Input: xpad - add support for Xbox1 PDP Camo series gamepad
[linux/fpc-iii.git] / drivers / media / tuners / mt2063.c
blobdfec23743afe82c24950e7db9aaa6e35a266b7ae
1 /*
2 * Driver for mt2063 Micronas tuner
4 * Copyright (c) 2011 Mauro Carvalho Chehab
6 * This driver came from a driver originally written by:
7 * Henry Wang <Henry.wang@AzureWave.com>
8 * Made publicly available by Terratec, at:
9 * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
10 * The original driver's license is GPL, as declared with MODULE_LICENSE()
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation under version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/videodev2.h>
27 #include <linux/gcd.h>
29 #include "mt2063.h"
31 static unsigned int debug;
32 module_param(debug, int, 0644);
33 MODULE_PARM_DESC(debug, "Set Verbosity level");
35 #define dprintk(level, fmt, arg...) do { \
36 if (debug >= level) \
37 printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
38 } while (0)
41 /* positive error codes used internally */
43 /* Info: Unavoidable LO-related spur may be present in the output */
44 #define MT2063_SPUR_PRESENT_ERR (0x00800000)
46 /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
47 #define MT2063_SPUR_CNT_MASK (0x001f0000)
48 #define MT2063_SPUR_SHIFT (16)
50 /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
51 #define MT2063_UPC_RANGE (0x04000000)
53 /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
54 #define MT2063_DNC_RANGE (0x08000000)
57 * Constant defining the version of the following structure
58 * and therefore the API for this code.
60 * When compiling the tuner driver, the preprocessor will
61 * check against this version number to make sure that
62 * it matches the version that the tuner driver knows about.
65 /* DECT Frequency Avoidance */
66 #define MT2063_DECT_AVOID_US_FREQS 0x00000001
68 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
70 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
72 #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
74 enum MT2063_DECT_Avoid_Type {
75 MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
76 MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
77 MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
78 MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
81 #define MT2063_MAX_ZONES 48
83 struct MT2063_ExclZone_t {
84 u32 min_;
85 u32 max_;
86 struct MT2063_ExclZone_t *next_;
90 * Structure of data needed for Spur Avoidance
92 struct MT2063_AvoidSpursData_t {
93 u32 f_ref;
94 u32 f_in;
95 u32 f_LO1;
96 u32 f_if1_Center;
97 u32 f_if1_Request;
98 u32 f_if1_bw;
99 u32 f_LO2;
100 u32 f_out;
101 u32 f_out_bw;
102 u32 f_LO1_Step;
103 u32 f_LO2_Step;
104 u32 f_LO1_FracN_Avoid;
105 u32 f_LO2_FracN_Avoid;
106 u32 f_zif_bw;
107 u32 f_min_LO_Separation;
108 u32 maxH1;
109 u32 maxH2;
110 enum MT2063_DECT_Avoid_Type avoidDECT;
111 u32 bSpurPresent;
112 u32 bSpurAvoided;
113 u32 nSpursFound;
114 u32 nZones;
115 struct MT2063_ExclZone_t *freeZones;
116 struct MT2063_ExclZone_t *usedZones;
117 struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
121 * Parameter for function MT2063_SetPowerMask that specifies the power down
122 * of various sections of the MT2063.
124 enum MT2063_Mask_Bits {
125 MT2063_REG_SD = 0x0040, /* Shutdown regulator */
126 MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
127 MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
128 MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
129 MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
130 MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
131 MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
132 MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
133 MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
134 MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
135 MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
136 MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
137 MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
138 MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
139 MT2063_NONE_SD = 0x0000 /* No shutdown bits */
143 * Possible values for MT2063_DNC_OUTPUT
145 enum MT2063_DNC_Output_Enable {
146 MT2063_DNC_NONE = 0,
147 MT2063_DNC_1,
148 MT2063_DNC_2,
149 MT2063_DNC_BOTH
153 * Two-wire serial bus subaddresses of the tuner registers.
154 * Also known as the tuner's register addresses.
156 enum MT2063_Register_Offsets {
157 MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
158 MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
159 MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
160 MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
161 MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
162 MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
163 MT2063_REG_RSVD_06, /* 0x06: Reserved */
164 MT2063_REG_LO_STATUS, /* 0x07: LO Status */
165 MT2063_REG_FIFFC, /* 0x08: FIFF Center */
166 MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
167 MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
168 MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
169 MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
170 MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
171 MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
172 MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
173 MT2063_REG_RSVD_10, /* 0x10: Reserved */
174 MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
175 MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
176 MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
177 MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
178 MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
179 MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
180 MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
181 MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
182 MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
183 MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
184 MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
185 MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
186 MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
187 MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
188 MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
189 MT2063_REG_RSVD_20, /* 0x20: Reserved */
190 MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
191 MT2063_REG_RSVD_22, /* 0x22: Reserved */
192 MT2063_REG_RSVD_23, /* 0x23: Reserved */
193 MT2063_REG_RSVD_24, /* 0x24: Reserved */
194 MT2063_REG_RSVD_25, /* 0x25: Reserved */
195 MT2063_REG_RSVD_26, /* 0x26: Reserved */
196 MT2063_REG_RSVD_27, /* 0x27: Reserved */
197 MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
198 MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
199 MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
200 MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
201 MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
202 MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
203 MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
204 MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
205 MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
206 MT2063_REG_RSVD_31, /* 0x31: Reserved */
207 MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
208 MT2063_REG_RSVD_33, /* 0x33: Reserved */
209 MT2063_REG_RSVD_34, /* 0x34: Reserved */
210 MT2063_REG_RSVD_35, /* 0x35: Reserved */
211 MT2063_REG_RSVD_36, /* 0x36: Reserved */
212 MT2063_REG_RSVD_37, /* 0x37: Reserved */
213 MT2063_REG_RSVD_38, /* 0x38: Reserved */
214 MT2063_REG_RSVD_39, /* 0x39: Reserved */
215 MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
216 MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
217 MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
218 MT2063_REG_END_REGS
221 struct mt2063_state {
222 struct i2c_adapter *i2c;
224 bool init;
226 const struct mt2063_config *config;
227 struct dvb_tuner_ops ops;
228 struct dvb_frontend *frontend;
230 u32 frequency;
231 u32 srate;
232 u32 bandwidth;
233 u32 reference;
235 u32 tuner_id;
236 struct MT2063_AvoidSpursData_t AS_Data;
237 u32 f_IF1_actual;
238 u32 rcvr_mode;
239 u32 ctfilt_sw;
240 u32 CTFiltMax[31];
241 u32 num_regs;
242 u8 reg[MT2063_REG_END_REGS];
246 * mt2063_write - Write data into the I2C bus
248 static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
250 struct dvb_frontend *fe = state->frontend;
251 int ret;
252 u8 buf[60];
253 struct i2c_msg msg = {
254 .addr = state->config->tuner_address,
255 .flags = 0,
256 .buf = buf,
257 .len = len + 1
260 dprintk(2, "\n");
262 msg.buf[0] = reg;
263 memcpy(msg.buf + 1, data, len);
265 if (fe->ops.i2c_gate_ctrl)
266 fe->ops.i2c_gate_ctrl(fe, 1);
267 ret = i2c_transfer(state->i2c, &msg, 1);
268 if (fe->ops.i2c_gate_ctrl)
269 fe->ops.i2c_gate_ctrl(fe, 0);
271 if (ret < 0)
272 printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
274 return ret;
278 * mt2063_write - Write register data into the I2C bus, caching the value
280 static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
282 int status;
284 dprintk(2, "\n");
286 if (reg >= MT2063_REG_END_REGS)
287 return -ERANGE;
289 status = mt2063_write(state, reg, &val, 1);
290 if (status < 0)
291 return status;
293 state->reg[reg] = val;
295 return 0;
299 * mt2063_read - Read data from the I2C bus
301 static int mt2063_read(struct mt2063_state *state,
302 u8 subAddress, u8 *pData, u32 cnt)
304 int status = 0; /* Status to be returned */
305 struct dvb_frontend *fe = state->frontend;
306 u32 i = 0;
308 dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
310 if (fe->ops.i2c_gate_ctrl)
311 fe->ops.i2c_gate_ctrl(fe, 1);
313 for (i = 0; i < cnt; i++) {
314 u8 b0[] = { subAddress + i };
315 struct i2c_msg msg[] = {
317 .addr = state->config->tuner_address,
318 .flags = 0,
319 .buf = b0,
320 .len = 1
321 }, {
322 .addr = state->config->tuner_address,
323 .flags = I2C_M_RD,
324 .buf = pData + i,
325 .len = 1
329 status = i2c_transfer(state->i2c, msg, 2);
330 dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
331 subAddress + i, status, *(pData + i));
332 if (status < 0)
333 break;
335 if (fe->ops.i2c_gate_ctrl)
336 fe->ops.i2c_gate_ctrl(fe, 0);
338 if (status < 0)
339 printk(KERN_ERR "Can't read from address 0x%02x,\n",
340 subAddress + i);
342 return status;
346 * FIXME: Is this really needed?
348 static int MT2063_Sleep(struct dvb_frontend *fe)
351 * ToDo: Add code here to implement a OS blocking
353 msleep(100);
355 return 0;
359 * Microtune spur avoidance
362 /* Implement ceiling, floor functions. */
363 #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
364 #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
366 struct MT2063_FIFZone_t {
367 s32 min_;
368 s32 max_;
371 static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
372 *pAS_Info,
373 struct MT2063_ExclZone_t *pPrevNode)
375 struct MT2063_ExclZone_t *pNode;
377 dprintk(2, "\n");
379 /* Check for a node in the free list */
380 if (pAS_Info->freeZones != NULL) {
381 /* Use one from the free list */
382 pNode = pAS_Info->freeZones;
383 pAS_Info->freeZones = pNode->next_;
384 } else {
385 /* Grab a node from the array */
386 pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
389 if (pPrevNode != NULL) {
390 pNode->next_ = pPrevNode->next_;
391 pPrevNode->next_ = pNode;
392 } else { /* insert at the beginning of the list */
394 pNode->next_ = pAS_Info->usedZones;
395 pAS_Info->usedZones = pNode;
398 pAS_Info->nZones++;
399 return pNode;
402 static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
403 *pAS_Info,
404 struct MT2063_ExclZone_t *pPrevNode,
405 struct MT2063_ExclZone_t
406 *pNodeToRemove)
408 struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
410 dprintk(2, "\n");
412 /* Make previous node point to the subsequent node */
413 if (pPrevNode != NULL)
414 pPrevNode->next_ = pNext;
416 /* Add pNodeToRemove to the beginning of the freeZones */
417 pNodeToRemove->next_ = pAS_Info->freeZones;
418 pAS_Info->freeZones = pNodeToRemove;
420 /* Decrement node count */
421 pAS_Info->nZones--;
423 return pNext;
427 * MT_AddExclZone()
429 * Add (and merge) an exclusion zone into the list.
430 * If the range (f_min, f_max) is totally outside the
431 * 1st IF BW, ignore the entry.
432 * If the range (f_min, f_max) is negative, ignore the entry.
434 static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
435 u32 f_min, u32 f_max)
437 struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
438 struct MT2063_ExclZone_t *pPrev = NULL;
439 struct MT2063_ExclZone_t *pNext = NULL;
441 dprintk(2, "\n");
443 /* Check to see if this overlaps the 1st IF filter */
444 if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
445 && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
446 && (f_min < f_max)) {
448 * 1 2 3 4 5 6
450 * New entry: |---| |--| |--| |-| |---| |--|
451 * or or or or or
452 * Existing: |--| |--| |--| |---| |-| |--|
455 /* Check for our place in the list */
456 while ((pNode != NULL) && (pNode->max_ < f_min)) {
457 pPrev = pNode;
458 pNode = pNode->next_;
461 if ((pNode != NULL) && (pNode->min_ < f_max)) {
462 /* Combine me with pNode */
463 if (f_min < pNode->min_)
464 pNode->min_ = f_min;
465 if (f_max > pNode->max_)
466 pNode->max_ = f_max;
467 } else {
468 pNode = InsertNode(pAS_Info, pPrev);
469 pNode->min_ = f_min;
470 pNode->max_ = f_max;
473 /* Look for merging possibilities */
474 pNext = pNode->next_;
475 while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
476 if (pNext->max_ > pNode->max_)
477 pNode->max_ = pNext->max_;
478 /* Remove pNext, return ptr to pNext->next */
479 pNext = RemoveNode(pAS_Info, pNode, pNext);
485 * Reset all exclusion zones.
486 * Add zones to protect the PLL FracN regions near zero
488 static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
490 u32 center;
492 dprintk(2, "\n");
494 pAS_Info->nZones = 0; /* this clears the used list */
495 pAS_Info->usedZones = NULL; /* reset ptr */
496 pAS_Info->freeZones = NULL; /* reset ptr */
498 center =
499 pAS_Info->f_ref *
500 ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
501 pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
502 while (center <
503 pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
504 pAS_Info->f_LO1_FracN_Avoid) {
505 /* Exclude LO1 FracN */
506 MT2063_AddExclZone(pAS_Info,
507 center - pAS_Info->f_LO1_FracN_Avoid,
508 center - 1);
509 MT2063_AddExclZone(pAS_Info, center + 1,
510 center + pAS_Info->f_LO1_FracN_Avoid);
511 center += pAS_Info->f_ref;
514 center =
515 pAS_Info->f_ref *
516 ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
517 pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
518 while (center <
519 pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
520 pAS_Info->f_LO2_FracN_Avoid) {
521 /* Exclude LO2 FracN */
522 MT2063_AddExclZone(pAS_Info,
523 center - pAS_Info->f_LO2_FracN_Avoid,
524 center - 1);
525 MT2063_AddExclZone(pAS_Info, center + 1,
526 center + pAS_Info->f_LO2_FracN_Avoid);
527 center += pAS_Info->f_ref;
530 if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
531 /* Exclude LO1 values that conflict with DECT channels */
532 MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
533 MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
534 MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
535 MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
536 MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
539 if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
540 MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
541 MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
542 MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
543 MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
544 MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
545 MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
546 MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
547 MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
548 MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
549 MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
554 * MT_ChooseFirstIF - Choose the best available 1st IF
555 * If f_Desired is not excluded, choose that first.
556 * Otherwise, return the value closest to f_Center that is
557 * not excluded
559 static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
562 * Update "f_Desired" to be the nearest "combinational-multiple" of
563 * "f_LO1_Step".
564 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
565 * And F_LO1 is the arithmetic sum of f_in + f_Center.
566 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
567 * However, the sum must be.
569 const u32 f_Desired =
570 pAS_Info->f_LO1_Step *
571 ((pAS_Info->f_if1_Request + pAS_Info->f_in +
572 pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
573 pAS_Info->f_in;
574 const u32 f_Step =
575 (pAS_Info->f_LO1_Step >
576 pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
577 f_LO2_Step;
578 u32 f_Center;
579 s32 i;
580 s32 j = 0;
581 u32 bDesiredExcluded = 0;
582 u32 bZeroExcluded = 0;
583 s32 tmpMin, tmpMax;
584 s32 bestDiff;
585 struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
586 struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
588 dprintk(2, "\n");
590 if (pAS_Info->nZones == 0)
591 return f_Desired;
594 * f_Center needs to be an integer multiple of f_Step away
595 * from f_Desired
597 if (pAS_Info->f_if1_Center > f_Desired)
598 f_Center =
599 f_Desired +
600 f_Step *
601 ((pAS_Info->f_if1_Center - f_Desired +
602 f_Step / 2) / f_Step);
603 else
604 f_Center =
605 f_Desired -
606 f_Step *
607 ((f_Desired - pAS_Info->f_if1_Center +
608 f_Step / 2) / f_Step);
611 * Take MT_ExclZones, center around f_Center and change the
612 * resolution to f_Step
614 while (pNode != NULL) {
615 /* floor function */
616 tmpMin =
617 floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
619 /* ceil function */
620 tmpMax =
621 ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
623 if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
624 bDesiredExcluded = 1;
626 if ((tmpMin < 0) && (tmpMax > 0))
627 bZeroExcluded = 1;
629 /* See if this zone overlaps the previous */
630 if ((j > 0) && (tmpMin < zones[j - 1].max_))
631 zones[j - 1].max_ = tmpMax;
632 else {
633 /* Add new zone */
634 zones[j].min_ = tmpMin;
635 zones[j].max_ = tmpMax;
636 j++;
638 pNode = pNode->next_;
642 * If the desired is okay, return with it
644 if (bDesiredExcluded == 0)
645 return f_Desired;
648 * If the desired is excluded and the center is okay, return with it
650 if (bZeroExcluded == 0)
651 return f_Center;
653 /* Find the value closest to 0 (f_Center) */
654 bestDiff = zones[0].min_;
655 for (i = 0; i < j; i++) {
656 if (abs(zones[i].min_) < abs(bestDiff))
657 bestDiff = zones[i].min_;
658 if (abs(zones[i].max_) < abs(bestDiff))
659 bestDiff = zones[i].max_;
662 if (bestDiff < 0)
663 return f_Center - ((u32) (-bestDiff) * f_Step);
665 return f_Center + (bestDiff * f_Step);
669 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
670 * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
672 * ma mb mc md
673 * <--+-+-+-------------------+-------------------+-+-+-->
674 * | ^ 0 ^ |
675 * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
676 * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
678 * Note that some equations are doubled to prevent round-off
679 * problems when calculating fIFBW/2
681 * @pAS_Info: Avoid Spurs information block
682 * @fm: If spur, amount f_IF1 has to move negative
683 * @fp: If spur, amount f_IF1 has to move positive
685 * Returns 1 if an LO spur would be present, otherwise 0.
687 static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
688 u32 *fm, u32 * fp)
691 ** Calculate LO frequency settings.
693 u32 n, n0;
694 const u32 f_LO1 = pAS_Info->f_LO1;
695 const u32 f_LO2 = pAS_Info->f_LO2;
696 const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
697 const u32 c = d - pAS_Info->f_out_bw;
698 const u32 f = pAS_Info->f_zif_bw / 2;
699 const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
700 s32 f_nsLO1, f_nsLO2;
701 s32 f_Spur;
702 u32 ma, mb, mc, md, me, mf;
703 u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
705 dprintk(2, "\n");
707 *fm = 0;
710 ** For each edge (d, c & f), calculate a scale, based on the gcd
711 ** of f_LO1, f_LO2 and the edge value. Use the larger of this
712 ** gcd-based scale factor or f_Scale.
714 lo_gcd = gcd(f_LO1, f_LO2);
715 gd_Scale = max((u32) gcd(lo_gcd, d), f_Scale);
716 hgds = gd_Scale / 2;
717 gc_Scale = max((u32) gcd(lo_gcd, c), f_Scale);
718 hgcs = gc_Scale / 2;
719 gf_Scale = max((u32) gcd(lo_gcd, f), f_Scale);
720 hgfs = gf_Scale / 2;
722 n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
724 /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
725 for (n = n0; n <= pAS_Info->maxH1; ++n) {
726 md = (n * ((f_LO1 + hgds) / gd_Scale) -
727 ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
729 /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
730 if (md >= pAS_Info->maxH1)
731 break;
733 ma = (n * ((f_LO1 + hgds) / gd_Scale) +
734 ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
736 /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
737 if (md == ma)
738 continue;
740 mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
741 ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
742 if (mc != md) {
743 f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
744 f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
745 f_Spur =
746 (gc_Scale * (f_nsLO1 - f_nsLO2)) +
747 n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
749 *fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
750 *fm = (((s32) d - f_Spur) / (mc - n)) + 1;
751 return 1;
754 /* Location of Zero-IF-spur to be checked */
755 me = (n * ((f_LO1 + hgfs) / gf_Scale) +
756 ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
757 mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
758 ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
759 if (me != mf) {
760 f_nsLO1 = n * (f_LO1 / gf_Scale);
761 f_nsLO2 = me * (f_LO2 / gf_Scale);
762 f_Spur =
763 (gf_Scale * (f_nsLO1 - f_nsLO2)) +
764 n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
766 *fp = ((f_Spur + (s32) f) / (me - n)) + 1;
767 *fm = (((s32) f - f_Spur) / (me - n)) + 1;
768 return 1;
771 mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
772 ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
773 if (ma != mb) {
774 f_nsLO1 = n * (f_LO1 / gc_Scale);
775 f_nsLO2 = ma * (f_LO2 / gc_Scale);
776 f_Spur =
777 (gc_Scale * (f_nsLO1 - f_nsLO2)) +
778 n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
780 *fp = (((s32) d + f_Spur) / (ma - n)) + 1;
781 *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
782 return 1;
786 /* No spurs found */
787 return 0;
791 * MT_AvoidSpurs() - Main entry point to avoid spurs.
792 * Checks for existing spurs in present LO1, LO2 freqs
793 * and if present, chooses spur-free LO1, LO2 combination
794 * that tunes the same input/output frequencies.
796 static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
798 int status = 0;
799 u32 fm, fp; /* restricted range on LO's */
800 pAS_Info->bSpurAvoided = 0;
801 pAS_Info->nSpursFound = 0;
803 dprintk(2, "\n");
805 if (pAS_Info->maxH1 == 0)
806 return 0;
809 * Avoid LO Generated Spurs
811 * Make sure that have no LO-related spurs within the IF output
812 * bandwidth.
814 * If there is an LO spur in this band, start at the current IF1 frequency
815 * and work out until we find a spur-free frequency or run up against the
816 * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
817 * will be unchanged if a spur-free setting is not found.
819 pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
820 if (pAS_Info->bSpurPresent) {
821 u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
822 u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
823 u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
824 u32 delta_IF1;
825 u32 new_IF1;
828 ** Spur was found, attempt to find a spur-free 1st IF
830 do {
831 pAS_Info->nSpursFound++;
833 /* Raise f_IF1_upper, if needed */
834 MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
836 /* Choose next IF1 that is closest to f_IF1_CENTER */
837 new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
839 if (new_IF1 > zfIF1) {
840 pAS_Info->f_LO1 += (new_IF1 - zfIF1);
841 pAS_Info->f_LO2 += (new_IF1 - zfIF1);
842 } else {
843 pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
844 pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
846 zfIF1 = new_IF1;
848 if (zfIF1 > pAS_Info->f_if1_Center)
849 delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
850 else
851 delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
853 pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
855 * Continue while the new 1st IF is still within the 1st IF bandwidth
856 * and there is a spur in the band (again)
858 } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
861 * Use the LO-spur free values found. If the search went all
862 * the way to the 1st IF band edge and always found spurs, just
863 * leave the original choice. It's as "good" as any other.
865 if (pAS_Info->bSpurPresent == 1) {
866 status |= MT2063_SPUR_PRESENT_ERR;
867 pAS_Info->f_LO1 = zfLO1;
868 pAS_Info->f_LO2 = zfLO2;
869 } else
870 pAS_Info->bSpurAvoided = 1;
873 status |=
874 ((pAS_Info->
875 nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
877 return status;
881 * Constants used by the tuning algorithm
883 #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
884 #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
885 #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
886 #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
887 #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
888 #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
889 #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
890 #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
891 #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
892 #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
893 #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
894 #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
895 #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
896 #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
897 #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
898 #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
899 #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
900 #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
903 * Define the supported Part/Rev codes for the MT2063
905 #define MT2063_B0 (0x9B)
906 #define MT2063_B1 (0x9C)
907 #define MT2063_B2 (0x9D)
908 #define MT2063_B3 (0x9E)
911 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
913 * @state: struct mt2063_state pointer
915 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
917 static int mt2063_lockStatus(struct mt2063_state *state)
919 const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
920 const u32 nPollRate = 2; /* poll status bits every 2 ms */
921 const u32 nMaxLoops = nMaxWait / nPollRate;
922 const u8 LO1LK = 0x80;
923 u8 LO2LK = 0x08;
924 int status;
925 u32 nDelays = 0;
927 dprintk(2, "\n");
929 /* LO2 Lock bit was in a different place for B0 version */
930 if (state->tuner_id == MT2063_B0)
931 LO2LK = 0x40;
933 do {
934 status = mt2063_read(state, MT2063_REG_LO_STATUS,
935 &state->reg[MT2063_REG_LO_STATUS], 1);
937 if (status < 0)
938 return status;
940 if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
941 (LO1LK | LO2LK)) {
942 return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
944 msleep(nPollRate); /* Wait between retries */
945 } while (++nDelays < nMaxLoops);
948 * Got no lock or partial lock
950 return 0;
954 * Constants for setting receiver modes.
955 * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
956 * (DNC1GC & DNC2GC are the values, which are used, when the specific
957 * DNC Output is selected, the other is always off)
959 * enum mt2063_delivery_sys
960 * -------------+----------------------------------------------
961 * Mode 0 : | MT2063_CABLE_QAM
962 * Mode 1 : | MT2063_CABLE_ANALOG
963 * Mode 2 : | MT2063_OFFAIR_COFDM
964 * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
965 * Mode 4 : | MT2063_OFFAIR_ANALOG
966 * Mode 5 : | MT2063_OFFAIR_8VSB
967 * --------------+----------------------------------------------
969 * |<---------- Mode -------------->|
970 * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
971 * ------------+-----+-----+-----+-----+-----+-----+
972 * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
973 * LNARin | 0 | 0 | 3 | 3 | 3 | 3
974 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
975 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
976 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
977 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
978 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
979 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
980 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
981 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
982 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
983 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
984 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
985 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
986 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
989 enum mt2063_delivery_sys {
990 MT2063_CABLE_QAM = 0,
991 MT2063_CABLE_ANALOG,
992 MT2063_OFFAIR_COFDM,
993 MT2063_OFFAIR_COFDM_SAWLESS,
994 MT2063_OFFAIR_ANALOG,
995 MT2063_OFFAIR_8VSB,
996 MT2063_NUM_RCVR_MODES
999 static const char *mt2063_mode_name[] = {
1000 [MT2063_CABLE_QAM] = "digital cable",
1001 [MT2063_CABLE_ANALOG] = "analog cable",
1002 [MT2063_OFFAIR_COFDM] = "digital offair",
1003 [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
1004 [MT2063_OFFAIR_ANALOG] = "analog offair",
1005 [MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
1008 static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
1009 static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
1010 static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
1011 static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
1012 static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
1013 static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
1014 static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
1015 static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
1016 static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
1017 static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
1018 static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
1019 static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
1020 static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
1021 static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
1024 * mt2063_set_dnc_output_enable()
1026 static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
1027 enum MT2063_DNC_Output_Enable *pValue)
1029 dprintk(2, "\n");
1031 if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
1032 if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
1033 *pValue = MT2063_DNC_NONE;
1034 else
1035 *pValue = MT2063_DNC_2;
1036 } else { /* DNC1 is on */
1037 if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
1038 *pValue = MT2063_DNC_1;
1039 else
1040 *pValue = MT2063_DNC_BOTH;
1042 return 0;
1046 * mt2063_set_dnc_output_enable()
1048 static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
1049 enum MT2063_DNC_Output_Enable nValue)
1051 int status = 0; /* Status to be returned */
1052 u8 val = 0;
1054 dprintk(2, "\n");
1056 /* selects, which DNC output is used */
1057 switch (nValue) {
1058 case MT2063_DNC_NONE:
1059 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1060 if (state->reg[MT2063_REG_DNC_GAIN] !=
1061 val)
1062 status |=
1063 mt2063_setreg(state,
1064 MT2063_REG_DNC_GAIN,
1065 val);
1067 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1068 if (state->reg[MT2063_REG_VGA_GAIN] !=
1069 val)
1070 status |=
1071 mt2063_setreg(state,
1072 MT2063_REG_VGA_GAIN,
1073 val);
1075 val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
1076 if (state->reg[MT2063_REG_RSVD_20] !=
1077 val)
1078 status |=
1079 mt2063_setreg(state,
1080 MT2063_REG_RSVD_20,
1081 val);
1083 break;
1084 case MT2063_DNC_1:
1085 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
1086 if (state->reg[MT2063_REG_DNC_GAIN] !=
1087 val)
1088 status |=
1089 mt2063_setreg(state,
1090 MT2063_REG_DNC_GAIN,
1091 val);
1093 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1094 if (state->reg[MT2063_REG_VGA_GAIN] !=
1095 val)
1096 status |=
1097 mt2063_setreg(state,
1098 MT2063_REG_VGA_GAIN,
1099 val);
1101 val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
1102 if (state->reg[MT2063_REG_RSVD_20] !=
1103 val)
1104 status |=
1105 mt2063_setreg(state,
1106 MT2063_REG_RSVD_20,
1107 val);
1109 break;
1110 case MT2063_DNC_2:
1111 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1112 if (state->reg[MT2063_REG_DNC_GAIN] !=
1113 val)
1114 status |=
1115 mt2063_setreg(state,
1116 MT2063_REG_DNC_GAIN,
1117 val);
1119 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
1120 if (state->reg[MT2063_REG_VGA_GAIN] !=
1121 val)
1122 status |=
1123 mt2063_setreg(state,
1124 MT2063_REG_VGA_GAIN,
1125 val);
1127 val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
1128 if (state->reg[MT2063_REG_RSVD_20] !=
1129 val)
1130 status |=
1131 mt2063_setreg(state,
1132 MT2063_REG_RSVD_20,
1133 val);
1135 break;
1136 case MT2063_DNC_BOTH:
1137 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
1138 if (state->reg[MT2063_REG_DNC_GAIN] !=
1139 val)
1140 status |=
1141 mt2063_setreg(state,
1142 MT2063_REG_DNC_GAIN,
1143 val);
1145 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
1146 if (state->reg[MT2063_REG_VGA_GAIN] !=
1147 val)
1148 status |=
1149 mt2063_setreg(state,
1150 MT2063_REG_VGA_GAIN,
1151 val);
1153 val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
1154 if (state->reg[MT2063_REG_RSVD_20] !=
1155 val)
1156 status |=
1157 mt2063_setreg(state,
1158 MT2063_REG_RSVD_20,
1159 val);
1161 break;
1162 default:
1163 break;
1166 return status;
1170 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
1171 * the selected enum mt2063_delivery_sys type.
1173 * (DNC1GC & DNC2GC are the values, which are used, when the specific
1174 * DNC Output is selected, the other is always off)
1176 * @state: ptr to mt2063_state structure
1177 * @Mode: desired receiver delivery system
1179 * Note: Register cache must be valid for it to work
1182 static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
1183 enum mt2063_delivery_sys Mode)
1185 int status = 0; /* Status to be returned */
1186 u8 val;
1187 u32 longval;
1189 dprintk(2, "\n");
1191 if (Mode >= MT2063_NUM_RCVR_MODES)
1192 status = -ERANGE;
1194 /* RFAGCen */
1195 if (status >= 0) {
1196 val =
1197 (state->
1198 reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode]
1199 ? 0x40 :
1200 0x00);
1201 if (state->reg[MT2063_REG_PD1_TGT] != val)
1202 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1205 /* LNARin */
1206 if (status >= 0) {
1207 u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) |
1208 (LNARIN[Mode] & 0x03);
1209 if (state->reg[MT2063_REG_CTRL_2C] != val)
1210 status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
1213 /* FIFFQEN and FIFFQ */
1214 if (status >= 0) {
1215 val =
1216 (state->
1217 reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) |
1218 (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
1219 if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
1220 status |=
1221 mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
1222 /* trigger FIFF calibration, needed after changing FIFFQ */
1223 val =
1224 (state->reg[MT2063_REG_FIFF_CTRL] | 0x01);
1225 status |=
1226 mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1227 val =
1228 (state->
1229 reg[MT2063_REG_FIFF_CTRL] & ~0x01);
1230 status |=
1231 mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1235 /* DNC1GC & DNC2GC */
1236 status |= mt2063_get_dnc_output_enable(state, &longval);
1237 status |= mt2063_set_dnc_output_enable(state, longval);
1239 /* acLNAmax */
1240 if (status >= 0) {
1241 u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) |
1242 (ACLNAMAX[Mode] & 0x1F);
1243 if (state->reg[MT2063_REG_LNA_OV] != val)
1244 status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
1247 /* LNATGT */
1248 if (status >= 0) {
1249 u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) |
1250 (LNATGT[Mode] & 0x3F);
1251 if (state->reg[MT2063_REG_LNA_TGT] != val)
1252 status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1255 /* ACRF */
1256 if (status >= 0) {
1257 u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) |
1258 (ACRFMAX[Mode] & 0x1F);
1259 if (state->reg[MT2063_REG_RF_OV] != val)
1260 status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
1263 /* PD1TGT */
1264 if (status >= 0) {
1265 u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) |
1266 (PD1TGT[Mode] & 0x3F);
1267 if (state->reg[MT2063_REG_PD1_TGT] != val)
1268 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1271 /* FIFATN */
1272 if (status >= 0) {
1273 u8 val = ACFIFMAX[Mode];
1274 if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
1275 val = 5;
1276 val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) |
1277 (val & 0x1F);
1278 if (state->reg[MT2063_REG_FIF_OV] != val)
1279 status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
1282 /* PD2TGT */
1283 if (status >= 0) {
1284 u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) |
1285 (PD2TGT[Mode] & 0x3F);
1286 if (state->reg[MT2063_REG_PD2_TGT] != val)
1287 status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
1290 /* Ignore ATN Overload */
1291 if (status >= 0) {
1292 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) |
1293 (RFOVDIS[Mode] ? 0x80 : 0x00);
1294 if (state->reg[MT2063_REG_LNA_TGT] != val)
1295 status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1298 /* Ignore FIF Overload */
1299 if (status >= 0) {
1300 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) |
1301 (FIFOVDIS[Mode] ? 0x80 : 0x00);
1302 if (state->reg[MT2063_REG_PD1_TGT] != val)
1303 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1306 if (status >= 0) {
1307 state->rcvr_mode = Mode;
1308 dprintk(1, "mt2063 mode changed to %s\n",
1309 mt2063_mode_name[state->rcvr_mode]);
1312 return status;
1316 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
1317 * sections of the MT2063
1319 * @Bits: Mask bits to be cleared.
1321 * See definition of MT2063_Mask_Bits type for description
1322 * of each of the power bits.
1324 static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
1325 enum MT2063_Mask_Bits Bits)
1327 int status = 0;
1329 dprintk(2, "\n");
1330 Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */
1331 if ((Bits & 0xFF00) != 0) {
1332 state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
1333 status |=
1334 mt2063_write(state,
1335 MT2063_REG_PWR_2,
1336 &state->reg[MT2063_REG_PWR_2], 1);
1338 if ((Bits & 0xFF) != 0) {
1339 state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
1340 status |=
1341 mt2063_write(state,
1342 MT2063_REG_PWR_1,
1343 &state->reg[MT2063_REG_PWR_1], 1);
1346 return status;
1350 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
1351 * When Shutdown is 1, any section whose power
1352 * mask is set will be shutdown.
1354 static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
1356 int status;
1358 dprintk(2, "\n");
1359 if (Shutdown == 1)
1360 state->reg[MT2063_REG_PWR_1] |= 0x04;
1361 else
1362 state->reg[MT2063_REG_PWR_1] &= ~0x04;
1364 status = mt2063_write(state,
1365 MT2063_REG_PWR_1,
1366 &state->reg[MT2063_REG_PWR_1], 1);
1368 if (Shutdown != 1) {
1369 state->reg[MT2063_REG_BYP_CTRL] =
1370 (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
1371 status |=
1372 mt2063_write(state,
1373 MT2063_REG_BYP_CTRL,
1374 &state->reg[MT2063_REG_BYP_CTRL],
1376 state->reg[MT2063_REG_BYP_CTRL] =
1377 (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
1378 status |=
1379 mt2063_write(state,
1380 MT2063_REG_BYP_CTRL,
1381 &state->reg[MT2063_REG_BYP_CTRL],
1385 return status;
1388 static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
1390 return f_ref * (f_LO / f_ref)
1391 + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
1395 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
1396 * This function preserves maximum precision without
1397 * risk of overflow. It accurately calculates
1398 * f_ref * num / denom to within 1 HZ with fixed math.
1400 * @num : Fractional portion of the multiplier
1401 * @denom: denominator portion of the ratio
1402 * @f_Ref: SRO frequency.
1404 * This calculation handles f_ref as two separate 14-bit fields.
1405 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
1406 * This is the genesis of the magic number "14" and the magic mask value of
1407 * 0x03FFF.
1409 * This routine successfully handles denom values up to and including 2^18.
1410 * Returns: f_ref * num / denom
1412 static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
1414 u32 t1 = (f_ref >> 14) * num;
1415 u32 term1 = t1 / denom;
1416 u32 loss = t1 % denom;
1417 u32 term2 =
1418 (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
1419 return (term1 << 14) + term2;
1423 * CalcLO1Mult()- Calculates Integer divider value and the numerator
1424 * value for a FracN PLL.
1426 * This function assumes that the f_LO and f_Ref are
1427 * evenly divisible by f_LO_Step.
1429 * @Div: OUTPUT: Whole number portion of the multiplier
1430 * @FracN: OUTPUT: Fractional portion of the multiplier
1431 * @f_LO: desired LO frequency.
1432 * @f_LO_Step: Minimum step size for the LO (in Hz).
1433 * @f_Ref: SRO frequency.
1434 * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
1435 * of f_Ref (in Hz).
1437 * Returns: Recalculated LO frequency.
1439 static u32 MT2063_CalcLO1Mult(u32 *Div,
1440 u32 *FracN,
1441 u32 f_LO,
1442 u32 f_LO_Step, u32 f_Ref)
1444 /* Calculate the whole number portion of the divider */
1445 *Div = f_LO / f_Ref;
1447 /* Calculate the numerator value (round to nearest f_LO_Step) */
1448 *FracN =
1449 (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
1450 (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
1452 return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
1456 * CalcLO2Mult() - Calculates Integer divider value and the numerator
1457 * value for a FracN PLL.
1459 * This function assumes that the f_LO and f_Ref are
1460 * evenly divisible by f_LO_Step.
1462 * @Div: OUTPUT: Whole number portion of the multiplier
1463 * @FracN: OUTPUT: Fractional portion of the multiplier
1464 * @f_LO: desired LO frequency.
1465 * @f_LO_Step: Minimum step size for the LO (in Hz).
1466 * @f_Ref: SRO frequency.
1467 * @f_Avoid: Range of PLL frequencies to avoid near
1468 * integer multiples of f_Ref (in Hz).
1470 * Returns: Recalculated LO frequency.
1472 static u32 MT2063_CalcLO2Mult(u32 *Div,
1473 u32 *FracN,
1474 u32 f_LO,
1475 u32 f_LO_Step, u32 f_Ref)
1477 /* Calculate the whole number portion of the divider */
1478 *Div = f_LO / f_Ref;
1480 /* Calculate the numerator value (round to nearest f_LO_Step) */
1481 *FracN =
1482 (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
1483 (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
1485 return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
1486 8191);
1490 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
1491 * used for a given input frequency.
1493 * @state: ptr to tuner data structure
1494 * @f_in: RF input center frequency (in Hz).
1496 * Returns: ClearTune filter number (0-31)
1498 static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
1500 u32 RFBand;
1501 u32 idx; /* index loop */
1504 ** Find RF Band setting
1506 RFBand = 31; /* def when f_in > all */
1507 for (idx = 0; idx < 31; ++idx) {
1508 if (state->CTFiltMax[idx] >= f_in) {
1509 RFBand = idx;
1510 break;
1513 return RFBand;
1517 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
1519 static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
1520 { /* RF input center frequency */
1522 int status = 0;
1523 u32 LO1; /* 1st LO register value */
1524 u32 Num1; /* Numerator for LO1 reg. value */
1525 u32 f_IF1; /* 1st IF requested */
1526 u32 LO2; /* 2nd LO register value */
1527 u32 Num2; /* Numerator for LO2 reg. value */
1528 u32 ofLO1, ofLO2; /* last time's LO frequencies */
1529 u8 fiffc = 0x80; /* FIFF center freq from tuner */
1530 u32 fiffof; /* Offset from FIFF center freq */
1531 const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
1532 u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
1533 u8 val;
1534 u32 RFBand;
1536 dprintk(2, "\n");
1537 /* Check the input and output frequency ranges */
1538 if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
1539 return -EINVAL;
1541 if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
1542 || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
1543 return -EINVAL;
1546 * Save original LO1 and LO2 register values
1548 ofLO1 = state->AS_Data.f_LO1;
1549 ofLO2 = state->AS_Data.f_LO2;
1552 * Find and set RF Band setting
1554 if (state->ctfilt_sw == 1) {
1555 val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
1556 if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
1557 status |=
1558 mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
1560 val = state->reg[MT2063_REG_CTUNE_OV];
1561 RFBand = FindClearTuneFilter(state, f_in);
1562 state->reg[MT2063_REG_CTUNE_OV] =
1563 (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
1564 | RFBand);
1565 if (state->reg[MT2063_REG_CTUNE_OV] != val) {
1566 status |=
1567 mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
1572 * Read the FIFF Center Frequency from the tuner
1574 if (status >= 0) {
1575 status |=
1576 mt2063_read(state,
1577 MT2063_REG_FIFFC,
1578 &state->reg[MT2063_REG_FIFFC], 1);
1579 fiffc = state->reg[MT2063_REG_FIFFC];
1582 * Assign in the requested values
1584 state->AS_Data.f_in = f_in;
1585 /* Request a 1st IF such that LO1 is on a step size */
1586 state->AS_Data.f_if1_Request =
1587 MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
1588 state->AS_Data.f_LO1_Step,
1589 state->AS_Data.f_ref) - f_in;
1592 * Calculate frequency settings. f_IF1_FREQ + f_in is the
1593 * desired LO1 frequency
1595 MT2063_ResetExclZones(&state->AS_Data);
1597 f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
1599 state->AS_Data.f_LO1 =
1600 MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
1601 state->AS_Data.f_ref);
1603 state->AS_Data.f_LO2 =
1604 MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
1605 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1608 * Check for any LO spurs in the output bandwidth and adjust
1609 * the LO settings to avoid them if needed
1611 status |= MT2063_AvoidSpurs(&state->AS_Data);
1613 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
1614 * Recalculate the LO frequencies and the values to be placed
1615 * in the tuning registers.
1617 state->AS_Data.f_LO1 =
1618 MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
1619 state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
1620 state->AS_Data.f_LO2 =
1621 MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
1622 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1623 state->AS_Data.f_LO2 =
1624 MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
1625 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1628 * Check the upconverter and downconverter frequency ranges
1630 if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
1631 || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
1632 status |= MT2063_UPC_RANGE;
1633 if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
1634 || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
1635 status |= MT2063_DNC_RANGE;
1636 /* LO2 Lock bit was in a different place for B0 version */
1637 if (state->tuner_id == MT2063_B0)
1638 LO2LK = 0x40;
1641 * If we have the same LO frequencies and we're already locked,
1642 * then skip re-programming the LO registers.
1644 if ((ofLO1 != state->AS_Data.f_LO1)
1645 || (ofLO2 != state->AS_Data.f_LO2)
1646 || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
1647 (LO1LK | LO2LK))) {
1649 * Calculate the FIFFOF register value
1651 * IF1_Actual
1652 * FIFFOF = ------------ - 8 * FIFFC - 4992
1653 * f_ref/64
1655 fiffof =
1656 (state->AS_Data.f_LO1 -
1657 f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
1658 4992;
1659 if (fiffof > 0xFF)
1660 fiffof = 0xFF;
1663 * Place all of the calculated values into the local tuner
1664 * register fields.
1666 if (status >= 0) {
1667 state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */
1668 state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */
1669 state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */
1670 |(Num2 >> 12)); /* NUM2q (hi) */
1671 state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */
1672 state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
1675 * Now write out the computed register values
1676 * IMPORTANT: There is a required order for writing
1677 * (0x05 must follow all the others).
1679 status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
1680 if (state->tuner_id == MT2063_B0) {
1681 /* Re-write the one-shot bits to trigger the tune operation */
1682 status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
1684 /* Write out the FIFF offset only if it's changing */
1685 if (state->reg[MT2063_REG_FIFF_OFFSET] !=
1686 (u8) fiffof) {
1687 state->reg[MT2063_REG_FIFF_OFFSET] =
1688 (u8) fiffof;
1689 status |=
1690 mt2063_write(state,
1691 MT2063_REG_FIFF_OFFSET,
1692 &state->
1693 reg[MT2063_REG_FIFF_OFFSET],
1699 * Check for LO's locking
1702 if (status < 0)
1703 return status;
1705 status = mt2063_lockStatus(state);
1706 if (status < 0)
1707 return status;
1708 if (!status)
1709 return -EINVAL; /* Couldn't lock */
1712 * If we locked OK, assign calculated data to mt2063_state structure
1714 state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
1717 return status;
1720 static const u8 MT2063B0_defaults[] = {
1721 /* Reg, Value */
1722 0x19, 0x05,
1723 0x1B, 0x1D,
1724 0x1C, 0x1F,
1725 0x1D, 0x0F,
1726 0x1E, 0x3F,
1727 0x1F, 0x0F,
1728 0x20, 0x3F,
1729 0x22, 0x21,
1730 0x23, 0x3F,
1731 0x24, 0x20,
1732 0x25, 0x3F,
1733 0x27, 0xEE,
1734 0x2C, 0x27, /* bit at 0x20 is cleared below */
1735 0x30, 0x03,
1736 0x2C, 0x07, /* bit at 0x20 is cleared here */
1737 0x2D, 0x87,
1738 0x2E, 0xAA,
1739 0x28, 0xE1, /* Set the FIFCrst bit here */
1740 0x28, 0xE0, /* Clear the FIFCrst bit here */
1741 0x00
1744 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1745 static const u8 MT2063B1_defaults[] = {
1746 /* Reg, Value */
1747 0x05, 0xF0,
1748 0x11, 0x10, /* New Enable AFCsd */
1749 0x19, 0x05,
1750 0x1A, 0x6C,
1751 0x1B, 0x24,
1752 0x1C, 0x28,
1753 0x1D, 0x8F,
1754 0x1E, 0x14,
1755 0x1F, 0x8F,
1756 0x20, 0x57,
1757 0x22, 0x21, /* New - ver 1.03 */
1758 0x23, 0x3C, /* New - ver 1.10 */
1759 0x24, 0x20, /* New - ver 1.03 */
1760 0x2C, 0x24, /* bit at 0x20 is cleared below */
1761 0x2D, 0x87, /* FIFFQ=0 */
1762 0x2F, 0xF3,
1763 0x30, 0x0C, /* New - ver 1.11 */
1764 0x31, 0x1B, /* New - ver 1.11 */
1765 0x2C, 0x04, /* bit at 0x20 is cleared here */
1766 0x28, 0xE1, /* Set the FIFCrst bit here */
1767 0x28, 0xE0, /* Clear the FIFCrst bit here */
1768 0x00
1771 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1772 static const u8 MT2063B3_defaults[] = {
1773 /* Reg, Value */
1774 0x05, 0xF0,
1775 0x19, 0x3D,
1776 0x2C, 0x24, /* bit at 0x20 is cleared below */
1777 0x2C, 0x04, /* bit at 0x20 is cleared here */
1778 0x28, 0xE1, /* Set the FIFCrst bit here */
1779 0x28, 0xE0, /* Clear the FIFCrst bit here */
1780 0x00
1783 static int mt2063_init(struct dvb_frontend *fe)
1785 int status;
1786 struct mt2063_state *state = fe->tuner_priv;
1787 u8 all_resets = 0xF0; /* reset/load bits */
1788 const u8 *def = NULL;
1789 char *step;
1790 u32 FCRUN;
1791 s32 maxReads;
1792 u32 fcu_osc;
1793 u32 i;
1795 dprintk(2, "\n");
1797 state->rcvr_mode = MT2063_CABLE_QAM;
1799 /* Read the Part/Rev code from the tuner */
1800 status = mt2063_read(state, MT2063_REG_PART_REV,
1801 &state->reg[MT2063_REG_PART_REV], 1);
1802 if (status < 0) {
1803 printk(KERN_ERR "Can't read mt2063 part ID\n");
1804 return status;
1807 /* Check the part/rev code */
1808 switch (state->reg[MT2063_REG_PART_REV]) {
1809 case MT2063_B0:
1810 step = "B0";
1811 break;
1812 case MT2063_B1:
1813 step = "B1";
1814 break;
1815 case MT2063_B2:
1816 step = "B2";
1817 break;
1818 case MT2063_B3:
1819 step = "B3";
1820 break;
1821 default:
1822 printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
1823 state->reg[MT2063_REG_PART_REV]);
1824 return -ENODEV; /* Wrong tuner Part/Rev code */
1827 /* Check the 2nd byte of the Part/Rev code from the tuner */
1828 status = mt2063_read(state, MT2063_REG_RSVD_3B,
1829 &state->reg[MT2063_REG_RSVD_3B], 1);
1831 /* b7 != 0 ==> NOT MT2063 */
1832 if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
1833 printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
1834 state->reg[MT2063_REG_PART_REV],
1835 state->reg[MT2063_REG_RSVD_3B]);
1836 return -ENODEV; /* Wrong tuner Part/Rev code */
1839 printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
1841 /* Reset the tuner */
1842 status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
1843 if (status < 0)
1844 return status;
1846 /* change all of the default values that vary from the HW reset values */
1847 /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
1848 switch (state->reg[MT2063_REG_PART_REV]) {
1849 case MT2063_B3:
1850 def = MT2063B3_defaults;
1851 break;
1853 case MT2063_B1:
1854 def = MT2063B1_defaults;
1855 break;
1857 case MT2063_B0:
1858 def = MT2063B0_defaults;
1859 break;
1861 default:
1862 return -ENODEV;
1863 break;
1866 while (status >= 0 && *def) {
1867 u8 reg = *def++;
1868 u8 val = *def++;
1869 status = mt2063_write(state, reg, &val, 1);
1871 if (status < 0)
1872 return status;
1874 /* Wait for FIFF location to complete. */
1875 FCRUN = 1;
1876 maxReads = 10;
1877 while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
1878 msleep(2);
1879 status = mt2063_read(state,
1880 MT2063_REG_XO_STATUS,
1881 &state->
1882 reg[MT2063_REG_XO_STATUS], 1);
1883 FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
1886 if (FCRUN != 0 || status < 0)
1887 return -ENODEV;
1889 status = mt2063_read(state,
1890 MT2063_REG_FIFFC,
1891 &state->reg[MT2063_REG_FIFFC], 1);
1892 if (status < 0)
1893 return status;
1895 /* Read back all the registers from the tuner */
1896 status = mt2063_read(state,
1897 MT2063_REG_PART_REV,
1898 state->reg, MT2063_REG_END_REGS);
1899 if (status < 0)
1900 return status;
1902 /* Initialize the tuner state. */
1903 state->tuner_id = state->reg[MT2063_REG_PART_REV];
1904 state->AS_Data.f_ref = MT2063_REF_FREQ;
1905 state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
1906 ((u32) state->reg[MT2063_REG_FIFFC] + 640);
1907 state->AS_Data.f_if1_bw = MT2063_IF1_BW;
1908 state->AS_Data.f_out = 43750000UL;
1909 state->AS_Data.f_out_bw = 6750000UL;
1910 state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
1911 state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
1912 state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
1913 state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
1914 state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
1915 state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
1916 state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
1917 state->AS_Data.f_LO1 = 2181000000UL;
1918 state->AS_Data.f_LO2 = 1486249786UL;
1919 state->f_IF1_actual = state->AS_Data.f_if1_Center;
1920 state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
1921 state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
1922 state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
1923 state->num_regs = MT2063_REG_END_REGS;
1924 state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
1925 state->ctfilt_sw = 0;
1927 state->CTFiltMax[0] = 69230000;
1928 state->CTFiltMax[1] = 105770000;
1929 state->CTFiltMax[2] = 140350000;
1930 state->CTFiltMax[3] = 177110000;
1931 state->CTFiltMax[4] = 212860000;
1932 state->CTFiltMax[5] = 241130000;
1933 state->CTFiltMax[6] = 274370000;
1934 state->CTFiltMax[7] = 309820000;
1935 state->CTFiltMax[8] = 342450000;
1936 state->CTFiltMax[9] = 378870000;
1937 state->CTFiltMax[10] = 416210000;
1938 state->CTFiltMax[11] = 456500000;
1939 state->CTFiltMax[12] = 495790000;
1940 state->CTFiltMax[13] = 534530000;
1941 state->CTFiltMax[14] = 572610000;
1942 state->CTFiltMax[15] = 598970000;
1943 state->CTFiltMax[16] = 635910000;
1944 state->CTFiltMax[17] = 672130000;
1945 state->CTFiltMax[18] = 714840000;
1946 state->CTFiltMax[19] = 739660000;
1947 state->CTFiltMax[20] = 770410000;
1948 state->CTFiltMax[21] = 814660000;
1949 state->CTFiltMax[22] = 846950000;
1950 state->CTFiltMax[23] = 867820000;
1951 state->CTFiltMax[24] = 915980000;
1952 state->CTFiltMax[25] = 947450000;
1953 state->CTFiltMax[26] = 983110000;
1954 state->CTFiltMax[27] = 1021630000;
1955 state->CTFiltMax[28] = 1061870000;
1956 state->CTFiltMax[29] = 1098330000;
1957 state->CTFiltMax[30] = 1138990000;
1960 ** Fetch the FCU osc value and use it and the fRef value to
1961 ** scale all of the Band Max values
1964 state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
1965 status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
1966 &state->reg[MT2063_REG_CTUNE_CTRL], 1);
1967 if (status < 0)
1968 return status;
1970 /* Read the ClearTune filter calibration value */
1971 status = mt2063_read(state, MT2063_REG_FIFFC,
1972 &state->reg[MT2063_REG_FIFFC], 1);
1973 if (status < 0)
1974 return status;
1976 fcu_osc = state->reg[MT2063_REG_FIFFC];
1978 state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
1979 status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
1980 &state->reg[MT2063_REG_CTUNE_CTRL], 1);
1981 if (status < 0)
1982 return status;
1984 /* Adjust each of the values in the ClearTune filter cross-over table */
1985 for (i = 0; i < 31; i++)
1986 state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
1988 status = MT2063_SoftwareShutdown(state, 1);
1989 if (status < 0)
1990 return status;
1991 status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
1992 if (status < 0)
1993 return status;
1995 state->init = true;
1997 return 0;
2000 static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
2002 struct mt2063_state *state = fe->tuner_priv;
2003 int status;
2005 dprintk(2, "\n");
2007 if (!state->init)
2008 return -ENODEV;
2010 *tuner_status = 0;
2011 status = mt2063_lockStatus(state);
2012 if (status < 0)
2013 return status;
2014 if (status)
2015 *tuner_status = TUNER_STATUS_LOCKED;
2017 dprintk(1, "Tuner status: %d", *tuner_status);
2019 return 0;
2022 static int mt2063_release(struct dvb_frontend *fe)
2024 struct mt2063_state *state = fe->tuner_priv;
2026 dprintk(2, "\n");
2028 fe->tuner_priv = NULL;
2029 kfree(state);
2031 return 0;
2034 static int mt2063_set_analog_params(struct dvb_frontend *fe,
2035 struct analog_parameters *params)
2037 struct mt2063_state *state = fe->tuner_priv;
2038 s32 pict_car;
2039 s32 pict2chanb_vsb;
2040 s32 ch_bw;
2041 s32 if_mid;
2042 s32 rcvr_mode;
2043 int status;
2045 dprintk(2, "\n");
2047 if (!state->init) {
2048 status = mt2063_init(fe);
2049 if (status < 0)
2050 return status;
2053 switch (params->mode) {
2054 case V4L2_TUNER_RADIO:
2055 pict_car = 38900000;
2056 ch_bw = 8000000;
2057 pict2chanb_vsb = -(ch_bw / 2);
2058 rcvr_mode = MT2063_OFFAIR_ANALOG;
2059 break;
2060 case V4L2_TUNER_ANALOG_TV:
2061 rcvr_mode = MT2063_CABLE_ANALOG;
2062 if (params->std & ~V4L2_STD_MN) {
2063 pict_car = 38900000;
2064 ch_bw = 6000000;
2065 pict2chanb_vsb = -1250000;
2066 } else if (params->std & V4L2_STD_PAL_G) {
2067 pict_car = 38900000;
2068 ch_bw = 7000000;
2069 pict2chanb_vsb = -1250000;
2070 } else { /* PAL/SECAM standards */
2071 pict_car = 38900000;
2072 ch_bw = 8000000;
2073 pict2chanb_vsb = -1250000;
2075 break;
2076 default:
2077 return -EINVAL;
2079 if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
2081 state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
2082 state->AS_Data.f_out = if_mid;
2083 state->AS_Data.f_out_bw = ch_bw + 750000;
2084 status = MT2063_SetReceiverMode(state, rcvr_mode);
2085 if (status < 0)
2086 return status;
2088 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2089 params->frequency, ch_bw, pict2chanb_vsb);
2091 status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2092 if (status < 0)
2093 return status;
2095 state->frequency = params->frequency;
2096 return 0;
2100 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
2101 * So, the amount of the needed bandwidth is given by:
2102 * Bw = Symbol_rate * (1 + 0.15)
2103 * As such, the maximum symbol rate supported by 6 MHz is given by:
2104 * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
2106 #define MAX_SYMBOL_RATE_6MHz 5217391
2108 static int mt2063_set_params(struct dvb_frontend *fe)
2110 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2111 struct mt2063_state *state = fe->tuner_priv;
2112 int status;
2113 s32 pict_car;
2114 s32 pict2chanb_vsb;
2115 s32 ch_bw;
2116 s32 if_mid;
2117 s32 rcvr_mode;
2119 if (!state->init) {
2120 status = mt2063_init(fe);
2121 if (status < 0)
2122 return status;
2125 dprintk(2, "\n");
2127 if (c->bandwidth_hz == 0)
2128 return -EINVAL;
2129 if (c->bandwidth_hz <= 6000000)
2130 ch_bw = 6000000;
2131 else if (c->bandwidth_hz <= 7000000)
2132 ch_bw = 7000000;
2133 else
2134 ch_bw = 8000000;
2136 switch (c->delivery_system) {
2137 case SYS_DVBT:
2138 rcvr_mode = MT2063_OFFAIR_COFDM;
2139 pict_car = 36125000;
2140 pict2chanb_vsb = -(ch_bw / 2);
2141 break;
2142 case SYS_DVBC_ANNEX_A:
2143 case SYS_DVBC_ANNEX_C:
2144 rcvr_mode = MT2063_CABLE_QAM;
2145 pict_car = 36125000;
2146 pict2chanb_vsb = -(ch_bw / 2);
2147 break;
2148 default:
2149 return -EINVAL;
2151 if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
2153 state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
2154 state->AS_Data.f_out = if_mid;
2155 state->AS_Data.f_out_bw = ch_bw + 750000;
2156 status = MT2063_SetReceiverMode(state, rcvr_mode);
2157 if (status < 0)
2158 return status;
2160 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2161 c->frequency, ch_bw, pict2chanb_vsb);
2163 status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2165 if (status < 0)
2166 return status;
2168 state->frequency = c->frequency;
2169 return 0;
2172 static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
2174 struct mt2063_state *state = fe->tuner_priv;
2176 dprintk(2, "\n");
2178 if (!state->init)
2179 return -ENODEV;
2181 *freq = state->AS_Data.f_out;
2183 dprintk(1, "IF frequency: %d\n", *freq);
2185 return 0;
2188 static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
2190 struct mt2063_state *state = fe->tuner_priv;
2192 dprintk(2, "\n");
2194 if (!state->init)
2195 return -ENODEV;
2197 *bw = state->AS_Data.f_out_bw - 750000;
2199 dprintk(1, "bandwidth: %d\n", *bw);
2201 return 0;
2204 static const struct dvb_tuner_ops mt2063_ops = {
2205 .info = {
2206 .name = "MT2063 Silicon Tuner",
2207 .frequency_min = 45000000,
2208 .frequency_max = 865000000,
2209 .frequency_step = 0,
2212 .init = mt2063_init,
2213 .sleep = MT2063_Sleep,
2214 .get_status = mt2063_get_status,
2215 .set_analog_params = mt2063_set_analog_params,
2216 .set_params = mt2063_set_params,
2217 .get_if_frequency = mt2063_get_if_frequency,
2218 .get_bandwidth = mt2063_get_bandwidth,
2219 .release = mt2063_release,
2222 struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
2223 struct mt2063_config *config,
2224 struct i2c_adapter *i2c)
2226 struct mt2063_state *state = NULL;
2228 dprintk(2, "\n");
2230 state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
2231 if (!state)
2232 return NULL;
2234 state->config = config;
2235 state->i2c = i2c;
2236 state->frontend = fe;
2237 state->reference = config->refclock / 1000; /* kHz */
2238 fe->tuner_priv = state;
2239 fe->ops.tuner_ops = mt2063_ops;
2241 printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
2242 return fe;
2244 EXPORT_SYMBOL_GPL(mt2063_attach);
2246 #if 0
2248 * Ancillary routines visible outside mt2063
2249 * FIXME: Remove them in favor of using standard tuner callbacks
2251 static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
2253 struct mt2063_state *state = fe->tuner_priv;
2254 int err = 0;
2256 dprintk(2, "\n");
2258 err = MT2063_SoftwareShutdown(state, 1);
2259 if (err < 0)
2260 printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
2262 return err;
2265 static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
2267 struct mt2063_state *state = fe->tuner_priv;
2268 int err = 0;
2270 dprintk(2, "\n");
2272 err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
2273 if (err < 0)
2274 printk(KERN_ERR "%s: Invalid parameter\n", __func__);
2276 return err;
2278 #endif
2280 MODULE_AUTHOR("Mauro Carvalho Chehab");
2281 MODULE_DESCRIPTION("MT2063 Silicon tuner");
2282 MODULE_LICENSE("GPL");