Merge branch 'x86/microcode' into x86/urgent, to pick up cleanup
[linux/fpc-iii.git] / arch / x86 / mm / kmemcheck / kmemcheck.c
blob4515bae36bbe5f2cec70a21bda2cf707b516de4f
1 /**
2 * kmemcheck - a heavyweight memory checker for the linux kernel
3 * Copyright (C) 2007, 2008 Vegard Nossum <vegardno@ifi.uio.no>
4 * (With a lot of help from Ingo Molnar and Pekka Enberg.)
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2) as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/kernel.h>
15 #include <linux/kmemcheck.h>
16 #include <linux/mm.h>
17 #include <linux/page-flags.h>
18 #include <linux/percpu.h>
19 #include <linux/ptrace.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
23 #include <asm/cacheflush.h>
24 #include <asm/kmemcheck.h>
25 #include <asm/pgtable.h>
26 #include <asm/tlbflush.h>
28 #include "error.h"
29 #include "opcode.h"
30 #include "pte.h"
31 #include "selftest.h"
32 #include "shadow.h"
35 #ifdef CONFIG_KMEMCHECK_DISABLED_BY_DEFAULT
36 # define KMEMCHECK_ENABLED 0
37 #endif
39 #ifdef CONFIG_KMEMCHECK_ENABLED_BY_DEFAULT
40 # define KMEMCHECK_ENABLED 1
41 #endif
43 #ifdef CONFIG_KMEMCHECK_ONESHOT_BY_DEFAULT
44 # define KMEMCHECK_ENABLED 2
45 #endif
47 int kmemcheck_enabled = KMEMCHECK_ENABLED;
49 int __init kmemcheck_init(void)
51 #ifdef CONFIG_SMP
53 * Limit SMP to use a single CPU. We rely on the fact that this code
54 * runs before SMP is set up.
56 if (setup_max_cpus > 1) {
57 printk(KERN_INFO
58 "kmemcheck: Limiting number of CPUs to 1.\n");
59 setup_max_cpus = 1;
61 #endif
63 if (!kmemcheck_selftest()) {
64 printk(KERN_INFO "kmemcheck: self-tests failed; disabling\n");
65 kmemcheck_enabled = 0;
66 return -EINVAL;
69 printk(KERN_INFO "kmemcheck: Initialized\n");
70 return 0;
73 early_initcall(kmemcheck_init);
76 * We need to parse the kmemcheck= option before any memory is allocated.
78 static int __init param_kmemcheck(char *str)
80 int val;
81 int ret;
83 if (!str)
84 return -EINVAL;
86 ret = kstrtoint(str, 0, &val);
87 if (ret)
88 return ret;
89 kmemcheck_enabled = val;
90 return 0;
93 early_param("kmemcheck", param_kmemcheck);
95 int kmemcheck_show_addr(unsigned long address)
97 pte_t *pte;
99 pte = kmemcheck_pte_lookup(address);
100 if (!pte)
101 return 0;
103 set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT));
104 __flush_tlb_one(address);
105 return 1;
108 int kmemcheck_hide_addr(unsigned long address)
110 pte_t *pte;
112 pte = kmemcheck_pte_lookup(address);
113 if (!pte)
114 return 0;
116 set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT));
117 __flush_tlb_one(address);
118 return 1;
121 struct kmemcheck_context {
122 bool busy;
123 int balance;
126 * There can be at most two memory operands to an instruction, but
127 * each address can cross a page boundary -- so we may need up to
128 * four addresses that must be hidden/revealed for each fault.
130 unsigned long addr[4];
131 unsigned long n_addrs;
132 unsigned long flags;
134 /* Data size of the instruction that caused a fault. */
135 unsigned int size;
138 static DEFINE_PER_CPU(struct kmemcheck_context, kmemcheck_context);
140 bool kmemcheck_active(struct pt_regs *regs)
142 struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
144 return data->balance > 0;
147 /* Save an address that needs to be shown/hidden */
148 static void kmemcheck_save_addr(unsigned long addr)
150 struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
152 BUG_ON(data->n_addrs >= ARRAY_SIZE(data->addr));
153 data->addr[data->n_addrs++] = addr;
156 static unsigned int kmemcheck_show_all(void)
158 struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
159 unsigned int i;
160 unsigned int n;
162 n = 0;
163 for (i = 0; i < data->n_addrs; ++i)
164 n += kmemcheck_show_addr(data->addr[i]);
166 return n;
169 static unsigned int kmemcheck_hide_all(void)
171 struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
172 unsigned int i;
173 unsigned int n;
175 n = 0;
176 for (i = 0; i < data->n_addrs; ++i)
177 n += kmemcheck_hide_addr(data->addr[i]);
179 return n;
183 * Called from the #PF handler.
185 void kmemcheck_show(struct pt_regs *regs)
187 struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
189 BUG_ON(!irqs_disabled());
191 if (unlikely(data->balance != 0)) {
192 kmemcheck_show_all();
193 kmemcheck_error_save_bug(regs);
194 data->balance = 0;
195 return;
199 * None of the addresses actually belonged to kmemcheck. Note that
200 * this is not an error.
202 if (kmemcheck_show_all() == 0)
203 return;
205 ++data->balance;
208 * The IF needs to be cleared as well, so that the faulting
209 * instruction can run "uninterrupted". Otherwise, we might take
210 * an interrupt and start executing that before we've had a chance
211 * to hide the page again.
213 * NOTE: In the rare case of multiple faults, we must not override
214 * the original flags:
216 if (!(regs->flags & X86_EFLAGS_TF))
217 data->flags = regs->flags;
219 regs->flags |= X86_EFLAGS_TF;
220 regs->flags &= ~X86_EFLAGS_IF;
224 * Called from the #DB handler.
226 void kmemcheck_hide(struct pt_regs *regs)
228 struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
229 int n;
231 BUG_ON(!irqs_disabled());
233 if (unlikely(data->balance != 1)) {
234 kmemcheck_show_all();
235 kmemcheck_error_save_bug(regs);
236 data->n_addrs = 0;
237 data->balance = 0;
239 if (!(data->flags & X86_EFLAGS_TF))
240 regs->flags &= ~X86_EFLAGS_TF;
241 if (data->flags & X86_EFLAGS_IF)
242 regs->flags |= X86_EFLAGS_IF;
243 return;
246 if (kmemcheck_enabled)
247 n = kmemcheck_hide_all();
248 else
249 n = kmemcheck_show_all();
251 if (n == 0)
252 return;
254 --data->balance;
256 data->n_addrs = 0;
258 if (!(data->flags & X86_EFLAGS_TF))
259 regs->flags &= ~X86_EFLAGS_TF;
260 if (data->flags & X86_EFLAGS_IF)
261 regs->flags |= X86_EFLAGS_IF;
264 void kmemcheck_show_pages(struct page *p, unsigned int n)
266 unsigned int i;
268 for (i = 0; i < n; ++i) {
269 unsigned long address;
270 pte_t *pte;
271 unsigned int level;
273 address = (unsigned long) page_address(&p[i]);
274 pte = lookup_address(address, &level);
275 BUG_ON(!pte);
276 BUG_ON(level != PG_LEVEL_4K);
278 set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT));
279 set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_HIDDEN));
280 __flush_tlb_one(address);
284 bool kmemcheck_page_is_tracked(struct page *p)
286 /* This will also check the "hidden" flag of the PTE. */
287 return kmemcheck_pte_lookup((unsigned long) page_address(p));
290 void kmemcheck_hide_pages(struct page *p, unsigned int n)
292 unsigned int i;
294 for (i = 0; i < n; ++i) {
295 unsigned long address;
296 pte_t *pte;
297 unsigned int level;
299 address = (unsigned long) page_address(&p[i]);
300 pte = lookup_address(address, &level);
301 BUG_ON(!pte);
302 BUG_ON(level != PG_LEVEL_4K);
304 set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT));
305 set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN));
306 __flush_tlb_one(address);
310 /* Access may NOT cross page boundary */
311 static void kmemcheck_read_strict(struct pt_regs *regs,
312 unsigned long addr, unsigned int size)
314 void *shadow;
315 enum kmemcheck_shadow status;
317 shadow = kmemcheck_shadow_lookup(addr);
318 if (!shadow)
319 return;
321 kmemcheck_save_addr(addr);
322 status = kmemcheck_shadow_test(shadow, size);
323 if (status == KMEMCHECK_SHADOW_INITIALIZED)
324 return;
326 if (kmemcheck_enabled)
327 kmemcheck_error_save(status, addr, size, regs);
329 if (kmemcheck_enabled == 2)
330 kmemcheck_enabled = 0;
332 /* Don't warn about it again. */
333 kmemcheck_shadow_set(shadow, size);
336 bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size)
338 enum kmemcheck_shadow status;
339 void *shadow;
341 shadow = kmemcheck_shadow_lookup(addr);
342 if (!shadow)
343 return true;
345 status = kmemcheck_shadow_test_all(shadow, size);
347 return status == KMEMCHECK_SHADOW_INITIALIZED;
350 /* Access may cross page boundary */
351 static void kmemcheck_read(struct pt_regs *regs,
352 unsigned long addr, unsigned int size)
354 unsigned long page = addr & PAGE_MASK;
355 unsigned long next_addr = addr + size - 1;
356 unsigned long next_page = next_addr & PAGE_MASK;
358 if (likely(page == next_page)) {
359 kmemcheck_read_strict(regs, addr, size);
360 return;
364 * What we do is basically to split the access across the
365 * two pages and handle each part separately. Yes, this means
366 * that we may now see reads that are 3 + 5 bytes, for
367 * example (and if both are uninitialized, there will be two
368 * reports), but it makes the code a lot simpler.
370 kmemcheck_read_strict(regs, addr, next_page - addr);
371 kmemcheck_read_strict(regs, next_page, next_addr - next_page);
374 static void kmemcheck_write_strict(struct pt_regs *regs,
375 unsigned long addr, unsigned int size)
377 void *shadow;
379 shadow = kmemcheck_shadow_lookup(addr);
380 if (!shadow)
381 return;
383 kmemcheck_save_addr(addr);
384 kmemcheck_shadow_set(shadow, size);
387 static void kmemcheck_write(struct pt_regs *regs,
388 unsigned long addr, unsigned int size)
390 unsigned long page = addr & PAGE_MASK;
391 unsigned long next_addr = addr + size - 1;
392 unsigned long next_page = next_addr & PAGE_MASK;
394 if (likely(page == next_page)) {
395 kmemcheck_write_strict(regs, addr, size);
396 return;
399 /* See comment in kmemcheck_read(). */
400 kmemcheck_write_strict(regs, addr, next_page - addr);
401 kmemcheck_write_strict(regs, next_page, next_addr - next_page);
405 * Copying is hard. We have two addresses, each of which may be split across
406 * a page (and each page will have different shadow addresses).
408 static void kmemcheck_copy(struct pt_regs *regs,
409 unsigned long src_addr, unsigned long dst_addr, unsigned int size)
411 uint8_t shadow[8];
412 enum kmemcheck_shadow status;
414 unsigned long page;
415 unsigned long next_addr;
416 unsigned long next_page;
418 uint8_t *x;
419 unsigned int i;
420 unsigned int n;
422 BUG_ON(size > sizeof(shadow));
424 page = src_addr & PAGE_MASK;
425 next_addr = src_addr + size - 1;
426 next_page = next_addr & PAGE_MASK;
428 if (likely(page == next_page)) {
429 /* Same page */
430 x = kmemcheck_shadow_lookup(src_addr);
431 if (x) {
432 kmemcheck_save_addr(src_addr);
433 for (i = 0; i < size; ++i)
434 shadow[i] = x[i];
435 } else {
436 for (i = 0; i < size; ++i)
437 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
439 } else {
440 n = next_page - src_addr;
441 BUG_ON(n > sizeof(shadow));
443 /* First page */
444 x = kmemcheck_shadow_lookup(src_addr);
445 if (x) {
446 kmemcheck_save_addr(src_addr);
447 for (i = 0; i < n; ++i)
448 shadow[i] = x[i];
449 } else {
450 /* Not tracked */
451 for (i = 0; i < n; ++i)
452 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
455 /* Second page */
456 x = kmemcheck_shadow_lookup(next_page);
457 if (x) {
458 kmemcheck_save_addr(next_page);
459 for (i = n; i < size; ++i)
460 shadow[i] = x[i - n];
461 } else {
462 /* Not tracked */
463 for (i = n; i < size; ++i)
464 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
468 page = dst_addr & PAGE_MASK;
469 next_addr = dst_addr + size - 1;
470 next_page = next_addr & PAGE_MASK;
472 if (likely(page == next_page)) {
473 /* Same page */
474 x = kmemcheck_shadow_lookup(dst_addr);
475 if (x) {
476 kmemcheck_save_addr(dst_addr);
477 for (i = 0; i < size; ++i) {
478 x[i] = shadow[i];
479 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
482 } else {
483 n = next_page - dst_addr;
484 BUG_ON(n > sizeof(shadow));
486 /* First page */
487 x = kmemcheck_shadow_lookup(dst_addr);
488 if (x) {
489 kmemcheck_save_addr(dst_addr);
490 for (i = 0; i < n; ++i) {
491 x[i] = shadow[i];
492 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
496 /* Second page */
497 x = kmemcheck_shadow_lookup(next_page);
498 if (x) {
499 kmemcheck_save_addr(next_page);
500 for (i = n; i < size; ++i) {
501 x[i - n] = shadow[i];
502 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
507 status = kmemcheck_shadow_test(shadow, size);
508 if (status == KMEMCHECK_SHADOW_INITIALIZED)
509 return;
511 if (kmemcheck_enabled)
512 kmemcheck_error_save(status, src_addr, size, regs);
514 if (kmemcheck_enabled == 2)
515 kmemcheck_enabled = 0;
518 enum kmemcheck_method {
519 KMEMCHECK_READ,
520 KMEMCHECK_WRITE,
523 static void kmemcheck_access(struct pt_regs *regs,
524 unsigned long fallback_address, enum kmemcheck_method fallback_method)
526 const uint8_t *insn;
527 const uint8_t *insn_primary;
528 unsigned int size;
530 struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
532 /* Recursive fault -- ouch. */
533 if (data->busy) {
534 kmemcheck_show_addr(fallback_address);
535 kmemcheck_error_save_bug(regs);
536 return;
539 data->busy = true;
541 insn = (const uint8_t *) regs->ip;
542 insn_primary = kmemcheck_opcode_get_primary(insn);
544 kmemcheck_opcode_decode(insn, &size);
546 switch (insn_primary[0]) {
547 #ifdef CONFIG_KMEMCHECK_BITOPS_OK
548 /* AND, OR, XOR */
550 * Unfortunately, these instructions have to be excluded from
551 * our regular checking since they access only some (and not
552 * all) bits. This clears out "bogus" bitfield-access warnings.
554 case 0x80:
555 case 0x81:
556 case 0x82:
557 case 0x83:
558 switch ((insn_primary[1] >> 3) & 7) {
559 /* OR */
560 case 1:
561 /* AND */
562 case 4:
563 /* XOR */
564 case 6:
565 kmemcheck_write(regs, fallback_address, size);
566 goto out;
568 /* ADD */
569 case 0:
570 /* ADC */
571 case 2:
572 /* SBB */
573 case 3:
574 /* SUB */
575 case 5:
576 /* CMP */
577 case 7:
578 break;
580 break;
581 #endif
583 /* MOVS, MOVSB, MOVSW, MOVSD */
584 case 0xa4:
585 case 0xa5:
587 * These instructions are special because they take two
588 * addresses, but we only get one page fault.
590 kmemcheck_copy(regs, regs->si, regs->di, size);
591 goto out;
593 /* CMPS, CMPSB, CMPSW, CMPSD */
594 case 0xa6:
595 case 0xa7:
596 kmemcheck_read(regs, regs->si, size);
597 kmemcheck_read(regs, regs->di, size);
598 goto out;
602 * If the opcode isn't special in any way, we use the data from the
603 * page fault handler to determine the address and type of memory
604 * access.
606 switch (fallback_method) {
607 case KMEMCHECK_READ:
608 kmemcheck_read(regs, fallback_address, size);
609 goto out;
610 case KMEMCHECK_WRITE:
611 kmemcheck_write(regs, fallback_address, size);
612 goto out;
615 out:
616 data->busy = false;
619 bool kmemcheck_fault(struct pt_regs *regs, unsigned long address,
620 unsigned long error_code)
622 pte_t *pte;
625 * XXX: Is it safe to assume that memory accesses from virtual 86
626 * mode or non-kernel code segments will _never_ access kernel
627 * memory (e.g. tracked pages)? For now, we need this to avoid
628 * invoking kmemcheck for PnP BIOS calls.
630 if (regs->flags & X86_VM_MASK)
631 return false;
632 if (regs->cs != __KERNEL_CS)
633 return false;
635 pte = kmemcheck_pte_lookup(address);
636 if (!pte)
637 return false;
639 WARN_ON_ONCE(in_nmi());
641 if (error_code & 2)
642 kmemcheck_access(regs, address, KMEMCHECK_WRITE);
643 else
644 kmemcheck_access(regs, address, KMEMCHECK_READ);
646 kmemcheck_show(regs);
647 return true;
650 bool kmemcheck_trap(struct pt_regs *regs)
652 if (!kmemcheck_active(regs))
653 return false;
655 /* We're done. */
656 kmemcheck_hide(regs);
657 return true;