Input: xpad - add support for Xbox1 PDP Camo series gamepad
[linux/fpc-iii.git] / drivers / spi / spi.c
blobc2e85e23d538e504f27ed793b2648464cde4ccf3
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
45 static void spidev_release(struct device *dev)
47 struct spi_device *spi = to_spi_device(dev);
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
53 spi_master_put(spi->master);
54 kfree(spi);
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 #define SPI_STATISTICS_ATTRS(field, file) \
72 static ssize_t spi_master_##field##_show(struct device *dev, \
73 struct device_attribute *attr, \
74 char *buf) \
75 { \
76 struct spi_master *master = container_of(dev, \
77 struct spi_master, dev); \
78 return spi_statistics_##field##_show(&master->statistics, buf); \
79 } \
80 static struct device_attribute dev_attr_spi_master_##field = { \
81 .attr = { .name = file, .mode = S_IRUGO }, \
82 .show = spi_master_##field##_show, \
83 }; \
84 static ssize_t spi_device_##field##_show(struct device *dev, \
85 struct device_attribute *attr, \
86 char *buf) \
87 { \
88 struct spi_device *spi = to_spi_device(dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
107 SPI_STATISTICS_ATTRS(name, file)
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
150 static struct attribute *spi_dev_attrs[] = {
151 &dev_attr_modalias.attr,
152 NULL,
155 static const struct attribute_group spi_dev_group = {
156 .attrs = spi_dev_attrs,
159 static struct attribute *spi_device_statistics_attrs[] = {
160 &dev_attr_spi_device_messages.attr,
161 &dev_attr_spi_device_transfers.attr,
162 &dev_attr_spi_device_errors.attr,
163 &dev_attr_spi_device_timedout.attr,
164 &dev_attr_spi_device_spi_sync.attr,
165 &dev_attr_spi_device_spi_sync_immediate.attr,
166 &dev_attr_spi_device_spi_async.attr,
167 &dev_attr_spi_device_bytes.attr,
168 &dev_attr_spi_device_bytes_rx.attr,
169 &dev_attr_spi_device_bytes_tx.attr,
170 &dev_attr_spi_device_transfer_bytes_histo0.attr,
171 &dev_attr_spi_device_transfer_bytes_histo1.attr,
172 &dev_attr_spi_device_transfer_bytes_histo2.attr,
173 &dev_attr_spi_device_transfer_bytes_histo3.attr,
174 &dev_attr_spi_device_transfer_bytes_histo4.attr,
175 &dev_attr_spi_device_transfer_bytes_histo5.attr,
176 &dev_attr_spi_device_transfer_bytes_histo6.attr,
177 &dev_attr_spi_device_transfer_bytes_histo7.attr,
178 &dev_attr_spi_device_transfer_bytes_histo8.attr,
179 &dev_attr_spi_device_transfer_bytes_histo9.attr,
180 &dev_attr_spi_device_transfer_bytes_histo10.attr,
181 &dev_attr_spi_device_transfer_bytes_histo11.attr,
182 &dev_attr_spi_device_transfer_bytes_histo12.attr,
183 &dev_attr_spi_device_transfer_bytes_histo13.attr,
184 &dev_attr_spi_device_transfer_bytes_histo14.attr,
185 &dev_attr_spi_device_transfer_bytes_histo15.attr,
186 &dev_attr_spi_device_transfer_bytes_histo16.attr,
187 &dev_attr_spi_device_transfers_split_maxsize.attr,
188 NULL,
191 static const struct attribute_group spi_device_statistics_group = {
192 .name = "statistics",
193 .attrs = spi_device_statistics_attrs,
196 static const struct attribute_group *spi_dev_groups[] = {
197 &spi_dev_group,
198 &spi_device_statistics_group,
199 NULL,
202 static struct attribute *spi_master_statistics_attrs[] = {
203 &dev_attr_spi_master_messages.attr,
204 &dev_attr_spi_master_transfers.attr,
205 &dev_attr_spi_master_errors.attr,
206 &dev_attr_spi_master_timedout.attr,
207 &dev_attr_spi_master_spi_sync.attr,
208 &dev_attr_spi_master_spi_sync_immediate.attr,
209 &dev_attr_spi_master_spi_async.attr,
210 &dev_attr_spi_master_bytes.attr,
211 &dev_attr_spi_master_bytes_rx.attr,
212 &dev_attr_spi_master_bytes_tx.attr,
213 &dev_attr_spi_master_transfer_bytes_histo0.attr,
214 &dev_attr_spi_master_transfer_bytes_histo1.attr,
215 &dev_attr_spi_master_transfer_bytes_histo2.attr,
216 &dev_attr_spi_master_transfer_bytes_histo3.attr,
217 &dev_attr_spi_master_transfer_bytes_histo4.attr,
218 &dev_attr_spi_master_transfer_bytes_histo5.attr,
219 &dev_attr_spi_master_transfer_bytes_histo6.attr,
220 &dev_attr_spi_master_transfer_bytes_histo7.attr,
221 &dev_attr_spi_master_transfer_bytes_histo8.attr,
222 &dev_attr_spi_master_transfer_bytes_histo9.attr,
223 &dev_attr_spi_master_transfer_bytes_histo10.attr,
224 &dev_attr_spi_master_transfer_bytes_histo11.attr,
225 &dev_attr_spi_master_transfer_bytes_histo12.attr,
226 &dev_attr_spi_master_transfer_bytes_histo13.attr,
227 &dev_attr_spi_master_transfer_bytes_histo14.attr,
228 &dev_attr_spi_master_transfer_bytes_histo15.attr,
229 &dev_attr_spi_master_transfer_bytes_histo16.attr,
230 &dev_attr_spi_master_transfers_split_maxsize.attr,
231 NULL,
234 static const struct attribute_group spi_master_statistics_group = {
235 .name = "statistics",
236 .attrs = spi_master_statistics_attrs,
239 static const struct attribute_group *spi_master_groups[] = {
240 &spi_master_statistics_group,
241 NULL,
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 struct spi_transfer *xfer,
246 struct spi_master *master)
248 unsigned long flags;
249 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
251 if (l2len < 0)
252 l2len = 0;
254 spin_lock_irqsave(&stats->lock, flags);
256 stats->transfers++;
257 stats->transfer_bytes_histo[l2len]++;
259 stats->bytes += xfer->len;
260 if ((xfer->tx_buf) &&
261 (xfer->tx_buf != master->dummy_tx))
262 stats->bytes_tx += xfer->len;
263 if ((xfer->rx_buf) &&
264 (xfer->rx_buf != master->dummy_rx))
265 stats->bytes_rx += xfer->len;
267 spin_unlock_irqrestore(&stats->lock, flags);
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272 * and the sysfs version makes coldplug work too.
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 const struct spi_device *sdev)
278 while (id->name[0]) {
279 if (!strcmp(sdev->modalias, id->name))
280 return id;
281 id++;
283 return NULL;
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
288 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
290 return spi_match_id(sdrv->id_table, sdev);
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
296 const struct spi_device *spi = to_spi_device(dev);
297 const struct spi_driver *sdrv = to_spi_driver(drv);
299 /* Attempt an OF style match */
300 if (of_driver_match_device(dev, drv))
301 return 1;
303 /* Then try ACPI */
304 if (acpi_driver_match_device(dev, drv))
305 return 1;
307 if (sdrv->id_table)
308 return !!spi_match_id(sdrv->id_table, spi);
310 return strcmp(spi->modalias, drv->name) == 0;
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
315 const struct spi_device *spi = to_spi_device(dev);
316 int rc;
318 rc = acpi_device_uevent_modalias(dev, env);
319 if (rc != -ENODEV)
320 return rc;
322 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 return 0;
326 struct bus_type spi_bus_type = {
327 .name = "spi",
328 .dev_groups = spi_dev_groups,
329 .match = spi_match_device,
330 .uevent = spi_uevent,
332 EXPORT_SYMBOL_GPL(spi_bus_type);
335 static int spi_drv_probe(struct device *dev)
337 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
338 struct spi_device *spi = to_spi_device(dev);
339 int ret;
341 ret = of_clk_set_defaults(dev->of_node, false);
342 if (ret)
343 return ret;
345 if (dev->of_node) {
346 spi->irq = of_irq_get(dev->of_node, 0);
347 if (spi->irq == -EPROBE_DEFER)
348 return -EPROBE_DEFER;
349 if (spi->irq < 0)
350 spi->irq = 0;
353 ret = dev_pm_domain_attach(dev, true);
354 if (ret != -EPROBE_DEFER) {
355 ret = sdrv->probe(spi);
356 if (ret)
357 dev_pm_domain_detach(dev, true);
360 return ret;
363 static int spi_drv_remove(struct device *dev)
365 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
366 int ret;
368 ret = sdrv->remove(to_spi_device(dev));
369 dev_pm_domain_detach(dev, true);
371 return ret;
374 static void spi_drv_shutdown(struct device *dev)
376 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
378 sdrv->shutdown(to_spi_device(dev));
382 * __spi_register_driver - register a SPI driver
383 * @owner: owner module of the driver to register
384 * @sdrv: the driver to register
385 * Context: can sleep
387 * Return: zero on success, else a negative error code.
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
391 sdrv->driver.owner = owner;
392 sdrv->driver.bus = &spi_bus_type;
393 if (sdrv->probe)
394 sdrv->driver.probe = spi_drv_probe;
395 if (sdrv->remove)
396 sdrv->driver.remove = spi_drv_remove;
397 if (sdrv->shutdown)
398 sdrv->driver.shutdown = spi_drv_shutdown;
399 return driver_register(&sdrv->driver);
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
403 /*-------------------------------------------------------------------------*/
405 /* SPI devices should normally not be created by SPI device drivers; that
406 * would make them board-specific. Similarly with SPI master drivers.
407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
408 * with other readonly (flashable) information about mainboard devices.
411 struct boardinfo {
412 struct list_head list;
413 struct spi_board_info board_info;
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
420 * Used to protect add/del opertion for board_info list and
421 * spi_master list, and their matching process
423 static DEFINE_MUTEX(board_lock);
426 * spi_alloc_device - Allocate a new SPI device
427 * @master: Controller to which device is connected
428 * Context: can sleep
430 * Allows a driver to allocate and initialize a spi_device without
431 * registering it immediately. This allows a driver to directly
432 * fill the spi_device with device parameters before calling
433 * spi_add_device() on it.
435 * Caller is responsible to call spi_add_device() on the returned
436 * spi_device structure to add it to the SPI master. If the caller
437 * needs to discard the spi_device without adding it, then it should
438 * call spi_dev_put() on it.
440 * Return: a pointer to the new device, or NULL.
442 struct spi_device *spi_alloc_device(struct spi_master *master)
444 struct spi_device *spi;
446 if (!spi_master_get(master))
447 return NULL;
449 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 if (!spi) {
451 spi_master_put(master);
452 return NULL;
455 spi->master = master;
456 spi->dev.parent = &master->dev;
457 spi->dev.bus = &spi_bus_type;
458 spi->dev.release = spidev_release;
459 spi->cs_gpio = -ENOENT;
461 spin_lock_init(&spi->statistics.lock);
463 device_initialize(&spi->dev);
464 return spi;
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
468 static void spi_dev_set_name(struct spi_device *spi)
470 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
472 if (adev) {
473 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 return;
477 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 spi->chip_select);
481 static int spi_dev_check(struct device *dev, void *data)
483 struct spi_device *spi = to_spi_device(dev);
484 struct spi_device *new_spi = data;
486 if (spi->master == new_spi->master &&
487 spi->chip_select == new_spi->chip_select)
488 return -EBUSY;
489 return 0;
493 * spi_add_device - Add spi_device allocated with spi_alloc_device
494 * @spi: spi_device to register
496 * Companion function to spi_alloc_device. Devices allocated with
497 * spi_alloc_device can be added onto the spi bus with this function.
499 * Return: 0 on success; negative errno on failure
501 int spi_add_device(struct spi_device *spi)
503 static DEFINE_MUTEX(spi_add_lock);
504 struct spi_master *master = spi->master;
505 struct device *dev = master->dev.parent;
506 int status;
508 /* Chipselects are numbered 0..max; validate. */
509 if (spi->chip_select >= master->num_chipselect) {
510 dev_err(dev, "cs%d >= max %d\n",
511 spi->chip_select,
512 master->num_chipselect);
513 return -EINVAL;
516 /* Set the bus ID string */
517 spi_dev_set_name(spi);
519 /* We need to make sure there's no other device with this
520 * chipselect **BEFORE** we call setup(), else we'll trash
521 * its configuration. Lock against concurrent add() calls.
523 mutex_lock(&spi_add_lock);
525 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 if (status) {
527 dev_err(dev, "chipselect %d already in use\n",
528 spi->chip_select);
529 goto done;
532 if (master->cs_gpios)
533 spi->cs_gpio = master->cs_gpios[spi->chip_select];
535 /* Drivers may modify this initial i/o setup, but will
536 * normally rely on the device being setup. Devices
537 * using SPI_CS_HIGH can't coexist well otherwise...
539 status = spi_setup(spi);
540 if (status < 0) {
541 dev_err(dev, "can't setup %s, status %d\n",
542 dev_name(&spi->dev), status);
543 goto done;
546 /* Device may be bound to an active driver when this returns */
547 status = device_add(&spi->dev);
548 if (status < 0)
549 dev_err(dev, "can't add %s, status %d\n",
550 dev_name(&spi->dev), status);
551 else
552 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
554 done:
555 mutex_unlock(&spi_add_lock);
556 return status;
558 EXPORT_SYMBOL_GPL(spi_add_device);
561 * spi_new_device - instantiate one new SPI device
562 * @master: Controller to which device is connected
563 * @chip: Describes the SPI device
564 * Context: can sleep
566 * On typical mainboards, this is purely internal; and it's not needed
567 * after board init creates the hard-wired devices. Some development
568 * platforms may not be able to use spi_register_board_info though, and
569 * this is exported so that for example a USB or parport based adapter
570 * driver could add devices (which it would learn about out-of-band).
572 * Return: the new device, or NULL.
574 struct spi_device *spi_new_device(struct spi_master *master,
575 struct spi_board_info *chip)
577 struct spi_device *proxy;
578 int status;
580 /* NOTE: caller did any chip->bus_num checks necessary.
582 * Also, unless we change the return value convention to use
583 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 * suggests syslogged diagnostics are best here (ugh).
587 proxy = spi_alloc_device(master);
588 if (!proxy)
589 return NULL;
591 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
593 proxy->chip_select = chip->chip_select;
594 proxy->max_speed_hz = chip->max_speed_hz;
595 proxy->mode = chip->mode;
596 proxy->irq = chip->irq;
597 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 proxy->dev.platform_data = (void *) chip->platform_data;
599 proxy->controller_data = chip->controller_data;
600 proxy->controller_state = NULL;
602 status = spi_add_device(proxy);
603 if (status < 0) {
604 spi_dev_put(proxy);
605 return NULL;
608 return proxy;
610 EXPORT_SYMBOL_GPL(spi_new_device);
613 * spi_unregister_device - unregister a single SPI device
614 * @spi: spi_device to unregister
616 * Start making the passed SPI device vanish. Normally this would be handled
617 * by spi_unregister_master().
619 void spi_unregister_device(struct spi_device *spi)
621 if (!spi)
622 return;
624 if (spi->dev.of_node) {
625 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 of_node_put(spi->dev.of_node);
628 if (ACPI_COMPANION(&spi->dev))
629 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
630 device_unregister(&spi->dev);
632 EXPORT_SYMBOL_GPL(spi_unregister_device);
634 static void spi_match_master_to_boardinfo(struct spi_master *master,
635 struct spi_board_info *bi)
637 struct spi_device *dev;
639 if (master->bus_num != bi->bus_num)
640 return;
642 dev = spi_new_device(master, bi);
643 if (!dev)
644 dev_err(master->dev.parent, "can't create new device for %s\n",
645 bi->modalias);
649 * spi_register_board_info - register SPI devices for a given board
650 * @info: array of chip descriptors
651 * @n: how many descriptors are provided
652 * Context: can sleep
654 * Board-specific early init code calls this (probably during arch_initcall)
655 * with segments of the SPI device table. Any device nodes are created later,
656 * after the relevant parent SPI controller (bus_num) is defined. We keep
657 * this table of devices forever, so that reloading a controller driver will
658 * not make Linux forget about these hard-wired devices.
660 * Other code can also call this, e.g. a particular add-on board might provide
661 * SPI devices through its expansion connector, so code initializing that board
662 * would naturally declare its SPI devices.
664 * The board info passed can safely be __initdata ... but be careful of
665 * any embedded pointers (platform_data, etc), they're copied as-is.
667 * Return: zero on success, else a negative error code.
669 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
671 struct boardinfo *bi;
672 int i;
674 if (!n)
675 return -EINVAL;
677 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
678 if (!bi)
679 return -ENOMEM;
681 for (i = 0; i < n; i++, bi++, info++) {
682 struct spi_master *master;
684 memcpy(&bi->board_info, info, sizeof(*info));
685 mutex_lock(&board_lock);
686 list_add_tail(&bi->list, &board_list);
687 list_for_each_entry(master, &spi_master_list, list)
688 spi_match_master_to_boardinfo(master, &bi->board_info);
689 mutex_unlock(&board_lock);
692 return 0;
695 /*-------------------------------------------------------------------------*/
697 static void spi_set_cs(struct spi_device *spi, bool enable)
699 if (spi->mode & SPI_CS_HIGH)
700 enable = !enable;
702 if (gpio_is_valid(spi->cs_gpio))
703 gpio_set_value(spi->cs_gpio, !enable);
704 else if (spi->master->set_cs)
705 spi->master->set_cs(spi, !enable);
708 #ifdef CONFIG_HAS_DMA
709 static int spi_map_buf(struct spi_master *master, struct device *dev,
710 struct sg_table *sgt, void *buf, size_t len,
711 enum dma_data_direction dir)
713 const bool vmalloced_buf = is_vmalloc_addr(buf);
714 unsigned int max_seg_size = dma_get_max_seg_size(dev);
715 #ifdef CONFIG_HIGHMEM
716 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
717 (unsigned long)buf < (PKMAP_BASE +
718 (LAST_PKMAP * PAGE_SIZE)));
719 #else
720 const bool kmap_buf = false;
721 #endif
722 int desc_len;
723 int sgs;
724 struct page *vm_page;
725 void *sg_buf;
726 size_t min;
727 int i, ret;
729 if (vmalloced_buf || kmap_buf) {
730 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
731 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
732 } else if (virt_addr_valid(buf)) {
733 desc_len = min_t(int, max_seg_size, master->max_dma_len);
734 sgs = DIV_ROUND_UP(len, desc_len);
735 } else {
736 return -EINVAL;
739 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
740 if (ret != 0)
741 return ret;
743 for (i = 0; i < sgs; i++) {
745 if (vmalloced_buf || kmap_buf) {
747 * Next scatterlist entry size is the minimum between
748 * the desc_len and the remaining buffer length that
749 * fits in a page.
751 min = min_t(size_t, desc_len,
752 min_t(size_t, len,
753 PAGE_SIZE - offset_in_page(buf)));
754 if (vmalloced_buf)
755 vm_page = vmalloc_to_page(buf);
756 else
757 vm_page = kmap_to_page(buf);
758 if (!vm_page) {
759 sg_free_table(sgt);
760 return -ENOMEM;
762 sg_set_page(&sgt->sgl[i], vm_page,
763 min, offset_in_page(buf));
764 } else {
765 min = min_t(size_t, len, desc_len);
766 sg_buf = buf;
767 sg_set_buf(&sgt->sgl[i], sg_buf, min);
770 buf += min;
771 len -= min;
774 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
775 if (!ret)
776 ret = -ENOMEM;
777 if (ret < 0) {
778 sg_free_table(sgt);
779 return ret;
782 sgt->nents = ret;
784 return 0;
787 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
788 struct sg_table *sgt, enum dma_data_direction dir)
790 if (sgt->orig_nents) {
791 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
792 sg_free_table(sgt);
796 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
798 struct device *tx_dev, *rx_dev;
799 struct spi_transfer *xfer;
800 int ret;
802 if (!master->can_dma)
803 return 0;
805 if (master->dma_tx)
806 tx_dev = master->dma_tx->device->dev;
807 else
808 tx_dev = master->dev.parent;
810 if (master->dma_rx)
811 rx_dev = master->dma_rx->device->dev;
812 else
813 rx_dev = master->dev.parent;
815 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
816 if (!master->can_dma(master, msg->spi, xfer))
817 continue;
819 if (xfer->tx_buf != NULL) {
820 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
821 (void *)xfer->tx_buf, xfer->len,
822 DMA_TO_DEVICE);
823 if (ret != 0)
824 return ret;
827 if (xfer->rx_buf != NULL) {
828 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
829 xfer->rx_buf, xfer->len,
830 DMA_FROM_DEVICE);
831 if (ret != 0) {
832 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
833 DMA_TO_DEVICE);
834 return ret;
839 master->cur_msg_mapped = true;
841 return 0;
844 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
846 struct spi_transfer *xfer;
847 struct device *tx_dev, *rx_dev;
849 if (!master->cur_msg_mapped || !master->can_dma)
850 return 0;
852 if (master->dma_tx)
853 tx_dev = master->dma_tx->device->dev;
854 else
855 tx_dev = master->dev.parent;
857 if (master->dma_rx)
858 rx_dev = master->dma_rx->device->dev;
859 else
860 rx_dev = master->dev.parent;
862 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
863 if (!master->can_dma(master, msg->spi, xfer))
864 continue;
866 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
867 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
870 return 0;
872 #else /* !CONFIG_HAS_DMA */
873 static inline int spi_map_buf(struct spi_master *master,
874 struct device *dev, struct sg_table *sgt,
875 void *buf, size_t len,
876 enum dma_data_direction dir)
878 return -EINVAL;
881 static inline void spi_unmap_buf(struct spi_master *master,
882 struct device *dev, struct sg_table *sgt,
883 enum dma_data_direction dir)
887 static inline int __spi_map_msg(struct spi_master *master,
888 struct spi_message *msg)
890 return 0;
893 static inline int __spi_unmap_msg(struct spi_master *master,
894 struct spi_message *msg)
896 return 0;
898 #endif /* !CONFIG_HAS_DMA */
900 static inline int spi_unmap_msg(struct spi_master *master,
901 struct spi_message *msg)
903 struct spi_transfer *xfer;
905 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
907 * Restore the original value of tx_buf or rx_buf if they are
908 * NULL.
910 if (xfer->tx_buf == master->dummy_tx)
911 xfer->tx_buf = NULL;
912 if (xfer->rx_buf == master->dummy_rx)
913 xfer->rx_buf = NULL;
916 return __spi_unmap_msg(master, msg);
919 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
921 struct spi_transfer *xfer;
922 void *tmp;
923 unsigned int max_tx, max_rx;
925 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
926 max_tx = 0;
927 max_rx = 0;
929 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
930 if ((master->flags & SPI_MASTER_MUST_TX) &&
931 !xfer->tx_buf)
932 max_tx = max(xfer->len, max_tx);
933 if ((master->flags & SPI_MASTER_MUST_RX) &&
934 !xfer->rx_buf)
935 max_rx = max(xfer->len, max_rx);
938 if (max_tx) {
939 tmp = krealloc(master->dummy_tx, max_tx,
940 GFP_KERNEL | GFP_DMA);
941 if (!tmp)
942 return -ENOMEM;
943 master->dummy_tx = tmp;
944 memset(tmp, 0, max_tx);
947 if (max_rx) {
948 tmp = krealloc(master->dummy_rx, max_rx,
949 GFP_KERNEL | GFP_DMA);
950 if (!tmp)
951 return -ENOMEM;
952 master->dummy_rx = tmp;
955 if (max_tx || max_rx) {
956 list_for_each_entry(xfer, &msg->transfers,
957 transfer_list) {
958 if (!xfer->tx_buf)
959 xfer->tx_buf = master->dummy_tx;
960 if (!xfer->rx_buf)
961 xfer->rx_buf = master->dummy_rx;
966 return __spi_map_msg(master, msg);
970 * spi_transfer_one_message - Default implementation of transfer_one_message()
972 * This is a standard implementation of transfer_one_message() for
973 * drivers which implement a transfer_one() operation. It provides
974 * standard handling of delays and chip select management.
976 static int spi_transfer_one_message(struct spi_master *master,
977 struct spi_message *msg)
979 struct spi_transfer *xfer;
980 bool keep_cs = false;
981 int ret = 0;
982 unsigned long long ms = 1;
983 struct spi_statistics *statm = &master->statistics;
984 struct spi_statistics *stats = &msg->spi->statistics;
986 spi_set_cs(msg->spi, true);
988 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
989 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 trace_spi_transfer_start(msg, xfer);
994 spi_statistics_add_transfer_stats(statm, xfer, master);
995 spi_statistics_add_transfer_stats(stats, xfer, master);
997 if (xfer->tx_buf || xfer->rx_buf) {
998 reinit_completion(&master->xfer_completion);
1000 ret = master->transfer_one(master, msg->spi, xfer);
1001 if (ret < 0) {
1002 SPI_STATISTICS_INCREMENT_FIELD(statm,
1003 errors);
1004 SPI_STATISTICS_INCREMENT_FIELD(stats,
1005 errors);
1006 dev_err(&msg->spi->dev,
1007 "SPI transfer failed: %d\n", ret);
1008 goto out;
1011 if (ret > 0) {
1012 ret = 0;
1013 ms = 8LL * 1000LL * xfer->len;
1014 do_div(ms, xfer->speed_hz);
1015 ms += ms + 200; /* some tolerance */
1017 if (ms > UINT_MAX)
1018 ms = UINT_MAX;
1020 ms = wait_for_completion_timeout(&master->xfer_completion,
1021 msecs_to_jiffies(ms));
1024 if (ms == 0) {
1025 SPI_STATISTICS_INCREMENT_FIELD(statm,
1026 timedout);
1027 SPI_STATISTICS_INCREMENT_FIELD(stats,
1028 timedout);
1029 dev_err(&msg->spi->dev,
1030 "SPI transfer timed out\n");
1031 msg->status = -ETIMEDOUT;
1033 } else {
1034 if (xfer->len)
1035 dev_err(&msg->spi->dev,
1036 "Bufferless transfer has length %u\n",
1037 xfer->len);
1040 trace_spi_transfer_stop(msg, xfer);
1042 if (msg->status != -EINPROGRESS)
1043 goto out;
1045 if (xfer->delay_usecs)
1046 udelay(xfer->delay_usecs);
1048 if (xfer->cs_change) {
1049 if (list_is_last(&xfer->transfer_list,
1050 &msg->transfers)) {
1051 keep_cs = true;
1052 } else {
1053 spi_set_cs(msg->spi, false);
1054 udelay(10);
1055 spi_set_cs(msg->spi, true);
1059 msg->actual_length += xfer->len;
1062 out:
1063 if (ret != 0 || !keep_cs)
1064 spi_set_cs(msg->spi, false);
1066 if (msg->status == -EINPROGRESS)
1067 msg->status = ret;
1069 if (msg->status && master->handle_err)
1070 master->handle_err(master, msg);
1072 spi_res_release(master, msg);
1074 spi_finalize_current_message(master);
1076 return ret;
1080 * spi_finalize_current_transfer - report completion of a transfer
1081 * @master: the master reporting completion
1083 * Called by SPI drivers using the core transfer_one_message()
1084 * implementation to notify it that the current interrupt driven
1085 * transfer has finished and the next one may be scheduled.
1087 void spi_finalize_current_transfer(struct spi_master *master)
1089 complete(&master->xfer_completion);
1091 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1094 * __spi_pump_messages - function which processes spi message queue
1095 * @master: master to process queue for
1096 * @in_kthread: true if we are in the context of the message pump thread
1098 * This function checks if there is any spi message in the queue that
1099 * needs processing and if so call out to the driver to initialize hardware
1100 * and transfer each message.
1102 * Note that it is called both from the kthread itself and also from
1103 * inside spi_sync(); the queue extraction handling at the top of the
1104 * function should deal with this safely.
1106 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1108 unsigned long flags;
1109 bool was_busy = false;
1110 int ret;
1112 /* Lock queue */
1113 spin_lock_irqsave(&master->queue_lock, flags);
1115 /* Make sure we are not already running a message */
1116 if (master->cur_msg) {
1117 spin_unlock_irqrestore(&master->queue_lock, flags);
1118 return;
1121 /* If another context is idling the device then defer */
1122 if (master->idling) {
1123 kthread_queue_work(&master->kworker, &master->pump_messages);
1124 spin_unlock_irqrestore(&master->queue_lock, flags);
1125 return;
1128 /* Check if the queue is idle */
1129 if (list_empty(&master->queue) || !master->running) {
1130 if (!master->busy) {
1131 spin_unlock_irqrestore(&master->queue_lock, flags);
1132 return;
1135 /* Only do teardown in the thread */
1136 if (!in_kthread) {
1137 kthread_queue_work(&master->kworker,
1138 &master->pump_messages);
1139 spin_unlock_irqrestore(&master->queue_lock, flags);
1140 return;
1143 master->busy = false;
1144 master->idling = true;
1145 spin_unlock_irqrestore(&master->queue_lock, flags);
1147 kfree(master->dummy_rx);
1148 master->dummy_rx = NULL;
1149 kfree(master->dummy_tx);
1150 master->dummy_tx = NULL;
1151 if (master->unprepare_transfer_hardware &&
1152 master->unprepare_transfer_hardware(master))
1153 dev_err(&master->dev,
1154 "failed to unprepare transfer hardware\n");
1155 if (master->auto_runtime_pm) {
1156 pm_runtime_mark_last_busy(master->dev.parent);
1157 pm_runtime_put_autosuspend(master->dev.parent);
1159 trace_spi_master_idle(master);
1161 spin_lock_irqsave(&master->queue_lock, flags);
1162 master->idling = false;
1163 spin_unlock_irqrestore(&master->queue_lock, flags);
1164 return;
1167 /* Extract head of queue */
1168 master->cur_msg =
1169 list_first_entry(&master->queue, struct spi_message, queue);
1171 list_del_init(&master->cur_msg->queue);
1172 if (master->busy)
1173 was_busy = true;
1174 else
1175 master->busy = true;
1176 spin_unlock_irqrestore(&master->queue_lock, flags);
1178 mutex_lock(&master->io_mutex);
1180 if (!was_busy && master->auto_runtime_pm) {
1181 ret = pm_runtime_get_sync(master->dev.parent);
1182 if (ret < 0) {
1183 dev_err(&master->dev, "Failed to power device: %d\n",
1184 ret);
1185 mutex_unlock(&master->io_mutex);
1186 return;
1190 if (!was_busy)
1191 trace_spi_master_busy(master);
1193 if (!was_busy && master->prepare_transfer_hardware) {
1194 ret = master->prepare_transfer_hardware(master);
1195 if (ret) {
1196 dev_err(&master->dev,
1197 "failed to prepare transfer hardware\n");
1199 if (master->auto_runtime_pm)
1200 pm_runtime_put(master->dev.parent);
1201 mutex_unlock(&master->io_mutex);
1202 return;
1206 trace_spi_message_start(master->cur_msg);
1208 if (master->prepare_message) {
1209 ret = master->prepare_message(master, master->cur_msg);
1210 if (ret) {
1211 dev_err(&master->dev,
1212 "failed to prepare message: %d\n", ret);
1213 master->cur_msg->status = ret;
1214 spi_finalize_current_message(master);
1215 goto out;
1217 master->cur_msg_prepared = true;
1220 ret = spi_map_msg(master, master->cur_msg);
1221 if (ret) {
1222 master->cur_msg->status = ret;
1223 spi_finalize_current_message(master);
1224 goto out;
1227 ret = master->transfer_one_message(master, master->cur_msg);
1228 if (ret) {
1229 dev_err(&master->dev,
1230 "failed to transfer one message from queue\n");
1231 goto out;
1234 out:
1235 mutex_unlock(&master->io_mutex);
1237 /* Prod the scheduler in case transfer_one() was busy waiting */
1238 if (!ret)
1239 cond_resched();
1243 * spi_pump_messages - kthread work function which processes spi message queue
1244 * @work: pointer to kthread work struct contained in the master struct
1246 static void spi_pump_messages(struct kthread_work *work)
1248 struct spi_master *master =
1249 container_of(work, struct spi_master, pump_messages);
1251 __spi_pump_messages(master, true);
1254 static int spi_init_queue(struct spi_master *master)
1256 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1258 master->running = false;
1259 master->busy = false;
1261 kthread_init_worker(&master->kworker);
1262 master->kworker_task = kthread_run(kthread_worker_fn,
1263 &master->kworker, "%s",
1264 dev_name(&master->dev));
1265 if (IS_ERR(master->kworker_task)) {
1266 dev_err(&master->dev, "failed to create message pump task\n");
1267 return PTR_ERR(master->kworker_task);
1269 kthread_init_work(&master->pump_messages, spi_pump_messages);
1272 * Master config will indicate if this controller should run the
1273 * message pump with high (realtime) priority to reduce the transfer
1274 * latency on the bus by minimising the delay between a transfer
1275 * request and the scheduling of the message pump thread. Without this
1276 * setting the message pump thread will remain at default priority.
1278 if (master->rt) {
1279 dev_info(&master->dev,
1280 "will run message pump with realtime priority\n");
1281 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1284 return 0;
1288 * spi_get_next_queued_message() - called by driver to check for queued
1289 * messages
1290 * @master: the master to check for queued messages
1292 * If there are more messages in the queue, the next message is returned from
1293 * this call.
1295 * Return: the next message in the queue, else NULL if the queue is empty.
1297 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1299 struct spi_message *next;
1300 unsigned long flags;
1302 /* get a pointer to the next message, if any */
1303 spin_lock_irqsave(&master->queue_lock, flags);
1304 next = list_first_entry_or_null(&master->queue, struct spi_message,
1305 queue);
1306 spin_unlock_irqrestore(&master->queue_lock, flags);
1308 return next;
1310 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1313 * spi_finalize_current_message() - the current message is complete
1314 * @master: the master to return the message to
1316 * Called by the driver to notify the core that the message in the front of the
1317 * queue is complete and can be removed from the queue.
1319 void spi_finalize_current_message(struct spi_master *master)
1321 struct spi_message *mesg;
1322 unsigned long flags;
1323 int ret;
1325 spin_lock_irqsave(&master->queue_lock, flags);
1326 mesg = master->cur_msg;
1327 spin_unlock_irqrestore(&master->queue_lock, flags);
1329 spi_unmap_msg(master, mesg);
1331 if (master->cur_msg_prepared && master->unprepare_message) {
1332 ret = master->unprepare_message(master, mesg);
1333 if (ret) {
1334 dev_err(&master->dev,
1335 "failed to unprepare message: %d\n", ret);
1339 spin_lock_irqsave(&master->queue_lock, flags);
1340 master->cur_msg = NULL;
1341 master->cur_msg_prepared = false;
1342 kthread_queue_work(&master->kworker, &master->pump_messages);
1343 spin_unlock_irqrestore(&master->queue_lock, flags);
1345 trace_spi_message_done(mesg);
1347 mesg->state = NULL;
1348 if (mesg->complete)
1349 mesg->complete(mesg->context);
1351 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1353 static int spi_start_queue(struct spi_master *master)
1355 unsigned long flags;
1357 spin_lock_irqsave(&master->queue_lock, flags);
1359 if (master->running || master->busy) {
1360 spin_unlock_irqrestore(&master->queue_lock, flags);
1361 return -EBUSY;
1364 master->running = true;
1365 master->cur_msg = NULL;
1366 spin_unlock_irqrestore(&master->queue_lock, flags);
1368 kthread_queue_work(&master->kworker, &master->pump_messages);
1370 return 0;
1373 static int spi_stop_queue(struct spi_master *master)
1375 unsigned long flags;
1376 unsigned limit = 500;
1377 int ret = 0;
1379 spin_lock_irqsave(&master->queue_lock, flags);
1382 * This is a bit lame, but is optimized for the common execution path.
1383 * A wait_queue on the master->busy could be used, but then the common
1384 * execution path (pump_messages) would be required to call wake_up or
1385 * friends on every SPI message. Do this instead.
1387 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1388 spin_unlock_irqrestore(&master->queue_lock, flags);
1389 usleep_range(10000, 11000);
1390 spin_lock_irqsave(&master->queue_lock, flags);
1393 if (!list_empty(&master->queue) || master->busy)
1394 ret = -EBUSY;
1395 else
1396 master->running = false;
1398 spin_unlock_irqrestore(&master->queue_lock, flags);
1400 if (ret) {
1401 dev_warn(&master->dev,
1402 "could not stop message queue\n");
1403 return ret;
1405 return ret;
1408 static int spi_destroy_queue(struct spi_master *master)
1410 int ret;
1412 ret = spi_stop_queue(master);
1415 * kthread_flush_worker will block until all work is done.
1416 * If the reason that stop_queue timed out is that the work will never
1417 * finish, then it does no good to call flush/stop thread, so
1418 * return anyway.
1420 if (ret) {
1421 dev_err(&master->dev, "problem destroying queue\n");
1422 return ret;
1425 kthread_flush_worker(&master->kworker);
1426 kthread_stop(master->kworker_task);
1428 return 0;
1431 static int __spi_queued_transfer(struct spi_device *spi,
1432 struct spi_message *msg,
1433 bool need_pump)
1435 struct spi_master *master = spi->master;
1436 unsigned long flags;
1438 spin_lock_irqsave(&master->queue_lock, flags);
1440 if (!master->running) {
1441 spin_unlock_irqrestore(&master->queue_lock, flags);
1442 return -ESHUTDOWN;
1444 msg->actual_length = 0;
1445 msg->status = -EINPROGRESS;
1447 list_add_tail(&msg->queue, &master->queue);
1448 if (!master->busy && need_pump)
1449 kthread_queue_work(&master->kworker, &master->pump_messages);
1451 spin_unlock_irqrestore(&master->queue_lock, flags);
1452 return 0;
1456 * spi_queued_transfer - transfer function for queued transfers
1457 * @spi: spi device which is requesting transfer
1458 * @msg: spi message which is to handled is queued to driver queue
1460 * Return: zero on success, else a negative error code.
1462 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1464 return __spi_queued_transfer(spi, msg, true);
1467 static int spi_master_initialize_queue(struct spi_master *master)
1469 int ret;
1471 master->transfer = spi_queued_transfer;
1472 if (!master->transfer_one_message)
1473 master->transfer_one_message = spi_transfer_one_message;
1475 /* Initialize and start queue */
1476 ret = spi_init_queue(master);
1477 if (ret) {
1478 dev_err(&master->dev, "problem initializing queue\n");
1479 goto err_init_queue;
1481 master->queued = true;
1482 ret = spi_start_queue(master);
1483 if (ret) {
1484 dev_err(&master->dev, "problem starting queue\n");
1485 goto err_start_queue;
1488 return 0;
1490 err_start_queue:
1491 spi_destroy_queue(master);
1492 err_init_queue:
1493 return ret;
1496 /*-------------------------------------------------------------------------*/
1498 #if defined(CONFIG_OF)
1499 static struct spi_device *
1500 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1502 struct spi_device *spi;
1503 int rc;
1504 u32 value;
1506 /* Alloc an spi_device */
1507 spi = spi_alloc_device(master);
1508 if (!spi) {
1509 dev_err(&master->dev, "spi_device alloc error for %s\n",
1510 nc->full_name);
1511 rc = -ENOMEM;
1512 goto err_out;
1515 /* Select device driver */
1516 rc = of_modalias_node(nc, spi->modalias,
1517 sizeof(spi->modalias));
1518 if (rc < 0) {
1519 dev_err(&master->dev, "cannot find modalias for %s\n",
1520 nc->full_name);
1521 goto err_out;
1524 /* Device address */
1525 rc = of_property_read_u32(nc, "reg", &value);
1526 if (rc) {
1527 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1528 nc->full_name, rc);
1529 goto err_out;
1531 spi->chip_select = value;
1533 /* Mode (clock phase/polarity/etc.) */
1534 if (of_find_property(nc, "spi-cpha", NULL))
1535 spi->mode |= SPI_CPHA;
1536 if (of_find_property(nc, "spi-cpol", NULL))
1537 spi->mode |= SPI_CPOL;
1538 if (of_find_property(nc, "spi-cs-high", NULL))
1539 spi->mode |= SPI_CS_HIGH;
1540 if (of_find_property(nc, "spi-3wire", NULL))
1541 spi->mode |= SPI_3WIRE;
1542 if (of_find_property(nc, "spi-lsb-first", NULL))
1543 spi->mode |= SPI_LSB_FIRST;
1545 /* Device DUAL/QUAD mode */
1546 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1547 switch (value) {
1548 case 1:
1549 break;
1550 case 2:
1551 spi->mode |= SPI_TX_DUAL;
1552 break;
1553 case 4:
1554 spi->mode |= SPI_TX_QUAD;
1555 break;
1556 default:
1557 dev_warn(&master->dev,
1558 "spi-tx-bus-width %d not supported\n",
1559 value);
1560 break;
1564 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1565 switch (value) {
1566 case 1:
1567 break;
1568 case 2:
1569 spi->mode |= SPI_RX_DUAL;
1570 break;
1571 case 4:
1572 spi->mode |= SPI_RX_QUAD;
1573 break;
1574 default:
1575 dev_warn(&master->dev,
1576 "spi-rx-bus-width %d not supported\n",
1577 value);
1578 break;
1582 /* Device speed */
1583 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1584 if (rc) {
1585 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1586 nc->full_name, rc);
1587 goto err_out;
1589 spi->max_speed_hz = value;
1591 /* Store a pointer to the node in the device structure */
1592 of_node_get(nc);
1593 spi->dev.of_node = nc;
1595 /* Register the new device */
1596 rc = spi_add_device(spi);
1597 if (rc) {
1598 dev_err(&master->dev, "spi_device register error %s\n",
1599 nc->full_name);
1600 goto err_of_node_put;
1603 return spi;
1605 err_of_node_put:
1606 of_node_put(nc);
1607 err_out:
1608 spi_dev_put(spi);
1609 return ERR_PTR(rc);
1613 * of_register_spi_devices() - Register child devices onto the SPI bus
1614 * @master: Pointer to spi_master device
1616 * Registers an spi_device for each child node of master node which has a 'reg'
1617 * property.
1619 static void of_register_spi_devices(struct spi_master *master)
1621 struct spi_device *spi;
1622 struct device_node *nc;
1624 if (!master->dev.of_node)
1625 return;
1627 for_each_available_child_of_node(master->dev.of_node, nc) {
1628 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1629 continue;
1630 spi = of_register_spi_device(master, nc);
1631 if (IS_ERR(spi)) {
1632 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1633 nc->full_name);
1634 of_node_clear_flag(nc, OF_POPULATED);
1638 #else
1639 static void of_register_spi_devices(struct spi_master *master) { }
1640 #endif
1642 #ifdef CONFIG_ACPI
1643 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1645 struct spi_device *spi = data;
1646 struct spi_master *master = spi->master;
1648 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1649 struct acpi_resource_spi_serialbus *sb;
1651 sb = &ares->data.spi_serial_bus;
1652 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1654 * ACPI DeviceSelection numbering is handled by the
1655 * host controller driver in Windows and can vary
1656 * from driver to driver. In Linux we always expect
1657 * 0 .. max - 1 so we need to ask the driver to
1658 * translate between the two schemes.
1660 if (master->fw_translate_cs) {
1661 int cs = master->fw_translate_cs(master,
1662 sb->device_selection);
1663 if (cs < 0)
1664 return cs;
1665 spi->chip_select = cs;
1666 } else {
1667 spi->chip_select = sb->device_selection;
1670 spi->max_speed_hz = sb->connection_speed;
1672 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1673 spi->mode |= SPI_CPHA;
1674 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1675 spi->mode |= SPI_CPOL;
1676 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1677 spi->mode |= SPI_CS_HIGH;
1679 } else if (spi->irq < 0) {
1680 struct resource r;
1682 if (acpi_dev_resource_interrupt(ares, 0, &r))
1683 spi->irq = r.start;
1686 /* Always tell the ACPI core to skip this resource */
1687 return 1;
1690 static acpi_status acpi_register_spi_device(struct spi_master *master,
1691 struct acpi_device *adev)
1693 struct list_head resource_list;
1694 struct spi_device *spi;
1695 int ret;
1697 if (acpi_bus_get_status(adev) || !adev->status.present ||
1698 acpi_device_enumerated(adev))
1699 return AE_OK;
1701 spi = spi_alloc_device(master);
1702 if (!spi) {
1703 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1704 dev_name(&adev->dev));
1705 return AE_NO_MEMORY;
1708 ACPI_COMPANION_SET(&spi->dev, adev);
1709 spi->irq = -1;
1711 INIT_LIST_HEAD(&resource_list);
1712 ret = acpi_dev_get_resources(adev, &resource_list,
1713 acpi_spi_add_resource, spi);
1714 acpi_dev_free_resource_list(&resource_list);
1716 if (ret < 0 || !spi->max_speed_hz) {
1717 spi_dev_put(spi);
1718 return AE_OK;
1721 if (spi->irq < 0)
1722 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1724 acpi_device_set_enumerated(adev);
1726 adev->power.flags.ignore_parent = true;
1727 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1728 if (spi_add_device(spi)) {
1729 adev->power.flags.ignore_parent = false;
1730 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1731 dev_name(&adev->dev));
1732 spi_dev_put(spi);
1735 return AE_OK;
1738 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1739 void *data, void **return_value)
1741 struct spi_master *master = data;
1742 struct acpi_device *adev;
1744 if (acpi_bus_get_device(handle, &adev))
1745 return AE_OK;
1747 return acpi_register_spi_device(master, adev);
1750 static void acpi_register_spi_devices(struct spi_master *master)
1752 acpi_status status;
1753 acpi_handle handle;
1755 handle = ACPI_HANDLE(master->dev.parent);
1756 if (!handle)
1757 return;
1759 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1760 acpi_spi_add_device, NULL,
1761 master, NULL);
1762 if (ACPI_FAILURE(status))
1763 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1765 #else
1766 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1767 #endif /* CONFIG_ACPI */
1769 static void spi_master_release(struct device *dev)
1771 struct spi_master *master;
1773 master = container_of(dev, struct spi_master, dev);
1774 kfree(master);
1777 static struct class spi_master_class = {
1778 .name = "spi_master",
1779 .owner = THIS_MODULE,
1780 .dev_release = spi_master_release,
1781 .dev_groups = spi_master_groups,
1786 * spi_alloc_master - allocate SPI master controller
1787 * @dev: the controller, possibly using the platform_bus
1788 * @size: how much zeroed driver-private data to allocate; the pointer to this
1789 * memory is in the driver_data field of the returned device,
1790 * accessible with spi_master_get_devdata().
1791 * Context: can sleep
1793 * This call is used only by SPI master controller drivers, which are the
1794 * only ones directly touching chip registers. It's how they allocate
1795 * an spi_master structure, prior to calling spi_register_master().
1797 * This must be called from context that can sleep.
1799 * The caller is responsible for assigning the bus number and initializing
1800 * the master's methods before calling spi_register_master(); and (after errors
1801 * adding the device) calling spi_master_put() to prevent a memory leak.
1803 * Return: the SPI master structure on success, else NULL.
1805 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1807 struct spi_master *master;
1809 if (!dev)
1810 return NULL;
1812 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1813 if (!master)
1814 return NULL;
1816 device_initialize(&master->dev);
1817 master->bus_num = -1;
1818 master->num_chipselect = 1;
1819 master->dev.class = &spi_master_class;
1820 master->dev.parent = dev;
1821 pm_suspend_ignore_children(&master->dev, true);
1822 spi_master_set_devdata(master, &master[1]);
1824 return master;
1826 EXPORT_SYMBOL_GPL(spi_alloc_master);
1828 #ifdef CONFIG_OF
1829 static int of_spi_register_master(struct spi_master *master)
1831 int nb, i, *cs;
1832 struct device_node *np = master->dev.of_node;
1834 if (!np)
1835 return 0;
1837 nb = of_gpio_named_count(np, "cs-gpios");
1838 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1840 /* Return error only for an incorrectly formed cs-gpios property */
1841 if (nb == 0 || nb == -ENOENT)
1842 return 0;
1843 else if (nb < 0)
1844 return nb;
1846 cs = devm_kzalloc(&master->dev,
1847 sizeof(int) * master->num_chipselect,
1848 GFP_KERNEL);
1849 master->cs_gpios = cs;
1851 if (!master->cs_gpios)
1852 return -ENOMEM;
1854 for (i = 0; i < master->num_chipselect; i++)
1855 cs[i] = -ENOENT;
1857 for (i = 0; i < nb; i++)
1858 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1860 return 0;
1862 #else
1863 static int of_spi_register_master(struct spi_master *master)
1865 return 0;
1867 #endif
1870 * spi_register_master - register SPI master controller
1871 * @master: initialized master, originally from spi_alloc_master()
1872 * Context: can sleep
1874 * SPI master controllers connect to their drivers using some non-SPI bus,
1875 * such as the platform bus. The final stage of probe() in that code
1876 * includes calling spi_register_master() to hook up to this SPI bus glue.
1878 * SPI controllers use board specific (often SOC specific) bus numbers,
1879 * and board-specific addressing for SPI devices combines those numbers
1880 * with chip select numbers. Since SPI does not directly support dynamic
1881 * device identification, boards need configuration tables telling which
1882 * chip is at which address.
1884 * This must be called from context that can sleep. It returns zero on
1885 * success, else a negative error code (dropping the master's refcount).
1886 * After a successful return, the caller is responsible for calling
1887 * spi_unregister_master().
1889 * Return: zero on success, else a negative error code.
1891 int spi_register_master(struct spi_master *master)
1893 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1894 struct device *dev = master->dev.parent;
1895 struct boardinfo *bi;
1896 int status = -ENODEV;
1897 int dynamic = 0;
1899 if (!dev)
1900 return -ENODEV;
1902 status = of_spi_register_master(master);
1903 if (status)
1904 return status;
1906 /* even if it's just one always-selected device, there must
1907 * be at least one chipselect
1909 if (master->num_chipselect == 0)
1910 return -EINVAL;
1912 if ((master->bus_num < 0) && master->dev.of_node)
1913 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1915 /* convention: dynamically assigned bus IDs count down from the max */
1916 if (master->bus_num < 0) {
1917 /* FIXME switch to an IDR based scheme, something like
1918 * I2C now uses, so we can't run out of "dynamic" IDs
1920 master->bus_num = atomic_dec_return(&dyn_bus_id);
1921 dynamic = 1;
1924 INIT_LIST_HEAD(&master->queue);
1925 spin_lock_init(&master->queue_lock);
1926 spin_lock_init(&master->bus_lock_spinlock);
1927 mutex_init(&master->bus_lock_mutex);
1928 mutex_init(&master->io_mutex);
1929 master->bus_lock_flag = 0;
1930 init_completion(&master->xfer_completion);
1931 if (!master->max_dma_len)
1932 master->max_dma_len = INT_MAX;
1934 /* register the device, then userspace will see it.
1935 * registration fails if the bus ID is in use.
1937 dev_set_name(&master->dev, "spi%u", master->bus_num);
1938 status = device_add(&master->dev);
1939 if (status < 0)
1940 goto done;
1941 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1942 dynamic ? " (dynamic)" : "");
1944 /* If we're using a queued driver, start the queue */
1945 if (master->transfer)
1946 dev_info(dev, "master is unqueued, this is deprecated\n");
1947 else {
1948 status = spi_master_initialize_queue(master);
1949 if (status) {
1950 device_del(&master->dev);
1951 goto done;
1954 /* add statistics */
1955 spin_lock_init(&master->statistics.lock);
1957 mutex_lock(&board_lock);
1958 list_add_tail(&master->list, &spi_master_list);
1959 list_for_each_entry(bi, &board_list, list)
1960 spi_match_master_to_boardinfo(master, &bi->board_info);
1961 mutex_unlock(&board_lock);
1963 /* Register devices from the device tree and ACPI */
1964 of_register_spi_devices(master);
1965 acpi_register_spi_devices(master);
1966 done:
1967 return status;
1969 EXPORT_SYMBOL_GPL(spi_register_master);
1971 static void devm_spi_unregister(struct device *dev, void *res)
1973 spi_unregister_master(*(struct spi_master **)res);
1977 * dev_spi_register_master - register managed SPI master controller
1978 * @dev: device managing SPI master
1979 * @master: initialized master, originally from spi_alloc_master()
1980 * Context: can sleep
1982 * Register a SPI device as with spi_register_master() which will
1983 * automatically be unregister
1985 * Return: zero on success, else a negative error code.
1987 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1989 struct spi_master **ptr;
1990 int ret;
1992 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1993 if (!ptr)
1994 return -ENOMEM;
1996 ret = spi_register_master(master);
1997 if (!ret) {
1998 *ptr = master;
1999 devres_add(dev, ptr);
2000 } else {
2001 devres_free(ptr);
2004 return ret;
2006 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2008 static int __unregister(struct device *dev, void *null)
2010 spi_unregister_device(to_spi_device(dev));
2011 return 0;
2015 * spi_unregister_master - unregister SPI master controller
2016 * @master: the master being unregistered
2017 * Context: can sleep
2019 * This call is used only by SPI master controller drivers, which are the
2020 * only ones directly touching chip registers.
2022 * This must be called from context that can sleep.
2024 void spi_unregister_master(struct spi_master *master)
2026 int dummy;
2028 if (master->queued) {
2029 if (spi_destroy_queue(master))
2030 dev_err(&master->dev, "queue remove failed\n");
2033 mutex_lock(&board_lock);
2034 list_del(&master->list);
2035 mutex_unlock(&board_lock);
2037 dummy = device_for_each_child(&master->dev, NULL, __unregister);
2038 device_unregister(&master->dev);
2040 EXPORT_SYMBOL_GPL(spi_unregister_master);
2042 int spi_master_suspend(struct spi_master *master)
2044 int ret;
2046 /* Basically no-ops for non-queued masters */
2047 if (!master->queued)
2048 return 0;
2050 ret = spi_stop_queue(master);
2051 if (ret)
2052 dev_err(&master->dev, "queue stop failed\n");
2054 return ret;
2056 EXPORT_SYMBOL_GPL(spi_master_suspend);
2058 int spi_master_resume(struct spi_master *master)
2060 int ret;
2062 if (!master->queued)
2063 return 0;
2065 ret = spi_start_queue(master);
2066 if (ret)
2067 dev_err(&master->dev, "queue restart failed\n");
2069 return ret;
2071 EXPORT_SYMBOL_GPL(spi_master_resume);
2073 static int __spi_master_match(struct device *dev, const void *data)
2075 struct spi_master *m;
2076 const u16 *bus_num = data;
2078 m = container_of(dev, struct spi_master, dev);
2079 return m->bus_num == *bus_num;
2083 * spi_busnum_to_master - look up master associated with bus_num
2084 * @bus_num: the master's bus number
2085 * Context: can sleep
2087 * This call may be used with devices that are registered after
2088 * arch init time. It returns a refcounted pointer to the relevant
2089 * spi_master (which the caller must release), or NULL if there is
2090 * no such master registered.
2092 * Return: the SPI master structure on success, else NULL.
2094 struct spi_master *spi_busnum_to_master(u16 bus_num)
2096 struct device *dev;
2097 struct spi_master *master = NULL;
2099 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2100 __spi_master_match);
2101 if (dev)
2102 master = container_of(dev, struct spi_master, dev);
2103 /* reference got in class_find_device */
2104 return master;
2106 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2108 /*-------------------------------------------------------------------------*/
2110 /* Core methods for SPI resource management */
2113 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2114 * during the processing of a spi_message while using
2115 * spi_transfer_one
2116 * @spi: the spi device for which we allocate memory
2117 * @release: the release code to execute for this resource
2118 * @size: size to alloc and return
2119 * @gfp: GFP allocation flags
2121 * Return: the pointer to the allocated data
2123 * This may get enhanced in the future to allocate from a memory pool
2124 * of the @spi_device or @spi_master to avoid repeated allocations.
2126 void *spi_res_alloc(struct spi_device *spi,
2127 spi_res_release_t release,
2128 size_t size, gfp_t gfp)
2130 struct spi_res *sres;
2132 sres = kzalloc(sizeof(*sres) + size, gfp);
2133 if (!sres)
2134 return NULL;
2136 INIT_LIST_HEAD(&sres->entry);
2137 sres->release = release;
2139 return sres->data;
2141 EXPORT_SYMBOL_GPL(spi_res_alloc);
2144 * spi_res_free - free an spi resource
2145 * @res: pointer to the custom data of a resource
2148 void spi_res_free(void *res)
2150 struct spi_res *sres = container_of(res, struct spi_res, data);
2152 if (!res)
2153 return;
2155 WARN_ON(!list_empty(&sres->entry));
2156 kfree(sres);
2158 EXPORT_SYMBOL_GPL(spi_res_free);
2161 * spi_res_add - add a spi_res to the spi_message
2162 * @message: the spi message
2163 * @res: the spi_resource
2165 void spi_res_add(struct spi_message *message, void *res)
2167 struct spi_res *sres = container_of(res, struct spi_res, data);
2169 WARN_ON(!list_empty(&sres->entry));
2170 list_add_tail(&sres->entry, &message->resources);
2172 EXPORT_SYMBOL_GPL(spi_res_add);
2175 * spi_res_release - release all spi resources for this message
2176 * @master: the @spi_master
2177 * @message: the @spi_message
2179 void spi_res_release(struct spi_master *master,
2180 struct spi_message *message)
2182 struct spi_res *res;
2184 while (!list_empty(&message->resources)) {
2185 res = list_last_entry(&message->resources,
2186 struct spi_res, entry);
2188 if (res->release)
2189 res->release(master, message, res->data);
2191 list_del(&res->entry);
2193 kfree(res);
2196 EXPORT_SYMBOL_GPL(spi_res_release);
2198 /*-------------------------------------------------------------------------*/
2200 /* Core methods for spi_message alterations */
2202 static void __spi_replace_transfers_release(struct spi_master *master,
2203 struct spi_message *msg,
2204 void *res)
2206 struct spi_replaced_transfers *rxfer = res;
2207 size_t i;
2209 /* call extra callback if requested */
2210 if (rxfer->release)
2211 rxfer->release(master, msg, res);
2213 /* insert replaced transfers back into the message */
2214 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2216 /* remove the formerly inserted entries */
2217 for (i = 0; i < rxfer->inserted; i++)
2218 list_del(&rxfer->inserted_transfers[i].transfer_list);
2222 * spi_replace_transfers - replace transfers with several transfers
2223 * and register change with spi_message.resources
2224 * @msg: the spi_message we work upon
2225 * @xfer_first: the first spi_transfer we want to replace
2226 * @remove: number of transfers to remove
2227 * @insert: the number of transfers we want to insert instead
2228 * @release: extra release code necessary in some circumstances
2229 * @extradatasize: extra data to allocate (with alignment guarantees
2230 * of struct @spi_transfer)
2231 * @gfp: gfp flags
2233 * Returns: pointer to @spi_replaced_transfers,
2234 * PTR_ERR(...) in case of errors.
2236 struct spi_replaced_transfers *spi_replace_transfers(
2237 struct spi_message *msg,
2238 struct spi_transfer *xfer_first,
2239 size_t remove,
2240 size_t insert,
2241 spi_replaced_release_t release,
2242 size_t extradatasize,
2243 gfp_t gfp)
2245 struct spi_replaced_transfers *rxfer;
2246 struct spi_transfer *xfer;
2247 size_t i;
2249 /* allocate the structure using spi_res */
2250 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2251 insert * sizeof(struct spi_transfer)
2252 + sizeof(struct spi_replaced_transfers)
2253 + extradatasize,
2254 gfp);
2255 if (!rxfer)
2256 return ERR_PTR(-ENOMEM);
2258 /* the release code to invoke before running the generic release */
2259 rxfer->release = release;
2261 /* assign extradata */
2262 if (extradatasize)
2263 rxfer->extradata =
2264 &rxfer->inserted_transfers[insert];
2266 /* init the replaced_transfers list */
2267 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2269 /* assign the list_entry after which we should reinsert
2270 * the @replaced_transfers - it may be spi_message.messages!
2272 rxfer->replaced_after = xfer_first->transfer_list.prev;
2274 /* remove the requested number of transfers */
2275 for (i = 0; i < remove; i++) {
2276 /* if the entry after replaced_after it is msg->transfers
2277 * then we have been requested to remove more transfers
2278 * than are in the list
2280 if (rxfer->replaced_after->next == &msg->transfers) {
2281 dev_err(&msg->spi->dev,
2282 "requested to remove more spi_transfers than are available\n");
2283 /* insert replaced transfers back into the message */
2284 list_splice(&rxfer->replaced_transfers,
2285 rxfer->replaced_after);
2287 /* free the spi_replace_transfer structure */
2288 spi_res_free(rxfer);
2290 /* and return with an error */
2291 return ERR_PTR(-EINVAL);
2294 /* remove the entry after replaced_after from list of
2295 * transfers and add it to list of replaced_transfers
2297 list_move_tail(rxfer->replaced_after->next,
2298 &rxfer->replaced_transfers);
2301 /* create copy of the given xfer with identical settings
2302 * based on the first transfer to get removed
2304 for (i = 0; i < insert; i++) {
2305 /* we need to run in reverse order */
2306 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2308 /* copy all spi_transfer data */
2309 memcpy(xfer, xfer_first, sizeof(*xfer));
2311 /* add to list */
2312 list_add(&xfer->transfer_list, rxfer->replaced_after);
2314 /* clear cs_change and delay_usecs for all but the last */
2315 if (i) {
2316 xfer->cs_change = false;
2317 xfer->delay_usecs = 0;
2321 /* set up inserted */
2322 rxfer->inserted = insert;
2324 /* and register it with spi_res/spi_message */
2325 spi_res_add(msg, rxfer);
2327 return rxfer;
2329 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2331 static int __spi_split_transfer_maxsize(struct spi_master *master,
2332 struct spi_message *msg,
2333 struct spi_transfer **xferp,
2334 size_t maxsize,
2335 gfp_t gfp)
2337 struct spi_transfer *xfer = *xferp, *xfers;
2338 struct spi_replaced_transfers *srt;
2339 size_t offset;
2340 size_t count, i;
2342 /* warn once about this fact that we are splitting a transfer */
2343 dev_warn_once(&msg->spi->dev,
2344 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2345 xfer->len, maxsize);
2347 /* calculate how many we have to replace */
2348 count = DIV_ROUND_UP(xfer->len, maxsize);
2350 /* create replacement */
2351 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2352 if (IS_ERR(srt))
2353 return PTR_ERR(srt);
2354 xfers = srt->inserted_transfers;
2356 /* now handle each of those newly inserted spi_transfers
2357 * note that the replacements spi_transfers all are preset
2358 * to the same values as *xferp, so tx_buf, rx_buf and len
2359 * are all identical (as well as most others)
2360 * so we just have to fix up len and the pointers.
2362 * this also includes support for the depreciated
2363 * spi_message.is_dma_mapped interface
2366 /* the first transfer just needs the length modified, so we
2367 * run it outside the loop
2369 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2371 /* all the others need rx_buf/tx_buf also set */
2372 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2373 /* update rx_buf, tx_buf and dma */
2374 if (xfers[i].rx_buf)
2375 xfers[i].rx_buf += offset;
2376 if (xfers[i].rx_dma)
2377 xfers[i].rx_dma += offset;
2378 if (xfers[i].tx_buf)
2379 xfers[i].tx_buf += offset;
2380 if (xfers[i].tx_dma)
2381 xfers[i].tx_dma += offset;
2383 /* update length */
2384 xfers[i].len = min(maxsize, xfers[i].len - offset);
2387 /* we set up xferp to the last entry we have inserted,
2388 * so that we skip those already split transfers
2390 *xferp = &xfers[count - 1];
2392 /* increment statistics counters */
2393 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2394 transfers_split_maxsize);
2395 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2396 transfers_split_maxsize);
2398 return 0;
2402 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2403 * when an individual transfer exceeds a
2404 * certain size
2405 * @master: the @spi_master for this transfer
2406 * @msg: the @spi_message to transform
2407 * @maxsize: the maximum when to apply this
2408 * @gfp: GFP allocation flags
2410 * Return: status of transformation
2412 int spi_split_transfers_maxsize(struct spi_master *master,
2413 struct spi_message *msg,
2414 size_t maxsize,
2415 gfp_t gfp)
2417 struct spi_transfer *xfer;
2418 int ret;
2420 /* iterate over the transfer_list,
2421 * but note that xfer is advanced to the last transfer inserted
2422 * to avoid checking sizes again unnecessarily (also xfer does
2423 * potentiall belong to a different list by the time the
2424 * replacement has happened
2426 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2427 if (xfer->len > maxsize) {
2428 ret = __spi_split_transfer_maxsize(
2429 master, msg, &xfer, maxsize, gfp);
2430 if (ret)
2431 return ret;
2435 return 0;
2437 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2439 /*-------------------------------------------------------------------------*/
2441 /* Core methods for SPI master protocol drivers. Some of the
2442 * other core methods are currently defined as inline functions.
2445 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2447 if (master->bits_per_word_mask) {
2448 /* Only 32 bits fit in the mask */
2449 if (bits_per_word > 32)
2450 return -EINVAL;
2451 if (!(master->bits_per_word_mask &
2452 SPI_BPW_MASK(bits_per_word)))
2453 return -EINVAL;
2456 return 0;
2460 * spi_setup - setup SPI mode and clock rate
2461 * @spi: the device whose settings are being modified
2462 * Context: can sleep, and no requests are queued to the device
2464 * SPI protocol drivers may need to update the transfer mode if the
2465 * device doesn't work with its default. They may likewise need
2466 * to update clock rates or word sizes from initial values. This function
2467 * changes those settings, and must be called from a context that can sleep.
2468 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2469 * effect the next time the device is selected and data is transferred to
2470 * or from it. When this function returns, the spi device is deselected.
2472 * Note that this call will fail if the protocol driver specifies an option
2473 * that the underlying controller or its driver does not support. For
2474 * example, not all hardware supports wire transfers using nine bit words,
2475 * LSB-first wire encoding, or active-high chipselects.
2477 * Return: zero on success, else a negative error code.
2479 int spi_setup(struct spi_device *spi)
2481 unsigned bad_bits, ugly_bits;
2482 int status;
2484 /* check mode to prevent that DUAL and QUAD set at the same time
2486 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2487 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2488 dev_err(&spi->dev,
2489 "setup: can not select dual and quad at the same time\n");
2490 return -EINVAL;
2492 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2494 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2495 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2496 return -EINVAL;
2497 /* help drivers fail *cleanly* when they need options
2498 * that aren't supported with their current master
2500 bad_bits = spi->mode & ~spi->master->mode_bits;
2501 ugly_bits = bad_bits &
2502 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2503 if (ugly_bits) {
2504 dev_warn(&spi->dev,
2505 "setup: ignoring unsupported mode bits %x\n",
2506 ugly_bits);
2507 spi->mode &= ~ugly_bits;
2508 bad_bits &= ~ugly_bits;
2510 if (bad_bits) {
2511 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2512 bad_bits);
2513 return -EINVAL;
2516 if (!spi->bits_per_word)
2517 spi->bits_per_word = 8;
2519 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2520 if (status)
2521 return status;
2523 if (!spi->max_speed_hz)
2524 spi->max_speed_hz = spi->master->max_speed_hz;
2526 if (spi->master->setup)
2527 status = spi->master->setup(spi);
2529 spi_set_cs(spi, false);
2531 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2532 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2533 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2534 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2535 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2536 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2537 spi->bits_per_word, spi->max_speed_hz,
2538 status);
2540 return status;
2542 EXPORT_SYMBOL_GPL(spi_setup);
2544 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2546 struct spi_master *master = spi->master;
2547 struct spi_transfer *xfer;
2548 int w_size;
2550 if (list_empty(&message->transfers))
2551 return -EINVAL;
2553 /* Half-duplex links include original MicroWire, and ones with
2554 * only one data pin like SPI_3WIRE (switches direction) or where
2555 * either MOSI or MISO is missing. They can also be caused by
2556 * software limitations.
2558 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2559 || (spi->mode & SPI_3WIRE)) {
2560 unsigned flags = master->flags;
2562 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2563 if (xfer->rx_buf && xfer->tx_buf)
2564 return -EINVAL;
2565 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2566 return -EINVAL;
2567 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2568 return -EINVAL;
2573 * Set transfer bits_per_word and max speed as spi device default if
2574 * it is not set for this transfer.
2575 * Set transfer tx_nbits and rx_nbits as single transfer default
2576 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2578 message->frame_length = 0;
2579 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2580 message->frame_length += xfer->len;
2581 if (!xfer->bits_per_word)
2582 xfer->bits_per_word = spi->bits_per_word;
2584 if (!xfer->speed_hz)
2585 xfer->speed_hz = spi->max_speed_hz;
2586 if (!xfer->speed_hz)
2587 xfer->speed_hz = master->max_speed_hz;
2589 if (master->max_speed_hz &&
2590 xfer->speed_hz > master->max_speed_hz)
2591 xfer->speed_hz = master->max_speed_hz;
2593 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2594 return -EINVAL;
2597 * SPI transfer length should be multiple of SPI word size
2598 * where SPI word size should be power-of-two multiple
2600 if (xfer->bits_per_word <= 8)
2601 w_size = 1;
2602 else if (xfer->bits_per_word <= 16)
2603 w_size = 2;
2604 else
2605 w_size = 4;
2607 /* No partial transfers accepted */
2608 if (xfer->len % w_size)
2609 return -EINVAL;
2611 if (xfer->speed_hz && master->min_speed_hz &&
2612 xfer->speed_hz < master->min_speed_hz)
2613 return -EINVAL;
2615 if (xfer->tx_buf && !xfer->tx_nbits)
2616 xfer->tx_nbits = SPI_NBITS_SINGLE;
2617 if (xfer->rx_buf && !xfer->rx_nbits)
2618 xfer->rx_nbits = SPI_NBITS_SINGLE;
2619 /* check transfer tx/rx_nbits:
2620 * 1. check the value matches one of single, dual and quad
2621 * 2. check tx/rx_nbits match the mode in spi_device
2623 if (xfer->tx_buf) {
2624 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2625 xfer->tx_nbits != SPI_NBITS_DUAL &&
2626 xfer->tx_nbits != SPI_NBITS_QUAD)
2627 return -EINVAL;
2628 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2629 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2630 return -EINVAL;
2631 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2632 !(spi->mode & SPI_TX_QUAD))
2633 return -EINVAL;
2635 /* check transfer rx_nbits */
2636 if (xfer->rx_buf) {
2637 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2638 xfer->rx_nbits != SPI_NBITS_DUAL &&
2639 xfer->rx_nbits != SPI_NBITS_QUAD)
2640 return -EINVAL;
2641 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2642 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2643 return -EINVAL;
2644 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2645 !(spi->mode & SPI_RX_QUAD))
2646 return -EINVAL;
2650 message->status = -EINPROGRESS;
2652 return 0;
2655 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2657 struct spi_master *master = spi->master;
2659 message->spi = spi;
2661 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2662 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2664 trace_spi_message_submit(message);
2666 return master->transfer(spi, message);
2670 * spi_async - asynchronous SPI transfer
2671 * @spi: device with which data will be exchanged
2672 * @message: describes the data transfers, including completion callback
2673 * Context: any (irqs may be blocked, etc)
2675 * This call may be used in_irq and other contexts which can't sleep,
2676 * as well as from task contexts which can sleep.
2678 * The completion callback is invoked in a context which can't sleep.
2679 * Before that invocation, the value of message->status is undefined.
2680 * When the callback is issued, message->status holds either zero (to
2681 * indicate complete success) or a negative error code. After that
2682 * callback returns, the driver which issued the transfer request may
2683 * deallocate the associated memory; it's no longer in use by any SPI
2684 * core or controller driver code.
2686 * Note that although all messages to a spi_device are handled in
2687 * FIFO order, messages may go to different devices in other orders.
2688 * Some device might be higher priority, or have various "hard" access
2689 * time requirements, for example.
2691 * On detection of any fault during the transfer, processing of
2692 * the entire message is aborted, and the device is deselected.
2693 * Until returning from the associated message completion callback,
2694 * no other spi_message queued to that device will be processed.
2695 * (This rule applies equally to all the synchronous transfer calls,
2696 * which are wrappers around this core asynchronous primitive.)
2698 * Return: zero on success, else a negative error code.
2700 int spi_async(struct spi_device *spi, struct spi_message *message)
2702 struct spi_master *master = spi->master;
2703 int ret;
2704 unsigned long flags;
2706 ret = __spi_validate(spi, message);
2707 if (ret != 0)
2708 return ret;
2710 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2712 if (master->bus_lock_flag)
2713 ret = -EBUSY;
2714 else
2715 ret = __spi_async(spi, message);
2717 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2719 return ret;
2721 EXPORT_SYMBOL_GPL(spi_async);
2724 * spi_async_locked - version of spi_async with exclusive bus usage
2725 * @spi: device with which data will be exchanged
2726 * @message: describes the data transfers, including completion callback
2727 * Context: any (irqs may be blocked, etc)
2729 * This call may be used in_irq and other contexts which can't sleep,
2730 * as well as from task contexts which can sleep.
2732 * The completion callback is invoked in a context which can't sleep.
2733 * Before that invocation, the value of message->status is undefined.
2734 * When the callback is issued, message->status holds either zero (to
2735 * indicate complete success) or a negative error code. After that
2736 * callback returns, the driver which issued the transfer request may
2737 * deallocate the associated memory; it's no longer in use by any SPI
2738 * core or controller driver code.
2740 * Note that although all messages to a spi_device are handled in
2741 * FIFO order, messages may go to different devices in other orders.
2742 * Some device might be higher priority, or have various "hard" access
2743 * time requirements, for example.
2745 * On detection of any fault during the transfer, processing of
2746 * the entire message is aborted, and the device is deselected.
2747 * Until returning from the associated message completion callback,
2748 * no other spi_message queued to that device will be processed.
2749 * (This rule applies equally to all the synchronous transfer calls,
2750 * which are wrappers around this core asynchronous primitive.)
2752 * Return: zero on success, else a negative error code.
2754 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2756 struct spi_master *master = spi->master;
2757 int ret;
2758 unsigned long flags;
2760 ret = __spi_validate(spi, message);
2761 if (ret != 0)
2762 return ret;
2764 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2766 ret = __spi_async(spi, message);
2768 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2770 return ret;
2773 EXPORT_SYMBOL_GPL(spi_async_locked);
2776 int spi_flash_read(struct spi_device *spi,
2777 struct spi_flash_read_message *msg)
2780 struct spi_master *master = spi->master;
2781 struct device *rx_dev = NULL;
2782 int ret;
2784 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2785 msg->addr_nbits == SPI_NBITS_DUAL) &&
2786 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2787 return -EINVAL;
2788 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2789 msg->addr_nbits == SPI_NBITS_QUAD) &&
2790 !(spi->mode & SPI_TX_QUAD))
2791 return -EINVAL;
2792 if (msg->data_nbits == SPI_NBITS_DUAL &&
2793 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2794 return -EINVAL;
2795 if (msg->data_nbits == SPI_NBITS_QUAD &&
2796 !(spi->mode & SPI_RX_QUAD))
2797 return -EINVAL;
2799 if (master->auto_runtime_pm) {
2800 ret = pm_runtime_get_sync(master->dev.parent);
2801 if (ret < 0) {
2802 dev_err(&master->dev, "Failed to power device: %d\n",
2803 ret);
2804 return ret;
2808 mutex_lock(&master->bus_lock_mutex);
2809 mutex_lock(&master->io_mutex);
2810 if (master->dma_rx) {
2811 rx_dev = master->dma_rx->device->dev;
2812 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2813 msg->buf, msg->len,
2814 DMA_FROM_DEVICE);
2815 if (!ret)
2816 msg->cur_msg_mapped = true;
2818 ret = master->spi_flash_read(spi, msg);
2819 if (msg->cur_msg_mapped)
2820 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2821 DMA_FROM_DEVICE);
2822 mutex_unlock(&master->io_mutex);
2823 mutex_unlock(&master->bus_lock_mutex);
2825 if (master->auto_runtime_pm)
2826 pm_runtime_put(master->dev.parent);
2828 return ret;
2830 EXPORT_SYMBOL_GPL(spi_flash_read);
2832 /*-------------------------------------------------------------------------*/
2834 /* Utility methods for SPI master protocol drivers, layered on
2835 * top of the core. Some other utility methods are defined as
2836 * inline functions.
2839 static void spi_complete(void *arg)
2841 complete(arg);
2844 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2846 DECLARE_COMPLETION_ONSTACK(done);
2847 int status;
2848 struct spi_master *master = spi->master;
2849 unsigned long flags;
2851 status = __spi_validate(spi, message);
2852 if (status != 0)
2853 return status;
2855 message->complete = spi_complete;
2856 message->context = &done;
2857 message->spi = spi;
2859 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2860 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2862 /* If we're not using the legacy transfer method then we will
2863 * try to transfer in the calling context so special case.
2864 * This code would be less tricky if we could remove the
2865 * support for driver implemented message queues.
2867 if (master->transfer == spi_queued_transfer) {
2868 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2870 trace_spi_message_submit(message);
2872 status = __spi_queued_transfer(spi, message, false);
2874 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2875 } else {
2876 status = spi_async_locked(spi, message);
2879 if (status == 0) {
2880 /* Push out the messages in the calling context if we
2881 * can.
2883 if (master->transfer == spi_queued_transfer) {
2884 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2885 spi_sync_immediate);
2886 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2887 spi_sync_immediate);
2888 __spi_pump_messages(master, false);
2891 wait_for_completion(&done);
2892 status = message->status;
2894 message->context = NULL;
2895 return status;
2899 * spi_sync - blocking/synchronous SPI data transfers
2900 * @spi: device with which data will be exchanged
2901 * @message: describes the data transfers
2902 * Context: can sleep
2904 * This call may only be used from a context that may sleep. The sleep
2905 * is non-interruptible, and has no timeout. Low-overhead controller
2906 * drivers may DMA directly into and out of the message buffers.
2908 * Note that the SPI device's chip select is active during the message,
2909 * and then is normally disabled between messages. Drivers for some
2910 * frequently-used devices may want to minimize costs of selecting a chip,
2911 * by leaving it selected in anticipation that the next message will go
2912 * to the same chip. (That may increase power usage.)
2914 * Also, the caller is guaranteeing that the memory associated with the
2915 * message will not be freed before this call returns.
2917 * Return: zero on success, else a negative error code.
2919 int spi_sync(struct spi_device *spi, struct spi_message *message)
2921 int ret;
2923 mutex_lock(&spi->master->bus_lock_mutex);
2924 ret = __spi_sync(spi, message);
2925 mutex_unlock(&spi->master->bus_lock_mutex);
2927 return ret;
2929 EXPORT_SYMBOL_GPL(spi_sync);
2932 * spi_sync_locked - version of spi_sync with exclusive bus usage
2933 * @spi: device with which data will be exchanged
2934 * @message: describes the data transfers
2935 * Context: can sleep
2937 * This call may only be used from a context that may sleep. The sleep
2938 * is non-interruptible, and has no timeout. Low-overhead controller
2939 * drivers may DMA directly into and out of the message buffers.
2941 * This call should be used by drivers that require exclusive access to the
2942 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2943 * be released by a spi_bus_unlock call when the exclusive access is over.
2945 * Return: zero on success, else a negative error code.
2947 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2949 return __spi_sync(spi, message);
2951 EXPORT_SYMBOL_GPL(spi_sync_locked);
2954 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2955 * @master: SPI bus master that should be locked for exclusive bus access
2956 * Context: can sleep
2958 * This call may only be used from a context that may sleep. The sleep
2959 * is non-interruptible, and has no timeout.
2961 * This call should be used by drivers that require exclusive access to the
2962 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2963 * exclusive access is over. Data transfer must be done by spi_sync_locked
2964 * and spi_async_locked calls when the SPI bus lock is held.
2966 * Return: always zero.
2968 int spi_bus_lock(struct spi_master *master)
2970 unsigned long flags;
2972 mutex_lock(&master->bus_lock_mutex);
2974 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2975 master->bus_lock_flag = 1;
2976 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2978 /* mutex remains locked until spi_bus_unlock is called */
2980 return 0;
2982 EXPORT_SYMBOL_GPL(spi_bus_lock);
2985 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2986 * @master: SPI bus master that was locked for exclusive bus access
2987 * Context: can sleep
2989 * This call may only be used from a context that may sleep. The sleep
2990 * is non-interruptible, and has no timeout.
2992 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2993 * call.
2995 * Return: always zero.
2997 int spi_bus_unlock(struct spi_master *master)
2999 master->bus_lock_flag = 0;
3001 mutex_unlock(&master->bus_lock_mutex);
3003 return 0;
3005 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3007 /* portable code must never pass more than 32 bytes */
3008 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3010 static u8 *buf;
3013 * spi_write_then_read - SPI synchronous write followed by read
3014 * @spi: device with which data will be exchanged
3015 * @txbuf: data to be written (need not be dma-safe)
3016 * @n_tx: size of txbuf, in bytes
3017 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3018 * @n_rx: size of rxbuf, in bytes
3019 * Context: can sleep
3021 * This performs a half duplex MicroWire style transaction with the
3022 * device, sending txbuf and then reading rxbuf. The return value
3023 * is zero for success, else a negative errno status code.
3024 * This call may only be used from a context that may sleep.
3026 * Parameters to this routine are always copied using a small buffer;
3027 * portable code should never use this for more than 32 bytes.
3028 * Performance-sensitive or bulk transfer code should instead use
3029 * spi_{async,sync}() calls with dma-safe buffers.
3031 * Return: zero on success, else a negative error code.
3033 int spi_write_then_read(struct spi_device *spi,
3034 const void *txbuf, unsigned n_tx,
3035 void *rxbuf, unsigned n_rx)
3037 static DEFINE_MUTEX(lock);
3039 int status;
3040 struct spi_message message;
3041 struct spi_transfer x[2];
3042 u8 *local_buf;
3044 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3045 * copying here, (as a pure convenience thing), but we can
3046 * keep heap costs out of the hot path unless someone else is
3047 * using the pre-allocated buffer or the transfer is too large.
3049 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3050 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3051 GFP_KERNEL | GFP_DMA);
3052 if (!local_buf)
3053 return -ENOMEM;
3054 } else {
3055 local_buf = buf;
3058 spi_message_init(&message);
3059 memset(x, 0, sizeof(x));
3060 if (n_tx) {
3061 x[0].len = n_tx;
3062 spi_message_add_tail(&x[0], &message);
3064 if (n_rx) {
3065 x[1].len = n_rx;
3066 spi_message_add_tail(&x[1], &message);
3069 memcpy(local_buf, txbuf, n_tx);
3070 x[0].tx_buf = local_buf;
3071 x[1].rx_buf = local_buf + n_tx;
3073 /* do the i/o */
3074 status = spi_sync(spi, &message);
3075 if (status == 0)
3076 memcpy(rxbuf, x[1].rx_buf, n_rx);
3078 if (x[0].tx_buf == buf)
3079 mutex_unlock(&lock);
3080 else
3081 kfree(local_buf);
3083 return status;
3085 EXPORT_SYMBOL_GPL(spi_write_then_read);
3087 /*-------------------------------------------------------------------------*/
3089 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3090 static int __spi_of_device_match(struct device *dev, void *data)
3092 return dev->of_node == data;
3095 /* must call put_device() when done with returned spi_device device */
3096 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3098 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3099 __spi_of_device_match);
3100 return dev ? to_spi_device(dev) : NULL;
3103 static int __spi_of_master_match(struct device *dev, const void *data)
3105 return dev->of_node == data;
3108 /* the spi masters are not using spi_bus, so we find it with another way */
3109 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3111 struct device *dev;
3113 dev = class_find_device(&spi_master_class, NULL, node,
3114 __spi_of_master_match);
3115 if (!dev)
3116 return NULL;
3118 /* reference got in class_find_device */
3119 return container_of(dev, struct spi_master, dev);
3122 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3123 void *arg)
3125 struct of_reconfig_data *rd = arg;
3126 struct spi_master *master;
3127 struct spi_device *spi;
3129 switch (of_reconfig_get_state_change(action, arg)) {
3130 case OF_RECONFIG_CHANGE_ADD:
3131 master = of_find_spi_master_by_node(rd->dn->parent);
3132 if (master == NULL)
3133 return NOTIFY_OK; /* not for us */
3135 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3136 put_device(&master->dev);
3137 return NOTIFY_OK;
3140 spi = of_register_spi_device(master, rd->dn);
3141 put_device(&master->dev);
3143 if (IS_ERR(spi)) {
3144 pr_err("%s: failed to create for '%s'\n",
3145 __func__, rd->dn->full_name);
3146 of_node_clear_flag(rd->dn, OF_POPULATED);
3147 return notifier_from_errno(PTR_ERR(spi));
3149 break;
3151 case OF_RECONFIG_CHANGE_REMOVE:
3152 /* already depopulated? */
3153 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3154 return NOTIFY_OK;
3156 /* find our device by node */
3157 spi = of_find_spi_device_by_node(rd->dn);
3158 if (spi == NULL)
3159 return NOTIFY_OK; /* no? not meant for us */
3161 /* unregister takes one ref away */
3162 spi_unregister_device(spi);
3164 /* and put the reference of the find */
3165 put_device(&spi->dev);
3166 break;
3169 return NOTIFY_OK;
3172 static struct notifier_block spi_of_notifier = {
3173 .notifier_call = of_spi_notify,
3175 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3176 extern struct notifier_block spi_of_notifier;
3177 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3179 #if IS_ENABLED(CONFIG_ACPI)
3180 static int spi_acpi_master_match(struct device *dev, const void *data)
3182 return ACPI_COMPANION(dev->parent) == data;
3185 static int spi_acpi_device_match(struct device *dev, void *data)
3187 return ACPI_COMPANION(dev) == data;
3190 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3192 struct device *dev;
3194 dev = class_find_device(&spi_master_class, NULL, adev,
3195 spi_acpi_master_match);
3196 if (!dev)
3197 return NULL;
3199 return container_of(dev, struct spi_master, dev);
3202 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3204 struct device *dev;
3206 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3208 return dev ? to_spi_device(dev) : NULL;
3211 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3212 void *arg)
3214 struct acpi_device *adev = arg;
3215 struct spi_master *master;
3216 struct spi_device *spi;
3218 switch (value) {
3219 case ACPI_RECONFIG_DEVICE_ADD:
3220 master = acpi_spi_find_master_by_adev(adev->parent);
3221 if (!master)
3222 break;
3224 acpi_register_spi_device(master, adev);
3225 put_device(&master->dev);
3226 break;
3227 case ACPI_RECONFIG_DEVICE_REMOVE:
3228 if (!acpi_device_enumerated(adev))
3229 break;
3231 spi = acpi_spi_find_device_by_adev(adev);
3232 if (!spi)
3233 break;
3235 spi_unregister_device(spi);
3236 put_device(&spi->dev);
3237 break;
3240 return NOTIFY_OK;
3243 static struct notifier_block spi_acpi_notifier = {
3244 .notifier_call = acpi_spi_notify,
3246 #else
3247 extern struct notifier_block spi_acpi_notifier;
3248 #endif
3250 static int __init spi_init(void)
3252 int status;
3254 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3255 if (!buf) {
3256 status = -ENOMEM;
3257 goto err0;
3260 status = bus_register(&spi_bus_type);
3261 if (status < 0)
3262 goto err1;
3264 status = class_register(&spi_master_class);
3265 if (status < 0)
3266 goto err2;
3268 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3269 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3270 if (IS_ENABLED(CONFIG_ACPI))
3271 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3273 return 0;
3275 err2:
3276 bus_unregister(&spi_bus_type);
3277 err1:
3278 kfree(buf);
3279 buf = NULL;
3280 err0:
3281 return status;
3284 /* board_info is normally registered in arch_initcall(),
3285 * but even essential drivers wait till later
3287 * REVISIT only boardinfo really needs static linking. the rest (device and
3288 * driver registration) _could_ be dynamically linked (modular) ... costs
3289 * include needing to have boardinfo data structures be much more public.
3291 postcore_initcall(spi_init);