4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
121 EXPORT_SYMBOL(zero_pfn
);
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 static int __init
init_zero_pfn(void)
128 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
131 core_initcall(init_zero_pfn
);
134 #if defined(SPLIT_RSS_COUNTING)
136 void sync_mm_rss(struct mm_struct
*mm
)
140 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
141 if (current
->rss_stat
.count
[i
]) {
142 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
143 current
->rss_stat
.count
[i
] = 0;
146 current
->rss_stat
.events
= 0;
149 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
151 struct task_struct
*task
= current
;
153 if (likely(task
->mm
== mm
))
154 task
->rss_stat
.count
[member
] += val
;
156 add_mm_counter(mm
, member
, val
);
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct
*task
)
165 if (unlikely(task
!= current
))
167 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
168 sync_mm_rss(task
->mm
);
170 #else /* SPLIT_RSS_COUNTING */
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175 static void check_sync_rss_stat(struct task_struct
*task
)
179 #endif /* SPLIT_RSS_COUNTING */
181 #ifdef HAVE_GENERIC_MMU_GATHER
183 static int tlb_next_batch(struct mmu_gather
*tlb
)
185 struct mmu_gather_batch
*batch
;
189 tlb
->active
= batch
->next
;
193 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
196 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
203 batch
->max
= MAX_GATHER_BATCH
;
205 tlb
->active
->next
= batch
;
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
216 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
220 /* Is it from 0 to ~0? */
221 tlb
->fullmm
= !(start
| (end
+1));
222 tlb
->need_flush_all
= 0;
223 tlb
->local
.next
= NULL
;
225 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
226 tlb
->active
= &tlb
->local
;
227 tlb
->batch_count
= 0;
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 __tlb_reset_range(tlb
);
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb
);
245 __tlb_reset_range(tlb
);
248 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
250 struct mmu_gather_batch
*batch
;
252 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
253 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
256 tlb
->active
= &tlb
->local
;
259 void tlb_flush_mmu(struct mmu_gather
*tlb
)
261 tlb_flush_mmu_tlbonly(tlb
);
262 tlb_flush_mmu_free(tlb
);
266 * Called at the end of the shootdown operation to free up any resources
267 * that were required.
269 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
271 struct mmu_gather_batch
*batch
, *next
;
275 /* keep the page table cache within bounds */
278 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
280 free_pages((unsigned long)batch
, 0);
282 tlb
->local
.next
= NULL
;
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
291 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
293 struct mmu_gather_batch
*batch
;
295 VM_BUG_ON(!tlb
->end
);
298 batch
->pages
[batch
->nr
++] = page
;
299 if (batch
->nr
== batch
->max
) {
300 if (!tlb_next_batch(tlb
))
304 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
306 return batch
->max
- batch
->nr
;
309 #endif /* HAVE_GENERIC_MMU_GATHER */
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314 * See the comment near struct mmu_table_batch.
317 static void tlb_remove_table_smp_sync(void *arg
)
319 /* Simply deliver the interrupt */
322 static void tlb_remove_table_one(void *table
)
325 * This isn't an RCU grace period and hence the page-tables cannot be
326 * assumed to be actually RCU-freed.
328 * It is however sufficient for software page-table walkers that rely on
329 * IRQ disabling. See the comment near struct mmu_table_batch.
331 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
332 __tlb_remove_table(table
);
335 static void tlb_remove_table_rcu(struct rcu_head
*head
)
337 struct mmu_table_batch
*batch
;
340 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
342 for (i
= 0; i
< batch
->nr
; i
++)
343 __tlb_remove_table(batch
->tables
[i
]);
345 free_page((unsigned long)batch
);
348 void tlb_table_flush(struct mmu_gather
*tlb
)
350 struct mmu_table_batch
**batch
= &tlb
->batch
;
353 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
358 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
360 struct mmu_table_batch
**batch
= &tlb
->batch
;
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
366 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
367 __tlb_remove_table(table
);
371 if (*batch
== NULL
) {
372 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
373 if (*batch
== NULL
) {
374 tlb_remove_table_one(table
);
379 (*batch
)->tables
[(*batch
)->nr
++] = table
;
380 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
381 tlb_table_flush(tlb
);
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
390 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
393 pgtable_t token
= pmd_pgtable(*pmd
);
395 pte_free_tlb(tlb
, token
, addr
);
396 atomic_long_dec(&tlb
->mm
->nr_ptes
);
399 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
400 unsigned long addr
, unsigned long end
,
401 unsigned long floor
, unsigned long ceiling
)
408 pmd
= pmd_offset(pud
, addr
);
410 next
= pmd_addr_end(addr
, end
);
411 if (pmd_none_or_clear_bad(pmd
))
413 free_pte_range(tlb
, pmd
, addr
);
414 } while (pmd
++, addr
= next
, addr
!= end
);
424 if (end
- 1 > ceiling
- 1)
427 pmd
= pmd_offset(pud
, start
);
429 pmd_free_tlb(tlb
, pmd
, start
);
432 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
433 unsigned long addr
, unsigned long end
,
434 unsigned long floor
, unsigned long ceiling
)
441 pud
= pud_offset(pgd
, addr
);
443 next
= pud_addr_end(addr
, end
);
444 if (pud_none_or_clear_bad(pud
))
446 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
447 } while (pud
++, addr
= next
, addr
!= end
);
453 ceiling
&= PGDIR_MASK
;
457 if (end
- 1 > ceiling
- 1)
460 pud
= pud_offset(pgd
, start
);
462 pud_free_tlb(tlb
, pud
, start
);
466 * This function frees user-level page tables of a process.
468 void free_pgd_range(struct mmu_gather
*tlb
,
469 unsigned long addr
, unsigned long end
,
470 unsigned long floor
, unsigned long ceiling
)
476 * The next few lines have given us lots of grief...
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
512 if (end
- 1 > ceiling
- 1)
517 pgd
= pgd_offset(tlb
->mm
, addr
);
519 next
= pgd_addr_end(addr
, end
);
520 if (pgd_none_or_clear_bad(pgd
))
522 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
523 } while (pgd
++, addr
= next
, addr
!= end
);
526 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
527 unsigned long floor
, unsigned long ceiling
)
530 struct vm_area_struct
*next
= vma
->vm_next
;
531 unsigned long addr
= vma
->vm_start
;
534 * Hide vma from rmap and truncate_pagecache before freeing
537 unlink_anon_vmas(vma
);
538 unlink_file_vma(vma
);
540 if (is_vm_hugetlb_page(vma
)) {
541 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
542 floor
, next
? next
->vm_start
: ceiling
);
545 * Optimization: gather nearby vmas into one call down
547 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
548 && !is_vm_hugetlb_page(next
)) {
551 unlink_anon_vmas(vma
);
552 unlink_file_vma(vma
);
554 free_pgd_range(tlb
, addr
, vma
->vm_end
,
555 floor
, next
? next
->vm_start
: ceiling
);
561 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
562 pmd_t
*pmd
, unsigned long address
)
565 pgtable_t
new = pte_alloc_one(mm
, address
);
566 int wait_split_huge_page
;
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585 ptl
= pmd_lock(mm
, pmd
);
586 wait_split_huge_page
= 0;
587 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
588 atomic_long_inc(&mm
->nr_ptes
);
589 pmd_populate(mm
, pmd
, new);
591 } else if (unlikely(pmd_trans_splitting(*pmd
)))
592 wait_split_huge_page
= 1;
596 if (wait_split_huge_page
)
597 wait_split_huge_page(vma
->anon_vma
, pmd
);
601 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
603 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
607 smp_wmb(); /* See comment in __pte_alloc */
609 spin_lock(&init_mm
.page_table_lock
);
610 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm
, pmd
, new);
614 VM_BUG_ON(pmd_trans_splitting(*pmd
));
615 spin_unlock(&init_mm
.page_table_lock
);
617 pte_free_kernel(&init_mm
, new);
621 static inline void init_rss_vec(int *rss
)
623 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
626 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
630 if (current
->mm
== mm
)
632 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
634 add_mm_counter(mm
, i
, rss
[i
]);
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
642 * The calling function must still handle the error.
644 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
645 pte_t pte
, struct page
*page
)
647 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
648 pud_t
*pud
= pud_offset(pgd
, addr
);
649 pmd_t
*pmd
= pmd_offset(pud
, addr
);
650 struct address_space
*mapping
;
652 static unsigned long resume
;
653 static unsigned long nr_shown
;
654 static unsigned long nr_unshown
;
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
660 if (nr_shown
== 60) {
661 if (time_before(jiffies
, resume
)) {
667 "BUG: Bad page map: %lu messages suppressed\n",
674 resume
= jiffies
+ 60 * HZ
;
676 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
677 index
= linear_page_index(vma
, addr
);
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
682 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
684 dump_page(page
, "bad pte");
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
695 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
696 vma
->vm_file
->f_op
->mmap
);
698 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724 * And for normal mappings this is false.
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
746 # define HAVE_PTE_SPECIAL 0
748 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
751 unsigned long pfn
= pte_pfn(pte
);
753 if (HAVE_PTE_SPECIAL
) {
754 if (likely(!pte_special(pte
)))
756 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
758 if (!is_zero_pfn(pfn
))
759 print_bad_pte(vma
, addr
, pte
, NULL
);
763 /* !HAVE_PTE_SPECIAL case follows: */
765 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
766 if (vma
->vm_flags
& VM_MIXEDMAP
) {
772 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
773 if (pfn
== vma
->vm_pgoff
+ off
)
775 if (!is_cow_mapping(vma
->vm_flags
))
780 if (is_zero_pfn(pfn
))
783 if (unlikely(pfn
> highest_memmap_pfn
)) {
784 print_bad_pte(vma
, addr
, pte
, NULL
);
789 * NOTE! We still have PageReserved() pages in the page tables.
790 * eg. VDSO mappings can cause them to exist.
793 return pfn_to_page(pfn
);
797 * copy one vm_area from one task to the other. Assumes the page tables
798 * already present in the new task to be cleared in the whole range
799 * covered by this vma.
802 static inline unsigned long
803 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
804 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
805 unsigned long addr
, int *rss
)
807 unsigned long vm_flags
= vma
->vm_flags
;
808 pte_t pte
= *src_pte
;
811 /* pte contains position in swap or file, so copy. */
812 if (unlikely(!pte_present(pte
))) {
813 if (!pte_file(pte
)) {
814 swp_entry_t entry
= pte_to_swp_entry(pte
);
816 if (likely(!non_swap_entry(entry
))) {
817 if (swap_duplicate(entry
) < 0)
820 /* make sure dst_mm is on swapoff's mmlist. */
821 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
822 spin_lock(&mmlist_lock
);
823 if (list_empty(&dst_mm
->mmlist
))
824 list_add(&dst_mm
->mmlist
,
826 spin_unlock(&mmlist_lock
);
829 } else if (is_migration_entry(entry
)) {
830 page
= migration_entry_to_page(entry
);
837 if (is_write_migration_entry(entry
) &&
838 is_cow_mapping(vm_flags
)) {
840 * COW mappings require pages in both
841 * parent and child to be set to read.
843 make_migration_entry_read(&entry
);
844 pte
= swp_entry_to_pte(entry
);
845 if (pte_swp_soft_dirty(*src_pte
))
846 pte
= pte_swp_mksoft_dirty(pte
);
847 set_pte_at(src_mm
, addr
, src_pte
, pte
);
855 * If it's a COW mapping, write protect it both
856 * in the parent and the child
858 if (is_cow_mapping(vm_flags
)) {
859 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
860 pte
= pte_wrprotect(pte
);
864 * If it's a shared mapping, mark it clean in
867 if (vm_flags
& VM_SHARED
)
868 pte
= pte_mkclean(pte
);
869 pte
= pte_mkold(pte
);
871 page
= vm_normal_page(vma
, addr
, pte
);
882 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
886 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
887 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
888 unsigned long addr
, unsigned long end
)
890 pte_t
*orig_src_pte
, *orig_dst_pte
;
891 pte_t
*src_pte
, *dst_pte
;
892 spinlock_t
*src_ptl
, *dst_ptl
;
894 int rss
[NR_MM_COUNTERS
];
895 swp_entry_t entry
= (swp_entry_t
){0};
900 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
903 src_pte
= pte_offset_map(src_pmd
, addr
);
904 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
905 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
906 orig_src_pte
= src_pte
;
907 orig_dst_pte
= dst_pte
;
908 arch_enter_lazy_mmu_mode();
912 * We are holding two locks at this point - either of them
913 * could generate latencies in another task on another CPU.
915 if (progress
>= 32) {
917 if (need_resched() ||
918 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
921 if (pte_none(*src_pte
)) {
925 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
930 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
932 arch_leave_lazy_mmu_mode();
933 spin_unlock(src_ptl
);
934 pte_unmap(orig_src_pte
);
935 add_mm_rss_vec(dst_mm
, rss
);
936 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
940 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
949 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
950 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
951 unsigned long addr
, unsigned long end
)
953 pmd_t
*src_pmd
, *dst_pmd
;
956 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
959 src_pmd
= pmd_offset(src_pud
, addr
);
961 next
= pmd_addr_end(addr
, end
);
962 if (pmd_trans_huge(*src_pmd
)) {
964 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
965 err
= copy_huge_pmd(dst_mm
, src_mm
,
966 dst_pmd
, src_pmd
, addr
, vma
);
973 if (pmd_none_or_clear_bad(src_pmd
))
975 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
978 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
982 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
983 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
984 unsigned long addr
, unsigned long end
)
986 pud_t
*src_pud
, *dst_pud
;
989 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
992 src_pud
= pud_offset(src_pgd
, addr
);
994 next
= pud_addr_end(addr
, end
);
995 if (pud_none_or_clear_bad(src_pud
))
997 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1000 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1004 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1005 struct vm_area_struct
*vma
)
1007 pgd_t
*src_pgd
, *dst_pgd
;
1009 unsigned long addr
= vma
->vm_start
;
1010 unsigned long end
= vma
->vm_end
;
1011 unsigned long mmun_start
; /* For mmu_notifiers */
1012 unsigned long mmun_end
; /* For mmu_notifiers */
1017 * Don't copy ptes where a page fault will fill them correctly.
1018 * Fork becomes much lighter when there are big shared or private
1019 * readonly mappings. The tradeoff is that copy_page_range is more
1020 * efficient than faulting.
1022 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1023 VM_PFNMAP
| VM_MIXEDMAP
))) {
1028 if (is_vm_hugetlb_page(vma
))
1029 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1031 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1036 ret
= track_pfn_copy(vma
);
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1047 is_cow
= is_cow_mapping(vma
->vm_flags
);
1051 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1055 dst_pgd
= pgd_offset(dst_mm
, addr
);
1056 src_pgd
= pgd_offset(src_mm
, addr
);
1058 next
= pgd_addr_end(addr
, end
);
1059 if (pgd_none_or_clear_bad(src_pgd
))
1061 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1062 vma
, addr
, next
))) {
1066 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1069 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1073 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1074 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1075 unsigned long addr
, unsigned long end
,
1076 struct zap_details
*details
)
1078 struct mm_struct
*mm
= tlb
->mm
;
1079 int force_flush
= 0;
1080 int rss
[NR_MM_COUNTERS
];
1087 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1089 arch_enter_lazy_mmu_mode();
1092 if (pte_none(ptent
)) {
1096 if (pte_present(ptent
)) {
1099 page
= vm_normal_page(vma
, addr
, ptent
);
1100 if (unlikely(details
) && page
) {
1102 * unmap_shared_mapping_pages() wants to
1103 * invalidate cache without truncating:
1104 * unmap shared but keep private pages.
1106 if (details
->check_mapping
&&
1107 details
->check_mapping
!= page
->mapping
)
1110 * Each page->index must be checked when
1111 * invalidating or truncating nonlinear.
1113 if (details
->nonlinear_vma
&&
1114 (page
->index
< details
->first_index
||
1115 page
->index
> details
->last_index
))
1118 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1120 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1121 if (unlikely(!page
))
1123 if (unlikely(details
) && details
->nonlinear_vma
1124 && linear_page_index(details
->nonlinear_vma
,
1125 addr
) != page
->index
) {
1126 pte_t ptfile
= pgoff_to_pte(page
->index
);
1127 if (pte_soft_dirty(ptent
))
1128 ptfile
= pte_file_mksoft_dirty(ptfile
);
1129 set_pte_at(mm
, addr
, pte
, ptfile
);
1132 rss
[MM_ANONPAGES
]--;
1134 if (pte_dirty(ptent
)) {
1136 set_page_dirty(page
);
1138 if (pte_young(ptent
) &&
1139 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1140 mark_page_accessed(page
);
1141 rss
[MM_FILEPAGES
]--;
1143 page_remove_rmap(page
);
1144 if (unlikely(page_mapcount(page
) < 0))
1145 print_bad_pte(vma
, addr
, ptent
, page
);
1146 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1154 * If details->check_mapping, we leave swap entries;
1155 * if details->nonlinear_vma, we leave file entries.
1157 if (unlikely(details
))
1159 if (pte_file(ptent
)) {
1160 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1161 print_bad_pte(vma
, addr
, ptent
, NULL
);
1163 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1165 if (!non_swap_entry(entry
))
1167 else if (is_migration_entry(entry
)) {
1170 page
= migration_entry_to_page(entry
);
1173 rss
[MM_ANONPAGES
]--;
1175 rss
[MM_FILEPAGES
]--;
1177 if (unlikely(!free_swap_and_cache(entry
)))
1178 print_bad_pte(vma
, addr
, ptent
, NULL
);
1180 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1181 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1183 add_mm_rss_vec(mm
, rss
);
1184 arch_leave_lazy_mmu_mode();
1186 /* Do the actual TLB flush before dropping ptl */
1188 tlb_flush_mmu_tlbonly(tlb
);
1189 pte_unmap_unlock(start_pte
, ptl
);
1192 * If we forced a TLB flush (either due to running out of
1193 * batch buffers or because we needed to flush dirty TLB
1194 * entries before releasing the ptl), free the batched
1195 * memory too. Restart if we didn't do everything.
1199 tlb_flush_mmu_free(tlb
);
1208 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1209 struct vm_area_struct
*vma
, pud_t
*pud
,
1210 unsigned long addr
, unsigned long end
,
1211 struct zap_details
*details
)
1216 pmd
= pmd_offset(pud
, addr
);
1218 next
= pmd_addr_end(addr
, end
);
1219 if (pmd_trans_huge(*pmd
)) {
1220 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1221 #ifdef CONFIG_DEBUG_VM
1222 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 __func__
, addr
, end
,
1230 split_huge_page_pmd(vma
, addr
, pmd
);
1231 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1236 * Here there can be other concurrent MADV_DONTNEED or
1237 * trans huge page faults running, and if the pmd is
1238 * none or trans huge it can change under us. This is
1239 * because MADV_DONTNEED holds the mmap_sem in read
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1244 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1247 } while (pmd
++, addr
= next
, addr
!= end
);
1252 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1253 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1254 unsigned long addr
, unsigned long end
,
1255 struct zap_details
*details
)
1260 pud
= pud_offset(pgd
, addr
);
1262 next
= pud_addr_end(addr
, end
);
1263 if (pud_none_or_clear_bad(pud
))
1265 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1266 } while (pud
++, addr
= next
, addr
!= end
);
1271 static void unmap_page_range(struct mmu_gather
*tlb
,
1272 struct vm_area_struct
*vma
,
1273 unsigned long addr
, unsigned long end
,
1274 struct zap_details
*details
)
1279 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1282 BUG_ON(addr
>= end
);
1283 tlb_start_vma(tlb
, vma
);
1284 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1286 next
= pgd_addr_end(addr
, end
);
1287 if (pgd_none_or_clear_bad(pgd
))
1289 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1290 } while (pgd
++, addr
= next
, addr
!= end
);
1291 tlb_end_vma(tlb
, vma
);
1295 static void unmap_single_vma(struct mmu_gather
*tlb
,
1296 struct vm_area_struct
*vma
, unsigned long start_addr
,
1297 unsigned long end_addr
,
1298 struct zap_details
*details
)
1300 unsigned long start
= max(vma
->vm_start
, start_addr
);
1303 if (start
>= vma
->vm_end
)
1305 end
= min(vma
->vm_end
, end_addr
);
1306 if (end
<= vma
->vm_start
)
1310 uprobe_munmap(vma
, start
, end
);
1312 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1313 untrack_pfn(vma
, 0, 0);
1316 if (unlikely(is_vm_hugetlb_page(vma
))) {
1318 * It is undesirable to test vma->vm_file as it
1319 * should be non-null for valid hugetlb area.
1320 * However, vm_file will be NULL in the error
1321 * cleanup path of mmap_region. When
1322 * hugetlbfs ->mmap method fails,
1323 * mmap_region() nullifies vma->vm_file
1324 * before calling this function to clean up.
1325 * Since no pte has actually been setup, it is
1326 * safe to do nothing in this case.
1329 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1330 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1331 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1334 unmap_page_range(tlb
, vma
, start
, end
, details
);
1339 * unmap_vmas - unmap a range of memory covered by a list of vma's
1340 * @tlb: address of the caller's struct mmu_gather
1341 * @vma: the starting vma
1342 * @start_addr: virtual address at which to start unmapping
1343 * @end_addr: virtual address at which to end unmapping
1345 * Unmap all pages in the vma list.
1347 * Only addresses between `start' and `end' will be unmapped.
1349 * The VMA list must be sorted in ascending virtual address order.
1351 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352 * range after unmap_vmas() returns. So the only responsibility here is to
1353 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354 * drops the lock and schedules.
1356 void unmap_vmas(struct mmu_gather
*tlb
,
1357 struct vm_area_struct
*vma
, unsigned long start_addr
,
1358 unsigned long end_addr
)
1360 struct mm_struct
*mm
= vma
->vm_mm
;
1362 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1363 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1364 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1365 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1369 * zap_page_range - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @start: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of nonlinear truncation or shared cache invalidation
1375 * Caller must protect the VMA list
1377 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1378 unsigned long size
, struct zap_details
*details
)
1380 struct mm_struct
*mm
= vma
->vm_mm
;
1381 struct mmu_gather tlb
;
1382 unsigned long end
= start
+ size
;
1385 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1386 update_hiwater_rss(mm
);
1387 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1388 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1389 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1390 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1391 tlb_finish_mmu(&tlb
, start
, end
);
1395 * zap_page_range_single - remove user pages in a given range
1396 * @vma: vm_area_struct holding the applicable pages
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 * @details: details of nonlinear truncation or shared cache invalidation
1401 * The range must fit into one VMA.
1403 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1404 unsigned long size
, struct zap_details
*details
)
1406 struct mm_struct
*mm
= vma
->vm_mm
;
1407 struct mmu_gather tlb
;
1408 unsigned long end
= address
+ size
;
1411 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1412 update_hiwater_rss(mm
);
1413 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1414 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1415 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1416 tlb_finish_mmu(&tlb
, address
, end
);
1420 * zap_vma_ptes - remove ptes mapping the vma
1421 * @vma: vm_area_struct holding ptes to be zapped
1422 * @address: starting address of pages to zap
1423 * @size: number of bytes to zap
1425 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1427 * The entire address range must be fully contained within the vma.
1429 * Returns 0 if successful.
1431 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1434 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1435 !(vma
->vm_flags
& VM_PFNMAP
))
1437 zap_page_range_single(vma
, address
, size
, NULL
);
1440 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1442 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1445 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1446 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1448 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1450 VM_BUG_ON(pmd_trans_huge(*pmd
));
1451 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1458 * This is the old fallback for page remapping.
1460 * For historical reasons, it only allows reserved pages. Only
1461 * old drivers should use this, and they needed to mark their
1462 * pages reserved for the old functions anyway.
1464 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1465 struct page
*page
, pgprot_t prot
)
1467 struct mm_struct
*mm
= vma
->vm_mm
;
1476 flush_dcache_page(page
);
1477 pte
= get_locked_pte(mm
, addr
, &ptl
);
1481 if (!pte_none(*pte
))
1484 /* Ok, finally just insert the thing.. */
1486 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1487 page_add_file_rmap(page
);
1488 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1491 pte_unmap_unlock(pte
, ptl
);
1494 pte_unmap_unlock(pte
, ptl
);
1500 * vm_insert_page - insert single page into user vma
1501 * @vma: user vma to map to
1502 * @addr: target user address of this page
1503 * @page: source kernel page
1505 * This allows drivers to insert individual pages they've allocated
1508 * The page has to be a nice clean _individual_ kernel allocation.
1509 * If you allocate a compound page, you need to have marked it as
1510 * such (__GFP_COMP), or manually just split the page up yourself
1511 * (see split_page()).
1513 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1514 * took an arbitrary page protection parameter. This doesn't allow
1515 * that. Your vma protection will have to be set up correctly, which
1516 * means that if you want a shared writable mapping, you'd better
1517 * ask for a shared writable mapping!
1519 * The page does not need to be reserved.
1521 * Usually this function is called from f_op->mmap() handler
1522 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1523 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1524 * function from other places, for example from page-fault handler.
1526 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1529 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1531 if (!page_count(page
))
1533 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1534 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1535 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1536 vma
->vm_flags
|= VM_MIXEDMAP
;
1538 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1540 EXPORT_SYMBOL(vm_insert_page
);
1542 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1543 unsigned long pfn
, pgprot_t prot
)
1545 struct mm_struct
*mm
= vma
->vm_mm
;
1551 pte
= get_locked_pte(mm
, addr
, &ptl
);
1555 if (!pte_none(*pte
))
1558 /* Ok, finally just insert the thing.. */
1559 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1560 set_pte_at(mm
, addr
, pte
, entry
);
1561 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1565 pte_unmap_unlock(pte
, ptl
);
1571 * vm_insert_pfn - insert single pfn into user vma
1572 * @vma: user vma to map to
1573 * @addr: target user address of this page
1574 * @pfn: source kernel pfn
1576 * Similar to vm_insert_page, this allows drivers to insert individual pages
1577 * they've allocated into a user vma. Same comments apply.
1579 * This function should only be called from a vm_ops->fault handler, and
1580 * in that case the handler should return NULL.
1582 * vma cannot be a COW mapping.
1584 * As this is called only for pages that do not currently exist, we
1585 * do not need to flush old virtual caches or the TLB.
1587 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1591 pgprot_t pgprot
= vma
->vm_page_prot
;
1593 * Technically, architectures with pte_special can avoid all these
1594 * restrictions (same for remap_pfn_range). However we would like
1595 * consistency in testing and feature parity among all, so we should
1596 * try to keep these invariants in place for everybody.
1598 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1599 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1600 (VM_PFNMAP
|VM_MIXEDMAP
));
1601 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1602 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1604 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1606 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1609 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1613 EXPORT_SYMBOL(vm_insert_pfn
);
1615 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1618 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1620 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1624 * If we don't have pte special, then we have to use the pfn_valid()
1625 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1626 * refcount the page if pfn_valid is true (hence insert_page rather
1627 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1628 * without pte special, it would there be refcounted as a normal page.
1630 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1633 page
= pfn_to_page(pfn
);
1634 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1636 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1638 EXPORT_SYMBOL(vm_insert_mixed
);
1641 * maps a range of physical memory into the requested pages. the old
1642 * mappings are removed. any references to nonexistent pages results
1643 * in null mappings (currently treated as "copy-on-access")
1645 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1646 unsigned long addr
, unsigned long end
,
1647 unsigned long pfn
, pgprot_t prot
)
1652 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1655 arch_enter_lazy_mmu_mode();
1657 BUG_ON(!pte_none(*pte
));
1658 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1660 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1661 arch_leave_lazy_mmu_mode();
1662 pte_unmap_unlock(pte
- 1, ptl
);
1666 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1667 unsigned long addr
, unsigned long end
,
1668 unsigned long pfn
, pgprot_t prot
)
1673 pfn
-= addr
>> PAGE_SHIFT
;
1674 pmd
= pmd_alloc(mm
, pud
, addr
);
1677 VM_BUG_ON(pmd_trans_huge(*pmd
));
1679 next
= pmd_addr_end(addr
, end
);
1680 if (remap_pte_range(mm
, pmd
, addr
, next
,
1681 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1683 } while (pmd
++, addr
= next
, addr
!= end
);
1687 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1688 unsigned long addr
, unsigned long end
,
1689 unsigned long pfn
, pgprot_t prot
)
1694 pfn
-= addr
>> PAGE_SHIFT
;
1695 pud
= pud_alloc(mm
, pgd
, addr
);
1699 next
= pud_addr_end(addr
, end
);
1700 if (remap_pmd_range(mm
, pud
, addr
, next
,
1701 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1703 } while (pud
++, addr
= next
, addr
!= end
);
1708 * remap_pfn_range - remap kernel memory to userspace
1709 * @vma: user vma to map to
1710 * @addr: target user address to start at
1711 * @pfn: physical address of kernel memory
1712 * @size: size of map area
1713 * @prot: page protection flags for this mapping
1715 * Note: this is only safe if the mm semaphore is held when called.
1717 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1718 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1722 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1723 struct mm_struct
*mm
= vma
->vm_mm
;
1727 * Physically remapped pages are special. Tell the
1728 * rest of the world about it:
1729 * VM_IO tells people not to look at these pages
1730 * (accesses can have side effects).
1731 * VM_PFNMAP tells the core MM that the base pages are just
1732 * raw PFN mappings, and do not have a "struct page" associated
1735 * Disable vma merging and expanding with mremap().
1737 * Omit vma from core dump, even when VM_IO turned off.
1739 * There's a horrible special case to handle copy-on-write
1740 * behaviour that some programs depend on. We mark the "original"
1741 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1742 * See vm_normal_page() for details.
1744 if (is_cow_mapping(vma
->vm_flags
)) {
1745 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1747 vma
->vm_pgoff
= pfn
;
1750 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
1754 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1756 BUG_ON(addr
>= end
);
1757 pfn
-= addr
>> PAGE_SHIFT
;
1758 pgd
= pgd_offset(mm
, addr
);
1759 flush_cache_range(vma
, addr
, end
);
1761 next
= pgd_addr_end(addr
, end
);
1762 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1763 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1766 } while (pgd
++, addr
= next
, addr
!= end
);
1769 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
1773 EXPORT_SYMBOL(remap_pfn_range
);
1776 * vm_iomap_memory - remap memory to userspace
1777 * @vma: user vma to map to
1778 * @start: start of area
1779 * @len: size of area
1781 * This is a simplified io_remap_pfn_range() for common driver use. The
1782 * driver just needs to give us the physical memory range to be mapped,
1783 * we'll figure out the rest from the vma information.
1785 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1786 * whatever write-combining details or similar.
1788 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1790 unsigned long vm_len
, pfn
, pages
;
1792 /* Check that the physical memory area passed in looks valid */
1793 if (start
+ len
< start
)
1796 * You *really* shouldn't map things that aren't page-aligned,
1797 * but we've historically allowed it because IO memory might
1798 * just have smaller alignment.
1800 len
+= start
& ~PAGE_MASK
;
1801 pfn
= start
>> PAGE_SHIFT
;
1802 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1803 if (pfn
+ pages
< pfn
)
1806 /* We start the mapping 'vm_pgoff' pages into the area */
1807 if (vma
->vm_pgoff
> pages
)
1809 pfn
+= vma
->vm_pgoff
;
1810 pages
-= vma
->vm_pgoff
;
1812 /* Can we fit all of the mapping? */
1813 vm_len
= vma
->vm_end
- vma
->vm_start
;
1814 if (vm_len
>> PAGE_SHIFT
> pages
)
1817 /* Ok, let it rip */
1818 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1820 EXPORT_SYMBOL(vm_iomap_memory
);
1822 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1823 unsigned long addr
, unsigned long end
,
1824 pte_fn_t fn
, void *data
)
1829 spinlock_t
*uninitialized_var(ptl
);
1831 pte
= (mm
== &init_mm
) ?
1832 pte_alloc_kernel(pmd
, addr
) :
1833 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1837 BUG_ON(pmd_huge(*pmd
));
1839 arch_enter_lazy_mmu_mode();
1841 token
= pmd_pgtable(*pmd
);
1844 err
= fn(pte
++, token
, addr
, data
);
1847 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1849 arch_leave_lazy_mmu_mode();
1852 pte_unmap_unlock(pte
-1, ptl
);
1856 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1857 unsigned long addr
, unsigned long end
,
1858 pte_fn_t fn
, void *data
)
1864 BUG_ON(pud_huge(*pud
));
1866 pmd
= pmd_alloc(mm
, pud
, addr
);
1870 next
= pmd_addr_end(addr
, end
);
1871 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1874 } while (pmd
++, addr
= next
, addr
!= end
);
1878 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1879 unsigned long addr
, unsigned long end
,
1880 pte_fn_t fn
, void *data
)
1886 pud
= pud_alloc(mm
, pgd
, addr
);
1890 next
= pud_addr_end(addr
, end
);
1891 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1894 } while (pud
++, addr
= next
, addr
!= end
);
1899 * Scan a region of virtual memory, filling in page tables as necessary
1900 * and calling a provided function on each leaf page table.
1902 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1903 unsigned long size
, pte_fn_t fn
, void *data
)
1907 unsigned long end
= addr
+ size
;
1910 BUG_ON(addr
>= end
);
1911 pgd
= pgd_offset(mm
, addr
);
1913 next
= pgd_addr_end(addr
, end
);
1914 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1917 } while (pgd
++, addr
= next
, addr
!= end
);
1921 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1924 * handle_pte_fault chooses page fault handler according to an entry
1925 * which was read non-atomically. Before making any commitment, on
1926 * those architectures or configurations (e.g. i386 with PAE) which
1927 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1928 * must check under lock before unmapping the pte and proceeding
1929 * (but do_wp_page is only called after already making such a check;
1930 * and do_anonymous_page can safely check later on).
1932 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1933 pte_t
*page_table
, pte_t orig_pte
)
1936 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1937 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1938 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1940 same
= pte_same(*page_table
, orig_pte
);
1944 pte_unmap(page_table
);
1948 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1950 debug_dma_assert_idle(src
);
1953 * If the source page was a PFN mapping, we don't have
1954 * a "struct page" for it. We do a best-effort copy by
1955 * just copying from the original user address. If that
1956 * fails, we just zero-fill it. Live with it.
1958 if (unlikely(!src
)) {
1959 void *kaddr
= kmap_atomic(dst
);
1960 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1963 * This really shouldn't fail, because the page is there
1964 * in the page tables. But it might just be unreadable,
1965 * in which case we just give up and fill the result with
1968 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1970 kunmap_atomic(kaddr
);
1971 flush_dcache_page(dst
);
1973 copy_user_highpage(dst
, src
, va
, vma
);
1977 * Notify the address space that the page is about to become writable so that
1978 * it can prohibit this or wait for the page to get into an appropriate state.
1980 * We do this without the lock held, so that it can sleep if it needs to.
1982 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
1983 unsigned long address
)
1985 struct vm_fault vmf
;
1988 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
1989 vmf
.pgoff
= page
->index
;
1990 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
1993 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
1994 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
1996 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
1998 if (!page
->mapping
) {
2000 return 0; /* retry */
2002 ret
|= VM_FAULT_LOCKED
;
2004 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2009 * This routine handles present pages, when users try to write
2010 * to a shared page. It is done by copying the page to a new address
2011 * and decrementing the shared-page counter for the old page.
2013 * Note that this routine assumes that the protection checks have been
2014 * done by the caller (the low-level page fault routine in most cases).
2015 * Thus we can safely just mark it writable once we've done any necessary
2018 * We also mark the page dirty at this point even though the page will
2019 * change only once the write actually happens. This avoids a few races,
2020 * and potentially makes it more efficient.
2022 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2023 * but allow concurrent faults), with pte both mapped and locked.
2024 * We return with mmap_sem still held, but pte unmapped and unlocked.
2026 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2027 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2028 spinlock_t
*ptl
, pte_t orig_pte
)
2031 struct page
*old_page
, *new_page
= NULL
;
2034 int page_mkwrite
= 0;
2035 struct page
*dirty_page
= NULL
;
2036 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2037 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2038 struct mem_cgroup
*memcg
;
2040 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2043 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2046 * We should not cow pages in a shared writeable mapping.
2047 * Just mark the pages writable as we can't do any dirty
2048 * accounting on raw pfn maps.
2050 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2051 (VM_WRITE
|VM_SHARED
))
2057 * Take out anonymous pages first, anonymous shared vmas are
2058 * not dirty accountable.
2060 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2061 if (!trylock_page(old_page
)) {
2062 page_cache_get(old_page
);
2063 pte_unmap_unlock(page_table
, ptl
);
2064 lock_page(old_page
);
2065 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2067 if (!pte_same(*page_table
, orig_pte
)) {
2068 unlock_page(old_page
);
2071 page_cache_release(old_page
);
2073 if (reuse_swap_page(old_page
)) {
2075 * The page is all ours. Move it to our anon_vma so
2076 * the rmap code will not search our parent or siblings.
2077 * Protected against the rmap code by the page lock.
2079 page_move_anon_rmap(old_page
, vma
, address
);
2080 unlock_page(old_page
);
2083 unlock_page(old_page
);
2084 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2085 (VM_WRITE
|VM_SHARED
))) {
2087 * Only catch write-faults on shared writable pages,
2088 * read-only shared pages can get COWed by
2089 * get_user_pages(.write=1, .force=1).
2091 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2093 page_cache_get(old_page
);
2094 pte_unmap_unlock(page_table
, ptl
);
2095 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2096 if (unlikely(!tmp
|| (tmp
&
2097 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2098 page_cache_release(old_page
);
2102 * Since we dropped the lock we need to revalidate
2103 * the PTE as someone else may have changed it. If
2104 * they did, we just return, as we can count on the
2105 * MMU to tell us if they didn't also make it writable.
2107 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2109 if (!pte_same(*page_table
, orig_pte
)) {
2110 unlock_page(old_page
);
2116 dirty_page
= old_page
;
2117 get_page(dirty_page
);
2121 * Clear the pages cpupid information as the existing
2122 * information potentially belongs to a now completely
2123 * unrelated process.
2126 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2128 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2129 entry
= pte_mkyoung(orig_pte
);
2130 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2131 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2132 update_mmu_cache(vma
, address
, page_table
);
2133 pte_unmap_unlock(page_table
, ptl
);
2134 ret
|= VM_FAULT_WRITE
;
2139 if (!page_mkwrite
) {
2140 struct address_space
*mapping
;
2143 lock_page(dirty_page
);
2144 dirtied
= set_page_dirty(dirty_page
);
2145 VM_BUG_ON_PAGE(PageAnon(dirty_page
), dirty_page
);
2146 mapping
= dirty_page
->mapping
;
2147 unlock_page(dirty_page
);
2149 if (dirtied
&& mapping
) {
2151 * Some device drivers do not set page.mapping
2152 * but still dirty their pages
2154 balance_dirty_pages_ratelimited(mapping
);
2157 /* file_update_time outside page_lock */
2159 file_update_time(vma
->vm_file
);
2161 put_page(dirty_page
);
2163 struct address_space
*mapping
= dirty_page
->mapping
;
2165 set_page_dirty(dirty_page
);
2166 unlock_page(dirty_page
);
2167 page_cache_release(dirty_page
);
2170 * Some device drivers do not set page.mapping
2171 * but still dirty their pages
2173 balance_dirty_pages_ratelimited(mapping
);
2181 * Ok, we need to copy. Oh, well..
2183 page_cache_get(old_page
);
2185 pte_unmap_unlock(page_table
, ptl
);
2187 if (unlikely(anon_vma_prepare(vma
)))
2190 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2191 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2195 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2198 cow_user_page(new_page
, old_page
, address
, vma
);
2200 __SetPageUptodate(new_page
);
2202 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
))
2205 mmun_start
= address
& PAGE_MASK
;
2206 mmun_end
= mmun_start
+ PAGE_SIZE
;
2207 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2210 * Re-check the pte - we dropped the lock
2212 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2213 if (likely(pte_same(*page_table
, orig_pte
))) {
2215 if (!PageAnon(old_page
)) {
2216 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2217 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2220 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2221 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2222 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2223 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2225 * Clear the pte entry and flush it first, before updating the
2226 * pte with the new entry. This will avoid a race condition
2227 * seen in the presence of one thread doing SMC and another
2230 ptep_clear_flush(vma
, address
, page_table
);
2231 page_add_new_anon_rmap(new_page
, vma
, address
);
2232 mem_cgroup_commit_charge(new_page
, memcg
, false);
2233 lru_cache_add_active_or_unevictable(new_page
, vma
);
2235 * We call the notify macro here because, when using secondary
2236 * mmu page tables (such as kvm shadow page tables), we want the
2237 * new page to be mapped directly into the secondary page table.
2239 set_pte_at_notify(mm
, address
, page_table
, entry
);
2240 update_mmu_cache(vma
, address
, page_table
);
2243 * Only after switching the pte to the new page may
2244 * we remove the mapcount here. Otherwise another
2245 * process may come and find the rmap count decremented
2246 * before the pte is switched to the new page, and
2247 * "reuse" the old page writing into it while our pte
2248 * here still points into it and can be read by other
2251 * The critical issue is to order this
2252 * page_remove_rmap with the ptp_clear_flush above.
2253 * Those stores are ordered by (if nothing else,)
2254 * the barrier present in the atomic_add_negative
2255 * in page_remove_rmap.
2257 * Then the TLB flush in ptep_clear_flush ensures that
2258 * no process can access the old page before the
2259 * decremented mapcount is visible. And the old page
2260 * cannot be reused until after the decremented
2261 * mapcount is visible. So transitively, TLBs to
2262 * old page will be flushed before it can be reused.
2264 page_remove_rmap(old_page
);
2267 /* Free the old page.. */
2268 new_page
= old_page
;
2269 ret
|= VM_FAULT_WRITE
;
2271 mem_cgroup_cancel_charge(new_page
, memcg
);
2274 page_cache_release(new_page
);
2276 pte_unmap_unlock(page_table
, ptl
);
2277 if (mmun_end
> mmun_start
)
2278 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2281 * Don't let another task, with possibly unlocked vma,
2282 * keep the mlocked page.
2284 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2285 lock_page(old_page
); /* LRU manipulation */
2286 munlock_vma_page(old_page
);
2287 unlock_page(old_page
);
2289 page_cache_release(old_page
);
2293 page_cache_release(new_page
);
2296 page_cache_release(old_page
);
2297 return VM_FAULT_OOM
;
2300 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2301 unsigned long start_addr
, unsigned long end_addr
,
2302 struct zap_details
*details
)
2304 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2307 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2308 struct zap_details
*details
)
2310 struct vm_area_struct
*vma
;
2311 pgoff_t vba
, vea
, zba
, zea
;
2313 vma_interval_tree_foreach(vma
, root
,
2314 details
->first_index
, details
->last_index
) {
2316 vba
= vma
->vm_pgoff
;
2317 vea
= vba
+ vma_pages(vma
) - 1;
2318 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2319 zba
= details
->first_index
;
2322 zea
= details
->last_index
;
2326 unmap_mapping_range_vma(vma
,
2327 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2328 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2333 static inline void unmap_mapping_range_list(struct list_head
*head
,
2334 struct zap_details
*details
)
2336 struct vm_area_struct
*vma
;
2339 * In nonlinear VMAs there is no correspondence between virtual address
2340 * offset and file offset. So we must perform an exhaustive search
2341 * across *all* the pages in each nonlinear VMA, not just the pages
2342 * whose virtual address lies outside the file truncation point.
2344 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2345 details
->nonlinear_vma
= vma
;
2346 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2351 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2352 * @mapping: the address space containing mmaps to be unmapped.
2353 * @holebegin: byte in first page to unmap, relative to the start of
2354 * the underlying file. This will be rounded down to a PAGE_SIZE
2355 * boundary. Note that this is different from truncate_pagecache(), which
2356 * must keep the partial page. In contrast, we must get rid of
2358 * @holelen: size of prospective hole in bytes. This will be rounded
2359 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2361 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2362 * but 0 when invalidating pagecache, don't throw away private data.
2364 void unmap_mapping_range(struct address_space
*mapping
,
2365 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2367 struct zap_details details
;
2368 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2369 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2371 /* Check for overflow. */
2372 if (sizeof(holelen
) > sizeof(hlen
)) {
2374 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2375 if (holeend
& ~(long long)ULONG_MAX
)
2376 hlen
= ULONG_MAX
- hba
+ 1;
2379 details
.check_mapping
= even_cows
? NULL
: mapping
;
2380 details
.nonlinear_vma
= NULL
;
2381 details
.first_index
= hba
;
2382 details
.last_index
= hba
+ hlen
- 1;
2383 if (details
.last_index
< details
.first_index
)
2384 details
.last_index
= ULONG_MAX
;
2387 mutex_lock(&mapping
->i_mmap_mutex
);
2388 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2389 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2390 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2391 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2392 mutex_unlock(&mapping
->i_mmap_mutex
);
2394 EXPORT_SYMBOL(unmap_mapping_range
);
2397 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2398 * but allow concurrent faults), and pte mapped but not yet locked.
2399 * We return with pte unmapped and unlocked.
2401 * We return with the mmap_sem locked or unlocked in the same cases
2402 * as does filemap_fault().
2404 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2405 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2406 unsigned int flags
, pte_t orig_pte
)
2409 struct page
*page
, *swapcache
;
2410 struct mem_cgroup
*memcg
;
2417 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2420 entry
= pte_to_swp_entry(orig_pte
);
2421 if (unlikely(non_swap_entry(entry
))) {
2422 if (is_migration_entry(entry
)) {
2423 migration_entry_wait(mm
, pmd
, address
);
2424 } else if (is_hwpoison_entry(entry
)) {
2425 ret
= VM_FAULT_HWPOISON
;
2427 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2428 ret
= VM_FAULT_SIGBUS
;
2432 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2433 page
= lookup_swap_cache(entry
);
2435 page
= swapin_readahead(entry
,
2436 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2439 * Back out if somebody else faulted in this pte
2440 * while we released the pte lock.
2442 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2443 if (likely(pte_same(*page_table
, orig_pte
)))
2445 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2449 /* Had to read the page from swap area: Major fault */
2450 ret
= VM_FAULT_MAJOR
;
2451 count_vm_event(PGMAJFAULT
);
2452 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2453 } else if (PageHWPoison(page
)) {
2455 * hwpoisoned dirty swapcache pages are kept for killing
2456 * owner processes (which may be unknown at hwpoison time)
2458 ret
= VM_FAULT_HWPOISON
;
2459 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2465 locked
= lock_page_or_retry(page
, mm
, flags
);
2467 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2469 ret
|= VM_FAULT_RETRY
;
2474 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2475 * release the swapcache from under us. The page pin, and pte_same
2476 * test below, are not enough to exclude that. Even if it is still
2477 * swapcache, we need to check that the page's swap has not changed.
2479 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2482 page
= ksm_might_need_to_copy(page
, vma
, address
);
2483 if (unlikely(!page
)) {
2489 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
)) {
2495 * Back out if somebody else already faulted in this pte.
2497 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2498 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2501 if (unlikely(!PageUptodate(page
))) {
2502 ret
= VM_FAULT_SIGBUS
;
2507 * The page isn't present yet, go ahead with the fault.
2509 * Be careful about the sequence of operations here.
2510 * To get its accounting right, reuse_swap_page() must be called
2511 * while the page is counted on swap but not yet in mapcount i.e.
2512 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2513 * must be called after the swap_free(), or it will never succeed.
2516 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2517 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2518 pte
= mk_pte(page
, vma
->vm_page_prot
);
2519 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2520 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2521 flags
&= ~FAULT_FLAG_WRITE
;
2522 ret
|= VM_FAULT_WRITE
;
2525 flush_icache_page(vma
, page
);
2526 if (pte_swp_soft_dirty(orig_pte
))
2527 pte
= pte_mksoft_dirty(pte
);
2528 set_pte_at(mm
, address
, page_table
, pte
);
2529 if (page
== swapcache
) {
2530 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2531 mem_cgroup_commit_charge(page
, memcg
, true);
2532 } else { /* ksm created a completely new copy */
2533 page_add_new_anon_rmap(page
, vma
, address
);
2534 mem_cgroup_commit_charge(page
, memcg
, false);
2535 lru_cache_add_active_or_unevictable(page
, vma
);
2539 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2540 try_to_free_swap(page
);
2542 if (page
!= swapcache
) {
2544 * Hold the lock to avoid the swap entry to be reused
2545 * until we take the PT lock for the pte_same() check
2546 * (to avoid false positives from pte_same). For
2547 * further safety release the lock after the swap_free
2548 * so that the swap count won't change under a
2549 * parallel locked swapcache.
2551 unlock_page(swapcache
);
2552 page_cache_release(swapcache
);
2555 if (flags
& FAULT_FLAG_WRITE
) {
2556 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2557 if (ret
& VM_FAULT_ERROR
)
2558 ret
&= VM_FAULT_ERROR
;
2562 /* No need to invalidate - it was non-present before */
2563 update_mmu_cache(vma
, address
, page_table
);
2565 pte_unmap_unlock(page_table
, ptl
);
2569 mem_cgroup_cancel_charge(page
, memcg
);
2570 pte_unmap_unlock(page_table
, ptl
);
2574 page_cache_release(page
);
2575 if (page
!= swapcache
) {
2576 unlock_page(swapcache
);
2577 page_cache_release(swapcache
);
2583 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2584 * but allow concurrent faults), and pte mapped but not yet locked.
2585 * We return with mmap_sem still held, but pte unmapped and unlocked.
2587 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2588 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2591 struct mem_cgroup
*memcg
;
2596 pte_unmap(page_table
);
2598 /* File mapping without ->vm_ops ? */
2599 if (vma
->vm_flags
& VM_SHARED
)
2600 return VM_FAULT_SIGBUS
;
2602 /* Use the zero-page for reads */
2603 if (!(flags
& FAULT_FLAG_WRITE
)) {
2604 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2605 vma
->vm_page_prot
));
2606 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2607 if (!pte_none(*page_table
))
2612 /* Allocate our own private page. */
2613 if (unlikely(anon_vma_prepare(vma
)))
2615 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2619 * The memory barrier inside __SetPageUptodate makes sure that
2620 * preceeding stores to the page contents become visible before
2621 * the set_pte_at() write.
2623 __SetPageUptodate(page
);
2625 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
))
2628 entry
= mk_pte(page
, vma
->vm_page_prot
);
2629 if (vma
->vm_flags
& VM_WRITE
)
2630 entry
= pte_mkwrite(pte_mkdirty(entry
));
2632 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2633 if (!pte_none(*page_table
))
2636 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2637 page_add_new_anon_rmap(page
, vma
, address
);
2638 mem_cgroup_commit_charge(page
, memcg
, false);
2639 lru_cache_add_active_or_unevictable(page
, vma
);
2641 set_pte_at(mm
, address
, page_table
, entry
);
2643 /* No need to invalidate - it was non-present before */
2644 update_mmu_cache(vma
, address
, page_table
);
2646 pte_unmap_unlock(page_table
, ptl
);
2649 mem_cgroup_cancel_charge(page
, memcg
);
2650 page_cache_release(page
);
2653 page_cache_release(page
);
2655 return VM_FAULT_OOM
;
2659 * The mmap_sem must have been held on entry, and may have been
2660 * released depending on flags and vma->vm_ops->fault() return value.
2661 * See filemap_fault() and __lock_page_retry().
2663 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
2664 pgoff_t pgoff
, unsigned int flags
, struct page
**page
)
2666 struct vm_fault vmf
;
2669 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2674 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2675 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2678 if (unlikely(PageHWPoison(vmf
.page
))) {
2679 if (ret
& VM_FAULT_LOCKED
)
2680 unlock_page(vmf
.page
);
2681 page_cache_release(vmf
.page
);
2682 return VM_FAULT_HWPOISON
;
2685 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2686 lock_page(vmf
.page
);
2688 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2695 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2697 * @vma: virtual memory area
2698 * @address: user virtual address
2699 * @page: page to map
2700 * @pte: pointer to target page table entry
2701 * @write: true, if new entry is writable
2702 * @anon: true, if it's anonymous page
2704 * Caller must hold page table lock relevant for @pte.
2706 * Target users are page handler itself and implementations of
2707 * vm_ops->map_pages.
2709 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
2710 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
2714 flush_icache_page(vma
, page
);
2715 entry
= mk_pte(page
, vma
->vm_page_prot
);
2717 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2718 else if (pte_file(*pte
) && pte_file_soft_dirty(*pte
))
2719 entry
= pte_mksoft_dirty(entry
);
2721 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2722 page_add_new_anon_rmap(page
, vma
, address
);
2724 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
2725 page_add_file_rmap(page
);
2727 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
2729 /* no need to invalidate: a not-present page won't be cached */
2730 update_mmu_cache(vma
, address
, pte
);
2733 static unsigned long fault_around_bytes __read_mostly
=
2734 rounddown_pow_of_two(65536);
2736 #ifdef CONFIG_DEBUG_FS
2737 static int fault_around_bytes_get(void *data
, u64
*val
)
2739 *val
= fault_around_bytes
;
2744 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2745 * rounded down to nearest page order. It's what do_fault_around() expects to
2748 static int fault_around_bytes_set(void *data
, u64 val
)
2750 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
2752 if (val
> PAGE_SIZE
)
2753 fault_around_bytes
= rounddown_pow_of_two(val
);
2755 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
2758 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
2759 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
2761 static int __init
fault_around_debugfs(void)
2765 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
2766 &fault_around_bytes_fops
);
2768 pr_warn("Failed to create fault_around_bytes in debugfs");
2771 late_initcall(fault_around_debugfs
);
2775 * do_fault_around() tries to map few pages around the fault address. The hope
2776 * is that the pages will be needed soon and this will lower the number of
2779 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2780 * not ready to be mapped: not up-to-date, locked, etc.
2782 * This function is called with the page table lock taken. In the split ptlock
2783 * case the page table lock only protects only those entries which belong to
2784 * the page table corresponding to the fault address.
2786 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2789 * fault_around_pages() defines how many pages we'll try to map.
2790 * do_fault_around() expects it to return a power of two less than or equal to
2793 * The virtual address of the area that we map is naturally aligned to the
2794 * fault_around_pages() value (and therefore to page order). This way it's
2795 * easier to guarantee that we don't cross page table boundaries.
2797 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
2798 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
2800 unsigned long start_addr
, nr_pages
, mask
;
2802 struct vm_fault vmf
;
2805 nr_pages
= ACCESS_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
2806 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
2808 start_addr
= max(address
& mask
, vma
->vm_start
);
2809 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
2814 * max_pgoff is either end of page table or end of vma
2815 * or fault_around_pages() from pgoff, depending what is nearest.
2817 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
2819 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
2820 pgoff
+ nr_pages
- 1);
2822 /* Check if it makes any sense to call ->map_pages */
2823 while (!pte_none(*pte
)) {
2824 if (++pgoff
> max_pgoff
)
2826 start_addr
+= PAGE_SIZE
;
2827 if (start_addr
>= vma
->vm_end
)
2832 vmf
.virtual_address
= (void __user
*) start_addr
;
2835 vmf
.max_pgoff
= max_pgoff
;
2837 vma
->vm_ops
->map_pages(vma
, &vmf
);
2840 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2841 unsigned long address
, pmd_t
*pmd
,
2842 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2844 struct page
*fault_page
;
2850 * Let's call ->map_pages() first and use ->fault() as fallback
2851 * if page by the offset is not ready to be mapped (cold cache or
2854 if (vma
->vm_ops
->map_pages
&& !(flags
& FAULT_FLAG_NONLINEAR
) &&
2855 fault_around_bytes
>> PAGE_SHIFT
> 1) {
2856 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2857 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
2858 if (!pte_same(*pte
, orig_pte
))
2860 pte_unmap_unlock(pte
, ptl
);
2863 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2864 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2867 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2868 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2869 pte_unmap_unlock(pte
, ptl
);
2870 unlock_page(fault_page
);
2871 page_cache_release(fault_page
);
2874 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
2875 unlock_page(fault_page
);
2877 pte_unmap_unlock(pte
, ptl
);
2881 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2882 unsigned long address
, pmd_t
*pmd
,
2883 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2885 struct page
*fault_page
, *new_page
;
2886 struct mem_cgroup
*memcg
;
2891 if (unlikely(anon_vma_prepare(vma
)))
2892 return VM_FAULT_OOM
;
2894 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2896 return VM_FAULT_OOM
;
2898 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
)) {
2899 page_cache_release(new_page
);
2900 return VM_FAULT_OOM
;
2903 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2904 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2907 copy_user_highpage(new_page
, fault_page
, address
, vma
);
2908 __SetPageUptodate(new_page
);
2910 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2911 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2912 pte_unmap_unlock(pte
, ptl
);
2913 unlock_page(fault_page
);
2914 page_cache_release(fault_page
);
2917 do_set_pte(vma
, address
, new_page
, pte
, true, true);
2918 mem_cgroup_commit_charge(new_page
, memcg
, false);
2919 lru_cache_add_active_or_unevictable(new_page
, vma
);
2920 pte_unmap_unlock(pte
, ptl
);
2921 unlock_page(fault_page
);
2922 page_cache_release(fault_page
);
2925 mem_cgroup_cancel_charge(new_page
, memcg
);
2926 page_cache_release(new_page
);
2930 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2931 unsigned long address
, pmd_t
*pmd
,
2932 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2934 struct page
*fault_page
;
2935 struct address_space
*mapping
;
2941 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2942 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2946 * Check if the backing address space wants to know that the page is
2947 * about to become writable
2949 if (vma
->vm_ops
->page_mkwrite
) {
2950 unlock_page(fault_page
);
2951 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
2952 if (unlikely(!tmp
||
2953 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2954 page_cache_release(fault_page
);
2959 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2960 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2961 pte_unmap_unlock(pte
, ptl
);
2962 unlock_page(fault_page
);
2963 page_cache_release(fault_page
);
2966 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
2967 pte_unmap_unlock(pte
, ptl
);
2969 if (set_page_dirty(fault_page
))
2971 mapping
= fault_page
->mapping
;
2972 unlock_page(fault_page
);
2973 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
2975 * Some device drivers do not set page.mapping but still
2978 balance_dirty_pages_ratelimited(mapping
);
2981 /* file_update_time outside page_lock */
2982 if (vma
->vm_file
&& !vma
->vm_ops
->page_mkwrite
)
2983 file_update_time(vma
->vm_file
);
2989 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2990 * but allow concurrent faults).
2991 * The mmap_sem may have been released depending on flags and our
2992 * return value. See filemap_fault() and __lock_page_or_retry().
2994 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2995 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2996 unsigned int flags
, pte_t orig_pte
)
2998 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2999 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3001 pte_unmap(page_table
);
3002 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3003 if (!vma
->vm_ops
->fault
)
3004 return VM_FAULT_SIGBUS
;
3005 if (!(flags
& FAULT_FLAG_WRITE
))
3006 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3008 if (!(vma
->vm_flags
& VM_SHARED
))
3009 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3011 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3015 * Fault of a previously existing named mapping. Repopulate the pte
3016 * from the encoded file_pte if possible. This enables swappable
3019 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3020 * but allow concurrent faults), and pte mapped but not yet locked.
3021 * We return with pte unmapped and unlocked.
3022 * The mmap_sem may have been released depending on flags and our
3023 * return value. See filemap_fault() and __lock_page_or_retry().
3025 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3026 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3027 unsigned int flags
, pte_t orig_pte
)
3031 flags
|= FAULT_FLAG_NONLINEAR
;
3033 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3036 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3038 * Page table corrupted: show pte and kill process.
3040 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3041 return VM_FAULT_SIGBUS
;
3044 pgoff
= pte_to_pgoff(orig_pte
);
3045 if (!(flags
& FAULT_FLAG_WRITE
))
3046 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3048 if (!(vma
->vm_flags
& VM_SHARED
))
3049 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3051 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3054 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3055 unsigned long addr
, int page_nid
,
3060 count_vm_numa_event(NUMA_HINT_FAULTS
);
3061 if (page_nid
== numa_node_id()) {
3062 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3063 *flags
|= TNF_FAULT_LOCAL
;
3066 return mpol_misplaced(page
, vma
, addr
);
3069 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3070 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3072 struct page
*page
= NULL
;
3077 bool migrated
= false;
3081 * The "pte" at this point cannot be used safely without
3082 * validation through pte_unmap_same(). It's of NUMA type but
3083 * the pfn may be screwed if the read is non atomic.
3085 * ptep_modify_prot_start is not called as this is clearing
3086 * the _PAGE_NUMA bit and it is not really expected that there
3087 * would be concurrent hardware modifications to the PTE.
3089 ptl
= pte_lockptr(mm
, pmd
);
3091 if (unlikely(!pte_same(*ptep
, pte
))) {
3092 pte_unmap_unlock(ptep
, ptl
);
3096 pte
= pte_mknonnuma(pte
);
3097 set_pte_at(mm
, addr
, ptep
, pte
);
3098 update_mmu_cache(vma
, addr
, ptep
);
3100 page
= vm_normal_page(vma
, addr
, pte
);
3102 pte_unmap_unlock(ptep
, ptl
);
3105 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3108 * Avoid grouping on DSO/COW pages in specific and RO pages
3109 * in general, RO pages shouldn't hurt as much anyway since
3110 * they can be in shared cache state.
3112 if (!pte_write(pte
))
3113 flags
|= TNF_NO_GROUP
;
3116 * Flag if the page is shared between multiple address spaces. This
3117 * is later used when determining whether to group tasks together
3119 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3120 flags
|= TNF_SHARED
;
3122 last_cpupid
= page_cpupid_last(page
);
3123 page_nid
= page_to_nid(page
);
3124 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3125 pte_unmap_unlock(ptep
, ptl
);
3126 if (target_nid
== -1) {
3131 /* Migrate to the requested node */
3132 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3134 page_nid
= target_nid
;
3135 flags
|= TNF_MIGRATED
;
3140 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3145 * These routines also need to handle stuff like marking pages dirty
3146 * and/or accessed for architectures that don't do it in hardware (most
3147 * RISC architectures). The early dirtying is also good on the i386.
3149 * There is also a hook called "update_mmu_cache()" that architectures
3150 * with external mmu caches can use to update those (ie the Sparc or
3151 * PowerPC hashed page tables that act as extended TLBs).
3153 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3154 * but allow concurrent faults), and pte mapped but not yet locked.
3155 * We return with pte unmapped and unlocked.
3157 * The mmap_sem may have been released depending on flags and our
3158 * return value. See filemap_fault() and __lock_page_or_retry().
3160 static int handle_pte_fault(struct mm_struct
*mm
,
3161 struct vm_area_struct
*vma
, unsigned long address
,
3162 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3167 entry
= ACCESS_ONCE(*pte
);
3168 if (!pte_present(entry
)) {
3169 if (pte_none(entry
)) {
3171 return do_linear_fault(mm
, vma
, address
,
3172 pte
, pmd
, flags
, entry
);
3173 return do_anonymous_page(mm
, vma
, address
,
3176 if (pte_file(entry
))
3177 return do_nonlinear_fault(mm
, vma
, address
,
3178 pte
, pmd
, flags
, entry
);
3179 return do_swap_page(mm
, vma
, address
,
3180 pte
, pmd
, flags
, entry
);
3183 if (pte_numa(entry
))
3184 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3186 ptl
= pte_lockptr(mm
, pmd
);
3188 if (unlikely(!pte_same(*pte
, entry
)))
3190 if (flags
& FAULT_FLAG_WRITE
) {
3191 if (!pte_write(entry
))
3192 return do_wp_page(mm
, vma
, address
,
3193 pte
, pmd
, ptl
, entry
);
3194 entry
= pte_mkdirty(entry
);
3196 entry
= pte_mkyoung(entry
);
3197 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3198 update_mmu_cache(vma
, address
, pte
);
3201 * This is needed only for protection faults but the arch code
3202 * is not yet telling us if this is a protection fault or not.
3203 * This still avoids useless tlb flushes for .text page faults
3206 if (flags
& FAULT_FLAG_WRITE
)
3207 flush_tlb_fix_spurious_fault(vma
, address
);
3210 pte_unmap_unlock(pte
, ptl
);
3215 * By the time we get here, we already hold the mm semaphore
3217 * The mmap_sem may have been released depending on flags and our
3218 * return value. See filemap_fault() and __lock_page_or_retry().
3220 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3221 unsigned long address
, unsigned int flags
)
3228 if (unlikely(is_vm_hugetlb_page(vma
)))
3229 return hugetlb_fault(mm
, vma
, address
, flags
);
3231 pgd
= pgd_offset(mm
, address
);
3232 pud
= pud_alloc(mm
, pgd
, address
);
3234 return VM_FAULT_OOM
;
3235 pmd
= pmd_alloc(mm
, pud
, address
);
3237 return VM_FAULT_OOM
;
3238 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3239 int ret
= VM_FAULT_FALLBACK
;
3241 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3243 if (!(ret
& VM_FAULT_FALLBACK
))
3246 pmd_t orig_pmd
= *pmd
;
3250 if (pmd_trans_huge(orig_pmd
)) {
3251 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3254 * If the pmd is splitting, return and retry the
3255 * the fault. Alternative: wait until the split
3256 * is done, and goto retry.
3258 if (pmd_trans_splitting(orig_pmd
))
3261 if (pmd_numa(orig_pmd
))
3262 return do_huge_pmd_numa_page(mm
, vma
, address
,
3265 if (dirty
&& !pmd_write(orig_pmd
)) {
3266 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3268 if (!(ret
& VM_FAULT_FALLBACK
))
3271 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3279 * Use __pte_alloc instead of pte_alloc_map, because we can't
3280 * run pte_offset_map on the pmd, if an huge pmd could
3281 * materialize from under us from a different thread.
3283 if (unlikely(pmd_none(*pmd
)) &&
3284 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3285 return VM_FAULT_OOM
;
3287 * If a huge pmd materialized under us just retry later. Use
3288 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3289 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3290 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3291 * in a different thread of this mm, in turn leading to a misleading
3292 * pmd_trans_huge() retval. All we have to ensure is that it is a
3293 * regular pmd that we can walk with pte_offset_map() and we can do that
3294 * through an atomic read in C, which is what pmd_trans_unstable()
3297 if (unlikely(pmd_trans_unstable(pmd
)))
3300 * A regular pmd is established and it can't morph into a huge pmd
3301 * from under us anymore at this point because we hold the mmap_sem
3302 * read mode and khugepaged takes it in write mode. So now it's
3303 * safe to run pte_offset_map().
3305 pte
= pte_offset_map(pmd
, address
);
3307 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3311 * By the time we get here, we already hold the mm semaphore
3313 * The mmap_sem may have been released depending on flags and our
3314 * return value. See filemap_fault() and __lock_page_or_retry().
3316 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3317 unsigned long address
, unsigned int flags
)
3321 __set_current_state(TASK_RUNNING
);
3323 count_vm_event(PGFAULT
);
3324 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3326 /* do counter updates before entering really critical section. */
3327 check_sync_rss_stat(current
);
3330 * Enable the memcg OOM handling for faults triggered in user
3331 * space. Kernel faults are handled more gracefully.
3333 if (flags
& FAULT_FLAG_USER
)
3334 mem_cgroup_oom_enable();
3336 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3338 if (flags
& FAULT_FLAG_USER
) {
3339 mem_cgroup_oom_disable();
3341 * The task may have entered a memcg OOM situation but
3342 * if the allocation error was handled gracefully (no
3343 * VM_FAULT_OOM), there is no need to kill anything.
3344 * Just clean up the OOM state peacefully.
3346 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3347 mem_cgroup_oom_synchronize(false);
3353 #ifndef __PAGETABLE_PUD_FOLDED
3355 * Allocate page upper directory.
3356 * We've already handled the fast-path in-line.
3358 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3360 pud_t
*new = pud_alloc_one(mm
, address
);
3364 smp_wmb(); /* See comment in __pte_alloc */
3366 spin_lock(&mm
->page_table_lock
);
3367 if (pgd_present(*pgd
)) /* Another has populated it */
3370 pgd_populate(mm
, pgd
, new);
3371 spin_unlock(&mm
->page_table_lock
);
3374 #endif /* __PAGETABLE_PUD_FOLDED */
3376 #ifndef __PAGETABLE_PMD_FOLDED
3378 * Allocate page middle directory.
3379 * We've already handled the fast-path in-line.
3381 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3383 pmd_t
*new = pmd_alloc_one(mm
, address
);
3387 smp_wmb(); /* See comment in __pte_alloc */
3389 spin_lock(&mm
->page_table_lock
);
3390 #ifndef __ARCH_HAS_4LEVEL_HACK
3391 if (pud_present(*pud
)) /* Another has populated it */
3394 pud_populate(mm
, pud
, new);
3396 if (pgd_present(*pud
)) /* Another has populated it */
3399 pgd_populate(mm
, pud
, new);
3400 #endif /* __ARCH_HAS_4LEVEL_HACK */
3401 spin_unlock(&mm
->page_table_lock
);
3404 #endif /* __PAGETABLE_PMD_FOLDED */
3406 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3407 pte_t
**ptepp
, spinlock_t
**ptlp
)
3414 pgd
= pgd_offset(mm
, address
);
3415 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3418 pud
= pud_offset(pgd
, address
);
3419 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3422 pmd
= pmd_offset(pud
, address
);
3423 VM_BUG_ON(pmd_trans_huge(*pmd
));
3424 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3427 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3431 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3434 if (!pte_present(*ptep
))
3439 pte_unmap_unlock(ptep
, *ptlp
);
3444 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3445 pte_t
**ptepp
, spinlock_t
**ptlp
)
3449 /* (void) is needed to make gcc happy */
3450 (void) __cond_lock(*ptlp
,
3451 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3456 * follow_pfn - look up PFN at a user virtual address
3457 * @vma: memory mapping
3458 * @address: user virtual address
3459 * @pfn: location to store found PFN
3461 * Only IO mappings and raw PFN mappings are allowed.
3463 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3465 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3472 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3475 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3478 *pfn
= pte_pfn(*ptep
);
3479 pte_unmap_unlock(ptep
, ptl
);
3482 EXPORT_SYMBOL(follow_pfn
);
3484 #ifdef CONFIG_HAVE_IOREMAP_PROT
3485 int follow_phys(struct vm_area_struct
*vma
,
3486 unsigned long address
, unsigned int flags
,
3487 unsigned long *prot
, resource_size_t
*phys
)
3493 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3496 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3500 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3503 *prot
= pgprot_val(pte_pgprot(pte
));
3504 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3508 pte_unmap_unlock(ptep
, ptl
);
3513 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3514 void *buf
, int len
, int write
)
3516 resource_size_t phys_addr
;
3517 unsigned long prot
= 0;
3518 void __iomem
*maddr
;
3519 int offset
= addr
& (PAGE_SIZE
-1);
3521 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3524 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
3526 memcpy_toio(maddr
+ offset
, buf
, len
);
3528 memcpy_fromio(buf
, maddr
+ offset
, len
);
3533 EXPORT_SYMBOL_GPL(generic_access_phys
);
3537 * Access another process' address space as given in mm. If non-NULL, use the
3538 * given task for page fault accounting.
3540 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3541 unsigned long addr
, void *buf
, int len
, int write
)
3543 struct vm_area_struct
*vma
;
3544 void *old_buf
= buf
;
3546 down_read(&mm
->mmap_sem
);
3547 /* ignore errors, just check how much was successfully transferred */
3549 int bytes
, ret
, offset
;
3551 struct page
*page
= NULL
;
3553 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3554 write
, 1, &page
, &vma
);
3556 #ifndef CONFIG_HAVE_IOREMAP_PROT
3560 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3561 * we can access using slightly different code.
3563 vma
= find_vma(mm
, addr
);
3564 if (!vma
|| vma
->vm_start
> addr
)
3566 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3567 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3575 offset
= addr
& (PAGE_SIZE
-1);
3576 if (bytes
> PAGE_SIZE
-offset
)
3577 bytes
= PAGE_SIZE
-offset
;
3581 copy_to_user_page(vma
, page
, addr
,
3582 maddr
+ offset
, buf
, bytes
);
3583 set_page_dirty_lock(page
);
3585 copy_from_user_page(vma
, page
, addr
,
3586 buf
, maddr
+ offset
, bytes
);
3589 page_cache_release(page
);
3595 up_read(&mm
->mmap_sem
);
3597 return buf
- old_buf
;
3601 * access_remote_vm - access another process' address space
3602 * @mm: the mm_struct of the target address space
3603 * @addr: start address to access
3604 * @buf: source or destination buffer
3605 * @len: number of bytes to transfer
3606 * @write: whether the access is a write
3608 * The caller must hold a reference on @mm.
3610 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3611 void *buf
, int len
, int write
)
3613 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3617 * Access another process' address space.
3618 * Source/target buffer must be kernel space,
3619 * Do not walk the page table directly, use get_user_pages
3621 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3622 void *buf
, int len
, int write
)
3624 struct mm_struct
*mm
;
3627 mm
= get_task_mm(tsk
);
3631 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3638 * Print the name of a VMA.
3640 void print_vma_addr(char *prefix
, unsigned long ip
)
3642 struct mm_struct
*mm
= current
->mm
;
3643 struct vm_area_struct
*vma
;
3646 * Do not print if we are in atomic
3647 * contexts (in exception stacks, etc.):
3649 if (preempt_count())
3652 down_read(&mm
->mmap_sem
);
3653 vma
= find_vma(mm
, ip
);
3654 if (vma
&& vma
->vm_file
) {
3655 struct file
*f
= vma
->vm_file
;
3656 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3660 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3663 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3665 vma
->vm_end
- vma
->vm_start
);
3666 free_page((unsigned long)buf
);
3669 up_read(&mm
->mmap_sem
);
3672 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3673 void might_fault(void)
3676 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3677 * holding the mmap_sem, this is safe because kernel memory doesn't
3678 * get paged out, therefore we'll never actually fault, and the
3679 * below annotations will generate false positives.
3681 if (segment_eq(get_fs(), KERNEL_DS
))
3685 * it would be nicer only to annotate paths which are not under
3686 * pagefault_disable, however that requires a larger audit and
3687 * providing helpers like get_user_atomic.
3692 __might_sleep(__FILE__
, __LINE__
, 0);
3695 might_lock_read(¤t
->mm
->mmap_sem
);
3697 EXPORT_SYMBOL(might_fault
);
3700 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3701 static void clear_gigantic_page(struct page
*page
,
3703 unsigned int pages_per_huge_page
)
3706 struct page
*p
= page
;
3709 for (i
= 0; i
< pages_per_huge_page
;
3710 i
++, p
= mem_map_next(p
, page
, i
)) {
3712 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3715 void clear_huge_page(struct page
*page
,
3716 unsigned long addr
, unsigned int pages_per_huge_page
)
3720 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3721 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3726 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3728 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3732 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3734 struct vm_area_struct
*vma
,
3735 unsigned int pages_per_huge_page
)
3738 struct page
*dst_base
= dst
;
3739 struct page
*src_base
= src
;
3741 for (i
= 0; i
< pages_per_huge_page
; ) {
3743 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3746 dst
= mem_map_next(dst
, dst_base
, i
);
3747 src
= mem_map_next(src
, src_base
, i
);
3751 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3752 unsigned long addr
, struct vm_area_struct
*vma
,
3753 unsigned int pages_per_huge_page
)
3757 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3758 copy_user_gigantic_page(dst
, src
, addr
, vma
,
3759 pages_per_huge_page
);
3764 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3766 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
3769 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3771 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3773 static struct kmem_cache
*page_ptl_cachep
;
3775 void __init
ptlock_cache_init(void)
3777 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
3781 bool ptlock_alloc(struct page
*page
)
3785 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
3792 void ptlock_free(struct page
*page
)
3794 kmem_cache_free(page_ptl_cachep
, page
->ptl
);