jme: Do not enable NIC WoL functions on S0
[linux/fpc-iii.git] / drivers / md / raid1.c
blob0d91644e80eb148ce65791e694b414585ddfe33e
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
84 kfree(r1_bio);
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int need_pages;
101 int i, j;
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 if (!r1_bio)
105 return NULL;
108 * Allocate bios : 1 for reading, n-1 for writing
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
117 * Allocate RESYNC_PAGES data pages and attach them to
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
124 else
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
130 if (bio_alloc_pages(bio, gfp_flags))
131 goto out_free_pages;
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 r1_bio->master_bio = NULL;
143 return r1_bio;
145 out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
153 out_free_bio:
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
160 static void r1buf_pool_free(void *__r1_bio, void *data)
162 struct pool_info *pi = data;
163 int i,j;
164 struct r1bio *r1bio = __r1_bio;
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
176 r1bio_pool_free(r1bio, data);
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
181 int i;
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
186 bio_put(*bio);
187 *bio = NULL;
191 static void free_r1bio(struct r1bio *r1_bio)
193 struct r1conf *conf = r1_bio->mddev->private;
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
199 static void put_buf(struct r1bio *r1_bio)
201 struct r1conf *conf = r1_bio->mddev->private;
202 int i;
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 mempool_free(r1_bio, conf->r1buf_pool);
212 lower_barrier(conf);
215 static void reschedule_retry(struct r1bio *r1_bio)
217 unsigned long flags;
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
223 conf->nr_queued ++;
224 spin_unlock_irqrestore(&conf->device_lock, flags);
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
235 static void call_bio_endio(struct r1bio *r1_bio)
237 struct bio *bio = r1_bio->master_bio;
238 int done;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
253 wake_up(&conf->wait_barrier);
254 } else
255 done = 1;
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
265 allow_barrier(conf, start_next_window, bi_sector);
269 static void raid_end_bio_io(struct r1bio *r1_bio)
271 struct bio *bio = r1_bio->master_bio;
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
280 call_bio_endio(r1_bio);
282 free_r1bio(r1_bio);
286 * Update disk head position estimator based on IRQ completion info.
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
290 struct r1conf *conf = r1_bio->mddev->private;
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
297 * Find the disk number which triggered given bio
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
307 break;
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
312 return mirror;
315 static void raid1_end_read_request(struct bio *bio, int error)
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
319 int mirror;
320 struct r1conf *conf = r1_bio->mddev->private;
322 mirror = r1_bio->read_disk;
324 * this branch is our 'one mirror IO has finished' event handler:
326 update_head_pos(mirror, r1_bio);
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
344 if (uptodate) {
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
349 * oops, read error:
351 char b[BDEVNAME_SIZE];
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
365 static void close_write(struct r1bio *r1_bio)
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
384 static void r1_bio_write_done(struct r1bio *r1_bio)
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
400 static void raid1_end_write_request(struct bio *bio, int error)
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
408 mirror = find_bio_disk(r1_bio, bio);
411 * 'one mirror IO has finished' event handler:
413 if (!uptodate) {
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
421 set_bit(R1BIO_WriteError, &r1_bio->state);
422 } else {
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
433 sector_t first_bad;
434 int bad_sectors;
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
488 * Let's see if all mirrored write operations have finished
489 * already.
491 r1_bio_write_done(r1_bio);
493 if (to_put)
494 bio_put(to_put);
499 * This routine returns the disk from which the requested read should
500 * be done. There is a per-array 'next expected sequential IO' sector
501 * number - if this matches on the next IO then we use the last disk.
502 * There is also a per-disk 'last know head position' sector that is
503 * maintained from IRQ contexts, both the normal and the resync IO
504 * completion handlers update this position correctly. If there is no
505 * perfect sequential match then we pick the disk whose head is closest.
507 * If there are 2 mirrors in the same 2 devices, performance degrades
508 * because position is mirror, not device based.
510 * The rdev for the device selected will have nr_pending incremented.
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 const sector_t this_sector = r1_bio->sector;
515 int sectors;
516 int best_good_sectors;
517 int best_disk, best_dist_disk, best_pending_disk;
518 int has_nonrot_disk;
519 int disk;
520 sector_t best_dist;
521 unsigned int min_pending;
522 struct md_rdev *rdev;
523 int choose_first;
524 int choose_next_idle;
526 rcu_read_lock();
528 * Check if we can balance. We can balance on the whole
529 * device if no resync is going on, or below the resync window.
530 * We take the first readable disk when above the resync window.
532 retry:
533 sectors = r1_bio->sectors;
534 best_disk = -1;
535 best_dist_disk = -1;
536 best_dist = MaxSector;
537 best_pending_disk = -1;
538 min_pending = UINT_MAX;
539 best_good_sectors = 0;
540 has_nonrot_disk = 0;
541 choose_next_idle = 0;
543 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
545 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
546 sector_t dist;
547 sector_t first_bad;
548 int bad_sectors;
549 unsigned int pending;
550 bool nonrot;
552 rdev = rcu_dereference(conf->mirrors[disk].rdev);
553 if (r1_bio->bios[disk] == IO_BLOCKED
554 || rdev == NULL
555 || test_bit(Unmerged, &rdev->flags)
556 || test_bit(Faulty, &rdev->flags))
557 continue;
558 if (!test_bit(In_sync, &rdev->flags) &&
559 rdev->recovery_offset < this_sector + sectors)
560 continue;
561 if (test_bit(WriteMostly, &rdev->flags)) {
562 /* Don't balance among write-mostly, just
563 * use the first as a last resort */
564 if (best_dist_disk < 0) {
565 if (is_badblock(rdev, this_sector, sectors,
566 &first_bad, &bad_sectors)) {
567 if (first_bad < this_sector)
568 /* Cannot use this */
569 continue;
570 best_good_sectors = first_bad - this_sector;
571 } else
572 best_good_sectors = sectors;
573 best_dist_disk = disk;
574 best_pending_disk = disk;
576 continue;
578 /* This is a reasonable device to use. It might
579 * even be best.
581 if (is_badblock(rdev, this_sector, sectors,
582 &first_bad, &bad_sectors)) {
583 if (best_dist < MaxSector)
584 /* already have a better device */
585 continue;
586 if (first_bad <= this_sector) {
587 /* cannot read here. If this is the 'primary'
588 * device, then we must not read beyond
589 * bad_sectors from another device..
591 bad_sectors -= (this_sector - first_bad);
592 if (choose_first && sectors > bad_sectors)
593 sectors = bad_sectors;
594 if (best_good_sectors > sectors)
595 best_good_sectors = sectors;
597 } else {
598 sector_t good_sectors = first_bad - this_sector;
599 if (good_sectors > best_good_sectors) {
600 best_good_sectors = good_sectors;
601 best_disk = disk;
603 if (choose_first)
604 break;
606 continue;
607 } else
608 best_good_sectors = sectors;
610 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
611 has_nonrot_disk |= nonrot;
612 pending = atomic_read(&rdev->nr_pending);
613 dist = abs(this_sector - conf->mirrors[disk].head_position);
614 if (choose_first) {
615 best_disk = disk;
616 break;
618 /* Don't change to another disk for sequential reads */
619 if (conf->mirrors[disk].next_seq_sect == this_sector
620 || dist == 0) {
621 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
622 struct raid1_info *mirror = &conf->mirrors[disk];
624 best_disk = disk;
626 * If buffered sequential IO size exceeds optimal
627 * iosize, check if there is idle disk. If yes, choose
628 * the idle disk. read_balance could already choose an
629 * idle disk before noticing it's a sequential IO in
630 * this disk. This doesn't matter because this disk
631 * will idle, next time it will be utilized after the
632 * first disk has IO size exceeds optimal iosize. In
633 * this way, iosize of the first disk will be optimal
634 * iosize at least. iosize of the second disk might be
635 * small, but not a big deal since when the second disk
636 * starts IO, the first disk is likely still busy.
638 if (nonrot && opt_iosize > 0 &&
639 mirror->seq_start != MaxSector &&
640 mirror->next_seq_sect > opt_iosize &&
641 mirror->next_seq_sect - opt_iosize >=
642 mirror->seq_start) {
643 choose_next_idle = 1;
644 continue;
646 break;
648 /* If device is idle, use it */
649 if (pending == 0) {
650 best_disk = disk;
651 break;
654 if (choose_next_idle)
655 continue;
657 if (min_pending > pending) {
658 min_pending = pending;
659 best_pending_disk = disk;
662 if (dist < best_dist) {
663 best_dist = dist;
664 best_dist_disk = disk;
669 * If all disks are rotational, choose the closest disk. If any disk is
670 * non-rotational, choose the disk with less pending request even the
671 * disk is rotational, which might/might not be optimal for raids with
672 * mixed ratation/non-rotational disks depending on workload.
674 if (best_disk == -1) {
675 if (has_nonrot_disk)
676 best_disk = best_pending_disk;
677 else
678 best_disk = best_dist_disk;
681 if (best_disk >= 0) {
682 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
683 if (!rdev)
684 goto retry;
685 atomic_inc(&rdev->nr_pending);
686 if (test_bit(Faulty, &rdev->flags)) {
687 /* cannot risk returning a device that failed
688 * before we inc'ed nr_pending
690 rdev_dec_pending(rdev, conf->mddev);
691 goto retry;
693 sectors = best_good_sectors;
695 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
696 conf->mirrors[best_disk].seq_start = this_sector;
698 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
700 rcu_read_unlock();
701 *max_sectors = sectors;
703 return best_disk;
706 static int raid1_mergeable_bvec(struct request_queue *q,
707 struct bvec_merge_data *bvm,
708 struct bio_vec *biovec)
710 struct mddev *mddev = q->queuedata;
711 struct r1conf *conf = mddev->private;
712 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
713 int max = biovec->bv_len;
715 if (mddev->merge_check_needed) {
716 int disk;
717 rcu_read_lock();
718 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
719 struct md_rdev *rdev = rcu_dereference(
720 conf->mirrors[disk].rdev);
721 if (rdev && !test_bit(Faulty, &rdev->flags)) {
722 struct request_queue *q =
723 bdev_get_queue(rdev->bdev);
724 if (q->merge_bvec_fn) {
725 bvm->bi_sector = sector +
726 rdev->data_offset;
727 bvm->bi_bdev = rdev->bdev;
728 max = min(max, q->merge_bvec_fn(
729 q, bvm, biovec));
733 rcu_read_unlock();
735 return max;
739 int md_raid1_congested(struct mddev *mddev, int bits)
741 struct r1conf *conf = mddev->private;
742 int i, ret = 0;
744 if ((bits & (1 << BDI_async_congested)) &&
745 conf->pending_count >= max_queued_requests)
746 return 1;
748 rcu_read_lock();
749 for (i = 0; i < conf->raid_disks * 2; i++) {
750 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
751 if (rdev && !test_bit(Faulty, &rdev->flags)) {
752 struct request_queue *q = bdev_get_queue(rdev->bdev);
754 BUG_ON(!q);
756 /* Note the '|| 1' - when read_balance prefers
757 * non-congested targets, it can be removed
759 if ((bits & (1<<BDI_async_congested)) || 1)
760 ret |= bdi_congested(&q->backing_dev_info, bits);
761 else
762 ret &= bdi_congested(&q->backing_dev_info, bits);
765 rcu_read_unlock();
766 return ret;
768 EXPORT_SYMBOL_GPL(md_raid1_congested);
770 static int raid1_congested(void *data, int bits)
772 struct mddev *mddev = data;
774 return mddev_congested(mddev, bits) ||
775 md_raid1_congested(mddev, bits);
778 static void flush_pending_writes(struct r1conf *conf)
780 /* Any writes that have been queued but are awaiting
781 * bitmap updates get flushed here.
783 spin_lock_irq(&conf->device_lock);
785 if (conf->pending_bio_list.head) {
786 struct bio *bio;
787 bio = bio_list_get(&conf->pending_bio_list);
788 conf->pending_count = 0;
789 spin_unlock_irq(&conf->device_lock);
790 /* flush any pending bitmap writes to
791 * disk before proceeding w/ I/O */
792 bitmap_unplug(conf->mddev->bitmap);
793 wake_up(&conf->wait_barrier);
795 while (bio) { /* submit pending writes */
796 struct bio *next = bio->bi_next;
797 bio->bi_next = NULL;
798 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
799 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
800 /* Just ignore it */
801 bio_endio(bio, 0);
802 else
803 generic_make_request(bio);
804 bio = next;
806 } else
807 spin_unlock_irq(&conf->device_lock);
810 /* Barriers....
811 * Sometimes we need to suspend IO while we do something else,
812 * either some resync/recovery, or reconfigure the array.
813 * To do this we raise a 'barrier'.
814 * The 'barrier' is a counter that can be raised multiple times
815 * to count how many activities are happening which preclude
816 * normal IO.
817 * We can only raise the barrier if there is no pending IO.
818 * i.e. if nr_pending == 0.
819 * We choose only to raise the barrier if no-one is waiting for the
820 * barrier to go down. This means that as soon as an IO request
821 * is ready, no other operations which require a barrier will start
822 * until the IO request has had a chance.
824 * So: regular IO calls 'wait_barrier'. When that returns there
825 * is no backgroup IO happening, It must arrange to call
826 * allow_barrier when it has finished its IO.
827 * backgroup IO calls must call raise_barrier. Once that returns
828 * there is no normal IO happeing. It must arrange to call
829 * lower_barrier when the particular background IO completes.
831 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
833 spin_lock_irq(&conf->resync_lock);
835 /* Wait until no block IO is waiting */
836 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
837 conf->resync_lock);
839 /* block any new IO from starting */
840 conf->barrier++;
841 conf->next_resync = sector_nr;
843 /* For these conditions we must wait:
844 * A: while the array is in frozen state
845 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
846 * the max count which allowed.
847 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
848 * next resync will reach to the window which normal bios are
849 * handling.
850 * D: while there are any active requests in the current window.
852 wait_event_lock_irq(conf->wait_barrier,
853 !conf->array_frozen &&
854 conf->barrier < RESYNC_DEPTH &&
855 conf->current_window_requests == 0 &&
856 (conf->start_next_window >=
857 conf->next_resync + RESYNC_SECTORS),
858 conf->resync_lock);
860 conf->nr_pending++;
861 spin_unlock_irq(&conf->resync_lock);
864 static void lower_barrier(struct r1conf *conf)
866 unsigned long flags;
867 BUG_ON(conf->barrier <= 0);
868 spin_lock_irqsave(&conf->resync_lock, flags);
869 conf->barrier--;
870 conf->nr_pending--;
871 spin_unlock_irqrestore(&conf->resync_lock, flags);
872 wake_up(&conf->wait_barrier);
875 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
877 bool wait = false;
879 if (conf->array_frozen || !bio)
880 wait = true;
881 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
882 if ((conf->mddev->curr_resync_completed
883 >= bio_end_sector(bio)) ||
884 (conf->next_resync + NEXT_NORMALIO_DISTANCE
885 <= bio->bi_iter.bi_sector))
886 wait = false;
887 else
888 wait = true;
891 return wait;
894 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
896 sector_t sector = 0;
898 spin_lock_irq(&conf->resync_lock);
899 if (need_to_wait_for_sync(conf, bio)) {
900 conf->nr_waiting++;
901 /* Wait for the barrier to drop.
902 * However if there are already pending
903 * requests (preventing the barrier from
904 * rising completely), and the
905 * pre-process bio queue isn't empty,
906 * then don't wait, as we need to empty
907 * that queue to get the nr_pending
908 * count down.
910 wait_event_lock_irq(conf->wait_barrier,
911 !conf->array_frozen &&
912 (!conf->barrier ||
913 ((conf->start_next_window <
914 conf->next_resync + RESYNC_SECTORS) &&
915 current->bio_list &&
916 !bio_list_empty(current->bio_list))),
917 conf->resync_lock);
918 conf->nr_waiting--;
921 if (bio && bio_data_dir(bio) == WRITE) {
922 if (bio->bi_iter.bi_sector >=
923 conf->mddev->curr_resync_completed) {
924 if (conf->start_next_window == MaxSector)
925 conf->start_next_window =
926 conf->next_resync +
927 NEXT_NORMALIO_DISTANCE;
929 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
930 <= bio->bi_iter.bi_sector)
931 conf->next_window_requests++;
932 else
933 conf->current_window_requests++;
934 sector = conf->start_next_window;
938 conf->nr_pending++;
939 spin_unlock_irq(&conf->resync_lock);
940 return sector;
943 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
944 sector_t bi_sector)
946 unsigned long flags;
948 spin_lock_irqsave(&conf->resync_lock, flags);
949 conf->nr_pending--;
950 if (start_next_window) {
951 if (start_next_window == conf->start_next_window) {
952 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
953 <= bi_sector)
954 conf->next_window_requests--;
955 else
956 conf->current_window_requests--;
957 } else
958 conf->current_window_requests--;
960 if (!conf->current_window_requests) {
961 if (conf->next_window_requests) {
962 conf->current_window_requests =
963 conf->next_window_requests;
964 conf->next_window_requests = 0;
965 conf->start_next_window +=
966 NEXT_NORMALIO_DISTANCE;
967 } else
968 conf->start_next_window = MaxSector;
971 spin_unlock_irqrestore(&conf->resync_lock, flags);
972 wake_up(&conf->wait_barrier);
975 static void freeze_array(struct r1conf *conf, int extra)
977 /* stop syncio and normal IO and wait for everything to
978 * go quite.
979 * We wait until nr_pending match nr_queued+extra
980 * This is called in the context of one normal IO request
981 * that has failed. Thus any sync request that might be pending
982 * will be blocked by nr_pending, and we need to wait for
983 * pending IO requests to complete or be queued for re-try.
984 * Thus the number queued (nr_queued) plus this request (extra)
985 * must match the number of pending IOs (nr_pending) before
986 * we continue.
988 spin_lock_irq(&conf->resync_lock);
989 conf->array_frozen = 1;
990 wait_event_lock_irq_cmd(conf->wait_barrier,
991 conf->nr_pending == conf->nr_queued+extra,
992 conf->resync_lock,
993 flush_pending_writes(conf));
994 spin_unlock_irq(&conf->resync_lock);
996 static void unfreeze_array(struct r1conf *conf)
998 /* reverse the effect of the freeze */
999 spin_lock_irq(&conf->resync_lock);
1000 conf->array_frozen = 0;
1001 wake_up(&conf->wait_barrier);
1002 spin_unlock_irq(&conf->resync_lock);
1006 /* duplicate the data pages for behind I/O
1008 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1010 int i;
1011 struct bio_vec *bvec;
1012 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013 GFP_NOIO);
1014 if (unlikely(!bvecs))
1015 return;
1017 bio_for_each_segment_all(bvec, bio, i) {
1018 bvecs[i] = *bvec;
1019 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1020 if (unlikely(!bvecs[i].bv_page))
1021 goto do_sync_io;
1022 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1023 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1024 kunmap(bvecs[i].bv_page);
1025 kunmap(bvec->bv_page);
1027 r1_bio->behind_bvecs = bvecs;
1028 r1_bio->behind_page_count = bio->bi_vcnt;
1029 set_bit(R1BIO_BehindIO, &r1_bio->state);
1030 return;
1032 do_sync_io:
1033 for (i = 0; i < bio->bi_vcnt; i++)
1034 if (bvecs[i].bv_page)
1035 put_page(bvecs[i].bv_page);
1036 kfree(bvecs);
1037 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038 bio->bi_iter.bi_size);
1041 struct raid1_plug_cb {
1042 struct blk_plug_cb cb;
1043 struct bio_list pending;
1044 int pending_cnt;
1047 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1049 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050 cb);
1051 struct mddev *mddev = plug->cb.data;
1052 struct r1conf *conf = mddev->private;
1053 struct bio *bio;
1055 if (from_schedule || current->bio_list) {
1056 spin_lock_irq(&conf->device_lock);
1057 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058 conf->pending_count += plug->pending_cnt;
1059 spin_unlock_irq(&conf->device_lock);
1060 wake_up(&conf->wait_barrier);
1061 md_wakeup_thread(mddev->thread);
1062 kfree(plug);
1063 return;
1066 /* we aren't scheduling, so we can do the write-out directly. */
1067 bio = bio_list_get(&plug->pending);
1068 bitmap_unplug(mddev->bitmap);
1069 wake_up(&conf->wait_barrier);
1071 while (bio) { /* submit pending writes */
1072 struct bio *next = bio->bi_next;
1073 bio->bi_next = NULL;
1074 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1075 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1076 /* Just ignore it */
1077 bio_endio(bio, 0);
1078 else
1079 generic_make_request(bio);
1080 bio = next;
1082 kfree(plug);
1085 static void make_request(struct mddev *mddev, struct bio * bio)
1087 struct r1conf *conf = mddev->private;
1088 struct raid1_info *mirror;
1089 struct r1bio *r1_bio;
1090 struct bio *read_bio;
1091 int i, disks;
1092 struct bitmap *bitmap;
1093 unsigned long flags;
1094 const int rw = bio_data_dir(bio);
1095 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1096 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1097 const unsigned long do_discard = (bio->bi_rw
1098 & (REQ_DISCARD | REQ_SECURE));
1099 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1100 struct md_rdev *blocked_rdev;
1101 struct blk_plug_cb *cb;
1102 struct raid1_plug_cb *plug = NULL;
1103 int first_clone;
1104 int sectors_handled;
1105 int max_sectors;
1106 sector_t start_next_window;
1109 * Register the new request and wait if the reconstruction
1110 * thread has put up a bar for new requests.
1111 * Continue immediately if no resync is active currently.
1114 md_write_start(mddev, bio); /* wait on superblock update early */
1116 if (bio_data_dir(bio) == WRITE &&
1117 bio_end_sector(bio) > mddev->suspend_lo &&
1118 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1119 /* As the suspend_* range is controlled by
1120 * userspace, we want an interruptible
1121 * wait.
1123 DEFINE_WAIT(w);
1124 for (;;) {
1125 flush_signals(current);
1126 prepare_to_wait(&conf->wait_barrier,
1127 &w, TASK_INTERRUPTIBLE);
1128 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1129 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1130 break;
1131 schedule();
1133 finish_wait(&conf->wait_barrier, &w);
1136 start_next_window = wait_barrier(conf, bio);
1138 bitmap = mddev->bitmap;
1141 * make_request() can abort the operation when READA is being
1142 * used and no empty request is available.
1145 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1147 r1_bio->master_bio = bio;
1148 r1_bio->sectors = bio_sectors(bio);
1149 r1_bio->state = 0;
1150 r1_bio->mddev = mddev;
1151 r1_bio->sector = bio->bi_iter.bi_sector;
1153 /* We might need to issue multiple reads to different
1154 * devices if there are bad blocks around, so we keep
1155 * track of the number of reads in bio->bi_phys_segments.
1156 * If this is 0, there is only one r1_bio and no locking
1157 * will be needed when requests complete. If it is
1158 * non-zero, then it is the number of not-completed requests.
1160 bio->bi_phys_segments = 0;
1161 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1163 if (rw == READ) {
1165 * read balancing logic:
1167 int rdisk;
1169 read_again:
1170 rdisk = read_balance(conf, r1_bio, &max_sectors);
1172 if (rdisk < 0) {
1173 /* couldn't find anywhere to read from */
1174 raid_end_bio_io(r1_bio);
1175 return;
1177 mirror = conf->mirrors + rdisk;
1179 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180 bitmap) {
1181 /* Reading from a write-mostly device must
1182 * take care not to over-take any writes
1183 * that are 'behind'
1185 wait_event(bitmap->behind_wait,
1186 atomic_read(&bitmap->behind_writes) == 0);
1188 r1_bio->read_disk = rdisk;
1189 r1_bio->start_next_window = 0;
1191 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1192 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1193 max_sectors);
1195 r1_bio->bios[rdisk] = read_bio;
1197 read_bio->bi_iter.bi_sector = r1_bio->sector +
1198 mirror->rdev->data_offset;
1199 read_bio->bi_bdev = mirror->rdev->bdev;
1200 read_bio->bi_end_io = raid1_end_read_request;
1201 read_bio->bi_rw = READ | do_sync;
1202 read_bio->bi_private = r1_bio;
1204 if (max_sectors < r1_bio->sectors) {
1205 /* could not read all from this device, so we will
1206 * need another r1_bio.
1209 sectors_handled = (r1_bio->sector + max_sectors
1210 - bio->bi_iter.bi_sector);
1211 r1_bio->sectors = max_sectors;
1212 spin_lock_irq(&conf->device_lock);
1213 if (bio->bi_phys_segments == 0)
1214 bio->bi_phys_segments = 2;
1215 else
1216 bio->bi_phys_segments++;
1217 spin_unlock_irq(&conf->device_lock);
1218 /* Cannot call generic_make_request directly
1219 * as that will be queued in __make_request
1220 * and subsequent mempool_alloc might block waiting
1221 * for it. So hand bio over to raid1d.
1223 reschedule_retry(r1_bio);
1225 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1227 r1_bio->master_bio = bio;
1228 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1229 r1_bio->state = 0;
1230 r1_bio->mddev = mddev;
1231 r1_bio->sector = bio->bi_iter.bi_sector +
1232 sectors_handled;
1233 goto read_again;
1234 } else
1235 generic_make_request(read_bio);
1236 return;
1240 * WRITE:
1242 if (conf->pending_count >= max_queued_requests) {
1243 md_wakeup_thread(mddev->thread);
1244 wait_event(conf->wait_barrier,
1245 conf->pending_count < max_queued_requests);
1247 /* first select target devices under rcu_lock and
1248 * inc refcount on their rdev. Record them by setting
1249 * bios[x] to bio
1250 * If there are known/acknowledged bad blocks on any device on
1251 * which we have seen a write error, we want to avoid writing those
1252 * blocks.
1253 * This potentially requires several writes to write around
1254 * the bad blocks. Each set of writes gets it's own r1bio
1255 * with a set of bios attached.
1258 disks = conf->raid_disks * 2;
1259 retry_write:
1260 r1_bio->start_next_window = start_next_window;
1261 blocked_rdev = NULL;
1262 rcu_read_lock();
1263 max_sectors = r1_bio->sectors;
1264 for (i = 0; i < disks; i++) {
1265 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1266 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1267 atomic_inc(&rdev->nr_pending);
1268 blocked_rdev = rdev;
1269 break;
1271 r1_bio->bios[i] = NULL;
1272 if (!rdev || test_bit(Faulty, &rdev->flags)
1273 || test_bit(Unmerged, &rdev->flags)) {
1274 if (i < conf->raid_disks)
1275 set_bit(R1BIO_Degraded, &r1_bio->state);
1276 continue;
1279 atomic_inc(&rdev->nr_pending);
1280 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1281 sector_t first_bad;
1282 int bad_sectors;
1283 int is_bad;
1285 is_bad = is_badblock(rdev, r1_bio->sector,
1286 max_sectors,
1287 &first_bad, &bad_sectors);
1288 if (is_bad < 0) {
1289 /* mustn't write here until the bad block is
1290 * acknowledged*/
1291 set_bit(BlockedBadBlocks, &rdev->flags);
1292 blocked_rdev = rdev;
1293 break;
1295 if (is_bad && first_bad <= r1_bio->sector) {
1296 /* Cannot write here at all */
1297 bad_sectors -= (r1_bio->sector - first_bad);
1298 if (bad_sectors < max_sectors)
1299 /* mustn't write more than bad_sectors
1300 * to other devices yet
1302 max_sectors = bad_sectors;
1303 rdev_dec_pending(rdev, mddev);
1304 /* We don't set R1BIO_Degraded as that
1305 * only applies if the disk is
1306 * missing, so it might be re-added,
1307 * and we want to know to recover this
1308 * chunk.
1309 * In this case the device is here,
1310 * and the fact that this chunk is not
1311 * in-sync is recorded in the bad
1312 * block log
1314 continue;
1316 if (is_bad) {
1317 int good_sectors = first_bad - r1_bio->sector;
1318 if (good_sectors < max_sectors)
1319 max_sectors = good_sectors;
1322 r1_bio->bios[i] = bio;
1324 rcu_read_unlock();
1326 if (unlikely(blocked_rdev)) {
1327 /* Wait for this device to become unblocked */
1328 int j;
1329 sector_t old = start_next_window;
1331 for (j = 0; j < i; j++)
1332 if (r1_bio->bios[j])
1333 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1334 r1_bio->state = 0;
1335 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1336 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1337 start_next_window = wait_barrier(conf, bio);
1339 * We must make sure the multi r1bios of bio have
1340 * the same value of bi_phys_segments
1342 if (bio->bi_phys_segments && old &&
1343 old != start_next_window)
1344 /* Wait for the former r1bio(s) to complete */
1345 wait_event(conf->wait_barrier,
1346 bio->bi_phys_segments == 1);
1347 goto retry_write;
1350 if (max_sectors < r1_bio->sectors) {
1351 /* We are splitting this write into multiple parts, so
1352 * we need to prepare for allocating another r1_bio.
1354 r1_bio->sectors = max_sectors;
1355 spin_lock_irq(&conf->device_lock);
1356 if (bio->bi_phys_segments == 0)
1357 bio->bi_phys_segments = 2;
1358 else
1359 bio->bi_phys_segments++;
1360 spin_unlock_irq(&conf->device_lock);
1362 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1364 atomic_set(&r1_bio->remaining, 1);
1365 atomic_set(&r1_bio->behind_remaining, 0);
1367 first_clone = 1;
1368 for (i = 0; i < disks; i++) {
1369 struct bio *mbio;
1370 if (!r1_bio->bios[i])
1371 continue;
1373 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1374 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1376 if (first_clone) {
1377 /* do behind I/O ?
1378 * Not if there are too many, or cannot
1379 * allocate memory, or a reader on WriteMostly
1380 * is waiting for behind writes to flush */
1381 if (bitmap &&
1382 (atomic_read(&bitmap->behind_writes)
1383 < mddev->bitmap_info.max_write_behind) &&
1384 !waitqueue_active(&bitmap->behind_wait))
1385 alloc_behind_pages(mbio, r1_bio);
1387 bitmap_startwrite(bitmap, r1_bio->sector,
1388 r1_bio->sectors,
1389 test_bit(R1BIO_BehindIO,
1390 &r1_bio->state));
1391 first_clone = 0;
1393 if (r1_bio->behind_bvecs) {
1394 struct bio_vec *bvec;
1395 int j;
1398 * We trimmed the bio, so _all is legit
1400 bio_for_each_segment_all(bvec, mbio, j)
1401 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1402 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1403 atomic_inc(&r1_bio->behind_remaining);
1406 r1_bio->bios[i] = mbio;
1408 mbio->bi_iter.bi_sector = (r1_bio->sector +
1409 conf->mirrors[i].rdev->data_offset);
1410 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1411 mbio->bi_end_io = raid1_end_write_request;
1412 mbio->bi_rw =
1413 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1414 mbio->bi_private = r1_bio;
1416 atomic_inc(&r1_bio->remaining);
1418 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1419 if (cb)
1420 plug = container_of(cb, struct raid1_plug_cb, cb);
1421 else
1422 plug = NULL;
1423 spin_lock_irqsave(&conf->device_lock, flags);
1424 if (plug) {
1425 bio_list_add(&plug->pending, mbio);
1426 plug->pending_cnt++;
1427 } else {
1428 bio_list_add(&conf->pending_bio_list, mbio);
1429 conf->pending_count++;
1431 spin_unlock_irqrestore(&conf->device_lock, flags);
1432 if (!plug)
1433 md_wakeup_thread(mddev->thread);
1435 /* Mustn't call r1_bio_write_done before this next test,
1436 * as it could result in the bio being freed.
1438 if (sectors_handled < bio_sectors(bio)) {
1439 r1_bio_write_done(r1_bio);
1440 /* We need another r1_bio. It has already been counted
1441 * in bio->bi_phys_segments
1443 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1444 r1_bio->master_bio = bio;
1445 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1446 r1_bio->state = 0;
1447 r1_bio->mddev = mddev;
1448 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1449 goto retry_write;
1452 r1_bio_write_done(r1_bio);
1454 /* In case raid1d snuck in to freeze_array */
1455 wake_up(&conf->wait_barrier);
1458 static void status(struct seq_file *seq, struct mddev *mddev)
1460 struct r1conf *conf = mddev->private;
1461 int i;
1463 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1464 conf->raid_disks - mddev->degraded);
1465 rcu_read_lock();
1466 for (i = 0; i < conf->raid_disks; i++) {
1467 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1468 seq_printf(seq, "%s",
1469 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1471 rcu_read_unlock();
1472 seq_printf(seq, "]");
1476 static void error(struct mddev *mddev, struct md_rdev *rdev)
1478 char b[BDEVNAME_SIZE];
1479 struct r1conf *conf = mddev->private;
1480 unsigned long flags;
1483 * If it is not operational, then we have already marked it as dead
1484 * else if it is the last working disks, ignore the error, let the
1485 * next level up know.
1486 * else mark the drive as failed
1488 if (test_bit(In_sync, &rdev->flags)
1489 && (conf->raid_disks - mddev->degraded) == 1) {
1491 * Don't fail the drive, act as though we were just a
1492 * normal single drive.
1493 * However don't try a recovery from this drive as
1494 * it is very likely to fail.
1496 conf->recovery_disabled = mddev->recovery_disabled;
1497 return;
1499 set_bit(Blocked, &rdev->flags);
1500 spin_lock_irqsave(&conf->device_lock, flags);
1501 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1502 mddev->degraded++;
1503 set_bit(Faulty, &rdev->flags);
1504 } else
1505 set_bit(Faulty, &rdev->flags);
1506 spin_unlock_irqrestore(&conf->device_lock, flags);
1508 * if recovery is running, make sure it aborts.
1510 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1511 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1512 printk(KERN_ALERT
1513 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1514 "md/raid1:%s: Operation continuing on %d devices.\n",
1515 mdname(mddev), bdevname(rdev->bdev, b),
1516 mdname(mddev), conf->raid_disks - mddev->degraded);
1519 static void print_conf(struct r1conf *conf)
1521 int i;
1523 printk(KERN_DEBUG "RAID1 conf printout:\n");
1524 if (!conf) {
1525 printk(KERN_DEBUG "(!conf)\n");
1526 return;
1528 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1529 conf->raid_disks);
1531 rcu_read_lock();
1532 for (i = 0; i < conf->raid_disks; i++) {
1533 char b[BDEVNAME_SIZE];
1534 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1535 if (rdev)
1536 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1537 i, !test_bit(In_sync, &rdev->flags),
1538 !test_bit(Faulty, &rdev->flags),
1539 bdevname(rdev->bdev,b));
1541 rcu_read_unlock();
1544 static void close_sync(struct r1conf *conf)
1546 wait_barrier(conf, NULL);
1547 allow_barrier(conf, 0, 0);
1549 mempool_destroy(conf->r1buf_pool);
1550 conf->r1buf_pool = NULL;
1552 spin_lock_irq(&conf->resync_lock);
1553 conf->next_resync = 0;
1554 conf->start_next_window = MaxSector;
1555 conf->current_window_requests +=
1556 conf->next_window_requests;
1557 conf->next_window_requests = 0;
1558 spin_unlock_irq(&conf->resync_lock);
1561 static int raid1_spare_active(struct mddev *mddev)
1563 int i;
1564 struct r1conf *conf = mddev->private;
1565 int count = 0;
1566 unsigned long flags;
1569 * Find all failed disks within the RAID1 configuration
1570 * and mark them readable.
1571 * Called under mddev lock, so rcu protection not needed.
1572 * device_lock used to avoid races with raid1_end_read_request
1573 * which expects 'In_sync' flags and ->degraded to be consistent.
1575 spin_lock_irqsave(&conf->device_lock, flags);
1576 for (i = 0; i < conf->raid_disks; i++) {
1577 struct md_rdev *rdev = conf->mirrors[i].rdev;
1578 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1579 if (repl
1580 && repl->recovery_offset == MaxSector
1581 && !test_bit(Faulty, &repl->flags)
1582 && !test_and_set_bit(In_sync, &repl->flags)) {
1583 /* replacement has just become active */
1584 if (!rdev ||
1585 !test_and_clear_bit(In_sync, &rdev->flags))
1586 count++;
1587 if (rdev) {
1588 /* Replaced device not technically
1589 * faulty, but we need to be sure
1590 * it gets removed and never re-added
1592 set_bit(Faulty, &rdev->flags);
1593 sysfs_notify_dirent_safe(
1594 rdev->sysfs_state);
1597 if (rdev
1598 && rdev->recovery_offset == MaxSector
1599 && !test_bit(Faulty, &rdev->flags)
1600 && !test_and_set_bit(In_sync, &rdev->flags)) {
1601 count++;
1602 sysfs_notify_dirent_safe(rdev->sysfs_state);
1605 mddev->degraded -= count;
1606 spin_unlock_irqrestore(&conf->device_lock, flags);
1608 print_conf(conf);
1609 return count;
1613 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1615 struct r1conf *conf = mddev->private;
1616 int err = -EEXIST;
1617 int mirror = 0;
1618 struct raid1_info *p;
1619 int first = 0;
1620 int last = conf->raid_disks - 1;
1621 struct request_queue *q = bdev_get_queue(rdev->bdev);
1623 if (mddev->recovery_disabled == conf->recovery_disabled)
1624 return -EBUSY;
1626 if (rdev->raid_disk >= 0)
1627 first = last = rdev->raid_disk;
1629 if (q->merge_bvec_fn) {
1630 set_bit(Unmerged, &rdev->flags);
1631 mddev->merge_check_needed = 1;
1634 for (mirror = first; mirror <= last; mirror++) {
1635 p = conf->mirrors+mirror;
1636 if (!p->rdev) {
1638 if (mddev->gendisk)
1639 disk_stack_limits(mddev->gendisk, rdev->bdev,
1640 rdev->data_offset << 9);
1642 p->head_position = 0;
1643 rdev->raid_disk = mirror;
1644 err = 0;
1645 /* As all devices are equivalent, we don't need a full recovery
1646 * if this was recently any drive of the array
1648 if (rdev->saved_raid_disk < 0)
1649 conf->fullsync = 1;
1650 rcu_assign_pointer(p->rdev, rdev);
1651 break;
1653 if (test_bit(WantReplacement, &p->rdev->flags) &&
1654 p[conf->raid_disks].rdev == NULL) {
1655 /* Add this device as a replacement */
1656 clear_bit(In_sync, &rdev->flags);
1657 set_bit(Replacement, &rdev->flags);
1658 rdev->raid_disk = mirror;
1659 err = 0;
1660 conf->fullsync = 1;
1661 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1662 break;
1665 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1666 /* Some requests might not have seen this new
1667 * merge_bvec_fn. We must wait for them to complete
1668 * before merging the device fully.
1669 * First we make sure any code which has tested
1670 * our function has submitted the request, then
1671 * we wait for all outstanding requests to complete.
1673 synchronize_sched();
1674 freeze_array(conf, 0);
1675 unfreeze_array(conf);
1676 clear_bit(Unmerged, &rdev->flags);
1678 md_integrity_add_rdev(rdev, mddev);
1679 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1680 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1681 print_conf(conf);
1682 return err;
1685 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1687 struct r1conf *conf = mddev->private;
1688 int err = 0;
1689 int number = rdev->raid_disk;
1690 struct raid1_info *p = conf->mirrors + number;
1692 if (rdev != p->rdev)
1693 p = conf->mirrors + conf->raid_disks + number;
1695 print_conf(conf);
1696 if (rdev == p->rdev) {
1697 if (test_bit(In_sync, &rdev->flags) ||
1698 atomic_read(&rdev->nr_pending)) {
1699 err = -EBUSY;
1700 goto abort;
1702 /* Only remove non-faulty devices if recovery
1703 * is not possible.
1705 if (!test_bit(Faulty, &rdev->flags) &&
1706 mddev->recovery_disabled != conf->recovery_disabled &&
1707 mddev->degraded < conf->raid_disks) {
1708 err = -EBUSY;
1709 goto abort;
1711 p->rdev = NULL;
1712 synchronize_rcu();
1713 if (atomic_read(&rdev->nr_pending)) {
1714 /* lost the race, try later */
1715 err = -EBUSY;
1716 p->rdev = rdev;
1717 goto abort;
1718 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1719 /* We just removed a device that is being replaced.
1720 * Move down the replacement. We drain all IO before
1721 * doing this to avoid confusion.
1723 struct md_rdev *repl =
1724 conf->mirrors[conf->raid_disks + number].rdev;
1725 freeze_array(conf, 0);
1726 clear_bit(Replacement, &repl->flags);
1727 p->rdev = repl;
1728 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1729 unfreeze_array(conf);
1730 clear_bit(WantReplacement, &rdev->flags);
1731 } else
1732 clear_bit(WantReplacement, &rdev->flags);
1733 err = md_integrity_register(mddev);
1735 abort:
1737 print_conf(conf);
1738 return err;
1742 static void end_sync_read(struct bio *bio, int error)
1744 struct r1bio *r1_bio = bio->bi_private;
1746 update_head_pos(r1_bio->read_disk, r1_bio);
1749 * we have read a block, now it needs to be re-written,
1750 * or re-read if the read failed.
1751 * We don't do much here, just schedule handling by raid1d
1753 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1754 set_bit(R1BIO_Uptodate, &r1_bio->state);
1756 if (atomic_dec_and_test(&r1_bio->remaining))
1757 reschedule_retry(r1_bio);
1760 static void end_sync_write(struct bio *bio, int error)
1762 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1763 struct r1bio *r1_bio = bio->bi_private;
1764 struct mddev *mddev = r1_bio->mddev;
1765 struct r1conf *conf = mddev->private;
1766 int mirror=0;
1767 sector_t first_bad;
1768 int bad_sectors;
1770 mirror = find_bio_disk(r1_bio, bio);
1772 if (!uptodate) {
1773 sector_t sync_blocks = 0;
1774 sector_t s = r1_bio->sector;
1775 long sectors_to_go = r1_bio->sectors;
1776 /* make sure these bits doesn't get cleared. */
1777 do {
1778 bitmap_end_sync(mddev->bitmap, s,
1779 &sync_blocks, 1);
1780 s += sync_blocks;
1781 sectors_to_go -= sync_blocks;
1782 } while (sectors_to_go > 0);
1783 set_bit(WriteErrorSeen,
1784 &conf->mirrors[mirror].rdev->flags);
1785 if (!test_and_set_bit(WantReplacement,
1786 &conf->mirrors[mirror].rdev->flags))
1787 set_bit(MD_RECOVERY_NEEDED, &
1788 mddev->recovery);
1789 set_bit(R1BIO_WriteError, &r1_bio->state);
1790 } else if (is_badblock(conf->mirrors[mirror].rdev,
1791 r1_bio->sector,
1792 r1_bio->sectors,
1793 &first_bad, &bad_sectors) &&
1794 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1795 r1_bio->sector,
1796 r1_bio->sectors,
1797 &first_bad, &bad_sectors)
1799 set_bit(R1BIO_MadeGood, &r1_bio->state);
1801 if (atomic_dec_and_test(&r1_bio->remaining)) {
1802 int s = r1_bio->sectors;
1803 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1804 test_bit(R1BIO_WriteError, &r1_bio->state))
1805 reschedule_retry(r1_bio);
1806 else {
1807 put_buf(r1_bio);
1808 md_done_sync(mddev, s, uptodate);
1813 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1814 int sectors, struct page *page, int rw)
1816 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1817 /* success */
1818 return 1;
1819 if (rw == WRITE) {
1820 set_bit(WriteErrorSeen, &rdev->flags);
1821 if (!test_and_set_bit(WantReplacement,
1822 &rdev->flags))
1823 set_bit(MD_RECOVERY_NEEDED, &
1824 rdev->mddev->recovery);
1826 /* need to record an error - either for the block or the device */
1827 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1828 md_error(rdev->mddev, rdev);
1829 return 0;
1832 static int fix_sync_read_error(struct r1bio *r1_bio)
1834 /* Try some synchronous reads of other devices to get
1835 * good data, much like with normal read errors. Only
1836 * read into the pages we already have so we don't
1837 * need to re-issue the read request.
1838 * We don't need to freeze the array, because being in an
1839 * active sync request, there is no normal IO, and
1840 * no overlapping syncs.
1841 * We don't need to check is_badblock() again as we
1842 * made sure that anything with a bad block in range
1843 * will have bi_end_io clear.
1845 struct mddev *mddev = r1_bio->mddev;
1846 struct r1conf *conf = mddev->private;
1847 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1848 sector_t sect = r1_bio->sector;
1849 int sectors = r1_bio->sectors;
1850 int idx = 0;
1852 while(sectors) {
1853 int s = sectors;
1854 int d = r1_bio->read_disk;
1855 int success = 0;
1856 struct md_rdev *rdev;
1857 int start;
1859 if (s > (PAGE_SIZE>>9))
1860 s = PAGE_SIZE >> 9;
1861 do {
1862 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1863 /* No rcu protection needed here devices
1864 * can only be removed when no resync is
1865 * active, and resync is currently active
1867 rdev = conf->mirrors[d].rdev;
1868 if (sync_page_io(rdev, sect, s<<9,
1869 bio->bi_io_vec[idx].bv_page,
1870 READ, false)) {
1871 success = 1;
1872 break;
1875 d++;
1876 if (d == conf->raid_disks * 2)
1877 d = 0;
1878 } while (!success && d != r1_bio->read_disk);
1880 if (!success) {
1881 char b[BDEVNAME_SIZE];
1882 int abort = 0;
1883 /* Cannot read from anywhere, this block is lost.
1884 * Record a bad block on each device. If that doesn't
1885 * work just disable and interrupt the recovery.
1886 * Don't fail devices as that won't really help.
1888 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1889 " for block %llu\n",
1890 mdname(mddev),
1891 bdevname(bio->bi_bdev, b),
1892 (unsigned long long)r1_bio->sector);
1893 for (d = 0; d < conf->raid_disks * 2; d++) {
1894 rdev = conf->mirrors[d].rdev;
1895 if (!rdev || test_bit(Faulty, &rdev->flags))
1896 continue;
1897 if (!rdev_set_badblocks(rdev, sect, s, 0))
1898 abort = 1;
1900 if (abort) {
1901 conf->recovery_disabled =
1902 mddev->recovery_disabled;
1903 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1904 md_done_sync(mddev, r1_bio->sectors, 0);
1905 put_buf(r1_bio);
1906 return 0;
1908 /* Try next page */
1909 sectors -= s;
1910 sect += s;
1911 idx++;
1912 continue;
1915 start = d;
1916 /* write it back and re-read */
1917 while (d != r1_bio->read_disk) {
1918 if (d == 0)
1919 d = conf->raid_disks * 2;
1920 d--;
1921 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1922 continue;
1923 rdev = conf->mirrors[d].rdev;
1924 if (r1_sync_page_io(rdev, sect, s,
1925 bio->bi_io_vec[idx].bv_page,
1926 WRITE) == 0) {
1927 r1_bio->bios[d]->bi_end_io = NULL;
1928 rdev_dec_pending(rdev, mddev);
1931 d = start;
1932 while (d != r1_bio->read_disk) {
1933 if (d == 0)
1934 d = conf->raid_disks * 2;
1935 d--;
1936 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1937 continue;
1938 rdev = conf->mirrors[d].rdev;
1939 if (r1_sync_page_io(rdev, sect, s,
1940 bio->bi_io_vec[idx].bv_page,
1941 READ) != 0)
1942 atomic_add(s, &rdev->corrected_errors);
1944 sectors -= s;
1945 sect += s;
1946 idx ++;
1948 set_bit(R1BIO_Uptodate, &r1_bio->state);
1949 set_bit(BIO_UPTODATE, &bio->bi_flags);
1950 return 1;
1953 static int process_checks(struct r1bio *r1_bio)
1955 /* We have read all readable devices. If we haven't
1956 * got the block, then there is no hope left.
1957 * If we have, then we want to do a comparison
1958 * and skip the write if everything is the same.
1959 * If any blocks failed to read, then we need to
1960 * attempt an over-write
1962 struct mddev *mddev = r1_bio->mddev;
1963 struct r1conf *conf = mddev->private;
1964 int primary;
1965 int i;
1966 int vcnt;
1968 /* Fix variable parts of all bios */
1969 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1970 for (i = 0; i < conf->raid_disks * 2; i++) {
1971 int j;
1972 int size;
1973 int uptodate;
1974 struct bio *b = r1_bio->bios[i];
1975 if (b->bi_end_io != end_sync_read)
1976 continue;
1977 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1978 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1979 bio_reset(b);
1980 if (!uptodate)
1981 clear_bit(BIO_UPTODATE, &b->bi_flags);
1982 b->bi_vcnt = vcnt;
1983 b->bi_iter.bi_size = r1_bio->sectors << 9;
1984 b->bi_iter.bi_sector = r1_bio->sector +
1985 conf->mirrors[i].rdev->data_offset;
1986 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1987 b->bi_end_io = end_sync_read;
1988 b->bi_private = r1_bio;
1990 size = b->bi_iter.bi_size;
1991 for (j = 0; j < vcnt ; j++) {
1992 struct bio_vec *bi;
1993 bi = &b->bi_io_vec[j];
1994 bi->bv_offset = 0;
1995 if (size > PAGE_SIZE)
1996 bi->bv_len = PAGE_SIZE;
1997 else
1998 bi->bv_len = size;
1999 size -= PAGE_SIZE;
2002 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2003 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2004 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2005 r1_bio->bios[primary]->bi_end_io = NULL;
2006 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2007 break;
2009 r1_bio->read_disk = primary;
2010 for (i = 0; i < conf->raid_disks * 2; i++) {
2011 int j;
2012 struct bio *pbio = r1_bio->bios[primary];
2013 struct bio *sbio = r1_bio->bios[i];
2014 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2016 if (sbio->bi_end_io != end_sync_read)
2017 continue;
2018 /* Now we can 'fixup' the BIO_UPTODATE flag */
2019 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2021 if (uptodate) {
2022 for (j = vcnt; j-- ; ) {
2023 struct page *p, *s;
2024 p = pbio->bi_io_vec[j].bv_page;
2025 s = sbio->bi_io_vec[j].bv_page;
2026 if (memcmp(page_address(p),
2027 page_address(s),
2028 sbio->bi_io_vec[j].bv_len))
2029 break;
2031 } else
2032 j = 0;
2033 if (j >= 0)
2034 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2035 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2036 && uptodate)) {
2037 /* No need to write to this device. */
2038 sbio->bi_end_io = NULL;
2039 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2040 continue;
2043 bio_copy_data(sbio, pbio);
2045 return 0;
2048 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2050 struct r1conf *conf = mddev->private;
2051 int i;
2052 int disks = conf->raid_disks * 2;
2053 struct bio *bio, *wbio;
2055 bio = r1_bio->bios[r1_bio->read_disk];
2057 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2058 /* ouch - failed to read all of that. */
2059 if (!fix_sync_read_error(r1_bio))
2060 return;
2062 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2063 if (process_checks(r1_bio) < 0)
2064 return;
2066 * schedule writes
2068 atomic_set(&r1_bio->remaining, 1);
2069 for (i = 0; i < disks ; i++) {
2070 wbio = r1_bio->bios[i];
2071 if (wbio->bi_end_io == NULL ||
2072 (wbio->bi_end_io == end_sync_read &&
2073 (i == r1_bio->read_disk ||
2074 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2075 continue;
2077 wbio->bi_rw = WRITE;
2078 wbio->bi_end_io = end_sync_write;
2079 atomic_inc(&r1_bio->remaining);
2080 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2082 generic_make_request(wbio);
2085 if (atomic_dec_and_test(&r1_bio->remaining)) {
2086 /* if we're here, all write(s) have completed, so clean up */
2087 int s = r1_bio->sectors;
2088 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2089 test_bit(R1BIO_WriteError, &r1_bio->state))
2090 reschedule_retry(r1_bio);
2091 else {
2092 put_buf(r1_bio);
2093 md_done_sync(mddev, s, 1);
2099 * This is a kernel thread which:
2101 * 1. Retries failed read operations on working mirrors.
2102 * 2. Updates the raid superblock when problems encounter.
2103 * 3. Performs writes following reads for array synchronising.
2106 static void fix_read_error(struct r1conf *conf, int read_disk,
2107 sector_t sect, int sectors)
2109 struct mddev *mddev = conf->mddev;
2110 while(sectors) {
2111 int s = sectors;
2112 int d = read_disk;
2113 int success = 0;
2114 int start;
2115 struct md_rdev *rdev;
2117 if (s > (PAGE_SIZE>>9))
2118 s = PAGE_SIZE >> 9;
2120 do {
2121 /* Note: no rcu protection needed here
2122 * as this is synchronous in the raid1d thread
2123 * which is the thread that might remove
2124 * a device. If raid1d ever becomes multi-threaded....
2126 sector_t first_bad;
2127 int bad_sectors;
2129 rdev = conf->mirrors[d].rdev;
2130 if (rdev &&
2131 (test_bit(In_sync, &rdev->flags) ||
2132 (!test_bit(Faulty, &rdev->flags) &&
2133 rdev->recovery_offset >= sect + s)) &&
2134 is_badblock(rdev, sect, s,
2135 &first_bad, &bad_sectors) == 0 &&
2136 sync_page_io(rdev, sect, s<<9,
2137 conf->tmppage, READ, false))
2138 success = 1;
2139 else {
2140 d++;
2141 if (d == conf->raid_disks * 2)
2142 d = 0;
2144 } while (!success && d != read_disk);
2146 if (!success) {
2147 /* Cannot read from anywhere - mark it bad */
2148 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2149 if (!rdev_set_badblocks(rdev, sect, s, 0))
2150 md_error(mddev, rdev);
2151 break;
2153 /* write it back and re-read */
2154 start = d;
2155 while (d != read_disk) {
2156 if (d==0)
2157 d = conf->raid_disks * 2;
2158 d--;
2159 rdev = conf->mirrors[d].rdev;
2160 if (rdev &&
2161 !test_bit(Faulty, &rdev->flags))
2162 r1_sync_page_io(rdev, sect, s,
2163 conf->tmppage, WRITE);
2165 d = start;
2166 while (d != read_disk) {
2167 char b[BDEVNAME_SIZE];
2168 if (d==0)
2169 d = conf->raid_disks * 2;
2170 d--;
2171 rdev = conf->mirrors[d].rdev;
2172 if (rdev &&
2173 !test_bit(Faulty, &rdev->flags)) {
2174 if (r1_sync_page_io(rdev, sect, s,
2175 conf->tmppage, READ)) {
2176 atomic_add(s, &rdev->corrected_errors);
2177 printk(KERN_INFO
2178 "md/raid1:%s: read error corrected "
2179 "(%d sectors at %llu on %s)\n",
2180 mdname(mddev), s,
2181 (unsigned long long)(sect +
2182 rdev->data_offset),
2183 bdevname(rdev->bdev, b));
2187 sectors -= s;
2188 sect += s;
2192 static int narrow_write_error(struct r1bio *r1_bio, int i)
2194 struct mddev *mddev = r1_bio->mddev;
2195 struct r1conf *conf = mddev->private;
2196 struct md_rdev *rdev = conf->mirrors[i].rdev;
2198 /* bio has the data to be written to device 'i' where
2199 * we just recently had a write error.
2200 * We repeatedly clone the bio and trim down to one block,
2201 * then try the write. Where the write fails we record
2202 * a bad block.
2203 * It is conceivable that the bio doesn't exactly align with
2204 * blocks. We must handle this somehow.
2206 * We currently own a reference on the rdev.
2209 int block_sectors;
2210 sector_t sector;
2211 int sectors;
2212 int sect_to_write = r1_bio->sectors;
2213 int ok = 1;
2215 if (rdev->badblocks.shift < 0)
2216 return 0;
2218 block_sectors = 1 << rdev->badblocks.shift;
2219 sector = r1_bio->sector;
2220 sectors = ((sector + block_sectors)
2221 & ~(sector_t)(block_sectors - 1))
2222 - sector;
2224 while (sect_to_write) {
2225 struct bio *wbio;
2226 if (sectors > sect_to_write)
2227 sectors = sect_to_write;
2228 /* Write at 'sector' for 'sectors'*/
2230 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2231 unsigned vcnt = r1_bio->behind_page_count;
2232 struct bio_vec *vec = r1_bio->behind_bvecs;
2234 while (!vec->bv_page) {
2235 vec++;
2236 vcnt--;
2239 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2240 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2242 wbio->bi_vcnt = vcnt;
2243 } else {
2244 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2247 wbio->bi_rw = WRITE;
2248 wbio->bi_iter.bi_sector = r1_bio->sector;
2249 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2251 bio_trim(wbio, sector - r1_bio->sector, sectors);
2252 wbio->bi_iter.bi_sector += rdev->data_offset;
2253 wbio->bi_bdev = rdev->bdev;
2254 if (submit_bio_wait(WRITE, wbio) < 0)
2255 /* failure! */
2256 ok = rdev_set_badblocks(rdev, sector,
2257 sectors, 0)
2258 && ok;
2260 bio_put(wbio);
2261 sect_to_write -= sectors;
2262 sector += sectors;
2263 sectors = block_sectors;
2265 return ok;
2268 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2270 int m;
2271 int s = r1_bio->sectors;
2272 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2273 struct md_rdev *rdev = conf->mirrors[m].rdev;
2274 struct bio *bio = r1_bio->bios[m];
2275 if (bio->bi_end_io == NULL)
2276 continue;
2277 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2278 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2279 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2281 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2282 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2283 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2284 md_error(conf->mddev, rdev);
2287 put_buf(r1_bio);
2288 md_done_sync(conf->mddev, s, 1);
2291 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2293 int m;
2294 for (m = 0; m < conf->raid_disks * 2 ; m++)
2295 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2296 struct md_rdev *rdev = conf->mirrors[m].rdev;
2297 rdev_clear_badblocks(rdev,
2298 r1_bio->sector,
2299 r1_bio->sectors, 0);
2300 rdev_dec_pending(rdev, conf->mddev);
2301 } else if (r1_bio->bios[m] != NULL) {
2302 /* This drive got a write error. We need to
2303 * narrow down and record precise write
2304 * errors.
2306 if (!narrow_write_error(r1_bio, m)) {
2307 md_error(conf->mddev,
2308 conf->mirrors[m].rdev);
2309 /* an I/O failed, we can't clear the bitmap */
2310 set_bit(R1BIO_Degraded, &r1_bio->state);
2312 rdev_dec_pending(conf->mirrors[m].rdev,
2313 conf->mddev);
2315 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2316 close_write(r1_bio);
2317 raid_end_bio_io(r1_bio);
2320 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2322 int disk;
2323 int max_sectors;
2324 struct mddev *mddev = conf->mddev;
2325 struct bio *bio;
2326 char b[BDEVNAME_SIZE];
2327 struct md_rdev *rdev;
2329 clear_bit(R1BIO_ReadError, &r1_bio->state);
2330 /* we got a read error. Maybe the drive is bad. Maybe just
2331 * the block and we can fix it.
2332 * We freeze all other IO, and try reading the block from
2333 * other devices. When we find one, we re-write
2334 * and check it that fixes the read error.
2335 * This is all done synchronously while the array is
2336 * frozen
2338 if (mddev->ro == 0) {
2339 freeze_array(conf, 1);
2340 fix_read_error(conf, r1_bio->read_disk,
2341 r1_bio->sector, r1_bio->sectors);
2342 unfreeze_array(conf);
2343 } else
2344 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2345 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2347 bio = r1_bio->bios[r1_bio->read_disk];
2348 bdevname(bio->bi_bdev, b);
2349 read_more:
2350 disk = read_balance(conf, r1_bio, &max_sectors);
2351 if (disk == -1) {
2352 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2353 " read error for block %llu\n",
2354 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2355 raid_end_bio_io(r1_bio);
2356 } else {
2357 const unsigned long do_sync
2358 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2359 if (bio) {
2360 r1_bio->bios[r1_bio->read_disk] =
2361 mddev->ro ? IO_BLOCKED : NULL;
2362 bio_put(bio);
2364 r1_bio->read_disk = disk;
2365 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2366 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2367 max_sectors);
2368 r1_bio->bios[r1_bio->read_disk] = bio;
2369 rdev = conf->mirrors[disk].rdev;
2370 printk_ratelimited(KERN_ERR
2371 "md/raid1:%s: redirecting sector %llu"
2372 " to other mirror: %s\n",
2373 mdname(mddev),
2374 (unsigned long long)r1_bio->sector,
2375 bdevname(rdev->bdev, b));
2376 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2377 bio->bi_bdev = rdev->bdev;
2378 bio->bi_end_io = raid1_end_read_request;
2379 bio->bi_rw = READ | do_sync;
2380 bio->bi_private = r1_bio;
2381 if (max_sectors < r1_bio->sectors) {
2382 /* Drat - have to split this up more */
2383 struct bio *mbio = r1_bio->master_bio;
2384 int sectors_handled = (r1_bio->sector + max_sectors
2385 - mbio->bi_iter.bi_sector);
2386 r1_bio->sectors = max_sectors;
2387 spin_lock_irq(&conf->device_lock);
2388 if (mbio->bi_phys_segments == 0)
2389 mbio->bi_phys_segments = 2;
2390 else
2391 mbio->bi_phys_segments++;
2392 spin_unlock_irq(&conf->device_lock);
2393 generic_make_request(bio);
2394 bio = NULL;
2396 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2398 r1_bio->master_bio = mbio;
2399 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2400 r1_bio->state = 0;
2401 set_bit(R1BIO_ReadError, &r1_bio->state);
2402 r1_bio->mddev = mddev;
2403 r1_bio->sector = mbio->bi_iter.bi_sector +
2404 sectors_handled;
2406 goto read_more;
2407 } else
2408 generic_make_request(bio);
2412 static void raid1d(struct md_thread *thread)
2414 struct mddev *mddev = thread->mddev;
2415 struct r1bio *r1_bio;
2416 unsigned long flags;
2417 struct r1conf *conf = mddev->private;
2418 struct list_head *head = &conf->retry_list;
2419 struct blk_plug plug;
2421 md_check_recovery(mddev);
2423 blk_start_plug(&plug);
2424 for (;;) {
2426 flush_pending_writes(conf);
2428 spin_lock_irqsave(&conf->device_lock, flags);
2429 if (list_empty(head)) {
2430 spin_unlock_irqrestore(&conf->device_lock, flags);
2431 break;
2433 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2434 list_del(head->prev);
2435 conf->nr_queued--;
2436 spin_unlock_irqrestore(&conf->device_lock, flags);
2438 mddev = r1_bio->mddev;
2439 conf = mddev->private;
2440 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2441 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2442 test_bit(R1BIO_WriteError, &r1_bio->state))
2443 handle_sync_write_finished(conf, r1_bio);
2444 else
2445 sync_request_write(mddev, r1_bio);
2446 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2447 test_bit(R1BIO_WriteError, &r1_bio->state))
2448 handle_write_finished(conf, r1_bio);
2449 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2450 handle_read_error(conf, r1_bio);
2451 else
2452 /* just a partial read to be scheduled from separate
2453 * context
2455 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2457 cond_resched();
2458 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2459 md_check_recovery(mddev);
2461 blk_finish_plug(&plug);
2465 static int init_resync(struct r1conf *conf)
2467 int buffs;
2469 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2470 BUG_ON(conf->r1buf_pool);
2471 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2472 conf->poolinfo);
2473 if (!conf->r1buf_pool)
2474 return -ENOMEM;
2475 conf->next_resync = 0;
2476 return 0;
2480 * perform a "sync" on one "block"
2482 * We need to make sure that no normal I/O request - particularly write
2483 * requests - conflict with active sync requests.
2485 * This is achieved by tracking pending requests and a 'barrier' concept
2486 * that can be installed to exclude normal IO requests.
2489 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2491 struct r1conf *conf = mddev->private;
2492 struct r1bio *r1_bio;
2493 struct bio *bio;
2494 sector_t max_sector, nr_sectors;
2495 int disk = -1;
2496 int i;
2497 int wonly = -1;
2498 int write_targets = 0, read_targets = 0;
2499 sector_t sync_blocks;
2500 int still_degraded = 0;
2501 int good_sectors = RESYNC_SECTORS;
2502 int min_bad = 0; /* number of sectors that are bad in all devices */
2504 if (!conf->r1buf_pool)
2505 if (init_resync(conf))
2506 return 0;
2508 max_sector = mddev->dev_sectors;
2509 if (sector_nr >= max_sector) {
2510 /* If we aborted, we need to abort the
2511 * sync on the 'current' bitmap chunk (there will
2512 * only be one in raid1 resync.
2513 * We can find the current addess in mddev->curr_resync
2515 if (mddev->curr_resync < max_sector) /* aborted */
2516 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2517 &sync_blocks, 1);
2518 else /* completed sync */
2519 conf->fullsync = 0;
2521 bitmap_close_sync(mddev->bitmap);
2522 close_sync(conf);
2523 return 0;
2526 if (mddev->bitmap == NULL &&
2527 mddev->recovery_cp == MaxSector &&
2528 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2529 conf->fullsync == 0) {
2530 *skipped = 1;
2531 return max_sector - sector_nr;
2533 /* before building a request, check if we can skip these blocks..
2534 * This call the bitmap_start_sync doesn't actually record anything
2536 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2537 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2538 /* We can skip this block, and probably several more */
2539 *skipped = 1;
2540 return sync_blocks;
2543 * If there is non-resync activity waiting for a turn,
2544 * and resync is going fast enough,
2545 * then let it though before starting on this new sync request.
2547 if (!go_faster && conf->nr_waiting)
2548 msleep_interruptible(1000);
2550 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2551 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2553 raise_barrier(conf, sector_nr);
2555 rcu_read_lock();
2557 * If we get a correctably read error during resync or recovery,
2558 * we might want to read from a different device. So we
2559 * flag all drives that could conceivably be read from for READ,
2560 * and any others (which will be non-In_sync devices) for WRITE.
2561 * If a read fails, we try reading from something else for which READ
2562 * is OK.
2565 r1_bio->mddev = mddev;
2566 r1_bio->sector = sector_nr;
2567 r1_bio->state = 0;
2568 set_bit(R1BIO_IsSync, &r1_bio->state);
2570 for (i = 0; i < conf->raid_disks * 2; i++) {
2571 struct md_rdev *rdev;
2572 bio = r1_bio->bios[i];
2573 bio_reset(bio);
2575 rdev = rcu_dereference(conf->mirrors[i].rdev);
2576 if (rdev == NULL ||
2577 test_bit(Faulty, &rdev->flags)) {
2578 if (i < conf->raid_disks)
2579 still_degraded = 1;
2580 } else if (!test_bit(In_sync, &rdev->flags)) {
2581 bio->bi_rw = WRITE;
2582 bio->bi_end_io = end_sync_write;
2583 write_targets ++;
2584 } else {
2585 /* may need to read from here */
2586 sector_t first_bad = MaxSector;
2587 int bad_sectors;
2589 if (is_badblock(rdev, sector_nr, good_sectors,
2590 &first_bad, &bad_sectors)) {
2591 if (first_bad > sector_nr)
2592 good_sectors = first_bad - sector_nr;
2593 else {
2594 bad_sectors -= (sector_nr - first_bad);
2595 if (min_bad == 0 ||
2596 min_bad > bad_sectors)
2597 min_bad = bad_sectors;
2600 if (sector_nr < first_bad) {
2601 if (test_bit(WriteMostly, &rdev->flags)) {
2602 if (wonly < 0)
2603 wonly = i;
2604 } else {
2605 if (disk < 0)
2606 disk = i;
2608 bio->bi_rw = READ;
2609 bio->bi_end_io = end_sync_read;
2610 read_targets++;
2611 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2612 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2613 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2615 * The device is suitable for reading (InSync),
2616 * but has bad block(s) here. Let's try to correct them,
2617 * if we are doing resync or repair. Otherwise, leave
2618 * this device alone for this sync request.
2620 bio->bi_rw = WRITE;
2621 bio->bi_end_io = end_sync_write;
2622 write_targets++;
2625 if (bio->bi_end_io) {
2626 atomic_inc(&rdev->nr_pending);
2627 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2628 bio->bi_bdev = rdev->bdev;
2629 bio->bi_private = r1_bio;
2632 rcu_read_unlock();
2633 if (disk < 0)
2634 disk = wonly;
2635 r1_bio->read_disk = disk;
2637 if (read_targets == 0 && min_bad > 0) {
2638 /* These sectors are bad on all InSync devices, so we
2639 * need to mark them bad on all write targets
2641 int ok = 1;
2642 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2643 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2644 struct md_rdev *rdev = conf->mirrors[i].rdev;
2645 ok = rdev_set_badblocks(rdev, sector_nr,
2646 min_bad, 0
2647 ) && ok;
2649 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2650 *skipped = 1;
2651 put_buf(r1_bio);
2653 if (!ok) {
2654 /* Cannot record the badblocks, so need to
2655 * abort the resync.
2656 * If there are multiple read targets, could just
2657 * fail the really bad ones ???
2659 conf->recovery_disabled = mddev->recovery_disabled;
2660 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2661 return 0;
2662 } else
2663 return min_bad;
2666 if (min_bad > 0 && min_bad < good_sectors) {
2667 /* only resync enough to reach the next bad->good
2668 * transition */
2669 good_sectors = min_bad;
2672 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2673 /* extra read targets are also write targets */
2674 write_targets += read_targets-1;
2676 if (write_targets == 0 || read_targets == 0) {
2677 /* There is nowhere to write, so all non-sync
2678 * drives must be failed - so we are finished
2680 sector_t rv;
2681 if (min_bad > 0)
2682 max_sector = sector_nr + min_bad;
2683 rv = max_sector - sector_nr;
2684 *skipped = 1;
2685 put_buf(r1_bio);
2686 return rv;
2689 if (max_sector > mddev->resync_max)
2690 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2691 if (max_sector > sector_nr + good_sectors)
2692 max_sector = sector_nr + good_sectors;
2693 nr_sectors = 0;
2694 sync_blocks = 0;
2695 do {
2696 struct page *page;
2697 int len = PAGE_SIZE;
2698 if (sector_nr + (len>>9) > max_sector)
2699 len = (max_sector - sector_nr) << 9;
2700 if (len == 0)
2701 break;
2702 if (sync_blocks == 0) {
2703 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2704 &sync_blocks, still_degraded) &&
2705 !conf->fullsync &&
2706 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2707 break;
2708 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2709 if ((len >> 9) > sync_blocks)
2710 len = sync_blocks<<9;
2713 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2714 bio = r1_bio->bios[i];
2715 if (bio->bi_end_io) {
2716 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2717 if (bio_add_page(bio, page, len, 0) == 0) {
2718 /* stop here */
2719 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2720 while (i > 0) {
2721 i--;
2722 bio = r1_bio->bios[i];
2723 if (bio->bi_end_io==NULL)
2724 continue;
2725 /* remove last page from this bio */
2726 bio->bi_vcnt--;
2727 bio->bi_iter.bi_size -= len;
2728 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2730 goto bio_full;
2734 nr_sectors += len>>9;
2735 sector_nr += len>>9;
2736 sync_blocks -= (len>>9);
2737 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2738 bio_full:
2739 r1_bio->sectors = nr_sectors;
2741 /* For a user-requested sync, we read all readable devices and do a
2742 * compare
2744 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2745 atomic_set(&r1_bio->remaining, read_targets);
2746 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2747 bio = r1_bio->bios[i];
2748 if (bio->bi_end_io == end_sync_read) {
2749 read_targets--;
2750 md_sync_acct(bio->bi_bdev, nr_sectors);
2751 generic_make_request(bio);
2754 } else {
2755 atomic_set(&r1_bio->remaining, 1);
2756 bio = r1_bio->bios[r1_bio->read_disk];
2757 md_sync_acct(bio->bi_bdev, nr_sectors);
2758 generic_make_request(bio);
2761 return nr_sectors;
2764 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2766 if (sectors)
2767 return sectors;
2769 return mddev->dev_sectors;
2772 static struct r1conf *setup_conf(struct mddev *mddev)
2774 struct r1conf *conf;
2775 int i;
2776 struct raid1_info *disk;
2777 struct md_rdev *rdev;
2778 int err = -ENOMEM;
2780 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2781 if (!conf)
2782 goto abort;
2784 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2785 * mddev->raid_disks * 2,
2786 GFP_KERNEL);
2787 if (!conf->mirrors)
2788 goto abort;
2790 conf->tmppage = alloc_page(GFP_KERNEL);
2791 if (!conf->tmppage)
2792 goto abort;
2794 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2795 if (!conf->poolinfo)
2796 goto abort;
2797 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2798 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2799 r1bio_pool_free,
2800 conf->poolinfo);
2801 if (!conf->r1bio_pool)
2802 goto abort;
2804 conf->poolinfo->mddev = mddev;
2806 err = -EINVAL;
2807 spin_lock_init(&conf->device_lock);
2808 rdev_for_each(rdev, mddev) {
2809 struct request_queue *q;
2810 int disk_idx = rdev->raid_disk;
2811 if (disk_idx >= mddev->raid_disks
2812 || disk_idx < 0)
2813 continue;
2814 if (test_bit(Replacement, &rdev->flags))
2815 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2816 else
2817 disk = conf->mirrors + disk_idx;
2819 if (disk->rdev)
2820 goto abort;
2821 disk->rdev = rdev;
2822 q = bdev_get_queue(rdev->bdev);
2823 if (q->merge_bvec_fn)
2824 mddev->merge_check_needed = 1;
2826 disk->head_position = 0;
2827 disk->seq_start = MaxSector;
2829 conf->raid_disks = mddev->raid_disks;
2830 conf->mddev = mddev;
2831 INIT_LIST_HEAD(&conf->retry_list);
2833 spin_lock_init(&conf->resync_lock);
2834 init_waitqueue_head(&conf->wait_barrier);
2836 bio_list_init(&conf->pending_bio_list);
2837 conf->pending_count = 0;
2838 conf->recovery_disabled = mddev->recovery_disabled - 1;
2840 conf->start_next_window = MaxSector;
2841 conf->current_window_requests = conf->next_window_requests = 0;
2843 err = -EIO;
2844 for (i = 0; i < conf->raid_disks * 2; i++) {
2846 disk = conf->mirrors + i;
2848 if (i < conf->raid_disks &&
2849 disk[conf->raid_disks].rdev) {
2850 /* This slot has a replacement. */
2851 if (!disk->rdev) {
2852 /* No original, just make the replacement
2853 * a recovering spare
2855 disk->rdev =
2856 disk[conf->raid_disks].rdev;
2857 disk[conf->raid_disks].rdev = NULL;
2858 } else if (!test_bit(In_sync, &disk->rdev->flags))
2859 /* Original is not in_sync - bad */
2860 goto abort;
2863 if (!disk->rdev ||
2864 !test_bit(In_sync, &disk->rdev->flags)) {
2865 disk->head_position = 0;
2866 if (disk->rdev &&
2867 (disk->rdev->saved_raid_disk < 0))
2868 conf->fullsync = 1;
2872 err = -ENOMEM;
2873 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2874 if (!conf->thread) {
2875 printk(KERN_ERR
2876 "md/raid1:%s: couldn't allocate thread\n",
2877 mdname(mddev));
2878 goto abort;
2881 return conf;
2883 abort:
2884 if (conf) {
2885 if (conf->r1bio_pool)
2886 mempool_destroy(conf->r1bio_pool);
2887 kfree(conf->mirrors);
2888 safe_put_page(conf->tmppage);
2889 kfree(conf->poolinfo);
2890 kfree(conf);
2892 return ERR_PTR(err);
2895 static int stop(struct mddev *mddev);
2896 static int run(struct mddev *mddev)
2898 struct r1conf *conf;
2899 int i;
2900 struct md_rdev *rdev;
2901 int ret;
2902 bool discard_supported = false;
2904 if (mddev->level != 1) {
2905 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2906 mdname(mddev), mddev->level);
2907 return -EIO;
2909 if (mddev->reshape_position != MaxSector) {
2910 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2911 mdname(mddev));
2912 return -EIO;
2915 * copy the already verified devices into our private RAID1
2916 * bookkeeping area. [whatever we allocate in run(),
2917 * should be freed in stop()]
2919 if (mddev->private == NULL)
2920 conf = setup_conf(mddev);
2921 else
2922 conf = mddev->private;
2924 if (IS_ERR(conf))
2925 return PTR_ERR(conf);
2927 if (mddev->queue)
2928 blk_queue_max_write_same_sectors(mddev->queue, 0);
2930 rdev_for_each(rdev, mddev) {
2931 if (!mddev->gendisk)
2932 continue;
2933 disk_stack_limits(mddev->gendisk, rdev->bdev,
2934 rdev->data_offset << 9);
2935 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2936 discard_supported = true;
2939 mddev->degraded = 0;
2940 for (i=0; i < conf->raid_disks; i++)
2941 if (conf->mirrors[i].rdev == NULL ||
2942 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2943 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2944 mddev->degraded++;
2946 if (conf->raid_disks - mddev->degraded == 1)
2947 mddev->recovery_cp = MaxSector;
2949 if (mddev->recovery_cp != MaxSector)
2950 printk(KERN_NOTICE "md/raid1:%s: not clean"
2951 " -- starting background reconstruction\n",
2952 mdname(mddev));
2953 printk(KERN_INFO
2954 "md/raid1:%s: active with %d out of %d mirrors\n",
2955 mdname(mddev), mddev->raid_disks - mddev->degraded,
2956 mddev->raid_disks);
2959 * Ok, everything is just fine now
2961 mddev->thread = conf->thread;
2962 conf->thread = NULL;
2963 mddev->private = conf;
2965 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2967 if (mddev->queue) {
2968 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2969 mddev->queue->backing_dev_info.congested_data = mddev;
2970 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2972 if (discard_supported)
2973 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2974 mddev->queue);
2975 else
2976 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2977 mddev->queue);
2980 ret = md_integrity_register(mddev);
2981 if (ret)
2982 stop(mddev);
2983 return ret;
2986 static int stop(struct mddev *mddev)
2988 struct r1conf *conf = mddev->private;
2989 struct bitmap *bitmap = mddev->bitmap;
2991 /* wait for behind writes to complete */
2992 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2993 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2994 mdname(mddev));
2995 /* need to kick something here to make sure I/O goes? */
2996 wait_event(bitmap->behind_wait,
2997 atomic_read(&bitmap->behind_writes) == 0);
3000 freeze_array(conf, 0);
3001 unfreeze_array(conf);
3003 md_unregister_thread(&mddev->thread);
3004 if (conf->r1bio_pool)
3005 mempool_destroy(conf->r1bio_pool);
3006 kfree(conf->mirrors);
3007 safe_put_page(conf->tmppage);
3008 kfree(conf->poolinfo);
3009 kfree(conf);
3010 mddev->private = NULL;
3011 return 0;
3014 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3016 /* no resync is happening, and there is enough space
3017 * on all devices, so we can resize.
3018 * We need to make sure resync covers any new space.
3019 * If the array is shrinking we should possibly wait until
3020 * any io in the removed space completes, but it hardly seems
3021 * worth it.
3023 sector_t newsize = raid1_size(mddev, sectors, 0);
3024 if (mddev->external_size &&
3025 mddev->array_sectors > newsize)
3026 return -EINVAL;
3027 if (mddev->bitmap) {
3028 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3029 if (ret)
3030 return ret;
3032 md_set_array_sectors(mddev, newsize);
3033 set_capacity(mddev->gendisk, mddev->array_sectors);
3034 revalidate_disk(mddev->gendisk);
3035 if (sectors > mddev->dev_sectors &&
3036 mddev->recovery_cp > mddev->dev_sectors) {
3037 mddev->recovery_cp = mddev->dev_sectors;
3038 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3040 mddev->dev_sectors = sectors;
3041 mddev->resync_max_sectors = sectors;
3042 return 0;
3045 static int raid1_reshape(struct mddev *mddev)
3047 /* We need to:
3048 * 1/ resize the r1bio_pool
3049 * 2/ resize conf->mirrors
3051 * We allocate a new r1bio_pool if we can.
3052 * Then raise a device barrier and wait until all IO stops.
3053 * Then resize conf->mirrors and swap in the new r1bio pool.
3055 * At the same time, we "pack" the devices so that all the missing
3056 * devices have the higher raid_disk numbers.
3058 mempool_t *newpool, *oldpool;
3059 struct pool_info *newpoolinfo;
3060 struct raid1_info *newmirrors;
3061 struct r1conf *conf = mddev->private;
3062 int cnt, raid_disks;
3063 unsigned long flags;
3064 int d, d2, err;
3066 /* Cannot change chunk_size, layout, or level */
3067 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3068 mddev->layout != mddev->new_layout ||
3069 mddev->level != mddev->new_level) {
3070 mddev->new_chunk_sectors = mddev->chunk_sectors;
3071 mddev->new_layout = mddev->layout;
3072 mddev->new_level = mddev->level;
3073 return -EINVAL;
3076 err = md_allow_write(mddev);
3077 if (err)
3078 return err;
3080 raid_disks = mddev->raid_disks + mddev->delta_disks;
3082 if (raid_disks < conf->raid_disks) {
3083 cnt=0;
3084 for (d= 0; d < conf->raid_disks; d++)
3085 if (conf->mirrors[d].rdev)
3086 cnt++;
3087 if (cnt > raid_disks)
3088 return -EBUSY;
3091 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3092 if (!newpoolinfo)
3093 return -ENOMEM;
3094 newpoolinfo->mddev = mddev;
3095 newpoolinfo->raid_disks = raid_disks * 2;
3097 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3098 r1bio_pool_free, newpoolinfo);
3099 if (!newpool) {
3100 kfree(newpoolinfo);
3101 return -ENOMEM;
3103 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3104 GFP_KERNEL);
3105 if (!newmirrors) {
3106 kfree(newpoolinfo);
3107 mempool_destroy(newpool);
3108 return -ENOMEM;
3111 freeze_array(conf, 0);
3113 /* ok, everything is stopped */
3114 oldpool = conf->r1bio_pool;
3115 conf->r1bio_pool = newpool;
3117 for (d = d2 = 0; d < conf->raid_disks; d++) {
3118 struct md_rdev *rdev = conf->mirrors[d].rdev;
3119 if (rdev && rdev->raid_disk != d2) {
3120 sysfs_unlink_rdev(mddev, rdev);
3121 rdev->raid_disk = d2;
3122 sysfs_unlink_rdev(mddev, rdev);
3123 if (sysfs_link_rdev(mddev, rdev))
3124 printk(KERN_WARNING
3125 "md/raid1:%s: cannot register rd%d\n",
3126 mdname(mddev), rdev->raid_disk);
3128 if (rdev)
3129 newmirrors[d2++].rdev = rdev;
3131 kfree(conf->mirrors);
3132 conf->mirrors = newmirrors;
3133 kfree(conf->poolinfo);
3134 conf->poolinfo = newpoolinfo;
3136 spin_lock_irqsave(&conf->device_lock, flags);
3137 mddev->degraded += (raid_disks - conf->raid_disks);
3138 spin_unlock_irqrestore(&conf->device_lock, flags);
3139 conf->raid_disks = mddev->raid_disks = raid_disks;
3140 mddev->delta_disks = 0;
3142 unfreeze_array(conf);
3144 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3145 md_wakeup_thread(mddev->thread);
3147 mempool_destroy(oldpool);
3148 return 0;
3151 static void raid1_quiesce(struct mddev *mddev, int state)
3153 struct r1conf *conf = mddev->private;
3155 switch(state) {
3156 case 2: /* wake for suspend */
3157 wake_up(&conf->wait_barrier);
3158 break;
3159 case 1:
3160 freeze_array(conf, 0);
3161 break;
3162 case 0:
3163 unfreeze_array(conf);
3164 break;
3168 static void *raid1_takeover(struct mddev *mddev)
3170 /* raid1 can take over:
3171 * raid5 with 2 devices, any layout or chunk size
3173 if (mddev->level == 5 && mddev->raid_disks == 2) {
3174 struct r1conf *conf;
3175 mddev->new_level = 1;
3176 mddev->new_layout = 0;
3177 mddev->new_chunk_sectors = 0;
3178 conf = setup_conf(mddev);
3179 if (!IS_ERR(conf))
3180 /* Array must appear to be quiesced */
3181 conf->array_frozen = 1;
3182 return conf;
3184 return ERR_PTR(-EINVAL);
3187 static struct md_personality raid1_personality =
3189 .name = "raid1",
3190 .level = 1,
3191 .owner = THIS_MODULE,
3192 .make_request = make_request,
3193 .run = run,
3194 .stop = stop,
3195 .status = status,
3196 .error_handler = error,
3197 .hot_add_disk = raid1_add_disk,
3198 .hot_remove_disk= raid1_remove_disk,
3199 .spare_active = raid1_spare_active,
3200 .sync_request = sync_request,
3201 .resize = raid1_resize,
3202 .size = raid1_size,
3203 .check_reshape = raid1_reshape,
3204 .quiesce = raid1_quiesce,
3205 .takeover = raid1_takeover,
3208 static int __init raid_init(void)
3210 return register_md_personality(&raid1_personality);
3213 static void raid_exit(void)
3215 unregister_md_personality(&raid1_personality);
3218 module_init(raid_init);
3219 module_exit(raid_exit);
3220 MODULE_LICENSE("GPL");
3221 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3222 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3223 MODULE_ALIAS("md-raid1");
3224 MODULE_ALIAS("md-level-1");
3226 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);