Merge branch 'x86/microcode' into x86/urgent, to pick up cleanup
[linux/fpc-iii.git] / kernel / cgroup / cpuset.c
blob0f41292be0fb7dea2800acae3550c0dea3903f45
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
60 #include <linux/uaccess.h>
61 #include <linux/atomic.h>
62 #include <linux/mutex.h>
63 #include <linux/cgroup.h>
64 #include <linux/wait.h>
66 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
68 /* See "Frequency meter" comments, below. */
70 struct fmeter {
71 int cnt; /* unprocessed events count */
72 int val; /* most recent output value */
73 time64_t time; /* clock (secs) when val computed */
74 spinlock_t lock; /* guards read or write of above */
77 struct cpuset {
78 struct cgroup_subsys_state css;
80 unsigned long flags; /* "unsigned long" so bitops work */
83 * On default hierarchy:
85 * The user-configured masks can only be changed by writing to
86 * cpuset.cpus and cpuset.mems, and won't be limited by the
87 * parent masks.
89 * The effective masks is the real masks that apply to the tasks
90 * in the cpuset. They may be changed if the configured masks are
91 * changed or hotplug happens.
93 * effective_mask == configured_mask & parent's effective_mask,
94 * and if it ends up empty, it will inherit the parent's mask.
97 * On legacy hierachy:
99 * The user-configured masks are always the same with effective masks.
102 /* user-configured CPUs and Memory Nodes allow to tasks */
103 cpumask_var_t cpus_allowed;
104 nodemask_t mems_allowed;
106 /* effective CPUs and Memory Nodes allow to tasks */
107 cpumask_var_t effective_cpus;
108 nodemask_t effective_mems;
111 * This is old Memory Nodes tasks took on.
113 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
114 * - A new cpuset's old_mems_allowed is initialized when some
115 * task is moved into it.
116 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
117 * cpuset.mems_allowed and have tasks' nodemask updated, and
118 * then old_mems_allowed is updated to mems_allowed.
120 nodemask_t old_mems_allowed;
122 struct fmeter fmeter; /* memory_pressure filter */
125 * Tasks are being attached to this cpuset. Used to prevent
126 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
128 int attach_in_progress;
130 /* partition number for rebuild_sched_domains() */
131 int pn;
133 /* for custom sched domain */
134 int relax_domain_level;
137 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
139 return css ? container_of(css, struct cpuset, css) : NULL;
142 /* Retrieve the cpuset for a task */
143 static inline struct cpuset *task_cs(struct task_struct *task)
145 return css_cs(task_css(task, cpuset_cgrp_id));
148 static inline struct cpuset *parent_cs(struct cpuset *cs)
150 return css_cs(cs->css.parent);
153 #ifdef CONFIG_NUMA
154 static inline bool task_has_mempolicy(struct task_struct *task)
156 return task->mempolicy;
158 #else
159 static inline bool task_has_mempolicy(struct task_struct *task)
161 return false;
163 #endif
166 /* bits in struct cpuset flags field */
167 typedef enum {
168 CS_ONLINE,
169 CS_CPU_EXCLUSIVE,
170 CS_MEM_EXCLUSIVE,
171 CS_MEM_HARDWALL,
172 CS_MEMORY_MIGRATE,
173 CS_SCHED_LOAD_BALANCE,
174 CS_SPREAD_PAGE,
175 CS_SPREAD_SLAB,
176 } cpuset_flagbits_t;
178 /* convenient tests for these bits */
179 static inline bool is_cpuset_online(const struct cpuset *cs)
181 return test_bit(CS_ONLINE, &cs->flags);
184 static inline int is_cpu_exclusive(const struct cpuset *cs)
186 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
189 static inline int is_mem_exclusive(const struct cpuset *cs)
191 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
194 static inline int is_mem_hardwall(const struct cpuset *cs)
196 return test_bit(CS_MEM_HARDWALL, &cs->flags);
199 static inline int is_sched_load_balance(const struct cpuset *cs)
201 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
204 static inline int is_memory_migrate(const struct cpuset *cs)
206 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
209 static inline int is_spread_page(const struct cpuset *cs)
211 return test_bit(CS_SPREAD_PAGE, &cs->flags);
214 static inline int is_spread_slab(const struct cpuset *cs)
216 return test_bit(CS_SPREAD_SLAB, &cs->flags);
219 static struct cpuset top_cpuset = {
220 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
221 (1 << CS_MEM_EXCLUSIVE)),
225 * cpuset_for_each_child - traverse online children of a cpuset
226 * @child_cs: loop cursor pointing to the current child
227 * @pos_css: used for iteration
228 * @parent_cs: target cpuset to walk children of
230 * Walk @child_cs through the online children of @parent_cs. Must be used
231 * with RCU read locked.
233 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
234 css_for_each_child((pos_css), &(parent_cs)->css) \
235 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
238 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
239 * @des_cs: loop cursor pointing to the current descendant
240 * @pos_css: used for iteration
241 * @root_cs: target cpuset to walk ancestor of
243 * Walk @des_cs through the online descendants of @root_cs. Must be used
244 * with RCU read locked. The caller may modify @pos_css by calling
245 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
246 * iteration and the first node to be visited.
248 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
249 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
250 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
253 * There are two global locks guarding cpuset structures - cpuset_mutex and
254 * callback_lock. We also require taking task_lock() when dereferencing a
255 * task's cpuset pointer. See "The task_lock() exception", at the end of this
256 * comment.
258 * A task must hold both locks to modify cpusets. If a task holds
259 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
260 * is the only task able to also acquire callback_lock and be able to
261 * modify cpusets. It can perform various checks on the cpuset structure
262 * first, knowing nothing will change. It can also allocate memory while
263 * just holding cpuset_mutex. While it is performing these checks, various
264 * callback routines can briefly acquire callback_lock to query cpusets.
265 * Once it is ready to make the changes, it takes callback_lock, blocking
266 * everyone else.
268 * Calls to the kernel memory allocator can not be made while holding
269 * callback_lock, as that would risk double tripping on callback_lock
270 * from one of the callbacks into the cpuset code from within
271 * __alloc_pages().
273 * If a task is only holding callback_lock, then it has read-only
274 * access to cpusets.
276 * Now, the task_struct fields mems_allowed and mempolicy may be changed
277 * by other task, we use alloc_lock in the task_struct fields to protect
278 * them.
280 * The cpuset_common_file_read() handlers only hold callback_lock across
281 * small pieces of code, such as when reading out possibly multi-word
282 * cpumasks and nodemasks.
284 * Accessing a task's cpuset should be done in accordance with the
285 * guidelines for accessing subsystem state in kernel/cgroup.c
288 static DEFINE_MUTEX(cpuset_mutex);
289 static DEFINE_SPINLOCK(callback_lock);
291 static struct workqueue_struct *cpuset_migrate_mm_wq;
294 * CPU / memory hotplug is handled asynchronously.
296 static void cpuset_hotplug_workfn(struct work_struct *work);
297 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
299 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
302 * This is ugly, but preserves the userspace API for existing cpuset
303 * users. If someone tries to mount the "cpuset" filesystem, we
304 * silently switch it to mount "cgroup" instead
306 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
307 int flags, const char *unused_dev_name, void *data)
309 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
310 struct dentry *ret = ERR_PTR(-ENODEV);
311 if (cgroup_fs) {
312 char mountopts[] =
313 "cpuset,noprefix,"
314 "release_agent=/sbin/cpuset_release_agent";
315 ret = cgroup_fs->mount(cgroup_fs, flags,
316 unused_dev_name, mountopts);
317 put_filesystem(cgroup_fs);
319 return ret;
322 static struct file_system_type cpuset_fs_type = {
323 .name = "cpuset",
324 .mount = cpuset_mount,
328 * Return in pmask the portion of a cpusets's cpus_allowed that
329 * are online. If none are online, walk up the cpuset hierarchy
330 * until we find one that does have some online cpus.
332 * One way or another, we guarantee to return some non-empty subset
333 * of cpu_online_mask.
335 * Call with callback_lock or cpuset_mutex held.
337 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
339 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
340 cs = parent_cs(cs);
341 if (unlikely(!cs)) {
343 * The top cpuset doesn't have any online cpu as a
344 * consequence of a race between cpuset_hotplug_work
345 * and cpu hotplug notifier. But we know the top
346 * cpuset's effective_cpus is on its way to to be
347 * identical to cpu_online_mask.
349 cpumask_copy(pmask, cpu_online_mask);
350 return;
353 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
357 * Return in *pmask the portion of a cpusets's mems_allowed that
358 * are online, with memory. If none are online with memory, walk
359 * up the cpuset hierarchy until we find one that does have some
360 * online mems. The top cpuset always has some mems online.
362 * One way or another, we guarantee to return some non-empty subset
363 * of node_states[N_MEMORY].
365 * Call with callback_lock or cpuset_mutex held.
367 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
369 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
370 cs = parent_cs(cs);
371 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
375 * update task's spread flag if cpuset's page/slab spread flag is set
377 * Call with callback_lock or cpuset_mutex held.
379 static void cpuset_update_task_spread_flag(struct cpuset *cs,
380 struct task_struct *tsk)
382 if (is_spread_page(cs))
383 task_set_spread_page(tsk);
384 else
385 task_clear_spread_page(tsk);
387 if (is_spread_slab(cs))
388 task_set_spread_slab(tsk);
389 else
390 task_clear_spread_slab(tsk);
394 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
396 * One cpuset is a subset of another if all its allowed CPUs and
397 * Memory Nodes are a subset of the other, and its exclusive flags
398 * are only set if the other's are set. Call holding cpuset_mutex.
401 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
403 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
404 nodes_subset(p->mems_allowed, q->mems_allowed) &&
405 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
406 is_mem_exclusive(p) <= is_mem_exclusive(q);
410 * alloc_trial_cpuset - allocate a trial cpuset
411 * @cs: the cpuset that the trial cpuset duplicates
413 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
415 struct cpuset *trial;
417 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
418 if (!trial)
419 return NULL;
421 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
422 goto free_cs;
423 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
424 goto free_cpus;
426 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
427 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
428 return trial;
430 free_cpus:
431 free_cpumask_var(trial->cpus_allowed);
432 free_cs:
433 kfree(trial);
434 return NULL;
438 * free_trial_cpuset - free the trial cpuset
439 * @trial: the trial cpuset to be freed
441 static void free_trial_cpuset(struct cpuset *trial)
443 free_cpumask_var(trial->effective_cpus);
444 free_cpumask_var(trial->cpus_allowed);
445 kfree(trial);
449 * validate_change() - Used to validate that any proposed cpuset change
450 * follows the structural rules for cpusets.
452 * If we replaced the flag and mask values of the current cpuset
453 * (cur) with those values in the trial cpuset (trial), would
454 * our various subset and exclusive rules still be valid? Presumes
455 * cpuset_mutex held.
457 * 'cur' is the address of an actual, in-use cpuset. Operations
458 * such as list traversal that depend on the actual address of the
459 * cpuset in the list must use cur below, not trial.
461 * 'trial' is the address of bulk structure copy of cur, with
462 * perhaps one or more of the fields cpus_allowed, mems_allowed,
463 * or flags changed to new, trial values.
465 * Return 0 if valid, -errno if not.
468 static int validate_change(struct cpuset *cur, struct cpuset *trial)
470 struct cgroup_subsys_state *css;
471 struct cpuset *c, *par;
472 int ret;
474 rcu_read_lock();
476 /* Each of our child cpusets must be a subset of us */
477 ret = -EBUSY;
478 cpuset_for_each_child(c, css, cur)
479 if (!is_cpuset_subset(c, trial))
480 goto out;
482 /* Remaining checks don't apply to root cpuset */
483 ret = 0;
484 if (cur == &top_cpuset)
485 goto out;
487 par = parent_cs(cur);
489 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
490 ret = -EACCES;
491 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
492 !is_cpuset_subset(trial, par))
493 goto out;
496 * If either I or some sibling (!= me) is exclusive, we can't
497 * overlap
499 ret = -EINVAL;
500 cpuset_for_each_child(c, css, par) {
501 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
502 c != cur &&
503 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
504 goto out;
505 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
506 c != cur &&
507 nodes_intersects(trial->mems_allowed, c->mems_allowed))
508 goto out;
512 * Cpusets with tasks - existing or newly being attached - can't
513 * be changed to have empty cpus_allowed or mems_allowed.
515 ret = -ENOSPC;
516 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
517 if (!cpumask_empty(cur->cpus_allowed) &&
518 cpumask_empty(trial->cpus_allowed))
519 goto out;
520 if (!nodes_empty(cur->mems_allowed) &&
521 nodes_empty(trial->mems_allowed))
522 goto out;
526 * We can't shrink if we won't have enough room for SCHED_DEADLINE
527 * tasks.
529 ret = -EBUSY;
530 if (is_cpu_exclusive(cur) &&
531 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
532 trial->cpus_allowed))
533 goto out;
535 ret = 0;
536 out:
537 rcu_read_unlock();
538 return ret;
541 #ifdef CONFIG_SMP
543 * Helper routine for generate_sched_domains().
544 * Do cpusets a, b have overlapping effective cpus_allowed masks?
546 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
548 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
551 static void
552 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
554 if (dattr->relax_domain_level < c->relax_domain_level)
555 dattr->relax_domain_level = c->relax_domain_level;
556 return;
559 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
560 struct cpuset *root_cs)
562 struct cpuset *cp;
563 struct cgroup_subsys_state *pos_css;
565 rcu_read_lock();
566 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
567 /* skip the whole subtree if @cp doesn't have any CPU */
568 if (cpumask_empty(cp->cpus_allowed)) {
569 pos_css = css_rightmost_descendant(pos_css);
570 continue;
573 if (is_sched_load_balance(cp))
574 update_domain_attr(dattr, cp);
576 rcu_read_unlock();
580 * generate_sched_domains()
582 * This function builds a partial partition of the systems CPUs
583 * A 'partial partition' is a set of non-overlapping subsets whose
584 * union is a subset of that set.
585 * The output of this function needs to be passed to kernel/sched/core.c
586 * partition_sched_domains() routine, which will rebuild the scheduler's
587 * load balancing domains (sched domains) as specified by that partial
588 * partition.
590 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
591 * for a background explanation of this.
593 * Does not return errors, on the theory that the callers of this
594 * routine would rather not worry about failures to rebuild sched
595 * domains when operating in the severe memory shortage situations
596 * that could cause allocation failures below.
598 * Must be called with cpuset_mutex held.
600 * The three key local variables below are:
601 * q - a linked-list queue of cpuset pointers, used to implement a
602 * top-down scan of all cpusets. This scan loads a pointer
603 * to each cpuset marked is_sched_load_balance into the
604 * array 'csa'. For our purposes, rebuilding the schedulers
605 * sched domains, we can ignore !is_sched_load_balance cpusets.
606 * csa - (for CpuSet Array) Array of pointers to all the cpusets
607 * that need to be load balanced, for convenient iterative
608 * access by the subsequent code that finds the best partition,
609 * i.e the set of domains (subsets) of CPUs such that the
610 * cpus_allowed of every cpuset marked is_sched_load_balance
611 * is a subset of one of these domains, while there are as
612 * many such domains as possible, each as small as possible.
613 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
614 * the kernel/sched/core.c routine partition_sched_domains() in a
615 * convenient format, that can be easily compared to the prior
616 * value to determine what partition elements (sched domains)
617 * were changed (added or removed.)
619 * Finding the best partition (set of domains):
620 * The triple nested loops below over i, j, k scan over the
621 * load balanced cpusets (using the array of cpuset pointers in
622 * csa[]) looking for pairs of cpusets that have overlapping
623 * cpus_allowed, but which don't have the same 'pn' partition
624 * number and gives them in the same partition number. It keeps
625 * looping on the 'restart' label until it can no longer find
626 * any such pairs.
628 * The union of the cpus_allowed masks from the set of
629 * all cpusets having the same 'pn' value then form the one
630 * element of the partition (one sched domain) to be passed to
631 * partition_sched_domains().
633 static int generate_sched_domains(cpumask_var_t **domains,
634 struct sched_domain_attr **attributes)
636 struct cpuset *cp; /* scans q */
637 struct cpuset **csa; /* array of all cpuset ptrs */
638 int csn; /* how many cpuset ptrs in csa so far */
639 int i, j, k; /* indices for partition finding loops */
640 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
641 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
642 struct sched_domain_attr *dattr; /* attributes for custom domains */
643 int ndoms = 0; /* number of sched domains in result */
644 int nslot; /* next empty doms[] struct cpumask slot */
645 struct cgroup_subsys_state *pos_css;
647 doms = NULL;
648 dattr = NULL;
649 csa = NULL;
651 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
652 goto done;
653 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
655 /* Special case for the 99% of systems with one, full, sched domain */
656 if (is_sched_load_balance(&top_cpuset)) {
657 ndoms = 1;
658 doms = alloc_sched_domains(ndoms);
659 if (!doms)
660 goto done;
662 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
663 if (dattr) {
664 *dattr = SD_ATTR_INIT;
665 update_domain_attr_tree(dattr, &top_cpuset);
667 cpumask_and(doms[0], top_cpuset.effective_cpus,
668 non_isolated_cpus);
670 goto done;
673 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
674 if (!csa)
675 goto done;
676 csn = 0;
678 rcu_read_lock();
679 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
680 if (cp == &top_cpuset)
681 continue;
683 * Continue traversing beyond @cp iff @cp has some CPUs and
684 * isn't load balancing. The former is obvious. The
685 * latter: All child cpusets contain a subset of the
686 * parent's cpus, so just skip them, and then we call
687 * update_domain_attr_tree() to calc relax_domain_level of
688 * the corresponding sched domain.
690 if (!cpumask_empty(cp->cpus_allowed) &&
691 !(is_sched_load_balance(cp) &&
692 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
693 continue;
695 if (is_sched_load_balance(cp))
696 csa[csn++] = cp;
698 /* skip @cp's subtree */
699 pos_css = css_rightmost_descendant(pos_css);
701 rcu_read_unlock();
703 for (i = 0; i < csn; i++)
704 csa[i]->pn = i;
705 ndoms = csn;
707 restart:
708 /* Find the best partition (set of sched domains) */
709 for (i = 0; i < csn; i++) {
710 struct cpuset *a = csa[i];
711 int apn = a->pn;
713 for (j = 0; j < csn; j++) {
714 struct cpuset *b = csa[j];
715 int bpn = b->pn;
717 if (apn != bpn && cpusets_overlap(a, b)) {
718 for (k = 0; k < csn; k++) {
719 struct cpuset *c = csa[k];
721 if (c->pn == bpn)
722 c->pn = apn;
724 ndoms--; /* one less element */
725 goto restart;
731 * Now we know how many domains to create.
732 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
734 doms = alloc_sched_domains(ndoms);
735 if (!doms)
736 goto done;
739 * The rest of the code, including the scheduler, can deal with
740 * dattr==NULL case. No need to abort if alloc fails.
742 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
744 for (nslot = 0, i = 0; i < csn; i++) {
745 struct cpuset *a = csa[i];
746 struct cpumask *dp;
747 int apn = a->pn;
749 if (apn < 0) {
750 /* Skip completed partitions */
751 continue;
754 dp = doms[nslot];
756 if (nslot == ndoms) {
757 static int warnings = 10;
758 if (warnings) {
759 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
760 nslot, ndoms, csn, i, apn);
761 warnings--;
763 continue;
766 cpumask_clear(dp);
767 if (dattr)
768 *(dattr + nslot) = SD_ATTR_INIT;
769 for (j = i; j < csn; j++) {
770 struct cpuset *b = csa[j];
772 if (apn == b->pn) {
773 cpumask_or(dp, dp, b->effective_cpus);
774 cpumask_and(dp, dp, non_isolated_cpus);
775 if (dattr)
776 update_domain_attr_tree(dattr + nslot, b);
778 /* Done with this partition */
779 b->pn = -1;
782 nslot++;
784 BUG_ON(nslot != ndoms);
786 done:
787 free_cpumask_var(non_isolated_cpus);
788 kfree(csa);
791 * Fallback to the default domain if kmalloc() failed.
792 * See comments in partition_sched_domains().
794 if (doms == NULL)
795 ndoms = 1;
797 *domains = doms;
798 *attributes = dattr;
799 return ndoms;
803 * Rebuild scheduler domains.
805 * If the flag 'sched_load_balance' of any cpuset with non-empty
806 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
807 * which has that flag enabled, or if any cpuset with a non-empty
808 * 'cpus' is removed, then call this routine to rebuild the
809 * scheduler's dynamic sched domains.
811 * Call with cpuset_mutex held. Takes get_online_cpus().
813 static void rebuild_sched_domains_locked(void)
815 struct sched_domain_attr *attr;
816 cpumask_var_t *doms;
817 int ndoms;
819 lockdep_assert_held(&cpuset_mutex);
820 get_online_cpus();
823 * We have raced with CPU hotplug. Don't do anything to avoid
824 * passing doms with offlined cpu to partition_sched_domains().
825 * Anyways, hotplug work item will rebuild sched domains.
827 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
828 goto out;
830 /* Generate domain masks and attrs */
831 ndoms = generate_sched_domains(&doms, &attr);
833 /* Have scheduler rebuild the domains */
834 partition_sched_domains(ndoms, doms, attr);
835 out:
836 put_online_cpus();
838 #else /* !CONFIG_SMP */
839 static void rebuild_sched_domains_locked(void)
842 #endif /* CONFIG_SMP */
844 void rebuild_sched_domains(void)
846 mutex_lock(&cpuset_mutex);
847 rebuild_sched_domains_locked();
848 mutex_unlock(&cpuset_mutex);
852 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
853 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
855 * Iterate through each task of @cs updating its cpus_allowed to the
856 * effective cpuset's. As this function is called with cpuset_mutex held,
857 * cpuset membership stays stable.
859 static void update_tasks_cpumask(struct cpuset *cs)
861 struct css_task_iter it;
862 struct task_struct *task;
864 css_task_iter_start(&cs->css, &it);
865 while ((task = css_task_iter_next(&it)))
866 set_cpus_allowed_ptr(task, cs->effective_cpus);
867 css_task_iter_end(&it);
871 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
872 * @cs: the cpuset to consider
873 * @new_cpus: temp variable for calculating new effective_cpus
875 * When congifured cpumask is changed, the effective cpumasks of this cpuset
876 * and all its descendants need to be updated.
878 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
880 * Called with cpuset_mutex held
882 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
884 struct cpuset *cp;
885 struct cgroup_subsys_state *pos_css;
886 bool need_rebuild_sched_domains = false;
888 rcu_read_lock();
889 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
890 struct cpuset *parent = parent_cs(cp);
892 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
895 * If it becomes empty, inherit the effective mask of the
896 * parent, which is guaranteed to have some CPUs.
898 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
899 cpumask_empty(new_cpus))
900 cpumask_copy(new_cpus, parent->effective_cpus);
902 /* Skip the whole subtree if the cpumask remains the same. */
903 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
904 pos_css = css_rightmost_descendant(pos_css);
905 continue;
908 if (!css_tryget_online(&cp->css))
909 continue;
910 rcu_read_unlock();
912 spin_lock_irq(&callback_lock);
913 cpumask_copy(cp->effective_cpus, new_cpus);
914 spin_unlock_irq(&callback_lock);
916 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
917 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
919 update_tasks_cpumask(cp);
922 * If the effective cpumask of any non-empty cpuset is changed,
923 * we need to rebuild sched domains.
925 if (!cpumask_empty(cp->cpus_allowed) &&
926 is_sched_load_balance(cp))
927 need_rebuild_sched_domains = true;
929 rcu_read_lock();
930 css_put(&cp->css);
932 rcu_read_unlock();
934 if (need_rebuild_sched_domains)
935 rebuild_sched_domains_locked();
939 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
940 * @cs: the cpuset to consider
941 * @trialcs: trial cpuset
942 * @buf: buffer of cpu numbers written to this cpuset
944 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
945 const char *buf)
947 int retval;
949 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
950 if (cs == &top_cpuset)
951 return -EACCES;
954 * An empty cpus_allowed is ok only if the cpuset has no tasks.
955 * Since cpulist_parse() fails on an empty mask, we special case
956 * that parsing. The validate_change() call ensures that cpusets
957 * with tasks have cpus.
959 if (!*buf) {
960 cpumask_clear(trialcs->cpus_allowed);
961 } else {
962 retval = cpulist_parse(buf, trialcs->cpus_allowed);
963 if (retval < 0)
964 return retval;
966 if (!cpumask_subset(trialcs->cpus_allowed,
967 top_cpuset.cpus_allowed))
968 return -EINVAL;
971 /* Nothing to do if the cpus didn't change */
972 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
973 return 0;
975 retval = validate_change(cs, trialcs);
976 if (retval < 0)
977 return retval;
979 spin_lock_irq(&callback_lock);
980 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
981 spin_unlock_irq(&callback_lock);
983 /* use trialcs->cpus_allowed as a temp variable */
984 update_cpumasks_hier(cs, trialcs->cpus_allowed);
985 return 0;
989 * Migrate memory region from one set of nodes to another. This is
990 * performed asynchronously as it can be called from process migration path
991 * holding locks involved in process management. All mm migrations are
992 * performed in the queued order and can be waited for by flushing
993 * cpuset_migrate_mm_wq.
996 struct cpuset_migrate_mm_work {
997 struct work_struct work;
998 struct mm_struct *mm;
999 nodemask_t from;
1000 nodemask_t to;
1003 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1005 struct cpuset_migrate_mm_work *mwork =
1006 container_of(work, struct cpuset_migrate_mm_work, work);
1008 /* on a wq worker, no need to worry about %current's mems_allowed */
1009 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1010 mmput(mwork->mm);
1011 kfree(mwork);
1014 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1015 const nodemask_t *to)
1017 struct cpuset_migrate_mm_work *mwork;
1019 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1020 if (mwork) {
1021 mwork->mm = mm;
1022 mwork->from = *from;
1023 mwork->to = *to;
1024 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1025 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1026 } else {
1027 mmput(mm);
1031 static void cpuset_post_attach(void)
1033 flush_workqueue(cpuset_migrate_mm_wq);
1037 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1038 * @tsk: the task to change
1039 * @newmems: new nodes that the task will be set
1041 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1042 * we structure updates as setting all new allowed nodes, then clearing newly
1043 * disallowed ones.
1045 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1046 nodemask_t *newmems)
1048 bool need_loop;
1050 task_lock(tsk);
1052 * Determine if a loop is necessary if another thread is doing
1053 * read_mems_allowed_begin(). If at least one node remains unchanged and
1054 * tsk does not have a mempolicy, then an empty nodemask will not be
1055 * possible when mems_allowed is larger than a word.
1057 need_loop = task_has_mempolicy(tsk) ||
1058 !nodes_intersects(*newmems, tsk->mems_allowed);
1060 if (need_loop) {
1061 local_irq_disable();
1062 write_seqcount_begin(&tsk->mems_allowed_seq);
1065 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1066 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1068 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1069 tsk->mems_allowed = *newmems;
1071 if (need_loop) {
1072 write_seqcount_end(&tsk->mems_allowed_seq);
1073 local_irq_enable();
1076 task_unlock(tsk);
1079 static void *cpuset_being_rebound;
1082 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1083 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1085 * Iterate through each task of @cs updating its mems_allowed to the
1086 * effective cpuset's. As this function is called with cpuset_mutex held,
1087 * cpuset membership stays stable.
1089 static void update_tasks_nodemask(struct cpuset *cs)
1091 static nodemask_t newmems; /* protected by cpuset_mutex */
1092 struct css_task_iter it;
1093 struct task_struct *task;
1095 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1097 guarantee_online_mems(cs, &newmems);
1100 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1101 * take while holding tasklist_lock. Forks can happen - the
1102 * mpol_dup() cpuset_being_rebound check will catch such forks,
1103 * and rebind their vma mempolicies too. Because we still hold
1104 * the global cpuset_mutex, we know that no other rebind effort
1105 * will be contending for the global variable cpuset_being_rebound.
1106 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1107 * is idempotent. Also migrate pages in each mm to new nodes.
1109 css_task_iter_start(&cs->css, &it);
1110 while ((task = css_task_iter_next(&it))) {
1111 struct mm_struct *mm;
1112 bool migrate;
1114 cpuset_change_task_nodemask(task, &newmems);
1116 mm = get_task_mm(task);
1117 if (!mm)
1118 continue;
1120 migrate = is_memory_migrate(cs);
1122 mpol_rebind_mm(mm, &cs->mems_allowed);
1123 if (migrate)
1124 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1125 else
1126 mmput(mm);
1128 css_task_iter_end(&it);
1131 * All the tasks' nodemasks have been updated, update
1132 * cs->old_mems_allowed.
1134 cs->old_mems_allowed = newmems;
1136 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1137 cpuset_being_rebound = NULL;
1141 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1142 * @cs: the cpuset to consider
1143 * @new_mems: a temp variable for calculating new effective_mems
1145 * When configured nodemask is changed, the effective nodemasks of this cpuset
1146 * and all its descendants need to be updated.
1148 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1150 * Called with cpuset_mutex held
1152 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1154 struct cpuset *cp;
1155 struct cgroup_subsys_state *pos_css;
1157 rcu_read_lock();
1158 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1159 struct cpuset *parent = parent_cs(cp);
1161 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1164 * If it becomes empty, inherit the effective mask of the
1165 * parent, which is guaranteed to have some MEMs.
1167 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1168 nodes_empty(*new_mems))
1169 *new_mems = parent->effective_mems;
1171 /* Skip the whole subtree if the nodemask remains the same. */
1172 if (nodes_equal(*new_mems, cp->effective_mems)) {
1173 pos_css = css_rightmost_descendant(pos_css);
1174 continue;
1177 if (!css_tryget_online(&cp->css))
1178 continue;
1179 rcu_read_unlock();
1181 spin_lock_irq(&callback_lock);
1182 cp->effective_mems = *new_mems;
1183 spin_unlock_irq(&callback_lock);
1185 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1186 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1188 update_tasks_nodemask(cp);
1190 rcu_read_lock();
1191 css_put(&cp->css);
1193 rcu_read_unlock();
1197 * Handle user request to change the 'mems' memory placement
1198 * of a cpuset. Needs to validate the request, update the
1199 * cpusets mems_allowed, and for each task in the cpuset,
1200 * update mems_allowed and rebind task's mempolicy and any vma
1201 * mempolicies and if the cpuset is marked 'memory_migrate',
1202 * migrate the tasks pages to the new memory.
1204 * Call with cpuset_mutex held. May take callback_lock during call.
1205 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1206 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1207 * their mempolicies to the cpusets new mems_allowed.
1209 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1210 const char *buf)
1212 int retval;
1215 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1216 * it's read-only
1218 if (cs == &top_cpuset) {
1219 retval = -EACCES;
1220 goto done;
1224 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1225 * Since nodelist_parse() fails on an empty mask, we special case
1226 * that parsing. The validate_change() call ensures that cpusets
1227 * with tasks have memory.
1229 if (!*buf) {
1230 nodes_clear(trialcs->mems_allowed);
1231 } else {
1232 retval = nodelist_parse(buf, trialcs->mems_allowed);
1233 if (retval < 0)
1234 goto done;
1236 if (!nodes_subset(trialcs->mems_allowed,
1237 top_cpuset.mems_allowed)) {
1238 retval = -EINVAL;
1239 goto done;
1243 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1244 retval = 0; /* Too easy - nothing to do */
1245 goto done;
1247 retval = validate_change(cs, trialcs);
1248 if (retval < 0)
1249 goto done;
1251 spin_lock_irq(&callback_lock);
1252 cs->mems_allowed = trialcs->mems_allowed;
1253 spin_unlock_irq(&callback_lock);
1255 /* use trialcs->mems_allowed as a temp variable */
1256 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1257 done:
1258 return retval;
1261 int current_cpuset_is_being_rebound(void)
1263 int ret;
1265 rcu_read_lock();
1266 ret = task_cs(current) == cpuset_being_rebound;
1267 rcu_read_unlock();
1269 return ret;
1272 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1274 #ifdef CONFIG_SMP
1275 if (val < -1 || val >= sched_domain_level_max)
1276 return -EINVAL;
1277 #endif
1279 if (val != cs->relax_domain_level) {
1280 cs->relax_domain_level = val;
1281 if (!cpumask_empty(cs->cpus_allowed) &&
1282 is_sched_load_balance(cs))
1283 rebuild_sched_domains_locked();
1286 return 0;
1290 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1291 * @cs: the cpuset in which each task's spread flags needs to be changed
1293 * Iterate through each task of @cs updating its spread flags. As this
1294 * function is called with cpuset_mutex held, cpuset membership stays
1295 * stable.
1297 static void update_tasks_flags(struct cpuset *cs)
1299 struct css_task_iter it;
1300 struct task_struct *task;
1302 css_task_iter_start(&cs->css, &it);
1303 while ((task = css_task_iter_next(&it)))
1304 cpuset_update_task_spread_flag(cs, task);
1305 css_task_iter_end(&it);
1309 * update_flag - read a 0 or a 1 in a file and update associated flag
1310 * bit: the bit to update (see cpuset_flagbits_t)
1311 * cs: the cpuset to update
1312 * turning_on: whether the flag is being set or cleared
1314 * Call with cpuset_mutex held.
1317 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1318 int turning_on)
1320 struct cpuset *trialcs;
1321 int balance_flag_changed;
1322 int spread_flag_changed;
1323 int err;
1325 trialcs = alloc_trial_cpuset(cs);
1326 if (!trialcs)
1327 return -ENOMEM;
1329 if (turning_on)
1330 set_bit(bit, &trialcs->flags);
1331 else
1332 clear_bit(bit, &trialcs->flags);
1334 err = validate_change(cs, trialcs);
1335 if (err < 0)
1336 goto out;
1338 balance_flag_changed = (is_sched_load_balance(cs) !=
1339 is_sched_load_balance(trialcs));
1341 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1342 || (is_spread_page(cs) != is_spread_page(trialcs)));
1344 spin_lock_irq(&callback_lock);
1345 cs->flags = trialcs->flags;
1346 spin_unlock_irq(&callback_lock);
1348 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1349 rebuild_sched_domains_locked();
1351 if (spread_flag_changed)
1352 update_tasks_flags(cs);
1353 out:
1354 free_trial_cpuset(trialcs);
1355 return err;
1359 * Frequency meter - How fast is some event occurring?
1361 * These routines manage a digitally filtered, constant time based,
1362 * event frequency meter. There are four routines:
1363 * fmeter_init() - initialize a frequency meter.
1364 * fmeter_markevent() - called each time the event happens.
1365 * fmeter_getrate() - returns the recent rate of such events.
1366 * fmeter_update() - internal routine used to update fmeter.
1368 * A common data structure is passed to each of these routines,
1369 * which is used to keep track of the state required to manage the
1370 * frequency meter and its digital filter.
1372 * The filter works on the number of events marked per unit time.
1373 * The filter is single-pole low-pass recursive (IIR). The time unit
1374 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1375 * simulate 3 decimal digits of precision (multiplied by 1000).
1377 * With an FM_COEF of 933, and a time base of 1 second, the filter
1378 * has a half-life of 10 seconds, meaning that if the events quit
1379 * happening, then the rate returned from the fmeter_getrate()
1380 * will be cut in half each 10 seconds, until it converges to zero.
1382 * It is not worth doing a real infinitely recursive filter. If more
1383 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1384 * just compute FM_MAXTICKS ticks worth, by which point the level
1385 * will be stable.
1387 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1388 * arithmetic overflow in the fmeter_update() routine.
1390 * Given the simple 32 bit integer arithmetic used, this meter works
1391 * best for reporting rates between one per millisecond (msec) and
1392 * one per 32 (approx) seconds. At constant rates faster than one
1393 * per msec it maxes out at values just under 1,000,000. At constant
1394 * rates between one per msec, and one per second it will stabilize
1395 * to a value N*1000, where N is the rate of events per second.
1396 * At constant rates between one per second and one per 32 seconds,
1397 * it will be choppy, moving up on the seconds that have an event,
1398 * and then decaying until the next event. At rates slower than
1399 * about one in 32 seconds, it decays all the way back to zero between
1400 * each event.
1403 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1404 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1405 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1406 #define FM_SCALE 1000 /* faux fixed point scale */
1408 /* Initialize a frequency meter */
1409 static void fmeter_init(struct fmeter *fmp)
1411 fmp->cnt = 0;
1412 fmp->val = 0;
1413 fmp->time = 0;
1414 spin_lock_init(&fmp->lock);
1417 /* Internal meter update - process cnt events and update value */
1418 static void fmeter_update(struct fmeter *fmp)
1420 time64_t now;
1421 u32 ticks;
1423 now = ktime_get_seconds();
1424 ticks = now - fmp->time;
1426 if (ticks == 0)
1427 return;
1429 ticks = min(FM_MAXTICKS, ticks);
1430 while (ticks-- > 0)
1431 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1432 fmp->time = now;
1434 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1435 fmp->cnt = 0;
1438 /* Process any previous ticks, then bump cnt by one (times scale). */
1439 static void fmeter_markevent(struct fmeter *fmp)
1441 spin_lock(&fmp->lock);
1442 fmeter_update(fmp);
1443 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1444 spin_unlock(&fmp->lock);
1447 /* Process any previous ticks, then return current value. */
1448 static int fmeter_getrate(struct fmeter *fmp)
1450 int val;
1452 spin_lock(&fmp->lock);
1453 fmeter_update(fmp);
1454 val = fmp->val;
1455 spin_unlock(&fmp->lock);
1456 return val;
1459 static struct cpuset *cpuset_attach_old_cs;
1461 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1462 static int cpuset_can_attach(struct cgroup_taskset *tset)
1464 struct cgroup_subsys_state *css;
1465 struct cpuset *cs;
1466 struct task_struct *task;
1467 int ret;
1469 /* used later by cpuset_attach() */
1470 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1471 cs = css_cs(css);
1473 mutex_lock(&cpuset_mutex);
1475 /* allow moving tasks into an empty cpuset if on default hierarchy */
1476 ret = -ENOSPC;
1477 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1478 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1479 goto out_unlock;
1481 cgroup_taskset_for_each(task, css, tset) {
1482 ret = task_can_attach(task, cs->cpus_allowed);
1483 if (ret)
1484 goto out_unlock;
1485 ret = security_task_setscheduler(task);
1486 if (ret)
1487 goto out_unlock;
1491 * Mark attach is in progress. This makes validate_change() fail
1492 * changes which zero cpus/mems_allowed.
1494 cs->attach_in_progress++;
1495 ret = 0;
1496 out_unlock:
1497 mutex_unlock(&cpuset_mutex);
1498 return ret;
1501 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1503 struct cgroup_subsys_state *css;
1504 struct cpuset *cs;
1506 cgroup_taskset_first(tset, &css);
1507 cs = css_cs(css);
1509 mutex_lock(&cpuset_mutex);
1510 css_cs(css)->attach_in_progress--;
1511 mutex_unlock(&cpuset_mutex);
1515 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1516 * but we can't allocate it dynamically there. Define it global and
1517 * allocate from cpuset_init().
1519 static cpumask_var_t cpus_attach;
1521 static void cpuset_attach(struct cgroup_taskset *tset)
1523 /* static buf protected by cpuset_mutex */
1524 static nodemask_t cpuset_attach_nodemask_to;
1525 struct task_struct *task;
1526 struct task_struct *leader;
1527 struct cgroup_subsys_state *css;
1528 struct cpuset *cs;
1529 struct cpuset *oldcs = cpuset_attach_old_cs;
1531 cgroup_taskset_first(tset, &css);
1532 cs = css_cs(css);
1534 mutex_lock(&cpuset_mutex);
1536 /* prepare for attach */
1537 if (cs == &top_cpuset)
1538 cpumask_copy(cpus_attach, cpu_possible_mask);
1539 else
1540 guarantee_online_cpus(cs, cpus_attach);
1542 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1544 cgroup_taskset_for_each(task, css, tset) {
1546 * can_attach beforehand should guarantee that this doesn't
1547 * fail. TODO: have a better way to handle failure here
1549 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1551 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1552 cpuset_update_task_spread_flag(cs, task);
1556 * Change mm for all threadgroup leaders. This is expensive and may
1557 * sleep and should be moved outside migration path proper.
1559 cpuset_attach_nodemask_to = cs->effective_mems;
1560 cgroup_taskset_for_each_leader(leader, css, tset) {
1561 struct mm_struct *mm = get_task_mm(leader);
1563 if (mm) {
1564 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1567 * old_mems_allowed is the same with mems_allowed
1568 * here, except if this task is being moved
1569 * automatically due to hotplug. In that case
1570 * @mems_allowed has been updated and is empty, so
1571 * @old_mems_allowed is the right nodesets that we
1572 * migrate mm from.
1574 if (is_memory_migrate(cs))
1575 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1576 &cpuset_attach_nodemask_to);
1577 else
1578 mmput(mm);
1582 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1584 cs->attach_in_progress--;
1585 if (!cs->attach_in_progress)
1586 wake_up(&cpuset_attach_wq);
1588 mutex_unlock(&cpuset_mutex);
1591 /* The various types of files and directories in a cpuset file system */
1593 typedef enum {
1594 FILE_MEMORY_MIGRATE,
1595 FILE_CPULIST,
1596 FILE_MEMLIST,
1597 FILE_EFFECTIVE_CPULIST,
1598 FILE_EFFECTIVE_MEMLIST,
1599 FILE_CPU_EXCLUSIVE,
1600 FILE_MEM_EXCLUSIVE,
1601 FILE_MEM_HARDWALL,
1602 FILE_SCHED_LOAD_BALANCE,
1603 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1604 FILE_MEMORY_PRESSURE_ENABLED,
1605 FILE_MEMORY_PRESSURE,
1606 FILE_SPREAD_PAGE,
1607 FILE_SPREAD_SLAB,
1608 } cpuset_filetype_t;
1610 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1611 u64 val)
1613 struct cpuset *cs = css_cs(css);
1614 cpuset_filetype_t type = cft->private;
1615 int retval = 0;
1617 mutex_lock(&cpuset_mutex);
1618 if (!is_cpuset_online(cs)) {
1619 retval = -ENODEV;
1620 goto out_unlock;
1623 switch (type) {
1624 case FILE_CPU_EXCLUSIVE:
1625 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1626 break;
1627 case FILE_MEM_EXCLUSIVE:
1628 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1629 break;
1630 case FILE_MEM_HARDWALL:
1631 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1632 break;
1633 case FILE_SCHED_LOAD_BALANCE:
1634 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1635 break;
1636 case FILE_MEMORY_MIGRATE:
1637 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1638 break;
1639 case FILE_MEMORY_PRESSURE_ENABLED:
1640 cpuset_memory_pressure_enabled = !!val;
1641 break;
1642 case FILE_SPREAD_PAGE:
1643 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1644 break;
1645 case FILE_SPREAD_SLAB:
1646 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1647 break;
1648 default:
1649 retval = -EINVAL;
1650 break;
1652 out_unlock:
1653 mutex_unlock(&cpuset_mutex);
1654 return retval;
1657 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1658 s64 val)
1660 struct cpuset *cs = css_cs(css);
1661 cpuset_filetype_t type = cft->private;
1662 int retval = -ENODEV;
1664 mutex_lock(&cpuset_mutex);
1665 if (!is_cpuset_online(cs))
1666 goto out_unlock;
1668 switch (type) {
1669 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1670 retval = update_relax_domain_level(cs, val);
1671 break;
1672 default:
1673 retval = -EINVAL;
1674 break;
1676 out_unlock:
1677 mutex_unlock(&cpuset_mutex);
1678 return retval;
1682 * Common handling for a write to a "cpus" or "mems" file.
1684 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1685 char *buf, size_t nbytes, loff_t off)
1687 struct cpuset *cs = css_cs(of_css(of));
1688 struct cpuset *trialcs;
1689 int retval = -ENODEV;
1691 buf = strstrip(buf);
1694 * CPU or memory hotunplug may leave @cs w/o any execution
1695 * resources, in which case the hotplug code asynchronously updates
1696 * configuration and transfers all tasks to the nearest ancestor
1697 * which can execute.
1699 * As writes to "cpus" or "mems" may restore @cs's execution
1700 * resources, wait for the previously scheduled operations before
1701 * proceeding, so that we don't end up keep removing tasks added
1702 * after execution capability is restored.
1704 * cpuset_hotplug_work calls back into cgroup core via
1705 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1706 * operation like this one can lead to a deadlock through kernfs
1707 * active_ref protection. Let's break the protection. Losing the
1708 * protection is okay as we check whether @cs is online after
1709 * grabbing cpuset_mutex anyway. This only happens on the legacy
1710 * hierarchies.
1712 css_get(&cs->css);
1713 kernfs_break_active_protection(of->kn);
1714 flush_work(&cpuset_hotplug_work);
1716 mutex_lock(&cpuset_mutex);
1717 if (!is_cpuset_online(cs))
1718 goto out_unlock;
1720 trialcs = alloc_trial_cpuset(cs);
1721 if (!trialcs) {
1722 retval = -ENOMEM;
1723 goto out_unlock;
1726 switch (of_cft(of)->private) {
1727 case FILE_CPULIST:
1728 retval = update_cpumask(cs, trialcs, buf);
1729 break;
1730 case FILE_MEMLIST:
1731 retval = update_nodemask(cs, trialcs, buf);
1732 break;
1733 default:
1734 retval = -EINVAL;
1735 break;
1738 free_trial_cpuset(trialcs);
1739 out_unlock:
1740 mutex_unlock(&cpuset_mutex);
1741 kernfs_unbreak_active_protection(of->kn);
1742 css_put(&cs->css);
1743 flush_workqueue(cpuset_migrate_mm_wq);
1744 return retval ?: nbytes;
1748 * These ascii lists should be read in a single call, by using a user
1749 * buffer large enough to hold the entire map. If read in smaller
1750 * chunks, there is no guarantee of atomicity. Since the display format
1751 * used, list of ranges of sequential numbers, is variable length,
1752 * and since these maps can change value dynamically, one could read
1753 * gibberish by doing partial reads while a list was changing.
1755 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1757 struct cpuset *cs = css_cs(seq_css(sf));
1758 cpuset_filetype_t type = seq_cft(sf)->private;
1759 int ret = 0;
1761 spin_lock_irq(&callback_lock);
1763 switch (type) {
1764 case FILE_CPULIST:
1765 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1766 break;
1767 case FILE_MEMLIST:
1768 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1769 break;
1770 case FILE_EFFECTIVE_CPULIST:
1771 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1772 break;
1773 case FILE_EFFECTIVE_MEMLIST:
1774 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1775 break;
1776 default:
1777 ret = -EINVAL;
1780 spin_unlock_irq(&callback_lock);
1781 return ret;
1784 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1786 struct cpuset *cs = css_cs(css);
1787 cpuset_filetype_t type = cft->private;
1788 switch (type) {
1789 case FILE_CPU_EXCLUSIVE:
1790 return is_cpu_exclusive(cs);
1791 case FILE_MEM_EXCLUSIVE:
1792 return is_mem_exclusive(cs);
1793 case FILE_MEM_HARDWALL:
1794 return is_mem_hardwall(cs);
1795 case FILE_SCHED_LOAD_BALANCE:
1796 return is_sched_load_balance(cs);
1797 case FILE_MEMORY_MIGRATE:
1798 return is_memory_migrate(cs);
1799 case FILE_MEMORY_PRESSURE_ENABLED:
1800 return cpuset_memory_pressure_enabled;
1801 case FILE_MEMORY_PRESSURE:
1802 return fmeter_getrate(&cs->fmeter);
1803 case FILE_SPREAD_PAGE:
1804 return is_spread_page(cs);
1805 case FILE_SPREAD_SLAB:
1806 return is_spread_slab(cs);
1807 default:
1808 BUG();
1811 /* Unreachable but makes gcc happy */
1812 return 0;
1815 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1817 struct cpuset *cs = css_cs(css);
1818 cpuset_filetype_t type = cft->private;
1819 switch (type) {
1820 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1821 return cs->relax_domain_level;
1822 default:
1823 BUG();
1826 /* Unrechable but makes gcc happy */
1827 return 0;
1832 * for the common functions, 'private' gives the type of file
1835 static struct cftype files[] = {
1837 .name = "cpus",
1838 .seq_show = cpuset_common_seq_show,
1839 .write = cpuset_write_resmask,
1840 .max_write_len = (100U + 6 * NR_CPUS),
1841 .private = FILE_CPULIST,
1845 .name = "mems",
1846 .seq_show = cpuset_common_seq_show,
1847 .write = cpuset_write_resmask,
1848 .max_write_len = (100U + 6 * MAX_NUMNODES),
1849 .private = FILE_MEMLIST,
1853 .name = "effective_cpus",
1854 .seq_show = cpuset_common_seq_show,
1855 .private = FILE_EFFECTIVE_CPULIST,
1859 .name = "effective_mems",
1860 .seq_show = cpuset_common_seq_show,
1861 .private = FILE_EFFECTIVE_MEMLIST,
1865 .name = "cpu_exclusive",
1866 .read_u64 = cpuset_read_u64,
1867 .write_u64 = cpuset_write_u64,
1868 .private = FILE_CPU_EXCLUSIVE,
1872 .name = "mem_exclusive",
1873 .read_u64 = cpuset_read_u64,
1874 .write_u64 = cpuset_write_u64,
1875 .private = FILE_MEM_EXCLUSIVE,
1879 .name = "mem_hardwall",
1880 .read_u64 = cpuset_read_u64,
1881 .write_u64 = cpuset_write_u64,
1882 .private = FILE_MEM_HARDWALL,
1886 .name = "sched_load_balance",
1887 .read_u64 = cpuset_read_u64,
1888 .write_u64 = cpuset_write_u64,
1889 .private = FILE_SCHED_LOAD_BALANCE,
1893 .name = "sched_relax_domain_level",
1894 .read_s64 = cpuset_read_s64,
1895 .write_s64 = cpuset_write_s64,
1896 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1900 .name = "memory_migrate",
1901 .read_u64 = cpuset_read_u64,
1902 .write_u64 = cpuset_write_u64,
1903 .private = FILE_MEMORY_MIGRATE,
1907 .name = "memory_pressure",
1908 .read_u64 = cpuset_read_u64,
1912 .name = "memory_spread_page",
1913 .read_u64 = cpuset_read_u64,
1914 .write_u64 = cpuset_write_u64,
1915 .private = FILE_SPREAD_PAGE,
1919 .name = "memory_spread_slab",
1920 .read_u64 = cpuset_read_u64,
1921 .write_u64 = cpuset_write_u64,
1922 .private = FILE_SPREAD_SLAB,
1926 .name = "memory_pressure_enabled",
1927 .flags = CFTYPE_ONLY_ON_ROOT,
1928 .read_u64 = cpuset_read_u64,
1929 .write_u64 = cpuset_write_u64,
1930 .private = FILE_MEMORY_PRESSURE_ENABLED,
1933 { } /* terminate */
1937 * cpuset_css_alloc - allocate a cpuset css
1938 * cgrp: control group that the new cpuset will be part of
1941 static struct cgroup_subsys_state *
1942 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1944 struct cpuset *cs;
1946 if (!parent_css)
1947 return &top_cpuset.css;
1949 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1950 if (!cs)
1951 return ERR_PTR(-ENOMEM);
1952 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1953 goto free_cs;
1954 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1955 goto free_cpus;
1957 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1958 cpumask_clear(cs->cpus_allowed);
1959 nodes_clear(cs->mems_allowed);
1960 cpumask_clear(cs->effective_cpus);
1961 nodes_clear(cs->effective_mems);
1962 fmeter_init(&cs->fmeter);
1963 cs->relax_domain_level = -1;
1965 return &cs->css;
1967 free_cpus:
1968 free_cpumask_var(cs->cpus_allowed);
1969 free_cs:
1970 kfree(cs);
1971 return ERR_PTR(-ENOMEM);
1974 static int cpuset_css_online(struct cgroup_subsys_state *css)
1976 struct cpuset *cs = css_cs(css);
1977 struct cpuset *parent = parent_cs(cs);
1978 struct cpuset *tmp_cs;
1979 struct cgroup_subsys_state *pos_css;
1981 if (!parent)
1982 return 0;
1984 mutex_lock(&cpuset_mutex);
1986 set_bit(CS_ONLINE, &cs->flags);
1987 if (is_spread_page(parent))
1988 set_bit(CS_SPREAD_PAGE, &cs->flags);
1989 if (is_spread_slab(parent))
1990 set_bit(CS_SPREAD_SLAB, &cs->flags);
1992 cpuset_inc();
1994 spin_lock_irq(&callback_lock);
1995 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1996 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1997 cs->effective_mems = parent->effective_mems;
1999 spin_unlock_irq(&callback_lock);
2001 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2002 goto out_unlock;
2005 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2006 * set. This flag handling is implemented in cgroup core for
2007 * histrical reasons - the flag may be specified during mount.
2009 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2010 * refuse to clone the configuration - thereby refusing the task to
2011 * be entered, and as a result refusing the sys_unshare() or
2012 * clone() which initiated it. If this becomes a problem for some
2013 * users who wish to allow that scenario, then this could be
2014 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2015 * (and likewise for mems) to the new cgroup.
2017 rcu_read_lock();
2018 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2019 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2020 rcu_read_unlock();
2021 goto out_unlock;
2024 rcu_read_unlock();
2026 spin_lock_irq(&callback_lock);
2027 cs->mems_allowed = parent->mems_allowed;
2028 cs->effective_mems = parent->mems_allowed;
2029 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2030 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2031 spin_unlock_irq(&callback_lock);
2032 out_unlock:
2033 mutex_unlock(&cpuset_mutex);
2034 return 0;
2038 * If the cpuset being removed has its flag 'sched_load_balance'
2039 * enabled, then simulate turning sched_load_balance off, which
2040 * will call rebuild_sched_domains_locked().
2043 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2045 struct cpuset *cs = css_cs(css);
2047 mutex_lock(&cpuset_mutex);
2049 if (is_sched_load_balance(cs))
2050 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2052 cpuset_dec();
2053 clear_bit(CS_ONLINE, &cs->flags);
2055 mutex_unlock(&cpuset_mutex);
2058 static void cpuset_css_free(struct cgroup_subsys_state *css)
2060 struct cpuset *cs = css_cs(css);
2062 free_cpumask_var(cs->effective_cpus);
2063 free_cpumask_var(cs->cpus_allowed);
2064 kfree(cs);
2067 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2069 mutex_lock(&cpuset_mutex);
2070 spin_lock_irq(&callback_lock);
2072 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2073 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2074 top_cpuset.mems_allowed = node_possible_map;
2075 } else {
2076 cpumask_copy(top_cpuset.cpus_allowed,
2077 top_cpuset.effective_cpus);
2078 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2081 spin_unlock_irq(&callback_lock);
2082 mutex_unlock(&cpuset_mutex);
2086 * Make sure the new task conform to the current state of its parent,
2087 * which could have been changed by cpuset just after it inherits the
2088 * state from the parent and before it sits on the cgroup's task list.
2090 static void cpuset_fork(struct task_struct *task)
2092 if (task_css_is_root(task, cpuset_cgrp_id))
2093 return;
2095 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2096 task->mems_allowed = current->mems_allowed;
2099 struct cgroup_subsys cpuset_cgrp_subsys = {
2100 .css_alloc = cpuset_css_alloc,
2101 .css_online = cpuset_css_online,
2102 .css_offline = cpuset_css_offline,
2103 .css_free = cpuset_css_free,
2104 .can_attach = cpuset_can_attach,
2105 .cancel_attach = cpuset_cancel_attach,
2106 .attach = cpuset_attach,
2107 .post_attach = cpuset_post_attach,
2108 .bind = cpuset_bind,
2109 .fork = cpuset_fork,
2110 .legacy_cftypes = files,
2111 .early_init = true,
2115 * cpuset_init - initialize cpusets at system boot
2117 * Description: Initialize top_cpuset and the cpuset internal file system,
2120 int __init cpuset_init(void)
2122 int err = 0;
2124 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2125 BUG();
2126 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2127 BUG();
2129 cpumask_setall(top_cpuset.cpus_allowed);
2130 nodes_setall(top_cpuset.mems_allowed);
2131 cpumask_setall(top_cpuset.effective_cpus);
2132 nodes_setall(top_cpuset.effective_mems);
2134 fmeter_init(&top_cpuset.fmeter);
2135 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2136 top_cpuset.relax_domain_level = -1;
2138 err = register_filesystem(&cpuset_fs_type);
2139 if (err < 0)
2140 return err;
2142 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2143 BUG();
2145 return 0;
2149 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2150 * or memory nodes, we need to walk over the cpuset hierarchy,
2151 * removing that CPU or node from all cpusets. If this removes the
2152 * last CPU or node from a cpuset, then move the tasks in the empty
2153 * cpuset to its next-highest non-empty parent.
2155 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2157 struct cpuset *parent;
2160 * Find its next-highest non-empty parent, (top cpuset
2161 * has online cpus, so can't be empty).
2163 parent = parent_cs(cs);
2164 while (cpumask_empty(parent->cpus_allowed) ||
2165 nodes_empty(parent->mems_allowed))
2166 parent = parent_cs(parent);
2168 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2169 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2170 pr_cont_cgroup_name(cs->css.cgroup);
2171 pr_cont("\n");
2175 static void
2176 hotplug_update_tasks_legacy(struct cpuset *cs,
2177 struct cpumask *new_cpus, nodemask_t *new_mems,
2178 bool cpus_updated, bool mems_updated)
2180 bool is_empty;
2182 spin_lock_irq(&callback_lock);
2183 cpumask_copy(cs->cpus_allowed, new_cpus);
2184 cpumask_copy(cs->effective_cpus, new_cpus);
2185 cs->mems_allowed = *new_mems;
2186 cs->effective_mems = *new_mems;
2187 spin_unlock_irq(&callback_lock);
2190 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2191 * as the tasks will be migratecd to an ancestor.
2193 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2194 update_tasks_cpumask(cs);
2195 if (mems_updated && !nodes_empty(cs->mems_allowed))
2196 update_tasks_nodemask(cs);
2198 is_empty = cpumask_empty(cs->cpus_allowed) ||
2199 nodes_empty(cs->mems_allowed);
2201 mutex_unlock(&cpuset_mutex);
2204 * Move tasks to the nearest ancestor with execution resources,
2205 * This is full cgroup operation which will also call back into
2206 * cpuset. Should be done outside any lock.
2208 if (is_empty)
2209 remove_tasks_in_empty_cpuset(cs);
2211 mutex_lock(&cpuset_mutex);
2214 static void
2215 hotplug_update_tasks(struct cpuset *cs,
2216 struct cpumask *new_cpus, nodemask_t *new_mems,
2217 bool cpus_updated, bool mems_updated)
2219 if (cpumask_empty(new_cpus))
2220 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2221 if (nodes_empty(*new_mems))
2222 *new_mems = parent_cs(cs)->effective_mems;
2224 spin_lock_irq(&callback_lock);
2225 cpumask_copy(cs->effective_cpus, new_cpus);
2226 cs->effective_mems = *new_mems;
2227 spin_unlock_irq(&callback_lock);
2229 if (cpus_updated)
2230 update_tasks_cpumask(cs);
2231 if (mems_updated)
2232 update_tasks_nodemask(cs);
2236 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2237 * @cs: cpuset in interest
2239 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2240 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2241 * all its tasks are moved to the nearest ancestor with both resources.
2243 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2245 static cpumask_t new_cpus;
2246 static nodemask_t new_mems;
2247 bool cpus_updated;
2248 bool mems_updated;
2249 retry:
2250 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2252 mutex_lock(&cpuset_mutex);
2255 * We have raced with task attaching. We wait until attaching
2256 * is finished, so we won't attach a task to an empty cpuset.
2258 if (cs->attach_in_progress) {
2259 mutex_unlock(&cpuset_mutex);
2260 goto retry;
2263 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2264 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2266 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2267 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2269 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2270 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2271 cpus_updated, mems_updated);
2272 else
2273 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2274 cpus_updated, mems_updated);
2276 mutex_unlock(&cpuset_mutex);
2280 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2282 * This function is called after either CPU or memory configuration has
2283 * changed and updates cpuset accordingly. The top_cpuset is always
2284 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2285 * order to make cpusets transparent (of no affect) on systems that are
2286 * actively using CPU hotplug but making no active use of cpusets.
2288 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2289 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2290 * all descendants.
2292 * Note that CPU offlining during suspend is ignored. We don't modify
2293 * cpusets across suspend/resume cycles at all.
2295 static void cpuset_hotplug_workfn(struct work_struct *work)
2297 static cpumask_t new_cpus;
2298 static nodemask_t new_mems;
2299 bool cpus_updated, mems_updated;
2300 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2302 mutex_lock(&cpuset_mutex);
2304 /* fetch the available cpus/mems and find out which changed how */
2305 cpumask_copy(&new_cpus, cpu_active_mask);
2306 new_mems = node_states[N_MEMORY];
2308 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2309 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2311 /* synchronize cpus_allowed to cpu_active_mask */
2312 if (cpus_updated) {
2313 spin_lock_irq(&callback_lock);
2314 if (!on_dfl)
2315 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2316 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2317 spin_unlock_irq(&callback_lock);
2318 /* we don't mess with cpumasks of tasks in top_cpuset */
2321 /* synchronize mems_allowed to N_MEMORY */
2322 if (mems_updated) {
2323 spin_lock_irq(&callback_lock);
2324 if (!on_dfl)
2325 top_cpuset.mems_allowed = new_mems;
2326 top_cpuset.effective_mems = new_mems;
2327 spin_unlock_irq(&callback_lock);
2328 update_tasks_nodemask(&top_cpuset);
2331 mutex_unlock(&cpuset_mutex);
2333 /* if cpus or mems changed, we need to propagate to descendants */
2334 if (cpus_updated || mems_updated) {
2335 struct cpuset *cs;
2336 struct cgroup_subsys_state *pos_css;
2338 rcu_read_lock();
2339 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2340 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2341 continue;
2342 rcu_read_unlock();
2344 cpuset_hotplug_update_tasks(cs);
2346 rcu_read_lock();
2347 css_put(&cs->css);
2349 rcu_read_unlock();
2352 /* rebuild sched domains if cpus_allowed has changed */
2353 if (cpus_updated)
2354 rebuild_sched_domains();
2357 void cpuset_update_active_cpus(bool cpu_online)
2360 * We're inside cpu hotplug critical region which usually nests
2361 * inside cgroup synchronization. Bounce actual hotplug processing
2362 * to a work item to avoid reverse locking order.
2364 * We still need to do partition_sched_domains() synchronously;
2365 * otherwise, the scheduler will get confused and put tasks to the
2366 * dead CPU. Fall back to the default single domain.
2367 * cpuset_hotplug_workfn() will rebuild it as necessary.
2369 partition_sched_domains(1, NULL, NULL);
2370 schedule_work(&cpuset_hotplug_work);
2374 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2375 * Call this routine anytime after node_states[N_MEMORY] changes.
2376 * See cpuset_update_active_cpus() for CPU hotplug handling.
2378 static int cpuset_track_online_nodes(struct notifier_block *self,
2379 unsigned long action, void *arg)
2381 schedule_work(&cpuset_hotplug_work);
2382 return NOTIFY_OK;
2385 static struct notifier_block cpuset_track_online_nodes_nb = {
2386 .notifier_call = cpuset_track_online_nodes,
2387 .priority = 10, /* ??! */
2391 * cpuset_init_smp - initialize cpus_allowed
2393 * Description: Finish top cpuset after cpu, node maps are initialized
2395 void __init cpuset_init_smp(void)
2397 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2398 top_cpuset.mems_allowed = node_states[N_MEMORY];
2399 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2401 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2402 top_cpuset.effective_mems = node_states[N_MEMORY];
2404 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2406 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2407 BUG_ON(!cpuset_migrate_mm_wq);
2411 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2412 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2413 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2415 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2416 * attached to the specified @tsk. Guaranteed to return some non-empty
2417 * subset of cpu_online_mask, even if this means going outside the
2418 * tasks cpuset.
2421 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2423 unsigned long flags;
2425 spin_lock_irqsave(&callback_lock, flags);
2426 rcu_read_lock();
2427 guarantee_online_cpus(task_cs(tsk), pmask);
2428 rcu_read_unlock();
2429 spin_unlock_irqrestore(&callback_lock, flags);
2432 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2434 rcu_read_lock();
2435 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2436 rcu_read_unlock();
2439 * We own tsk->cpus_allowed, nobody can change it under us.
2441 * But we used cs && cs->cpus_allowed lockless and thus can
2442 * race with cgroup_attach_task() or update_cpumask() and get
2443 * the wrong tsk->cpus_allowed. However, both cases imply the
2444 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2445 * which takes task_rq_lock().
2447 * If we are called after it dropped the lock we must see all
2448 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2449 * set any mask even if it is not right from task_cs() pov,
2450 * the pending set_cpus_allowed_ptr() will fix things.
2452 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2453 * if required.
2457 void __init cpuset_init_current_mems_allowed(void)
2459 nodes_setall(current->mems_allowed);
2463 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2464 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2466 * Description: Returns the nodemask_t mems_allowed of the cpuset
2467 * attached to the specified @tsk. Guaranteed to return some non-empty
2468 * subset of node_states[N_MEMORY], even if this means going outside the
2469 * tasks cpuset.
2472 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2474 nodemask_t mask;
2475 unsigned long flags;
2477 spin_lock_irqsave(&callback_lock, flags);
2478 rcu_read_lock();
2479 guarantee_online_mems(task_cs(tsk), &mask);
2480 rcu_read_unlock();
2481 spin_unlock_irqrestore(&callback_lock, flags);
2483 return mask;
2487 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2488 * @nodemask: the nodemask to be checked
2490 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2492 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2494 return nodes_intersects(*nodemask, current->mems_allowed);
2498 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2499 * mem_hardwall ancestor to the specified cpuset. Call holding
2500 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2501 * (an unusual configuration), then returns the root cpuset.
2503 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2505 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2506 cs = parent_cs(cs);
2507 return cs;
2511 * cpuset_node_allowed - Can we allocate on a memory node?
2512 * @node: is this an allowed node?
2513 * @gfp_mask: memory allocation flags
2515 * If we're in interrupt, yes, we can always allocate. If @node is set in
2516 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2517 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2518 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2519 * Otherwise, no.
2521 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2522 * and do not allow allocations outside the current tasks cpuset
2523 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2524 * GFP_KERNEL allocations are not so marked, so can escape to the
2525 * nearest enclosing hardwalled ancestor cpuset.
2527 * Scanning up parent cpusets requires callback_lock. The
2528 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2529 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2530 * current tasks mems_allowed came up empty on the first pass over
2531 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2532 * cpuset are short of memory, might require taking the callback_lock.
2534 * The first call here from mm/page_alloc:get_page_from_freelist()
2535 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2536 * so no allocation on a node outside the cpuset is allowed (unless
2537 * in interrupt, of course).
2539 * The second pass through get_page_from_freelist() doesn't even call
2540 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2541 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2542 * in alloc_flags. That logic and the checks below have the combined
2543 * affect that:
2544 * in_interrupt - any node ok (current task context irrelevant)
2545 * GFP_ATOMIC - any node ok
2546 * TIF_MEMDIE - any node ok
2547 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2548 * GFP_USER - only nodes in current tasks mems allowed ok.
2550 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2552 struct cpuset *cs; /* current cpuset ancestors */
2553 int allowed; /* is allocation in zone z allowed? */
2554 unsigned long flags;
2556 if (in_interrupt())
2557 return true;
2558 if (node_isset(node, current->mems_allowed))
2559 return true;
2561 * Allow tasks that have access to memory reserves because they have
2562 * been OOM killed to get memory anywhere.
2564 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2565 return true;
2566 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2567 return false;
2569 if (current->flags & PF_EXITING) /* Let dying task have memory */
2570 return true;
2572 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2573 spin_lock_irqsave(&callback_lock, flags);
2575 rcu_read_lock();
2576 cs = nearest_hardwall_ancestor(task_cs(current));
2577 allowed = node_isset(node, cs->mems_allowed);
2578 rcu_read_unlock();
2580 spin_unlock_irqrestore(&callback_lock, flags);
2581 return allowed;
2585 * cpuset_mem_spread_node() - On which node to begin search for a file page
2586 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2588 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2589 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2590 * and if the memory allocation used cpuset_mem_spread_node()
2591 * to determine on which node to start looking, as it will for
2592 * certain page cache or slab cache pages such as used for file
2593 * system buffers and inode caches, then instead of starting on the
2594 * local node to look for a free page, rather spread the starting
2595 * node around the tasks mems_allowed nodes.
2597 * We don't have to worry about the returned node being offline
2598 * because "it can't happen", and even if it did, it would be ok.
2600 * The routines calling guarantee_online_mems() are careful to
2601 * only set nodes in task->mems_allowed that are online. So it
2602 * should not be possible for the following code to return an
2603 * offline node. But if it did, that would be ok, as this routine
2604 * is not returning the node where the allocation must be, only
2605 * the node where the search should start. The zonelist passed to
2606 * __alloc_pages() will include all nodes. If the slab allocator
2607 * is passed an offline node, it will fall back to the local node.
2608 * See kmem_cache_alloc_node().
2611 static int cpuset_spread_node(int *rotor)
2613 return *rotor = next_node_in(*rotor, current->mems_allowed);
2616 int cpuset_mem_spread_node(void)
2618 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2619 current->cpuset_mem_spread_rotor =
2620 node_random(&current->mems_allowed);
2622 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2625 int cpuset_slab_spread_node(void)
2627 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2628 current->cpuset_slab_spread_rotor =
2629 node_random(&current->mems_allowed);
2631 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2634 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2637 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2638 * @tsk1: pointer to task_struct of some task.
2639 * @tsk2: pointer to task_struct of some other task.
2641 * Description: Return true if @tsk1's mems_allowed intersects the
2642 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2643 * one of the task's memory usage might impact the memory available
2644 * to the other.
2647 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2648 const struct task_struct *tsk2)
2650 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2654 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2656 * Description: Prints current's name, cpuset name, and cached copy of its
2657 * mems_allowed to the kernel log.
2659 void cpuset_print_current_mems_allowed(void)
2661 struct cgroup *cgrp;
2663 rcu_read_lock();
2665 cgrp = task_cs(current)->css.cgroup;
2666 pr_info("%s cpuset=", current->comm);
2667 pr_cont_cgroup_name(cgrp);
2668 pr_cont(" mems_allowed=%*pbl\n",
2669 nodemask_pr_args(&current->mems_allowed));
2671 rcu_read_unlock();
2675 * Collection of memory_pressure is suppressed unless
2676 * this flag is enabled by writing "1" to the special
2677 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2680 int cpuset_memory_pressure_enabled __read_mostly;
2683 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2685 * Keep a running average of the rate of synchronous (direct)
2686 * page reclaim efforts initiated by tasks in each cpuset.
2688 * This represents the rate at which some task in the cpuset
2689 * ran low on memory on all nodes it was allowed to use, and
2690 * had to enter the kernels page reclaim code in an effort to
2691 * create more free memory by tossing clean pages or swapping
2692 * or writing dirty pages.
2694 * Display to user space in the per-cpuset read-only file
2695 * "memory_pressure". Value displayed is an integer
2696 * representing the recent rate of entry into the synchronous
2697 * (direct) page reclaim by any task attached to the cpuset.
2700 void __cpuset_memory_pressure_bump(void)
2702 rcu_read_lock();
2703 fmeter_markevent(&task_cs(current)->fmeter);
2704 rcu_read_unlock();
2707 #ifdef CONFIG_PROC_PID_CPUSET
2709 * proc_cpuset_show()
2710 * - Print tasks cpuset path into seq_file.
2711 * - Used for /proc/<pid>/cpuset.
2712 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2713 * doesn't really matter if tsk->cpuset changes after we read it,
2714 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2715 * anyway.
2717 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2718 struct pid *pid, struct task_struct *tsk)
2720 char *buf;
2721 struct cgroup_subsys_state *css;
2722 int retval;
2724 retval = -ENOMEM;
2725 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2726 if (!buf)
2727 goto out;
2729 css = task_get_css(tsk, cpuset_cgrp_id);
2730 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2731 current->nsproxy->cgroup_ns);
2732 css_put(css);
2733 if (retval >= PATH_MAX)
2734 retval = -ENAMETOOLONG;
2735 if (retval < 0)
2736 goto out_free;
2737 seq_puts(m, buf);
2738 seq_putc(m, '\n');
2739 retval = 0;
2740 out_free:
2741 kfree(buf);
2742 out:
2743 return retval;
2745 #endif /* CONFIG_PROC_PID_CPUSET */
2747 /* Display task mems_allowed in /proc/<pid>/status file. */
2748 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2750 seq_printf(m, "Mems_allowed:\t%*pb\n",
2751 nodemask_pr_args(&task->mems_allowed));
2752 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2753 nodemask_pr_args(&task->mems_allowed));