1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
23 #include "farch_regs.h"
26 #include "workarounds.h"
30 /* Hardware control for SFC4000 (aka Falcon). */
32 /**************************************************************************
36 **************************************************************************
39 #define FALCON_MAC_STATS_SIZE 0x100
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
135 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
137 #define FALCON_DMA_STAT(ext_name, hw_name) \
138 [FALCON_STAT_ ## ext_name] = \
140 /* 48-bit stats are zero-padded to 64 on DMA */ \
141 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
142 hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name) \
144 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
146 static const struct efx_hw_stat_desc falcon_stat_desc
[FALCON_STAT_COUNT
] = {
147 FALCON_DMA_STAT(tx_bytes
, XgTxOctets
),
148 FALCON_DMA_STAT(tx_packets
, XgTxPkts
),
149 FALCON_DMA_STAT(tx_pause
, XgTxPausePkts
),
150 FALCON_DMA_STAT(tx_control
, XgTxControlPkts
),
151 FALCON_DMA_STAT(tx_unicast
, XgTxUnicastPkts
),
152 FALCON_DMA_STAT(tx_multicast
, XgTxMulticastPkts
),
153 FALCON_DMA_STAT(tx_broadcast
, XgTxBroadcastPkts
),
154 FALCON_DMA_STAT(tx_lt64
, XgTxUndersizePkts
),
155 FALCON_DMA_STAT(tx_64
, XgTxPkts64Octets
),
156 FALCON_DMA_STAT(tx_65_to_127
, XgTxPkts65to127Octets
),
157 FALCON_DMA_STAT(tx_128_to_255
, XgTxPkts128to255Octets
),
158 FALCON_DMA_STAT(tx_256_to_511
, XgTxPkts256to511Octets
),
159 FALCON_DMA_STAT(tx_512_to_1023
, XgTxPkts512to1023Octets
),
160 FALCON_DMA_STAT(tx_1024_to_15xx
, XgTxPkts1024to15xxOctets
),
161 FALCON_DMA_STAT(tx_15xx_to_jumbo
, XgTxPkts1519toMaxOctets
),
162 FALCON_DMA_STAT(tx_gtjumbo
, XgTxOversizePkts
),
163 FALCON_DMA_STAT(tx_non_tcpudp
, XgTxNonTcpUdpPkt
),
164 FALCON_DMA_STAT(tx_mac_src_error
, XgTxMacSrcErrPkt
),
165 FALCON_DMA_STAT(tx_ip_src_error
, XgTxIpSrcErrPkt
),
166 FALCON_DMA_STAT(rx_bytes
, XgRxOctets
),
167 FALCON_DMA_STAT(rx_good_bytes
, XgRxOctetsOK
),
168 FALCON_OTHER_STAT(rx_bad_bytes
),
169 FALCON_DMA_STAT(rx_packets
, XgRxPkts
),
170 FALCON_DMA_STAT(rx_good
, XgRxPktsOK
),
171 FALCON_DMA_STAT(rx_bad
, XgRxFCSerrorPkts
),
172 FALCON_DMA_STAT(rx_pause
, XgRxPausePkts
),
173 FALCON_DMA_STAT(rx_control
, XgRxControlPkts
),
174 FALCON_DMA_STAT(rx_unicast
, XgRxUnicastPkts
),
175 FALCON_DMA_STAT(rx_multicast
, XgRxMulticastPkts
),
176 FALCON_DMA_STAT(rx_broadcast
, XgRxBroadcastPkts
),
177 FALCON_DMA_STAT(rx_lt64
, XgRxUndersizePkts
),
178 FALCON_DMA_STAT(rx_64
, XgRxPkts64Octets
),
179 FALCON_DMA_STAT(rx_65_to_127
, XgRxPkts65to127Octets
),
180 FALCON_DMA_STAT(rx_128_to_255
, XgRxPkts128to255Octets
),
181 FALCON_DMA_STAT(rx_256_to_511
, XgRxPkts256to511Octets
),
182 FALCON_DMA_STAT(rx_512_to_1023
, XgRxPkts512to1023Octets
),
183 FALCON_DMA_STAT(rx_1024_to_15xx
, XgRxPkts1024to15xxOctets
),
184 FALCON_DMA_STAT(rx_15xx_to_jumbo
, XgRxPkts15xxtoMaxOctets
),
185 FALCON_DMA_STAT(rx_gtjumbo
, XgRxOversizePkts
),
186 FALCON_DMA_STAT(rx_bad_lt64
, XgRxUndersizeFCSerrorPkts
),
187 FALCON_DMA_STAT(rx_bad_gtjumbo
, XgRxJabberPkts
),
188 FALCON_DMA_STAT(rx_overflow
, XgRxDropEvents
),
189 FALCON_DMA_STAT(rx_symbol_error
, XgRxSymbolError
),
190 FALCON_DMA_STAT(rx_align_error
, XgRxAlignError
),
191 FALCON_DMA_STAT(rx_length_error
, XgRxLengthError
),
192 FALCON_DMA_STAT(rx_internal_error
, XgRxInternalMACError
),
193 FALCON_OTHER_STAT(rx_nodesc_drop_cnt
),
195 static const unsigned long falcon_stat_mask
[] = {
196 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT
) - 1] = ~0UL,
199 /**************************************************************************
201 * Basic SPI command set and bit definitions
203 *************************************************************************/
205 #define SPI_WRSR 0x01 /* Write status register */
206 #define SPI_WRITE 0x02 /* Write data to memory array */
207 #define SPI_READ 0x03 /* Read data from memory array */
208 #define SPI_WRDI 0x04 /* Reset write enable latch */
209 #define SPI_RDSR 0x05 /* Read status register */
210 #define SPI_WREN 0x06 /* Set write enable latch */
211 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
213 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
214 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
215 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
216 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
217 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
218 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
220 /**************************************************************************
222 * Non-volatile memory layout
224 **************************************************************************
227 /* SFC4000 flash is partitioned into:
228 * 0-0x400 chip and board config (see struct falcon_nvconfig)
229 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
230 * 0x8000-end boot code (mapped to PCI expansion ROM)
231 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
232 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
233 * 0-0x400 chip and board config
235 * 0x800-0x1800 boot config
236 * Aside from the chip and board config, all of these are optional and may
237 * be absent or truncated depending on the devices used.
239 #define FALCON_NVCONFIG_END 0x400U
240 #define FALCON_FLASH_BOOTCODE_START 0x8000U
241 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
242 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
244 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
245 struct falcon_nvconfig_board_v2
{
251 __le16 asic_sub_revision
;
252 __le16 board_revision
;
255 /* Board configuration v3 extra information */
256 struct falcon_nvconfig_board_v3
{
257 __le32 spi_device_type
[2];
260 /* Bit numbers for spi_device_type */
261 #define SPI_DEV_TYPE_SIZE_LBN 0
262 #define SPI_DEV_TYPE_SIZE_WIDTH 5
263 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
264 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
265 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
266 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
267 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
268 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
269 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
270 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
271 #define SPI_DEV_TYPE_FIELD(type, field) \
272 (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
274 #define FALCON_NVCONFIG_OFFSET 0x300
276 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
277 struct falcon_nvconfig
{
278 efx_oword_t ee_vpd_cfg_reg
; /* 0x300 */
279 u8 mac_address
[2][8]; /* 0x310 */
280 efx_oword_t pcie_sd_ctl0123_reg
; /* 0x320 */
281 efx_oword_t pcie_sd_ctl45_reg
; /* 0x330 */
282 efx_oword_t pcie_pcs_ctl_stat_reg
; /* 0x340 */
283 efx_oword_t hw_init_reg
; /* 0x350 */
284 efx_oword_t nic_stat_reg
; /* 0x360 */
285 efx_oword_t glb_ctl_reg
; /* 0x370 */
286 efx_oword_t srm_cfg_reg
; /* 0x380 */
287 efx_oword_t spare_reg
; /* 0x390 */
288 __le16 board_magic_num
; /* 0x3A0 */
289 __le16 board_struct_ver
;
290 __le16 board_checksum
;
291 struct falcon_nvconfig_board_v2 board_v2
;
292 efx_oword_t ee_base_page_reg
; /* 0x3B0 */
293 struct falcon_nvconfig_board_v3 board_v3
; /* 0x3C0 */
296 /*************************************************************************/
298 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
);
299 static void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
);
301 static const unsigned int
302 /* "Large" EEPROM device: Atmel AT25640 or similar
303 * 8 KB, 16-bit address, 32 B write block */
304 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
305 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
306 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
307 /* Default flash device: Atmel AT25F1024
308 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
309 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
310 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
311 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
312 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
313 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
315 /**************************************************************************
317 * I2C bus - this is a bit-bashing interface using GPIO pins
318 * Note that it uses the output enables to tristate the outputs
319 * SDA is the data pin and SCL is the clock
321 **************************************************************************
323 static void falcon_setsda(void *data
, int state
)
325 struct efx_nic
*efx
= (struct efx_nic
*)data
;
328 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
329 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO3_OEN
, !state
);
330 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
333 static void falcon_setscl(void *data
, int state
)
335 struct efx_nic
*efx
= (struct efx_nic
*)data
;
338 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
339 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO0_OEN
, !state
);
340 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
343 static int falcon_getsda(void *data
)
345 struct efx_nic
*efx
= (struct efx_nic
*)data
;
348 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
349 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO3_IN
);
352 static int falcon_getscl(void *data
)
354 struct efx_nic
*efx
= (struct efx_nic
*)data
;
357 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
358 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO0_IN
);
361 static const struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
362 .setsda
= falcon_setsda
,
363 .setscl
= falcon_setscl
,
364 .getsda
= falcon_getsda
,
365 .getscl
= falcon_getscl
,
367 /* Wait up to 50 ms for slave to let us pull SCL high */
368 .timeout
= DIV_ROUND_UP(HZ
, 20),
371 static void falcon_push_irq_moderation(struct efx_channel
*channel
)
373 efx_dword_t timer_cmd
;
374 struct efx_nic
*efx
= channel
->efx
;
376 /* Set timer register */
377 if (channel
->irq_moderation
) {
378 EFX_POPULATE_DWORD_2(timer_cmd
,
379 FRF_AB_TC_TIMER_MODE
,
380 FFE_BB_TIMER_MODE_INT_HLDOFF
,
382 channel
->irq_moderation
- 1);
384 EFX_POPULATE_DWORD_2(timer_cmd
,
385 FRF_AB_TC_TIMER_MODE
,
386 FFE_BB_TIMER_MODE_DIS
,
387 FRF_AB_TC_TIMER_VAL
, 0);
389 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER
!= FR_BZ_TIMER_COMMAND_P0
);
390 efx_writed_page_locked(efx
, &timer_cmd
, FR_BZ_TIMER_COMMAND_P0
,
394 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
);
396 static void falcon_prepare_flush(struct efx_nic
*efx
)
398 falcon_deconfigure_mac_wrapper(efx
);
400 /* Wait for the tx and rx fifo's to get to the next packet boundary
401 * (~1ms without back-pressure), then to drain the remainder of the
402 * fifo's at data path speeds (negligible), with a healthy margin. */
406 /* Acknowledge a legacy interrupt from Falcon
408 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
410 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
411 * BIU. Interrupt acknowledge is read sensitive so must write instead
412 * (then read to ensure the BIU collector is flushed)
414 * NB most hardware supports MSI interrupts
416 static inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
420 EFX_POPULATE_DWORD_1(reg
, FRF_AA_INT_ACK_KER_FIELD
, 0xb7eb7e);
421 efx_writed(efx
, ®
, FR_AA_INT_ACK_KER
);
422 efx_readd(efx
, ®
, FR_AA_WORK_AROUND_BROKEN_PCI_READS
);
425 static irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
427 struct efx_nic
*efx
= dev_id
;
428 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
432 /* Check to see if this is our interrupt. If it isn't, we
433 * exit without having touched the hardware.
435 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
436 netif_vdbg(efx
, intr
, efx
->net_dev
,
437 "IRQ %d on CPU %d not for me\n", irq
,
438 raw_smp_processor_id());
441 efx
->last_irq_cpu
= raw_smp_processor_id();
442 netif_vdbg(efx
, intr
, efx
->net_dev
,
443 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
444 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
446 if (!likely(ACCESS_ONCE(efx
->irq_soft_enabled
)))
449 /* Check to see if we have a serious error condition */
450 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
451 if (unlikely(syserr
))
452 return efx_farch_fatal_interrupt(efx
);
454 /* Determine interrupting queues, clear interrupt status
455 * register and acknowledge the device interrupt.
457 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH
> EFX_MAX_CHANNELS
);
458 queues
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_INT_Q
);
459 EFX_ZERO_OWORD(*int_ker
);
460 wmb(); /* Ensure the vector is cleared before interrupt ack */
461 falcon_irq_ack_a1(efx
);
464 efx_schedule_channel_irq(efx_get_channel(efx
, 0));
466 efx_schedule_channel_irq(efx_get_channel(efx
, 1));
470 /**************************************************************************
474 **************************************************************************
477 static void falcon_b0_rx_push_rss_config(struct efx_nic
*efx
)
481 /* Set hash key for IPv4 */
482 memcpy(&temp
, efx
->rx_hash_key
, sizeof(temp
));
483 efx_writeo(efx
, &temp
, FR_BZ_RX_RSS_TKEY
);
485 efx_farch_rx_push_indir_table(efx
);
488 /**************************************************************************
492 **************************************************************************
495 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
497 static int falcon_spi_poll(struct efx_nic
*efx
)
500 efx_reado(efx
, ®
, FR_AB_EE_SPI_HCMD
);
501 return EFX_OWORD_FIELD(reg
, FRF_AB_EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
504 /* Wait for SPI command completion */
505 static int falcon_spi_wait(struct efx_nic
*efx
)
507 /* Most commands will finish quickly, so we start polling at
508 * very short intervals. Sometimes the command may have to
509 * wait for VPD or expansion ROM access outside of our
510 * control, so we allow up to 100 ms. */
511 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
514 for (i
= 0; i
< 10; i
++) {
515 if (!falcon_spi_poll(efx
))
521 if (!falcon_spi_poll(efx
))
523 if (time_after_eq(jiffies
, timeout
)) {
524 netif_err(efx
, hw
, efx
->net_dev
,
525 "timed out waiting for SPI\n");
528 schedule_timeout_uninterruptible(1);
533 falcon_spi_cmd(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
,
534 unsigned int command
, int address
,
535 const void *in
, void *out
, size_t len
)
537 bool addressed
= (address
>= 0);
538 bool reading
= (out
!= NULL
);
542 /* Input validation */
543 if (len
> FALCON_SPI_MAX_LEN
)
546 /* Check that previous command is not still running */
547 rc
= falcon_spi_poll(efx
);
551 /* Program address register, if we have an address */
553 EFX_POPULATE_OWORD_1(reg
, FRF_AB_EE_SPI_HADR_ADR
, address
);
554 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HADR
);
557 /* Program data register, if we have data */
559 memcpy(®
, in
, len
);
560 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HDATA
);
563 /* Issue read/write command */
564 EFX_POPULATE_OWORD_7(reg
,
565 FRF_AB_EE_SPI_HCMD_CMD_EN
, 1,
566 FRF_AB_EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
567 FRF_AB_EE_SPI_HCMD_DABCNT
, len
,
568 FRF_AB_EE_SPI_HCMD_READ
, reading
,
569 FRF_AB_EE_SPI_HCMD_DUBCNT
, 0,
570 FRF_AB_EE_SPI_HCMD_ADBCNT
,
571 (addressed
? spi
->addr_len
: 0),
572 FRF_AB_EE_SPI_HCMD_ENC
, command
);
573 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HCMD
);
575 /* Wait for read/write to complete */
576 rc
= falcon_spi_wait(efx
);
582 efx_reado(efx
, ®
, FR_AB_EE_SPI_HDATA
);
583 memcpy(out
, ®
, len
);
590 falcon_spi_munge_command(const struct falcon_spi_device
*spi
,
591 const u8 command
, const unsigned int address
)
593 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
597 falcon_spi_read(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
,
598 loff_t start
, size_t len
, size_t *retlen
, u8
*buffer
)
600 size_t block_len
, pos
= 0;
601 unsigned int command
;
605 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
607 command
= falcon_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
608 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
, NULL
,
609 buffer
+ pos
, block_len
);
614 /* Avoid locking up the system */
616 if (signal_pending(current
)) {
627 #ifdef CONFIG_SFC_MTD
629 struct falcon_mtd_partition
{
630 struct efx_mtd_partition common
;
631 const struct falcon_spi_device
*spi
;
635 #define to_falcon_mtd_partition(mtd) \
636 container_of(mtd, struct falcon_mtd_partition, common.mtd)
639 falcon_spi_write_limit(const struct falcon_spi_device
*spi
, size_t start
)
641 return min(FALCON_SPI_MAX_LEN
,
642 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
645 /* Wait up to 10 ms for buffered write completion */
647 falcon_spi_wait_write(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
)
649 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
654 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
655 &status
, sizeof(status
));
658 if (!(status
& SPI_STATUS_NRDY
))
660 if (time_after_eq(jiffies
, timeout
)) {
661 netif_err(efx
, hw
, efx
->net_dev
,
662 "SPI write timeout on device %d"
663 " last status=0x%02x\n",
664 spi
->device_id
, status
);
667 schedule_timeout_uninterruptible(1);
672 falcon_spi_write(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
,
673 loff_t start
, size_t len
, size_t *retlen
, const u8
*buffer
)
675 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
676 size_t block_len
, pos
= 0;
677 unsigned int command
;
681 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
685 block_len
= min(len
- pos
,
686 falcon_spi_write_limit(spi
, start
+ pos
));
687 command
= falcon_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
688 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
689 buffer
+ pos
, NULL
, block_len
);
693 rc
= falcon_spi_wait_write(efx
, spi
);
697 command
= falcon_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
698 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
699 NULL
, verify_buffer
, block_len
);
700 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
707 /* Avoid locking up the system */
709 if (signal_pending(current
)) {
721 falcon_spi_slow_wait(struct falcon_mtd_partition
*part
, bool uninterruptible
)
723 const struct falcon_spi_device
*spi
= part
->spi
;
724 struct efx_nic
*efx
= part
->common
.mtd
.priv
;
728 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
729 for (i
= 0; i
< 40; i
++) {
730 __set_current_state(uninterruptible
?
731 TASK_UNINTERRUPTIBLE
: TASK_INTERRUPTIBLE
);
732 schedule_timeout(HZ
/ 10);
733 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
734 &status
, sizeof(status
));
737 if (!(status
& SPI_STATUS_NRDY
))
739 if (signal_pending(current
))
742 pr_err("%s: timed out waiting for %s\n",
743 part
->common
.name
, part
->common
.dev_type_name
);
748 falcon_spi_unlock(struct efx_nic
*efx
, const struct falcon_spi_device
*spi
)
750 const u8 unlock_mask
= (SPI_STATUS_BP2
| SPI_STATUS_BP1
|
755 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
756 &status
, sizeof(status
));
760 if (!(status
& unlock_mask
))
761 return 0; /* already unlocked */
763 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
766 rc
= falcon_spi_cmd(efx
, spi
, SPI_SST_EWSR
, -1, NULL
, NULL
, 0);
770 status
&= ~unlock_mask
;
771 rc
= falcon_spi_cmd(efx
, spi
, SPI_WRSR
, -1, &status
,
772 NULL
, sizeof(status
));
775 rc
= falcon_spi_wait_write(efx
, spi
);
782 #define FALCON_SPI_VERIFY_BUF_LEN 16
785 falcon_spi_erase(struct falcon_mtd_partition
*part
, loff_t start
, size_t len
)
787 const struct falcon_spi_device
*spi
= part
->spi
;
788 struct efx_nic
*efx
= part
->common
.mtd
.priv
;
789 unsigned pos
, block_len
;
790 u8 empty
[FALCON_SPI_VERIFY_BUF_LEN
];
791 u8 buffer
[FALCON_SPI_VERIFY_BUF_LEN
];
794 if (len
!= spi
->erase_size
)
797 if (spi
->erase_command
== 0)
800 rc
= falcon_spi_unlock(efx
, spi
);
803 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
806 rc
= falcon_spi_cmd(efx
, spi
, spi
->erase_command
, start
, NULL
,
810 rc
= falcon_spi_slow_wait(part
, false);
812 /* Verify the entire region has been wiped */
813 memset(empty
, 0xff, sizeof(empty
));
814 for (pos
= 0; pos
< len
; pos
+= block_len
) {
815 block_len
= min(len
- pos
, sizeof(buffer
));
816 rc
= falcon_spi_read(efx
, spi
, start
+ pos
, block_len
,
820 if (memcmp(empty
, buffer
, block_len
))
823 /* Avoid locking up the system */
825 if (signal_pending(current
))
832 static void falcon_mtd_rename(struct efx_mtd_partition
*part
)
834 struct efx_nic
*efx
= part
->mtd
.priv
;
836 snprintf(part
->name
, sizeof(part
->name
), "%s %s",
837 efx
->name
, part
->type_name
);
840 static int falcon_mtd_read(struct mtd_info
*mtd
, loff_t start
,
841 size_t len
, size_t *retlen
, u8
*buffer
)
843 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
844 struct efx_nic
*efx
= mtd
->priv
;
845 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
848 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
851 rc
= falcon_spi_read(efx
, part
->spi
, part
->offset
+ start
,
852 len
, retlen
, buffer
);
853 mutex_unlock(&nic_data
->spi_lock
);
857 static int falcon_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
859 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
860 struct efx_nic
*efx
= mtd
->priv
;
861 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
864 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
867 rc
= falcon_spi_erase(part
, part
->offset
+ start
, len
);
868 mutex_unlock(&nic_data
->spi_lock
);
872 static int falcon_mtd_write(struct mtd_info
*mtd
, loff_t start
,
873 size_t len
, size_t *retlen
, const u8
*buffer
)
875 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
876 struct efx_nic
*efx
= mtd
->priv
;
877 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
880 rc
= mutex_lock_interruptible(&nic_data
->spi_lock
);
883 rc
= falcon_spi_write(efx
, part
->spi
, part
->offset
+ start
,
884 len
, retlen
, buffer
);
885 mutex_unlock(&nic_data
->spi_lock
);
889 static int falcon_mtd_sync(struct mtd_info
*mtd
)
891 struct falcon_mtd_partition
*part
= to_falcon_mtd_partition(mtd
);
892 struct efx_nic
*efx
= mtd
->priv
;
893 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
896 mutex_lock(&nic_data
->spi_lock
);
897 rc
= falcon_spi_slow_wait(part
, true);
898 mutex_unlock(&nic_data
->spi_lock
);
902 static int falcon_mtd_probe(struct efx_nic
*efx
)
904 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
905 struct falcon_mtd_partition
*parts
;
906 struct falcon_spi_device
*spi
;
912 /* Allocate space for maximum number of partitions */
913 parts
= kcalloc(2, sizeof(*parts
), GFP_KERNEL
);
918 spi
= &nic_data
->spi_flash
;
919 if (falcon_spi_present(spi
) && spi
->size
> FALCON_FLASH_BOOTCODE_START
) {
920 parts
[n_parts
].spi
= spi
;
921 parts
[n_parts
].offset
= FALCON_FLASH_BOOTCODE_START
;
922 parts
[n_parts
].common
.dev_type_name
= "flash";
923 parts
[n_parts
].common
.type_name
= "sfc_flash_bootrom";
924 parts
[n_parts
].common
.mtd
.type
= MTD_NORFLASH
;
925 parts
[n_parts
].common
.mtd
.flags
= MTD_CAP_NORFLASH
;
926 parts
[n_parts
].common
.mtd
.size
= spi
->size
- FALCON_FLASH_BOOTCODE_START
;
927 parts
[n_parts
].common
.mtd
.erasesize
= spi
->erase_size
;
931 spi
= &nic_data
->spi_eeprom
;
932 if (falcon_spi_present(spi
) && spi
->size
> FALCON_EEPROM_BOOTCONFIG_START
) {
933 parts
[n_parts
].spi
= spi
;
934 parts
[n_parts
].offset
= FALCON_EEPROM_BOOTCONFIG_START
;
935 parts
[n_parts
].common
.dev_type_name
= "EEPROM";
936 parts
[n_parts
].common
.type_name
= "sfc_bootconfig";
937 parts
[n_parts
].common
.mtd
.type
= MTD_RAM
;
938 parts
[n_parts
].common
.mtd
.flags
= MTD_CAP_RAM
;
939 parts
[n_parts
].common
.mtd
.size
=
940 min(spi
->size
, FALCON_EEPROM_BOOTCONFIG_END
) -
941 FALCON_EEPROM_BOOTCONFIG_START
;
942 parts
[n_parts
].common
.mtd
.erasesize
= spi
->erase_size
;
946 rc
= efx_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
952 #endif /* CONFIG_SFC_MTD */
954 /**************************************************************************
958 **************************************************************************
961 /* Configure the XAUI driver that is an output from Falcon */
962 static void falcon_setup_xaui(struct efx_nic
*efx
)
964 efx_oword_t sdctl
, txdrv
;
966 /* Move the XAUI into low power, unless there is no PHY, in
967 * which case the XAUI will have to drive a cable. */
968 if (efx
->phy_type
== PHY_TYPE_NONE
)
971 efx_reado(efx
, &sdctl
, FR_AB_XX_SD_CTL
);
972 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVD
, FFE_AB_XX_SD_CTL_DRV_DEF
);
973 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVD
, FFE_AB_XX_SD_CTL_DRV_DEF
);
974 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVC
, FFE_AB_XX_SD_CTL_DRV_DEF
);
975 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVC
, FFE_AB_XX_SD_CTL_DRV_DEF
);
976 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVB
, FFE_AB_XX_SD_CTL_DRV_DEF
);
977 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVB
, FFE_AB_XX_SD_CTL_DRV_DEF
);
978 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_HIDRVA
, FFE_AB_XX_SD_CTL_DRV_DEF
);
979 EFX_SET_OWORD_FIELD(sdctl
, FRF_AB_XX_LODRVA
, FFE_AB_XX_SD_CTL_DRV_DEF
);
980 efx_writeo(efx
, &sdctl
, FR_AB_XX_SD_CTL
);
982 EFX_POPULATE_OWORD_8(txdrv
,
983 FRF_AB_XX_DEQD
, FFE_AB_XX_TXDRV_DEQ_DEF
,
984 FRF_AB_XX_DEQC
, FFE_AB_XX_TXDRV_DEQ_DEF
,
985 FRF_AB_XX_DEQB
, FFE_AB_XX_TXDRV_DEQ_DEF
,
986 FRF_AB_XX_DEQA
, FFE_AB_XX_TXDRV_DEQ_DEF
,
987 FRF_AB_XX_DTXD
, FFE_AB_XX_TXDRV_DTX_DEF
,
988 FRF_AB_XX_DTXC
, FFE_AB_XX_TXDRV_DTX_DEF
,
989 FRF_AB_XX_DTXB
, FFE_AB_XX_TXDRV_DTX_DEF
,
990 FRF_AB_XX_DTXA
, FFE_AB_XX_TXDRV_DTX_DEF
);
991 efx_writeo(efx
, &txdrv
, FR_AB_XX_TXDRV_CTL
);
994 int falcon_reset_xaui(struct efx_nic
*efx
)
996 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1000 /* Don't fetch MAC statistics over an XMAC reset */
1001 WARN_ON(nic_data
->stats_disable_count
== 0);
1003 /* Start reset sequence */
1004 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XX_RST_XX_EN
, 1);
1005 efx_writeo(efx
, ®
, FR_AB_XX_PWR_RST
);
1007 /* Wait up to 10 ms for completion, then reinitialise */
1008 for (count
= 0; count
< 1000; count
++) {
1009 efx_reado(efx
, ®
, FR_AB_XX_PWR_RST
);
1010 if (EFX_OWORD_FIELD(reg
, FRF_AB_XX_RST_XX_EN
) == 0 &&
1011 EFX_OWORD_FIELD(reg
, FRF_AB_XX_SD_RST_ACT
) == 0) {
1012 falcon_setup_xaui(efx
);
1017 netif_err(efx
, hw
, efx
->net_dev
,
1018 "timed out waiting for XAUI/XGXS reset\n");
1022 static void falcon_ack_status_intr(struct efx_nic
*efx
)
1024 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1027 if ((efx_nic_rev(efx
) != EFX_REV_FALCON_B0
) || LOOPBACK_INTERNAL(efx
))
1030 /* We expect xgmii faults if the wireside link is down */
1031 if (!efx
->link_state
.up
)
1034 /* We can only use this interrupt to signal the negative edge of
1035 * xaui_align [we have to poll the positive edge]. */
1036 if (nic_data
->xmac_poll_required
)
1039 efx_reado(efx
, ®
, FR_AB_XM_MGT_INT_MSK
);
1042 static bool falcon_xgxs_link_ok(struct efx_nic
*efx
)
1045 bool align_done
, link_ok
= false;
1048 /* Read link status */
1049 efx_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1051 align_done
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_ALIGN_DONE
);
1052 sync_status
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_SYNC_STAT
);
1053 if (align_done
&& (sync_status
== FFE_AB_XX_STAT_ALL_LANES
))
1056 /* Clear link status ready for next read */
1057 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_COMMA_DET
, FFE_AB_XX_STAT_ALL_LANES
);
1058 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_CHAR_ERR
, FFE_AB_XX_STAT_ALL_LANES
);
1059 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_DISPERR
, FFE_AB_XX_STAT_ALL_LANES
);
1060 efx_writeo(efx
, ®
, FR_AB_XX_CORE_STAT
);
1065 static bool falcon_xmac_link_ok(struct efx_nic
*efx
)
1068 * Check MAC's XGXS link status except when using XGMII loopback
1069 * which bypasses the XGXS block.
1070 * If possible, check PHY's XGXS link status except when using
1073 return (efx
->loopback_mode
== LOOPBACK_XGMII
||
1074 falcon_xgxs_link_ok(efx
)) &&
1075 (!(efx
->mdio
.mmds
& (1 << MDIO_MMD_PHYXS
)) ||
1076 LOOPBACK_INTERNAL(efx
) ||
1077 efx_mdio_phyxgxs_lane_sync(efx
));
1080 static void falcon_reconfigure_xmac_core(struct efx_nic
*efx
)
1082 unsigned int max_frame_len
;
1084 bool rx_fc
= !!(efx
->link_state
.fc
& EFX_FC_RX
);
1085 bool tx_fc
= !!(efx
->link_state
.fc
& EFX_FC_TX
);
1087 /* Configure MAC - cut-thru mode is hard wired on */
1088 EFX_POPULATE_OWORD_3(reg
,
1089 FRF_AB_XM_RX_JUMBO_MODE
, 1,
1090 FRF_AB_XM_TX_STAT_EN
, 1,
1091 FRF_AB_XM_RX_STAT_EN
, 1);
1092 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
1095 EFX_POPULATE_OWORD_6(reg
,
1097 FRF_AB_XM_TX_PRMBL
, 1,
1098 FRF_AB_XM_AUTO_PAD
, 1,
1100 FRF_AB_XM_FCNTL
, tx_fc
,
1101 FRF_AB_XM_IPG
, 0x3);
1102 efx_writeo(efx
, ®
, FR_AB_XM_TX_CFG
);
1105 EFX_POPULATE_OWORD_5(reg
,
1107 FRF_AB_XM_AUTO_DEPAD
, 0,
1108 FRF_AB_XM_ACPT_ALL_MCAST
, 1,
1109 FRF_AB_XM_ACPT_ALL_UCAST
, !efx
->unicast_filter
,
1110 FRF_AB_XM_PASS_CRC_ERR
, 1);
1111 efx_writeo(efx
, ®
, FR_AB_XM_RX_CFG
);
1113 /* Set frame length */
1114 max_frame_len
= EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
);
1115 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_MAX_RX_FRM_SIZE
, max_frame_len
);
1116 efx_writeo(efx
, ®
, FR_AB_XM_RX_PARAM
);
1117 EFX_POPULATE_OWORD_2(reg
,
1118 FRF_AB_XM_MAX_TX_FRM_SIZE
, max_frame_len
,
1119 FRF_AB_XM_TX_JUMBO_MODE
, 1);
1120 efx_writeo(efx
, ®
, FR_AB_XM_TX_PARAM
);
1122 EFX_POPULATE_OWORD_2(reg
,
1123 FRF_AB_XM_PAUSE_TIME
, 0xfffe, /* MAX PAUSE TIME */
1124 FRF_AB_XM_DIS_FCNTL
, !rx_fc
);
1125 efx_writeo(efx
, ®
, FR_AB_XM_FC
);
1127 /* Set MAC address */
1128 memcpy(®
, &efx
->net_dev
->dev_addr
[0], 4);
1129 efx_writeo(efx
, ®
, FR_AB_XM_ADR_LO
);
1130 memcpy(®
, &efx
->net_dev
->dev_addr
[4], 2);
1131 efx_writeo(efx
, ®
, FR_AB_XM_ADR_HI
);
1134 static void falcon_reconfigure_xgxs_core(struct efx_nic
*efx
)
1137 bool xgxs_loopback
= (efx
->loopback_mode
== LOOPBACK_XGXS
);
1138 bool xaui_loopback
= (efx
->loopback_mode
== LOOPBACK_XAUI
);
1139 bool xgmii_loopback
= (efx
->loopback_mode
== LOOPBACK_XGMII
);
1140 bool old_xgmii_loopback
, old_xgxs_loopback
, old_xaui_loopback
;
1142 /* XGXS block is flaky and will need to be reset if moving
1143 * into our out of XGMII, XGXS or XAUI loopbacks. */
1144 efx_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1145 old_xgxs_loopback
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_XGXS_LB_EN
);
1146 old_xgmii_loopback
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_XGMII_LB_EN
);
1148 efx_reado(efx
, ®
, FR_AB_XX_SD_CTL
);
1149 old_xaui_loopback
= EFX_OWORD_FIELD(reg
, FRF_AB_XX_LPBKA
);
1151 /* The PHY driver may have turned XAUI off */
1152 if ((xgxs_loopback
!= old_xgxs_loopback
) ||
1153 (xaui_loopback
!= old_xaui_loopback
) ||
1154 (xgmii_loopback
!= old_xgmii_loopback
))
1155 falcon_reset_xaui(efx
);
1157 efx_reado(efx
, ®
, FR_AB_XX_CORE_STAT
);
1158 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_FORCE_SIG
,
1159 (xgxs_loopback
|| xaui_loopback
) ?
1160 FFE_AB_XX_FORCE_SIG_ALL_LANES
: 0);
1161 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_XGXS_LB_EN
, xgxs_loopback
);
1162 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_XGMII_LB_EN
, xgmii_loopback
);
1163 efx_writeo(efx
, ®
, FR_AB_XX_CORE_STAT
);
1165 efx_reado(efx
, ®
, FR_AB_XX_SD_CTL
);
1166 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKD
, xaui_loopback
);
1167 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKC
, xaui_loopback
);
1168 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKB
, xaui_loopback
);
1169 EFX_SET_OWORD_FIELD(reg
, FRF_AB_XX_LPBKA
, xaui_loopback
);
1170 efx_writeo(efx
, ®
, FR_AB_XX_SD_CTL
);
1174 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1175 static bool falcon_xmac_link_ok_retry(struct efx_nic
*efx
, int tries
)
1177 bool mac_up
= falcon_xmac_link_ok(efx
);
1179 if (LOOPBACK_MASK(efx
) & LOOPBACKS_EXTERNAL(efx
) & LOOPBACKS_WS
||
1180 efx_phy_mode_disabled(efx
->phy_mode
))
1181 /* XAUI link is expected to be down */
1184 falcon_stop_nic_stats(efx
);
1186 while (!mac_up
&& tries
) {
1187 netif_dbg(efx
, hw
, efx
->net_dev
, "bashing xaui\n");
1188 falcon_reset_xaui(efx
);
1191 mac_up
= falcon_xmac_link_ok(efx
);
1195 falcon_start_nic_stats(efx
);
1200 static bool falcon_xmac_check_fault(struct efx_nic
*efx
)
1202 return !falcon_xmac_link_ok_retry(efx
, 5);
1205 static int falcon_reconfigure_xmac(struct efx_nic
*efx
)
1207 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1209 efx_farch_filter_sync_rx_mode(efx
);
1211 falcon_reconfigure_xgxs_core(efx
);
1212 falcon_reconfigure_xmac_core(efx
);
1214 falcon_reconfigure_mac_wrapper(efx
);
1216 nic_data
->xmac_poll_required
= !falcon_xmac_link_ok_retry(efx
, 5);
1217 falcon_ack_status_intr(efx
);
1222 static void falcon_poll_xmac(struct efx_nic
*efx
)
1224 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1226 /* We expect xgmii faults if the wireside link is down */
1227 if (!efx
->link_state
.up
|| !nic_data
->xmac_poll_required
)
1230 nic_data
->xmac_poll_required
= !falcon_xmac_link_ok_retry(efx
, 1);
1231 falcon_ack_status_intr(efx
);
1234 /**************************************************************************
1238 **************************************************************************
1241 static void falcon_push_multicast_hash(struct efx_nic
*efx
)
1243 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1245 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
1247 efx_writeo(efx
, &mc_hash
->oword
[0], FR_AB_MAC_MC_HASH_REG0
);
1248 efx_writeo(efx
, &mc_hash
->oword
[1], FR_AB_MAC_MC_HASH_REG1
);
1251 static void falcon_reset_macs(struct efx_nic
*efx
)
1253 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1254 efx_oword_t reg
, mac_ctrl
;
1257 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
1258 /* It's not safe to use GLB_CTL_REG to reset the
1259 * macs, so instead use the internal MAC resets
1261 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_CORE_RST
, 1);
1262 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
1264 for (count
= 0; count
< 10000; count
++) {
1265 efx_reado(efx
, ®
, FR_AB_XM_GLB_CFG
);
1266 if (EFX_OWORD_FIELD(reg
, FRF_AB_XM_CORE_RST
) ==
1272 netif_err(efx
, hw
, efx
->net_dev
,
1273 "timed out waiting for XMAC core reset\n");
1276 /* Mac stats will fail whist the TX fifo is draining */
1277 WARN_ON(nic_data
->stats_disable_count
== 0);
1279 efx_reado(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1280 EFX_SET_OWORD_FIELD(mac_ctrl
, FRF_BB_TXFIFO_DRAIN_EN
, 1);
1281 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1283 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
1284 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
, 1);
1285 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
, 1);
1286 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_EM
, 1);
1287 efx_writeo(efx
, ®
, FR_AB_GLB_CTL
);
1291 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
1292 if (!EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
) &&
1293 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
) &&
1294 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_EM
)) {
1295 netif_dbg(efx
, hw
, efx
->net_dev
,
1296 "Completed MAC reset after %d loops\n",
1301 netif_err(efx
, hw
, efx
->net_dev
, "MAC reset failed\n");
1308 /* Ensure the correct MAC is selected before statistics
1309 * are re-enabled by the caller */
1310 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
1312 falcon_setup_xaui(efx
);
1315 static void falcon_drain_tx_fifo(struct efx_nic
*efx
)
1319 if ((efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) ||
1320 (efx
->loopback_mode
!= LOOPBACK_NONE
))
1323 efx_reado(efx
, ®
, FR_AB_MAC_CTRL
);
1324 /* There is no point in draining more than once */
1325 if (EFX_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
))
1328 falcon_reset_macs(efx
);
1331 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
1335 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1338 /* Isolate the MAC -> RX */
1339 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1340 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 0);
1341 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1343 /* Isolate TX -> MAC */
1344 falcon_drain_tx_fifo(efx
);
1347 static void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
1349 struct efx_link_state
*link_state
= &efx
->link_state
;
1351 int link_speed
, isolate
;
1353 isolate
= !!ACCESS_ONCE(efx
->reset_pending
);
1355 switch (link_state
->speed
) {
1356 case 10000: link_speed
= 3; break;
1357 case 1000: link_speed
= 2; break;
1358 case 100: link_speed
= 1; break;
1359 default: link_speed
= 0; break;
1362 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1363 * as advertised. Disable to ensure packets are not
1364 * indefinitely held and TX queue can be flushed at any point
1365 * while the link is down. */
1366 EFX_POPULATE_OWORD_5(reg
,
1367 FRF_AB_MAC_XOFF_VAL
, 0xffff /* max pause time */,
1368 FRF_AB_MAC_BCAD_ACPT
, 1,
1369 FRF_AB_MAC_UC_PROM
, !efx
->unicast_filter
,
1370 FRF_AB_MAC_LINK_STATUS
, 1, /* always set */
1371 FRF_AB_MAC_SPEED
, link_speed
);
1372 /* On B0, MAC backpressure can be disabled and packets get
1374 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1375 EFX_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
,
1376 !link_state
->up
|| isolate
);
1379 efx_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
1381 /* Restore the multicast hash registers. */
1382 falcon_push_multicast_hash(efx
);
1384 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1385 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1386 * initialisation but it may read back as 0) */
1387 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
1388 /* Unisolate the MAC -> RX */
1389 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1390 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, !isolate
);
1391 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1394 static void falcon_stats_request(struct efx_nic
*efx
)
1396 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1399 WARN_ON(nic_data
->stats_pending
);
1400 WARN_ON(nic_data
->stats_disable_count
);
1402 FALCON_XMAC_STATS_DMA_FLAG(efx
) = 0;
1403 nic_data
->stats_pending
= true;
1404 wmb(); /* ensure done flag is clear */
1406 /* Initiate DMA transfer of stats */
1407 EFX_POPULATE_OWORD_2(reg
,
1408 FRF_AB_MAC_STAT_DMA_CMD
, 1,
1409 FRF_AB_MAC_STAT_DMA_ADR
,
1410 efx
->stats_buffer
.dma_addr
);
1411 efx_writeo(efx
, ®
, FR_AB_MAC_STAT_DMA
);
1413 mod_timer(&nic_data
->stats_timer
, round_jiffies_up(jiffies
+ HZ
/ 2));
1416 static void falcon_stats_complete(struct efx_nic
*efx
)
1418 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1420 if (!nic_data
->stats_pending
)
1423 nic_data
->stats_pending
= false;
1424 if (FALCON_XMAC_STATS_DMA_FLAG(efx
)) {
1425 rmb(); /* read the done flag before the stats */
1426 efx_nic_update_stats(falcon_stat_desc
, FALCON_STAT_COUNT
,
1427 falcon_stat_mask
, nic_data
->stats
,
1428 efx
->stats_buffer
.addr
, true);
1430 netif_err(efx
, hw
, efx
->net_dev
,
1431 "timed out waiting for statistics\n");
1435 static void falcon_stats_timer_func(unsigned long context
)
1437 struct efx_nic
*efx
= (struct efx_nic
*)context
;
1438 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1440 spin_lock(&efx
->stats_lock
);
1442 falcon_stats_complete(efx
);
1443 if (nic_data
->stats_disable_count
== 0)
1444 falcon_stats_request(efx
);
1446 spin_unlock(&efx
->stats_lock
);
1449 static bool falcon_loopback_link_poll(struct efx_nic
*efx
)
1451 struct efx_link_state old_state
= efx
->link_state
;
1453 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
1454 WARN_ON(!LOOPBACK_INTERNAL(efx
));
1456 efx
->link_state
.fd
= true;
1457 efx
->link_state
.fc
= efx
->wanted_fc
;
1458 efx
->link_state
.up
= true;
1459 efx
->link_state
.speed
= 10000;
1461 return !efx_link_state_equal(&efx
->link_state
, &old_state
);
1464 static int falcon_reconfigure_port(struct efx_nic
*efx
)
1468 WARN_ON(efx_nic_rev(efx
) > EFX_REV_FALCON_B0
);
1470 /* Poll the PHY link state *before* reconfiguring it. This means we
1471 * will pick up the correct speed (in loopback) to select the correct
1474 if (LOOPBACK_INTERNAL(efx
))
1475 falcon_loopback_link_poll(efx
);
1477 efx
->phy_op
->poll(efx
);
1479 falcon_stop_nic_stats(efx
);
1480 falcon_deconfigure_mac_wrapper(efx
);
1482 falcon_reset_macs(efx
);
1484 efx
->phy_op
->reconfigure(efx
);
1485 rc
= falcon_reconfigure_xmac(efx
);
1488 falcon_start_nic_stats(efx
);
1490 /* Synchronise efx->link_state with the kernel */
1491 efx_link_status_changed(efx
);
1496 /* TX flow control may automatically turn itself off if the link
1497 * partner (intermittently) stops responding to pause frames. There
1498 * isn't any indication that this has happened, so the best we do is
1499 * leave it up to the user to spot this and fix it by cycling transmit
1500 * flow control on this end.
1503 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic
*efx
)
1505 /* Schedule a reset to recover */
1506 efx_schedule_reset(efx
, RESET_TYPE_INVISIBLE
);
1509 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic
*efx
)
1511 /* Recover by resetting the EM block */
1512 falcon_stop_nic_stats(efx
);
1513 falcon_drain_tx_fifo(efx
);
1514 falcon_reconfigure_xmac(efx
);
1515 falcon_start_nic_stats(efx
);
1518 /**************************************************************************
1520 * PHY access via GMII
1522 **************************************************************************
1525 /* Wait for GMII access to complete */
1526 static int falcon_gmii_wait(struct efx_nic
*efx
)
1528 efx_oword_t md_stat
;
1531 /* wait up to 50ms - taken max from datasheet */
1532 for (count
= 0; count
< 5000; count
++) {
1533 efx_reado(efx
, &md_stat
, FR_AB_MD_STAT
);
1534 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSY
) == 0) {
1535 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_LNFL
) != 0 ||
1536 EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSERR
) != 0) {
1537 netif_err(efx
, hw
, efx
->net_dev
,
1538 "error from GMII access "
1540 EFX_OWORD_VAL(md_stat
));
1547 netif_err(efx
, hw
, efx
->net_dev
, "timed out waiting for GMII\n");
1551 /* Write an MDIO register of a PHY connected to Falcon. */
1552 static int falcon_mdio_write(struct net_device
*net_dev
,
1553 int prtad
, int devad
, u16 addr
, u16 value
)
1555 struct efx_nic
*efx
= netdev_priv(net_dev
);
1556 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1560 netif_vdbg(efx
, hw
, efx
->net_dev
,
1561 "writing MDIO %d register %d.%d with 0x%04x\n",
1562 prtad
, devad
, addr
, value
);
1564 mutex_lock(&nic_data
->mdio_lock
);
1566 /* Check MDIO not currently being accessed */
1567 rc
= falcon_gmii_wait(efx
);
1571 /* Write the address/ID register */
1572 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
1573 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
1575 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
1576 FRF_AB_MD_DEV_ADR
, devad
);
1577 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
1580 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_TXD
, value
);
1581 efx_writeo(efx
, ®
, FR_AB_MD_TXD
);
1583 EFX_POPULATE_OWORD_2(reg
,
1586 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
1588 /* Wait for data to be written */
1589 rc
= falcon_gmii_wait(efx
);
1591 /* Abort the write operation */
1592 EFX_POPULATE_OWORD_2(reg
,
1595 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
1600 mutex_unlock(&nic_data
->mdio_lock
);
1604 /* Read an MDIO register of a PHY connected to Falcon. */
1605 static int falcon_mdio_read(struct net_device
*net_dev
,
1606 int prtad
, int devad
, u16 addr
)
1608 struct efx_nic
*efx
= netdev_priv(net_dev
);
1609 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1613 mutex_lock(&nic_data
->mdio_lock
);
1615 /* Check MDIO not currently being accessed */
1616 rc
= falcon_gmii_wait(efx
);
1620 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
1621 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
1623 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
1624 FRF_AB_MD_DEV_ADR
, devad
);
1625 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
1627 /* Request data to be read */
1628 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_RDC
, 1, FRF_AB_MD_GC
, 0);
1629 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
1631 /* Wait for data to become available */
1632 rc
= falcon_gmii_wait(efx
);
1634 efx_reado(efx
, ®
, FR_AB_MD_RXD
);
1635 rc
= EFX_OWORD_FIELD(reg
, FRF_AB_MD_RXD
);
1636 netif_vdbg(efx
, hw
, efx
->net_dev
,
1637 "read from MDIO %d register %d.%d, got %04x\n",
1638 prtad
, devad
, addr
, rc
);
1640 /* Abort the read operation */
1641 EFX_POPULATE_OWORD_2(reg
,
1644 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
1646 netif_dbg(efx
, hw
, efx
->net_dev
,
1647 "read from MDIO %d register %d.%d, got error %d\n",
1648 prtad
, devad
, addr
, rc
);
1652 mutex_unlock(&nic_data
->mdio_lock
);
1656 /* This call is responsible for hooking in the MAC and PHY operations */
1657 static int falcon_probe_port(struct efx_nic
*efx
)
1659 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1662 switch (efx
->phy_type
) {
1663 case PHY_TYPE_SFX7101
:
1664 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
1666 case PHY_TYPE_QT2022C2
:
1667 case PHY_TYPE_QT2025C
:
1668 efx
->phy_op
= &falcon_qt202x_phy_ops
;
1670 case PHY_TYPE_TXC43128
:
1671 efx
->phy_op
= &falcon_txc_phy_ops
;
1674 netif_err(efx
, probe
, efx
->net_dev
, "Unknown PHY type %d\n",
1679 /* Fill out MDIO structure and loopback modes */
1680 mutex_init(&nic_data
->mdio_lock
);
1681 efx
->mdio
.mdio_read
= falcon_mdio_read
;
1682 efx
->mdio
.mdio_write
= falcon_mdio_write
;
1683 rc
= efx
->phy_op
->probe(efx
);
1687 /* Initial assumption */
1688 efx
->link_state
.speed
= 10000;
1689 efx
->link_state
.fd
= true;
1691 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1692 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1693 efx
->wanted_fc
= EFX_FC_RX
| EFX_FC_TX
;
1695 efx
->wanted_fc
= EFX_FC_RX
;
1696 if (efx
->mdio
.mmds
& MDIO_DEVS_AN
)
1697 efx
->wanted_fc
|= EFX_FC_AUTO
;
1699 /* Allocate buffer for stats */
1700 rc
= efx_nic_alloc_buffer(efx
, &efx
->stats_buffer
,
1701 FALCON_MAC_STATS_SIZE
, GFP_KERNEL
);
1704 netif_dbg(efx
, probe
, efx
->net_dev
,
1705 "stats buffer at %llx (virt %p phys %llx)\n",
1706 (u64
)efx
->stats_buffer
.dma_addr
,
1707 efx
->stats_buffer
.addr
,
1708 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
1713 static void falcon_remove_port(struct efx_nic
*efx
)
1715 efx
->phy_op
->remove(efx
);
1716 efx_nic_free_buffer(efx
, &efx
->stats_buffer
);
1719 /* Global events are basically PHY events */
1721 falcon_handle_global_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1723 struct efx_nic
*efx
= channel
->efx
;
1724 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1726 if (EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_G_PHY0_INTR
) ||
1727 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XG_PHY0_INTR
) ||
1728 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XFP_PHY0_INTR
))
1732 if ((efx_nic_rev(efx
) == EFX_REV_FALCON_B0
) &&
1733 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_XG_MGT_INTR
)) {
1734 nic_data
->xmac_poll_required
= true;
1738 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
?
1739 EFX_QWORD_FIELD(*event
, FSF_AA_GLB_EV_RX_RECOVERY
) :
1740 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_RX_RECOVERY
)) {
1741 netif_err(efx
, rx_err
, efx
->net_dev
,
1742 "channel %d seen global RX_RESET event. Resetting.\n",
1745 atomic_inc(&efx
->rx_reset
);
1746 efx_schedule_reset(efx
, EFX_WORKAROUND_6555(efx
) ?
1747 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
1754 /**************************************************************************
1758 **************************************************************************/
1761 falcon_read_nvram(struct efx_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
1763 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1764 struct falcon_nvconfig
*nvconfig
;
1765 struct falcon_spi_device
*spi
;
1767 int rc
, magic_num
, struct_ver
;
1768 __le16
*word
, *limit
;
1771 if (falcon_spi_present(&nic_data
->spi_flash
))
1772 spi
= &nic_data
->spi_flash
;
1773 else if (falcon_spi_present(&nic_data
->spi_eeprom
))
1774 spi
= &nic_data
->spi_eeprom
;
1778 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
1781 nvconfig
= region
+ FALCON_NVCONFIG_OFFSET
;
1783 mutex_lock(&nic_data
->spi_lock
);
1784 rc
= falcon_spi_read(efx
, spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
1785 mutex_unlock(&nic_data
->spi_lock
);
1787 netif_err(efx
, hw
, efx
->net_dev
, "Failed to read %s\n",
1788 falcon_spi_present(&nic_data
->spi_flash
) ?
1789 "flash" : "EEPROM");
1794 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
1795 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
1798 if (magic_num
!= FALCON_NVCONFIG_BOARD_MAGIC_NUM
) {
1799 netif_err(efx
, hw
, efx
->net_dev
,
1800 "NVRAM bad magic 0x%x\n", magic_num
);
1803 if (struct_ver
< 2) {
1804 netif_err(efx
, hw
, efx
->net_dev
,
1805 "NVRAM has ancient version 0x%x\n", struct_ver
);
1807 } else if (struct_ver
< 4) {
1808 word
= &nvconfig
->board_magic_num
;
1809 limit
= (__le16
*) (nvconfig
+ 1);
1812 limit
= region
+ FALCON_NVCONFIG_END
;
1814 for (csum
= 0; word
< limit
; ++word
)
1815 csum
+= le16_to_cpu(*word
);
1817 if (~csum
& 0xffff) {
1818 netif_err(efx
, hw
, efx
->net_dev
,
1819 "NVRAM has incorrect checksum\n");
1825 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
1832 static int falcon_test_nvram(struct efx_nic
*efx
)
1834 return falcon_read_nvram(efx
, NULL
);
1837 static const struct efx_farch_register_test falcon_b0_register_tests
[] = {
1839 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1841 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1843 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1844 { FR_AZ_TX_RESERVED
,
1845 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1847 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1848 { FR_AZ_SRM_TX_DC_CFG
,
1849 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1851 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1852 { FR_AZ_RX_DC_PF_WM
,
1853 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1855 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1857 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1859 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1861 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1863 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1865 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1866 { FR_AB_XM_RX_PARAM
,
1867 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1869 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1871 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1873 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1877 falcon_b0_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
1879 enum reset_type reset_method
= RESET_TYPE_INVISIBLE
;
1882 mutex_lock(&efx
->mac_lock
);
1883 if (efx
->loopback_modes
) {
1884 /* We need the 312 clock from the PHY to test the XMAC
1885 * registers, so move into XGMII loopback if available */
1886 if (efx
->loopback_modes
& (1 << LOOPBACK_XGMII
))
1887 efx
->loopback_mode
= LOOPBACK_XGMII
;
1889 efx
->loopback_mode
= __ffs(efx
->loopback_modes
);
1891 __efx_reconfigure_port(efx
);
1892 mutex_unlock(&efx
->mac_lock
);
1894 efx_reset_down(efx
, reset_method
);
1897 efx_farch_test_registers(efx
, falcon_b0_register_tests
,
1898 ARRAY_SIZE(falcon_b0_register_tests
))
1901 rc
= falcon_reset_hw(efx
, reset_method
);
1902 rc2
= efx_reset_up(efx
, reset_method
, rc
== 0);
1903 return rc
? rc
: rc2
;
1906 /**************************************************************************
1910 **************************************************************************
1913 static enum reset_type
falcon_map_reset_reason(enum reset_type reason
)
1916 case RESET_TYPE_RX_RECOVERY
:
1917 case RESET_TYPE_DMA_ERROR
:
1918 case RESET_TYPE_TX_SKIP
:
1919 /* These can occasionally occur due to hardware bugs.
1920 * We try to reset without disrupting the link.
1922 return RESET_TYPE_INVISIBLE
;
1924 return RESET_TYPE_ALL
;
1928 static int falcon_map_reset_flags(u32
*flags
)
1931 FALCON_RESET_INVISIBLE
= (ETH_RESET_DMA
| ETH_RESET_FILTER
|
1932 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
),
1933 FALCON_RESET_ALL
= FALCON_RESET_INVISIBLE
| ETH_RESET_PHY
,
1934 FALCON_RESET_WORLD
= FALCON_RESET_ALL
| ETH_RESET_IRQ
,
1937 if ((*flags
& FALCON_RESET_WORLD
) == FALCON_RESET_WORLD
) {
1938 *flags
&= ~FALCON_RESET_WORLD
;
1939 return RESET_TYPE_WORLD
;
1942 if ((*flags
& FALCON_RESET_ALL
) == FALCON_RESET_ALL
) {
1943 *flags
&= ~FALCON_RESET_ALL
;
1944 return RESET_TYPE_ALL
;
1947 if ((*flags
& FALCON_RESET_INVISIBLE
) == FALCON_RESET_INVISIBLE
) {
1948 *flags
&= ~FALCON_RESET_INVISIBLE
;
1949 return RESET_TYPE_INVISIBLE
;
1955 /* Resets NIC to known state. This routine must be called in process
1956 * context and is allowed to sleep. */
1957 static int __falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
1959 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1960 efx_oword_t glb_ctl_reg_ker
;
1963 netif_dbg(efx
, hw
, efx
->net_dev
, "performing %s hardware reset\n",
1964 RESET_TYPE(method
));
1966 /* Initiate device reset */
1967 if (method
== RESET_TYPE_WORLD
) {
1968 rc
= pci_save_state(efx
->pci_dev
);
1970 netif_err(efx
, drv
, efx
->net_dev
,
1971 "failed to backup PCI state of primary "
1972 "function prior to hardware reset\n");
1975 if (efx_nic_is_dual_func(efx
)) {
1976 rc
= pci_save_state(nic_data
->pci_dev2
);
1978 netif_err(efx
, drv
, efx
->net_dev
,
1979 "failed to backup PCI state of "
1980 "secondary function prior to "
1981 "hardware reset\n");
1986 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
1987 FRF_AB_EXT_PHY_RST_DUR
,
1988 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1991 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
1992 /* exclude PHY from "invisible" reset */
1993 FRF_AB_EXT_PHY_RST_CTL
,
1994 method
== RESET_TYPE_INVISIBLE
,
1995 /* exclude EEPROM/flash and PCIe */
1996 FRF_AB_PCIE_CORE_RST_CTL
, 1,
1997 FRF_AB_PCIE_NSTKY_RST_CTL
, 1,
1998 FRF_AB_PCIE_SD_RST_CTL
, 1,
1999 FRF_AB_EE_RST_CTL
, 1,
2000 FRF_AB_EXT_PHY_RST_DUR
,
2001 FFE_AB_EXT_PHY_RST_DUR_10240US
,
2004 efx_writeo(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
2006 netif_dbg(efx
, hw
, efx
->net_dev
, "waiting for hardware reset\n");
2007 schedule_timeout_uninterruptible(HZ
/ 20);
2009 /* Restore PCI configuration if needed */
2010 if (method
== RESET_TYPE_WORLD
) {
2011 if (efx_nic_is_dual_func(efx
))
2012 pci_restore_state(nic_data
->pci_dev2
);
2013 pci_restore_state(efx
->pci_dev
);
2014 netif_dbg(efx
, drv
, efx
->net_dev
,
2015 "successfully restored PCI config\n");
2018 /* Assert that reset complete */
2019 efx_reado(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
2020 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, FRF_AB_SWRST
) != 0) {
2022 netif_err(efx
, hw
, efx
->net_dev
,
2023 "timed out waiting for hardware reset\n");
2026 netif_dbg(efx
, hw
, efx
->net_dev
, "hardware reset complete\n");
2030 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2032 pci_restore_state(efx
->pci_dev
);
2038 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
2040 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2043 mutex_lock(&nic_data
->spi_lock
);
2044 rc
= __falcon_reset_hw(efx
, method
);
2045 mutex_unlock(&nic_data
->spi_lock
);
2050 static void falcon_monitor(struct efx_nic
*efx
)
2055 BUG_ON(!mutex_is_locked(&efx
->mac_lock
));
2057 rc
= falcon_board(efx
)->type
->monitor(efx
);
2059 netif_err(efx
, hw
, efx
->net_dev
,
2060 "Board sensor %s; shutting down PHY\n",
2061 (rc
== -ERANGE
) ? "reported fault" : "failed");
2062 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
2063 rc
= __efx_reconfigure_port(efx
);
2067 if (LOOPBACK_INTERNAL(efx
))
2068 link_changed
= falcon_loopback_link_poll(efx
);
2070 link_changed
= efx
->phy_op
->poll(efx
);
2073 falcon_stop_nic_stats(efx
);
2074 falcon_deconfigure_mac_wrapper(efx
);
2076 falcon_reset_macs(efx
);
2077 rc
= falcon_reconfigure_xmac(efx
);
2080 falcon_start_nic_stats(efx
);
2082 efx_link_status_changed(efx
);
2085 falcon_poll_xmac(efx
);
2088 /* Zeroes out the SRAM contents. This routine must be called in
2089 * process context and is allowed to sleep.
2091 static int falcon_reset_sram(struct efx_nic
*efx
)
2093 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
2096 /* Set the SRAM wake/sleep GPIO appropriately. */
2097 efx_reado(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
2098 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OEN
, 1);
2099 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OUT
, 1);
2100 efx_writeo(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
2102 /* Initiate SRAM reset */
2103 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
2104 FRF_AZ_SRM_INIT_EN
, 1,
2105 FRF_AZ_SRM_NB_SZ
, 0);
2106 efx_writeo(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
2108 /* Wait for SRAM reset to complete */
2111 netif_dbg(efx
, hw
, efx
->net_dev
,
2112 "waiting for SRAM reset (attempt %d)...\n", count
);
2114 /* SRAM reset is slow; expect around 16ms */
2115 schedule_timeout_uninterruptible(HZ
/ 50);
2117 /* Check for reset complete */
2118 efx_reado(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
2119 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, FRF_AZ_SRM_INIT_EN
)) {
2120 netif_dbg(efx
, hw
, efx
->net_dev
,
2121 "SRAM reset complete\n");
2125 } while (++count
< 20); /* wait up to 0.4 sec */
2127 netif_err(efx
, hw
, efx
->net_dev
, "timed out waiting for SRAM reset\n");
2131 static void falcon_spi_device_init(struct efx_nic
*efx
,
2132 struct falcon_spi_device
*spi_device
,
2133 unsigned int device_id
, u32 device_type
)
2135 if (device_type
!= 0) {
2136 spi_device
->device_id
= device_id
;
2138 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
2139 spi_device
->addr_len
=
2140 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
2141 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
2142 spi_device
->addr_len
== 1);
2143 spi_device
->erase_command
=
2144 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
2145 spi_device
->erase_size
=
2146 1 << SPI_DEV_TYPE_FIELD(device_type
,
2147 SPI_DEV_TYPE_ERASE_SIZE
);
2148 spi_device
->block_size
=
2149 1 << SPI_DEV_TYPE_FIELD(device_type
,
2150 SPI_DEV_TYPE_BLOCK_SIZE
);
2152 spi_device
->size
= 0;
2156 /* Extract non-volatile configuration */
2157 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
2159 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2160 struct falcon_nvconfig
*nvconfig
;
2163 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
2167 rc
= falcon_read_nvram(efx
, nvconfig
);
2171 efx
->phy_type
= nvconfig
->board_v2
.port0_phy_type
;
2172 efx
->mdio
.prtad
= nvconfig
->board_v2
.port0_phy_addr
;
2174 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
2175 falcon_spi_device_init(
2176 efx
, &nic_data
->spi_flash
, FFE_AB_SPI_DEVICE_FLASH
,
2177 le32_to_cpu(nvconfig
->board_v3
2178 .spi_device_type
[FFE_AB_SPI_DEVICE_FLASH
]));
2179 falcon_spi_device_init(
2180 efx
, &nic_data
->spi_eeprom
, FFE_AB_SPI_DEVICE_EEPROM
,
2181 le32_to_cpu(nvconfig
->board_v3
2182 .spi_device_type
[FFE_AB_SPI_DEVICE_EEPROM
]));
2185 /* Read the MAC addresses */
2186 ether_addr_copy(efx
->net_dev
->perm_addr
, nvconfig
->mac_address
[0]);
2188 netif_dbg(efx
, probe
, efx
->net_dev
, "PHY is %d phy_id %d\n",
2189 efx
->phy_type
, efx
->mdio
.prtad
);
2191 rc
= falcon_probe_board(efx
,
2192 le16_to_cpu(nvconfig
->board_v2
.board_revision
));
2198 static int falcon_dimension_resources(struct efx_nic
*efx
)
2200 efx
->rx_dc_base
= 0x20000;
2201 efx
->tx_dc_base
= 0x26000;
2205 /* Probe all SPI devices on the NIC */
2206 static void falcon_probe_spi_devices(struct efx_nic
*efx
)
2208 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2209 efx_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
2212 efx_reado(efx
, &gpio_ctl
, FR_AB_GPIO_CTL
);
2213 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2214 efx_reado(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
2216 if (EFX_OWORD_FIELD(gpio_ctl
, FRF_AB_GPIO3_PWRUP_VALUE
)) {
2217 boot_dev
= (EFX_OWORD_FIELD(nic_stat
, FRF_AB_SF_PRST
) ?
2218 FFE_AB_SPI_DEVICE_FLASH
: FFE_AB_SPI_DEVICE_EEPROM
);
2219 netif_dbg(efx
, probe
, efx
->net_dev
, "Booted from %s\n",
2220 boot_dev
== FFE_AB_SPI_DEVICE_FLASH
?
2221 "flash" : "EEPROM");
2223 /* Disable VPD and set clock dividers to safe
2224 * values for initial programming. */
2226 netif_dbg(efx
, probe
, efx
->net_dev
,
2227 "Booted from internal ASIC settings;"
2228 " setting SPI config\n");
2229 EFX_POPULATE_OWORD_3(ee_vpd_cfg
, FRF_AB_EE_VPD_EN
, 0,
2230 /* 125 MHz / 7 ~= 20 MHz */
2231 FRF_AB_EE_SF_CLOCK_DIV
, 7,
2232 /* 125 MHz / 63 ~= 2 MHz */
2233 FRF_AB_EE_EE_CLOCK_DIV
, 63);
2234 efx_writeo(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
2237 mutex_init(&nic_data
->spi_lock
);
2239 if (boot_dev
== FFE_AB_SPI_DEVICE_FLASH
)
2240 falcon_spi_device_init(efx
, &nic_data
->spi_flash
,
2241 FFE_AB_SPI_DEVICE_FLASH
,
2242 default_flash_type
);
2243 if (boot_dev
== FFE_AB_SPI_DEVICE_EEPROM
)
2244 falcon_spi_device_init(efx
, &nic_data
->spi_eeprom
,
2245 FFE_AB_SPI_DEVICE_EEPROM
,
2249 static unsigned int falcon_a1_mem_map_size(struct efx_nic
*efx
)
2254 static unsigned int falcon_b0_mem_map_size(struct efx_nic
*efx
)
2256 /* Map everything up to and including the RSS indirection table.
2257 * The PCI core takes care of mapping the MSI-X tables.
2259 return FR_BZ_RX_INDIRECTION_TBL
+
2260 FR_BZ_RX_INDIRECTION_TBL_STEP
* FR_BZ_RX_INDIRECTION_TBL_ROWS
;
2263 static int falcon_probe_nic(struct efx_nic
*efx
)
2265 struct falcon_nic_data
*nic_data
;
2266 struct falcon_board
*board
;
2269 efx
->primary
= efx
; /* only one usable function per controller */
2271 /* Allocate storage for hardware specific data */
2272 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
2275 efx
->nic_data
= nic_data
;
2279 if (efx_farch_fpga_ver(efx
) != 0) {
2280 netif_err(efx
, probe
, efx
->net_dev
,
2281 "Falcon FPGA not supported\n");
2285 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
2286 efx_oword_t nic_stat
;
2287 struct pci_dev
*dev
;
2288 u8 pci_rev
= efx
->pci_dev
->revision
;
2290 if ((pci_rev
== 0xff) || (pci_rev
== 0)) {
2291 netif_err(efx
, probe
, efx
->net_dev
,
2292 "Falcon rev A0 not supported\n");
2295 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2296 if (EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_10G
) == 0) {
2297 netif_err(efx
, probe
, efx
->net_dev
,
2298 "Falcon rev A1 1G not supported\n");
2301 if (EFX_OWORD_FIELD(nic_stat
, FRF_AA_STRAP_PCIE
) == 0) {
2302 netif_err(efx
, probe
, efx
->net_dev
,
2303 "Falcon rev A1 PCI-X not supported\n");
2307 dev
= pci_dev_get(efx
->pci_dev
);
2308 while ((dev
= pci_get_device(PCI_VENDOR_ID_SOLARFLARE
,
2309 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1
,
2311 if (dev
->bus
== efx
->pci_dev
->bus
&&
2312 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
2313 nic_data
->pci_dev2
= dev
;
2317 if (!nic_data
->pci_dev2
) {
2318 netif_err(efx
, probe
, efx
->net_dev
,
2319 "failed to find secondary function\n");
2325 /* Now we can reset the NIC */
2326 rc
= __falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2328 netif_err(efx
, probe
, efx
->net_dev
, "failed to reset NIC\n");
2332 /* Allocate memory for INT_KER */
2333 rc
= efx_nic_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
),
2337 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
2339 netif_dbg(efx
, probe
, efx
->net_dev
,
2340 "INT_KER at %llx (virt %p phys %llx)\n",
2341 (u64
)efx
->irq_status
.dma_addr
,
2342 efx
->irq_status
.addr
,
2343 (u64
)virt_to_phys(efx
->irq_status
.addr
));
2345 falcon_probe_spi_devices(efx
);
2347 /* Read in the non-volatile configuration */
2348 rc
= falcon_probe_nvconfig(efx
);
2351 netif_err(efx
, probe
, efx
->net_dev
, "NVRAM is invalid\n");
2355 efx
->max_channels
= (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
? 4 :
2357 efx
->timer_quantum_ns
= 4968; /* 621 cycles */
2359 /* Initialise I2C adapter */
2360 board
= falcon_board(efx
);
2361 board
->i2c_adap
.owner
= THIS_MODULE
;
2362 board
->i2c_data
= falcon_i2c_bit_operations
;
2363 board
->i2c_data
.data
= efx
;
2364 board
->i2c_adap
.algo_data
= &board
->i2c_data
;
2365 board
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
2366 strlcpy(board
->i2c_adap
.name
, "SFC4000 GPIO",
2367 sizeof(board
->i2c_adap
.name
));
2368 rc
= i2c_bit_add_bus(&board
->i2c_adap
);
2372 rc
= falcon_board(efx
)->type
->init(efx
);
2374 netif_err(efx
, probe
, efx
->net_dev
,
2375 "failed to initialise board\n");
2379 nic_data
->stats_disable_count
= 1;
2380 setup_timer(&nic_data
->stats_timer
, &falcon_stats_timer_func
,
2381 (unsigned long)efx
);
2386 i2c_del_adapter(&board
->i2c_adap
);
2387 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
2389 efx_nic_free_buffer(efx
, &efx
->irq_status
);
2392 if (nic_data
->pci_dev2
) {
2393 pci_dev_put(nic_data
->pci_dev2
);
2394 nic_data
->pci_dev2
= NULL
;
2398 kfree(efx
->nic_data
);
2402 static void falcon_init_rx_cfg(struct efx_nic
*efx
)
2404 /* RX control FIFO thresholds (32 entries) */
2405 const unsigned ctrl_xon_thr
= 20;
2406 const unsigned ctrl_xoff_thr
= 25;
2409 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
2410 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
2411 /* Data FIFO size is 5.5K. The RX DMA engine only
2412 * supports scattering for user-mode queues, but will
2413 * split DMA writes at intervals of RX_USR_BUF_SIZE
2414 * (32-byte units) even for kernel-mode queues. We
2415 * set it to be so large that that never happens.
2417 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_DESC_PUSH_EN
, 0);
2418 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_USR_BUF_SIZE
,
2420 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_MAC_TH
, 512 >> 8);
2421 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_MAC_TH
, 2048 >> 8);
2422 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_TX_TH
, ctrl_xon_thr
);
2423 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
2425 /* Data FIFO size is 80K; register fields moved */
2426 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_DESC_PUSH_EN
, 0);
2427 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_USR_BUF_SIZE
,
2428 EFX_RX_USR_BUF_SIZE
>> 5);
2429 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2430 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_MAC_TH
, 27648 >> 8);
2431 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_MAC_TH
, 54272 >> 8);
2432 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_TX_TH
, ctrl_xon_thr
);
2433 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
2434 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
2436 /* Enable hash insertion. This is broken for the
2437 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2439 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_HASH_INSRT_HDR
, 1);
2440 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_HASH_ALG
, 1);
2441 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_IP_HASH
, 1);
2443 /* Always enable XOFF signal from RX FIFO. We enable
2444 * or disable transmission of pause frames at the MAC. */
2445 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
2446 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
2449 /* This call performs hardware-specific global initialisation, such as
2450 * defining the descriptor cache sizes and number of RSS channels.
2451 * It does not set up any buffers, descriptor rings or event queues.
2453 static int falcon_init_nic(struct efx_nic
*efx
)
2458 /* Use on-chip SRAM */
2459 efx_reado(efx
, &temp
, FR_AB_NIC_STAT
);
2460 EFX_SET_OWORD_FIELD(temp
, FRF_AB_ONCHIP_SRAM
, 1);
2461 efx_writeo(efx
, &temp
, FR_AB_NIC_STAT
);
2463 rc
= falcon_reset_sram(efx
);
2467 /* Clear the parity enables on the TX data fifos as
2468 * they produce false parity errors because of timing issues
2470 if (EFX_WORKAROUND_5129(efx
)) {
2471 efx_reado(efx
, &temp
, FR_AZ_CSR_SPARE
);
2472 EFX_SET_OWORD_FIELD(temp
, FRF_AB_MEM_PERR_EN_TX_DATA
, 0);
2473 efx_writeo(efx
, &temp
, FR_AZ_CSR_SPARE
);
2476 if (EFX_WORKAROUND_7244(efx
)) {
2477 efx_reado(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
2478 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_FULL_SRCH_LIMIT
, 8);
2479 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_WILD_SRCH_LIMIT
, 8);
2480 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_FULL_SRCH_LIMIT
, 8);
2481 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_WILD_SRCH_LIMIT
, 8);
2482 efx_writeo(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
2485 /* XXX This is documented only for Falcon A0/A1 */
2486 /* Setup RX. Wait for descriptor is broken and must
2487 * be disabled. RXDP recovery shouldn't be needed, but is.
2489 efx_reado(efx
, &temp
, FR_AA_RX_SELF_RST
);
2490 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_NODESC_WAIT_DIS
, 1);
2491 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_SELF_RST_EN
, 1);
2492 if (EFX_WORKAROUND_5583(efx
))
2493 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_ISCSI_DIS
, 1);
2494 efx_writeo(efx
, &temp
, FR_AA_RX_SELF_RST
);
2496 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2497 * descriptors (which is bad).
2499 efx_reado(efx
, &temp
, FR_AZ_TX_CFG
);
2500 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_NO_EOP_DISC_EN
, 0);
2501 efx_writeo(efx
, &temp
, FR_AZ_TX_CFG
);
2503 falcon_init_rx_cfg(efx
);
2505 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
2506 falcon_b0_rx_push_rss_config(efx
);
2508 /* Set destination of both TX and RX Flush events */
2509 EFX_POPULATE_OWORD_1(temp
, FRF_BZ_FLS_EVQ_ID
, 0);
2510 efx_writeo(efx
, &temp
, FR_BZ_DP_CTRL
);
2513 efx_farch_init_common(efx
);
2518 static void falcon_remove_nic(struct efx_nic
*efx
)
2520 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2521 struct falcon_board
*board
= falcon_board(efx
);
2523 board
->type
->fini(efx
);
2525 /* Remove I2C adapter and clear it in preparation for a retry */
2526 i2c_del_adapter(&board
->i2c_adap
);
2527 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
2529 efx_nic_free_buffer(efx
, &efx
->irq_status
);
2531 __falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2533 /* Release the second function after the reset */
2534 if (nic_data
->pci_dev2
) {
2535 pci_dev_put(nic_data
->pci_dev2
);
2536 nic_data
->pci_dev2
= NULL
;
2539 /* Tear down the private nic state */
2540 kfree(efx
->nic_data
);
2541 efx
->nic_data
= NULL
;
2544 static size_t falcon_describe_nic_stats(struct efx_nic
*efx
, u8
*names
)
2546 return efx_nic_describe_stats(falcon_stat_desc
, FALCON_STAT_COUNT
,
2547 falcon_stat_mask
, names
);
2550 static size_t falcon_update_nic_stats(struct efx_nic
*efx
, u64
*full_stats
,
2551 struct rtnl_link_stats64
*core_stats
)
2553 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2554 u64
*stats
= nic_data
->stats
;
2557 if (!nic_data
->stats_disable_count
) {
2558 efx_reado(efx
, &cnt
, FR_AZ_RX_NODESC_DROP
);
2559 stats
[FALCON_STAT_rx_nodesc_drop_cnt
] +=
2560 EFX_OWORD_FIELD(cnt
, FRF_AB_RX_NODESC_DROP_CNT
);
2562 if (nic_data
->stats_pending
&&
2563 FALCON_XMAC_STATS_DMA_FLAG(efx
)) {
2564 nic_data
->stats_pending
= false;
2565 rmb(); /* read the done flag before the stats */
2566 efx_nic_update_stats(
2567 falcon_stat_desc
, FALCON_STAT_COUNT
,
2569 stats
, efx
->stats_buffer
.addr
, true);
2572 /* Update derived statistic */
2573 efx_update_diff_stat(&stats
[FALCON_STAT_rx_bad_bytes
],
2574 stats
[FALCON_STAT_rx_bytes
] -
2575 stats
[FALCON_STAT_rx_good_bytes
] -
2576 stats
[FALCON_STAT_rx_control
] * 64);
2580 memcpy(full_stats
, stats
, sizeof(u64
) * FALCON_STAT_COUNT
);
2583 core_stats
->rx_packets
= stats
[FALCON_STAT_rx_packets
];
2584 core_stats
->tx_packets
= stats
[FALCON_STAT_tx_packets
];
2585 core_stats
->rx_bytes
= stats
[FALCON_STAT_rx_bytes
];
2586 core_stats
->tx_bytes
= stats
[FALCON_STAT_tx_bytes
];
2587 core_stats
->rx_dropped
= stats
[FALCON_STAT_rx_nodesc_drop_cnt
];
2588 core_stats
->multicast
= stats
[FALCON_STAT_rx_multicast
];
2589 core_stats
->rx_length_errors
=
2590 stats
[FALCON_STAT_rx_gtjumbo
] +
2591 stats
[FALCON_STAT_rx_length_error
];
2592 core_stats
->rx_crc_errors
= stats
[FALCON_STAT_rx_bad
];
2593 core_stats
->rx_frame_errors
= stats
[FALCON_STAT_rx_align_error
];
2594 core_stats
->rx_fifo_errors
= stats
[FALCON_STAT_rx_overflow
];
2596 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
2597 core_stats
->rx_crc_errors
+
2598 core_stats
->rx_frame_errors
+
2599 stats
[FALCON_STAT_rx_symbol_error
]);
2602 return FALCON_STAT_COUNT
;
2605 void falcon_start_nic_stats(struct efx_nic
*efx
)
2607 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2609 spin_lock_bh(&efx
->stats_lock
);
2610 if (--nic_data
->stats_disable_count
== 0)
2611 falcon_stats_request(efx
);
2612 spin_unlock_bh(&efx
->stats_lock
);
2615 /* We don't acutally pull stats on falcon. Wait 10ms so that
2616 * they arrive when we call this just after start_stats
2618 static void falcon_pull_nic_stats(struct efx_nic
*efx
)
2623 void falcon_stop_nic_stats(struct efx_nic
*efx
)
2625 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2630 spin_lock_bh(&efx
->stats_lock
);
2631 ++nic_data
->stats_disable_count
;
2632 spin_unlock_bh(&efx
->stats_lock
);
2634 del_timer_sync(&nic_data
->stats_timer
);
2636 /* Wait enough time for the most recent transfer to
2638 for (i
= 0; i
< 4 && nic_data
->stats_pending
; i
++) {
2639 if (FALCON_XMAC_STATS_DMA_FLAG(efx
))
2644 spin_lock_bh(&efx
->stats_lock
);
2645 falcon_stats_complete(efx
);
2646 spin_unlock_bh(&efx
->stats_lock
);
2649 static void falcon_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
2651 falcon_board(efx
)->type
->set_id_led(efx
, mode
);
2654 /**************************************************************************
2658 **************************************************************************
2661 static void falcon_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
2665 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
2668 static int falcon_set_wol(struct efx_nic
*efx
, u32 type
)
2675 /**************************************************************************
2677 * Revision-dependent attributes used by efx.c and nic.c
2679 **************************************************************************
2682 const struct efx_nic_type falcon_a1_nic_type
= {
2683 .mem_map_size
= falcon_a1_mem_map_size
,
2684 .probe
= falcon_probe_nic
,
2685 .remove
= falcon_remove_nic
,
2686 .init
= falcon_init_nic
,
2687 .dimension_resources
= falcon_dimension_resources
,
2688 .fini
= falcon_irq_ack_a1
,
2689 .monitor
= falcon_monitor
,
2690 .map_reset_reason
= falcon_map_reset_reason
,
2691 .map_reset_flags
= falcon_map_reset_flags
,
2692 .reset
= falcon_reset_hw
,
2693 .probe_port
= falcon_probe_port
,
2694 .remove_port
= falcon_remove_port
,
2695 .handle_global_event
= falcon_handle_global_event
,
2696 .fini_dmaq
= efx_farch_fini_dmaq
,
2697 .prepare_flush
= falcon_prepare_flush
,
2698 .finish_flush
= efx_port_dummy_op_void
,
2699 .prepare_flr
= efx_port_dummy_op_void
,
2700 .finish_flr
= efx_farch_finish_flr
,
2701 .describe_stats
= falcon_describe_nic_stats
,
2702 .update_stats
= falcon_update_nic_stats
,
2703 .start_stats
= falcon_start_nic_stats
,
2704 .pull_stats
= falcon_pull_nic_stats
,
2705 .stop_stats
= falcon_stop_nic_stats
,
2706 .set_id_led
= falcon_set_id_led
,
2707 .push_irq_moderation
= falcon_push_irq_moderation
,
2708 .reconfigure_port
= falcon_reconfigure_port
,
2709 .prepare_enable_fc_tx
= falcon_a1_prepare_enable_fc_tx
,
2710 .reconfigure_mac
= falcon_reconfigure_xmac
,
2711 .check_mac_fault
= falcon_xmac_check_fault
,
2712 .get_wol
= falcon_get_wol
,
2713 .set_wol
= falcon_set_wol
,
2714 .resume_wol
= efx_port_dummy_op_void
,
2715 .test_nvram
= falcon_test_nvram
,
2716 .irq_enable_master
= efx_farch_irq_enable_master
,
2717 .irq_test_generate
= efx_farch_irq_test_generate
,
2718 .irq_disable_non_ev
= efx_farch_irq_disable_master
,
2719 .irq_handle_msi
= efx_farch_msi_interrupt
,
2720 .irq_handle_legacy
= falcon_legacy_interrupt_a1
,
2721 .tx_probe
= efx_farch_tx_probe
,
2722 .tx_init
= efx_farch_tx_init
,
2723 .tx_remove
= efx_farch_tx_remove
,
2724 .tx_write
= efx_farch_tx_write
,
2725 .rx_push_rss_config
= efx_port_dummy_op_void
,
2726 .rx_probe
= efx_farch_rx_probe
,
2727 .rx_init
= efx_farch_rx_init
,
2728 .rx_remove
= efx_farch_rx_remove
,
2729 .rx_write
= efx_farch_rx_write
,
2730 .rx_defer_refill
= efx_farch_rx_defer_refill
,
2731 .ev_probe
= efx_farch_ev_probe
,
2732 .ev_init
= efx_farch_ev_init
,
2733 .ev_fini
= efx_farch_ev_fini
,
2734 .ev_remove
= efx_farch_ev_remove
,
2735 .ev_process
= efx_farch_ev_process
,
2736 .ev_read_ack
= efx_farch_ev_read_ack
,
2737 .ev_test_generate
= efx_farch_ev_test_generate
,
2739 /* We don't expose the filter table on Falcon A1 as it is not
2740 * mapped into function 0, but these implementations still
2741 * work with a degenerate case of all tables set to size 0.
2743 .filter_table_probe
= efx_farch_filter_table_probe
,
2744 .filter_table_restore
= efx_farch_filter_table_restore
,
2745 .filter_table_remove
= efx_farch_filter_table_remove
,
2746 .filter_insert
= efx_farch_filter_insert
,
2747 .filter_remove_safe
= efx_farch_filter_remove_safe
,
2748 .filter_get_safe
= efx_farch_filter_get_safe
,
2749 .filter_clear_rx
= efx_farch_filter_clear_rx
,
2750 .filter_count_rx_used
= efx_farch_filter_count_rx_used
,
2751 .filter_get_rx_id_limit
= efx_farch_filter_get_rx_id_limit
,
2752 .filter_get_rx_ids
= efx_farch_filter_get_rx_ids
,
2754 #ifdef CONFIG_SFC_MTD
2755 .mtd_probe
= falcon_mtd_probe
,
2756 .mtd_rename
= falcon_mtd_rename
,
2757 .mtd_read
= falcon_mtd_read
,
2758 .mtd_erase
= falcon_mtd_erase
,
2759 .mtd_write
= falcon_mtd_write
,
2760 .mtd_sync
= falcon_mtd_sync
,
2763 .revision
= EFX_REV_FALCON_A1
,
2764 .txd_ptr_tbl_base
= FR_AA_TX_DESC_PTR_TBL_KER
,
2765 .rxd_ptr_tbl_base
= FR_AA_RX_DESC_PTR_TBL_KER
,
2766 .buf_tbl_base
= FR_AA_BUF_FULL_TBL_KER
,
2767 .evq_ptr_tbl_base
= FR_AA_EVQ_PTR_TBL_KER
,
2768 .evq_rptr_tbl_base
= FR_AA_EVQ_RPTR_KER
,
2769 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
2770 .rx_buffer_padding
= 0x24,
2771 .can_rx_scatter
= false,
2772 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
2773 .timer_period_max
= 1 << FRF_AB_TC_TIMER_VAL_WIDTH
,
2774 .offload_features
= NETIF_F_IP_CSUM
,
2778 const struct efx_nic_type falcon_b0_nic_type
= {
2779 .mem_map_size
= falcon_b0_mem_map_size
,
2780 .probe
= falcon_probe_nic
,
2781 .remove
= falcon_remove_nic
,
2782 .init
= falcon_init_nic
,
2783 .dimension_resources
= falcon_dimension_resources
,
2784 .fini
= efx_port_dummy_op_void
,
2785 .monitor
= falcon_monitor
,
2786 .map_reset_reason
= falcon_map_reset_reason
,
2787 .map_reset_flags
= falcon_map_reset_flags
,
2788 .reset
= falcon_reset_hw
,
2789 .probe_port
= falcon_probe_port
,
2790 .remove_port
= falcon_remove_port
,
2791 .handle_global_event
= falcon_handle_global_event
,
2792 .fini_dmaq
= efx_farch_fini_dmaq
,
2793 .prepare_flush
= falcon_prepare_flush
,
2794 .finish_flush
= efx_port_dummy_op_void
,
2795 .prepare_flr
= efx_port_dummy_op_void
,
2796 .finish_flr
= efx_farch_finish_flr
,
2797 .describe_stats
= falcon_describe_nic_stats
,
2798 .update_stats
= falcon_update_nic_stats
,
2799 .start_stats
= falcon_start_nic_stats
,
2800 .pull_stats
= falcon_pull_nic_stats
,
2801 .stop_stats
= falcon_stop_nic_stats
,
2802 .set_id_led
= falcon_set_id_led
,
2803 .push_irq_moderation
= falcon_push_irq_moderation
,
2804 .reconfigure_port
= falcon_reconfigure_port
,
2805 .prepare_enable_fc_tx
= falcon_b0_prepare_enable_fc_tx
,
2806 .reconfigure_mac
= falcon_reconfigure_xmac
,
2807 .check_mac_fault
= falcon_xmac_check_fault
,
2808 .get_wol
= falcon_get_wol
,
2809 .set_wol
= falcon_set_wol
,
2810 .resume_wol
= efx_port_dummy_op_void
,
2811 .test_chip
= falcon_b0_test_chip
,
2812 .test_nvram
= falcon_test_nvram
,
2813 .irq_enable_master
= efx_farch_irq_enable_master
,
2814 .irq_test_generate
= efx_farch_irq_test_generate
,
2815 .irq_disable_non_ev
= efx_farch_irq_disable_master
,
2816 .irq_handle_msi
= efx_farch_msi_interrupt
,
2817 .irq_handle_legacy
= efx_farch_legacy_interrupt
,
2818 .tx_probe
= efx_farch_tx_probe
,
2819 .tx_init
= efx_farch_tx_init
,
2820 .tx_remove
= efx_farch_tx_remove
,
2821 .tx_write
= efx_farch_tx_write
,
2822 .rx_push_rss_config
= falcon_b0_rx_push_rss_config
,
2823 .rx_probe
= efx_farch_rx_probe
,
2824 .rx_init
= efx_farch_rx_init
,
2825 .rx_remove
= efx_farch_rx_remove
,
2826 .rx_write
= efx_farch_rx_write
,
2827 .rx_defer_refill
= efx_farch_rx_defer_refill
,
2828 .ev_probe
= efx_farch_ev_probe
,
2829 .ev_init
= efx_farch_ev_init
,
2830 .ev_fini
= efx_farch_ev_fini
,
2831 .ev_remove
= efx_farch_ev_remove
,
2832 .ev_process
= efx_farch_ev_process
,
2833 .ev_read_ack
= efx_farch_ev_read_ack
,
2834 .ev_test_generate
= efx_farch_ev_test_generate
,
2835 .filter_table_probe
= efx_farch_filter_table_probe
,
2836 .filter_table_restore
= efx_farch_filter_table_restore
,
2837 .filter_table_remove
= efx_farch_filter_table_remove
,
2838 .filter_update_rx_scatter
= efx_farch_filter_update_rx_scatter
,
2839 .filter_insert
= efx_farch_filter_insert
,
2840 .filter_remove_safe
= efx_farch_filter_remove_safe
,
2841 .filter_get_safe
= efx_farch_filter_get_safe
,
2842 .filter_clear_rx
= efx_farch_filter_clear_rx
,
2843 .filter_count_rx_used
= efx_farch_filter_count_rx_used
,
2844 .filter_get_rx_id_limit
= efx_farch_filter_get_rx_id_limit
,
2845 .filter_get_rx_ids
= efx_farch_filter_get_rx_ids
,
2846 #ifdef CONFIG_RFS_ACCEL
2847 .filter_rfs_insert
= efx_farch_filter_rfs_insert
,
2848 .filter_rfs_expire_one
= efx_farch_filter_rfs_expire_one
,
2850 #ifdef CONFIG_SFC_MTD
2851 .mtd_probe
= falcon_mtd_probe
,
2852 .mtd_rename
= falcon_mtd_rename
,
2853 .mtd_read
= falcon_mtd_read
,
2854 .mtd_erase
= falcon_mtd_erase
,
2855 .mtd_write
= falcon_mtd_write
,
2856 .mtd_sync
= falcon_mtd_sync
,
2859 .revision
= EFX_REV_FALCON_B0
,
2860 .txd_ptr_tbl_base
= FR_BZ_TX_DESC_PTR_TBL
,
2861 .rxd_ptr_tbl_base
= FR_BZ_RX_DESC_PTR_TBL
,
2862 .buf_tbl_base
= FR_BZ_BUF_FULL_TBL
,
2863 .evq_ptr_tbl_base
= FR_BZ_EVQ_PTR_TBL
,
2864 .evq_rptr_tbl_base
= FR_BZ_EVQ_RPTR
,
2865 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
2866 .rx_prefix_size
= FS_BZ_RX_PREFIX_SIZE
,
2867 .rx_hash_offset
= FS_BZ_RX_PREFIX_HASH_OFST
,
2868 .rx_buffer_padding
= 0,
2869 .can_rx_scatter
= true,
2870 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
2871 .timer_period_max
= 1 << FRF_AB_TC_TIMER_VAL_WIDTH
,
2872 .offload_features
= NETIF_F_IP_CSUM
| NETIF_F_RXHASH
| NETIF_F_NTUPLE
,
2874 .max_rx_ip_filters
= FR_BZ_RX_FILTER_TBL0_ROWS
,