Input: xpad - add support for Xbox1 PDP Camo series gamepad
[linux/fpc-iii.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
bloba1a5ceb42ce6d3280dadd5a521e24e4af9a2aff8
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
65 #include "mpt3sas_base.h"
67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH 30000
74 #define MAX_CHAIN_DEPTH 100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94 " max msix vectors");
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98 " enable detection of firmware fault and halt firmware - (default=0)");
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
104 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
110 int ret = param_set_int(val, kp);
111 struct MPT3SAS_ADAPTER *ioc;
113 if (ret)
114 return ret;
116 /* global ioc spinlock to protect controller list on list operations */
117 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118 spin_lock(&gioc_lock);
119 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120 ioc->fwfault_debug = mpt3sas_fwfault_debug;
121 spin_unlock(&gioc_lock);
122 return 0;
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125 param_get_int, &mpt3sas_fwfault_debug, 0644);
128 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129 * @arg: input argument, used to derive ioc
131 * Return 0 if controller is removed from pci subsystem.
132 * Return -1 for other case.
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
136 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137 struct pci_dev *pdev;
139 if ((ioc == NULL))
140 return -1;
142 pdev = ioc->pdev;
143 if ((pdev == NULL))
144 return -1;
145 pci_stop_and_remove_bus_device_locked(pdev);
146 return 0;
150 * _base_fault_reset_work - workq handling ioc fault conditions
151 * @work: input argument, used to derive ioc
152 * Context: sleep.
154 * Return nothing.
156 static void
157 _base_fault_reset_work(struct work_struct *work)
159 struct MPT3SAS_ADAPTER *ioc =
160 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161 unsigned long flags;
162 u32 doorbell;
163 int rc;
164 struct task_struct *p;
167 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168 if (ioc->shost_recovery || ioc->pci_error_recovery)
169 goto rearm_timer;
170 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
172 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175 ioc->name);
177 /* It may be possible that EEH recovery can resolve some of
178 * pci bus failure issues rather removing the dead ioc function
179 * by considering controller is in a non-operational state. So
180 * here priority is given to the EEH recovery. If it doesn't
181 * not resolve this issue, mpt3sas driver will consider this
182 * controller to non-operational state and remove the dead ioc
183 * function.
185 if (ioc->non_operational_loop++ < 5) {
186 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187 flags);
188 goto rearm_timer;
192 * Call _scsih_flush_pending_cmds callback so that we flush all
193 * pending commands back to OS. This call is required to aovid
194 * deadlock at block layer. Dead IOC will fail to do diag reset,
195 * and this call is safe since dead ioc will never return any
196 * command back from HW.
198 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
200 * Set remove_host flag early since kernel thread will
201 * take some time to execute.
203 ioc->remove_host = 1;
204 /*Remove the Dead Host */
205 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207 if (IS_ERR(p))
208 pr_err(MPT3SAS_FMT
209 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210 ioc->name, __func__);
211 else
212 pr_err(MPT3SAS_FMT
213 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214 ioc->name, __func__);
215 return; /* don't rearm timer */
218 ioc->non_operational_loop = 0;
220 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 __func__, (rc == 0) ? "success" : "failed");
224 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 mpt3sas_base_fault_info(ioc, doorbell &
227 MPI2_DOORBELL_DATA_MASK);
228 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 MPI2_IOC_STATE_OPERATIONAL)
230 return; /* don't rearm timer */
233 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234 rearm_timer:
235 if (ioc->fault_reset_work_q)
236 queue_delayed_work(ioc->fault_reset_work_q,
237 &ioc->fault_reset_work,
238 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
243 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244 * @ioc: per adapter object
245 * Context: sleep.
247 * Return nothing.
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
252 unsigned long flags;
254 if (ioc->fault_reset_work_q)
255 return;
257 /* initialize fault polling */
259 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 snprintf(ioc->fault_reset_work_q_name,
261 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 ioc->driver_name, ioc->id);
263 ioc->fault_reset_work_q =
264 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 if (!ioc->fault_reset_work_q) {
266 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 ioc->name, __func__, __LINE__);
268 return;
270 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 if (ioc->fault_reset_work_q)
272 queue_delayed_work(ioc->fault_reset_work_q,
273 &ioc->fault_reset_work,
274 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
279 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280 * @ioc: per adapter object
281 * Context: sleep.
283 * Return nothing.
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
288 unsigned long flags;
289 struct workqueue_struct *wq;
291 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 wq = ioc->fault_reset_work_q;
293 ioc->fault_reset_work_q = NULL;
294 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 if (wq) {
296 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 flush_workqueue(wq);
298 destroy_workqueue(wq);
303 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304 * @ioc: per adapter object
305 * @fault_code: fault code
307 * Return nothing.
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
312 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 ioc->name, fault_code);
317 * mpt3sas_halt_firmware - halt's mpt controller firmware
318 * @ioc: per adapter object
320 * For debugging timeout related issues. Writing 0xCOFFEE00
321 * to the doorbell register will halt controller firmware. With
322 * the purpose to stop both driver and firmware, the enduser can
323 * obtain a ring buffer from controller UART.
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
328 u32 doorbell;
330 if (!ioc->fwfault_debug)
331 return;
333 dump_stack();
335 doorbell = readl(&ioc->chip->Doorbell);
336 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 mpt3sas_base_fault_info(ioc , doorbell);
338 else {
339 writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 ioc->name);
344 if (ioc->fwfault_debug == 2)
345 for (;;)
347 else
348 panic("panic in %s\n", __func__);
352 * _base_sas_ioc_info - verbose translation of the ioc status
353 * @ioc: per adapter object
354 * @mpi_reply: reply mf payload returned from firmware
355 * @request_hdr: request mf
357 * Return nothing.
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 MPI2RequestHeader_t *request_hdr)
363 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 MPI2_IOCSTATUS_MASK;
365 char *desc = NULL;
366 u16 frame_sz;
367 char *func_str = NULL;
369 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 return;
375 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 return;
378 switch (ioc_status) {
380 /****************************************************************************
381 * Common IOCStatus values for all replies
382 ****************************************************************************/
384 case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 desc = "invalid function";
386 break;
387 case MPI2_IOCSTATUS_BUSY:
388 desc = "busy";
389 break;
390 case MPI2_IOCSTATUS_INVALID_SGL:
391 desc = "invalid sgl";
392 break;
393 case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 desc = "internal error";
395 break;
396 case MPI2_IOCSTATUS_INVALID_VPID:
397 desc = "invalid vpid";
398 break;
399 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 desc = "insufficient resources";
401 break;
402 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 desc = "insufficient power";
404 break;
405 case MPI2_IOCSTATUS_INVALID_FIELD:
406 desc = "invalid field";
407 break;
408 case MPI2_IOCSTATUS_INVALID_STATE:
409 desc = "invalid state";
410 break;
411 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 desc = "op state not supported";
413 break;
415 /****************************************************************************
416 * Config IOCStatus values
417 ****************************************************************************/
419 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 desc = "config invalid action";
421 break;
422 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 desc = "config invalid type";
424 break;
425 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 desc = "config invalid page";
427 break;
428 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 desc = "config invalid data";
430 break;
431 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 desc = "config no defaults";
433 break;
434 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 desc = "config cant commit";
436 break;
438 /****************************************************************************
439 * SCSI IO Reply
440 ****************************************************************************/
442 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 break;
456 /****************************************************************************
457 * For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
460 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 desc = "eedp guard error";
462 break;
463 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 desc = "eedp ref tag error";
465 break;
466 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 desc = "eedp app tag error";
468 break;
470 /****************************************************************************
471 * SCSI Target values
472 ****************************************************************************/
474 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 desc = "target invalid io index";
476 break;
477 case MPI2_IOCSTATUS_TARGET_ABORTED:
478 desc = "target aborted";
479 break;
480 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 desc = "target no conn retryable";
482 break;
483 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 desc = "target no connection";
485 break;
486 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 desc = "target xfer count mismatch";
488 break;
489 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 desc = "target data offset error";
491 break;
492 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 desc = "target too much write data";
494 break;
495 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 desc = "target iu too short";
497 break;
498 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 desc = "target ack nak timeout";
500 break;
501 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 desc = "target nak received";
503 break;
505 /****************************************************************************
506 * Serial Attached SCSI values
507 ****************************************************************************/
509 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 desc = "smp request failed";
511 break;
512 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 desc = "smp data overrun";
514 break;
516 /****************************************************************************
517 * Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
520 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 desc = "diagnostic released";
522 break;
523 default:
524 break;
527 if (!desc)
528 return;
530 switch (request_hdr->Function) {
531 case MPI2_FUNCTION_CONFIG:
532 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 func_str = "config_page";
534 break;
535 case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 func_str = "task_mgmt";
538 break;
539 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 func_str = "sas_iounit_ctl";
542 break;
543 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 frame_sz = sizeof(Mpi2SepRequest_t);
545 func_str = "enclosure";
546 break;
547 case MPI2_FUNCTION_IOC_INIT:
548 frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 func_str = "ioc_init";
550 break;
551 case MPI2_FUNCTION_PORT_ENABLE:
552 frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 func_str = "port_enable";
554 break;
555 case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 func_str = "smp_passthru";
558 break;
559 default:
560 frame_sz = 32;
561 func_str = "unknown";
562 break;
565 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 ioc->name, desc, ioc_status, request_hdr, func_str);
568 _debug_dump_mf(request_hdr, frame_sz/4);
572 * _base_display_event_data - verbose translation of firmware asyn events
573 * @ioc: per adapter object
574 * @mpi_reply: reply mf payload returned from firmware
576 * Return nothing.
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 Mpi2EventNotificationReply_t *mpi_reply)
582 char *desc = NULL;
583 u16 event;
585 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 return;
588 event = le16_to_cpu(mpi_reply->Event);
590 switch (event) {
591 case MPI2_EVENT_LOG_DATA:
592 desc = "Log Data";
593 break;
594 case MPI2_EVENT_STATE_CHANGE:
595 desc = "Status Change";
596 break;
597 case MPI2_EVENT_HARD_RESET_RECEIVED:
598 desc = "Hard Reset Received";
599 break;
600 case MPI2_EVENT_EVENT_CHANGE:
601 desc = "Event Change";
602 break;
603 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 desc = "Device Status Change";
605 break;
606 case MPI2_EVENT_IR_OPERATION_STATUS:
607 if (!ioc->hide_ir_msg)
608 desc = "IR Operation Status";
609 break;
610 case MPI2_EVENT_SAS_DISCOVERY:
612 Mpi2EventDataSasDiscovery_t *event_data =
613 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 "start" : "stop");
617 if (event_data->DiscoveryStatus)
618 pr_info("discovery_status(0x%08x)",
619 le32_to_cpu(event_data->DiscoveryStatus));
620 pr_info("\n");
621 return;
623 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 desc = "SAS Broadcast Primitive";
625 break;
626 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 desc = "SAS Init Device Status Change";
628 break;
629 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 desc = "SAS Init Table Overflow";
631 break;
632 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 desc = "SAS Topology Change List";
634 break;
635 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 desc = "SAS Enclosure Device Status Change";
637 break;
638 case MPI2_EVENT_IR_VOLUME:
639 if (!ioc->hide_ir_msg)
640 desc = "IR Volume";
641 break;
642 case MPI2_EVENT_IR_PHYSICAL_DISK:
643 if (!ioc->hide_ir_msg)
644 desc = "IR Physical Disk";
645 break;
646 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 if (!ioc->hide_ir_msg)
648 desc = "IR Configuration Change List";
649 break;
650 case MPI2_EVENT_LOG_ENTRY_ADDED:
651 if (!ioc->hide_ir_msg)
652 desc = "Log Entry Added";
653 break;
654 case MPI2_EVENT_TEMP_THRESHOLD:
655 desc = "Temperature Threshold";
656 break;
657 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658 desc = "Active cable exception";
659 break;
662 if (!desc)
663 return;
665 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
669 * _base_sas_log_info - verbose translation of firmware log info
670 * @ioc: per adapter object
671 * @log_info: log info
673 * Return nothing.
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
678 union loginfo_type {
679 u32 loginfo;
680 struct {
681 u32 subcode:16;
682 u32 code:8;
683 u32 originator:4;
684 u32 bus_type:4;
685 } dw;
687 union loginfo_type sas_loginfo;
688 char *originator_str = NULL;
690 sas_loginfo.loginfo = log_info;
691 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692 return;
694 /* each nexus loss loginfo */
695 if (log_info == 0x31170000)
696 return;
698 /* eat the loginfos associated with task aborts */
699 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700 0x31140000 || log_info == 0x31130000))
701 return;
703 switch (sas_loginfo.dw.originator) {
704 case 0:
705 originator_str = "IOP";
706 break;
707 case 1:
708 originator_str = "PL";
709 break;
710 case 2:
711 if (!ioc->hide_ir_msg)
712 originator_str = "IR";
713 else
714 originator_str = "WarpDrive";
715 break;
718 pr_warn(MPT3SAS_FMT
719 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720 ioc->name, log_info,
721 originator_str, sas_loginfo.dw.code,
722 sas_loginfo.dw.subcode);
726 * _base_display_reply_info -
727 * @ioc: per adapter object
728 * @smid: system request message index
729 * @msix_index: MSIX table index supplied by the OS
730 * @reply: reply message frame(lower 32bit addr)
732 * Return nothing.
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736 u32 reply)
738 MPI2DefaultReply_t *mpi_reply;
739 u16 ioc_status;
740 u32 loginfo = 0;
742 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743 if (unlikely(!mpi_reply)) {
744 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745 ioc->name, __FILE__, __LINE__, __func__);
746 return;
748 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
750 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751 (ioc->logging_level & MPT_DEBUG_REPLY)) {
752 _base_sas_ioc_info(ioc , mpi_reply,
753 mpt3sas_base_get_msg_frame(ioc, smid));
756 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758 _base_sas_log_info(ioc, loginfo);
761 if (ioc_status || loginfo) {
762 ioc_status &= MPI2_IOCSTATUS_MASK;
763 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
768 * mpt3sas_base_done - base internal command completion routine
769 * @ioc: per adapter object
770 * @smid: system request message index
771 * @msix_index: MSIX table index supplied by the OS
772 * @reply: reply message frame(lower 32bit addr)
774 * Return 1 meaning mf should be freed from _base_interrupt
775 * 0 means the mf is freed from this function.
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779 u32 reply)
781 MPI2DefaultReply_t *mpi_reply;
783 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
787 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788 return 1;
790 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791 if (mpi_reply) {
792 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
795 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
797 complete(&ioc->base_cmds.done);
798 return 1;
802 * _base_async_event - main callback handler for firmware asyn events
803 * @ioc: per adapter object
804 * @msix_index: MSIX table index supplied by the OS
805 * @reply: reply message frame(lower 32bit addr)
807 * Return 1 meaning mf should be freed from _base_interrupt
808 * 0 means the mf is freed from this function.
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
813 Mpi2EventNotificationReply_t *mpi_reply;
814 Mpi2EventAckRequest_t *ack_request;
815 u16 smid;
816 struct _event_ack_list *delayed_event_ack;
818 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819 if (!mpi_reply)
820 return 1;
821 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822 return 1;
824 _base_display_event_data(ioc, mpi_reply);
826 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827 goto out;
828 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829 if (!smid) {
830 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831 GFP_ATOMIC);
832 if (!delayed_event_ack)
833 goto out;
834 INIT_LIST_HEAD(&delayed_event_ack->list);
835 delayed_event_ack->Event = mpi_reply->Event;
836 delayed_event_ack->EventContext = mpi_reply->EventContext;
837 list_add_tail(&delayed_event_ack->list,
838 &ioc->delayed_event_ack_list);
839 dewtprintk(ioc, pr_info(MPT3SAS_FMT
840 "DELAYED: EVENT ACK: event (0x%04x)\n",
841 ioc->name, le16_to_cpu(mpi_reply->Event)));
842 goto out;
845 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848 ack_request->Event = mpi_reply->Event;
849 ack_request->EventContext = mpi_reply->EventContext;
850 ack_request->VF_ID = 0; /* TODO */
851 ack_request->VP_ID = 0;
852 mpt3sas_base_put_smid_default(ioc, smid);
854 out:
856 /* scsih callback handler */
857 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
859 /* ctl callback handler */
860 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
862 return 1;
866 * _base_get_cb_idx - obtain the callback index
867 * @ioc: per adapter object
868 * @smid: system request message index
870 * Return callback index.
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
875 int i;
876 u8 cb_idx;
878 if (smid < ioc->hi_priority_smid) {
879 i = smid - 1;
880 cb_idx = ioc->scsi_lookup[i].cb_idx;
881 } else if (smid < ioc->internal_smid) {
882 i = smid - ioc->hi_priority_smid;
883 cb_idx = ioc->hpr_lookup[i].cb_idx;
884 } else if (smid <= ioc->hba_queue_depth) {
885 i = smid - ioc->internal_smid;
886 cb_idx = ioc->internal_lookup[i].cb_idx;
887 } else
888 cb_idx = 0xFF;
889 return cb_idx;
893 * _base_mask_interrupts - disable interrupts
894 * @ioc: per adapter object
896 * Disabling ResetIRQ, Reply and Doorbell Interrupts
898 * Return nothing.
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
903 u32 him_register;
905 ioc->mask_interrupts = 1;
906 him_register = readl(&ioc->chip->HostInterruptMask);
907 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908 writel(him_register, &ioc->chip->HostInterruptMask);
909 readl(&ioc->chip->HostInterruptMask);
913 * _base_unmask_interrupts - enable interrupts
914 * @ioc: per adapter object
916 * Enabling only Reply Interrupts
918 * Return nothing.
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
923 u32 him_register;
925 him_register = readl(&ioc->chip->HostInterruptMask);
926 him_register &= ~MPI2_HIM_RIM;
927 writel(him_register, &ioc->chip->HostInterruptMask);
928 ioc->mask_interrupts = 0;
931 union reply_descriptor {
932 u64 word;
933 struct {
934 u32 low;
935 u32 high;
936 } u;
940 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941 * @irq: irq number (not used)
942 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943 * @r: pt_regs pointer (not used)
945 * Return IRQ_HANDLE if processed, else IRQ_NONE.
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
950 struct adapter_reply_queue *reply_q = bus_id;
951 union reply_descriptor rd;
952 u32 completed_cmds;
953 u8 request_desript_type;
954 u16 smid;
955 u8 cb_idx;
956 u32 reply;
957 u8 msix_index = reply_q->msix_index;
958 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959 Mpi2ReplyDescriptorsUnion_t *rpf;
960 u8 rc;
962 if (ioc->mask_interrupts)
963 return IRQ_NONE;
965 if (!atomic_add_unless(&reply_q->busy, 1, 1))
966 return IRQ_NONE;
968 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969 request_desript_type = rpf->Default.ReplyFlags
970 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972 atomic_dec(&reply_q->busy);
973 return IRQ_NONE;
976 completed_cmds = 0;
977 cb_idx = 0xFF;
978 do {
979 rd.word = le64_to_cpu(rpf->Words);
980 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981 goto out;
982 reply = 0;
983 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984 if (request_desript_type ==
985 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986 request_desript_type ==
987 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988 cb_idx = _base_get_cb_idx(ioc, smid);
989 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990 (likely(mpt_callbacks[cb_idx] != NULL))) {
991 rc = mpt_callbacks[cb_idx](ioc, smid,
992 msix_index, 0);
993 if (rc)
994 mpt3sas_base_free_smid(ioc, smid);
996 } else if (request_desript_type ==
997 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998 reply = le32_to_cpu(
999 rpf->AddressReply.ReplyFrameAddress);
1000 if (reply > ioc->reply_dma_max_address ||
1001 reply < ioc->reply_dma_min_address)
1002 reply = 0;
1003 if (smid) {
1004 cb_idx = _base_get_cb_idx(ioc, smid);
1005 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006 (likely(mpt_callbacks[cb_idx] != NULL))) {
1007 rc = mpt_callbacks[cb_idx](ioc, smid,
1008 msix_index, reply);
1009 if (reply)
1010 _base_display_reply_info(ioc,
1011 smid, msix_index, reply);
1012 if (rc)
1013 mpt3sas_base_free_smid(ioc,
1014 smid);
1016 } else {
1017 _base_async_event(ioc, msix_index, reply);
1020 /* reply free queue handling */
1021 if (reply) {
1022 ioc->reply_free_host_index =
1023 (ioc->reply_free_host_index ==
1024 (ioc->reply_free_queue_depth - 1)) ?
1025 0 : ioc->reply_free_host_index + 1;
1026 ioc->reply_free[ioc->reply_free_host_index] =
1027 cpu_to_le32(reply);
1028 wmb();
1029 writel(ioc->reply_free_host_index,
1030 &ioc->chip->ReplyFreeHostIndex);
1034 rpf->Words = cpu_to_le64(ULLONG_MAX);
1035 reply_q->reply_post_host_index =
1036 (reply_q->reply_post_host_index ==
1037 (ioc->reply_post_queue_depth - 1)) ? 0 :
1038 reply_q->reply_post_host_index + 1;
1039 request_desript_type =
1040 reply_q->reply_post_free[reply_q->reply_post_host_index].
1041 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1042 completed_cmds++;
1043 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1044 goto out;
1045 if (!reply_q->reply_post_host_index)
1046 rpf = reply_q->reply_post_free;
1047 else
1048 rpf++;
1049 } while (1);
1051 out:
1053 if (!completed_cmds) {
1054 atomic_dec(&reply_q->busy);
1055 return IRQ_NONE;
1058 wmb();
1059 if (ioc->is_warpdrive) {
1060 writel(reply_q->reply_post_host_index,
1061 ioc->reply_post_host_index[msix_index]);
1062 atomic_dec(&reply_q->busy);
1063 return IRQ_HANDLED;
1066 /* Update Reply Post Host Index.
1067 * For those HBA's which support combined reply queue feature
1068 * 1. Get the correct Supplemental Reply Post Host Index Register.
1069 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1070 * Index Register address bank i.e replyPostRegisterIndex[],
1071 * 2. Then update this register with new reply host index value
1072 * in ReplyPostIndex field and the MSIxIndex field with
1073 * msix_index value reduced to a value between 0 and 7,
1074 * using a modulo 8 operation. Since each Supplemental Reply Post
1075 * Host Index Register supports 8 MSI-X vectors.
1077 * For other HBA's just update the Reply Post Host Index register with
1078 * new reply host index value in ReplyPostIndex Field and msix_index
1079 * value in MSIxIndex field.
1081 if (ioc->msix96_vector)
1082 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1083 MPI2_RPHI_MSIX_INDEX_SHIFT),
1084 ioc->replyPostRegisterIndex[msix_index/8]);
1085 else
1086 writel(reply_q->reply_post_host_index | (msix_index <<
1087 MPI2_RPHI_MSIX_INDEX_SHIFT),
1088 &ioc->chip->ReplyPostHostIndex);
1089 atomic_dec(&reply_q->busy);
1090 return IRQ_HANDLED;
1094 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1095 * @ioc: per adapter object
1098 static inline int
1099 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1101 return (ioc->facts.IOCCapabilities &
1102 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1106 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1107 * @ioc: per adapter object
1108 * Context: non ISR conext
1110 * Called when a Task Management request has completed.
1112 * Return nothing.
1114 void
1115 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1117 struct adapter_reply_queue *reply_q;
1119 /* If MSIX capability is turned off
1120 * then multi-queues are not enabled
1122 if (!_base_is_controller_msix_enabled(ioc))
1123 return;
1125 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1126 if (ioc->shost_recovery || ioc->remove_host ||
1127 ioc->pci_error_recovery)
1128 return;
1129 /* TMs are on msix_index == 0 */
1130 if (reply_q->msix_index == 0)
1131 continue;
1132 synchronize_irq(reply_q->vector);
1137 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1138 * @cb_idx: callback index
1140 * Return nothing.
1142 void
1143 mpt3sas_base_release_callback_handler(u8 cb_idx)
1145 mpt_callbacks[cb_idx] = NULL;
1149 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1150 * @cb_func: callback function
1152 * Returns cb_func.
1155 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1157 u8 cb_idx;
1159 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1160 if (mpt_callbacks[cb_idx] == NULL)
1161 break;
1163 mpt_callbacks[cb_idx] = cb_func;
1164 return cb_idx;
1168 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1170 * Return nothing.
1172 void
1173 mpt3sas_base_initialize_callback_handler(void)
1175 u8 cb_idx;
1177 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1178 mpt3sas_base_release_callback_handler(cb_idx);
1183 * _base_build_zero_len_sge - build zero length sg entry
1184 * @ioc: per adapter object
1185 * @paddr: virtual address for SGE
1187 * Create a zero length scatter gather entry to insure the IOCs hardware has
1188 * something to use if the target device goes brain dead and tries
1189 * to send data even when none is asked for.
1191 * Return nothing.
1193 static void
1194 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1196 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1197 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1198 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1199 MPI2_SGE_FLAGS_SHIFT);
1200 ioc->base_add_sg_single(paddr, flags_length, -1);
1204 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1205 * @paddr: virtual address for SGE
1206 * @flags_length: SGE flags and data transfer length
1207 * @dma_addr: Physical address
1209 * Return nothing.
1211 static void
1212 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1214 Mpi2SGESimple32_t *sgel = paddr;
1216 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1217 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1218 sgel->FlagsLength = cpu_to_le32(flags_length);
1219 sgel->Address = cpu_to_le32(dma_addr);
1224 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1225 * @paddr: virtual address for SGE
1226 * @flags_length: SGE flags and data transfer length
1227 * @dma_addr: Physical address
1229 * Return nothing.
1231 static void
1232 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1234 Mpi2SGESimple64_t *sgel = paddr;
1236 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1237 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1238 sgel->FlagsLength = cpu_to_le32(flags_length);
1239 sgel->Address = cpu_to_le64(dma_addr);
1243 * _base_get_chain_buffer_tracker - obtain chain tracker
1244 * @ioc: per adapter object
1245 * @smid: smid associated to an IO request
1247 * Returns chain tracker(from ioc->free_chain_list)
1249 static struct chain_tracker *
1250 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1252 struct chain_tracker *chain_req;
1253 unsigned long flags;
1255 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1256 if (list_empty(&ioc->free_chain_list)) {
1257 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1258 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1259 "chain buffers not available\n", ioc->name));
1260 return NULL;
1262 chain_req = list_entry(ioc->free_chain_list.next,
1263 struct chain_tracker, tracker_list);
1264 list_del_init(&chain_req->tracker_list);
1265 list_add_tail(&chain_req->tracker_list,
1266 &ioc->scsi_lookup[smid - 1].chain_list);
1267 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1268 return chain_req;
1273 * _base_build_sg - build generic sg
1274 * @ioc: per adapter object
1275 * @psge: virtual address for SGE
1276 * @data_out_dma: physical address for WRITES
1277 * @data_out_sz: data xfer size for WRITES
1278 * @data_in_dma: physical address for READS
1279 * @data_in_sz: data xfer size for READS
1281 * Return nothing.
1283 static void
1284 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1285 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1286 size_t data_in_sz)
1288 u32 sgl_flags;
1290 if (!data_out_sz && !data_in_sz) {
1291 _base_build_zero_len_sge(ioc, psge);
1292 return;
1295 if (data_out_sz && data_in_sz) {
1296 /* WRITE sgel first */
1297 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1298 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1299 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1300 ioc->base_add_sg_single(psge, sgl_flags |
1301 data_out_sz, data_out_dma);
1303 /* incr sgel */
1304 psge += ioc->sge_size;
1306 /* READ sgel last */
1307 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1308 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1309 MPI2_SGE_FLAGS_END_OF_LIST);
1310 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1311 ioc->base_add_sg_single(psge, sgl_flags |
1312 data_in_sz, data_in_dma);
1313 } else if (data_out_sz) /* WRITE */ {
1314 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1315 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1316 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1317 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1318 ioc->base_add_sg_single(psge, sgl_flags |
1319 data_out_sz, data_out_dma);
1320 } else if (data_in_sz) /* READ */ {
1321 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1322 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1323 MPI2_SGE_FLAGS_END_OF_LIST);
1324 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1325 ioc->base_add_sg_single(psge, sgl_flags |
1326 data_in_sz, data_in_dma);
1330 /* IEEE format sgls */
1333 * _base_add_sg_single_ieee - add sg element for IEEE format
1334 * @paddr: virtual address for SGE
1335 * @flags: SGE flags
1336 * @chain_offset: number of 128 byte elements from start of segment
1337 * @length: data transfer length
1338 * @dma_addr: Physical address
1340 * Return nothing.
1342 static void
1343 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1344 dma_addr_t dma_addr)
1346 Mpi25IeeeSgeChain64_t *sgel = paddr;
1348 sgel->Flags = flags;
1349 sgel->NextChainOffset = chain_offset;
1350 sgel->Length = cpu_to_le32(length);
1351 sgel->Address = cpu_to_le64(dma_addr);
1355 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1356 * @ioc: per adapter object
1357 * @paddr: virtual address for SGE
1359 * Create a zero length scatter gather entry to insure the IOCs hardware has
1360 * something to use if the target device goes brain dead and tries
1361 * to send data even when none is asked for.
1363 * Return nothing.
1365 static void
1366 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1368 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1369 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1370 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1372 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1376 * _base_build_sg_scmd - main sg creation routine
1377 * @ioc: per adapter object
1378 * @scmd: scsi command
1379 * @smid: system request message index
1380 * Context: none.
1382 * The main routine that builds scatter gather table from a given
1383 * scsi request sent via the .queuecommand main handler.
1385 * Returns 0 success, anything else error
1387 static int
1388 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1389 struct scsi_cmnd *scmd, u16 smid)
1391 Mpi2SCSIIORequest_t *mpi_request;
1392 dma_addr_t chain_dma;
1393 struct scatterlist *sg_scmd;
1394 void *sg_local, *chain;
1395 u32 chain_offset;
1396 u32 chain_length;
1397 u32 chain_flags;
1398 int sges_left;
1399 u32 sges_in_segment;
1400 u32 sgl_flags;
1401 u32 sgl_flags_last_element;
1402 u32 sgl_flags_end_buffer;
1403 struct chain_tracker *chain_req;
1405 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1407 /* init scatter gather flags */
1408 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1409 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1410 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1411 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1412 << MPI2_SGE_FLAGS_SHIFT;
1413 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1414 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1415 << MPI2_SGE_FLAGS_SHIFT;
1416 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1418 sg_scmd = scsi_sglist(scmd);
1419 sges_left = scsi_dma_map(scmd);
1420 if (sges_left < 0) {
1421 sdev_printk(KERN_ERR, scmd->device,
1422 "pci_map_sg failed: request for %d bytes!\n",
1423 scsi_bufflen(scmd));
1424 return -ENOMEM;
1427 sg_local = &mpi_request->SGL;
1428 sges_in_segment = ioc->max_sges_in_main_message;
1429 if (sges_left <= sges_in_segment)
1430 goto fill_in_last_segment;
1432 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1433 (sges_in_segment * ioc->sge_size))/4;
1435 /* fill in main message segment when there is a chain following */
1436 while (sges_in_segment) {
1437 if (sges_in_segment == 1)
1438 ioc->base_add_sg_single(sg_local,
1439 sgl_flags_last_element | sg_dma_len(sg_scmd),
1440 sg_dma_address(sg_scmd));
1441 else
1442 ioc->base_add_sg_single(sg_local, sgl_flags |
1443 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1444 sg_scmd = sg_next(sg_scmd);
1445 sg_local += ioc->sge_size;
1446 sges_left--;
1447 sges_in_segment--;
1450 /* initializing the chain flags and pointers */
1451 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1452 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1453 if (!chain_req)
1454 return -1;
1455 chain = chain_req->chain_buffer;
1456 chain_dma = chain_req->chain_buffer_dma;
1457 do {
1458 sges_in_segment = (sges_left <=
1459 ioc->max_sges_in_chain_message) ? sges_left :
1460 ioc->max_sges_in_chain_message;
1461 chain_offset = (sges_left == sges_in_segment) ?
1462 0 : (sges_in_segment * ioc->sge_size)/4;
1463 chain_length = sges_in_segment * ioc->sge_size;
1464 if (chain_offset) {
1465 chain_offset = chain_offset <<
1466 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1467 chain_length += ioc->sge_size;
1469 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1470 chain_length, chain_dma);
1471 sg_local = chain;
1472 if (!chain_offset)
1473 goto fill_in_last_segment;
1475 /* fill in chain segments */
1476 while (sges_in_segment) {
1477 if (sges_in_segment == 1)
1478 ioc->base_add_sg_single(sg_local,
1479 sgl_flags_last_element |
1480 sg_dma_len(sg_scmd),
1481 sg_dma_address(sg_scmd));
1482 else
1483 ioc->base_add_sg_single(sg_local, sgl_flags |
1484 sg_dma_len(sg_scmd),
1485 sg_dma_address(sg_scmd));
1486 sg_scmd = sg_next(sg_scmd);
1487 sg_local += ioc->sge_size;
1488 sges_left--;
1489 sges_in_segment--;
1492 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1493 if (!chain_req)
1494 return -1;
1495 chain = chain_req->chain_buffer;
1496 chain_dma = chain_req->chain_buffer_dma;
1497 } while (1);
1500 fill_in_last_segment:
1502 /* fill the last segment */
1503 while (sges_left) {
1504 if (sges_left == 1)
1505 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1506 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1507 else
1508 ioc->base_add_sg_single(sg_local, sgl_flags |
1509 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1510 sg_scmd = sg_next(sg_scmd);
1511 sg_local += ioc->sge_size;
1512 sges_left--;
1515 return 0;
1519 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1520 * @ioc: per adapter object
1521 * @scmd: scsi command
1522 * @smid: system request message index
1523 * Context: none.
1525 * The main routine that builds scatter gather table from a given
1526 * scsi request sent via the .queuecommand main handler.
1528 * Returns 0 success, anything else error
1530 static int
1531 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1532 struct scsi_cmnd *scmd, u16 smid)
1534 Mpi2SCSIIORequest_t *mpi_request;
1535 dma_addr_t chain_dma;
1536 struct scatterlist *sg_scmd;
1537 void *sg_local, *chain;
1538 u32 chain_offset;
1539 u32 chain_length;
1540 int sges_left;
1541 u32 sges_in_segment;
1542 u8 simple_sgl_flags;
1543 u8 simple_sgl_flags_last;
1544 u8 chain_sgl_flags;
1545 struct chain_tracker *chain_req;
1547 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1549 /* init scatter gather flags */
1550 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1551 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1552 simple_sgl_flags_last = simple_sgl_flags |
1553 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1554 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1555 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1557 sg_scmd = scsi_sglist(scmd);
1558 sges_left = scsi_dma_map(scmd);
1559 if (sges_left < 0) {
1560 sdev_printk(KERN_ERR, scmd->device,
1561 "pci_map_sg failed: request for %d bytes!\n",
1562 scsi_bufflen(scmd));
1563 return -ENOMEM;
1566 sg_local = &mpi_request->SGL;
1567 sges_in_segment = (ioc->request_sz -
1568 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1569 if (sges_left <= sges_in_segment)
1570 goto fill_in_last_segment;
1572 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1573 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1575 /* fill in main message segment when there is a chain following */
1576 while (sges_in_segment > 1) {
1577 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1578 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1579 sg_scmd = sg_next(sg_scmd);
1580 sg_local += ioc->sge_size_ieee;
1581 sges_left--;
1582 sges_in_segment--;
1585 /* initializing the pointers */
1586 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1587 if (!chain_req)
1588 return -1;
1589 chain = chain_req->chain_buffer;
1590 chain_dma = chain_req->chain_buffer_dma;
1591 do {
1592 sges_in_segment = (sges_left <=
1593 ioc->max_sges_in_chain_message) ? sges_left :
1594 ioc->max_sges_in_chain_message;
1595 chain_offset = (sges_left == sges_in_segment) ?
1596 0 : sges_in_segment;
1597 chain_length = sges_in_segment * ioc->sge_size_ieee;
1598 if (chain_offset)
1599 chain_length += ioc->sge_size_ieee;
1600 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1601 chain_offset, chain_length, chain_dma);
1603 sg_local = chain;
1604 if (!chain_offset)
1605 goto fill_in_last_segment;
1607 /* fill in chain segments */
1608 while (sges_in_segment) {
1609 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1610 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1611 sg_scmd = sg_next(sg_scmd);
1612 sg_local += ioc->sge_size_ieee;
1613 sges_left--;
1614 sges_in_segment--;
1617 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1618 if (!chain_req)
1619 return -1;
1620 chain = chain_req->chain_buffer;
1621 chain_dma = chain_req->chain_buffer_dma;
1622 } while (1);
1625 fill_in_last_segment:
1627 /* fill the last segment */
1628 while (sges_left > 0) {
1629 if (sges_left == 1)
1630 _base_add_sg_single_ieee(sg_local,
1631 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1632 sg_dma_address(sg_scmd));
1633 else
1634 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1635 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1636 sg_scmd = sg_next(sg_scmd);
1637 sg_local += ioc->sge_size_ieee;
1638 sges_left--;
1641 return 0;
1645 * _base_build_sg_ieee - build generic sg for IEEE format
1646 * @ioc: per adapter object
1647 * @psge: virtual address for SGE
1648 * @data_out_dma: physical address for WRITES
1649 * @data_out_sz: data xfer size for WRITES
1650 * @data_in_dma: physical address for READS
1651 * @data_in_sz: data xfer size for READS
1653 * Return nothing.
1655 static void
1656 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1657 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1658 size_t data_in_sz)
1660 u8 sgl_flags;
1662 if (!data_out_sz && !data_in_sz) {
1663 _base_build_zero_len_sge_ieee(ioc, psge);
1664 return;
1667 if (data_out_sz && data_in_sz) {
1668 /* WRITE sgel first */
1669 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1670 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1671 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1672 data_out_dma);
1674 /* incr sgel */
1675 psge += ioc->sge_size_ieee;
1677 /* READ sgel last */
1678 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1679 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1680 data_in_dma);
1681 } else if (data_out_sz) /* WRITE */ {
1682 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1683 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1684 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1685 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1686 data_out_dma);
1687 } else if (data_in_sz) /* READ */ {
1688 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1689 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1690 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1691 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1692 data_in_dma);
1696 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1699 * _base_config_dma_addressing - set dma addressing
1700 * @ioc: per adapter object
1701 * @pdev: PCI device struct
1703 * Returns 0 for success, non-zero for failure.
1705 static int
1706 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1708 struct sysinfo s;
1709 u64 consistent_dma_mask;
1711 if (ioc->dma_mask)
1712 consistent_dma_mask = DMA_BIT_MASK(64);
1713 else
1714 consistent_dma_mask = DMA_BIT_MASK(32);
1716 if (sizeof(dma_addr_t) > 4) {
1717 const uint64_t required_mask =
1718 dma_get_required_mask(&pdev->dev);
1719 if ((required_mask > DMA_BIT_MASK(32)) &&
1720 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1721 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1722 ioc->base_add_sg_single = &_base_add_sg_single_64;
1723 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1724 ioc->dma_mask = 64;
1725 goto out;
1729 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1730 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1731 ioc->base_add_sg_single = &_base_add_sg_single_32;
1732 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1733 ioc->dma_mask = 32;
1734 } else
1735 return -ENODEV;
1737 out:
1738 si_meminfo(&s);
1739 pr_info(MPT3SAS_FMT
1740 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1741 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1743 return 0;
1746 static int
1747 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1748 struct pci_dev *pdev)
1750 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1751 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1752 return -ENODEV;
1754 return 0;
1758 * _base_check_enable_msix - checks MSIX capabable.
1759 * @ioc: per adapter object
1761 * Check to see if card is capable of MSIX, and set number
1762 * of available msix vectors
1764 static int
1765 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1767 int base;
1768 u16 message_control;
1770 /* Check whether controller SAS2008 B0 controller,
1771 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1773 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1774 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1775 return -EINVAL;
1778 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1779 if (!base) {
1780 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1781 ioc->name));
1782 return -EINVAL;
1785 /* get msix vector count */
1786 /* NUMA_IO not supported for older controllers */
1787 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1788 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1789 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1790 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1791 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1792 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1793 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1794 ioc->msix_vector_count = 1;
1795 else {
1796 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1797 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1799 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1800 "msix is supported, vector_count(%d)\n",
1801 ioc->name, ioc->msix_vector_count));
1802 return 0;
1806 * _base_free_irq - free irq
1807 * @ioc: per adapter object
1809 * Freeing respective reply_queue from the list.
1811 static void
1812 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1814 struct adapter_reply_queue *reply_q, *next;
1816 if (list_empty(&ioc->reply_queue_list))
1817 return;
1819 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1820 list_del(&reply_q->list);
1821 if (smp_affinity_enable) {
1822 irq_set_affinity_hint(reply_q->vector, NULL);
1823 free_cpumask_var(reply_q->affinity_hint);
1825 free_irq(reply_q->vector, reply_q);
1826 kfree(reply_q);
1831 * _base_request_irq - request irq
1832 * @ioc: per adapter object
1833 * @index: msix index into vector table
1834 * @vector: irq vector
1836 * Inserting respective reply_queue into the list.
1838 static int
1839 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1841 struct adapter_reply_queue *reply_q;
1842 int r;
1844 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1845 if (!reply_q) {
1846 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1847 ioc->name, (int)sizeof(struct adapter_reply_queue));
1848 return -ENOMEM;
1850 reply_q->ioc = ioc;
1851 reply_q->msix_index = index;
1852 reply_q->vector = vector;
1854 if (smp_affinity_enable) {
1855 if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1856 kfree(reply_q);
1857 return -ENOMEM;
1861 atomic_set(&reply_q->busy, 0);
1862 if (ioc->msix_enable)
1863 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1864 ioc->driver_name, ioc->id, index);
1865 else
1866 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1867 ioc->driver_name, ioc->id);
1868 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1869 reply_q);
1870 if (r) {
1871 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1872 reply_q->name, vector);
1873 free_cpumask_var(reply_q->affinity_hint);
1874 kfree(reply_q);
1875 return -EBUSY;
1878 INIT_LIST_HEAD(&reply_q->list);
1879 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1880 return 0;
1884 * _base_assign_reply_queues - assigning msix index for each cpu
1885 * @ioc: per adapter object
1887 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1889 * It would nice if we could call irq_set_affinity, however it is not
1890 * an exported symbol
1892 static void
1893 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1895 unsigned int cpu, nr_cpus, nr_msix, index = 0;
1896 struct adapter_reply_queue *reply_q;
1898 if (!_base_is_controller_msix_enabled(ioc))
1899 return;
1901 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1903 nr_cpus = num_online_cpus();
1904 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1905 ioc->facts.MaxMSIxVectors);
1906 if (!nr_msix)
1907 return;
1909 cpu = cpumask_first(cpu_online_mask);
1911 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1913 unsigned int i, group = nr_cpus / nr_msix;
1915 if (cpu >= nr_cpus)
1916 break;
1918 if (index < nr_cpus % nr_msix)
1919 group++;
1921 for (i = 0 ; i < group ; i++) {
1922 ioc->cpu_msix_table[cpu] = index;
1923 if (smp_affinity_enable)
1924 cpumask_or(reply_q->affinity_hint,
1925 reply_q->affinity_hint, get_cpu_mask(cpu));
1926 cpu = cpumask_next(cpu, cpu_online_mask);
1928 if (smp_affinity_enable)
1929 if (irq_set_affinity_hint(reply_q->vector,
1930 reply_q->affinity_hint))
1931 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1932 "Err setting affinity hint to irq vector %d\n",
1933 ioc->name, reply_q->vector));
1934 index++;
1939 * _base_disable_msix - disables msix
1940 * @ioc: per adapter object
1943 static void
1944 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1946 if (!ioc->msix_enable)
1947 return;
1948 pci_disable_msix(ioc->pdev);
1949 ioc->msix_enable = 0;
1953 * _base_enable_msix - enables msix, failback to io_apic
1954 * @ioc: per adapter object
1957 static int
1958 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1960 struct msix_entry *entries, *a;
1961 int r;
1962 int i;
1963 u8 try_msix = 0;
1965 if (msix_disable == -1 || msix_disable == 0)
1966 try_msix = 1;
1968 if (!try_msix)
1969 goto try_ioapic;
1971 if (_base_check_enable_msix(ioc) != 0)
1972 goto try_ioapic;
1974 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1975 ioc->msix_vector_count);
1977 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1978 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1979 ioc->cpu_count, max_msix_vectors);
1981 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1982 max_msix_vectors = 8;
1984 if (max_msix_vectors > 0) {
1985 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1986 ioc->reply_queue_count);
1987 ioc->msix_vector_count = ioc->reply_queue_count;
1988 } else if (max_msix_vectors == 0)
1989 goto try_ioapic;
1991 if (ioc->msix_vector_count < ioc->cpu_count)
1992 smp_affinity_enable = 0;
1994 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1995 GFP_KERNEL);
1996 if (!entries) {
1997 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1998 "kcalloc failed @ at %s:%d/%s() !!!\n",
1999 ioc->name, __FILE__, __LINE__, __func__));
2000 goto try_ioapic;
2003 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2004 a->entry = i;
2006 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2007 if (r) {
2008 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2009 "pci_enable_msix_exact failed (r=%d) !!!\n",
2010 ioc->name, r));
2011 kfree(entries);
2012 goto try_ioapic;
2015 ioc->msix_enable = 1;
2016 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2017 r = _base_request_irq(ioc, i, a->vector);
2018 if (r) {
2019 _base_free_irq(ioc);
2020 _base_disable_msix(ioc);
2021 kfree(entries);
2022 goto try_ioapic;
2026 kfree(entries);
2027 return 0;
2029 /* failback to io_apic interrupt routing */
2030 try_ioapic:
2032 ioc->reply_queue_count = 1;
2033 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2035 return r;
2039 * mpt3sas_base_unmap_resources - free controller resources
2040 * @ioc: per adapter object
2042 static void
2043 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2045 struct pci_dev *pdev = ioc->pdev;
2047 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2048 ioc->name, __func__));
2050 _base_free_irq(ioc);
2051 _base_disable_msix(ioc);
2053 if (ioc->msix96_vector) {
2054 kfree(ioc->replyPostRegisterIndex);
2055 ioc->replyPostRegisterIndex = NULL;
2058 if (ioc->chip_phys) {
2059 iounmap(ioc->chip);
2060 ioc->chip_phys = 0;
2063 if (pci_is_enabled(pdev)) {
2064 pci_release_selected_regions(ioc->pdev, ioc->bars);
2065 pci_disable_pcie_error_reporting(pdev);
2066 pci_disable_device(pdev);
2071 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2072 * @ioc: per adapter object
2074 * Returns 0 for success, non-zero for failure.
2077 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2079 struct pci_dev *pdev = ioc->pdev;
2080 u32 memap_sz;
2081 u32 pio_sz;
2082 int i, r = 0;
2083 u64 pio_chip = 0;
2084 u64 chip_phys = 0;
2085 struct adapter_reply_queue *reply_q;
2087 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2088 ioc->name, __func__));
2090 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2091 if (pci_enable_device_mem(pdev)) {
2092 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2093 ioc->name);
2094 ioc->bars = 0;
2095 return -ENODEV;
2099 if (pci_request_selected_regions(pdev, ioc->bars,
2100 ioc->driver_name)) {
2101 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2102 ioc->name);
2103 ioc->bars = 0;
2104 r = -ENODEV;
2105 goto out_fail;
2108 /* AER (Advanced Error Reporting) hooks */
2109 pci_enable_pcie_error_reporting(pdev);
2111 pci_set_master(pdev);
2114 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2115 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2116 ioc->name, pci_name(pdev));
2117 r = -ENODEV;
2118 goto out_fail;
2121 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2122 (!memap_sz || !pio_sz); i++) {
2123 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2124 if (pio_sz)
2125 continue;
2126 pio_chip = (u64)pci_resource_start(pdev, i);
2127 pio_sz = pci_resource_len(pdev, i);
2128 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2129 if (memap_sz)
2130 continue;
2131 ioc->chip_phys = pci_resource_start(pdev, i);
2132 chip_phys = (u64)ioc->chip_phys;
2133 memap_sz = pci_resource_len(pdev, i);
2134 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2138 if (ioc->chip == NULL) {
2139 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2140 " or resource not found\n", ioc->name);
2141 r = -EINVAL;
2142 goto out_fail;
2145 _base_mask_interrupts(ioc);
2147 r = _base_get_ioc_facts(ioc);
2148 if (r)
2149 goto out_fail;
2151 if (!ioc->rdpq_array_enable_assigned) {
2152 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2153 ioc->rdpq_array_enable_assigned = 1;
2156 r = _base_enable_msix(ioc);
2157 if (r)
2158 goto out_fail;
2160 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2161 * revision HBAs and also only when reply queue count is greater than 8
2163 if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2164 /* Determine the Supplemental Reply Post Host Index Registers
2165 * Addresse. Supplemental Reply Post Host Index Registers
2166 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2167 * each register is at offset bytes of
2168 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2170 ioc->replyPostRegisterIndex = kcalloc(
2171 MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2172 sizeof(resource_size_t *), GFP_KERNEL);
2173 if (!ioc->replyPostRegisterIndex) {
2174 dfailprintk(ioc, printk(MPT3SAS_FMT
2175 "allocation for reply Post Register Index failed!!!\n",
2176 ioc->name));
2177 r = -ENOMEM;
2178 goto out_fail;
2181 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2182 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2183 ((u8 *)&ioc->chip->Doorbell +
2184 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2185 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2187 } else
2188 ioc->msix96_vector = 0;
2190 if (ioc->is_warpdrive) {
2191 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2192 &ioc->chip->ReplyPostHostIndex;
2194 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2195 ioc->reply_post_host_index[i] =
2196 (resource_size_t __iomem *)
2197 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2198 * 4)));
2201 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2202 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2203 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2204 "IO-APIC enabled"), reply_q->vector);
2206 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2207 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2208 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2209 ioc->name, (unsigned long long)pio_chip, pio_sz);
2211 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2212 pci_save_state(pdev);
2213 return 0;
2215 out_fail:
2216 mpt3sas_base_unmap_resources(ioc);
2217 return r;
2221 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2222 * @ioc: per adapter object
2223 * @smid: system request message index(smid zero is invalid)
2225 * Returns virt pointer to message frame.
2227 void *
2228 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2230 return (void *)(ioc->request + (smid * ioc->request_sz));
2234 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2235 * @ioc: per adapter object
2236 * @smid: system request message index
2238 * Returns virt pointer to sense buffer.
2240 void *
2241 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2243 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2247 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2248 * @ioc: per adapter object
2249 * @smid: system request message index
2251 * Returns phys pointer to the low 32bit address of the sense buffer.
2253 __le32
2254 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2256 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2257 SCSI_SENSE_BUFFERSIZE));
2261 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2262 * @ioc: per adapter object
2263 * @phys_addr: lower 32 physical addr of the reply
2265 * Converts 32bit lower physical addr into a virt address.
2267 void *
2268 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2270 if (!phys_addr)
2271 return NULL;
2272 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2275 static inline u8
2276 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2278 return ioc->cpu_msix_table[raw_smp_processor_id()];
2282 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2283 * @ioc: per adapter object
2284 * @cb_idx: callback index
2286 * Returns smid (zero is invalid)
2289 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2291 unsigned long flags;
2292 struct request_tracker *request;
2293 u16 smid;
2295 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2296 if (list_empty(&ioc->internal_free_list)) {
2297 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2298 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2299 ioc->name, __func__);
2300 return 0;
2303 request = list_entry(ioc->internal_free_list.next,
2304 struct request_tracker, tracker_list);
2305 request->cb_idx = cb_idx;
2306 smid = request->smid;
2307 list_del(&request->tracker_list);
2308 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2309 return smid;
2313 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2314 * @ioc: per adapter object
2315 * @cb_idx: callback index
2316 * @scmd: pointer to scsi command object
2318 * Returns smid (zero is invalid)
2321 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2322 struct scsi_cmnd *scmd)
2324 unsigned long flags;
2325 struct scsiio_tracker *request;
2326 u16 smid;
2328 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2329 if (list_empty(&ioc->free_list)) {
2330 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2331 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2332 ioc->name, __func__);
2333 return 0;
2336 request = list_entry(ioc->free_list.next,
2337 struct scsiio_tracker, tracker_list);
2338 request->scmd = scmd;
2339 request->cb_idx = cb_idx;
2340 smid = request->smid;
2341 request->msix_io = _base_get_msix_index(ioc);
2342 list_del(&request->tracker_list);
2343 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2344 return smid;
2348 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2349 * @ioc: per adapter object
2350 * @cb_idx: callback index
2352 * Returns smid (zero is invalid)
2355 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2357 unsigned long flags;
2358 struct request_tracker *request;
2359 u16 smid;
2361 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2362 if (list_empty(&ioc->hpr_free_list)) {
2363 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2364 return 0;
2367 request = list_entry(ioc->hpr_free_list.next,
2368 struct request_tracker, tracker_list);
2369 request->cb_idx = cb_idx;
2370 smid = request->smid;
2371 list_del(&request->tracker_list);
2372 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2373 return smid;
2377 * mpt3sas_base_free_smid - put smid back on free_list
2378 * @ioc: per adapter object
2379 * @smid: system request message index
2381 * Return nothing.
2383 void
2384 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2386 unsigned long flags;
2387 int i;
2388 struct chain_tracker *chain_req, *next;
2390 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2391 if (smid < ioc->hi_priority_smid) {
2392 /* scsiio queue */
2393 i = smid - 1;
2394 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2395 list_for_each_entry_safe(chain_req, next,
2396 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2397 list_del_init(&chain_req->tracker_list);
2398 list_add(&chain_req->tracker_list,
2399 &ioc->free_chain_list);
2402 ioc->scsi_lookup[i].cb_idx = 0xFF;
2403 ioc->scsi_lookup[i].scmd = NULL;
2404 ioc->scsi_lookup[i].direct_io = 0;
2405 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2406 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2409 * See _wait_for_commands_to_complete() call with regards
2410 * to this code.
2412 if (ioc->shost_recovery && ioc->pending_io_count) {
2413 if (ioc->pending_io_count == 1)
2414 wake_up(&ioc->reset_wq);
2415 ioc->pending_io_count--;
2417 return;
2418 } else if (smid < ioc->internal_smid) {
2419 /* hi-priority */
2420 i = smid - ioc->hi_priority_smid;
2421 ioc->hpr_lookup[i].cb_idx = 0xFF;
2422 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2423 } else if (smid <= ioc->hba_queue_depth) {
2424 /* internal queue */
2425 i = smid - ioc->internal_smid;
2426 ioc->internal_lookup[i].cb_idx = 0xFF;
2427 list_add(&ioc->internal_lookup[i].tracker_list,
2428 &ioc->internal_free_list);
2430 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2434 * _base_writeq - 64 bit write to MMIO
2435 * @ioc: per adapter object
2436 * @b: data payload
2437 * @addr: address in MMIO space
2438 * @writeq_lock: spin lock
2440 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2441 * care of 32 bit environment where its not quarenteed to send the entire word
2442 * in one transfer.
2444 #if defined(writeq) && defined(CONFIG_64BIT)
2445 static inline void
2446 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2448 writeq(cpu_to_le64(b), addr);
2450 #else
2451 static inline void
2452 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2454 unsigned long flags;
2455 __u64 data_out = cpu_to_le64(b);
2457 spin_lock_irqsave(writeq_lock, flags);
2458 writel((u32)(data_out), addr);
2459 writel((u32)(data_out >> 32), (addr + 4));
2460 spin_unlock_irqrestore(writeq_lock, flags);
2462 #endif
2465 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2466 * @ioc: per adapter object
2467 * @smid: system request message index
2468 * @handle: device handle
2470 * Return nothing.
2472 void
2473 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2475 Mpi2RequestDescriptorUnion_t descriptor;
2476 u64 *request = (u64 *)&descriptor;
2479 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2480 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2481 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2482 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2483 descriptor.SCSIIO.LMID = 0;
2484 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2485 &ioc->scsi_lookup_lock);
2489 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2490 * @ioc: per adapter object
2491 * @smid: system request message index
2492 * @handle: device handle
2494 * Return nothing.
2496 void
2497 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2498 u16 handle)
2500 Mpi2RequestDescriptorUnion_t descriptor;
2501 u64 *request = (u64 *)&descriptor;
2503 descriptor.SCSIIO.RequestFlags =
2504 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2505 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2506 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2507 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2508 descriptor.SCSIIO.LMID = 0;
2509 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2510 &ioc->scsi_lookup_lock);
2514 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2515 * @ioc: per adapter object
2516 * @smid: system request message index
2517 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2518 * Return nothing.
2520 void
2521 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2522 u16 msix_task)
2524 Mpi2RequestDescriptorUnion_t descriptor;
2525 u64 *request = (u64 *)&descriptor;
2527 descriptor.HighPriority.RequestFlags =
2528 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2529 descriptor.HighPriority.MSIxIndex = msix_task;
2530 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2531 descriptor.HighPriority.LMID = 0;
2532 descriptor.HighPriority.Reserved1 = 0;
2533 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2534 &ioc->scsi_lookup_lock);
2538 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2539 * @ioc: per adapter object
2540 * @smid: system request message index
2542 * Return nothing.
2544 void
2545 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2547 Mpi2RequestDescriptorUnion_t descriptor;
2548 u64 *request = (u64 *)&descriptor;
2550 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2551 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2552 descriptor.Default.SMID = cpu_to_le16(smid);
2553 descriptor.Default.LMID = 0;
2554 descriptor.Default.DescriptorTypeDependent = 0;
2555 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2556 &ioc->scsi_lookup_lock);
2560 * _base_display_OEMs_branding - Display branding string
2561 * @ioc: per adapter object
2563 * Return nothing.
2565 static void
2566 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2568 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2569 return;
2571 switch (ioc->pdev->subsystem_vendor) {
2572 case PCI_VENDOR_ID_INTEL:
2573 switch (ioc->pdev->device) {
2574 case MPI2_MFGPAGE_DEVID_SAS2008:
2575 switch (ioc->pdev->subsystem_device) {
2576 case MPT2SAS_INTEL_RMS2LL080_SSDID:
2577 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2578 MPT2SAS_INTEL_RMS2LL080_BRANDING);
2579 break;
2580 case MPT2SAS_INTEL_RMS2LL040_SSDID:
2581 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2582 MPT2SAS_INTEL_RMS2LL040_BRANDING);
2583 break;
2584 case MPT2SAS_INTEL_SSD910_SSDID:
2585 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2586 MPT2SAS_INTEL_SSD910_BRANDING);
2587 break;
2588 default:
2589 pr_info(MPT3SAS_FMT
2590 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2591 ioc->name, ioc->pdev->subsystem_device);
2592 break;
2594 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2595 switch (ioc->pdev->subsystem_device) {
2596 case MPT2SAS_INTEL_RS25GB008_SSDID:
2597 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2598 MPT2SAS_INTEL_RS25GB008_BRANDING);
2599 break;
2600 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2601 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2602 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2603 break;
2604 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2605 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2606 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2607 break;
2608 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2609 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2610 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2611 break;
2612 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2613 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2614 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2615 break;
2616 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2617 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2618 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2619 break;
2620 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2621 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2622 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2623 break;
2624 default:
2625 pr_info(MPT3SAS_FMT
2626 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2627 ioc->name, ioc->pdev->subsystem_device);
2628 break;
2630 case MPI25_MFGPAGE_DEVID_SAS3008:
2631 switch (ioc->pdev->subsystem_device) {
2632 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2633 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2634 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2635 break;
2637 case MPT3SAS_INTEL_RS3GC008_SSDID:
2638 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2639 MPT3SAS_INTEL_RS3GC008_BRANDING);
2640 break;
2641 case MPT3SAS_INTEL_RS3FC044_SSDID:
2642 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2643 MPT3SAS_INTEL_RS3FC044_BRANDING);
2644 break;
2645 case MPT3SAS_INTEL_RS3UC080_SSDID:
2646 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2647 MPT3SAS_INTEL_RS3UC080_BRANDING);
2648 break;
2649 default:
2650 pr_info(MPT3SAS_FMT
2651 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2652 ioc->name, ioc->pdev->subsystem_device);
2653 break;
2655 break;
2656 default:
2657 pr_info(MPT3SAS_FMT
2658 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2659 ioc->name, ioc->pdev->subsystem_device);
2660 break;
2662 break;
2663 case PCI_VENDOR_ID_DELL:
2664 switch (ioc->pdev->device) {
2665 case MPI2_MFGPAGE_DEVID_SAS2008:
2666 switch (ioc->pdev->subsystem_device) {
2667 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2668 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2669 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2670 break;
2671 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2672 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2673 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2674 break;
2675 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2676 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2677 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2678 break;
2679 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2680 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2681 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2682 break;
2683 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2684 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2685 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2686 break;
2687 case MPT2SAS_DELL_PERC_H200_SSDID:
2688 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2689 MPT2SAS_DELL_PERC_H200_BRANDING);
2690 break;
2691 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2692 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2693 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2694 break;
2695 default:
2696 pr_info(MPT3SAS_FMT
2697 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2698 ioc->name, ioc->pdev->subsystem_device);
2699 break;
2701 break;
2702 case MPI25_MFGPAGE_DEVID_SAS3008:
2703 switch (ioc->pdev->subsystem_device) {
2704 case MPT3SAS_DELL_12G_HBA_SSDID:
2705 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2706 MPT3SAS_DELL_12G_HBA_BRANDING);
2707 break;
2708 default:
2709 pr_info(MPT3SAS_FMT
2710 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2711 ioc->name, ioc->pdev->subsystem_device);
2712 break;
2714 break;
2715 default:
2716 pr_info(MPT3SAS_FMT
2717 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2718 ioc->pdev->subsystem_device);
2719 break;
2721 break;
2722 case PCI_VENDOR_ID_CISCO:
2723 switch (ioc->pdev->device) {
2724 case MPI25_MFGPAGE_DEVID_SAS3008:
2725 switch (ioc->pdev->subsystem_device) {
2726 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2727 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2728 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2729 break;
2730 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2731 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2732 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2733 break;
2734 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2735 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2736 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2737 break;
2738 default:
2739 pr_info(MPT3SAS_FMT
2740 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2741 ioc->name, ioc->pdev->subsystem_device);
2742 break;
2744 break;
2745 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2746 switch (ioc->pdev->subsystem_device) {
2747 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2748 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2749 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2750 break;
2751 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2752 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2753 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2755 break;
2756 default:
2757 pr_info(MPT3SAS_FMT
2758 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2759 ioc->name, ioc->pdev->subsystem_device);
2760 break;
2762 break;
2763 default:
2764 pr_info(MPT3SAS_FMT
2765 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2766 ioc->name, ioc->pdev->subsystem_device);
2767 break;
2769 break;
2770 case MPT2SAS_HP_3PAR_SSVID:
2771 switch (ioc->pdev->device) {
2772 case MPI2_MFGPAGE_DEVID_SAS2004:
2773 switch (ioc->pdev->subsystem_device) {
2774 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2775 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2776 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2777 break;
2778 default:
2779 pr_info(MPT3SAS_FMT
2780 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2781 ioc->name, ioc->pdev->subsystem_device);
2782 break;
2784 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2785 switch (ioc->pdev->subsystem_device) {
2786 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2787 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2788 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2789 break;
2790 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2791 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2792 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2793 break;
2794 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2795 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2796 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2797 break;
2798 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2799 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2800 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2801 break;
2802 default:
2803 pr_info(MPT3SAS_FMT
2804 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2805 ioc->name, ioc->pdev->subsystem_device);
2806 break;
2808 default:
2809 pr_info(MPT3SAS_FMT
2810 "HP SAS HBA: Subsystem ID: 0x%X\n",
2811 ioc->name, ioc->pdev->subsystem_device);
2812 break;
2814 default:
2815 break;
2820 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2821 * @ioc: per adapter object
2823 * Return nothing.
2825 static void
2826 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2828 int i = 0;
2829 char desc[16];
2830 u32 iounit_pg1_flags;
2831 u32 bios_version;
2833 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2834 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2835 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2836 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2837 ioc->name, desc,
2838 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2839 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2840 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2841 ioc->facts.FWVersion.Word & 0x000000FF,
2842 ioc->pdev->revision,
2843 (bios_version & 0xFF000000) >> 24,
2844 (bios_version & 0x00FF0000) >> 16,
2845 (bios_version & 0x0000FF00) >> 8,
2846 bios_version & 0x000000FF);
2848 _base_display_OEMs_branding(ioc);
2850 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2852 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2853 pr_info("Initiator");
2854 i++;
2857 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2858 pr_info("%sTarget", i ? "," : "");
2859 i++;
2862 i = 0;
2863 pr_info("), ");
2864 pr_info("Capabilities=(");
2866 if (!ioc->hide_ir_msg) {
2867 if (ioc->facts.IOCCapabilities &
2868 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2869 pr_info("Raid");
2870 i++;
2874 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2875 pr_info("%sTLR", i ? "," : "");
2876 i++;
2879 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2880 pr_info("%sMulticast", i ? "," : "");
2881 i++;
2884 if (ioc->facts.IOCCapabilities &
2885 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2886 pr_info("%sBIDI Target", i ? "," : "");
2887 i++;
2890 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2891 pr_info("%sEEDP", i ? "," : "");
2892 i++;
2895 if (ioc->facts.IOCCapabilities &
2896 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2897 pr_info("%sSnapshot Buffer", i ? "," : "");
2898 i++;
2901 if (ioc->facts.IOCCapabilities &
2902 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2903 pr_info("%sDiag Trace Buffer", i ? "," : "");
2904 i++;
2907 if (ioc->facts.IOCCapabilities &
2908 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2909 pr_info("%sDiag Extended Buffer", i ? "," : "");
2910 i++;
2913 if (ioc->facts.IOCCapabilities &
2914 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2915 pr_info("%sTask Set Full", i ? "," : "");
2916 i++;
2919 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2920 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2921 pr_info("%sNCQ", i ? "," : "");
2922 i++;
2925 pr_info(")\n");
2929 * mpt3sas_base_update_missing_delay - change the missing delay timers
2930 * @ioc: per adapter object
2931 * @device_missing_delay: amount of time till device is reported missing
2932 * @io_missing_delay: interval IO is returned when there is a missing device
2934 * Return nothing.
2936 * Passed on the command line, this function will modify the device missing
2937 * delay, as well as the io missing delay. This should be called at driver
2938 * load time.
2940 void
2941 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2942 u16 device_missing_delay, u8 io_missing_delay)
2944 u16 dmd, dmd_new, dmd_orignal;
2945 u8 io_missing_delay_original;
2946 u16 sz;
2947 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2948 Mpi2ConfigReply_t mpi_reply;
2949 u8 num_phys = 0;
2950 u16 ioc_status;
2952 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2953 if (!num_phys)
2954 return;
2956 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2957 sizeof(Mpi2SasIOUnit1PhyData_t));
2958 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2959 if (!sas_iounit_pg1) {
2960 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2961 ioc->name, __FILE__, __LINE__, __func__);
2962 goto out;
2964 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2965 sas_iounit_pg1, sz))) {
2966 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2967 ioc->name, __FILE__, __LINE__, __func__);
2968 goto out;
2970 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2971 MPI2_IOCSTATUS_MASK;
2972 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2973 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2974 ioc->name, __FILE__, __LINE__, __func__);
2975 goto out;
2978 /* device missing delay */
2979 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2980 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2981 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2982 else
2983 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2984 dmd_orignal = dmd;
2985 if (device_missing_delay > 0x7F) {
2986 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2987 device_missing_delay;
2988 dmd = dmd / 16;
2989 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2990 } else
2991 dmd = device_missing_delay;
2992 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2994 /* io missing delay */
2995 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2996 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2998 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2999 sz)) {
3000 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3001 dmd_new = (dmd &
3002 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3003 else
3004 dmd_new =
3005 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3006 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3007 ioc->name, dmd_orignal, dmd_new);
3008 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3009 ioc->name, io_missing_delay_original,
3010 io_missing_delay);
3011 ioc->device_missing_delay = dmd_new;
3012 ioc->io_missing_delay = io_missing_delay;
3015 out:
3016 kfree(sas_iounit_pg1);
3019 * _base_static_config_pages - static start of day config pages
3020 * @ioc: per adapter object
3022 * Return nothing.
3024 static void
3025 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3027 Mpi2ConfigReply_t mpi_reply;
3028 u32 iounit_pg1_flags;
3030 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3031 if (ioc->ir_firmware)
3032 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3033 &ioc->manu_pg10);
3036 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3037 * flag unset in NVDATA.
3039 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3040 if (ioc->manu_pg11.EEDPTagMode == 0) {
3041 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3042 ioc->name);
3043 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3044 ioc->manu_pg11.EEDPTagMode |= 0x1;
3045 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3046 &ioc->manu_pg11);
3049 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3050 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3051 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3052 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3053 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3054 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3055 _base_display_ioc_capabilities(ioc);
3058 * Enable task_set_full handling in iounit_pg1 when the
3059 * facts capabilities indicate that its supported.
3061 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3062 if ((ioc->facts.IOCCapabilities &
3063 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3064 iounit_pg1_flags &=
3065 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3066 else
3067 iounit_pg1_flags |=
3068 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3069 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3070 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3072 if (ioc->iounit_pg8.NumSensors)
3073 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3077 * _base_release_memory_pools - release memory
3078 * @ioc: per adapter object
3080 * Free memory allocated from _base_allocate_memory_pools.
3082 * Return nothing.
3084 static void
3085 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3087 int i = 0;
3088 struct reply_post_struct *rps;
3090 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3091 __func__));
3093 if (ioc->request) {
3094 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3095 ioc->request, ioc->request_dma);
3096 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3097 "request_pool(0x%p): free\n",
3098 ioc->name, ioc->request));
3099 ioc->request = NULL;
3102 if (ioc->sense) {
3103 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3104 if (ioc->sense_dma_pool)
3105 pci_pool_destroy(ioc->sense_dma_pool);
3106 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3107 "sense_pool(0x%p): free\n",
3108 ioc->name, ioc->sense));
3109 ioc->sense = NULL;
3112 if (ioc->reply) {
3113 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3114 if (ioc->reply_dma_pool)
3115 pci_pool_destroy(ioc->reply_dma_pool);
3116 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3117 "reply_pool(0x%p): free\n",
3118 ioc->name, ioc->reply));
3119 ioc->reply = NULL;
3122 if (ioc->reply_free) {
3123 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3124 ioc->reply_free_dma);
3125 if (ioc->reply_free_dma_pool)
3126 pci_pool_destroy(ioc->reply_free_dma_pool);
3127 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3128 "reply_free_pool(0x%p): free\n",
3129 ioc->name, ioc->reply_free));
3130 ioc->reply_free = NULL;
3133 if (ioc->reply_post) {
3134 do {
3135 rps = &ioc->reply_post[i];
3136 if (rps->reply_post_free) {
3137 pci_pool_free(
3138 ioc->reply_post_free_dma_pool,
3139 rps->reply_post_free,
3140 rps->reply_post_free_dma);
3141 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3142 "reply_post_free_pool(0x%p): free\n",
3143 ioc->name, rps->reply_post_free));
3144 rps->reply_post_free = NULL;
3146 } while (ioc->rdpq_array_enable &&
3147 (++i < ioc->reply_queue_count));
3149 if (ioc->reply_post_free_dma_pool)
3150 pci_pool_destroy(ioc->reply_post_free_dma_pool);
3151 kfree(ioc->reply_post);
3154 if (ioc->config_page) {
3155 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3156 "config_page(0x%p): free\n", ioc->name,
3157 ioc->config_page));
3158 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3159 ioc->config_page, ioc->config_page_dma);
3162 if (ioc->scsi_lookup) {
3163 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3164 ioc->scsi_lookup = NULL;
3166 kfree(ioc->hpr_lookup);
3167 kfree(ioc->internal_lookup);
3168 if (ioc->chain_lookup) {
3169 for (i = 0; i < ioc->chain_depth; i++) {
3170 if (ioc->chain_lookup[i].chain_buffer)
3171 pci_pool_free(ioc->chain_dma_pool,
3172 ioc->chain_lookup[i].chain_buffer,
3173 ioc->chain_lookup[i].chain_buffer_dma);
3175 if (ioc->chain_dma_pool)
3176 pci_pool_destroy(ioc->chain_dma_pool);
3177 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3178 ioc->chain_lookup = NULL;
3183 * _base_allocate_memory_pools - allocate start of day memory pools
3184 * @ioc: per adapter object
3186 * Returns 0 success, anything else error
3188 static int
3189 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3191 struct mpt3sas_facts *facts;
3192 u16 max_sge_elements;
3193 u16 chains_needed_per_io;
3194 u32 sz, total_sz, reply_post_free_sz;
3195 u32 retry_sz;
3196 u16 max_request_credit;
3197 unsigned short sg_tablesize;
3198 u16 sge_size;
3199 int i;
3201 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3202 __func__));
3205 retry_sz = 0;
3206 facts = &ioc->facts;
3208 /* command line tunables for max sgl entries */
3209 if (max_sgl_entries != -1)
3210 sg_tablesize = max_sgl_entries;
3211 else {
3212 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3213 sg_tablesize = MPT2SAS_SG_DEPTH;
3214 else
3215 sg_tablesize = MPT3SAS_SG_DEPTH;
3218 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3219 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3220 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3221 sg_tablesize = min_t(unsigned short, sg_tablesize,
3222 SG_MAX_SEGMENTS);
3223 pr_warn(MPT3SAS_FMT
3224 "sg_tablesize(%u) is bigger than kernel"
3225 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3226 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3228 ioc->shost->sg_tablesize = sg_tablesize;
3230 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3231 (facts->RequestCredit / 4));
3232 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3233 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3234 INTERNAL_SCSIIO_CMDS_COUNT)) {
3235 pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3236 Credits, it has just %d number of credits\n",
3237 ioc->name, facts->RequestCredit);
3238 return -ENOMEM;
3240 ioc->internal_depth = 10;
3243 ioc->hi_priority_depth = ioc->internal_depth - (5);
3244 /* command line tunables for max controller queue depth */
3245 if (max_queue_depth != -1 && max_queue_depth != 0) {
3246 max_request_credit = min_t(u16, max_queue_depth +
3247 ioc->internal_depth, facts->RequestCredit);
3248 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3249 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3250 } else
3251 max_request_credit = min_t(u16, facts->RequestCredit,
3252 MAX_HBA_QUEUE_DEPTH);
3254 /* Firmware maintains additional facts->HighPriorityCredit number of
3255 * credits for HiPriprity Request messages, so hba queue depth will be
3256 * sum of max_request_credit and high priority queue depth.
3258 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3260 /* request frame size */
3261 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3263 /* reply frame size */
3264 ioc->reply_sz = facts->ReplyFrameSize * 4;
3266 /* chain segment size */
3267 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3268 if (facts->IOCMaxChainSegmentSize)
3269 ioc->chain_segment_sz =
3270 facts->IOCMaxChainSegmentSize *
3271 MAX_CHAIN_ELEMT_SZ;
3272 else
3273 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3274 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3275 MAX_CHAIN_ELEMT_SZ;
3276 } else
3277 ioc->chain_segment_sz = ioc->request_sz;
3279 /* calculate the max scatter element size */
3280 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3282 retry_allocation:
3283 total_sz = 0;
3284 /* calculate number of sg elements left over in the 1st frame */
3285 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3286 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3287 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3289 /* now do the same for a chain buffer */
3290 max_sge_elements = ioc->chain_segment_sz - sge_size;
3291 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3294 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3296 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3297 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3298 + 1;
3299 if (chains_needed_per_io > facts->MaxChainDepth) {
3300 chains_needed_per_io = facts->MaxChainDepth;
3301 ioc->shost->sg_tablesize = min_t(u16,
3302 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3303 * chains_needed_per_io), ioc->shost->sg_tablesize);
3305 ioc->chains_needed_per_io = chains_needed_per_io;
3307 /* reply free queue sizing - taking into account for 64 FW events */
3308 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3310 /* calculate reply descriptor post queue depth */
3311 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3312 ioc->reply_free_queue_depth + 1 ;
3313 /* align the reply post queue on the next 16 count boundary */
3314 if (ioc->reply_post_queue_depth % 16)
3315 ioc->reply_post_queue_depth += 16 -
3316 (ioc->reply_post_queue_depth % 16);
3318 if (ioc->reply_post_queue_depth >
3319 facts->MaxReplyDescriptorPostQueueDepth) {
3320 ioc->reply_post_queue_depth =
3321 facts->MaxReplyDescriptorPostQueueDepth -
3322 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3323 ioc->hba_queue_depth =
3324 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3325 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3328 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3329 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3330 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3331 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3332 ioc->chains_needed_per_io));
3334 /* reply post queue, 16 byte align */
3335 reply_post_free_sz = ioc->reply_post_queue_depth *
3336 sizeof(Mpi2DefaultReplyDescriptor_t);
3338 sz = reply_post_free_sz;
3339 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3340 sz *= ioc->reply_queue_count;
3342 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3343 (ioc->reply_queue_count):1,
3344 sizeof(struct reply_post_struct), GFP_KERNEL);
3346 if (!ioc->reply_post) {
3347 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3348 ioc->name);
3349 goto out;
3351 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3352 ioc->pdev, sz, 16, 0);
3353 if (!ioc->reply_post_free_dma_pool) {
3354 pr_err(MPT3SAS_FMT
3355 "reply_post_free pool: pci_pool_create failed\n",
3356 ioc->name);
3357 goto out;
3359 i = 0;
3360 do {
3361 ioc->reply_post[i].reply_post_free =
3362 pci_pool_alloc(ioc->reply_post_free_dma_pool,
3363 GFP_KERNEL,
3364 &ioc->reply_post[i].reply_post_free_dma);
3365 if (!ioc->reply_post[i].reply_post_free) {
3366 pr_err(MPT3SAS_FMT
3367 "reply_post_free pool: pci_pool_alloc failed\n",
3368 ioc->name);
3369 goto out;
3371 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3372 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3373 "reply post free pool (0x%p): depth(%d),"
3374 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3375 ioc->reply_post[i].reply_post_free,
3376 ioc->reply_post_queue_depth, 8, sz/1024));
3377 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3378 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3379 (unsigned long long)
3380 ioc->reply_post[i].reply_post_free_dma));
3381 total_sz += sz;
3382 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3384 if (ioc->dma_mask == 64) {
3385 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3386 pr_warn(MPT3SAS_FMT
3387 "no suitable consistent DMA mask for %s\n",
3388 ioc->name, pci_name(ioc->pdev));
3389 goto out;
3393 ioc->scsiio_depth = ioc->hba_queue_depth -
3394 ioc->hi_priority_depth - ioc->internal_depth;
3396 /* set the scsi host can_queue depth
3397 * with some internal commands that could be outstanding
3399 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3400 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3401 "scsi host: can_queue depth (%d)\n",
3402 ioc->name, ioc->shost->can_queue));
3405 /* contiguous pool for request and chains, 16 byte align, one extra "
3406 * "frame for smid=0
3408 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3409 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3411 /* hi-priority queue */
3412 sz += (ioc->hi_priority_depth * ioc->request_sz);
3414 /* internal queue */
3415 sz += (ioc->internal_depth * ioc->request_sz);
3417 ioc->request_dma_sz = sz;
3418 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3419 if (!ioc->request) {
3420 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3421 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3422 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3423 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3424 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3425 goto out;
3426 retry_sz = 64;
3427 ioc->hba_queue_depth -= retry_sz;
3428 _base_release_memory_pools(ioc);
3429 goto retry_allocation;
3432 if (retry_sz)
3433 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3434 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3435 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3436 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3438 /* hi-priority queue */
3439 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3440 ioc->request_sz);
3441 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3442 ioc->request_sz);
3444 /* internal queue */
3445 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3446 ioc->request_sz);
3447 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3448 ioc->request_sz);
3450 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3451 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3452 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3453 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3455 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3456 ioc->name, (unsigned long long) ioc->request_dma));
3457 total_sz += sz;
3459 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3460 ioc->scsi_lookup_pages = get_order(sz);
3461 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3462 GFP_KERNEL, ioc->scsi_lookup_pages);
3463 if (!ioc->scsi_lookup) {
3464 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3465 ioc->name, (int)sz);
3466 goto out;
3469 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3470 ioc->name, ioc->request, ioc->scsiio_depth));
3472 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3473 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3474 ioc->chain_pages = get_order(sz);
3475 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3476 GFP_KERNEL, ioc->chain_pages);
3477 if (!ioc->chain_lookup) {
3478 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3479 ioc->name);
3480 goto out;
3482 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3483 ioc->chain_segment_sz, 16, 0);
3484 if (!ioc->chain_dma_pool) {
3485 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3486 ioc->name);
3487 goto out;
3489 for (i = 0; i < ioc->chain_depth; i++) {
3490 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3491 ioc->chain_dma_pool , GFP_KERNEL,
3492 &ioc->chain_lookup[i].chain_buffer_dma);
3493 if (!ioc->chain_lookup[i].chain_buffer) {
3494 ioc->chain_depth = i;
3495 goto chain_done;
3497 total_sz += ioc->chain_segment_sz;
3499 chain_done:
3500 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3501 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3502 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3503 ((ioc->chain_depth * ioc->chain_segment_sz))/1024));
3505 /* initialize hi-priority queue smid's */
3506 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3507 sizeof(struct request_tracker), GFP_KERNEL);
3508 if (!ioc->hpr_lookup) {
3509 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3510 ioc->name);
3511 goto out;
3513 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3514 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3515 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3516 ioc->name, ioc->hi_priority,
3517 ioc->hi_priority_depth, ioc->hi_priority_smid));
3519 /* initialize internal queue smid's */
3520 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3521 sizeof(struct request_tracker), GFP_KERNEL);
3522 if (!ioc->internal_lookup) {
3523 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3524 ioc->name);
3525 goto out;
3527 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3528 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3529 "internal(0x%p): depth(%d), start smid(%d)\n",
3530 ioc->name, ioc->internal,
3531 ioc->internal_depth, ioc->internal_smid));
3533 /* sense buffers, 4 byte align */
3534 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3535 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3537 if (!ioc->sense_dma_pool) {
3538 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3539 ioc->name);
3540 goto out;
3542 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3543 &ioc->sense_dma);
3544 if (!ioc->sense) {
3545 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3546 ioc->name);
3547 goto out;
3549 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3550 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3551 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3552 SCSI_SENSE_BUFFERSIZE, sz/1024));
3553 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3554 ioc->name, (unsigned long long)ioc->sense_dma));
3555 total_sz += sz;
3557 /* reply pool, 4 byte align */
3558 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3559 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3561 if (!ioc->reply_dma_pool) {
3562 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3563 ioc->name);
3564 goto out;
3566 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3567 &ioc->reply_dma);
3568 if (!ioc->reply) {
3569 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3570 ioc->name);
3571 goto out;
3573 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3574 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3575 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3576 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3577 ioc->name, ioc->reply,
3578 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3579 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3580 ioc->name, (unsigned long long)ioc->reply_dma));
3581 total_sz += sz;
3583 /* reply free queue, 16 byte align */
3584 sz = ioc->reply_free_queue_depth * 4;
3585 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3586 ioc->pdev, sz, 16, 0);
3587 if (!ioc->reply_free_dma_pool) {
3588 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3589 ioc->name);
3590 goto out;
3592 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3593 &ioc->reply_free_dma);
3594 if (!ioc->reply_free) {
3595 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3596 ioc->name);
3597 goto out;
3599 memset(ioc->reply_free, 0, sz);
3600 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3601 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3602 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3603 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3604 "reply_free_dma (0x%llx)\n",
3605 ioc->name, (unsigned long long)ioc->reply_free_dma));
3606 total_sz += sz;
3608 ioc->config_page_sz = 512;
3609 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3610 ioc->config_page_sz, &ioc->config_page_dma);
3611 if (!ioc->config_page) {
3612 pr_err(MPT3SAS_FMT
3613 "config page: pci_pool_alloc failed\n",
3614 ioc->name);
3615 goto out;
3617 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3618 "config page(0x%p): size(%d)\n",
3619 ioc->name, ioc->config_page, ioc->config_page_sz));
3620 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3621 ioc->name, (unsigned long long)ioc->config_page_dma));
3622 total_sz += ioc->config_page_sz;
3624 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3625 ioc->name, total_sz/1024);
3626 pr_info(MPT3SAS_FMT
3627 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3628 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3629 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3630 ioc->name, ioc->shost->sg_tablesize);
3631 return 0;
3633 out:
3634 return -ENOMEM;
3638 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3639 * @ioc: Pointer to MPT_ADAPTER structure
3640 * @cooked: Request raw or cooked IOC state
3642 * Returns all IOC Doorbell register bits if cooked==0, else just the
3643 * Doorbell bits in MPI_IOC_STATE_MASK.
3646 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3648 u32 s, sc;
3650 s = readl(&ioc->chip->Doorbell);
3651 sc = s & MPI2_IOC_STATE_MASK;
3652 return cooked ? sc : s;
3656 * _base_wait_on_iocstate - waiting on a particular ioc state
3657 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3658 * @timeout: timeout in second
3660 * Returns 0 for success, non-zero for failure.
3662 static int
3663 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3665 u32 count, cntdn;
3666 u32 current_state;
3668 count = 0;
3669 cntdn = 1000 * timeout;
3670 do {
3671 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3672 if (current_state == ioc_state)
3673 return 0;
3674 if (count && current_state == MPI2_IOC_STATE_FAULT)
3675 break;
3677 usleep_range(1000, 1500);
3678 count++;
3679 } while (--cntdn);
3681 return current_state;
3685 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3686 * a write to the doorbell)
3687 * @ioc: per adapter object
3688 * @timeout: timeout in second
3690 * Returns 0 for success, non-zero for failure.
3692 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3694 static int
3695 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3697 static int
3698 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3700 u32 cntdn, count;
3701 u32 int_status;
3703 count = 0;
3704 cntdn = 1000 * timeout;
3705 do {
3706 int_status = readl(&ioc->chip->HostInterruptStatus);
3707 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3708 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3709 "%s: successful count(%d), timeout(%d)\n",
3710 ioc->name, __func__, count, timeout));
3711 return 0;
3714 usleep_range(1000, 1500);
3715 count++;
3716 } while (--cntdn);
3718 pr_err(MPT3SAS_FMT
3719 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3720 ioc->name, __func__, count, int_status);
3721 return -EFAULT;
3724 static int
3725 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3727 u32 cntdn, count;
3728 u32 int_status;
3730 count = 0;
3731 cntdn = 2000 * timeout;
3732 do {
3733 int_status = readl(&ioc->chip->HostInterruptStatus);
3734 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3735 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3736 "%s: successful count(%d), timeout(%d)\n",
3737 ioc->name, __func__, count, timeout));
3738 return 0;
3741 udelay(500);
3742 count++;
3743 } while (--cntdn);
3745 pr_err(MPT3SAS_FMT
3746 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3747 ioc->name, __func__, count, int_status);
3748 return -EFAULT;
3753 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3754 * @ioc: per adapter object
3755 * @timeout: timeout in second
3757 * Returns 0 for success, non-zero for failure.
3759 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3760 * doorbell.
3762 static int
3763 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3765 u32 cntdn, count;
3766 u32 int_status;
3767 u32 doorbell;
3769 count = 0;
3770 cntdn = 1000 * timeout;
3771 do {
3772 int_status = readl(&ioc->chip->HostInterruptStatus);
3773 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3774 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3775 "%s: successful count(%d), timeout(%d)\n",
3776 ioc->name, __func__, count, timeout));
3777 return 0;
3778 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3779 doorbell = readl(&ioc->chip->Doorbell);
3780 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3781 MPI2_IOC_STATE_FAULT) {
3782 mpt3sas_base_fault_info(ioc , doorbell);
3783 return -EFAULT;
3785 } else if (int_status == 0xFFFFFFFF)
3786 goto out;
3788 usleep_range(1000, 1500);
3789 count++;
3790 } while (--cntdn);
3792 out:
3793 pr_err(MPT3SAS_FMT
3794 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3795 ioc->name, __func__, count, int_status);
3796 return -EFAULT;
3800 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3801 * @ioc: per adapter object
3802 * @timeout: timeout in second
3804 * Returns 0 for success, non-zero for failure.
3807 static int
3808 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3810 u32 cntdn, count;
3811 u32 doorbell_reg;
3813 count = 0;
3814 cntdn = 1000 * timeout;
3815 do {
3816 doorbell_reg = readl(&ioc->chip->Doorbell);
3817 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3818 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3819 "%s: successful count(%d), timeout(%d)\n",
3820 ioc->name, __func__, count, timeout));
3821 return 0;
3824 usleep_range(1000, 1500);
3825 count++;
3826 } while (--cntdn);
3828 pr_err(MPT3SAS_FMT
3829 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3830 ioc->name, __func__, count, doorbell_reg);
3831 return -EFAULT;
3835 * _base_send_ioc_reset - send doorbell reset
3836 * @ioc: per adapter object
3837 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3838 * @timeout: timeout in second
3840 * Returns 0 for success, non-zero for failure.
3842 static int
3843 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3845 u32 ioc_state;
3846 int r = 0;
3848 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3849 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3850 ioc->name, __func__);
3851 return -EFAULT;
3854 if (!(ioc->facts.IOCCapabilities &
3855 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3856 return -EFAULT;
3858 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3860 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3861 &ioc->chip->Doorbell);
3862 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3863 r = -EFAULT;
3864 goto out;
3866 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3867 if (ioc_state) {
3868 pr_err(MPT3SAS_FMT
3869 "%s: failed going to ready state (ioc_state=0x%x)\n",
3870 ioc->name, __func__, ioc_state);
3871 r = -EFAULT;
3872 goto out;
3874 out:
3875 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3876 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3877 return r;
3881 * _base_handshake_req_reply_wait - send request thru doorbell interface
3882 * @ioc: per adapter object
3883 * @request_bytes: request length
3884 * @request: pointer having request payload
3885 * @reply_bytes: reply length
3886 * @reply: pointer to reply payload
3887 * @timeout: timeout in second
3889 * Returns 0 for success, non-zero for failure.
3891 static int
3892 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3893 u32 *request, int reply_bytes, u16 *reply, int timeout)
3895 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3896 int i;
3897 u8 failed;
3898 __le32 *mfp;
3900 /* make sure doorbell is not in use */
3901 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3902 pr_err(MPT3SAS_FMT
3903 "doorbell is in use (line=%d)\n",
3904 ioc->name, __LINE__);
3905 return -EFAULT;
3908 /* clear pending doorbell interrupts from previous state changes */
3909 if (readl(&ioc->chip->HostInterruptStatus) &
3910 MPI2_HIS_IOC2SYS_DB_STATUS)
3911 writel(0, &ioc->chip->HostInterruptStatus);
3913 /* send message to ioc */
3914 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3915 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3916 &ioc->chip->Doorbell);
3918 if ((_base_spin_on_doorbell_int(ioc, 5))) {
3919 pr_err(MPT3SAS_FMT
3920 "doorbell handshake int failed (line=%d)\n",
3921 ioc->name, __LINE__);
3922 return -EFAULT;
3924 writel(0, &ioc->chip->HostInterruptStatus);
3926 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
3927 pr_err(MPT3SAS_FMT
3928 "doorbell handshake ack failed (line=%d)\n",
3929 ioc->name, __LINE__);
3930 return -EFAULT;
3933 /* send message 32-bits at a time */
3934 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3935 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3936 if ((_base_wait_for_doorbell_ack(ioc, 5)))
3937 failed = 1;
3940 if (failed) {
3941 pr_err(MPT3SAS_FMT
3942 "doorbell handshake sending request failed (line=%d)\n",
3943 ioc->name, __LINE__);
3944 return -EFAULT;
3947 /* now wait for the reply */
3948 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
3949 pr_err(MPT3SAS_FMT
3950 "doorbell handshake int failed (line=%d)\n",
3951 ioc->name, __LINE__);
3952 return -EFAULT;
3955 /* read the first two 16-bits, it gives the total length of the reply */
3956 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3957 & MPI2_DOORBELL_DATA_MASK);
3958 writel(0, &ioc->chip->HostInterruptStatus);
3959 if ((_base_wait_for_doorbell_int(ioc, 5))) {
3960 pr_err(MPT3SAS_FMT
3961 "doorbell handshake int failed (line=%d)\n",
3962 ioc->name, __LINE__);
3963 return -EFAULT;
3965 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3966 & MPI2_DOORBELL_DATA_MASK);
3967 writel(0, &ioc->chip->HostInterruptStatus);
3969 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3970 if ((_base_wait_for_doorbell_int(ioc, 5))) {
3971 pr_err(MPT3SAS_FMT
3972 "doorbell handshake int failed (line=%d)\n",
3973 ioc->name, __LINE__);
3974 return -EFAULT;
3976 if (i >= reply_bytes/2) /* overflow case */
3977 readl(&ioc->chip->Doorbell);
3978 else
3979 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3980 & MPI2_DOORBELL_DATA_MASK);
3981 writel(0, &ioc->chip->HostInterruptStatus);
3984 _base_wait_for_doorbell_int(ioc, 5);
3985 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
3986 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3987 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3989 writel(0, &ioc->chip->HostInterruptStatus);
3991 if (ioc->logging_level & MPT_DEBUG_INIT) {
3992 mfp = (__le32 *)reply;
3993 pr_info("\toffset:data\n");
3994 for (i = 0; i < reply_bytes/4; i++)
3995 pr_info("\t[0x%02x]:%08x\n", i*4,
3996 le32_to_cpu(mfp[i]));
3998 return 0;
4002 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4003 * @ioc: per adapter object
4004 * @mpi_reply: the reply payload from FW
4005 * @mpi_request: the request payload sent to FW
4007 * The SAS IO Unit Control Request message allows the host to perform low-level
4008 * operations, such as resets on the PHYs of the IO Unit, also allows the host
4009 * to obtain the IOC assigned device handles for a device if it has other
4010 * identifying information about the device, in addition allows the host to
4011 * remove IOC resources associated with the device.
4013 * Returns 0 for success, non-zero for failure.
4016 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4017 Mpi2SasIoUnitControlReply_t *mpi_reply,
4018 Mpi2SasIoUnitControlRequest_t *mpi_request)
4020 u16 smid;
4021 u32 ioc_state;
4022 bool issue_reset = false;
4023 int rc;
4024 void *request;
4025 u16 wait_state_count;
4027 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4028 __func__));
4030 mutex_lock(&ioc->base_cmds.mutex);
4032 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4033 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4034 ioc->name, __func__);
4035 rc = -EAGAIN;
4036 goto out;
4039 wait_state_count = 0;
4040 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4041 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4042 if (wait_state_count++ == 10) {
4043 pr_err(MPT3SAS_FMT
4044 "%s: failed due to ioc not operational\n",
4045 ioc->name, __func__);
4046 rc = -EFAULT;
4047 goto out;
4049 ssleep(1);
4050 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4051 pr_info(MPT3SAS_FMT
4052 "%s: waiting for operational state(count=%d)\n",
4053 ioc->name, __func__, wait_state_count);
4056 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4057 if (!smid) {
4058 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4059 ioc->name, __func__);
4060 rc = -EAGAIN;
4061 goto out;
4064 rc = 0;
4065 ioc->base_cmds.status = MPT3_CMD_PENDING;
4066 request = mpt3sas_base_get_msg_frame(ioc, smid);
4067 ioc->base_cmds.smid = smid;
4068 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4069 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4070 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4071 ioc->ioc_link_reset_in_progress = 1;
4072 init_completion(&ioc->base_cmds.done);
4073 mpt3sas_base_put_smid_default(ioc, smid);
4074 wait_for_completion_timeout(&ioc->base_cmds.done,
4075 msecs_to_jiffies(10000));
4076 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4077 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4078 ioc->ioc_link_reset_in_progress)
4079 ioc->ioc_link_reset_in_progress = 0;
4080 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4081 pr_err(MPT3SAS_FMT "%s: timeout\n",
4082 ioc->name, __func__);
4083 _debug_dump_mf(mpi_request,
4084 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4085 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4086 issue_reset = true;
4087 goto issue_host_reset;
4089 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4090 memcpy(mpi_reply, ioc->base_cmds.reply,
4091 sizeof(Mpi2SasIoUnitControlReply_t));
4092 else
4093 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4094 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4095 goto out;
4097 issue_host_reset:
4098 if (issue_reset)
4099 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4100 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4101 rc = -EFAULT;
4102 out:
4103 mutex_unlock(&ioc->base_cmds.mutex);
4104 return rc;
4108 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4109 * @ioc: per adapter object
4110 * @mpi_reply: the reply payload from FW
4111 * @mpi_request: the request payload sent to FW
4113 * The SCSI Enclosure Processor request message causes the IOC to
4114 * communicate with SES devices to control LED status signals.
4116 * Returns 0 for success, non-zero for failure.
4119 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4120 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4122 u16 smid;
4123 u32 ioc_state;
4124 bool issue_reset = false;
4125 int rc;
4126 void *request;
4127 u16 wait_state_count;
4129 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4130 __func__));
4132 mutex_lock(&ioc->base_cmds.mutex);
4134 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4135 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4136 ioc->name, __func__);
4137 rc = -EAGAIN;
4138 goto out;
4141 wait_state_count = 0;
4142 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4143 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4144 if (wait_state_count++ == 10) {
4145 pr_err(MPT3SAS_FMT
4146 "%s: failed due to ioc not operational\n",
4147 ioc->name, __func__);
4148 rc = -EFAULT;
4149 goto out;
4151 ssleep(1);
4152 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4153 pr_info(MPT3SAS_FMT
4154 "%s: waiting for operational state(count=%d)\n",
4155 ioc->name,
4156 __func__, wait_state_count);
4159 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4160 if (!smid) {
4161 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4162 ioc->name, __func__);
4163 rc = -EAGAIN;
4164 goto out;
4167 rc = 0;
4168 ioc->base_cmds.status = MPT3_CMD_PENDING;
4169 request = mpt3sas_base_get_msg_frame(ioc, smid);
4170 ioc->base_cmds.smid = smid;
4171 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4172 init_completion(&ioc->base_cmds.done);
4173 mpt3sas_base_put_smid_default(ioc, smid);
4174 wait_for_completion_timeout(&ioc->base_cmds.done,
4175 msecs_to_jiffies(10000));
4176 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4177 pr_err(MPT3SAS_FMT "%s: timeout\n",
4178 ioc->name, __func__);
4179 _debug_dump_mf(mpi_request,
4180 sizeof(Mpi2SepRequest_t)/4);
4181 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4182 issue_reset = false;
4183 goto issue_host_reset;
4185 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4186 memcpy(mpi_reply, ioc->base_cmds.reply,
4187 sizeof(Mpi2SepReply_t));
4188 else
4189 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4190 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4191 goto out;
4193 issue_host_reset:
4194 if (issue_reset)
4195 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4196 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4197 rc = -EFAULT;
4198 out:
4199 mutex_unlock(&ioc->base_cmds.mutex);
4200 return rc;
4204 * _base_get_port_facts - obtain port facts reply and save in ioc
4205 * @ioc: per adapter object
4207 * Returns 0 for success, non-zero for failure.
4209 static int
4210 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4212 Mpi2PortFactsRequest_t mpi_request;
4213 Mpi2PortFactsReply_t mpi_reply;
4214 struct mpt3sas_port_facts *pfacts;
4215 int mpi_reply_sz, mpi_request_sz, r;
4217 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4218 __func__));
4220 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4221 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4222 memset(&mpi_request, 0, mpi_request_sz);
4223 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4224 mpi_request.PortNumber = port;
4225 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4226 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4228 if (r != 0) {
4229 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4230 ioc->name, __func__, r);
4231 return r;
4234 pfacts = &ioc->pfacts[port];
4235 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4236 pfacts->PortNumber = mpi_reply.PortNumber;
4237 pfacts->VP_ID = mpi_reply.VP_ID;
4238 pfacts->VF_ID = mpi_reply.VF_ID;
4239 pfacts->MaxPostedCmdBuffers =
4240 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4242 return 0;
4246 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4247 * @ioc: per adapter object
4248 * @timeout:
4250 * Returns 0 for success, non-zero for failure.
4252 static int
4253 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4255 u32 ioc_state;
4256 int rc;
4258 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4259 __func__));
4261 if (ioc->pci_error_recovery) {
4262 dfailprintk(ioc, printk(MPT3SAS_FMT
4263 "%s: host in pci error recovery\n", ioc->name, __func__));
4264 return -EFAULT;
4267 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4268 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4269 ioc->name, __func__, ioc_state));
4271 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4272 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4273 return 0;
4275 if (ioc_state & MPI2_DOORBELL_USED) {
4276 dhsprintk(ioc, printk(MPT3SAS_FMT
4277 "unexpected doorbell active!\n", ioc->name));
4278 goto issue_diag_reset;
4281 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4282 mpt3sas_base_fault_info(ioc, ioc_state &
4283 MPI2_DOORBELL_DATA_MASK);
4284 goto issue_diag_reset;
4287 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4288 if (ioc_state) {
4289 dfailprintk(ioc, printk(MPT3SAS_FMT
4290 "%s: failed going to ready state (ioc_state=0x%x)\n",
4291 ioc->name, __func__, ioc_state));
4292 return -EFAULT;
4295 issue_diag_reset:
4296 rc = _base_diag_reset(ioc);
4297 return rc;
4301 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4302 * @ioc: per adapter object
4304 * Returns 0 for success, non-zero for failure.
4306 static int
4307 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4309 Mpi2IOCFactsRequest_t mpi_request;
4310 Mpi2IOCFactsReply_t mpi_reply;
4311 struct mpt3sas_facts *facts;
4312 int mpi_reply_sz, mpi_request_sz, r;
4314 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4315 __func__));
4317 r = _base_wait_for_iocstate(ioc, 10);
4318 if (r) {
4319 dfailprintk(ioc, printk(MPT3SAS_FMT
4320 "%s: failed getting to correct state\n",
4321 ioc->name, __func__));
4322 return r;
4324 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4325 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4326 memset(&mpi_request, 0, mpi_request_sz);
4327 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4328 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4329 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4331 if (r != 0) {
4332 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4333 ioc->name, __func__, r);
4334 return r;
4337 facts = &ioc->facts;
4338 memset(facts, 0, sizeof(struct mpt3sas_facts));
4339 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4340 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4341 facts->VP_ID = mpi_reply.VP_ID;
4342 facts->VF_ID = mpi_reply.VF_ID;
4343 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4344 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4345 facts->WhoInit = mpi_reply.WhoInit;
4346 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4347 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4348 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4349 facts->MaxReplyDescriptorPostQueueDepth =
4350 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4351 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4352 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4353 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4354 ioc->ir_firmware = 1;
4355 if ((facts->IOCCapabilities &
4356 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4357 ioc->rdpq_array_capable = 1;
4358 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4359 facts->IOCRequestFrameSize =
4360 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4361 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4362 facts->IOCMaxChainSegmentSize =
4363 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4365 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4366 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4367 ioc->shost->max_id = -1;
4368 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4369 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4370 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4371 facts->HighPriorityCredit =
4372 le16_to_cpu(mpi_reply.HighPriorityCredit);
4373 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4374 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4376 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4377 "hba queue depth(%d), max chains per io(%d)\n",
4378 ioc->name, facts->RequestCredit,
4379 facts->MaxChainDepth));
4380 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4381 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4382 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4383 return 0;
4387 * _base_send_ioc_init - send ioc_init to firmware
4388 * @ioc: per adapter object
4390 * Returns 0 for success, non-zero for failure.
4392 static int
4393 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4395 Mpi2IOCInitRequest_t mpi_request;
4396 Mpi2IOCInitReply_t mpi_reply;
4397 int i, r = 0;
4398 ktime_t current_time;
4399 u16 ioc_status;
4400 u32 reply_post_free_array_sz = 0;
4401 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4402 dma_addr_t reply_post_free_array_dma;
4404 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4405 __func__));
4407 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4408 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4409 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4410 mpi_request.VF_ID = 0; /* TODO */
4411 mpi_request.VP_ID = 0;
4412 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4413 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4415 if (_base_is_controller_msix_enabled(ioc))
4416 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4417 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4418 mpi_request.ReplyDescriptorPostQueueDepth =
4419 cpu_to_le16(ioc->reply_post_queue_depth);
4420 mpi_request.ReplyFreeQueueDepth =
4421 cpu_to_le16(ioc->reply_free_queue_depth);
4423 mpi_request.SenseBufferAddressHigh =
4424 cpu_to_le32((u64)ioc->sense_dma >> 32);
4425 mpi_request.SystemReplyAddressHigh =
4426 cpu_to_le32((u64)ioc->reply_dma >> 32);
4427 mpi_request.SystemRequestFrameBaseAddress =
4428 cpu_to_le64((u64)ioc->request_dma);
4429 mpi_request.ReplyFreeQueueAddress =
4430 cpu_to_le64((u64)ioc->reply_free_dma);
4432 if (ioc->rdpq_array_enable) {
4433 reply_post_free_array_sz = ioc->reply_queue_count *
4434 sizeof(Mpi2IOCInitRDPQArrayEntry);
4435 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4436 reply_post_free_array_sz, &reply_post_free_array_dma);
4437 if (!reply_post_free_array) {
4438 pr_err(MPT3SAS_FMT
4439 "reply_post_free_array: pci_alloc_consistent failed\n",
4440 ioc->name);
4441 r = -ENOMEM;
4442 goto out;
4444 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4445 for (i = 0; i < ioc->reply_queue_count; i++)
4446 reply_post_free_array[i].RDPQBaseAddress =
4447 cpu_to_le64(
4448 (u64)ioc->reply_post[i].reply_post_free_dma);
4449 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4450 mpi_request.ReplyDescriptorPostQueueAddress =
4451 cpu_to_le64((u64)reply_post_free_array_dma);
4452 } else {
4453 mpi_request.ReplyDescriptorPostQueueAddress =
4454 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4457 /* This time stamp specifies number of milliseconds
4458 * since epoch ~ midnight January 1, 1970.
4460 current_time = ktime_get_real();
4461 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4463 if (ioc->logging_level & MPT_DEBUG_INIT) {
4464 __le32 *mfp;
4465 int i;
4467 mfp = (__le32 *)&mpi_request;
4468 pr_info("\toffset:data\n");
4469 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4470 pr_info("\t[0x%02x]:%08x\n", i*4,
4471 le32_to_cpu(mfp[i]));
4474 r = _base_handshake_req_reply_wait(ioc,
4475 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4476 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
4478 if (r != 0) {
4479 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4480 ioc->name, __func__, r);
4481 goto out;
4484 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4485 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4486 mpi_reply.IOCLogInfo) {
4487 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4488 r = -EIO;
4491 out:
4492 if (reply_post_free_array)
4493 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4494 reply_post_free_array,
4495 reply_post_free_array_dma);
4496 return r;
4500 * mpt3sas_port_enable_done - command completion routine for port enable
4501 * @ioc: per adapter object
4502 * @smid: system request message index
4503 * @msix_index: MSIX table index supplied by the OS
4504 * @reply: reply message frame(lower 32bit addr)
4506 * Return 1 meaning mf should be freed from _base_interrupt
4507 * 0 means the mf is freed from this function.
4510 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4511 u32 reply)
4513 MPI2DefaultReply_t *mpi_reply;
4514 u16 ioc_status;
4516 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4517 return 1;
4519 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4520 if (!mpi_reply)
4521 return 1;
4523 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4524 return 1;
4526 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4527 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4528 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4529 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4530 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4531 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4532 ioc->port_enable_failed = 1;
4534 if (ioc->is_driver_loading) {
4535 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4536 mpt3sas_port_enable_complete(ioc);
4537 return 1;
4538 } else {
4539 ioc->start_scan_failed = ioc_status;
4540 ioc->start_scan = 0;
4541 return 1;
4544 complete(&ioc->port_enable_cmds.done);
4545 return 1;
4549 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4550 * @ioc: per adapter object
4552 * Returns 0 for success, non-zero for failure.
4554 static int
4555 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4557 Mpi2PortEnableRequest_t *mpi_request;
4558 Mpi2PortEnableReply_t *mpi_reply;
4559 int r = 0;
4560 u16 smid;
4561 u16 ioc_status;
4563 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4565 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4566 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4567 ioc->name, __func__);
4568 return -EAGAIN;
4571 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4572 if (!smid) {
4573 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4574 ioc->name, __func__);
4575 return -EAGAIN;
4578 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4579 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4580 ioc->port_enable_cmds.smid = smid;
4581 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4582 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4584 init_completion(&ioc->port_enable_cmds.done);
4585 mpt3sas_base_put_smid_default(ioc, smid);
4586 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4587 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4588 pr_err(MPT3SAS_FMT "%s: timeout\n",
4589 ioc->name, __func__);
4590 _debug_dump_mf(mpi_request,
4591 sizeof(Mpi2PortEnableRequest_t)/4);
4592 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4593 r = -EFAULT;
4594 else
4595 r = -ETIME;
4596 goto out;
4599 mpi_reply = ioc->port_enable_cmds.reply;
4600 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4601 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4602 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4603 ioc->name, __func__, ioc_status);
4604 r = -EFAULT;
4605 goto out;
4608 out:
4609 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4610 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4611 "SUCCESS" : "FAILED"));
4612 return r;
4616 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4617 * @ioc: per adapter object
4619 * Returns 0 for success, non-zero for failure.
4622 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4624 Mpi2PortEnableRequest_t *mpi_request;
4625 u16 smid;
4627 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4629 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4630 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4631 ioc->name, __func__);
4632 return -EAGAIN;
4635 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4636 if (!smid) {
4637 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4638 ioc->name, __func__);
4639 return -EAGAIN;
4642 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4643 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4644 ioc->port_enable_cmds.smid = smid;
4645 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4646 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4648 mpt3sas_base_put_smid_default(ioc, smid);
4649 return 0;
4653 * _base_determine_wait_on_discovery - desposition
4654 * @ioc: per adapter object
4656 * Decide whether to wait on discovery to complete. Used to either
4657 * locate boot device, or report volumes ahead of physical devices.
4659 * Returns 1 for wait, 0 for don't wait
4661 static int
4662 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4664 /* We wait for discovery to complete if IR firmware is loaded.
4665 * The sas topology events arrive before PD events, so we need time to
4666 * turn on the bit in ioc->pd_handles to indicate PD
4667 * Also, it maybe required to report Volumes ahead of physical
4668 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4670 if (ioc->ir_firmware)
4671 return 1;
4673 /* if no Bios, then we don't need to wait */
4674 if (!ioc->bios_pg3.BiosVersion)
4675 return 0;
4677 /* Bios is present, then we drop down here.
4679 * If there any entries in the Bios Page 2, then we wait
4680 * for discovery to complete.
4683 /* Current Boot Device */
4684 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4685 MPI2_BIOSPAGE2_FORM_MASK) ==
4686 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4687 /* Request Boot Device */
4688 (ioc->bios_pg2.ReqBootDeviceForm &
4689 MPI2_BIOSPAGE2_FORM_MASK) ==
4690 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4691 /* Alternate Request Boot Device */
4692 (ioc->bios_pg2.ReqAltBootDeviceForm &
4693 MPI2_BIOSPAGE2_FORM_MASK) ==
4694 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4695 return 0;
4697 return 1;
4701 * _base_unmask_events - turn on notification for this event
4702 * @ioc: per adapter object
4703 * @event: firmware event
4705 * The mask is stored in ioc->event_masks.
4707 static void
4708 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4710 u32 desired_event;
4712 if (event >= 128)
4713 return;
4715 desired_event = (1 << (event % 32));
4717 if (event < 32)
4718 ioc->event_masks[0] &= ~desired_event;
4719 else if (event < 64)
4720 ioc->event_masks[1] &= ~desired_event;
4721 else if (event < 96)
4722 ioc->event_masks[2] &= ~desired_event;
4723 else if (event < 128)
4724 ioc->event_masks[3] &= ~desired_event;
4728 * _base_event_notification - send event notification
4729 * @ioc: per adapter object
4731 * Returns 0 for success, non-zero for failure.
4733 static int
4734 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4736 Mpi2EventNotificationRequest_t *mpi_request;
4737 u16 smid;
4738 int r = 0;
4739 int i;
4741 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4742 __func__));
4744 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4745 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4746 ioc->name, __func__);
4747 return -EAGAIN;
4750 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4751 if (!smid) {
4752 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4753 ioc->name, __func__);
4754 return -EAGAIN;
4756 ioc->base_cmds.status = MPT3_CMD_PENDING;
4757 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4758 ioc->base_cmds.smid = smid;
4759 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4760 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4761 mpi_request->VF_ID = 0; /* TODO */
4762 mpi_request->VP_ID = 0;
4763 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4764 mpi_request->EventMasks[i] =
4765 cpu_to_le32(ioc->event_masks[i]);
4766 init_completion(&ioc->base_cmds.done);
4767 mpt3sas_base_put_smid_default(ioc, smid);
4768 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4769 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4770 pr_err(MPT3SAS_FMT "%s: timeout\n",
4771 ioc->name, __func__);
4772 _debug_dump_mf(mpi_request,
4773 sizeof(Mpi2EventNotificationRequest_t)/4);
4774 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4775 r = -EFAULT;
4776 else
4777 r = -ETIME;
4778 } else
4779 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4780 ioc->name, __func__));
4781 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4782 return r;
4786 * mpt3sas_base_validate_event_type - validating event types
4787 * @ioc: per adapter object
4788 * @event: firmware event
4790 * This will turn on firmware event notification when application
4791 * ask for that event. We don't mask events that are already enabled.
4793 void
4794 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4796 int i, j;
4797 u32 event_mask, desired_event;
4798 u8 send_update_to_fw;
4800 for (i = 0, send_update_to_fw = 0; i <
4801 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4802 event_mask = ~event_type[i];
4803 desired_event = 1;
4804 for (j = 0; j < 32; j++) {
4805 if (!(event_mask & desired_event) &&
4806 (ioc->event_masks[i] & desired_event)) {
4807 ioc->event_masks[i] &= ~desired_event;
4808 send_update_to_fw = 1;
4810 desired_event = (desired_event << 1);
4814 if (!send_update_to_fw)
4815 return;
4817 mutex_lock(&ioc->base_cmds.mutex);
4818 _base_event_notification(ioc);
4819 mutex_unlock(&ioc->base_cmds.mutex);
4823 * _base_diag_reset - the "big hammer" start of day reset
4824 * @ioc: per adapter object
4826 * Returns 0 for success, non-zero for failure.
4828 static int
4829 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4831 u32 host_diagnostic;
4832 u32 ioc_state;
4833 u32 count;
4834 u32 hcb_size;
4836 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4838 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4839 ioc->name));
4841 count = 0;
4842 do {
4843 /* Write magic sequence to WriteSequence register
4844 * Loop until in diagnostic mode
4846 drsprintk(ioc, pr_info(MPT3SAS_FMT
4847 "write magic sequence\n", ioc->name));
4848 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4849 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4850 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4851 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4852 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4853 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4854 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4856 /* wait 100 msec */
4857 msleep(100);
4859 if (count++ > 20)
4860 goto out;
4862 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4863 drsprintk(ioc, pr_info(MPT3SAS_FMT
4864 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4865 ioc->name, count, host_diagnostic));
4867 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4869 hcb_size = readl(&ioc->chip->HCBSize);
4871 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4872 ioc->name));
4873 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4874 &ioc->chip->HostDiagnostic);
4876 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4877 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4879 /* Approximately 300 second max wait */
4880 for (count = 0; count < (300000000 /
4881 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4883 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4885 if (host_diagnostic == 0xFFFFFFFF)
4886 goto out;
4887 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4888 break;
4890 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
4893 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4895 drsprintk(ioc, pr_info(MPT3SAS_FMT
4896 "restart the adapter assuming the HCB Address points to good F/W\n",
4897 ioc->name));
4898 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4899 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4900 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4902 drsprintk(ioc, pr_info(MPT3SAS_FMT
4903 "re-enable the HCDW\n", ioc->name));
4904 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4905 &ioc->chip->HCBSize);
4908 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4909 ioc->name));
4910 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4911 &ioc->chip->HostDiagnostic);
4913 drsprintk(ioc, pr_info(MPT3SAS_FMT
4914 "disable writes to the diagnostic register\n", ioc->name));
4915 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4917 drsprintk(ioc, pr_info(MPT3SAS_FMT
4918 "Wait for FW to go to the READY state\n", ioc->name));
4919 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
4920 if (ioc_state) {
4921 pr_err(MPT3SAS_FMT
4922 "%s: failed going to ready state (ioc_state=0x%x)\n",
4923 ioc->name, __func__, ioc_state);
4924 goto out;
4927 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4928 return 0;
4930 out:
4931 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4932 return -EFAULT;
4936 * _base_make_ioc_ready - put controller in READY state
4937 * @ioc: per adapter object
4938 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4940 * Returns 0 for success, non-zero for failure.
4942 static int
4943 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
4945 u32 ioc_state;
4946 int rc;
4947 int count;
4949 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4950 __func__));
4952 if (ioc->pci_error_recovery)
4953 return 0;
4955 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4956 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4957 ioc->name, __func__, ioc_state));
4959 /* if in RESET state, it should move to READY state shortly */
4960 count = 0;
4961 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4962 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4963 MPI2_IOC_STATE_READY) {
4964 if (count++ == 10) {
4965 pr_err(MPT3SAS_FMT
4966 "%s: failed going to ready state (ioc_state=0x%x)\n",
4967 ioc->name, __func__, ioc_state);
4968 return -EFAULT;
4970 ssleep(1);
4971 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4975 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4976 return 0;
4978 if (ioc_state & MPI2_DOORBELL_USED) {
4979 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4980 "unexpected doorbell active!\n",
4981 ioc->name));
4982 goto issue_diag_reset;
4985 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4986 mpt3sas_base_fault_info(ioc, ioc_state &
4987 MPI2_DOORBELL_DATA_MASK);
4988 goto issue_diag_reset;
4991 if (type == FORCE_BIG_HAMMER)
4992 goto issue_diag_reset;
4994 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4995 if (!(_base_send_ioc_reset(ioc,
4996 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
4997 return 0;
5000 issue_diag_reset:
5001 rc = _base_diag_reset(ioc);
5002 return rc;
5006 * _base_make_ioc_operational - put controller in OPERATIONAL state
5007 * @ioc: per adapter object
5009 * Returns 0 for success, non-zero for failure.
5011 static int
5012 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5014 int r, i, index;
5015 unsigned long flags;
5016 u32 reply_address;
5017 u16 smid;
5018 struct _tr_list *delayed_tr, *delayed_tr_next;
5019 struct _sc_list *delayed_sc, *delayed_sc_next;
5020 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5021 u8 hide_flag;
5022 struct adapter_reply_queue *reply_q;
5023 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5025 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5026 __func__));
5028 /* clean the delayed target reset list */
5029 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5030 &ioc->delayed_tr_list, list) {
5031 list_del(&delayed_tr->list);
5032 kfree(delayed_tr);
5036 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5037 &ioc->delayed_tr_volume_list, list) {
5038 list_del(&delayed_tr->list);
5039 kfree(delayed_tr);
5042 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5043 &ioc->delayed_sc_list, list) {
5044 list_del(&delayed_sc->list);
5045 kfree(delayed_sc);
5048 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5049 &ioc->delayed_event_ack_list, list) {
5050 list_del(&delayed_event_ack->list);
5051 kfree(delayed_event_ack);
5054 /* initialize the scsi lookup free list */
5055 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5056 INIT_LIST_HEAD(&ioc->free_list);
5057 smid = 1;
5058 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5059 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5060 ioc->scsi_lookup[i].cb_idx = 0xFF;
5061 ioc->scsi_lookup[i].smid = smid;
5062 ioc->scsi_lookup[i].scmd = NULL;
5063 ioc->scsi_lookup[i].direct_io = 0;
5064 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5065 &ioc->free_list);
5068 /* hi-priority queue */
5069 INIT_LIST_HEAD(&ioc->hpr_free_list);
5070 smid = ioc->hi_priority_smid;
5071 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5072 ioc->hpr_lookup[i].cb_idx = 0xFF;
5073 ioc->hpr_lookup[i].smid = smid;
5074 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5075 &ioc->hpr_free_list);
5078 /* internal queue */
5079 INIT_LIST_HEAD(&ioc->internal_free_list);
5080 smid = ioc->internal_smid;
5081 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5082 ioc->internal_lookup[i].cb_idx = 0xFF;
5083 ioc->internal_lookup[i].smid = smid;
5084 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5085 &ioc->internal_free_list);
5088 /* chain pool */
5089 INIT_LIST_HEAD(&ioc->free_chain_list);
5090 for (i = 0; i < ioc->chain_depth; i++)
5091 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5092 &ioc->free_chain_list);
5094 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5096 /* initialize Reply Free Queue */
5097 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5098 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5099 ioc->reply_sz)
5100 ioc->reply_free[i] = cpu_to_le32(reply_address);
5102 /* initialize reply queues */
5103 if (ioc->is_driver_loading)
5104 _base_assign_reply_queues(ioc);
5106 /* initialize Reply Post Free Queue */
5107 index = 0;
5108 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5109 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5111 * If RDPQ is enabled, switch to the next allocation.
5112 * Otherwise advance within the contiguous region.
5114 if (ioc->rdpq_array_enable) {
5115 reply_q->reply_post_free =
5116 ioc->reply_post[index++].reply_post_free;
5117 } else {
5118 reply_q->reply_post_free = reply_post_free_contig;
5119 reply_post_free_contig += ioc->reply_post_queue_depth;
5122 reply_q->reply_post_host_index = 0;
5123 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5124 reply_q->reply_post_free[i].Words =
5125 cpu_to_le64(ULLONG_MAX);
5126 if (!_base_is_controller_msix_enabled(ioc))
5127 goto skip_init_reply_post_free_queue;
5129 skip_init_reply_post_free_queue:
5131 r = _base_send_ioc_init(ioc);
5132 if (r)
5133 return r;
5135 /* initialize reply free host index */
5136 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5137 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5139 /* initialize reply post host index */
5140 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5141 if (ioc->msix96_vector)
5142 writel((reply_q->msix_index & 7)<<
5143 MPI2_RPHI_MSIX_INDEX_SHIFT,
5144 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5145 else
5146 writel(reply_q->msix_index <<
5147 MPI2_RPHI_MSIX_INDEX_SHIFT,
5148 &ioc->chip->ReplyPostHostIndex);
5150 if (!_base_is_controller_msix_enabled(ioc))
5151 goto skip_init_reply_post_host_index;
5154 skip_init_reply_post_host_index:
5156 _base_unmask_interrupts(ioc);
5157 r = _base_event_notification(ioc);
5158 if (r)
5159 return r;
5161 _base_static_config_pages(ioc);
5163 if (ioc->is_driver_loading) {
5165 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5166 == 0x80) {
5167 hide_flag = (u8) (
5168 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5169 MFG_PAGE10_HIDE_SSDS_MASK);
5170 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5171 ioc->mfg_pg10_hide_flag = hide_flag;
5174 ioc->wait_for_discovery_to_complete =
5175 _base_determine_wait_on_discovery(ioc);
5177 return r; /* scan_start and scan_finished support */
5180 r = _base_send_port_enable(ioc);
5181 if (r)
5182 return r;
5184 return r;
5188 * mpt3sas_base_free_resources - free resources controller resources
5189 * @ioc: per adapter object
5191 * Return nothing.
5193 void
5194 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5196 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5197 __func__));
5199 /* synchronizing freeing resource with pci_access_mutex lock */
5200 mutex_lock(&ioc->pci_access_mutex);
5201 if (ioc->chip_phys && ioc->chip) {
5202 _base_mask_interrupts(ioc);
5203 ioc->shost_recovery = 1;
5204 _base_make_ioc_ready(ioc, SOFT_RESET);
5205 ioc->shost_recovery = 0;
5208 mpt3sas_base_unmap_resources(ioc);
5209 mutex_unlock(&ioc->pci_access_mutex);
5210 return;
5214 * mpt3sas_base_attach - attach controller instance
5215 * @ioc: per adapter object
5217 * Returns 0 for success, non-zero for failure.
5220 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5222 int r, i;
5223 int cpu_id, last_cpu_id = 0;
5225 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5226 __func__));
5228 /* setup cpu_msix_table */
5229 ioc->cpu_count = num_online_cpus();
5230 for_each_online_cpu(cpu_id)
5231 last_cpu_id = cpu_id;
5232 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5233 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5234 ioc->reply_queue_count = 1;
5235 if (!ioc->cpu_msix_table) {
5236 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5237 "allocation for cpu_msix_table failed!!!\n",
5238 ioc->name));
5239 r = -ENOMEM;
5240 goto out_free_resources;
5243 if (ioc->is_warpdrive) {
5244 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5245 sizeof(resource_size_t *), GFP_KERNEL);
5246 if (!ioc->reply_post_host_index) {
5247 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5248 "for cpu_msix_table failed!!!\n", ioc->name));
5249 r = -ENOMEM;
5250 goto out_free_resources;
5254 ioc->rdpq_array_enable_assigned = 0;
5255 ioc->dma_mask = 0;
5256 r = mpt3sas_base_map_resources(ioc);
5257 if (r)
5258 goto out_free_resources;
5260 pci_set_drvdata(ioc->pdev, ioc->shost);
5261 r = _base_get_ioc_facts(ioc);
5262 if (r)
5263 goto out_free_resources;
5265 switch (ioc->hba_mpi_version_belonged) {
5266 case MPI2_VERSION:
5267 ioc->build_sg_scmd = &_base_build_sg_scmd;
5268 ioc->build_sg = &_base_build_sg;
5269 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5270 break;
5271 case MPI25_VERSION:
5272 case MPI26_VERSION:
5274 * In SAS3.0,
5275 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5276 * Target Status - all require the IEEE formated scatter gather
5277 * elements.
5279 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5280 ioc->build_sg = &_base_build_sg_ieee;
5281 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5282 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5283 break;
5287 * These function pointers for other requests that don't
5288 * the require IEEE scatter gather elements.
5290 * For example Configuration Pages and SAS IOUNIT Control don't.
5292 ioc->build_sg_mpi = &_base_build_sg;
5293 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5295 r = _base_make_ioc_ready(ioc, SOFT_RESET);
5296 if (r)
5297 goto out_free_resources;
5299 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5300 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5301 if (!ioc->pfacts) {
5302 r = -ENOMEM;
5303 goto out_free_resources;
5306 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5307 r = _base_get_port_facts(ioc, i);
5308 if (r)
5309 goto out_free_resources;
5312 r = _base_allocate_memory_pools(ioc);
5313 if (r)
5314 goto out_free_resources;
5316 init_waitqueue_head(&ioc->reset_wq);
5318 /* allocate memory pd handle bitmask list */
5319 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5320 if (ioc->facts.MaxDevHandle % 8)
5321 ioc->pd_handles_sz++;
5322 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5323 GFP_KERNEL);
5324 if (!ioc->pd_handles) {
5325 r = -ENOMEM;
5326 goto out_free_resources;
5328 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5329 GFP_KERNEL);
5330 if (!ioc->blocking_handles) {
5331 r = -ENOMEM;
5332 goto out_free_resources;
5335 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5337 /* base internal command bits */
5338 mutex_init(&ioc->base_cmds.mutex);
5339 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5340 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5342 /* port_enable command bits */
5343 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5344 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5346 /* transport internal command bits */
5347 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5348 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5349 mutex_init(&ioc->transport_cmds.mutex);
5351 /* scsih internal command bits */
5352 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5353 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5354 mutex_init(&ioc->scsih_cmds.mutex);
5356 /* task management internal command bits */
5357 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5358 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5359 mutex_init(&ioc->tm_cmds.mutex);
5361 /* config page internal command bits */
5362 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5363 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5364 mutex_init(&ioc->config_cmds.mutex);
5366 /* ctl module internal command bits */
5367 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5368 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5369 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5370 mutex_init(&ioc->ctl_cmds.mutex);
5372 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5373 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5374 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5375 !ioc->ctl_cmds.sense) {
5376 r = -ENOMEM;
5377 goto out_free_resources;
5380 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5381 ioc->event_masks[i] = -1;
5383 /* here we enable the events we care about */
5384 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5385 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5386 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5387 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5388 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5389 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5390 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5391 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5392 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5393 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5394 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5395 if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5396 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5398 r = _base_make_ioc_operational(ioc);
5399 if (r)
5400 goto out_free_resources;
5402 ioc->non_operational_loop = 0;
5403 return 0;
5405 out_free_resources:
5407 ioc->remove_host = 1;
5409 mpt3sas_base_free_resources(ioc);
5410 _base_release_memory_pools(ioc);
5411 pci_set_drvdata(ioc->pdev, NULL);
5412 kfree(ioc->cpu_msix_table);
5413 if (ioc->is_warpdrive)
5414 kfree(ioc->reply_post_host_index);
5415 kfree(ioc->pd_handles);
5416 kfree(ioc->blocking_handles);
5417 kfree(ioc->tm_cmds.reply);
5418 kfree(ioc->transport_cmds.reply);
5419 kfree(ioc->scsih_cmds.reply);
5420 kfree(ioc->config_cmds.reply);
5421 kfree(ioc->base_cmds.reply);
5422 kfree(ioc->port_enable_cmds.reply);
5423 kfree(ioc->ctl_cmds.reply);
5424 kfree(ioc->ctl_cmds.sense);
5425 kfree(ioc->pfacts);
5426 ioc->ctl_cmds.reply = NULL;
5427 ioc->base_cmds.reply = NULL;
5428 ioc->tm_cmds.reply = NULL;
5429 ioc->scsih_cmds.reply = NULL;
5430 ioc->transport_cmds.reply = NULL;
5431 ioc->config_cmds.reply = NULL;
5432 ioc->pfacts = NULL;
5433 return r;
5438 * mpt3sas_base_detach - remove controller instance
5439 * @ioc: per adapter object
5441 * Return nothing.
5443 void
5444 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5446 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5447 __func__));
5449 mpt3sas_base_stop_watchdog(ioc);
5450 mpt3sas_base_free_resources(ioc);
5451 _base_release_memory_pools(ioc);
5452 pci_set_drvdata(ioc->pdev, NULL);
5453 kfree(ioc->cpu_msix_table);
5454 if (ioc->is_warpdrive)
5455 kfree(ioc->reply_post_host_index);
5456 kfree(ioc->pd_handles);
5457 kfree(ioc->blocking_handles);
5458 kfree(ioc->pfacts);
5459 kfree(ioc->ctl_cmds.reply);
5460 kfree(ioc->ctl_cmds.sense);
5461 kfree(ioc->base_cmds.reply);
5462 kfree(ioc->port_enable_cmds.reply);
5463 kfree(ioc->tm_cmds.reply);
5464 kfree(ioc->transport_cmds.reply);
5465 kfree(ioc->scsih_cmds.reply);
5466 kfree(ioc->config_cmds.reply);
5470 * _base_reset_handler - reset callback handler (for base)
5471 * @ioc: per adapter object
5472 * @reset_phase: phase
5474 * The handler for doing any required cleanup or initialization.
5476 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5477 * MPT3_IOC_DONE_RESET
5479 * Return nothing.
5481 static void
5482 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5484 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5485 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5486 switch (reset_phase) {
5487 case MPT3_IOC_PRE_RESET:
5488 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5489 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5490 break;
5491 case MPT3_IOC_AFTER_RESET:
5492 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5493 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5494 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5495 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5496 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5497 complete(&ioc->transport_cmds.done);
5499 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5500 ioc->base_cmds.status |= MPT3_CMD_RESET;
5501 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5502 complete(&ioc->base_cmds.done);
5504 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5505 ioc->port_enable_failed = 1;
5506 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5507 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5508 if (ioc->is_driver_loading) {
5509 ioc->start_scan_failed =
5510 MPI2_IOCSTATUS_INTERNAL_ERROR;
5511 ioc->start_scan = 0;
5512 ioc->port_enable_cmds.status =
5513 MPT3_CMD_NOT_USED;
5514 } else
5515 complete(&ioc->port_enable_cmds.done);
5517 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5518 ioc->config_cmds.status |= MPT3_CMD_RESET;
5519 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5520 ioc->config_cmds.smid = USHRT_MAX;
5521 complete(&ioc->config_cmds.done);
5523 break;
5524 case MPT3_IOC_DONE_RESET:
5525 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5526 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5527 break;
5532 * _wait_for_commands_to_complete - reset controller
5533 * @ioc: Pointer to MPT_ADAPTER structure
5535 * This function waiting(3s) for all pending commands to complete
5536 * prior to putting controller in reset.
5538 static void
5539 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5541 u32 ioc_state;
5542 unsigned long flags;
5543 u16 i;
5545 ioc->pending_io_count = 0;
5547 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5548 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5549 return;
5551 /* pending command count */
5552 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5553 for (i = 0; i < ioc->scsiio_depth; i++)
5554 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5555 ioc->pending_io_count++;
5556 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5558 if (!ioc->pending_io_count)
5559 return;
5561 /* wait for pending commands to complete */
5562 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5566 * mpt3sas_base_hard_reset_handler - reset controller
5567 * @ioc: Pointer to MPT_ADAPTER structure
5568 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5570 * Returns 0 for success, non-zero for failure.
5573 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5574 enum reset_type type)
5576 int r;
5577 unsigned long flags;
5578 u32 ioc_state;
5579 u8 is_fault = 0, is_trigger = 0;
5581 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5582 __func__));
5584 if (ioc->pci_error_recovery) {
5585 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5586 ioc->name, __func__);
5587 r = 0;
5588 goto out_unlocked;
5591 if (mpt3sas_fwfault_debug)
5592 mpt3sas_halt_firmware(ioc);
5594 /* wait for an active reset in progress to complete */
5595 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5596 do {
5597 ssleep(1);
5598 } while (ioc->shost_recovery == 1);
5599 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5600 __func__));
5601 return ioc->ioc_reset_in_progress_status;
5604 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5605 ioc->shost_recovery = 1;
5606 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5608 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5609 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5610 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5611 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5612 is_trigger = 1;
5613 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5614 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5615 is_fault = 1;
5617 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5618 _wait_for_commands_to_complete(ioc);
5619 _base_mask_interrupts(ioc);
5620 r = _base_make_ioc_ready(ioc, type);
5621 if (r)
5622 goto out;
5623 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5625 /* If this hard reset is called while port enable is active, then
5626 * there is no reason to call make_ioc_operational
5628 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5629 ioc->remove_host = 1;
5630 r = -EFAULT;
5631 goto out;
5633 r = _base_get_ioc_facts(ioc);
5634 if (r)
5635 goto out;
5637 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5638 panic("%s: Issue occurred with flashing controller firmware."
5639 "Please reboot the system and ensure that the correct"
5640 " firmware version is running\n", ioc->name);
5642 r = _base_make_ioc_operational(ioc);
5643 if (!r)
5644 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5646 out:
5647 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5648 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5650 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5651 ioc->ioc_reset_in_progress_status = r;
5652 ioc->shost_recovery = 0;
5653 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5654 ioc->ioc_reset_count++;
5655 mutex_unlock(&ioc->reset_in_progress_mutex);
5657 out_unlocked:
5658 if ((r == 0) && is_trigger) {
5659 if (is_fault)
5660 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5661 else
5662 mpt3sas_trigger_master(ioc,
5663 MASTER_TRIGGER_ADAPTER_RESET);
5665 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5666 __func__));
5667 return r;