2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
20 #include <linux/mtd/cfi.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/of_platform.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
26 /* Define max times to check status register before we give up. */
27 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
29 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
31 static const struct spi_device_id
*spi_nor_match_id(const char *name
);
34 * Read the status register, returning its value in the location
35 * Return the status register value.
36 * Returns negative if error occurred.
38 static int read_sr(struct spi_nor
*nor
)
43 ret
= nor
->read_reg(nor
, SPINOR_OP_RDSR
, &val
, 1);
45 pr_err("error %d reading SR\n", (int) ret
);
53 * Read configuration register, returning its value in the
54 * location. Return the configuration register value.
55 * Returns negative if error occured.
57 static int read_cr(struct spi_nor
*nor
)
62 ret
= nor
->read_reg(nor
, SPINOR_OP_RDCR
, &val
, 1);
64 dev_err(nor
->dev
, "error %d reading CR\n", ret
);
72 * Dummy Cycle calculation for different type of read.
73 * It can be used to support more commands with
74 * different dummy cycle requirements.
76 static inline int spi_nor_read_dummy_cycles(struct spi_nor
*nor
)
78 switch (nor
->flash_read
) {
90 * Write status register 1 byte
91 * Returns negative if error occurred.
93 static inline int write_sr(struct spi_nor
*nor
, u8 val
)
95 nor
->cmd_buf
[0] = val
;
96 return nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->cmd_buf
, 1, 0);
100 * Set write enable latch with Write Enable command.
101 * Returns negative if error occurred.
103 static inline int write_enable(struct spi_nor
*nor
)
105 return nor
->write_reg(nor
, SPINOR_OP_WREN
, NULL
, 0, 0);
109 * Send write disble instruction to the chip.
111 static inline int write_disable(struct spi_nor
*nor
)
113 return nor
->write_reg(nor
, SPINOR_OP_WRDI
, NULL
, 0, 0);
116 static inline struct spi_nor
*mtd_to_spi_nor(struct mtd_info
*mtd
)
121 /* Enable/disable 4-byte addressing mode. */
122 static inline int set_4byte(struct spi_nor
*nor
, u32 jedec_id
, int enable
)
125 bool need_wren
= false;
128 switch (JEDEC_MFR(jedec_id
)) {
129 case CFI_MFR_ST
: /* Micron, actually */
130 /* Some Micron need WREN command; all will accept it */
132 case CFI_MFR_MACRONIX
:
133 case 0xEF /* winbond */:
137 cmd
= enable
? SPINOR_OP_EN4B
: SPINOR_OP_EX4B
;
138 status
= nor
->write_reg(nor
, cmd
, NULL
, 0, 0);
145 nor
->cmd_buf
[0] = enable
<< 7;
146 return nor
->write_reg(nor
, SPINOR_OP_BRWR
, nor
->cmd_buf
, 1, 0);
150 static int spi_nor_wait_till_ready(struct spi_nor
*nor
)
152 unsigned long deadline
;
155 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
163 else if (!(sr
& SR_WIP
))
165 } while (!time_after_eq(jiffies
, deadline
));
171 * Service routine to read status register until ready, or timeout occurs.
172 * Returns non-zero if error.
174 static int wait_till_ready(struct spi_nor
*nor
)
176 return nor
->wait_till_ready(nor
);
180 * Erase the whole flash memory
182 * Returns 0 if successful, non-zero otherwise.
184 static int erase_chip(struct spi_nor
*nor
)
188 dev_dbg(nor
->dev
, " %lldKiB\n", (long long)(nor
->mtd
->size
>> 10));
190 /* Wait until finished previous write command. */
191 ret
= wait_till_ready(nor
);
195 /* Send write enable, then erase commands. */
198 return nor
->write_reg(nor
, SPINOR_OP_CHIP_ERASE
, NULL
, 0, 0);
201 static int spi_nor_lock_and_prep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
205 mutex_lock(&nor
->lock
);
208 ret
= nor
->prepare(nor
, ops
);
210 dev_err(nor
->dev
, "failed in the preparation.\n");
211 mutex_unlock(&nor
->lock
);
218 static void spi_nor_unlock_and_unprep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
221 nor
->unprepare(nor
, ops
);
222 mutex_unlock(&nor
->lock
);
226 * Erase an address range on the nor chip. The address range may extend
227 * one or more erase sectors. Return an error is there is a problem erasing.
229 static int spi_nor_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
231 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
236 dev_dbg(nor
->dev
, "at 0x%llx, len %lld\n", (long long)instr
->addr
,
237 (long long)instr
->len
);
239 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
246 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_ERASE
);
250 /* whole-chip erase? */
251 if (len
== mtd
->size
) {
252 if (erase_chip(nor
)) {
257 /* REVISIT in some cases we could speed up erasing large regions
258 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
259 * to use "small sector erase", but that's not always optimal.
262 /* "sector"-at-a-time erase */
265 if (nor
->erase(nor
, addr
)) {
270 addr
+= mtd
->erasesize
;
271 len
-= mtd
->erasesize
;
275 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_ERASE
);
277 instr
->state
= MTD_ERASE_DONE
;
278 mtd_erase_callback(instr
);
283 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_ERASE
);
284 instr
->state
= MTD_ERASE_FAILED
;
288 static int spi_nor_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
290 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
291 uint32_t offset
= ofs
;
292 uint8_t status_old
, status_new
;
295 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_LOCK
);
299 /* Wait until finished previous command */
300 ret
= wait_till_ready(nor
);
304 status_old
= read_sr(nor
);
306 if (offset
< mtd
->size
- (mtd
->size
/ 2))
307 status_new
= status_old
| SR_BP2
| SR_BP1
| SR_BP0
;
308 else if (offset
< mtd
->size
- (mtd
->size
/ 4))
309 status_new
= (status_old
& ~SR_BP0
) | SR_BP2
| SR_BP1
;
310 else if (offset
< mtd
->size
- (mtd
->size
/ 8))
311 status_new
= (status_old
& ~SR_BP1
) | SR_BP2
| SR_BP0
;
312 else if (offset
< mtd
->size
- (mtd
->size
/ 16))
313 status_new
= (status_old
& ~(SR_BP0
| SR_BP1
)) | SR_BP2
;
314 else if (offset
< mtd
->size
- (mtd
->size
/ 32))
315 status_new
= (status_old
& ~SR_BP2
) | SR_BP1
| SR_BP0
;
316 else if (offset
< mtd
->size
- (mtd
->size
/ 64))
317 status_new
= (status_old
& ~(SR_BP2
| SR_BP0
)) | SR_BP1
;
319 status_new
= (status_old
& ~(SR_BP2
| SR_BP1
)) | SR_BP0
;
321 /* Only modify protection if it will not unlock other areas */
322 if ((status_new
& (SR_BP2
| SR_BP1
| SR_BP0
)) >
323 (status_old
& (SR_BP2
| SR_BP1
| SR_BP0
))) {
325 ret
= write_sr(nor
, status_new
);
331 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
335 static int spi_nor_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
337 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
338 uint32_t offset
= ofs
;
339 uint8_t status_old
, status_new
;
342 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
346 /* Wait until finished previous command */
347 ret
= wait_till_ready(nor
);
351 status_old
= read_sr(nor
);
353 if (offset
+len
> mtd
->size
- (mtd
->size
/ 64))
354 status_new
= status_old
& ~(SR_BP2
| SR_BP1
| SR_BP0
);
355 else if (offset
+len
> mtd
->size
- (mtd
->size
/ 32))
356 status_new
= (status_old
& ~(SR_BP2
| SR_BP1
)) | SR_BP0
;
357 else if (offset
+len
> mtd
->size
- (mtd
->size
/ 16))
358 status_new
= (status_old
& ~(SR_BP2
| SR_BP0
)) | SR_BP1
;
359 else if (offset
+len
> mtd
->size
- (mtd
->size
/ 8))
360 status_new
= (status_old
& ~SR_BP2
) | SR_BP1
| SR_BP0
;
361 else if (offset
+len
> mtd
->size
- (mtd
->size
/ 4))
362 status_new
= (status_old
& ~(SR_BP0
| SR_BP1
)) | SR_BP2
;
363 else if (offset
+len
> mtd
->size
- (mtd
->size
/ 2))
364 status_new
= (status_old
& ~SR_BP1
) | SR_BP2
| SR_BP0
;
366 status_new
= (status_old
& ~SR_BP0
) | SR_BP2
| SR_BP1
;
368 /* Only modify protection if it will not lock other areas */
369 if ((status_new
& (SR_BP2
| SR_BP1
| SR_BP0
)) <
370 (status_old
& (SR_BP2
| SR_BP1
| SR_BP0
))) {
372 ret
= write_sr(nor
, status_new
);
378 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_UNLOCK
);
383 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
384 * a high byte of zero plus three data bytes: the manufacturer id,
385 * then a two byte device id.
390 /* The size listed here is what works with SPINOR_OP_SE, which isn't
391 * necessarily called a "sector" by the vendor.
393 unsigned sector_size
;
400 #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
401 #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
402 #define SST_WRITE 0x04 /* use SST byte programming */
403 #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
404 #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
405 #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
406 #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
409 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
410 ((kernel_ulong_t)&(struct flash_info) { \
411 .jedec_id = (_jedec_id), \
412 .ext_id = (_ext_id), \
413 .sector_size = (_sector_size), \
414 .n_sectors = (_n_sectors), \
419 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
420 ((kernel_ulong_t)&(struct flash_info) { \
421 .sector_size = (_sector_size), \
422 .n_sectors = (_n_sectors), \
423 .page_size = (_page_size), \
424 .addr_width = (_addr_width), \
428 /* NOTE: double check command sets and memory organization when you add
429 * more nor chips. This current list focusses on newer chips, which
430 * have been converging on command sets which including JEDEC ID.
432 static const struct spi_device_id spi_nor_ids
[] = {
433 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
434 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
435 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
437 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
438 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
439 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
441 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
442 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
443 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
444 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
446 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K
) },
449 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
450 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
451 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
452 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
453 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K
) },
454 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
457 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K
) },
460 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
461 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
464 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K
) },
465 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K
) },
467 /* Intel/Numonyx -- xxxs33b */
468 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
469 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
470 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
473 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K
) },
474 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
475 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
476 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
477 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
478 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K
) },
479 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
480 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
481 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
482 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
483 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
484 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ
) },
485 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ
) },
488 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
489 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
490 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
491 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K
) },
492 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K
) },
495 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC
) },
496 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC
) },
497 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K
) },
499 /* Spansion -- single (large) sector size only, at least
500 * for the chips listed here (without boot sectors).
502 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
503 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
504 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
505 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
506 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
507 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
508 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
509 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
510 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
511 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
512 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
513 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
514 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
515 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
516 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
517 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
518 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
) },
519 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
521 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
522 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
523 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
524 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
| SST_WRITE
) },
525 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
| SST_WRITE
) },
526 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K
) },
527 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
| SST_WRITE
) },
528 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
| SST_WRITE
) },
529 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
| SST_WRITE
) },
530 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
532 /* ST Microelectronics -- newer production may have feature updates */
533 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
534 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
535 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
536 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
537 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
538 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
539 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
540 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
541 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
542 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
544 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
545 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
546 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
547 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
548 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
549 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
550 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
551 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
552 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
554 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
555 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
556 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
558 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
559 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
560 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
562 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K
) },
563 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
564 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
565 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
566 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
568 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
569 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
570 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
571 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
572 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
573 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
574 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
575 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
576 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K
) },
577 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
578 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
579 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
580 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K
) },
581 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
582 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
583 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K
) },
585 /* Catalyst / On Semiconductor -- non-JEDEC */
586 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
587 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
588 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
589 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
590 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
594 static const struct spi_device_id
*spi_nor_read_id(struct spi_nor
*nor
)
600 struct flash_info
*info
;
602 tmp
= nor
->read_reg(nor
, SPINOR_OP_RDID
, id
, 5);
604 dev_dbg(nor
->dev
, " error %d reading JEDEC ID\n", tmp
);
613 ext_jedec
= id
[3] << 8 | id
[4];
615 for (tmp
= 0; tmp
< ARRAY_SIZE(spi_nor_ids
) - 1; tmp
++) {
616 info
= (void *)spi_nor_ids
[tmp
].driver_data
;
617 if (info
->jedec_id
== jedec
) {
618 if (info
->ext_id
== 0 || info
->ext_id
== ext_jedec
)
619 return &spi_nor_ids
[tmp
];
622 dev_err(nor
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
623 return ERR_PTR(-ENODEV
);
626 static const struct spi_device_id
*jedec_probe(struct spi_nor
*nor
)
628 return nor
->read_id(nor
);
631 static int spi_nor_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
632 size_t *retlen
, u_char
*buf
)
634 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
637 dev_dbg(nor
->dev
, "from 0x%08x, len %zd\n", (u32
)from
, len
);
639 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_READ
);
643 ret
= nor
->read(nor
, from
, len
, retlen
, buf
);
645 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_READ
);
649 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
650 size_t *retlen
, const u_char
*buf
)
652 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
656 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
658 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
662 /* Wait until finished previous write command. */
663 ret
= wait_till_ready(nor
);
669 nor
->sst_write_second
= false;
672 /* Start write from odd address. */
674 nor
->program_opcode
= SPINOR_OP_BP
;
676 /* write one byte. */
677 nor
->write(nor
, to
, 1, retlen
, buf
);
678 ret
= wait_till_ready(nor
);
684 /* Write out most of the data here. */
685 for (; actual
< len
- 1; actual
+= 2) {
686 nor
->program_opcode
= SPINOR_OP_AAI_WP
;
688 /* write two bytes. */
689 nor
->write(nor
, to
, 2, retlen
, buf
+ actual
);
690 ret
= wait_till_ready(nor
);
694 nor
->sst_write_second
= true;
696 nor
->sst_write_second
= false;
699 ret
= wait_till_ready(nor
);
703 /* Write out trailing byte if it exists. */
707 nor
->program_opcode
= SPINOR_OP_BP
;
708 nor
->write(nor
, to
, 1, retlen
, buf
+ actual
);
710 ret
= wait_till_ready(nor
);
716 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
721 * Write an address range to the nor chip. Data must be written in
722 * FLASH_PAGESIZE chunks. The address range may be any size provided
723 * it is within the physical boundaries.
725 static int spi_nor_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
726 size_t *retlen
, const u_char
*buf
)
728 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
729 u32 page_offset
, page_size
, i
;
732 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
734 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
738 /* Wait until finished previous write command. */
739 ret
= wait_till_ready(nor
);
745 page_offset
= to
& (nor
->page_size
- 1);
747 /* do all the bytes fit onto one page? */
748 if (page_offset
+ len
<= nor
->page_size
) {
749 nor
->write(nor
, to
, len
, retlen
, buf
);
751 /* the size of data remaining on the first page */
752 page_size
= nor
->page_size
- page_offset
;
753 nor
->write(nor
, to
, page_size
, retlen
, buf
);
755 /* write everything in nor->page_size chunks */
756 for (i
= page_size
; i
< len
; i
+= page_size
) {
758 if (page_size
> nor
->page_size
)
759 page_size
= nor
->page_size
;
761 wait_till_ready(nor
);
764 nor
->write(nor
, to
+ i
, page_size
, retlen
, buf
+ i
);
769 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
773 static int macronix_quad_enable(struct spi_nor
*nor
)
780 nor
->cmd_buf
[0] = val
| SR_QUAD_EN_MX
;
781 nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->cmd_buf
, 1, 0);
783 if (wait_till_ready(nor
))
787 if (!(ret
> 0 && (ret
& SR_QUAD_EN_MX
))) {
788 dev_err(nor
->dev
, "Macronix Quad bit not set\n");
796 * Write status Register and configuration register with 2 bytes
797 * The first byte will be written to the status register, while the
798 * second byte will be written to the configuration register.
799 * Return negative if error occured.
801 static int write_sr_cr(struct spi_nor
*nor
, u16 val
)
803 nor
->cmd_buf
[0] = val
& 0xff;
804 nor
->cmd_buf
[1] = (val
>> 8);
806 return nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->cmd_buf
, 2, 0);
809 static int spansion_quad_enable(struct spi_nor
*nor
)
812 int quad_en
= CR_QUAD_EN_SPAN
<< 8;
816 ret
= write_sr_cr(nor
, quad_en
);
819 "error while writing configuration register\n");
823 /* read back and check it */
825 if (!(ret
> 0 && (ret
& CR_QUAD_EN_SPAN
))) {
826 dev_err(nor
->dev
, "Spansion Quad bit not set\n");
833 static int set_quad_mode(struct spi_nor
*nor
, u32 jedec_id
)
837 switch (JEDEC_MFR(jedec_id
)) {
838 case CFI_MFR_MACRONIX
:
839 status
= macronix_quad_enable(nor
);
841 dev_err(nor
->dev
, "Macronix quad-read not enabled\n");
846 status
= spansion_quad_enable(nor
);
848 dev_err(nor
->dev
, "Spansion quad-read not enabled\n");
855 static int spi_nor_check(struct spi_nor
*nor
)
857 if (!nor
->dev
|| !nor
->read
|| !nor
->write
||
858 !nor
->read_reg
|| !nor
->write_reg
|| !nor
->erase
) {
859 pr_err("spi-nor: please fill all the necessary fields!\n");
864 nor
->read_id
= spi_nor_read_id
;
865 if (!nor
->wait_till_ready
)
866 nor
->wait_till_ready
= spi_nor_wait_till_ready
;
871 int spi_nor_scan(struct spi_nor
*nor
, const char *name
, enum read_mode mode
)
873 const struct spi_device_id
*id
= NULL
;
874 struct flash_info
*info
;
875 struct device
*dev
= nor
->dev
;
876 struct mtd_info
*mtd
= nor
->mtd
;
877 struct device_node
*np
= dev
->of_node
;
881 ret
= spi_nor_check(nor
);
885 id
= spi_nor_match_id(name
);
889 info
= (void *)id
->driver_data
;
891 if (info
->jedec_id
) {
892 const struct spi_device_id
*jid
;
894 jid
= jedec_probe(nor
);
897 } else if (jid
!= id
) {
899 * JEDEC knows better, so overwrite platform ID. We
900 * can't trust partitions any longer, but we'll let
901 * mtd apply them anyway, since some partitions may be
902 * marked read-only, and we don't want to lose that
903 * information, even if it's not 100% accurate.
905 dev_warn(dev
, "found %s, expected %s\n",
906 jid
->name
, id
->name
);
908 info
= (void *)jid
->driver_data
;
912 mutex_init(&nor
->lock
);
915 * Atmel, SST and Intel/Numonyx serial nor tend to power
916 * up with the software protection bits set
919 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ATMEL
||
920 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_INTEL
||
921 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
) {
927 mtd
->name
= dev_name(dev
);
928 mtd
->type
= MTD_NORFLASH
;
930 mtd
->flags
= MTD_CAP_NORFLASH
;
931 mtd
->size
= info
->sector_size
* info
->n_sectors
;
932 mtd
->_erase
= spi_nor_erase
;
933 mtd
->_read
= spi_nor_read
;
935 /* nor protection support for STmicro chips */
936 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ST
) {
937 mtd
->_lock
= spi_nor_lock
;
938 mtd
->_unlock
= spi_nor_unlock
;
941 /* sst nor chips use AAI word program */
942 if (info
->flags
& SST_WRITE
)
943 mtd
->_write
= sst_write
;
945 mtd
->_write
= spi_nor_write
;
947 /* prefer "small sector" erase if possible */
948 if (info
->flags
& SECT_4K
) {
949 nor
->erase_opcode
= SPINOR_OP_BE_4K
;
950 mtd
->erasesize
= 4096;
951 } else if (info
->flags
& SECT_4K_PMC
) {
952 nor
->erase_opcode
= SPINOR_OP_BE_4K_PMC
;
953 mtd
->erasesize
= 4096;
955 nor
->erase_opcode
= SPINOR_OP_SE
;
956 mtd
->erasesize
= info
->sector_size
;
959 if (info
->flags
& SPI_NOR_NO_ERASE
)
960 mtd
->flags
|= MTD_NO_ERASE
;
962 mtd
->dev
.parent
= dev
;
963 nor
->page_size
= info
->page_size
;
964 mtd
->writebufsize
= nor
->page_size
;
967 /* If we were instantiated by DT, use it */
968 if (of_property_read_bool(np
, "m25p,fast-read"))
969 nor
->flash_read
= SPI_NOR_FAST
;
971 nor
->flash_read
= SPI_NOR_NORMAL
;
973 /* If we weren't instantiated by DT, default to fast-read */
974 nor
->flash_read
= SPI_NOR_FAST
;
977 /* Some devices cannot do fast-read, no matter what DT tells us */
978 if (info
->flags
& SPI_NOR_NO_FR
)
979 nor
->flash_read
= SPI_NOR_NORMAL
;
981 /* Quad/Dual-read mode takes precedence over fast/normal */
982 if (mode
== SPI_NOR_QUAD
&& info
->flags
& SPI_NOR_QUAD_READ
) {
983 ret
= set_quad_mode(nor
, info
->jedec_id
);
985 dev_err(dev
, "quad mode not supported\n");
988 nor
->flash_read
= SPI_NOR_QUAD
;
989 } else if (mode
== SPI_NOR_DUAL
&& info
->flags
& SPI_NOR_DUAL_READ
) {
990 nor
->flash_read
= SPI_NOR_DUAL
;
993 /* Default commands */
994 switch (nor
->flash_read
) {
996 nor
->read_opcode
= SPINOR_OP_READ_1_1_4
;
999 nor
->read_opcode
= SPINOR_OP_READ_1_1_2
;
1002 nor
->read_opcode
= SPINOR_OP_READ_FAST
;
1004 case SPI_NOR_NORMAL
:
1005 nor
->read_opcode
= SPINOR_OP_READ
;
1008 dev_err(dev
, "No Read opcode defined\n");
1012 nor
->program_opcode
= SPINOR_OP_PP
;
1014 if (info
->addr_width
)
1015 nor
->addr_width
= info
->addr_width
;
1016 else if (mtd
->size
> 0x1000000) {
1017 /* enable 4-byte addressing if the device exceeds 16MiB */
1018 nor
->addr_width
= 4;
1019 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_AMD
) {
1020 /* Dedicated 4-byte command set */
1021 switch (nor
->flash_read
) {
1023 nor
->read_opcode
= SPINOR_OP_READ4_1_1_4
;
1026 nor
->read_opcode
= SPINOR_OP_READ4_1_1_2
;
1029 nor
->read_opcode
= SPINOR_OP_READ4_FAST
;
1031 case SPI_NOR_NORMAL
:
1032 nor
->read_opcode
= SPINOR_OP_READ4
;
1035 nor
->program_opcode
= SPINOR_OP_PP_4B
;
1036 /* No small sector erase for 4-byte command set */
1037 nor
->erase_opcode
= SPINOR_OP_SE_4B
;
1038 mtd
->erasesize
= info
->sector_size
;
1040 set_4byte(nor
, info
->jedec_id
, 1);
1042 nor
->addr_width
= 3;
1045 nor
->read_dummy
= spi_nor_read_dummy_cycles(nor
);
1047 dev_info(dev
, "%s (%lld Kbytes)\n", id
->name
,
1048 (long long)mtd
->size
>> 10);
1051 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1052 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1053 mtd
->name
, (long long)mtd
->size
, (long long)(mtd
->size
>> 20),
1054 mtd
->erasesize
, mtd
->erasesize
/ 1024, mtd
->numeraseregions
);
1056 if (mtd
->numeraseregions
)
1057 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
1059 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1060 ".erasesize = 0x%.8x (%uKiB), "
1061 ".numblocks = %d }\n",
1062 i
, (long long)mtd
->eraseregions
[i
].offset
,
1063 mtd
->eraseregions
[i
].erasesize
,
1064 mtd
->eraseregions
[i
].erasesize
/ 1024,
1065 mtd
->eraseregions
[i
].numblocks
);
1068 EXPORT_SYMBOL_GPL(spi_nor_scan
);
1070 static const struct spi_device_id
*spi_nor_match_id(const char *name
)
1072 const struct spi_device_id
*id
= spi_nor_ids
;
1074 while (id
->name
[0]) {
1075 if (!strcmp(name
, id
->name
))
1082 MODULE_LICENSE("GPL");
1083 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1084 MODULE_AUTHOR("Mike Lavender");
1085 MODULE_DESCRIPTION("framework for SPI NOR");