data from the I2C bus
301 static int mt2063_read(struct mt2063_state
*state
,
302 u8 subAddress
, u8
*pData
, u32 cnt
)
304 int status
= 0; /* Status to be returned */
305 struct dvb_frontend
*fe
= state
->frontend
;
308 dprintk(2, "addr 0x%02x, cnt %d\n", subAddress
, cnt
);
310 if (fe
->ops
.i2c_gate_ctrl
)
311 fe
->ops
.i2c_gate_ctrl(fe
, 1);
313 for (i
= 0; i
< cnt
; i
++) {
314 u8 b0
[] = { subAddress
+ i
};
315 struct i2c_msg msg
[] = {
317 .addr
= state
->config
->tuner_address
,
322 .addr
= state
->config
->tuner_address
,
329 status
= i2c_transfer(state
->i2c
, msg
, 2);
330 dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
331 subAddress
+ i
, status
, *(pData
+ i
));
335 if (fe
->ops
.i2c_gate_ctrl
)
336 fe
->ops
.i2c_gate_ctrl(fe
, 0);
339 printk(KERN_ERR
"Can't read from address 0x%02x,\n",
346 * FIXME: Is this really needed?
348 static int MT2063_Sleep(struct dvb_frontend
*fe
)
351 * ToDo: Add code here to implement a OS blocking
359 * Microtune spur avoidance
362 /* Implement ceiling, floor functions. */
363 #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
364 #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
366 struct MT2063_FIFZone_t
{
371 static struct MT2063_ExclZone_t
*InsertNode(struct MT2063_AvoidSpursData_t
373 struct MT2063_ExclZone_t
*pPrevNode
)
375 struct MT2063_ExclZone_t
*pNode
;
379 /* Check for a node in the free list */
380 if (pAS_Info
->freeZones
!= NULL
) {
381 /* Use one from the free list */
382 pNode
= pAS_Info
->freeZones
;
383 pAS_Info
->freeZones
= pNode
->next_
;
385 /* Grab a node from the array */
386 pNode
= &pAS_Info
->MT2063_ExclZones
[pAS_Info
->nZones
];
389 if (pPrevNode
!= NULL
) {
390 pNode
->next_
= pPrevNode
->next_
;
391 pPrevNode
->next_
= pNode
;
392 } else { /* insert at the beginning of the list */
394 pNode
->next_
= pAS_Info
->usedZones
;
395 pAS_Info
->usedZones
= pNode
;
402 static struct MT2063_ExclZone_t
*RemoveNode(struct MT2063_AvoidSpursData_t
404 struct MT2063_ExclZone_t
*pPrevNode
,
405 struct MT2063_ExclZone_t
408 struct MT2063_ExclZone_t
*pNext
= pNodeToRemove
->next_
;
412 /* Make previous node point to the subsequent node */
413 if (pPrevNode
!= NULL
)
414 pPrevNode
->next_
= pNext
;
416 /* Add pNodeToRemove to the beginning of the freeZones */
417 pNodeToRemove
->next_
= pAS_Info
->freeZones
;
418 pAS_Info
->freeZones
= pNodeToRemove
;
420 /* Decrement node count */
429 * Add (and merge) an exclusion zone into the list.
430 * If the range (f_min, f_max) is totally outside the
431 * 1st IF BW, ignore the entry.
432 * If the range (f_min, f_max) is negative, ignore the entry.
434 static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t
*pAS_Info
,
435 u32 f_min
, u32 f_max
)
437 struct MT2063_ExclZone_t
*pNode
= pAS_Info
->usedZones
;
438 struct MT2063_ExclZone_t
*pPrev
= NULL
;
439 struct MT2063_ExclZone_t
*pNext
= NULL
;
443 /* Check to see if this overlaps the 1st IF filter */
444 if ((f_max
> (pAS_Info
->f_if1_Center
- (pAS_Info
->f_if1_bw
/ 2)))
445 && (f_min
< (pAS_Info
->f_if1_Center
+ (pAS_Info
->f_if1_bw
/ 2)))
446 && (f_min
< f_max
)) {
450 * New entry: |---| |--| |--| |-| |---| |--|
452 * Existing: |--| |--| |--| |---| |-| |--|
455 /* Check for our place in the list */
456 while ((pNode
!= NULL
) && (pNode
->max_
< f_min
)) {
458 pNode
= pNode
->next_
;
461 if ((pNode
!= NULL
) && (pNode
->min_
< f_max
)) {
462 /* Combine me with pNode */
463 if (f_min
< pNode
->min_
)
465 if (f_max
> pNode
->max_
)
468 pNode
= InsertNode(pAS_Info
, pPrev
);
473 /* Look for merging possibilities */
474 pNext
= pNode
->next_
;
475 while ((pNext
!= NULL
) && (pNext
->min_
< pNode
->max_
)) {
476 if (pNext
->max_
> pNode
->max_
)
477 pNode
->max_
= pNext
->max_
;
478 /* Remove pNext, return ptr to pNext->next */
479 pNext
= RemoveNode(pAS_Info
, pNode
, pNext
);
485 * Reset all exclusion zones.
486 * Add zones to protect the PLL FracN regions near zero
488 static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t
*pAS_Info
)
494 pAS_Info
->nZones
= 0; /* this clears the used list */
495 pAS_Info
->usedZones
= NULL
; /* reset ptr */
496 pAS_Info
->freeZones
= NULL
; /* reset ptr */
500 ((pAS_Info
->f_if1_Center
- pAS_Info
->f_if1_bw
/ 2 +
501 pAS_Info
->f_in
) / pAS_Info
->f_ref
) - pAS_Info
->f_in
;
503 pAS_Info
->f_if1_Center
+ pAS_Info
->f_if1_bw
/ 2 +
504 pAS_Info
->f_LO1_FracN_Avoid
) {
505 /* Exclude LO1 FracN */
506 MT2063_AddExclZone(pAS_Info
,
507 center
- pAS_Info
->f_LO1_FracN_Avoid
,
509 MT2063_AddExclZone(pAS_Info
, center
+ 1,
510 center
+ pAS_Info
->f_LO1_FracN_Avoid
);
511 center
+= pAS_Info
->f_ref
;
516 ((pAS_Info
->f_if1_Center
- pAS_Info
->f_if1_bw
/ 2 -
517 pAS_Info
->f_out
) / pAS_Info
->f_ref
) + pAS_Info
->f_out
;
519 pAS_Info
->f_if1_Center
+ pAS_Info
->f_if1_bw
/ 2 +
520 pAS_Info
->f_LO2_FracN_Avoid
) {
521 /* Exclude LO2 FracN */
522 MT2063_AddExclZone(pAS_Info
,
523 center
- pAS_Info
->f_LO2_FracN_Avoid
,
525 MT2063_AddExclZone(pAS_Info
, center
+ 1,
526 center
+ pAS_Info
->f_LO2_FracN_Avoid
);
527 center
+= pAS_Info
->f_ref
;
530 if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info
->avoidDECT
)) {
531 /* Exclude LO1 values that conflict with DECT channels */
532 MT2063_AddExclZone(pAS_Info
, 1920836000 - pAS_Info
->f_in
, 1922236000 - pAS_Info
->f_in
); /* Ctr = 1921.536 */
533 MT2063_AddExclZone(pAS_Info
, 1922564000 - pAS_Info
->f_in
, 1923964000 - pAS_Info
->f_in
); /* Ctr = 1923.264 */
534 MT2063_AddExclZone(pAS_Info
, 1924292000 - pAS_Info
->f_in
, 1925692000 - pAS_Info
->f_in
); /* Ctr = 1924.992 */
535 MT2063_AddExclZone(pAS_Info
, 1926020000 - pAS_Info
->f_in
, 1927420000 - pAS_Info
->f_in
); /* Ctr = 1926.720 */
536 MT2063_AddExclZone(pAS_Info
, 1927748000 - pAS_Info
->f_in
, 1929148000 - pAS_Info
->f_in
); /* Ctr = 1928.448 */
539 if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info
->avoidDECT
)) {
540 MT2063_AddExclZone(pAS_Info
, 1896644000 - pAS_Info
->f_in
, 1898044000 - pAS_Info
->f_in
); /* Ctr = 1897.344 */
541 MT2063_AddExclZone(pAS_Info
, 1894916000 - pAS_Info
->f_in
, 1896316000 - pAS_Info
->f_in
); /* Ctr = 1895.616 */
542 MT2063_AddExclZone(pAS_Info
, 1893188000 - pAS_Info
->f_in
, 1894588000 - pAS_Info
->f_in
); /* Ctr = 1893.888 */
543 MT2063_AddExclZone(pAS_Info
, 1891460000 - pAS_Info
->f_in
, 1892860000 - pAS_Info
->f_in
); /* Ctr = 1892.16 */
544 MT2063_AddExclZone(pAS_Info
, 1889732000 - pAS_Info
->f_in
, 1891132000 - pAS_Info
->f_in
); /* Ctr = 1890.432 */
545 MT2063_AddExclZone(pAS_Info
, 1888004000 - pAS_Info
->f_in
, 1889404000 - pAS_Info
->f_in
); /* Ctr = 1888.704 */
546 MT2063_AddExclZone(pAS_Info
, 1886276000 - pAS_Info
->f_in
, 1887676000 - pAS_Info
->f_in
); /* Ctr = 1886.976 */
547 MT2063_AddExclZone(pAS_Info
, 1884548000 - pAS_Info
->f_in
, 1885948000 - pAS_Info
->f_in
); /* Ctr = 1885.248 */
548 MT2063_AddExclZone(pAS_Info
, 1882820000 - pAS_Info
->f_in
, 1884220000 - pAS_Info
->f_in
); /* Ctr = 1883.52 */
549 MT2063_AddExclZone(pAS_Info
, 1881092000 - pAS_Info
->f_in
, 1882492000 - pAS_Info
->f_in
); /* Ctr = 1881.792 */
554 * MT_ChooseFirstIF - Choose the best available 1st IF
555 * If f_Desired is not excluded, choose that first.
556 * Otherwise, return the value closest to f_Center that is
559 static u32
MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t
*pAS_Info
)
562 * Update "f_Desired" to be the nearest "combinational-multiple" of
564 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
565 * And F_LO1 is the arithmetic sum of f_in + f_Center.
566 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
567 * However, the sum must be.
569 const u32 f_Desired
=
570 pAS_Info
->f_LO1_Step
*
571 ((pAS_Info
->f_if1_Request
+ pAS_Info
->f_in
+
572 pAS_Info
->f_LO1_Step
/ 2) / pAS_Info
->f_LO1_Step
) -
575 (pAS_Info
->f_LO1_Step
>
576 pAS_Info
->f_LO2_Step
) ? pAS_Info
->f_LO1_Step
: pAS_Info
->
581 u32 bDesiredExcluded
= 0;
582 u32 bZeroExcluded
= 0;
585 struct MT2063_ExclZone_t
*pNode
= pAS_Info
->usedZones
;
586 struct MT2063_FIFZone_t zones
[MT2063_MAX_ZONES
];
590 if (pAS_Info
->nZones
== 0)
594 * f_Center needs to be an integer multiple of f_Step away
597 if (pAS_Info
->f_if1_Center
> f_Desired
)
601 ((pAS_Info
->f_if1_Center
- f_Desired
+
602 f_Step
/ 2) / f_Step
);
607 ((f_Desired
- pAS_Info
->f_if1_Center
+
608 f_Step
/ 2) / f_Step
);
611 * Take MT_ExclZones, center around f_Center and change the
612 * resolution to f_Step
614 while (pNode
!= NULL
) {
617 floor((s32
) (pNode
->min_
- f_Center
), (s32
) f_Step
);
621 ceil((s32
) (pNode
->max_
- f_Center
), (s32
) f_Step
);
623 if ((pNode
->min_
< f_Desired
) && (pNode
->max_
> f_Desired
))
624 bDesiredExcluded
= 1;
626 if ((tmpMin
< 0) && (tmpMax
> 0))
629 /* See if this zone overlaps the previous */
630 if ((j
> 0) && (tmpMin
< zones
[j
- 1].max_
))
631 zones
[j
- 1].max_
= tmpMax
;
634 zones
[j
].min_
= tmpMin
;
635 zones
[j
].max_
= tmpMax
;
638 pNode
= pNode
->next_
;
642 * If the desired is okay, return with it
644 if (bDesiredExcluded
== 0)
648 * If the desired is excluded and the center is okay, return with it
650 if (bZeroExcluded
== 0)
653 /* Find the value closest to 0 (f_Center) */
654 bestDiff
= zones
[0].min_
;
655 for (i
= 0; i
< j
; i
++) {
656 if (abs(zones
[i
].min_
) < abs(bestDiff
))
657 bestDiff
= zones
[i
].min_
;
658 if (abs(zones
[i
].max_
) < abs(bestDiff
))
659 bestDiff
= zones
[i
].max_
;
663 return f_Center
- ((u32
) (-bestDiff
) * f_Step
);
665 return f_Center
+ (bestDiff
* f_Step
);
669 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
670 * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
673 * <--+-+-+-------------------+-------------------+-+-+-->
675 * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
676 * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
678 * Note that some equations are doubled to prevent round-off
679 * problems when calculating fIFBW/2
681 * @pAS_Info: Avoid Spurs information block
682 * @fm: If spur, amount f_IF1 has to move negative
683 * @fp: If spur, amount f_IF1 has to move positive
685 * Returns 1 if an LO spur would be present, otherwise 0.
687 static u32
IsSpurInBand(struct MT2063_AvoidSpursData_t
*pAS_Info
,
691 ** Calculate LO frequency settings.
694 const u32 f_LO1
= pAS_Info
->f_LO1
;
695 const u32 f_LO2
= pAS_Info
->f_LO2
;
696 const u32 d
= pAS_Info
->f_out
+ pAS_Info
->f_out_bw
/ 2;
697 const u32 c
= d
- pAS_Info
->f_out_bw
;
698 const u32 f
= pAS_Info
->f_zif_bw
/ 2;
699 const u32 f_Scale
= (f_LO1
/ (UINT_MAX
/ 2 / pAS_Info
->maxH1
)) + 1;
700 s32 f_nsLO1
, f_nsLO2
;
702 u32 ma
, mb
, mc
, md
, me
, mf
;
703 u32 lo_gcd
, gd_Scale
, gc_Scale
, gf_Scale
, hgds
, hgfs
, hgcs
;
710 ** For each edge (d, c & f), calculate a scale, based on the gcd
711 ** of f_LO1, f_LO2 and the edge value. Use the larger of this
712 ** gcd-based scale factor or f_Scale.
714 lo_gcd
= gcd(f_LO1
, f_LO2
);
715 gd_Scale
= max((u32
) gcd(lo_gcd
, d
), f_Scale
);
717 gc_Scale
= max((u32
) gcd(lo_gcd
, c
), f_Scale
);
719 gf_Scale
= max((u32
) gcd(lo_gcd
, f
), f_Scale
);
722 n0
= DIV_ROUND_UP(f_LO2
- d
, f_LO1
- f_LO2
);
724 /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
725 for (n
= n0
; n
<= pAS_Info
->maxH1
; ++n
) {
726 md
= (n
* ((f_LO1
+ hgds
) / gd_Scale
) -
727 ((d
+ hgds
) / gd_Scale
)) / ((f_LO2
+ hgds
) / gd_Scale
);
729 /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
730 if (md
>= pAS_Info
->maxH1
)
733 ma
= (n
* ((f_LO1
+ hgds
) / gd_Scale
) +
734 ((d
+ hgds
) / gd_Scale
)) / ((f_LO2
+ hgds
) / gd_Scale
);
736 /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
740 mc
= (n
* ((f_LO1
+ hgcs
) / gc_Scale
) -
741 ((c
+ hgcs
) / gc_Scale
)) / ((f_LO2
+ hgcs
) / gc_Scale
);
743 f_nsLO1
= (s32
) (n
* (f_LO1
/ gc_Scale
));
744 f_nsLO2
= (s32
) (mc
* (f_LO2
/ gc_Scale
));
746 (gc_Scale
* (f_nsLO1
- f_nsLO2
)) +
747 n
* (f_LO1
% gc_Scale
) - mc
* (f_LO2
% gc_Scale
);
749 *fp
= ((f_Spur
- (s32
) c
) / (mc
- n
)) + 1;
750 *fm
= (((s32
) d
- f_Spur
) / (mc
- n
)) + 1;
754 /* Location of Zero-IF-spur to be checked */
755 me
= (n
* ((f_LO1
+ hgfs
) / gf_Scale
) +
756 ((f
+ hgfs
) / gf_Scale
)) / ((f_LO2
+ hgfs
) / gf_Scale
);
757 mf
= (n
* ((f_LO1
+ hgfs
) / gf_Scale
) -
758 ((f
+ hgfs
) / gf_Scale
)) / ((f_LO2
+ hgfs
) / gf_Scale
);
760 f_nsLO1
= n
* (f_LO1
/ gf_Scale
);
761 f_nsLO2
= me
* (f_LO2
/ gf_Scale
);
763 (gf_Scale
* (f_nsLO1
- f_nsLO2
)) +
764 n
* (f_LO1
% gf_Scale
) - me
* (f_LO2
% gf_Scale
);
766 *fp
= ((f_Spur
+ (s32
) f
) / (me
- n
)) + 1;
767 *fm
= (((s32
) f
- f_Spur
) / (me
- n
)) + 1;
771 mb
= (n
* ((f_LO1
+ hgcs
) / gc_Scale
) +
772 ((c
+ hgcs
) / gc_Scale
)) / ((f_LO2
+ hgcs
) / gc_Scale
);
774 f_nsLO1
= n
* (f_LO1
/ gc_Scale
);
775 f_nsLO2
= ma
* (f_LO2
/ gc_Scale
);
777 (gc_Scale
* (f_nsLO1
- f_nsLO2
)) +
778 n
* (f_LO1
% gc_Scale
) - ma
* (f_LO2
% gc_Scale
);
780 *fp
= (((s32
) d
+ f_Spur
) / (ma
- n
)) + 1;
781 *fm
= (-(f_Spur
+ (s32
) c
) / (ma
- n
)) + 1;
791 * MT_AvoidSpurs() - Main entry point to avoid spurs.
792 * Checks for existing spurs in present LO1, LO2 freqs
793 * and if present, chooses spur-free LO1, LO2 combination
794 * that tunes the same input/output frequencies.
796 static u32
MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t
*pAS_Info
)
799 u32 fm
, fp
; /* restricted range on LO's */
800 pAS_Info
->bSpurAvoided
= 0;
801 pAS_Info
->nSpursFound
= 0;
805 if (pAS_Info
->maxH1
== 0)
809 * Avoid LO Generated Spurs
811 * Make sure that have no LO-related spurs within the IF output
814 * If there is an LO spur in this band, start at the current IF1 frequency
815 * and work out until we find a spur-free frequency or run up against the
816 * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
817 * will be unchanged if a spur-free setting is not found.
819 pAS_Info
->bSpurPresent
= IsSpurInBand(pAS_Info
, &fm
, &fp
);
820 if (pAS_Info
->bSpurPresent
) {
821 u32 zfIF1
= pAS_Info
->f_LO1
- pAS_Info
->f_in
; /* current attempt at a 1st IF */
822 u32 zfLO1
= pAS_Info
->f_LO1
; /* current attempt at an LO1 freq */
823 u32 zfLO2
= pAS_Info
->f_LO2
; /* current attempt at an LO2 freq */
828 ** Spur was found, attempt to find a spur-free 1st IF
831 pAS_Info
->nSpursFound
++;
833 /* Raise f_IF1_upper, if needed */
834 MT2063_AddExclZone(pAS_Info
, zfIF1
- fm
, zfIF1
+ fp
);
836 /* Choose next IF1 that is closest to f_IF1_CENTER */
837 new_IF1
= MT2063_ChooseFirstIF(pAS_Info
);
839 if (new_IF1
> zfIF1
) {
840 pAS_Info
->f_LO1
+= (new_IF1
- zfIF1
);
841 pAS_Info
->f_LO2
+= (new_IF1
- zfIF1
);
843 pAS_Info
->f_LO1
-= (zfIF1
- new_IF1
);
844 pAS_Info
->f_LO2
-= (zfIF1
- new_IF1
);
848 if (zfIF1
> pAS_Info
->f_if1_Center
)
849 delta_IF1
= zfIF1
- pAS_Info
->f_if1_Center
;
851 delta_IF1
= pAS_Info
->f_if1_Center
- zfIF1
;
853 pAS_Info
->bSpurPresent
= IsSpurInBand(pAS_Info
, &fm
, &fp
);
855 * Continue while the new 1st IF is still within the 1st IF bandwidth
856 * and there is a spur in the band (again)
858 } while ((2 * delta_IF1
+ pAS_Info
->f_out_bw
<= pAS_Info
->f_if1_bw
) && pAS_Info
->bSpurPresent
);
861 * Use the LO-spur free values found. If the search went all
862 * the way to the 1st IF band edge and always found spurs, just
863 * leave the original choice. It's as "good" as any other.
865 if (pAS_Info
->bSpurPresent
== 1) {
866 status
|= MT2063_SPUR_PRESENT_ERR
;
867 pAS_Info
->f_LO1
= zfLO1
;
868 pAS_Info
->f_LO2
= zfLO2
;
870 pAS_Info
->bSpurAvoided
= 1;
875 nSpursFound
<< MT2063_SPUR_SHIFT
) & MT2063_SPUR_CNT_MASK
);
881 * Constants used by the tuning algorithm
883 #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
884 #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
885 #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
886 #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
887 #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
888 #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
889 #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
890 #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
891 #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
892 #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
893 #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
894 #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
895 #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
896 #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
897 #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
898 #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
899 #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
900 #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
903 * Define the supported Part/Rev codes for the MT2063
905 #define MT2063_B0 (0x9B)
906 #define MT2063_B1 (0x9C)
907 #define MT2063_B2 (0x9D)
908 #define MT2063_B3 (0x9E)
911 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
913 * @state: struct mt2063_state pointer
915 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
917 static int mt2063_lockStatus(struct mt2063_state
*state
)
919 const u32 nMaxWait
= 100; /* wait a maximum of 100 msec */
920 const u32 nPollRate
= 2; /* poll status bits every 2 ms */
921 const u32 nMaxLoops
= nMaxWait
/ nPollRate
;
922 const u8 LO1LK
= 0x80;
929 /* LO2 Lock bit was in a different place for B0 version */
930 if (state
->tuner_id
== MT2063_B0
)
934 status
= mt2063_read(state
, MT2063_REG_LO_STATUS
,
935 &state
->reg
[MT2063_REG_LO_STATUS
], 1);
940 if ((state
->reg
[MT2063_REG_LO_STATUS
] & (LO1LK
| LO2LK
)) ==
942 return TUNER_STATUS_LOCKED
| TUNER_STATUS_STEREO
;
944 msleep(nPollRate
); /* Wait between retries */
945 } while (++nDelays
< nMaxLoops
);
948 * Got no lock or partial lock
954 * Constants for setting receiver modes.
955 * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
956 * (DNC1GC & DNC2GC are the values, which are used, when the specific
957 * DNC Output is selected, the other is always off)
959 * enum mt2063_delivery_sys
960 * -------------+----------------------------------------------
961 * Mode 0 : | MT2063_CABLE_QAM
962 * Mode 1 : | MT2063_CABLE_ANALOG
963 * Mode 2 : | MT2063_OFFAIR_COFDM
964 * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
965 * Mode 4 : | MT2063_OFFAIR_ANALOG
966 * Mode 5 : | MT2063_OFFAIR_8VSB
967 * --------------+----------------------------------------------
969 * |<---------- Mode -------------->|
970 * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
971 * ------------+-----+-----+-----+-----+-----+-----+
972 * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
973 * LNARin | 0 | 0 | 3 | 3 | 3 | 3
974 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
975 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
976 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
977 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
978 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
979 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
980 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
981 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
982 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
983 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
984 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
985 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
986 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
989 enum mt2063_delivery_sys
{
990 MT2063_CABLE_QAM
= 0,
993 MT2063_OFFAIR_COFDM_SAWLESS
,
994 MT2063_OFFAIR_ANALOG
,
996 MT2063_NUM_RCVR_MODES
999 static const char *mt2063_mode_name
[] = {
1000 [MT2063_CABLE_QAM
] = "digital cable",
1001 [MT2063_CABLE_ANALOG
] = "analog cable",
1002 [MT2063_OFFAIR_COFDM
] = "digital offair",
1003 [MT2063_OFFAIR_COFDM_SAWLESS
] = "digital offair without SAW",
1004 [MT2063_OFFAIR_ANALOG
] = "analog offair",
1005 [MT2063_OFFAIR_8VSB
] = "analog offair 8vsb",
1008 static const u8 RFAGCEN
[] = { 0, 0, 0, 0, 0, 0 };
1009 static const u8 LNARIN
[] = { 0, 0, 3, 3, 3, 3 };
1010 static const u8 FIFFQEN
[] = { 1, 1, 1, 1, 1, 1 };
1011 static const u8 FIFFQ
[] = { 0, 0, 0, 0, 0, 0 };
1012 static const u8 DNC1GC
[] = { 0, 0, 0, 0, 0, 0 };
1013 static const u8 DNC2GC
[] = { 0, 0, 0, 0, 0, 0 };
1014 static const u8 ACLNAMAX
[] = { 31, 31, 31, 31, 31, 31 };
1015 static const u8 LNATGT
[] = { 44, 43, 43, 43, 43, 43 };
1016 static const u8 RFOVDIS
[] = { 0, 0, 0, 0, 0, 0 };
1017 static const u8 ACRFMAX
[] = { 31, 31, 31, 31, 31, 31 };
1018 static const u8 PD1TGT
[] = { 36, 36, 38, 38, 36, 38 };
1019 static const u8 FIFOVDIS
[] = { 0, 0, 0, 0, 0, 0 };
1020 static const u8 ACFIFMAX
[] = { 29, 29, 29, 29, 29, 29 };
1021 static const u8 PD2TGT
[] = { 40, 33, 38, 42, 30, 38 };
1024 * mt2063_set_dnc_output_enable()
1026 static u32
mt2063_get_dnc_output_enable(struct mt2063_state
*state
,
1027 enum MT2063_DNC_Output_Enable
*pValue
)
1031 if ((state
->reg
[MT2063_REG_DNC_GAIN
] & 0x03) == 0x03) { /* if DNC1 is off */
1032 if ((state
->reg
[MT2063_REG_VGA_GAIN
] & 0x03) == 0x03) /* if DNC2 is off */
1033 *pValue
= MT2063_DNC_NONE
;
1035 *pValue
= MT2063_DNC_2
;
1036 } else { /* DNC1 is on */
1037 if ((state
->reg
[MT2063_REG_VGA_GAIN
] & 0x03) == 0x03) /* if DNC2 is off */
1038 *pValue
= MT2063_DNC_1
;
1040 *pValue
= MT2063_DNC_BOTH
;
1046 * mt2063_set_dnc_output_enable()
1048 static u32
mt2063_set_dnc_output_enable(struct mt2063_state
*state
,
1049 enum MT2063_DNC_Output_Enable nValue
)
1051 int status
= 0; /* Status to be returned */
1056 /* selects, which DNC output is used */
1058 case MT2063_DNC_NONE
:
1059 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1060 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1063 mt2063_setreg(state
,
1064 MT2063_REG_DNC_GAIN
,
1067 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1068 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1071 mt2063_setreg(state
,
1072 MT2063_REG_VGA_GAIN
,
1075 val
= (state
->reg
[MT2063_REG_RSVD_20
] & ~0x40); /* Set PD2MUX=0 */
1076 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1079 mt2063_setreg(state
,
1085 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | (DNC1GC
[state
->rcvr_mode
] & 0x03); /* Set DNC1GC=x */
1086 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1089 mt2063_setreg(state
,
1090 MT2063_REG_DNC_GAIN
,
1093 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1094 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1097 mt2063_setreg(state
,
1098 MT2063_REG_VGA_GAIN
,
1101 val
= (state
->reg
[MT2063_REG_RSVD_20
] & ~0x40); /* Set PD2MUX=0 */
1102 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1105 mt2063_setreg(state
,
1111 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1112 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1115 mt2063_setreg(state
,
1116 MT2063_REG_DNC_GAIN
,
1119 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | (DNC2GC
[state
->rcvr_mode
] & 0x03); /* Set DNC2GC=x */
1120 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1123 mt2063_setreg(state
,
1124 MT2063_REG_VGA_GAIN
,
1127 val
= (state
->reg
[MT2063_REG_RSVD_20
] | 0x40); /* Set PD2MUX=1 */
1128 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1131 mt2063_setreg(state
,
1136 case MT2063_DNC_BOTH
:
1137 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | (DNC1GC
[state
->rcvr_mode
] & 0x03); /* Set DNC1GC=x */
1138 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1141 mt2063_setreg(state
,
1142 MT2063_REG_DNC_GAIN
,
1145 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | (DNC2GC
[state
->rcvr_mode
] & 0x03); /* Set DNC2GC=x */
1146 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1149 mt2063_setreg(state
,
1150 MT2063_REG_VGA_GAIN
,
1153 val
= (state
->reg
[MT2063_REG_RSVD_20
] | 0x40); /* Set PD2MUX=1 */
1154 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1157 mt2063_setreg(state
,
1170 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
1171 * the selected enum mt2063_delivery_sys type.
1173 * (DNC1GC & DNC2GC are the values, which are used, when the specific
1174 * DNC Output is selected, the other is always off)
1176 * @state: ptr to mt2063_state structure
1177 * @Mode: desired receiver delivery system
1179 * Note: Register cache must be valid for it to work
1182 static u32
MT2063_SetReceiverMode(struct mt2063_state
*state
,
1183 enum mt2063_delivery_sys Mode
)
1185 int status
= 0; /* Status to be returned */
1191 if (Mode
>= MT2063_NUM_RCVR_MODES
)
1198 reg
[MT2063_REG_PD1_TGT
] & ~0x40) | (RFAGCEN
[Mode
]
1201 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1202 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1207 u8 val
= (state
->reg
[MT2063_REG_CTRL_2C
] & ~0x03) |
1208 (LNARIN
[Mode
] & 0x03);
1209 if (state
->reg
[MT2063_REG_CTRL_2C
] != val
)
1210 status
|= mt2063_setreg(state
, MT2063_REG_CTRL_2C
, val
);
1213 /* FIFFQEN and FIFFQ */
1217 reg
[MT2063_REG_FIFF_CTRL2
] & ~0xF0) |
1218 (FIFFQEN
[Mode
] << 7) | (FIFFQ
[Mode
] << 4);
1219 if (state
->reg
[MT2063_REG_FIFF_CTRL2
] != val
) {
1221 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL2
, val
);
1222 /* trigger FIFF calibration, needed after changing FIFFQ */
1224 (state
->reg
[MT2063_REG_FIFF_CTRL
] | 0x01);
1226 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL
, val
);
1229 reg
[MT2063_REG_FIFF_CTRL
] & ~0x01);
1231 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL
, val
);
1235 /* DNC1GC & DNC2GC */
1236 status
|= mt2063_get_dnc_output_enable(state
, &longval
);
1237 status
|= mt2063_set_dnc_output_enable(state
, longval
);
1241 u8 val
= (state
->reg
[MT2063_REG_LNA_OV
] & ~0x1F) |
1242 (ACLNAMAX
[Mode
] & 0x1F);
1243 if (state
->reg
[MT2063_REG_LNA_OV
] != val
)
1244 status
|= mt2063_setreg(state
, MT2063_REG_LNA_OV
, val
);
1249 u8 val
= (state
->reg
[MT2063_REG_LNA_TGT
] & ~0x3F) |
1250 (LNATGT
[Mode
] & 0x3F);
1251 if (state
->reg
[MT2063_REG_LNA_TGT
] != val
)
1252 status
|= mt2063_setreg(state
, MT2063_REG_LNA_TGT
, val
);
1257 u8 val
= (state
->reg
[MT2063_REG_RF_OV
] & ~0x1F) |
1258 (ACRFMAX
[Mode
] & 0x1F);
1259 if (state
->reg
[MT2063_REG_RF_OV
] != val
)
1260 status
|= mt2063_setreg(state
, MT2063_REG_RF_OV
, val
);
1265 u8 val
= (state
->reg
[MT2063_REG_PD1_TGT
] & ~0x3F) |
1266 (PD1TGT
[Mode
] & 0x3F);
1267 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1268 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1273 u8 val
= ACFIFMAX
[Mode
];
1274 if (state
->reg
[MT2063_REG_PART_REV
] != MT2063_B3
&& val
> 5)
1276 val
= (state
->reg
[MT2063_REG_FIF_OV
] & ~0x1F) |
1278 if (state
->reg
[MT2063_REG_FIF_OV
] != val
)
1279 status
|= mt2063_setreg(state
, MT2063_REG_FIF_OV
, val
);
1284 u8 val
= (state
->reg
[MT2063_REG_PD2_TGT
] & ~0x3F) |
1285 (PD2TGT
[Mode
] & 0x3F);
1286 if (state
->reg
[MT2063_REG_PD2_TGT
] != val
)
1287 status
|= mt2063_setreg(state
, MT2063_REG_PD2_TGT
, val
);
1290 /* Ignore ATN Overload */
1292 val
= (state
->reg
[MT2063_REG_LNA_TGT
] & ~0x80) |
1293 (RFOVDIS
[Mode
] ? 0x80 : 0x00);
1294 if (state
->reg
[MT2063_REG_LNA_TGT
] != val
)
1295 status
|= mt2063_setreg(state
, MT2063_REG_LNA_TGT
, val
);
1298 /* Ignore FIF Overload */
1300 val
= (state
->reg
[MT2063_REG_PD1_TGT
] & ~0x80) |
1301 (FIFOVDIS
[Mode
] ? 0x80 : 0x00);
1302 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1303 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1307 state
->rcvr_mode
= Mode
;
1308 dprintk(1, "mt2063 mode changed to %s\n",
1309 mt2063_mode_name
[state
->rcvr_mode
]);
1316 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
1317 * sections of the MT2063
1319 * @Bits: Mask bits to be cleared.
1321 * See definition of MT2063_Mask_Bits type for description
1322 * of each of the power bits.
1324 static u32
MT2063_ClearPowerMaskBits(struct mt2063_state
*state
,
1325 enum MT2063_Mask_Bits Bits
)
1330 Bits
= (enum MT2063_Mask_Bits
)(Bits
& MT2063_ALL_SD
); /* Only valid bits for this tuner */
1331 if ((Bits
& 0xFF00) != 0) {
1332 state
->reg
[MT2063_REG_PWR_2
] &= ~(u8
) (Bits
>> 8);
1336 &state
->reg
[MT2063_REG_PWR_2
], 1);
1338 if ((Bits
& 0xFF) != 0) {
1339 state
->reg
[MT2063_REG_PWR_1
] &= ~(u8
) (Bits
& 0xFF);
1343 &state
->reg
[MT2063_REG_PWR_1
], 1);
1350 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
1351 * When Shutdown is 1, any section whose power
1352 * mask is set will be shutdown.
1354 static u32
MT2063_SoftwareShutdown(struct mt2063_state
*state
, u8 Shutdown
)
1360 state
->reg
[MT2063_REG_PWR_1
] |= 0x04;
1362 state
->reg
[MT2063_REG_PWR_1
] &= ~0x04;
1364 status
= mt2063_write(state
,
1366 &state
->reg
[MT2063_REG_PWR_1
], 1);
1368 if (Shutdown
!= 1) {
1369 state
->reg
[MT2063_REG_BYP_CTRL
] =
1370 (state
->reg
[MT2063_REG_BYP_CTRL
] & 0x9F) | 0x40;
1373 MT2063_REG_BYP_CTRL
,
1374 &state
->reg
[MT2063_REG_BYP_CTRL
],
1376 state
->reg
[MT2063_REG_BYP_CTRL
] =
1377 (state
->reg
[MT2063_REG_BYP_CTRL
] & 0x9F);
1380 MT2063_REG_BYP_CTRL
,
1381 &state
->reg
[MT2063_REG_BYP_CTRL
],
1388 static u32
MT2063_Round_fLO(u32 f_LO
, u32 f_LO_Step
, u32 f_ref
)
1390 return f_ref
* (f_LO
/ f_ref
)
1391 + f_LO_Step
* (((f_LO
% f_ref
) + (f_LO_Step
/ 2)) / f_LO_Step
);
1395 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
1396 * This function preserves maximum precision without
1397 * risk of overflow. It accurately calculates
1398 * f_ref * num / denom to within 1 HZ with fixed math.
1400 * @num : Fractional portion of the multiplier
1401 * @denom: denominator portion of the ratio
1402 * @f_Ref: SRO frequency.
1404 * This calculation handles f_ref as two separate 14-bit fields.
1405 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
1406 * This is the genesis of the magic number "14" and the magic mask value of
1409 * This routine successfully handles denom values up to and including 2^18.
1410 * Returns: f_ref * num / denom
1412 static u32
MT2063_fLO_FractionalTerm(u32 f_ref
, u32 num
, u32 denom
)
1414 u32 t1
= (f_ref
>> 14) * num
;
1415 u32 term1
= t1
/ denom
;
1416 u32 loss
= t1
% denom
;
1418 (((f_ref
& 0x00003FFF) * num
+ (loss
<< 14)) + (denom
/ 2)) / denom
;
1419 return (term1
<< 14) + term2
;
1423 * CalcLO1Mult()- Calculates Integer divider value and the numerator
1424 * value for a FracN PLL.
1426 * This function assumes that the f_LO and f_Ref are
1427 * evenly divisible by f_LO_Step.
1429 * @Div: OUTPUT: Whole number portion of the multiplier
1430 * @FracN: OUTPUT: Fractional portion of the multiplier
1431 * @f_LO: desired LO frequency.
1432 * @f_LO_Step: Minimum step size for the LO (in Hz).
1433 * @f_Ref: SRO frequency.
1434 * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
1437 * Returns: Recalculated LO frequency.
1439 static u32
MT2063_CalcLO1Mult(u32
*Div
,
1442 u32 f_LO_Step
, u32 f_Ref
)
1444 /* Calculate the whole number portion of the divider */
1445 *Div
= f_LO
/ f_Ref
;
1447 /* Calculate the numerator value (round to nearest f_LO_Step) */
1449 (64 * (((f_LO
% f_Ref
) + (f_LO_Step
/ 2)) / f_LO_Step
) +
1450 (f_Ref
/ f_LO_Step
/ 2)) / (f_Ref
/ f_LO_Step
);
1452 return (f_Ref
* (*Div
)) + MT2063_fLO_FractionalTerm(f_Ref
, *FracN
, 64);
1456 * CalcLO2Mult() - Calculates Integer divider value and the numerator
1457 * value for a FracN PLL.
1459 * This function assumes that the f_LO and f_Ref are
1460 * evenly divisible by f_LO_Step.
1462 * @Div: OUTPUT: Whole number portion of the multiplier
1463 * @FracN: OUTPUT: Fractional portion of the multiplier
1464 * @f_LO: desired LO frequency.
1465 * @f_LO_Step: Minimum step size for the LO (in Hz).
1466 * @f_Ref: SRO frequency.
1467 * @f_Avoid: Range of PLL frequencies to avoid near
1468 * integer multiples of f_Ref (in Hz).
1470 * Returns: Recalculated LO frequency.
1472 static u32
MT2063_CalcLO2Mult(u32
*Div
,
1475 u32 f_LO_Step
, u32 f_Ref
)
1477 /* Calculate the whole number portion of the divider */
1478 *Div
= f_LO
/ f_Ref
;
1480 /* Calculate the numerator value (round to nearest f_LO_Step) */
1482 (8191 * (((f_LO
% f_Ref
) + (f_LO_Step
/ 2)) / f_LO_Step
) +
1483 (f_Ref
/ f_LO_Step
/ 2)) / (f_Ref
/ f_LO_Step
);
1485 return (f_Ref
* (*Div
)) + MT2063_fLO_FractionalTerm(f_Ref
, *FracN
,
1490 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
1491 * used for a given input frequency.
1493 * @state: ptr to tuner data structure
1494 * @f_in: RF input center frequency (in Hz).
1496 * Returns: ClearTune filter number (0-31)
1498 static u32
FindClearTuneFilter(struct mt2063_state
*state
, u32 f_in
)
1501 u32 idx
; /* index loop */
1504 ** Find RF Band setting
1506 RFBand
= 31; /* def when f_in > all */
1507 for (idx
= 0; idx
< 31; ++idx
) {
1508 if (state
->CTFiltMax
[idx
] >= f_in
) {
1517 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
1519 static u32
MT2063_Tune(struct mt2063_state
*state
, u32 f_in
)
1520 { /* RF input center frequency */
1523 u32 LO1
; /* 1st LO register value */
1524 u32 Num1
; /* Numerator for LO1 reg. value */
1525 u32 f_IF1
; /* 1st IF requested */
1526 u32 LO2
; /* 2nd LO register value */
1527 u32 Num2
; /* Numerator for LO2 reg. value */
1528 u32 ofLO1
, ofLO2
; /* last time's LO frequencies */
1529 u8 fiffc
= 0x80; /* FIFF center freq from tuner */
1530 u32 fiffof
; /* Offset from FIFF center freq */
1531 const u8 LO1LK
= 0x80; /* Mask for LO1 Lock bit */
1532 u8 LO2LK
= 0x08; /* Mask for LO2 Lock bit */
1537 /* Check the input and output frequency ranges */
1538 if ((f_in
< MT2063_MIN_FIN_FREQ
) || (f_in
> MT2063_MAX_FIN_FREQ
))
1541 if ((state
->AS_Data
.f_out
< MT2063_MIN_FOUT_FREQ
)
1542 || (state
->AS_Data
.f_out
> MT2063_MAX_FOUT_FREQ
))
1546 * Save original LO1 and LO2 register values
1548 ofLO1
= state
->AS_Data
.f_LO1
;
1549 ofLO2
= state
->AS_Data
.f_LO2
;
1552 * Find and set RF Band setting
1554 if (state
->ctfilt_sw
== 1) {
1555 val
= (state
->reg
[MT2063_REG_CTUNE_CTRL
] | 0x08);
1556 if (state
->reg
[MT2063_REG_CTUNE_CTRL
] != val
) {
1558 mt2063_setreg(state
, MT2063_REG_CTUNE_CTRL
, val
);
1560 val
= state
->reg
[MT2063_REG_CTUNE_OV
];
1561 RFBand
= FindClearTuneFilter(state
, f_in
);
1562 state
->reg
[MT2063_REG_CTUNE_OV
] =
1563 (u8
) ((state
->reg
[MT2063_REG_CTUNE_OV
] & ~0x1F)
1565 if (state
->reg
[MT2063_REG_CTUNE_OV
] != val
) {
1567 mt2063_setreg(state
, MT2063_REG_CTUNE_OV
, val
);
1572 * Read the FIFF Center Frequency from the tuner
1578 &state
->reg
[MT2063_REG_FIFFC
], 1);
1579 fiffc
= state
->reg
[MT2063_REG_FIFFC
];
1582 * Assign in the requested values
1584 state
->AS_Data
.f_in
= f_in
;
1585 /* Request a 1st IF such that LO1 is on a step size */
1586 state
->AS_Data
.f_if1_Request
=
1587 MT2063_Round_fLO(state
->AS_Data
.f_if1_Request
+ f_in
,
1588 state
->AS_Data
.f_LO1_Step
,
1589 state
->AS_Data
.f_ref
) - f_in
;
1592 * Calculate frequency settings. f_IF1_FREQ + f_in is the
1593 * desired LO1 frequency
1595 MT2063_ResetExclZones(&state
->AS_Data
);
1597 f_IF1
= MT2063_ChooseFirstIF(&state
->AS_Data
);
1599 state
->AS_Data
.f_LO1
=
1600 MT2063_Round_fLO(f_IF1
+ f_in
, state
->AS_Data
.f_LO1_Step
,
1601 state
->AS_Data
.f_ref
);
1603 state
->AS_Data
.f_LO2
=
1604 MT2063_Round_fLO(state
->AS_Data
.f_LO1
- state
->AS_Data
.f_out
- f_in
,
1605 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1608 * Check for any LO spurs in the output bandwidth and adjust
1609 * the LO settings to avoid them if needed
1611 status
|= MT2063_AvoidSpurs(&state
->AS_Data
);
1613 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
1614 * Recalculate the LO frequencies and the values to be placed
1615 * in the tuning registers.
1617 state
->AS_Data
.f_LO1
=
1618 MT2063_CalcLO1Mult(&LO1
, &Num1
, state
->AS_Data
.f_LO1
,
1619 state
->AS_Data
.f_LO1_Step
, state
->AS_Data
.f_ref
);
1620 state
->AS_Data
.f_LO2
=
1621 MT2063_Round_fLO(state
->AS_Data
.f_LO1
- state
->AS_Data
.f_out
- f_in
,
1622 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1623 state
->AS_Data
.f_LO2
=
1624 MT2063_CalcLO2Mult(&LO2
, &Num2
, state
->AS_Data
.f_LO2
,
1625 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1628 * Check the upconverter and downconverter frequency ranges
1630 if ((state
->AS_Data
.f_LO1
< MT2063_MIN_UPC_FREQ
)
1631 || (state
->AS_Data
.f_LO1
> MT2063_MAX_UPC_FREQ
))
1632 status
|= MT2063_UPC_RANGE
;
1633 if ((state
->AS_Data
.f_LO2
< MT2063_MIN_DNC_FREQ
)
1634 || (state
->AS_Data
.f_LO2
> MT2063_MAX_DNC_FREQ
))
1635 status
|= MT2063_DNC_RANGE
;
1636 /* LO2 Lock bit was in a different place for B0 version */
1637 if (state
->tuner_id
== MT2063_B0
)
1641 * If we have the same LO frequencies and we're already locked,
1642 * then skip re-programming the LO registers.
1644 if ((ofLO1
!= state
->AS_Data
.f_LO1
)
1645 || (ofLO2
!= state
->AS_Data
.f_LO2
)
1646 || ((state
->reg
[MT2063_REG_LO_STATUS
] & (LO1LK
| LO2LK
)) !=
1649 * Calculate the FIFFOF register value
1652 * FIFFOF = ------------ - 8 * FIFFC - 4992
1656 (state
->AS_Data
.f_LO1
-
1657 f_in
) / (state
->AS_Data
.f_ref
/ 64) - 8 * (u32
) fiffc
-
1663 * Place all of the calculated values into the local tuner
1667 state
->reg
[MT2063_REG_LO1CQ_1
] = (u8
) (LO1
& 0xFF); /* DIV1q */
1668 state
->reg
[MT2063_REG_LO1CQ_2
] = (u8
) (Num1
& 0x3F); /* NUM1q */
1669 state
->reg
[MT2063_REG_LO2CQ_1
] = (u8
) (((LO2
& 0x7F) << 1) /* DIV2q */
1670 |(Num2
>> 12)); /* NUM2q (hi) */
1671 state
->reg
[MT2063_REG_LO2CQ_2
] = (u8
) ((Num2
& 0x0FF0) >> 4); /* NUM2q (mid) */
1672 state
->reg
[MT2063_REG_LO2CQ_3
] = (u8
) (0xE0 | (Num2
& 0x000F)); /* NUM2q (lo) */
1675 * Now write out the computed register values
1676 * IMPORTANT: There is a required order for writing
1677 * (0x05 must follow all the others).
1679 status
|= mt2063_write(state
, MT2063_REG_LO1CQ_1
, &state
->reg
[MT2063_REG_LO1CQ_1
], 5); /* 0x01 - 0x05 */
1680 if (state
->tuner_id
== MT2063_B0
) {
1681 /* Re-write the one-shot bits to trigger the tune operation */
1682 status
|= mt2063_write(state
, MT2063_REG_LO2CQ_3
, &state
->reg
[MT2063_REG_LO2CQ_3
], 1); /* 0x05 */
1684 /* Write out the FIFF offset only if it's changing */
1685 if (state
->reg
[MT2063_REG_FIFF_OFFSET
] !=
1687 state
->reg
[MT2063_REG_FIFF_OFFSET
] =
1691 MT2063_REG_FIFF_OFFSET
,
1693 reg
[MT2063_REG_FIFF_OFFSET
],
1699 * Check for LO's locking
1705 status
= mt2063_lockStatus(state
);
1709 return -EINVAL
; /* Couldn't lock */
1712 * If we locked OK, assign calculated data to mt2063_state structure
1714 state
->f_IF1_actual
= state
->AS_Data
.f_LO1
- f_in
;
1720 static const u8 MT2063B0_defaults
[] = {
1734 0x2C, 0x27, /* bit at 0x20 is cleared below */
1736 0x2C, 0x07, /* bit at 0x20 is cleared here */
1739 0x28, 0xE1, /* Set the FIFCrst bit here */
1740 0x28, 0xE0, /* Clear the FIFCrst bit here */
1744 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1745 static const u8 MT2063B1_defaults
[] = {
1748 0x11, 0x10, /* New Enable AFCsd */
1757 0x22, 0x21, /* New - ver 1.03 */
1758 0x23, 0x3C, /* New - ver 1.10 */
1759 0x24, 0x20, /* New - ver 1.03 */
1760 0x2C, 0x24, /* bit at 0x20 is cleared below */
1761 0x2D, 0x87, /* FIFFQ=0 */
1763 0x30, 0x0C, /* New - ver 1.11 */
1764 0x31, 0x1B, /* New - ver 1.11 */
1765 0x2C, 0x04, /* bit at 0x20 is cleared here */
1766 0x28, 0xE1, /* Set the FIFCrst bit here */
1767 0x28, 0xE0, /* Clear the FIFCrst bit here */
1771 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1772 static const u8 MT2063B3_defaults
[] = {
1776 0x2C, 0x24, /* bit at 0x20 is cleared below */
1777 0x2C, 0x04, /* bit at 0x20 is cleared here */
1778 0x28, 0xE1, /* Set the FIFCrst bit here */
1779 0x28, 0xE0, /* Clear the FIFCrst bit here */
1783 static int mt2063_init(struct dvb_frontend
*fe
)
1786 struct mt2063_state
*state
= fe
->tuner_priv
;
1787 u8 all_resets
= 0xF0; /* reset/load bits */
1788 const u8
*def
= NULL
;
1797 state
->rcvr_mode
= MT2063_CABLE_QAM
;
1799 /* Read the Part/Rev code from the tuner */
1800 status
= mt2063_read(state
, MT2063_REG_PART_REV
,
1801 &state
->reg
[MT2063_REG_PART_REV
], 1);
1803 printk(KERN_ERR
"Can't read mt2063 part ID\n");
1807 /* Check the part/rev code */
1808 switch (state
->reg
[MT2063_REG_PART_REV
]) {
1822 printk(KERN_ERR
"mt2063: Unknown mt2063 device ID (0x%02x)\n",
1823 state
->reg
[MT2063_REG_PART_REV
]);
1824 return -ENODEV
; /* Wrong tuner Part/Rev code */
1827 /* Check the 2nd byte of the Part/Rev code from the tuner */
1828 status
= mt2063_read(state
, MT2063_REG_RSVD_3B
,
1829 &state
->reg
[MT2063_REG_RSVD_3B
], 1);
1831 /* b7 != 0 ==> NOT MT2063 */
1832 if (status
< 0 || ((state
->reg
[MT2063_REG_RSVD_3B
] & 0x80) != 0x00)) {
1833 printk(KERN_ERR
"mt2063: Unknown part ID (0x%02x%02x)\n",
1834 state
->reg
[MT2063_REG_PART_REV
],
1835 state
->reg
[MT2063_REG_RSVD_3B
]);
1836 return -ENODEV
; /* Wrong tuner Part/Rev code */
1839 printk(KERN_INFO
"mt2063: detected a mt2063 %s\n", step
);
1841 /* Reset the tuner */
1842 status
= mt2063_write(state
, MT2063_REG_LO2CQ_3
, &all_resets
, 1);
1846 /* change all of the default values that vary from the HW reset values */
1847 /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
1848 switch (state
->reg
[MT2063_REG_PART_REV
]) {
1850 def
= MT2063B3_defaults
;
1854 def
= MT2063B1_defaults
;
1858 def
= MT2063B0_defaults
;
1866 while (status
>= 0 && *def
) {
1869 status
= mt2063_write(state
, reg
, &val
, 1);
1874 /* Wait for FIFF location to complete. */
1877 while (status
>= 0 && (FCRUN
!= 0) && (maxReads
-- > 0)) {
1879 status
= mt2063_read(state
,
1880 MT2063_REG_XO_STATUS
,
1882 reg
[MT2063_REG_XO_STATUS
], 1);
1883 FCRUN
= (state
->reg
[MT2063_REG_XO_STATUS
] & 0x40) >> 6;
1886 if (FCRUN
!= 0 || status
< 0)
1889 status
= mt2063_read(state
,
1891 &state
->reg
[MT2063_REG_FIFFC
], 1);
1895 /* Read back all the registers from the tuner */
1896 status
= mt2063_read(state
,
1897 MT2063_REG_PART_REV
,
1898 state
->reg
, MT2063_REG_END_REGS
);
1902 /* Initialize the tuner state. */
1903 state
->tuner_id
= state
->reg
[MT2063_REG_PART_REV
];
1904 state
->AS_Data
.f_ref
= MT2063_REF_FREQ
;
1905 state
->AS_Data
.f_if1_Center
= (state
->AS_Data
.f_ref
/ 8) *
1906 ((u32
) state
->reg
[MT2063_REG_FIFFC
] + 640);
1907 state
->AS_Data
.f_if1_bw
= MT2063_IF1_BW
;
1908 state
->AS_Data
.f_out
= 43750000UL;
1909 state
->AS_Data
.f_out_bw
= 6750000UL;
1910 state
->AS_Data
.f_zif_bw
= MT2063_ZIF_BW
;
1911 state
->AS_Data
.f_LO1_Step
= state
->AS_Data
.f_ref
/ 64;
1912 state
->AS_Data
.f_LO2_Step
= MT2063_TUNE_STEP_SIZE
;
1913 state
->AS_Data
.maxH1
= MT2063_MAX_HARMONICS_1
;
1914 state
->AS_Data
.maxH2
= MT2063_MAX_HARMONICS_2
;
1915 state
->AS_Data
.f_min_LO_Separation
= MT2063_MIN_LO_SEP
;
1916 state
->AS_Data
.f_if1_Request
= state
->AS_Data
.f_if1_Center
;
1917 state
->AS_Data
.f_LO1
= 2181000000UL;
1918 state
->AS_Data
.f_LO2
= 1486249786UL;
1919 state
->f_IF1_actual
= state
->AS_Data
.f_if1_Center
;
1920 state
->AS_Data
.f_in
= state
->AS_Data
.f_LO1
- state
->f_IF1_actual
;
1921 state
->AS_Data
.f_LO1_FracN_Avoid
= MT2063_LO1_FRACN_AVOID
;
1922 state
->AS_Data
.f_LO2_FracN_Avoid
= MT2063_LO2_FRACN_AVOID
;
1923 state
->num_regs
= MT2063_REG_END_REGS
;
1924 state
->AS_Data
.avoidDECT
= MT2063_AVOID_BOTH
;
1925 state
->ctfilt_sw
= 0;
1927 state
->CTFiltMax
[0] = 69230000;
1928 state
->CTFiltMax
[1] = 105770000;
1929 state
->CTFiltMax
[2] = 140350000;
1930 state
->CTFiltMax
[3] = 177110000;
1931 state
->CTFiltMax
[4] = 212860000;
1932 state
->CTFiltMax
[5] = 241130000;
1933 state
->CTFiltMax
[6] = 274370000;
1934 state
->CTFiltMax
[7] = 309820000;
1935 state
->CTFiltMax
[8] = 342450000;
1936 state
->CTFiltMax
[9] = 378870000;
1937 state
->CTFiltMax
[10] = 416210000;
1938 state
->CTFiltMax
[11] = 456500000;
1939 state
->CTFiltMax
[12] = 495790000;
1940 state
->CTFiltMax
[13] = 534530000;
1941 state
->CTFiltMax
[14] = 572610000;
1942 state
->CTFiltMax
[15] = 598970000;
1943 state
->CTFiltMax
[16] = 635910000;
1944 state
->CTFiltMax
[17] = 672130000;
1945 state
->CTFiltMax
[18] = 714840000;
1946 state
->CTFiltMax
[19] = 739660000;
1947 state
->CTFiltMax
[20] = 770410000;
1948 state
->CTFiltMax
[21] = 814660000;
1949 state
->CTFiltMax
[22] = 846950000;
1950 state
->CTFiltMax
[23] = 867820000;
1951 state
->CTFiltMax
[24] = 915980000;
1952 state
->CTFiltMax
[25] = 947450000;
1953 state
->CTFiltMax
[26] = 983110000;
1954 state
->CTFiltMax
[27] = 1021630000;
1955 state
->CTFiltMax
[28] = 1061870000;
1956 state
->CTFiltMax
[29] = 1098330000;
1957 state
->CTFiltMax
[30] = 1138990000;
1960 ** Fetch the FCU osc value and use it and the fRef value to
1961 ** scale all of the Band Max values
1964 state
->reg
[MT2063_REG_CTUNE_CTRL
] = 0x0A;
1965 status
= mt2063_write(state
, MT2063_REG_CTUNE_CTRL
,
1966 &state
->reg
[MT2063_REG_CTUNE_CTRL
], 1);
1970 /* Read the ClearTune filter calibration value */
1971 status
= mt2063_read(state
, MT2063_REG_FIFFC
,
1972 &state
->reg
[MT2063_REG_FIFFC
], 1);
1976 fcu_osc
= state
->reg
[MT2063_REG_FIFFC
];
1978 state
->reg
[MT2063_REG_CTUNE_CTRL
] = 0x00;
1979 status
= mt2063_write(state
, MT2063_REG_CTUNE_CTRL
,
1980 &state
->reg
[MT2063_REG_CTUNE_CTRL
], 1);
1984 /* Adjust each of the values in the ClearTune filter cross-over table */
1985 for (i
= 0; i
< 31; i
++)
1986 state
->CTFiltMax
[i
] = (state
->CTFiltMax
[i
] / 768) * (fcu_osc
+ 640);
1988 status
= MT2063_SoftwareShutdown(state
, 1);
1991 status
= MT2063_ClearPowerMaskBits(state
, MT2063_ALL_SD
);
2000 static int mt2063_get_status(struct dvb_frontend
*fe
, u32
*tuner_status
)
2002 struct mt2063_state
*state
= fe
->tuner_priv
;
2011 status
= mt2063_lockStatus(state
);
2015 *tuner_status
= TUNER_STATUS_LOCKED
;
2017 dprintk(1, "Tuner status: %d", *tuner_status
);
2022 static int mt2063_release(struct dvb_frontend
*fe
)
2024 struct mt2063_state
*state
= fe
->tuner_priv
;
2028 fe
->tuner_priv
= NULL
;
2034 static int mt2063_set_analog_params(struct dvb_frontend
*fe
,
2035 struct analog_parameters
*params
)
2037 struct mt2063_state
*state
= fe
->tuner_priv
;
2048 status
= mt2063_init(fe
);
2053 switch (params
->mode
) {
2054 case V4L2_TUNER_RADIO
:
2055 pict_car
= 38900000;
2057 pict2chanb_vsb
= -(ch_bw
/ 2);
2058 rcvr_mode
= MT2063_OFFAIR_ANALOG
;
2060 case V4L2_TUNER_ANALOG_TV
:
2061 rcvr_mode
= MT2063_CABLE_ANALOG
;
2062 if (params
->std
& ~V4L2_STD_MN
) {
2063 pict_car
= 38900000;
2065 pict2chanb_vsb
= -1250000;
2066 } else if (params
->std
& V4L2_STD_PAL_G
) {
2067 pict_car
= 38900000;
2069 pict2chanb_vsb
= -1250000;
2070 } else { /* PAL/SECAM standards */
2071 pict_car
= 38900000;
2073 pict2chanb_vsb
= -1250000;
2079 if_mid
= pict_car
- (pict2chanb_vsb
+ (ch_bw
/ 2));
2081 state
->AS_Data
.f_LO2_Step
= 125000; /* FIXME: probably 5000 for FM */
2082 state
->AS_Data
.f_out
= if_mid
;
2083 state
->AS_Data
.f_out_bw
= ch_bw
+ 750000;
2084 status
= MT2063_SetReceiverMode(state
, rcvr_mode
);
2088 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2089 params
->frequency
, ch_bw
, pict2chanb_vsb
);
2091 status
= MT2063_Tune(state
, (params
->frequency
+ (pict2chanb_vsb
+ (ch_bw
/ 2))));
2095 state
->frequency
= params
->frequency
;
2100 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
2101 * So, the amount of the needed bandwidth is given by:
2102 * Bw = Symbol_rate * (1 + 0.15)
2103 * As such, the maximum symbol rate supported by 6 MHz is given by:
2104 * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
2106 #define MAX_SYMBOL_RATE_6MHz 5217391
2108 static int mt2063_set_params(struct dvb_frontend
*fe
)
2110 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
2111 struct mt2063_state
*state
= fe
->tuner_priv
;
2120 status
= mt2063_init(fe
);
2127 if (c
->bandwidth_hz
== 0)
2129 if (c
->bandwidth_hz
<= 6000000)
2131 else if (c
->bandwidth_hz
<= 7000000)
2136 switch (c
->delivery_system
) {
2138 rcvr_mode
= MT2063_OFFAIR_COFDM
;
2139 pict_car
= 36125000;
2140 pict2chanb_vsb
= -(ch_bw
/ 2);
2142 case SYS_DVBC_ANNEX_A
:
2143 case SYS_DVBC_ANNEX_C
:
2144 rcvr_mode
= MT2063_CABLE_QAM
;
2145 pict_car
= 36125000;
2146 pict2chanb_vsb
= -(ch_bw
/ 2);
2151 if_mid
= pict_car
- (pict2chanb_vsb
+ (ch_bw
/ 2));
2153 state
->AS_Data
.f_LO2_Step
= 125000; /* FIXME: probably 5000 for FM */
2154 state
->AS_Data
.f_out
= if_mid
;
2155 state
->AS_Data
.f_out_bw
= ch_bw
+ 750000;
2156 status
= MT2063_SetReceiverMode(state
, rcvr_mode
);
2160 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2161 c
->frequency
, ch_bw
, pict2chanb_vsb
);
2163 status
= MT2063_Tune(state
, (c
->frequency
+ (pict2chanb_vsb
+ (ch_bw
/ 2))));
2168 state
->frequency
= c
->frequency
;
2172 static int mt2063_get_if_frequency(struct dvb_frontend
*fe
, u32
*freq
)
2174 struct mt2063_state
*state
= fe
->tuner_priv
;
2181 *freq
= state
->AS_Data
.f_out
;
2183 dprintk(1, "IF frequency: %d\n", *freq
);
2188 static int mt2063_get_bandwidth(struct dvb_frontend
*fe
, u32
*bw
)
2190 struct mt2063_state
*state
= fe
->tuner_priv
;
2197 *bw
= state
->AS_Data
.f_out_bw
- 750000;
2199 dprintk(1, "bandwidth: %d\n", *bw
);
2204 static const struct dvb_tuner_ops mt2063_ops
= {
2206 .name
= "MT2063 Silicon Tuner",
2207 .frequency_min
= 45000000,
2208 .frequency_max
= 865000000,
2209 .frequency_step
= 0,
2212 .init
= mt2063_init
,
2213 .sleep
= MT2063_Sleep
,
2214 .get_status
= mt2063_get_status
,
2215 .set_analog_params
= mt2063_set_analog_params
,
2216 .set_params
= mt2063_set_params
,
2217 .get_if_frequency
= mt2063_get_if_frequency
,
2218 .get_bandwidth
= mt2063_get_bandwidth
,
2219 .release
= mt2063_release
,
2222 struct dvb_frontend
*mt2063_attach(struct dvb_frontend
*fe
,
2223 struct mt2063_config
*config
,
2224 struct i2c_adapter
*i2c
)
2226 struct mt2063_state
*state
= NULL
;
2230 state
= kzalloc(sizeof(struct mt2063_state
), GFP_KERNEL
);
2234 state
->config
= config
;
2236 state
->frontend
= fe
;
2237 state
->reference
= config
->refclock
/ 1000; /* kHz */
2238 fe
->tuner_priv
= state
;
2239 fe
->ops
.tuner_ops
= mt2063_ops
;
2241 printk(KERN_INFO
"%s: Attaching MT2063\n", __func__
);
2244 EXPORT_SYMBOL_GPL(mt2063_attach
);
2248 * Ancillary routines visible outside mt2063
2249 * FIXME: Remove them in favor of using standard tuner callbacks
2251 static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend
*fe
)
2253 struct mt2063_state
*state
= fe
->tuner_priv
;
2258 err
= MT2063_SoftwareShutdown(state
, 1);
2260 printk(KERN_ERR
"%s: Couldn't shutdown\n", __func__
);
2265 static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend
*fe
)
2267 struct mt2063_state
*state
= fe
->tuner_priv
;
2272 err
= MT2063_ClearPowerMaskBits(state
, MT2063_ALL_SD
);
2274 printk(KERN_ERR
"%s: Invalid parameter\n", __func__
);
2280 MODULE_AUTHOR("Mauro Carvalho Chehab");
2281 MODULE_DESCRIPTION("MT2063 Silicon tuner");
2282 MODULE_LICENSE("GPL");