Input: xpad - add support for Xbox1 PDP Camo series gamepad
[linux/fpc-iii.git] / drivers / scsi / esp_scsi.c
blob60be0742e2c8bae75bccd5225638f5f2a48d0713
1 /* esp_scsi.c: ESP SCSI driver.
3 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
30 #include "esp_scsi.h"
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle = 3;
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
52 #define ESP_DEBUG_EVENT 0x00000800
53 #define ESP_DEBUG_COMMAND 0x00001000
55 #define esp_log_intr(f, a...) \
56 do { if (esp_debug & ESP_DEBUG_INTR) \
57 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
58 } while (0)
60 #define esp_log_reset(f, a...) \
61 do { if (esp_debug & ESP_DEBUG_RESET) \
62 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
63 } while (0)
65 #define esp_log_msgin(f, a...) \
66 do { if (esp_debug & ESP_DEBUG_MSGIN) \
67 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
68 } while (0)
70 #define esp_log_msgout(f, a...) \
71 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
72 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
73 } while (0)
75 #define esp_log_cmddone(f, a...) \
76 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
77 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
78 } while (0)
80 #define esp_log_disconnect(f, a...) \
81 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
82 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
83 } while (0)
85 #define esp_log_datastart(f, a...) \
86 do { if (esp_debug & ESP_DEBUG_DATASTART) \
87 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
88 } while (0)
90 #define esp_log_datadone(f, a...) \
91 do { if (esp_debug & ESP_DEBUG_DATADONE) \
92 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
93 } while (0)
95 #define esp_log_reconnect(f, a...) \
96 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
97 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
98 } while (0)
100 #define esp_log_autosense(f, a...) \
101 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
102 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
103 } while (0)
105 #define esp_log_event(f, a...) \
106 do { if (esp_debug & ESP_DEBUG_EVENT) \
107 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
108 } while (0)
110 #define esp_log_command(f, a...) \
111 do { if (esp_debug & ESP_DEBUG_COMMAND) \
112 shost_printk(KERN_DEBUG, esp->host, f, ## a); \
113 } while (0)
115 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
116 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
118 static void esp_log_fill_regs(struct esp *esp,
119 struct esp_event_ent *p)
121 p->sreg = esp->sreg;
122 p->seqreg = esp->seqreg;
123 p->sreg2 = esp->sreg2;
124 p->ireg = esp->ireg;
125 p->select_state = esp->select_state;
126 p->event = esp->event;
129 void scsi_esp_cmd(struct esp *esp, u8 val)
131 struct esp_event_ent *p;
132 int idx = esp->esp_event_cur;
134 p = &esp->esp_event_log[idx];
135 p->type = ESP_EVENT_TYPE_CMD;
136 p->val = val;
137 esp_log_fill_regs(esp, p);
139 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
141 esp_log_command("cmd[%02x]\n", val);
142 esp_write8(val, ESP_CMD);
144 EXPORT_SYMBOL(scsi_esp_cmd);
146 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
148 if (esp->flags & ESP_FLAG_USE_FIFO) {
149 int i;
151 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
152 for (i = 0; i < len; i++)
153 esp_write8(esp->command_block[i], ESP_FDATA);
154 scsi_esp_cmd(esp, cmd);
155 } else {
156 if (esp->rev == FASHME)
157 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
158 cmd |= ESP_CMD_DMA;
159 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
160 len, max_len, 0, cmd);
164 static void esp_event(struct esp *esp, u8 val)
166 struct esp_event_ent *p;
167 int idx = esp->esp_event_cur;
169 p = &esp->esp_event_log[idx];
170 p->type = ESP_EVENT_TYPE_EVENT;
171 p->val = val;
172 esp_log_fill_regs(esp, p);
174 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
176 esp->event = val;
179 static void esp_dump_cmd_log(struct esp *esp)
181 int idx = esp->esp_event_cur;
182 int stop = idx;
184 shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
185 do {
186 struct esp_event_ent *p = &esp->esp_event_log[idx];
188 shost_printk(KERN_INFO, esp->host,
189 "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
190 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
191 idx,
192 p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
193 p->val, p->sreg, p->seqreg,
194 p->sreg2, p->ireg, p->select_state, p->event);
196 idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
197 } while (idx != stop);
200 static void esp_flush_fifo(struct esp *esp)
202 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
203 if (esp->rev == ESP236) {
204 int lim = 1000;
206 while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
207 if (--lim == 0) {
208 shost_printk(KERN_ALERT, esp->host,
209 "ESP_FF_BYTES will not clear!\n");
210 break;
212 udelay(1);
217 static void hme_read_fifo(struct esp *esp)
219 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
220 int idx = 0;
222 while (fcnt--) {
223 esp->fifo[idx++] = esp_read8(ESP_FDATA);
224 esp->fifo[idx++] = esp_read8(ESP_FDATA);
226 if (esp->sreg2 & ESP_STAT2_F1BYTE) {
227 esp_write8(0, ESP_FDATA);
228 esp->fifo[idx++] = esp_read8(ESP_FDATA);
229 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
231 esp->fifo_cnt = idx;
234 static void esp_set_all_config3(struct esp *esp, u8 val)
236 int i;
238 for (i = 0; i < ESP_MAX_TARGET; i++)
239 esp->target[i].esp_config3 = val;
242 /* Reset the ESP chip, _not_ the SCSI bus. */
243 static void esp_reset_esp(struct esp *esp)
245 u8 family_code, version;
247 /* Now reset the ESP chip */
248 scsi_esp_cmd(esp, ESP_CMD_RC);
249 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
250 if (esp->rev == FAST)
251 esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
252 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
254 /* This is the only point at which it is reliable to read
255 * the ID-code for a fast ESP chip variants.
257 esp->max_period = ((35 * esp->ccycle) / 1000);
258 if (esp->rev == FAST) {
259 version = esp_read8(ESP_UID);
260 family_code = (version & 0xf8) >> 3;
261 if (family_code == 0x02)
262 esp->rev = FAS236;
263 else if (family_code == 0x0a)
264 esp->rev = FASHME; /* Version is usually '5'. */
265 else
266 esp->rev = FAS100A;
267 esp->min_period = ((4 * esp->ccycle) / 1000);
268 } else {
269 esp->min_period = ((5 * esp->ccycle) / 1000);
271 if (esp->rev == FAS236) {
273 * The AM53c974 chip returns the same ID as FAS236;
274 * try to configure glitch eater.
276 u8 config4 = ESP_CONFIG4_GE1;
277 esp_write8(config4, ESP_CFG4);
278 config4 = esp_read8(ESP_CFG4);
279 if (config4 & ESP_CONFIG4_GE1) {
280 esp->rev = PCSCSI;
281 esp_write8(esp->config4, ESP_CFG4);
284 esp->max_period = (esp->max_period + 3)>>2;
285 esp->min_period = (esp->min_period + 3)>>2;
287 esp_write8(esp->config1, ESP_CFG1);
288 switch (esp->rev) {
289 case ESP100:
290 /* nothing to do */
291 break;
293 case ESP100A:
294 esp_write8(esp->config2, ESP_CFG2);
295 break;
297 case ESP236:
298 /* Slow 236 */
299 esp_write8(esp->config2, ESP_CFG2);
300 esp->prev_cfg3 = esp->target[0].esp_config3;
301 esp_write8(esp->prev_cfg3, ESP_CFG3);
302 break;
304 case FASHME:
305 esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
306 /* fallthrough... */
308 case FAS236:
309 case PCSCSI:
310 /* Fast 236, AM53c974 or HME */
311 esp_write8(esp->config2, ESP_CFG2);
312 if (esp->rev == FASHME) {
313 u8 cfg3 = esp->target[0].esp_config3;
315 cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
316 if (esp->scsi_id >= 8)
317 cfg3 |= ESP_CONFIG3_IDBIT3;
318 esp_set_all_config3(esp, cfg3);
319 } else {
320 u32 cfg3 = esp->target[0].esp_config3;
322 cfg3 |= ESP_CONFIG3_FCLK;
323 esp_set_all_config3(esp, cfg3);
325 esp->prev_cfg3 = esp->target[0].esp_config3;
326 esp_write8(esp->prev_cfg3, ESP_CFG3);
327 if (esp->rev == FASHME) {
328 esp->radelay = 80;
329 } else {
330 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
331 esp->radelay = 0;
332 else
333 esp->radelay = 96;
335 break;
337 case FAS100A:
338 /* Fast 100a */
339 esp_write8(esp->config2, ESP_CFG2);
340 esp_set_all_config3(esp,
341 (esp->target[0].esp_config3 |
342 ESP_CONFIG3_FCLOCK));
343 esp->prev_cfg3 = esp->target[0].esp_config3;
344 esp_write8(esp->prev_cfg3, ESP_CFG3);
345 esp->radelay = 32;
346 break;
348 default:
349 break;
352 /* Reload the configuration registers */
353 esp_write8(esp->cfact, ESP_CFACT);
355 esp->prev_stp = 0;
356 esp_write8(esp->prev_stp, ESP_STP);
358 esp->prev_soff = 0;
359 esp_write8(esp->prev_soff, ESP_SOFF);
361 esp_write8(esp->neg_defp, ESP_TIMEO);
363 /* Eat any bitrot in the chip */
364 esp_read8(ESP_INTRPT);
365 udelay(100);
368 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
370 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
371 struct scatterlist *sg = scsi_sglist(cmd);
372 int dir = cmd->sc_data_direction;
373 int total, i;
375 if (dir == DMA_NONE)
376 return;
378 spriv->u.num_sg = esp->ops->map_sg(esp, sg, scsi_sg_count(cmd), dir);
379 spriv->cur_residue = sg_dma_len(sg);
380 spriv->cur_sg = sg;
382 total = 0;
383 for (i = 0; i < spriv->u.num_sg; i++)
384 total += sg_dma_len(&sg[i]);
385 spriv->tot_residue = total;
388 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
389 struct scsi_cmnd *cmd)
391 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
393 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
394 return ent->sense_dma +
395 (ent->sense_ptr - cmd->sense_buffer);
398 return sg_dma_address(p->cur_sg) +
399 (sg_dma_len(p->cur_sg) -
400 p->cur_residue);
403 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
404 struct scsi_cmnd *cmd)
406 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
408 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
409 return SCSI_SENSE_BUFFERSIZE -
410 (ent->sense_ptr - cmd->sense_buffer);
412 return p->cur_residue;
415 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
416 struct scsi_cmnd *cmd, unsigned int len)
418 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
420 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
421 ent->sense_ptr += len;
422 return;
425 p->cur_residue -= len;
426 p->tot_residue -= len;
427 if (p->cur_residue < 0 || p->tot_residue < 0) {
428 shost_printk(KERN_ERR, esp->host,
429 "Data transfer overflow.\n");
430 shost_printk(KERN_ERR, esp->host,
431 "cur_residue[%d] tot_residue[%d] len[%u]\n",
432 p->cur_residue, p->tot_residue, len);
433 p->cur_residue = 0;
434 p->tot_residue = 0;
436 if (!p->cur_residue && p->tot_residue) {
437 p->cur_sg++;
438 p->cur_residue = sg_dma_len(p->cur_sg);
442 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
444 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
445 int dir = cmd->sc_data_direction;
447 if (dir == DMA_NONE)
448 return;
450 esp->ops->unmap_sg(esp, scsi_sglist(cmd), spriv->u.num_sg, dir);
453 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
455 struct scsi_cmnd *cmd = ent->cmd;
456 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
458 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
459 ent->saved_sense_ptr = ent->sense_ptr;
460 return;
462 ent->saved_cur_residue = spriv->cur_residue;
463 ent->saved_cur_sg = spriv->cur_sg;
464 ent->saved_tot_residue = spriv->tot_residue;
467 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
469 struct scsi_cmnd *cmd = ent->cmd;
470 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
472 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
473 ent->sense_ptr = ent->saved_sense_ptr;
474 return;
476 spriv->cur_residue = ent->saved_cur_residue;
477 spriv->cur_sg = ent->saved_cur_sg;
478 spriv->tot_residue = ent->saved_tot_residue;
481 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
483 if (cmd->cmd_len == 6 ||
484 cmd->cmd_len == 10 ||
485 cmd->cmd_len == 12) {
486 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
487 } else {
488 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
492 static void esp_write_tgt_config3(struct esp *esp, int tgt)
494 if (esp->rev > ESP100A) {
495 u8 val = esp->target[tgt].esp_config3;
497 if (val != esp->prev_cfg3) {
498 esp->prev_cfg3 = val;
499 esp_write8(val, ESP_CFG3);
504 static void esp_write_tgt_sync(struct esp *esp, int tgt)
506 u8 off = esp->target[tgt].esp_offset;
507 u8 per = esp->target[tgt].esp_period;
509 if (off != esp->prev_soff) {
510 esp->prev_soff = off;
511 esp_write8(off, ESP_SOFF);
513 if (per != esp->prev_stp) {
514 esp->prev_stp = per;
515 esp_write8(per, ESP_STP);
519 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
521 if (esp->rev == FASHME) {
522 /* Arbitrary segment boundaries, 24-bit counts. */
523 if (dma_len > (1U << 24))
524 dma_len = (1U << 24);
525 } else {
526 u32 base, end;
528 /* ESP chip limits other variants by 16-bits of transfer
529 * count. Actually on FAS100A and FAS236 we could get
530 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
531 * in the ESP_CFG2 register but that causes other unwanted
532 * changes so we don't use it currently.
534 if (dma_len > (1U << 16))
535 dma_len = (1U << 16);
537 /* All of the DMA variants hooked up to these chips
538 * cannot handle crossing a 24-bit address boundary.
540 base = dma_addr & ((1U << 24) - 1U);
541 end = base + dma_len;
542 if (end > (1U << 24))
543 end = (1U <<24);
544 dma_len = end - base;
546 return dma_len;
549 static int esp_need_to_nego_wide(struct esp_target_data *tp)
551 struct scsi_target *target = tp->starget;
553 return spi_width(target) != tp->nego_goal_width;
556 static int esp_need_to_nego_sync(struct esp_target_data *tp)
558 struct scsi_target *target = tp->starget;
560 /* When offset is zero, period is "don't care". */
561 if (!spi_offset(target) && !tp->nego_goal_offset)
562 return 0;
564 if (spi_offset(target) == tp->nego_goal_offset &&
565 spi_period(target) == tp->nego_goal_period)
566 return 0;
568 return 1;
571 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
572 struct esp_lun_data *lp)
574 if (!ent->orig_tag[0]) {
575 /* Non-tagged, slot already taken? */
576 if (lp->non_tagged_cmd)
577 return -EBUSY;
579 if (lp->hold) {
580 /* We are being held by active tagged
581 * commands.
583 if (lp->num_tagged)
584 return -EBUSY;
586 /* Tagged commands completed, we can unplug
587 * the queue and run this untagged command.
589 lp->hold = 0;
590 } else if (lp->num_tagged) {
591 /* Plug the queue until num_tagged decreases
592 * to zero in esp_free_lun_tag.
594 lp->hold = 1;
595 return -EBUSY;
598 lp->non_tagged_cmd = ent;
599 return 0;
600 } else {
601 /* Tagged command, see if blocked by a
602 * non-tagged one.
604 if (lp->non_tagged_cmd || lp->hold)
605 return -EBUSY;
608 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
610 lp->tagged_cmds[ent->orig_tag[1]] = ent;
611 lp->num_tagged++;
613 return 0;
616 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
617 struct esp_lun_data *lp)
619 if (ent->orig_tag[0]) {
620 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
621 lp->tagged_cmds[ent->orig_tag[1]] = NULL;
622 lp->num_tagged--;
623 } else {
624 BUG_ON(lp->non_tagged_cmd != ent);
625 lp->non_tagged_cmd = NULL;
629 /* When a contingent allegiance conditon is created, we force feed a
630 * REQUEST_SENSE command to the device to fetch the sense data. I
631 * tried many other schemes, relying on the scsi error handling layer
632 * to send out the REQUEST_SENSE automatically, but this was difficult
633 * to get right especially in the presence of applications like smartd
634 * which use SG_IO to send out their own REQUEST_SENSE commands.
636 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
638 struct scsi_cmnd *cmd = ent->cmd;
639 struct scsi_device *dev = cmd->device;
640 int tgt, lun;
641 u8 *p, val;
643 tgt = dev->id;
644 lun = dev->lun;
647 if (!ent->sense_ptr) {
648 esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
649 tgt, lun);
651 ent->sense_ptr = cmd->sense_buffer;
652 ent->sense_dma = esp->ops->map_single(esp,
653 ent->sense_ptr,
654 SCSI_SENSE_BUFFERSIZE,
655 DMA_FROM_DEVICE);
657 ent->saved_sense_ptr = ent->sense_ptr;
659 esp->active_cmd = ent;
661 p = esp->command_block;
662 esp->msg_out_len = 0;
664 *p++ = IDENTIFY(0, lun);
665 *p++ = REQUEST_SENSE;
666 *p++ = ((dev->scsi_level <= SCSI_2) ?
667 (lun << 5) : 0);
668 *p++ = 0;
669 *p++ = 0;
670 *p++ = SCSI_SENSE_BUFFERSIZE;
671 *p++ = 0;
673 esp->select_state = ESP_SELECT_BASIC;
675 val = tgt;
676 if (esp->rev == FASHME)
677 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
678 esp_write8(val, ESP_BUSID);
680 esp_write_tgt_sync(esp, tgt);
681 esp_write_tgt_config3(esp, tgt);
683 val = (p - esp->command_block);
685 esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
688 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
690 struct esp_cmd_entry *ent;
692 list_for_each_entry(ent, &esp->queued_cmds, list) {
693 struct scsi_cmnd *cmd = ent->cmd;
694 struct scsi_device *dev = cmd->device;
695 struct esp_lun_data *lp = dev->hostdata;
697 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
698 ent->tag[0] = 0;
699 ent->tag[1] = 0;
700 return ent;
703 if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
704 ent->tag[0] = 0;
705 ent->tag[1] = 0;
707 ent->orig_tag[0] = ent->tag[0];
708 ent->orig_tag[1] = ent->tag[1];
710 if (esp_alloc_lun_tag(ent, lp) < 0)
711 continue;
713 return ent;
716 return NULL;
719 static void esp_maybe_execute_command(struct esp *esp)
721 struct esp_target_data *tp;
722 struct esp_lun_data *lp;
723 struct scsi_device *dev;
724 struct scsi_cmnd *cmd;
725 struct esp_cmd_entry *ent;
726 int tgt, lun, i;
727 u32 val, start_cmd;
728 u8 *p;
730 if (esp->active_cmd ||
731 (esp->flags & ESP_FLAG_RESETTING))
732 return;
734 ent = find_and_prep_issuable_command(esp);
735 if (!ent)
736 return;
738 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
739 esp_autosense(esp, ent);
740 return;
743 cmd = ent->cmd;
744 dev = cmd->device;
745 tgt = dev->id;
746 lun = dev->lun;
747 tp = &esp->target[tgt];
748 lp = dev->hostdata;
750 list_move(&ent->list, &esp->active_cmds);
752 esp->active_cmd = ent;
754 esp_map_dma(esp, cmd);
755 esp_save_pointers(esp, ent);
757 esp_check_command_len(esp, cmd);
759 p = esp->command_block;
761 esp->msg_out_len = 0;
762 if (tp->flags & ESP_TGT_CHECK_NEGO) {
763 /* Need to negotiate. If the target is broken
764 * go for synchronous transfers and non-wide.
766 if (tp->flags & ESP_TGT_BROKEN) {
767 tp->flags &= ~ESP_TGT_DISCONNECT;
768 tp->nego_goal_period = 0;
769 tp->nego_goal_offset = 0;
770 tp->nego_goal_width = 0;
771 tp->nego_goal_tags = 0;
774 /* If the settings are not changing, skip this. */
775 if (spi_width(tp->starget) == tp->nego_goal_width &&
776 spi_period(tp->starget) == tp->nego_goal_period &&
777 spi_offset(tp->starget) == tp->nego_goal_offset) {
778 tp->flags &= ~ESP_TGT_CHECK_NEGO;
779 goto build_identify;
782 if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
783 esp->msg_out_len =
784 spi_populate_width_msg(&esp->msg_out[0],
785 (tp->nego_goal_width ?
786 1 : 0));
787 tp->flags |= ESP_TGT_NEGO_WIDE;
788 } else if (esp_need_to_nego_sync(tp)) {
789 esp->msg_out_len =
790 spi_populate_sync_msg(&esp->msg_out[0],
791 tp->nego_goal_period,
792 tp->nego_goal_offset);
793 tp->flags |= ESP_TGT_NEGO_SYNC;
794 } else {
795 tp->flags &= ~ESP_TGT_CHECK_NEGO;
798 /* Process it like a slow command. */
799 if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
800 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
803 build_identify:
804 /* If we don't have a lun-data struct yet, we're probing
805 * so do not disconnect. Also, do not disconnect unless
806 * we have a tag on this command.
808 if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
809 *p++ = IDENTIFY(1, lun);
810 else
811 *p++ = IDENTIFY(0, lun);
813 if (ent->tag[0] && esp->rev == ESP100) {
814 /* ESP100 lacks select w/atn3 command, use select
815 * and stop instead.
817 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
820 if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
821 start_cmd = ESP_CMD_SELA;
822 if (ent->tag[0]) {
823 *p++ = ent->tag[0];
824 *p++ = ent->tag[1];
826 start_cmd = ESP_CMD_SA3;
829 for (i = 0; i < cmd->cmd_len; i++)
830 *p++ = cmd->cmnd[i];
832 esp->select_state = ESP_SELECT_BASIC;
833 } else {
834 esp->cmd_bytes_left = cmd->cmd_len;
835 esp->cmd_bytes_ptr = &cmd->cmnd[0];
837 if (ent->tag[0]) {
838 for (i = esp->msg_out_len - 1;
839 i >= 0; i--)
840 esp->msg_out[i + 2] = esp->msg_out[i];
841 esp->msg_out[0] = ent->tag[0];
842 esp->msg_out[1] = ent->tag[1];
843 esp->msg_out_len += 2;
846 start_cmd = ESP_CMD_SELAS;
847 esp->select_state = ESP_SELECT_MSGOUT;
849 val = tgt;
850 if (esp->rev == FASHME)
851 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
852 esp_write8(val, ESP_BUSID);
854 esp_write_tgt_sync(esp, tgt);
855 esp_write_tgt_config3(esp, tgt);
857 val = (p - esp->command_block);
859 if (esp_debug & ESP_DEBUG_SCSICMD) {
860 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
861 for (i = 0; i < cmd->cmd_len; i++)
862 printk("%02x ", cmd->cmnd[i]);
863 printk("]\n");
866 esp_send_dma_cmd(esp, val, 16, start_cmd);
869 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
871 struct list_head *head = &esp->esp_cmd_pool;
872 struct esp_cmd_entry *ret;
874 if (list_empty(head)) {
875 ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
876 } else {
877 ret = list_entry(head->next, struct esp_cmd_entry, list);
878 list_del(&ret->list);
879 memset(ret, 0, sizeof(*ret));
881 return ret;
884 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
886 list_add(&ent->list, &esp->esp_cmd_pool);
889 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
890 struct scsi_cmnd *cmd, unsigned int result)
892 struct scsi_device *dev = cmd->device;
893 int tgt = dev->id;
894 int lun = dev->lun;
896 esp->active_cmd = NULL;
897 esp_unmap_dma(esp, cmd);
898 esp_free_lun_tag(ent, dev->hostdata);
899 cmd->result = result;
901 if (ent->eh_done) {
902 complete(ent->eh_done);
903 ent->eh_done = NULL;
906 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
907 esp->ops->unmap_single(esp, ent->sense_dma,
908 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
909 ent->sense_ptr = NULL;
911 /* Restore the message/status bytes to what we actually
912 * saw originally. Also, report that we are providing
913 * the sense data.
915 cmd->result = ((DRIVER_SENSE << 24) |
916 (DID_OK << 16) |
917 (COMMAND_COMPLETE << 8) |
918 (SAM_STAT_CHECK_CONDITION << 0));
920 ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
921 if (esp_debug & ESP_DEBUG_AUTOSENSE) {
922 int i;
924 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
925 esp->host->unique_id, tgt, lun);
926 for (i = 0; i < 18; i++)
927 printk("%02x ", cmd->sense_buffer[i]);
928 printk("]\n");
932 cmd->scsi_done(cmd);
934 list_del(&ent->list);
935 esp_put_ent(esp, ent);
937 esp_maybe_execute_command(esp);
940 static unsigned int compose_result(unsigned int status, unsigned int message,
941 unsigned int driver_code)
943 return (status | (message << 8) | (driver_code << 16));
946 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
948 struct scsi_device *dev = ent->cmd->device;
949 struct esp_lun_data *lp = dev->hostdata;
951 scsi_track_queue_full(dev, lp->num_tagged - 1);
954 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
956 struct scsi_device *dev = cmd->device;
957 struct esp *esp = shost_priv(dev->host);
958 struct esp_cmd_priv *spriv;
959 struct esp_cmd_entry *ent;
961 ent = esp_get_ent(esp);
962 if (!ent)
963 return SCSI_MLQUEUE_HOST_BUSY;
965 ent->cmd = cmd;
967 cmd->scsi_done = done;
969 spriv = ESP_CMD_PRIV(cmd);
970 spriv->u.dma_addr = ~(dma_addr_t)0x0;
972 list_add_tail(&ent->list, &esp->queued_cmds);
974 esp_maybe_execute_command(esp);
976 return 0;
979 static DEF_SCSI_QCMD(esp_queuecommand)
981 static int esp_check_gross_error(struct esp *esp)
983 if (esp->sreg & ESP_STAT_SPAM) {
984 /* Gross Error, could be one of:
985 * - top of fifo overwritten
986 * - top of command register overwritten
987 * - DMA programmed with wrong direction
988 * - improper phase change
990 shost_printk(KERN_ERR, esp->host,
991 "Gross error sreg[%02x]\n", esp->sreg);
992 /* XXX Reset the chip. XXX */
993 return 1;
995 return 0;
998 static int esp_check_spur_intr(struct esp *esp)
1000 switch (esp->rev) {
1001 case ESP100:
1002 case ESP100A:
1003 /* The interrupt pending bit of the status register cannot
1004 * be trusted on these revisions.
1006 esp->sreg &= ~ESP_STAT_INTR;
1007 break;
1009 default:
1010 if (!(esp->sreg & ESP_STAT_INTR)) {
1011 if (esp->ireg & ESP_INTR_SR)
1012 return 1;
1014 /* If the DMA is indicating interrupt pending and the
1015 * ESP is not, the only possibility is a DMA error.
1017 if (!esp->ops->dma_error(esp)) {
1018 shost_printk(KERN_ERR, esp->host,
1019 "Spurious irq, sreg=%02x.\n",
1020 esp->sreg);
1021 return -1;
1024 shost_printk(KERN_ERR, esp->host, "DMA error\n");
1026 /* XXX Reset the chip. XXX */
1027 return -1;
1029 break;
1032 return 0;
1035 static void esp_schedule_reset(struct esp *esp)
1037 esp_log_reset("esp_schedule_reset() from %pf\n",
1038 __builtin_return_address(0));
1039 esp->flags |= ESP_FLAG_RESETTING;
1040 esp_event(esp, ESP_EVENT_RESET);
1043 /* In order to avoid having to add a special half-reconnected state
1044 * into the driver we just sit here and poll through the rest of
1045 * the reselection process to get the tag message bytes.
1047 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1048 struct esp_lun_data *lp)
1050 struct esp_cmd_entry *ent;
1051 int i;
1053 if (!lp->num_tagged) {
1054 shost_printk(KERN_ERR, esp->host,
1055 "Reconnect w/num_tagged==0\n");
1056 return NULL;
1059 esp_log_reconnect("reconnect tag, ");
1061 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1062 if (esp->ops->irq_pending(esp))
1063 break;
1065 if (i == ESP_QUICKIRQ_LIMIT) {
1066 shost_printk(KERN_ERR, esp->host,
1067 "Reconnect IRQ1 timeout\n");
1068 return NULL;
1071 esp->sreg = esp_read8(ESP_STATUS);
1072 esp->ireg = esp_read8(ESP_INTRPT);
1074 esp_log_reconnect("IRQ(%d:%x:%x), ",
1075 i, esp->ireg, esp->sreg);
1077 if (esp->ireg & ESP_INTR_DC) {
1078 shost_printk(KERN_ERR, esp->host,
1079 "Reconnect, got disconnect.\n");
1080 return NULL;
1083 if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1084 shost_printk(KERN_ERR, esp->host,
1085 "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
1086 return NULL;
1089 /* DMA in the tag bytes... */
1090 esp->command_block[0] = 0xff;
1091 esp->command_block[1] = 0xff;
1092 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1093 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1095 /* ACK the message. */
1096 scsi_esp_cmd(esp, ESP_CMD_MOK);
1098 for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1099 if (esp->ops->irq_pending(esp)) {
1100 esp->sreg = esp_read8(ESP_STATUS);
1101 esp->ireg = esp_read8(ESP_INTRPT);
1102 if (esp->ireg & ESP_INTR_FDONE)
1103 break;
1105 udelay(1);
1107 if (i == ESP_RESELECT_TAG_LIMIT) {
1108 shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
1109 return NULL;
1111 esp->ops->dma_drain(esp);
1112 esp->ops->dma_invalidate(esp);
1114 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1115 i, esp->ireg, esp->sreg,
1116 esp->command_block[0],
1117 esp->command_block[1]);
1119 if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1120 esp->command_block[0] > ORDERED_QUEUE_TAG) {
1121 shost_printk(KERN_ERR, esp->host,
1122 "Reconnect, bad tag type %02x.\n",
1123 esp->command_block[0]);
1124 return NULL;
1127 ent = lp->tagged_cmds[esp->command_block[1]];
1128 if (!ent) {
1129 shost_printk(KERN_ERR, esp->host,
1130 "Reconnect, no entry for tag %02x.\n",
1131 esp->command_block[1]);
1132 return NULL;
1135 return ent;
1138 static int esp_reconnect(struct esp *esp)
1140 struct esp_cmd_entry *ent;
1141 struct esp_target_data *tp;
1142 struct esp_lun_data *lp;
1143 struct scsi_device *dev;
1144 int target, lun;
1146 BUG_ON(esp->active_cmd);
1147 if (esp->rev == FASHME) {
1148 /* FASHME puts the target and lun numbers directly
1149 * into the fifo.
1151 target = esp->fifo[0];
1152 lun = esp->fifo[1] & 0x7;
1153 } else {
1154 u8 bits = esp_read8(ESP_FDATA);
1156 /* Older chips put the lun directly into the fifo, but
1157 * the target is given as a sample of the arbitration
1158 * lines on the bus at reselection time. So we should
1159 * see the ID of the ESP and the one reconnecting target
1160 * set in the bitmap.
1162 if (!(bits & esp->scsi_id_mask))
1163 goto do_reset;
1164 bits &= ~esp->scsi_id_mask;
1165 if (!bits || (bits & (bits - 1)))
1166 goto do_reset;
1168 target = ffs(bits) - 1;
1169 lun = (esp_read8(ESP_FDATA) & 0x7);
1171 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1172 if (esp->rev == ESP100) {
1173 u8 ireg = esp_read8(ESP_INTRPT);
1174 /* This chip has a bug during reselection that can
1175 * cause a spurious illegal-command interrupt, which
1176 * we simply ACK here. Another possibility is a bus
1177 * reset so we must check for that.
1179 if (ireg & ESP_INTR_SR)
1180 goto do_reset;
1182 scsi_esp_cmd(esp, ESP_CMD_NULL);
1185 esp_write_tgt_sync(esp, target);
1186 esp_write_tgt_config3(esp, target);
1188 scsi_esp_cmd(esp, ESP_CMD_MOK);
1190 if (esp->rev == FASHME)
1191 esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1192 ESP_BUSID);
1194 tp = &esp->target[target];
1195 dev = __scsi_device_lookup_by_target(tp->starget, lun);
1196 if (!dev) {
1197 shost_printk(KERN_ERR, esp->host,
1198 "Reconnect, no lp tgt[%u] lun[%u]\n",
1199 target, lun);
1200 goto do_reset;
1202 lp = dev->hostdata;
1204 ent = lp->non_tagged_cmd;
1205 if (!ent) {
1206 ent = esp_reconnect_with_tag(esp, lp);
1207 if (!ent)
1208 goto do_reset;
1211 esp->active_cmd = ent;
1213 if (ent->flags & ESP_CMD_FLAG_ABORT) {
1214 esp->msg_out[0] = ABORT_TASK_SET;
1215 esp->msg_out_len = 1;
1216 scsi_esp_cmd(esp, ESP_CMD_SATN);
1219 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1220 esp_restore_pointers(esp, ent);
1221 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1222 return 1;
1224 do_reset:
1225 esp_schedule_reset(esp);
1226 return 0;
1229 static int esp_finish_select(struct esp *esp)
1231 struct esp_cmd_entry *ent;
1232 struct scsi_cmnd *cmd;
1233 u8 orig_select_state;
1235 orig_select_state = esp->select_state;
1237 /* No longer selecting. */
1238 esp->select_state = ESP_SELECT_NONE;
1240 esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1241 ent = esp->active_cmd;
1242 cmd = ent->cmd;
1244 if (esp->ops->dma_error(esp)) {
1245 /* If we see a DMA error during or as a result of selection,
1246 * all bets are off.
1248 esp_schedule_reset(esp);
1249 esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1250 return 0;
1253 esp->ops->dma_invalidate(esp);
1255 if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1256 struct esp_target_data *tp = &esp->target[cmd->device->id];
1258 /* Carefully back out of the selection attempt. Release
1259 * resources (such as DMA mapping & TAG) and reset state (such
1260 * as message out and command delivery variables).
1262 if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1263 esp_unmap_dma(esp, cmd);
1264 esp_free_lun_tag(ent, cmd->device->hostdata);
1265 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1266 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1267 esp->cmd_bytes_ptr = NULL;
1268 esp->cmd_bytes_left = 0;
1269 } else {
1270 esp->ops->unmap_single(esp, ent->sense_dma,
1271 SCSI_SENSE_BUFFERSIZE,
1272 DMA_FROM_DEVICE);
1273 ent->sense_ptr = NULL;
1276 /* Now that the state is unwound properly, put back onto
1277 * the issue queue. This command is no longer active.
1279 list_move(&ent->list, &esp->queued_cmds);
1280 esp->active_cmd = NULL;
1282 /* Return value ignored by caller, it directly invokes
1283 * esp_reconnect().
1285 return 0;
1288 if (esp->ireg == ESP_INTR_DC) {
1289 struct scsi_device *dev = cmd->device;
1291 /* Disconnect. Make sure we re-negotiate sync and
1292 * wide parameters if this target starts responding
1293 * again in the future.
1295 esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1297 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1298 esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1299 return 1;
1302 if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1303 /* Selection successful. On pre-FAST chips we have
1304 * to do a NOP and possibly clean out the FIFO.
1306 if (esp->rev <= ESP236) {
1307 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1309 scsi_esp_cmd(esp, ESP_CMD_NULL);
1311 if (!fcnt &&
1312 (!esp->prev_soff ||
1313 ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1314 esp_flush_fifo(esp);
1317 /* If we are doing a slow command, negotiation, etc.
1318 * we'll do the right thing as we transition to the
1319 * next phase.
1321 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1322 return 0;
1325 shost_printk(KERN_INFO, esp->host,
1326 "Unexpected selection completion ireg[%x]\n", esp->ireg);
1327 esp_schedule_reset(esp);
1328 return 0;
1331 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1332 struct scsi_cmnd *cmd)
1334 int fifo_cnt, ecount, bytes_sent, flush_fifo;
1336 fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1337 if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1338 fifo_cnt <<= 1;
1340 ecount = 0;
1341 if (!(esp->sreg & ESP_STAT_TCNT)) {
1342 ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1343 (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1344 if (esp->rev == FASHME)
1345 ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1346 if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
1347 ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
1350 bytes_sent = esp->data_dma_len;
1351 bytes_sent -= ecount;
1352 bytes_sent -= esp->send_cmd_residual;
1355 * The am53c974 has a DMA 'pecularity'. The doc states:
1356 * In some odd byte conditions, one residual byte will
1357 * be left in the SCSI FIFO, and the FIFO Flags will
1358 * never count to '0 '. When this happens, the residual
1359 * byte should be retrieved via PIO following completion
1360 * of the BLAST operation.
1362 if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
1363 size_t count = 1;
1364 size_t offset = bytes_sent;
1365 u8 bval = esp_read8(ESP_FDATA);
1367 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
1368 ent->sense_ptr[bytes_sent] = bval;
1369 else {
1370 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
1371 u8 *ptr;
1373 ptr = scsi_kmap_atomic_sg(p->cur_sg, p->u.num_sg,
1374 &offset, &count);
1375 if (likely(ptr)) {
1376 *(ptr + offset) = bval;
1377 scsi_kunmap_atomic_sg(ptr);
1380 bytes_sent += fifo_cnt;
1381 ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
1383 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1384 bytes_sent -= fifo_cnt;
1386 flush_fifo = 0;
1387 if (!esp->prev_soff) {
1388 /* Synchronous data transfer, always flush fifo. */
1389 flush_fifo = 1;
1390 } else {
1391 if (esp->rev == ESP100) {
1392 u32 fflags, phase;
1394 /* ESP100 has a chip bug where in the synchronous data
1395 * phase it can mistake a final long REQ pulse from the
1396 * target as an extra data byte. Fun.
1398 * To detect this case we resample the status register
1399 * and fifo flags. If we're still in a data phase and
1400 * we see spurious chunks in the fifo, we return error
1401 * to the caller which should reset and set things up
1402 * such that we only try future transfers to this
1403 * target in synchronous mode.
1405 esp->sreg = esp_read8(ESP_STATUS);
1406 phase = esp->sreg & ESP_STAT_PMASK;
1407 fflags = esp_read8(ESP_FFLAGS);
1409 if ((phase == ESP_DOP &&
1410 (fflags & ESP_FF_ONOTZERO)) ||
1411 (phase == ESP_DIP &&
1412 (fflags & ESP_FF_FBYTES)))
1413 return -1;
1415 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1416 flush_fifo = 1;
1419 if (flush_fifo)
1420 esp_flush_fifo(esp);
1422 return bytes_sent;
1425 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1426 u8 scsi_period, u8 scsi_offset,
1427 u8 esp_stp, u8 esp_soff)
1429 spi_period(tp->starget) = scsi_period;
1430 spi_offset(tp->starget) = scsi_offset;
1431 spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1433 if (esp_soff) {
1434 esp_stp &= 0x1f;
1435 esp_soff |= esp->radelay;
1436 if (esp->rev >= FAS236) {
1437 u8 bit = ESP_CONFIG3_FSCSI;
1438 if (esp->rev >= FAS100A)
1439 bit = ESP_CONFIG3_FAST;
1441 if (scsi_period < 50) {
1442 if (esp->rev == FASHME)
1443 esp_soff &= ~esp->radelay;
1444 tp->esp_config3 |= bit;
1445 } else {
1446 tp->esp_config3 &= ~bit;
1448 esp->prev_cfg3 = tp->esp_config3;
1449 esp_write8(esp->prev_cfg3, ESP_CFG3);
1453 tp->esp_period = esp->prev_stp = esp_stp;
1454 tp->esp_offset = esp->prev_soff = esp_soff;
1456 esp_write8(esp_soff, ESP_SOFF);
1457 esp_write8(esp_stp, ESP_STP);
1459 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1461 spi_display_xfer_agreement(tp->starget);
1464 static void esp_msgin_reject(struct esp *esp)
1466 struct esp_cmd_entry *ent = esp->active_cmd;
1467 struct scsi_cmnd *cmd = ent->cmd;
1468 struct esp_target_data *tp;
1469 int tgt;
1471 tgt = cmd->device->id;
1472 tp = &esp->target[tgt];
1474 if (tp->flags & ESP_TGT_NEGO_WIDE) {
1475 tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1477 if (!esp_need_to_nego_sync(tp)) {
1478 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1479 scsi_esp_cmd(esp, ESP_CMD_RATN);
1480 } else {
1481 esp->msg_out_len =
1482 spi_populate_sync_msg(&esp->msg_out[0],
1483 tp->nego_goal_period,
1484 tp->nego_goal_offset);
1485 tp->flags |= ESP_TGT_NEGO_SYNC;
1486 scsi_esp_cmd(esp, ESP_CMD_SATN);
1488 return;
1491 if (tp->flags & ESP_TGT_NEGO_SYNC) {
1492 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1493 tp->esp_period = 0;
1494 tp->esp_offset = 0;
1495 esp_setsync(esp, tp, 0, 0, 0, 0);
1496 scsi_esp_cmd(esp, ESP_CMD_RATN);
1497 return;
1500 esp->msg_out[0] = ABORT_TASK_SET;
1501 esp->msg_out_len = 1;
1502 scsi_esp_cmd(esp, ESP_CMD_SATN);
1505 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1507 u8 period = esp->msg_in[3];
1508 u8 offset = esp->msg_in[4];
1509 u8 stp;
1511 if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1512 goto do_reject;
1514 if (offset > 15)
1515 goto do_reject;
1517 if (offset) {
1518 int one_clock;
1520 if (period > esp->max_period) {
1521 period = offset = 0;
1522 goto do_sdtr;
1524 if (period < esp->min_period)
1525 goto do_reject;
1527 one_clock = esp->ccycle / 1000;
1528 stp = DIV_ROUND_UP(period << 2, one_clock);
1529 if (stp && esp->rev >= FAS236) {
1530 if (stp >= 50)
1531 stp--;
1533 } else {
1534 stp = 0;
1537 esp_setsync(esp, tp, period, offset, stp, offset);
1538 return;
1540 do_reject:
1541 esp->msg_out[0] = MESSAGE_REJECT;
1542 esp->msg_out_len = 1;
1543 scsi_esp_cmd(esp, ESP_CMD_SATN);
1544 return;
1546 do_sdtr:
1547 tp->nego_goal_period = period;
1548 tp->nego_goal_offset = offset;
1549 esp->msg_out_len =
1550 spi_populate_sync_msg(&esp->msg_out[0],
1551 tp->nego_goal_period,
1552 tp->nego_goal_offset);
1553 scsi_esp_cmd(esp, ESP_CMD_SATN);
1556 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1558 int size = 8 << esp->msg_in[3];
1559 u8 cfg3;
1561 if (esp->rev != FASHME)
1562 goto do_reject;
1564 if (size != 8 && size != 16)
1565 goto do_reject;
1567 if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1568 goto do_reject;
1570 cfg3 = tp->esp_config3;
1571 if (size == 16) {
1572 tp->flags |= ESP_TGT_WIDE;
1573 cfg3 |= ESP_CONFIG3_EWIDE;
1574 } else {
1575 tp->flags &= ~ESP_TGT_WIDE;
1576 cfg3 &= ~ESP_CONFIG3_EWIDE;
1578 tp->esp_config3 = cfg3;
1579 esp->prev_cfg3 = cfg3;
1580 esp_write8(cfg3, ESP_CFG3);
1582 tp->flags &= ~ESP_TGT_NEGO_WIDE;
1584 spi_period(tp->starget) = 0;
1585 spi_offset(tp->starget) = 0;
1586 if (!esp_need_to_nego_sync(tp)) {
1587 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1588 scsi_esp_cmd(esp, ESP_CMD_RATN);
1589 } else {
1590 esp->msg_out_len =
1591 spi_populate_sync_msg(&esp->msg_out[0],
1592 tp->nego_goal_period,
1593 tp->nego_goal_offset);
1594 tp->flags |= ESP_TGT_NEGO_SYNC;
1595 scsi_esp_cmd(esp, ESP_CMD_SATN);
1597 return;
1599 do_reject:
1600 esp->msg_out[0] = MESSAGE_REJECT;
1601 esp->msg_out_len = 1;
1602 scsi_esp_cmd(esp, ESP_CMD_SATN);
1605 static void esp_msgin_extended(struct esp *esp)
1607 struct esp_cmd_entry *ent = esp->active_cmd;
1608 struct scsi_cmnd *cmd = ent->cmd;
1609 struct esp_target_data *tp;
1610 int tgt = cmd->device->id;
1612 tp = &esp->target[tgt];
1613 if (esp->msg_in[2] == EXTENDED_SDTR) {
1614 esp_msgin_sdtr(esp, tp);
1615 return;
1617 if (esp->msg_in[2] == EXTENDED_WDTR) {
1618 esp_msgin_wdtr(esp, tp);
1619 return;
1622 shost_printk(KERN_INFO, esp->host,
1623 "Unexpected extended msg type %x\n", esp->msg_in[2]);
1625 esp->msg_out[0] = ABORT_TASK_SET;
1626 esp->msg_out_len = 1;
1627 scsi_esp_cmd(esp, ESP_CMD_SATN);
1630 /* Analyze msgin bytes received from target so far. Return non-zero
1631 * if there are more bytes needed to complete the message.
1633 static int esp_msgin_process(struct esp *esp)
1635 u8 msg0 = esp->msg_in[0];
1636 int len = esp->msg_in_len;
1638 if (msg0 & 0x80) {
1639 /* Identify */
1640 shost_printk(KERN_INFO, esp->host,
1641 "Unexpected msgin identify\n");
1642 return 0;
1645 switch (msg0) {
1646 case EXTENDED_MESSAGE:
1647 if (len == 1)
1648 return 1;
1649 if (len < esp->msg_in[1] + 2)
1650 return 1;
1651 esp_msgin_extended(esp);
1652 return 0;
1654 case IGNORE_WIDE_RESIDUE: {
1655 struct esp_cmd_entry *ent;
1656 struct esp_cmd_priv *spriv;
1657 if (len == 1)
1658 return 1;
1660 if (esp->msg_in[1] != 1)
1661 goto do_reject;
1663 ent = esp->active_cmd;
1664 spriv = ESP_CMD_PRIV(ent->cmd);
1666 if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1667 spriv->cur_sg--;
1668 spriv->cur_residue = 1;
1669 } else
1670 spriv->cur_residue++;
1671 spriv->tot_residue++;
1672 return 0;
1674 case NOP:
1675 return 0;
1676 case RESTORE_POINTERS:
1677 esp_restore_pointers(esp, esp->active_cmd);
1678 return 0;
1679 case SAVE_POINTERS:
1680 esp_save_pointers(esp, esp->active_cmd);
1681 return 0;
1683 case COMMAND_COMPLETE:
1684 case DISCONNECT: {
1685 struct esp_cmd_entry *ent = esp->active_cmd;
1687 ent->message = msg0;
1688 esp_event(esp, ESP_EVENT_FREE_BUS);
1689 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1690 return 0;
1692 case MESSAGE_REJECT:
1693 esp_msgin_reject(esp);
1694 return 0;
1696 default:
1697 do_reject:
1698 esp->msg_out[0] = MESSAGE_REJECT;
1699 esp->msg_out_len = 1;
1700 scsi_esp_cmd(esp, ESP_CMD_SATN);
1701 return 0;
1705 static int esp_process_event(struct esp *esp)
1707 int write, i;
1709 again:
1710 write = 0;
1711 esp_log_event("process event %d phase %x\n",
1712 esp->event, esp->sreg & ESP_STAT_PMASK);
1713 switch (esp->event) {
1714 case ESP_EVENT_CHECK_PHASE:
1715 switch (esp->sreg & ESP_STAT_PMASK) {
1716 case ESP_DOP:
1717 esp_event(esp, ESP_EVENT_DATA_OUT);
1718 break;
1719 case ESP_DIP:
1720 esp_event(esp, ESP_EVENT_DATA_IN);
1721 break;
1722 case ESP_STATP:
1723 esp_flush_fifo(esp);
1724 scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1725 esp_event(esp, ESP_EVENT_STATUS);
1726 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1727 return 1;
1729 case ESP_MOP:
1730 esp_event(esp, ESP_EVENT_MSGOUT);
1731 break;
1733 case ESP_MIP:
1734 esp_event(esp, ESP_EVENT_MSGIN);
1735 break;
1737 case ESP_CMDP:
1738 esp_event(esp, ESP_EVENT_CMD_START);
1739 break;
1741 default:
1742 shost_printk(KERN_INFO, esp->host,
1743 "Unexpected phase, sreg=%02x\n",
1744 esp->sreg);
1745 esp_schedule_reset(esp);
1746 return 0;
1748 goto again;
1749 break;
1751 case ESP_EVENT_DATA_IN:
1752 write = 1;
1753 /* fallthru */
1755 case ESP_EVENT_DATA_OUT: {
1756 struct esp_cmd_entry *ent = esp->active_cmd;
1757 struct scsi_cmnd *cmd = ent->cmd;
1758 dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1759 unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1761 if (esp->rev == ESP100)
1762 scsi_esp_cmd(esp, ESP_CMD_NULL);
1764 if (write)
1765 ent->flags |= ESP_CMD_FLAG_WRITE;
1766 else
1767 ent->flags &= ~ESP_CMD_FLAG_WRITE;
1769 if (esp->ops->dma_length_limit)
1770 dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1771 dma_len);
1772 else
1773 dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1775 esp->data_dma_len = dma_len;
1777 if (!dma_len) {
1778 shost_printk(KERN_ERR, esp->host,
1779 "DMA length is zero!\n");
1780 shost_printk(KERN_ERR, esp->host,
1781 "cur adr[%08llx] len[%08x]\n",
1782 (unsigned long long)esp_cur_dma_addr(ent, cmd),
1783 esp_cur_dma_len(ent, cmd));
1784 esp_schedule_reset(esp);
1785 return 0;
1788 esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1789 (unsigned long long)dma_addr, dma_len, write);
1791 esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1792 write, ESP_CMD_DMA | ESP_CMD_TI);
1793 esp_event(esp, ESP_EVENT_DATA_DONE);
1794 break;
1796 case ESP_EVENT_DATA_DONE: {
1797 struct esp_cmd_entry *ent = esp->active_cmd;
1798 struct scsi_cmnd *cmd = ent->cmd;
1799 int bytes_sent;
1801 if (esp->ops->dma_error(esp)) {
1802 shost_printk(KERN_INFO, esp->host,
1803 "data done, DMA error, resetting\n");
1804 esp_schedule_reset(esp);
1805 return 0;
1808 if (ent->flags & ESP_CMD_FLAG_WRITE) {
1809 /* XXX parity errors, etc. XXX */
1811 esp->ops->dma_drain(esp);
1813 esp->ops->dma_invalidate(esp);
1815 if (esp->ireg != ESP_INTR_BSERV) {
1816 /* We should always see exactly a bus-service
1817 * interrupt at the end of a successful transfer.
1819 shost_printk(KERN_INFO, esp->host,
1820 "data done, not BSERV, resetting\n");
1821 esp_schedule_reset(esp);
1822 return 0;
1825 bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1827 esp_log_datadone("data done flgs[%x] sent[%d]\n",
1828 ent->flags, bytes_sent);
1830 if (bytes_sent < 0) {
1831 /* XXX force sync mode for this target XXX */
1832 esp_schedule_reset(esp);
1833 return 0;
1836 esp_advance_dma(esp, ent, cmd, bytes_sent);
1837 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1838 goto again;
1841 case ESP_EVENT_STATUS: {
1842 struct esp_cmd_entry *ent = esp->active_cmd;
1844 if (esp->ireg & ESP_INTR_FDONE) {
1845 ent->status = esp_read8(ESP_FDATA);
1846 ent->message = esp_read8(ESP_FDATA);
1847 scsi_esp_cmd(esp, ESP_CMD_MOK);
1848 } else if (esp->ireg == ESP_INTR_BSERV) {
1849 ent->status = esp_read8(ESP_FDATA);
1850 ent->message = 0xff;
1851 esp_event(esp, ESP_EVENT_MSGIN);
1852 return 0;
1855 if (ent->message != COMMAND_COMPLETE) {
1856 shost_printk(KERN_INFO, esp->host,
1857 "Unexpected message %x in status\n",
1858 ent->message);
1859 esp_schedule_reset(esp);
1860 return 0;
1863 esp_event(esp, ESP_EVENT_FREE_BUS);
1864 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1865 break;
1867 case ESP_EVENT_FREE_BUS: {
1868 struct esp_cmd_entry *ent = esp->active_cmd;
1869 struct scsi_cmnd *cmd = ent->cmd;
1871 if (ent->message == COMMAND_COMPLETE ||
1872 ent->message == DISCONNECT)
1873 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1875 if (ent->message == COMMAND_COMPLETE) {
1876 esp_log_cmddone("Command done status[%x] message[%x]\n",
1877 ent->status, ent->message);
1878 if (ent->status == SAM_STAT_TASK_SET_FULL)
1879 esp_event_queue_full(esp, ent);
1881 if (ent->status == SAM_STAT_CHECK_CONDITION &&
1882 !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1883 ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1884 esp_autosense(esp, ent);
1885 } else {
1886 esp_cmd_is_done(esp, ent, cmd,
1887 compose_result(ent->status,
1888 ent->message,
1889 DID_OK));
1891 } else if (ent->message == DISCONNECT) {
1892 esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1893 cmd->device->id,
1894 ent->tag[0], ent->tag[1]);
1896 esp->active_cmd = NULL;
1897 esp_maybe_execute_command(esp);
1898 } else {
1899 shost_printk(KERN_INFO, esp->host,
1900 "Unexpected message %x in freebus\n",
1901 ent->message);
1902 esp_schedule_reset(esp);
1903 return 0;
1905 if (esp->active_cmd)
1906 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1907 break;
1909 case ESP_EVENT_MSGOUT: {
1910 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1912 if (esp_debug & ESP_DEBUG_MSGOUT) {
1913 int i;
1914 printk("ESP: Sending message [ ");
1915 for (i = 0; i < esp->msg_out_len; i++)
1916 printk("%02x ", esp->msg_out[i]);
1917 printk("]\n");
1920 if (esp->rev == FASHME) {
1921 int i;
1923 /* Always use the fifo. */
1924 for (i = 0; i < esp->msg_out_len; i++) {
1925 esp_write8(esp->msg_out[i], ESP_FDATA);
1926 esp_write8(0, ESP_FDATA);
1928 scsi_esp_cmd(esp, ESP_CMD_TI);
1929 } else {
1930 if (esp->msg_out_len == 1) {
1931 esp_write8(esp->msg_out[0], ESP_FDATA);
1932 scsi_esp_cmd(esp, ESP_CMD_TI);
1933 } else if (esp->flags & ESP_FLAG_USE_FIFO) {
1934 for (i = 0; i < esp->msg_out_len; i++)
1935 esp_write8(esp->msg_out[i], ESP_FDATA);
1936 scsi_esp_cmd(esp, ESP_CMD_TI);
1937 } else {
1938 /* Use DMA. */
1939 memcpy(esp->command_block,
1940 esp->msg_out,
1941 esp->msg_out_len);
1943 esp->ops->send_dma_cmd(esp,
1944 esp->command_block_dma,
1945 esp->msg_out_len,
1946 esp->msg_out_len,
1948 ESP_CMD_DMA|ESP_CMD_TI);
1951 esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1952 break;
1954 case ESP_EVENT_MSGOUT_DONE:
1955 if (esp->rev == FASHME) {
1956 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1957 } else {
1958 if (esp->msg_out_len > 1)
1959 esp->ops->dma_invalidate(esp);
1962 if (!(esp->ireg & ESP_INTR_DC)) {
1963 if (esp->rev != FASHME)
1964 scsi_esp_cmd(esp, ESP_CMD_NULL);
1966 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1967 goto again;
1968 case ESP_EVENT_MSGIN:
1969 if (esp->ireg & ESP_INTR_BSERV) {
1970 if (esp->rev == FASHME) {
1971 if (!(esp_read8(ESP_STATUS2) &
1972 ESP_STAT2_FEMPTY))
1973 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1974 } else {
1975 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1976 if (esp->rev == ESP100)
1977 scsi_esp_cmd(esp, ESP_CMD_NULL);
1979 scsi_esp_cmd(esp, ESP_CMD_TI);
1980 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1981 return 1;
1983 if (esp->ireg & ESP_INTR_FDONE) {
1984 u8 val;
1986 if (esp->rev == FASHME)
1987 val = esp->fifo[0];
1988 else
1989 val = esp_read8(ESP_FDATA);
1990 esp->msg_in[esp->msg_in_len++] = val;
1992 esp_log_msgin("Got msgin byte %x\n", val);
1994 if (!esp_msgin_process(esp))
1995 esp->msg_in_len = 0;
1997 if (esp->rev == FASHME)
1998 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
2000 scsi_esp_cmd(esp, ESP_CMD_MOK);
2002 if (esp->event != ESP_EVENT_FREE_BUS)
2003 esp_event(esp, ESP_EVENT_CHECK_PHASE);
2004 } else {
2005 shost_printk(KERN_INFO, esp->host,
2006 "MSGIN neither BSERV not FDON, resetting");
2007 esp_schedule_reset(esp);
2008 return 0;
2010 break;
2011 case ESP_EVENT_CMD_START:
2012 memcpy(esp->command_block, esp->cmd_bytes_ptr,
2013 esp->cmd_bytes_left);
2014 esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
2015 esp_event(esp, ESP_EVENT_CMD_DONE);
2016 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
2017 break;
2018 case ESP_EVENT_CMD_DONE:
2019 esp->ops->dma_invalidate(esp);
2020 if (esp->ireg & ESP_INTR_BSERV) {
2021 esp_event(esp, ESP_EVENT_CHECK_PHASE);
2022 goto again;
2024 esp_schedule_reset(esp);
2025 return 0;
2026 break;
2028 case ESP_EVENT_RESET:
2029 scsi_esp_cmd(esp, ESP_CMD_RS);
2030 break;
2032 default:
2033 shost_printk(KERN_INFO, esp->host,
2034 "Unexpected event %x, resetting\n", esp->event);
2035 esp_schedule_reset(esp);
2036 return 0;
2037 break;
2039 return 1;
2042 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
2044 struct scsi_cmnd *cmd = ent->cmd;
2046 esp_unmap_dma(esp, cmd);
2047 esp_free_lun_tag(ent, cmd->device->hostdata);
2048 cmd->result = DID_RESET << 16;
2050 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
2051 esp->ops->unmap_single(esp, ent->sense_dma,
2052 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
2053 ent->sense_ptr = NULL;
2056 cmd->scsi_done(cmd);
2057 list_del(&ent->list);
2058 esp_put_ent(esp, ent);
2061 static void esp_clear_hold(struct scsi_device *dev, void *data)
2063 struct esp_lun_data *lp = dev->hostdata;
2065 BUG_ON(lp->num_tagged);
2066 lp->hold = 0;
2069 static void esp_reset_cleanup(struct esp *esp)
2071 struct esp_cmd_entry *ent, *tmp;
2072 int i;
2074 list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2075 struct scsi_cmnd *cmd = ent->cmd;
2077 list_del(&ent->list);
2078 cmd->result = DID_RESET << 16;
2079 cmd->scsi_done(cmd);
2080 esp_put_ent(esp, ent);
2083 list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2084 if (ent == esp->active_cmd)
2085 esp->active_cmd = NULL;
2086 esp_reset_cleanup_one(esp, ent);
2089 BUG_ON(esp->active_cmd != NULL);
2091 /* Force renegotiation of sync/wide transfers. */
2092 for (i = 0; i < ESP_MAX_TARGET; i++) {
2093 struct esp_target_data *tp = &esp->target[i];
2095 tp->esp_period = 0;
2096 tp->esp_offset = 0;
2097 tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2098 ESP_CONFIG3_FSCSI |
2099 ESP_CONFIG3_FAST);
2100 tp->flags &= ~ESP_TGT_WIDE;
2101 tp->flags |= ESP_TGT_CHECK_NEGO;
2103 if (tp->starget)
2104 __starget_for_each_device(tp->starget, NULL,
2105 esp_clear_hold);
2107 esp->flags &= ~ESP_FLAG_RESETTING;
2110 /* Runs under host->lock */
2111 static void __esp_interrupt(struct esp *esp)
2113 int finish_reset, intr_done;
2114 u8 phase;
2117 * Once INTRPT is read STATUS and SSTEP are cleared.
2119 esp->sreg = esp_read8(ESP_STATUS);
2120 esp->seqreg = esp_read8(ESP_SSTEP);
2121 esp->ireg = esp_read8(ESP_INTRPT);
2123 if (esp->flags & ESP_FLAG_RESETTING) {
2124 finish_reset = 1;
2125 } else {
2126 if (esp_check_gross_error(esp))
2127 return;
2129 finish_reset = esp_check_spur_intr(esp);
2130 if (finish_reset < 0)
2131 return;
2134 if (esp->ireg & ESP_INTR_SR)
2135 finish_reset = 1;
2137 if (finish_reset) {
2138 esp_reset_cleanup(esp);
2139 if (esp->eh_reset) {
2140 complete(esp->eh_reset);
2141 esp->eh_reset = NULL;
2143 return;
2146 phase = (esp->sreg & ESP_STAT_PMASK);
2147 if (esp->rev == FASHME) {
2148 if (((phase != ESP_DIP && phase != ESP_DOP) &&
2149 esp->select_state == ESP_SELECT_NONE &&
2150 esp->event != ESP_EVENT_STATUS &&
2151 esp->event != ESP_EVENT_DATA_DONE) ||
2152 (esp->ireg & ESP_INTR_RSEL)) {
2153 esp->sreg2 = esp_read8(ESP_STATUS2);
2154 if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2155 (esp->sreg2 & ESP_STAT2_F1BYTE))
2156 hme_read_fifo(esp);
2160 esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2161 "sreg2[%02x] ireg[%02x]\n",
2162 esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2164 intr_done = 0;
2166 if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2167 shost_printk(KERN_INFO, esp->host,
2168 "unexpected IREG %02x\n", esp->ireg);
2169 if (esp->ireg & ESP_INTR_IC)
2170 esp_dump_cmd_log(esp);
2172 esp_schedule_reset(esp);
2173 } else {
2174 if (!(esp->ireg & ESP_INTR_RSEL)) {
2175 /* Some combination of FDONE, BSERV, DC. */
2176 if (esp->select_state != ESP_SELECT_NONE)
2177 intr_done = esp_finish_select(esp);
2178 } else if (esp->ireg & ESP_INTR_RSEL) {
2179 if (esp->active_cmd)
2180 (void) esp_finish_select(esp);
2181 intr_done = esp_reconnect(esp);
2184 while (!intr_done)
2185 intr_done = esp_process_event(esp);
2188 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2190 struct esp *esp = dev_id;
2191 unsigned long flags;
2192 irqreturn_t ret;
2194 spin_lock_irqsave(esp->host->host_lock, flags);
2195 ret = IRQ_NONE;
2196 if (esp->ops->irq_pending(esp)) {
2197 ret = IRQ_HANDLED;
2198 for (;;) {
2199 int i;
2201 __esp_interrupt(esp);
2202 if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2203 break;
2204 esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2206 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2207 if (esp->ops->irq_pending(esp))
2208 break;
2210 if (i == ESP_QUICKIRQ_LIMIT)
2211 break;
2214 spin_unlock_irqrestore(esp->host->host_lock, flags);
2216 return ret;
2218 EXPORT_SYMBOL(scsi_esp_intr);
2220 static void esp_get_revision(struct esp *esp)
2222 u8 val;
2224 esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2225 if (esp->config2 == 0) {
2226 esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2227 esp_write8(esp->config2, ESP_CFG2);
2229 val = esp_read8(ESP_CFG2);
2230 val &= ~ESP_CONFIG2_MAGIC;
2232 esp->config2 = 0;
2233 if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2235 * If what we write to cfg2 does not come back,
2236 * cfg2 is not implemented.
2237 * Therefore this must be a plain esp100.
2239 esp->rev = ESP100;
2240 return;
2244 esp_set_all_config3(esp, 5);
2245 esp->prev_cfg3 = 5;
2246 esp_write8(esp->config2, ESP_CFG2);
2247 esp_write8(0, ESP_CFG3);
2248 esp_write8(esp->prev_cfg3, ESP_CFG3);
2250 val = esp_read8(ESP_CFG3);
2251 if (val != 5) {
2252 /* The cfg2 register is implemented, however
2253 * cfg3 is not, must be esp100a.
2255 esp->rev = ESP100A;
2256 } else {
2257 esp_set_all_config3(esp, 0);
2258 esp->prev_cfg3 = 0;
2259 esp_write8(esp->prev_cfg3, ESP_CFG3);
2261 /* All of cfg{1,2,3} implemented, must be one of
2262 * the fas variants, figure out which one.
2264 if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2265 esp->rev = FAST;
2266 esp->sync_defp = SYNC_DEFP_FAST;
2267 } else {
2268 esp->rev = ESP236;
2273 static void esp_init_swstate(struct esp *esp)
2275 int i;
2277 INIT_LIST_HEAD(&esp->queued_cmds);
2278 INIT_LIST_HEAD(&esp->active_cmds);
2279 INIT_LIST_HEAD(&esp->esp_cmd_pool);
2281 /* Start with a clear state, domain validation (via ->slave_configure,
2282 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2283 * commands.
2285 for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2286 esp->target[i].flags = 0;
2287 esp->target[i].nego_goal_period = 0;
2288 esp->target[i].nego_goal_offset = 0;
2289 esp->target[i].nego_goal_width = 0;
2290 esp->target[i].nego_goal_tags = 0;
2294 /* This places the ESP into a known state at boot time. */
2295 static void esp_bootup_reset(struct esp *esp)
2297 u8 val;
2299 /* Reset the DMA */
2300 esp->ops->reset_dma(esp);
2302 /* Reset the ESP */
2303 esp_reset_esp(esp);
2305 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2306 val = esp_read8(ESP_CFG1);
2307 val |= ESP_CONFIG1_SRRDISAB;
2308 esp_write8(val, ESP_CFG1);
2310 scsi_esp_cmd(esp, ESP_CMD_RS);
2311 udelay(400);
2313 esp_write8(esp->config1, ESP_CFG1);
2315 /* Eat any bitrot in the chip and we are done... */
2316 esp_read8(ESP_INTRPT);
2319 static void esp_set_clock_params(struct esp *esp)
2321 int fhz;
2322 u8 ccf;
2324 /* This is getting messy but it has to be done correctly or else
2325 * you get weird behavior all over the place. We are trying to
2326 * basically figure out three pieces of information.
2328 * a) Clock Conversion Factor
2330 * This is a representation of the input crystal clock frequency
2331 * going into the ESP on this machine. Any operation whose timing
2332 * is longer than 400ns depends on this value being correct. For
2333 * example, you'll get blips for arbitration/selection during high
2334 * load or with multiple targets if this is not set correctly.
2336 * b) Selection Time-Out
2338 * The ESP isn't very bright and will arbitrate for the bus and try
2339 * to select a target forever if you let it. This value tells the
2340 * ESP when it has taken too long to negotiate and that it should
2341 * interrupt the CPU so we can see what happened. The value is
2342 * computed as follows (from NCR/Symbios chip docs).
2344 * (Time Out Period) * (Input Clock)
2345 * STO = ----------------------------------
2346 * (8192) * (Clock Conversion Factor)
2348 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2350 * c) Imperical constants for synchronous offset and transfer period
2351 * register values
2353 * This entails the smallest and largest sync period we could ever
2354 * handle on this ESP.
2356 fhz = esp->cfreq;
2358 ccf = ((fhz / 1000000) + 4) / 5;
2359 if (ccf == 1)
2360 ccf = 2;
2362 /* If we can't find anything reasonable, just assume 20MHZ.
2363 * This is the clock frequency of the older sun4c's where I've
2364 * been unable to find the clock-frequency PROM property. All
2365 * other machines provide useful values it seems.
2367 if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2368 fhz = 20000000;
2369 ccf = 4;
2372 esp->cfact = (ccf == 8 ? 0 : ccf);
2373 esp->cfreq = fhz;
2374 esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2375 esp->ctick = ESP_TICK(ccf, esp->ccycle);
2376 esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2377 esp->sync_defp = SYNC_DEFP_SLOW;
2380 static const char *esp_chip_names[] = {
2381 "ESP100",
2382 "ESP100A",
2383 "ESP236",
2384 "FAS236",
2385 "FAS100A",
2386 "FAST",
2387 "FASHME",
2388 "AM53C974",
2391 static struct scsi_transport_template *esp_transport_template;
2393 int scsi_esp_register(struct esp *esp, struct device *dev)
2395 static int instance;
2396 int err;
2398 if (!esp->num_tags)
2399 esp->num_tags = ESP_DEFAULT_TAGS;
2400 esp->host->transportt = esp_transport_template;
2401 esp->host->max_lun = ESP_MAX_LUN;
2402 esp->host->cmd_per_lun = 2;
2403 esp->host->unique_id = instance;
2405 esp_set_clock_params(esp);
2407 esp_get_revision(esp);
2409 esp_init_swstate(esp);
2411 esp_bootup_reset(esp);
2413 dev_printk(KERN_INFO, dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
2414 esp->host->unique_id, esp->regs, esp->dma_regs,
2415 esp->host->irq);
2416 dev_printk(KERN_INFO, dev,
2417 "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2418 esp->host->unique_id, esp_chip_names[esp->rev],
2419 esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2421 /* Let the SCSI bus reset settle. */
2422 ssleep(esp_bus_reset_settle);
2424 err = scsi_add_host(esp->host, dev);
2425 if (err)
2426 return err;
2428 instance++;
2430 scsi_scan_host(esp->host);
2432 return 0;
2434 EXPORT_SYMBOL(scsi_esp_register);
2436 void scsi_esp_unregister(struct esp *esp)
2438 scsi_remove_host(esp->host);
2440 EXPORT_SYMBOL(scsi_esp_unregister);
2442 static int esp_target_alloc(struct scsi_target *starget)
2444 struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2445 struct esp_target_data *tp = &esp->target[starget->id];
2447 tp->starget = starget;
2449 return 0;
2452 static void esp_target_destroy(struct scsi_target *starget)
2454 struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2455 struct esp_target_data *tp = &esp->target[starget->id];
2457 tp->starget = NULL;
2460 static int esp_slave_alloc(struct scsi_device *dev)
2462 struct esp *esp = shost_priv(dev->host);
2463 struct esp_target_data *tp = &esp->target[dev->id];
2464 struct esp_lun_data *lp;
2466 lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2467 if (!lp)
2468 return -ENOMEM;
2469 dev->hostdata = lp;
2471 spi_min_period(tp->starget) = esp->min_period;
2472 spi_max_offset(tp->starget) = 15;
2474 if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2475 spi_max_width(tp->starget) = 1;
2476 else
2477 spi_max_width(tp->starget) = 0;
2479 return 0;
2482 static int esp_slave_configure(struct scsi_device *dev)
2484 struct esp *esp = shost_priv(dev->host);
2485 struct esp_target_data *tp = &esp->target[dev->id];
2487 if (dev->tagged_supported)
2488 scsi_change_queue_depth(dev, esp->num_tags);
2490 tp->flags |= ESP_TGT_DISCONNECT;
2492 if (!spi_initial_dv(dev->sdev_target))
2493 spi_dv_device(dev);
2495 return 0;
2498 static void esp_slave_destroy(struct scsi_device *dev)
2500 struct esp_lun_data *lp = dev->hostdata;
2502 kfree(lp);
2503 dev->hostdata = NULL;
2506 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2508 struct esp *esp = shost_priv(cmd->device->host);
2509 struct esp_cmd_entry *ent, *tmp;
2510 struct completion eh_done;
2511 unsigned long flags;
2513 /* XXX This helps a lot with debugging but might be a bit
2514 * XXX much for the final driver.
2516 spin_lock_irqsave(esp->host->host_lock, flags);
2517 shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
2518 cmd, cmd->cmnd[0]);
2519 ent = esp->active_cmd;
2520 if (ent)
2521 shost_printk(KERN_ERR, esp->host,
2522 "Current command [%p:%02x]\n",
2523 ent->cmd, ent->cmd->cmnd[0]);
2524 list_for_each_entry(ent, &esp->queued_cmds, list) {
2525 shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
2526 ent->cmd, ent->cmd->cmnd[0]);
2528 list_for_each_entry(ent, &esp->active_cmds, list) {
2529 shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
2530 ent->cmd, ent->cmd->cmnd[0]);
2532 esp_dump_cmd_log(esp);
2533 spin_unlock_irqrestore(esp->host->host_lock, flags);
2535 spin_lock_irqsave(esp->host->host_lock, flags);
2537 ent = NULL;
2538 list_for_each_entry(tmp, &esp->queued_cmds, list) {
2539 if (tmp->cmd == cmd) {
2540 ent = tmp;
2541 break;
2545 if (ent) {
2546 /* Easiest case, we didn't even issue the command
2547 * yet so it is trivial to abort.
2549 list_del(&ent->list);
2551 cmd->result = DID_ABORT << 16;
2552 cmd->scsi_done(cmd);
2554 esp_put_ent(esp, ent);
2556 goto out_success;
2559 init_completion(&eh_done);
2561 ent = esp->active_cmd;
2562 if (ent && ent->cmd == cmd) {
2563 /* Command is the currently active command on
2564 * the bus. If we already have an output message
2565 * pending, no dice.
2567 if (esp->msg_out_len)
2568 goto out_failure;
2570 /* Send out an abort, encouraging the target to
2571 * go to MSGOUT phase by asserting ATN.
2573 esp->msg_out[0] = ABORT_TASK_SET;
2574 esp->msg_out_len = 1;
2575 ent->eh_done = &eh_done;
2577 scsi_esp_cmd(esp, ESP_CMD_SATN);
2578 } else {
2579 /* The command is disconnected. This is not easy to
2580 * abort. For now we fail and let the scsi error
2581 * handling layer go try a scsi bus reset or host
2582 * reset.
2584 * What we could do is put together a scsi command
2585 * solely for the purpose of sending an abort message
2586 * to the target. Coming up with all the code to
2587 * cook up scsi commands, special case them everywhere,
2588 * etc. is for questionable gain and it would be better
2589 * if the generic scsi error handling layer could do at
2590 * least some of that for us.
2592 * Anyways this is an area for potential future improvement
2593 * in this driver.
2595 goto out_failure;
2598 spin_unlock_irqrestore(esp->host->host_lock, flags);
2600 if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2601 spin_lock_irqsave(esp->host->host_lock, flags);
2602 ent->eh_done = NULL;
2603 spin_unlock_irqrestore(esp->host->host_lock, flags);
2605 return FAILED;
2608 return SUCCESS;
2610 out_success:
2611 spin_unlock_irqrestore(esp->host->host_lock, flags);
2612 return SUCCESS;
2614 out_failure:
2615 /* XXX This might be a good location to set ESP_TGT_BROKEN
2616 * XXX since we know which target/lun in particular is
2617 * XXX causing trouble.
2619 spin_unlock_irqrestore(esp->host->host_lock, flags);
2620 return FAILED;
2623 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2625 struct esp *esp = shost_priv(cmd->device->host);
2626 struct completion eh_reset;
2627 unsigned long flags;
2629 init_completion(&eh_reset);
2631 spin_lock_irqsave(esp->host->host_lock, flags);
2633 esp->eh_reset = &eh_reset;
2635 /* XXX This is too simple... We should add lots of
2636 * XXX checks here so that if we find that the chip is
2637 * XXX very wedged we return failure immediately so
2638 * XXX that we can perform a full chip reset.
2640 esp->flags |= ESP_FLAG_RESETTING;
2641 scsi_esp_cmd(esp, ESP_CMD_RS);
2643 spin_unlock_irqrestore(esp->host->host_lock, flags);
2645 ssleep(esp_bus_reset_settle);
2647 if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2648 spin_lock_irqsave(esp->host->host_lock, flags);
2649 esp->eh_reset = NULL;
2650 spin_unlock_irqrestore(esp->host->host_lock, flags);
2652 return FAILED;
2655 return SUCCESS;
2658 /* All bets are off, reset the entire device. */
2659 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2661 struct esp *esp = shost_priv(cmd->device->host);
2662 unsigned long flags;
2664 spin_lock_irqsave(esp->host->host_lock, flags);
2665 esp_bootup_reset(esp);
2666 esp_reset_cleanup(esp);
2667 spin_unlock_irqrestore(esp->host->host_lock, flags);
2669 ssleep(esp_bus_reset_settle);
2671 return SUCCESS;
2674 static const char *esp_info(struct Scsi_Host *host)
2676 return "esp";
2679 struct scsi_host_template scsi_esp_template = {
2680 .module = THIS_MODULE,
2681 .name = "esp",
2682 .info = esp_info,
2683 .queuecommand = esp_queuecommand,
2684 .target_alloc = esp_target_alloc,
2685 .target_destroy = esp_target_destroy,
2686 .slave_alloc = esp_slave_alloc,
2687 .slave_configure = esp_slave_configure,
2688 .slave_destroy = esp_slave_destroy,
2689 .eh_abort_handler = esp_eh_abort_handler,
2690 .eh_bus_reset_handler = esp_eh_bus_reset_handler,
2691 .eh_host_reset_handler = esp_eh_host_reset_handler,
2692 .can_queue = 7,
2693 .this_id = 7,
2694 .sg_tablesize = SG_ALL,
2695 .use_clustering = ENABLE_CLUSTERING,
2696 .max_sectors = 0xffff,
2697 .skip_settle_delay = 1,
2699 EXPORT_SYMBOL(scsi_esp_template);
2701 static void esp_get_signalling(struct Scsi_Host *host)
2703 struct esp *esp = shost_priv(host);
2704 enum spi_signal_type type;
2706 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2707 type = SPI_SIGNAL_HVD;
2708 else
2709 type = SPI_SIGNAL_SE;
2711 spi_signalling(host) = type;
2714 static void esp_set_offset(struct scsi_target *target, int offset)
2716 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2717 struct esp *esp = shost_priv(host);
2718 struct esp_target_data *tp = &esp->target[target->id];
2720 if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2721 tp->nego_goal_offset = 0;
2722 else
2723 tp->nego_goal_offset = offset;
2724 tp->flags |= ESP_TGT_CHECK_NEGO;
2727 static void esp_set_period(struct scsi_target *target, int period)
2729 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2730 struct esp *esp = shost_priv(host);
2731 struct esp_target_data *tp = &esp->target[target->id];
2733 tp->nego_goal_period = period;
2734 tp->flags |= ESP_TGT_CHECK_NEGO;
2737 static void esp_set_width(struct scsi_target *target, int width)
2739 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2740 struct esp *esp = shost_priv(host);
2741 struct esp_target_data *tp = &esp->target[target->id];
2743 tp->nego_goal_width = (width ? 1 : 0);
2744 tp->flags |= ESP_TGT_CHECK_NEGO;
2747 static struct spi_function_template esp_transport_ops = {
2748 .set_offset = esp_set_offset,
2749 .show_offset = 1,
2750 .set_period = esp_set_period,
2751 .show_period = 1,
2752 .set_width = esp_set_width,
2753 .show_width = 1,
2754 .get_signalling = esp_get_signalling,
2757 static int __init esp_init(void)
2759 BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2760 sizeof(struct esp_cmd_priv));
2762 esp_transport_template = spi_attach_transport(&esp_transport_ops);
2763 if (!esp_transport_template)
2764 return -ENODEV;
2766 return 0;
2769 static void __exit esp_exit(void)
2771 spi_release_transport(esp_transport_template);
2774 MODULE_DESCRIPTION("ESP SCSI driver core");
2775 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2776 MODULE_LICENSE("GPL");
2777 MODULE_VERSION(DRV_VERSION);
2779 module_param(esp_bus_reset_settle, int, 0);
2780 MODULE_PARM_DESC(esp_bus_reset_settle,
2781 "ESP scsi bus reset delay in seconds");
2783 module_param(esp_debug, int, 0);
2784 MODULE_PARM_DESC(esp_debug,
2785 "ESP bitmapped debugging message enable value:\n"
2786 " 0x00000001 Log interrupt events\n"
2787 " 0x00000002 Log scsi commands\n"
2788 " 0x00000004 Log resets\n"
2789 " 0x00000008 Log message in events\n"
2790 " 0x00000010 Log message out events\n"
2791 " 0x00000020 Log command completion\n"
2792 " 0x00000040 Log disconnects\n"
2793 " 0x00000080 Log data start\n"
2794 " 0x00000100 Log data done\n"
2795 " 0x00000200 Log reconnects\n"
2796 " 0x00000400 Log auto-sense data\n"
2799 module_init(esp_init);
2800 module_exit(esp_exit);