2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Generation of main entry point for the guest, exception handling.
8 * Copyright (C) 2012 MIPS Technologies, Inc.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
11 * Copyright (C) 2016 Imagination Technologies Ltd.
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
53 /* Some CP0 registers */
54 #define C0_PWBASE 5, 5
55 #define C0_HWRENA 7, 0
56 #define C0_BADVADDR 8, 0
57 #define C0_BADINSTR 8, 1
58 #define C0_BADINSTRP 8, 2
59 #define C0_ENTRYHI 10, 0
60 #define C0_GUESTCTL1 10, 4
61 #define C0_STATUS 12, 0
62 #define C0_GUESTCTL0 12, 6
63 #define C0_CAUSE 13, 0
65 #define C0_EBASE 15, 1
66 #define C0_CONFIG5 16, 5
67 #define C0_DDATA_LO 28, 3
68 #define C0_ERROREPC 30, 0
70 #define CALLFRAME_SIZ 32
73 #define ST0_KX_IF_64 ST0_KX
75 #define ST0_KX_IF_64 0
78 static unsigned int scratch_vcpu
[2] = { C0_DDATA_LO
};
79 static unsigned int scratch_tmp
[2] = { C0_ERROREPC
};
91 UASM_L_LA(_return_to_host
)
92 UASM_L_LA(_kernel_asid
)
93 UASM_L_LA(_exit_common
)
95 static void *kvm_mips_build_enter_guest(void *addr
);
96 static void *kvm_mips_build_ret_from_exit(void *addr
);
97 static void *kvm_mips_build_ret_to_guest(void *addr
);
98 static void *kvm_mips_build_ret_to_host(void *addr
);
101 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
102 * we assume symmetry.
104 static int c0_kscratch(void)
106 switch (boot_cpu_type()) {
116 * kvm_mips_entry_setup() - Perform global setup for entry code.
118 * Perform global setup for entry code, such as choosing a scratch register.
120 * Returns: 0 on success.
123 int kvm_mips_entry_setup(void)
126 * We prefer to use KScratchN registers if they are available over the
127 * defaults above, which may not work on all cores.
129 unsigned int kscratch_mask
= cpu_data
[0].kscratch_mask
;
132 kscratch_mask
&= ~BIT(pgd_reg
);
134 /* Pick a scratch register for storing VCPU */
136 scratch_vcpu
[0] = c0_kscratch();
137 scratch_vcpu
[1] = ffs(kscratch_mask
) - 1;
138 kscratch_mask
&= ~BIT(scratch_vcpu
[1]);
141 /* Pick a scratch register to use as a temp for saving state */
143 scratch_tmp
[0] = c0_kscratch();
144 scratch_tmp
[1] = ffs(kscratch_mask
) - 1;
145 kscratch_mask
&= ~BIT(scratch_tmp
[1]);
151 static void kvm_mips_build_save_scratch(u32
**p
, unsigned int tmp
,
154 /* Save the VCPU scratch register value in cp0_epc of the stack frame */
155 UASM_i_MFC0(p
, tmp
, scratch_vcpu
[0], scratch_vcpu
[1]);
156 UASM_i_SW(p
, tmp
, offsetof(struct pt_regs
, cp0_epc
), frame
);
158 /* Save the temp scratch register value in cp0_cause of stack frame */
159 if (scratch_tmp
[0] == c0_kscratch()) {
160 UASM_i_MFC0(p
, tmp
, scratch_tmp
[0], scratch_tmp
[1]);
161 UASM_i_SW(p
, tmp
, offsetof(struct pt_regs
, cp0_cause
), frame
);
165 static void kvm_mips_build_restore_scratch(u32
**p
, unsigned int tmp
,
169 * Restore host scratch register values saved by
170 * kvm_mips_build_save_scratch().
172 UASM_i_LW(p
, tmp
, offsetof(struct pt_regs
, cp0_epc
), frame
);
173 UASM_i_MTC0(p
, tmp
, scratch_vcpu
[0], scratch_vcpu
[1]);
175 if (scratch_tmp
[0] == c0_kscratch()) {
176 UASM_i_LW(p
, tmp
, offsetof(struct pt_regs
, cp0_cause
), frame
);
177 UASM_i_MTC0(p
, tmp
, scratch_tmp
[0], scratch_tmp
[1]);
182 * build_set_exc_base() - Assemble code to write exception base address.
183 * @p: Code buffer pointer.
184 * @reg: Source register (generated code may set WG bit in @reg).
186 * Assemble code to modify the exception base address in the EBase register,
187 * using the appropriately sized access and setting the WG bit if necessary.
189 static inline void build_set_exc_base(u32
**p
, unsigned int reg
)
191 if (cpu_has_ebase_wg
) {
192 /* Set WG so that all the bits get written */
193 uasm_i_ori(p
, reg
, reg
, MIPS_EBASE_WG
);
194 UASM_i_MTC0(p
, reg
, C0_EBASE
);
196 uasm_i_mtc0(p
, reg
, C0_EBASE
);
201 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
202 * @addr: Address to start writing code.
204 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
205 * conforms to the following prototype:
207 * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
209 * The exit from the guest and return to the caller is handled by the code
210 * generated by kvm_mips_build_ret_to_host().
212 * Returns: Next address after end of written function.
214 void *kvm_mips_build_vcpu_run(void *addr
)
224 /* k0/k1 not being used in host kernel context */
225 UASM_i_ADDIU(&p
, K1
, SP
, -(int)sizeof(struct pt_regs
));
226 for (i
= 16; i
< 32; ++i
) {
229 UASM_i_SW(&p
, i
, offsetof(struct pt_regs
, regs
[i
]), K1
);
232 /* Save host status */
233 uasm_i_mfc0(&p
, V0
, C0_STATUS
);
234 UASM_i_SW(&p
, V0
, offsetof(struct pt_regs
, cp0_status
), K1
);
236 /* Save scratch registers, will be used to store pointer to vcpu etc */
237 kvm_mips_build_save_scratch(&p
, V1
, K1
);
239 /* VCPU scratch register has pointer to vcpu */
240 UASM_i_MTC0(&p
, A1
, scratch_vcpu
[0], scratch_vcpu
[1]);
242 /* Offset into vcpu->arch */
243 UASM_i_ADDIU(&p
, K1
, A1
, offsetof(struct kvm_vcpu
, arch
));
246 * Save the host stack to VCPU, used for exception processing
247 * when we exit from the Guest
249 UASM_i_SW(&p
, SP
, offsetof(struct kvm_vcpu_arch
, host_stack
), K1
);
251 /* Save the kernel gp as well */
252 UASM_i_SW(&p
, GP
, offsetof(struct kvm_vcpu_arch
, host_gp
), K1
);
255 * Setup status register for running the guest in UM, interrupts
258 UASM_i_LA(&p
, K0
, ST0_EXL
| KSU_USER
| ST0_BEV
| ST0_KX_IF_64
);
259 uasm_i_mtc0(&p
, K0
, C0_STATUS
);
262 /* load up the new EBASE */
263 UASM_i_LW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, guest_ebase
), K1
);
264 build_set_exc_base(&p
, K0
);
267 * Now that the new EBASE has been loaded, unset BEV, set
268 * interrupt mask as it was but make sure that timer interrupts
271 uasm_i_addiu(&p
, K0
, ZERO
, ST0_EXL
| KSU_USER
| ST0_IE
| ST0_KX_IF_64
);
272 uasm_i_andi(&p
, V0
, V0
, ST0_IM
);
273 uasm_i_or(&p
, K0
, K0
, V0
);
274 uasm_i_mtc0(&p
, K0
, C0_STATUS
);
277 p
= kvm_mips_build_enter_guest(p
);
283 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
284 * @addr: Address to start writing code.
286 * Assemble the code to resume guest execution. This code is common between the
287 * initial entry into the guest from the host, and returning from the exit
288 * handler back to the guest.
290 * Returns: Next address after end of written function.
292 static void *kvm_mips_build_enter_guest(void *addr
)
296 struct uasm_label labels
[2];
297 struct uasm_reloc relocs
[2];
298 struct uasm_label __maybe_unused
*l
= labels
;
299 struct uasm_reloc __maybe_unused
*r
= relocs
;
301 memset(labels
, 0, sizeof(labels
));
302 memset(relocs
, 0, sizeof(relocs
));
305 UASM_i_LW(&p
, T0
, offsetof(struct kvm_vcpu_arch
, pc
), K1
);
306 UASM_i_MTC0(&p
, T0
, C0_EPC
);
308 #ifdef CONFIG_KVM_MIPS_VZ
309 /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
310 UASM_i_MFC0(&p
, K0
, c0_kscratch(), pgd_reg
);
311 UASM_i_SW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, host_pgd
), K1
);
314 * Set up KVM GPA pgd.
315 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
316 * - call tlbmiss_handler_setup_pgd(mm->pgd)
317 * - write mm->pgd into CP0_PWBase
319 * We keep S0 pointing at struct kvm so we can load the ASID below.
321 UASM_i_LW(&p
, S0
, (int)offsetof(struct kvm_vcpu
, kvm
) -
322 (int)offsetof(struct kvm_vcpu
, arch
), K1
);
323 UASM_i_LW(&p
, A0
, offsetof(struct kvm
, arch
.gpa_mm
.pgd
), S0
);
324 UASM_i_LA(&p
, T9
, (unsigned long)tlbmiss_handler_setup_pgd
);
325 uasm_i_jalr(&p
, RA
, T9
);
328 UASM_i_MTC0(&p
, A0
, C0_PWBASE
);
332 /* Set GM bit to setup eret to VZ guest context */
333 uasm_i_addiu(&p
, V1
, ZERO
, 1);
334 uasm_i_mfc0(&p
, K0
, C0_GUESTCTL0
);
335 uasm_i_ins(&p
, K0
, V1
, MIPS_GCTL0_GM_SHIFT
, 1);
336 uasm_i_mtc0(&p
, K0
, C0_GUESTCTL0
);
338 if (cpu_has_guestid
) {
340 * Set root mode GuestID, so that root TLB refill handler can
341 * use the correct GuestID in the root TLB.
344 /* Get current GuestID */
345 uasm_i_mfc0(&p
, T0
, C0_GUESTCTL1
);
346 /* Set GuestCtl1.RID = GuestCtl1.ID */
347 uasm_i_ext(&p
, T1
, T0
, MIPS_GCTL1_ID_SHIFT
,
348 MIPS_GCTL1_ID_WIDTH
);
349 uasm_i_ins(&p
, T0
, T1
, MIPS_GCTL1_RID_SHIFT
,
350 MIPS_GCTL1_RID_WIDTH
);
351 uasm_i_mtc0(&p
, T0
, C0_GUESTCTL1
);
353 /* GuestID handles dealiasing so we don't need to touch ASID */
354 goto skip_asid_restore
;
357 /* Root ASID Dealias (RAD) */
360 UASM_i_MFC0(&p
, K0
, C0_ENTRYHI
);
361 UASM_i_SW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, host_entryhi
),
364 /* Set the root ASID for the Guest */
365 UASM_i_ADDIU(&p
, T1
, S0
,
366 offsetof(struct kvm
, arch
.gpa_mm
.context
.asid
));
368 /* Set the ASID for the Guest Kernel or User */
369 UASM_i_LW(&p
, T0
, offsetof(struct kvm_vcpu_arch
, cop0
), K1
);
370 UASM_i_LW(&p
, T0
, offsetof(struct mips_coproc
, reg
[MIPS_CP0_STATUS
][0]),
372 uasm_i_andi(&p
, T0
, T0
, KSU_USER
| ST0_ERL
| ST0_EXL
);
373 uasm_i_xori(&p
, T0
, T0
, KSU_USER
);
374 uasm_il_bnez(&p
, &r
, T0
, label_kernel_asid
);
375 UASM_i_ADDIU(&p
, T1
, K1
, offsetof(struct kvm_vcpu_arch
,
376 guest_kernel_mm
.context
.asid
));
378 UASM_i_ADDIU(&p
, T1
, K1
, offsetof(struct kvm_vcpu_arch
,
379 guest_user_mm
.context
.asid
));
380 uasm_l_kernel_asid(&l
, p
);
383 /* t1: contains the base of the ASID array, need to get the cpu id */
384 /* smp_processor_id */
385 uasm_i_lw(&p
, T2
, offsetof(struct thread_info
, cpu
), GP
);
386 /* index the ASID array */
387 uasm_i_sll(&p
, T2
, T2
, ilog2(sizeof(long)));
388 UASM_i_ADDU(&p
, T3
, T1
, T2
);
389 UASM_i_LW(&p
, K0
, 0, T3
);
390 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
392 * reuse ASID array offset
393 * cpuinfo_mips is a multiple of sizeof(long)
395 uasm_i_addiu(&p
, T3
, ZERO
, sizeof(struct cpuinfo_mips
)/sizeof(long));
396 uasm_i_mul(&p
, T2
, T2
, T3
);
398 UASM_i_LA_mostly(&p
, AT
, (long)&cpu_data
[0].asid_mask
);
399 UASM_i_ADDU(&p
, AT
, AT
, T2
);
400 UASM_i_LW(&p
, T2
, uasm_rel_lo((long)&cpu_data
[0].asid_mask
), AT
);
401 uasm_i_and(&p
, K0
, K0
, T2
);
403 uasm_i_andi(&p
, K0
, K0
, MIPS_ENTRYHI_ASID
);
406 #ifndef CONFIG_KVM_MIPS_VZ
408 * Set up KVM T&E GVA pgd.
409 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
410 * - call tlbmiss_handler_setup_pgd(mm->pgd)
411 * - but skips write into CP0_PWBase for now
413 UASM_i_LW(&p
, A0
, (int)offsetof(struct mm_struct
, pgd
) -
414 (int)offsetof(struct mm_struct
, context
.asid
), T1
);
416 UASM_i_LA(&p
, T9
, (unsigned long)tlbmiss_handler_setup_pgd
);
417 uasm_i_jalr(&p
, RA
, T9
);
418 uasm_i_mtc0(&p
, K0
, C0_ENTRYHI
);
420 /* Set up KVM VZ root ASID (!guestid) */
421 uasm_i_mtc0(&p
, K0
, C0_ENTRYHI
);
426 /* Disable RDHWR access */
427 uasm_i_mtc0(&p
, ZERO
, C0_HWRENA
);
429 /* load the guest context from VCPU and return */
430 for (i
= 1; i
< 32; ++i
) {
431 /* Guest k0/k1 loaded later */
432 if (i
== K0
|| i
== K1
)
434 UASM_i_LW(&p
, i
, offsetof(struct kvm_vcpu_arch
, gprs
[i
]), K1
);
437 #ifndef CONFIG_CPU_MIPSR6
439 UASM_i_LW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, hi
), K1
);
442 UASM_i_LW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, lo
), K1
);
446 /* Restore the guest's k0/k1 registers */
447 UASM_i_LW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, gprs
[K0
]), K1
);
448 UASM_i_LW(&p
, K1
, offsetof(struct kvm_vcpu_arch
, gprs
[K1
]), K1
);
453 uasm_resolve_relocs(relocs
, labels
);
459 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
460 * @addr: Address to start writing code.
461 * @handler: Address of common handler (within range of @addr).
463 * Assemble TLB refill exception fast path handler for guest execution.
465 * Returns: Next address after end of written function.
467 void *kvm_mips_build_tlb_refill_exception(void *addr
, void *handler
)
470 struct uasm_label labels
[2];
471 struct uasm_reloc relocs
[2];
472 struct uasm_label
*l
= labels
;
473 struct uasm_reloc
*r
= relocs
;
475 memset(labels
, 0, sizeof(labels
));
476 memset(relocs
, 0, sizeof(relocs
));
478 /* Save guest k1 into scratch register */
479 UASM_i_MTC0(&p
, K1
, scratch_tmp
[0], scratch_tmp
[1]);
481 /* Get the VCPU pointer from the VCPU scratch register */
482 UASM_i_MFC0(&p
, K1
, scratch_vcpu
[0], scratch_vcpu
[1]);
484 /* Save guest k0 into VCPU structure */
485 UASM_i_SW(&p
, K0
, offsetof(struct kvm_vcpu
, arch
.gprs
[K0
]), K1
);
488 * Some of the common tlbex code uses current_cpu_type(). For KVM we
489 * assume symmetry and just disable preemption to silence the warning.
494 * Now for the actual refill bit. A lot of this can be common with the
495 * Linux TLB refill handler, however we don't need to handle so many
496 * cases. We only need to handle user mode refills, and user mode runs
497 * with 32-bit addressing.
499 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
500 * that isn't resolved should never actually get taken and is harmless
501 * to leave in place for now.
505 build_get_pmde64(&p
, &l
, &r
, K0
, K1
); /* get pmd in K1 */
507 build_get_pgde32(&p
, K0
, K1
); /* get pgd in K1 */
510 /* we don't support huge pages yet */
512 build_get_ptep(&p
, K0
, K1
);
513 build_update_entries(&p
, K0
, K1
);
514 build_tlb_write_entry(&p
, &l
, &r
, tlb_random
);
518 /* Get the VCPU pointer from the VCPU scratch register again */
519 UASM_i_MFC0(&p
, K1
, scratch_vcpu
[0], scratch_vcpu
[1]);
521 /* Restore the guest's k0/k1 registers */
522 UASM_i_LW(&p
, K0
, offsetof(struct kvm_vcpu
, arch
.gprs
[K0
]), K1
);
524 UASM_i_MFC0(&p
, K1
, scratch_tmp
[0], scratch_tmp
[1]);
533 * kvm_mips_build_exception() - Assemble first level guest exception handler.
534 * @addr: Address to start writing code.
535 * @handler: Address of common handler (within range of @addr).
537 * Assemble exception vector code for guest execution. The generated vector will
538 * branch to the common exception handler generated by kvm_mips_build_exit().
540 * Returns: Next address after end of written function.
542 void *kvm_mips_build_exception(void *addr
, void *handler
)
545 struct uasm_label labels
[2];
546 struct uasm_reloc relocs
[2];
547 struct uasm_label
*l
= labels
;
548 struct uasm_reloc
*r
= relocs
;
550 memset(labels
, 0, sizeof(labels
));
551 memset(relocs
, 0, sizeof(relocs
));
553 /* Save guest k1 into scratch register */
554 UASM_i_MTC0(&p
, K1
, scratch_tmp
[0], scratch_tmp
[1]);
556 /* Get the VCPU pointer from the VCPU scratch register */
557 UASM_i_MFC0(&p
, K1
, scratch_vcpu
[0], scratch_vcpu
[1]);
558 UASM_i_ADDIU(&p
, K1
, K1
, offsetof(struct kvm_vcpu
, arch
));
560 /* Save guest k0 into VCPU structure */
561 UASM_i_SW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, gprs
[K0
]), K1
);
563 /* Branch to the common handler */
564 uasm_il_b(&p
, &r
, label_exit_common
);
567 uasm_l_exit_common(&l
, handler
);
568 uasm_resolve_relocs(relocs
, labels
);
574 * kvm_mips_build_exit() - Assemble common guest exit handler.
575 * @addr: Address to start writing code.
577 * Assemble the generic guest exit handling code. This is called by the
578 * exception vectors (generated by kvm_mips_build_exception()), and calls
579 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
580 * depending on the return value.
582 * Returns: Next address after end of written function.
584 void *kvm_mips_build_exit(void *addr
)
588 struct uasm_label labels
[3];
589 struct uasm_reloc relocs
[3];
590 struct uasm_label
*l
= labels
;
591 struct uasm_reloc
*r
= relocs
;
593 memset(labels
, 0, sizeof(labels
));
594 memset(relocs
, 0, sizeof(relocs
));
597 * Generic Guest exception handler. We end up here when the guest
598 * does something that causes a trap to kernel mode.
600 * Both k0/k1 registers will have already been saved (k0 into the vcpu
601 * structure, and k1 into the scratch_tmp register).
603 * The k1 register will already contain the kvm_vcpu_arch pointer.
606 /* Start saving Guest context to VCPU */
607 for (i
= 0; i
< 32; ++i
) {
608 /* Guest k0/k1 saved later */
609 if (i
== K0
|| i
== K1
)
611 UASM_i_SW(&p
, i
, offsetof(struct kvm_vcpu_arch
, gprs
[i
]), K1
);
614 #ifndef CONFIG_CPU_MIPSR6
615 /* We need to save hi/lo and restore them on the way out */
617 UASM_i_SW(&p
, T0
, offsetof(struct kvm_vcpu_arch
, hi
), K1
);
620 UASM_i_SW(&p
, T0
, offsetof(struct kvm_vcpu_arch
, lo
), K1
);
623 /* Finally save guest k1 to VCPU */
625 UASM_i_MFC0(&p
, T0
, scratch_tmp
[0], scratch_tmp
[1]);
626 UASM_i_SW(&p
, T0
, offsetof(struct kvm_vcpu_arch
, gprs
[K1
]), K1
);
628 /* Now that context has been saved, we can use other registers */
631 UASM_i_MFC0(&p
, S1
, scratch_vcpu
[0], scratch_vcpu
[1]);
633 /* Restore run (vcpu->run) */
634 UASM_i_LW(&p
, S0
, offsetof(struct kvm_vcpu
, run
), S1
);
637 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
640 UASM_i_MFC0(&p
, K0
, C0_EPC
);
641 UASM_i_SW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, pc
), K1
);
643 UASM_i_MFC0(&p
, K0
, C0_BADVADDR
);
644 UASM_i_SW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, host_cp0_badvaddr
),
647 uasm_i_mfc0(&p
, K0
, C0_CAUSE
);
648 uasm_i_sw(&p
, K0
, offsetof(struct kvm_vcpu_arch
, host_cp0_cause
), K1
);
650 if (cpu_has_badinstr
) {
651 uasm_i_mfc0(&p
, K0
, C0_BADINSTR
);
652 uasm_i_sw(&p
, K0
, offsetof(struct kvm_vcpu_arch
,
653 host_cp0_badinstr
), K1
);
656 if (cpu_has_badinstrp
) {
657 uasm_i_mfc0(&p
, K0
, C0_BADINSTRP
);
658 uasm_i_sw(&p
, K0
, offsetof(struct kvm_vcpu_arch
,
659 host_cp0_badinstrp
), K1
);
662 /* Now restore the host state just enough to run the handlers */
664 /* Switch EBASE to the one used by Linux */
665 /* load up the host EBASE */
666 uasm_i_mfc0(&p
, V0
, C0_STATUS
);
668 uasm_i_lui(&p
, AT
, ST0_BEV
>> 16);
669 uasm_i_or(&p
, K0
, V0
, AT
);
671 uasm_i_mtc0(&p
, K0
, C0_STATUS
);
674 UASM_i_LA_mostly(&p
, K0
, (long)&ebase
);
675 UASM_i_LW(&p
, K0
, uasm_rel_lo((long)&ebase
), K0
);
676 build_set_exc_base(&p
, K0
);
678 if (raw_cpu_has_fpu
) {
680 * If FPU is enabled, save FCR31 and clear it so that later
681 * ctc1's don't trigger FPE for pending exceptions.
683 uasm_i_lui(&p
, AT
, ST0_CU1
>> 16);
684 uasm_i_and(&p
, V1
, V0
, AT
);
685 uasm_il_beqz(&p
, &r
, V1
, label_fpu_1
);
687 uasm_i_cfc1(&p
, T0
, 31);
688 uasm_i_sw(&p
, T0
, offsetof(struct kvm_vcpu_arch
, fpu
.fcr31
),
690 uasm_i_ctc1(&p
, ZERO
, 31);
696 * If MSA is enabled, save MSACSR and clear it so that later
697 * instructions don't trigger MSAFPE for pending exceptions.
699 uasm_i_mfc0(&p
, T0
, C0_CONFIG5
);
700 uasm_i_ext(&p
, T0
, T0
, 27, 1); /* MIPS_CONF5_MSAEN */
701 uasm_il_beqz(&p
, &r
, T0
, label_msa_1
);
703 uasm_i_cfcmsa(&p
, T0
, MSA_CSR
);
704 uasm_i_sw(&p
, T0
, offsetof(struct kvm_vcpu_arch
, fpu
.msacsr
),
706 uasm_i_ctcmsa(&p
, MSA_CSR
, ZERO
);
710 #ifdef CONFIG_KVM_MIPS_VZ
711 /* Restore host ASID */
712 if (!cpu_has_guestid
) {
713 UASM_i_LW(&p
, K0
, offsetof(struct kvm_vcpu_arch
, host_entryhi
),
715 UASM_i_MTC0(&p
, K0
, C0_ENTRYHI
);
719 * Set up normal Linux process pgd.
720 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
721 * - call tlbmiss_handler_setup_pgd(mm->pgd)
722 * - write mm->pgd into CP0_PWBase
725 offsetof(struct kvm_vcpu_arch
, host_pgd
), K1
);
726 UASM_i_LA(&p
, T9
, (unsigned long)tlbmiss_handler_setup_pgd
);
727 uasm_i_jalr(&p
, RA
, T9
);
730 UASM_i_MTC0(&p
, A0
, C0_PWBASE
);
734 /* Clear GM bit so we don't enter guest mode when EXL is cleared */
735 uasm_i_mfc0(&p
, K0
, C0_GUESTCTL0
);
736 uasm_i_ins(&p
, K0
, ZERO
, MIPS_GCTL0_GM_SHIFT
, 1);
737 uasm_i_mtc0(&p
, K0
, C0_GUESTCTL0
);
739 /* Save GuestCtl0 so we can access GExcCode after CPU migration */
741 offsetof(struct kvm_vcpu_arch
, host_cp0_guestctl0
), K1
);
743 if (cpu_has_guestid
) {
745 * Clear root mode GuestID, so that root TLB operations use the
746 * root GuestID in the root TLB.
748 uasm_i_mfc0(&p
, T0
, C0_GUESTCTL1
);
749 /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
750 uasm_i_ins(&p
, T0
, ZERO
, MIPS_GCTL1_RID_SHIFT
,
751 MIPS_GCTL1_RID_WIDTH
);
752 uasm_i_mtc0(&p
, T0
, C0_GUESTCTL1
);
756 /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
757 uasm_i_addiu(&p
, AT
, ZERO
, ~(ST0_EXL
| KSU_USER
| ST0_IE
));
758 uasm_i_and(&p
, V0
, V0
, AT
);
759 uasm_i_lui(&p
, AT
, ST0_CU0
>> 16);
760 uasm_i_or(&p
, V0
, V0
, AT
);
762 uasm_i_ori(&p
, V0
, V0
, ST0_SX
| ST0_UX
);
764 uasm_i_mtc0(&p
, V0
, C0_STATUS
);
767 /* Load up host GP */
768 UASM_i_LW(&p
, GP
, offsetof(struct kvm_vcpu_arch
, host_gp
), K1
);
770 /* Need a stack before we can jump to "C" */
771 UASM_i_LW(&p
, SP
, offsetof(struct kvm_vcpu_arch
, host_stack
), K1
);
773 /* Saved host state */
774 UASM_i_ADDIU(&p
, SP
, SP
, -(int)sizeof(struct pt_regs
));
777 * XXXKYMA do we need to load the host ASID, maybe not because the
778 * kernel entries are marked GLOBAL, need to verify
781 /* Restore host scratch registers, as we'll have clobbered them */
782 kvm_mips_build_restore_scratch(&p
, K0
, SP
);
784 /* Restore RDHWR access */
785 UASM_i_LA_mostly(&p
, K0
, (long)&hwrena
);
786 uasm_i_lw(&p
, K0
, uasm_rel_lo((long)&hwrena
), K0
);
787 uasm_i_mtc0(&p
, K0
, C0_HWRENA
);
789 /* Jump to handler */
791 * XXXKYMA: not sure if this is safe, how large is the stack??
792 * Now jump to the kvm_mips_handle_exit() to see if we can deal
793 * with this in the kernel
795 uasm_i_move(&p
, A0
, S0
);
796 uasm_i_move(&p
, A1
, S1
);
797 UASM_i_LA(&p
, T9
, (unsigned long)kvm_mips_handle_exit
);
798 uasm_i_jalr(&p
, RA
, T9
);
799 UASM_i_ADDIU(&p
, SP
, SP
, -CALLFRAME_SIZ
);
801 uasm_resolve_relocs(relocs
, labels
);
803 p
= kvm_mips_build_ret_from_exit(p
);
809 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
810 * @addr: Address to start writing code.
812 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
813 * resuming the guest or returning to the host depending on the return value.
815 * Returns: Next address after end of written function.
817 static void *kvm_mips_build_ret_from_exit(void *addr
)
820 struct uasm_label labels
[2];
821 struct uasm_reloc relocs
[2];
822 struct uasm_label
*l
= labels
;
823 struct uasm_reloc
*r
= relocs
;
825 memset(labels
, 0, sizeof(labels
));
826 memset(relocs
, 0, sizeof(relocs
));
828 /* Return from handler Make sure interrupts are disabled */
833 * XXXKYMA: k0/k1 could have been blown away if we processed
834 * an exception while we were handling the exception from the
838 uasm_i_move(&p
, K1
, S1
);
839 UASM_i_ADDIU(&p
, K1
, K1
, offsetof(struct kvm_vcpu
, arch
));
842 * Check return value, should tell us if we are returning to the
843 * host (handle I/O etc)or resuming the guest
845 uasm_i_andi(&p
, T0
, V0
, RESUME_HOST
);
846 uasm_il_bnez(&p
, &r
, T0
, label_return_to_host
);
849 p
= kvm_mips_build_ret_to_guest(p
);
851 uasm_l_return_to_host(&l
, p
);
852 p
= kvm_mips_build_ret_to_host(p
);
854 uasm_resolve_relocs(relocs
, labels
);
860 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
861 * @addr: Address to start writing code.
863 * Assemble the code to handle return from the guest exit handler
864 * (kvm_mips_handle_exit()) back to the guest.
866 * Returns: Next address after end of written function.
868 static void *kvm_mips_build_ret_to_guest(void *addr
)
872 /* Put the saved pointer to vcpu (s1) back into the scratch register */
873 UASM_i_MTC0(&p
, S1
, scratch_vcpu
[0], scratch_vcpu
[1]);
875 /* Load up the Guest EBASE to minimize the window where BEV is set */
876 UASM_i_LW(&p
, T0
, offsetof(struct kvm_vcpu_arch
, guest_ebase
), K1
);
878 /* Switch EBASE back to the one used by KVM */
879 uasm_i_mfc0(&p
, V1
, C0_STATUS
);
880 uasm_i_lui(&p
, AT
, ST0_BEV
>> 16);
881 uasm_i_or(&p
, K0
, V1
, AT
);
882 uasm_i_mtc0(&p
, K0
, C0_STATUS
);
884 build_set_exc_base(&p
, T0
);
886 /* Setup status register for running guest in UM */
887 uasm_i_ori(&p
, V1
, V1
, ST0_EXL
| KSU_USER
| ST0_IE
);
888 UASM_i_LA(&p
, AT
, ~(ST0_CU0
| ST0_MX
| ST0_SX
| ST0_UX
));
889 uasm_i_and(&p
, V1
, V1
, AT
);
890 uasm_i_mtc0(&p
, V1
, C0_STATUS
);
893 p
= kvm_mips_build_enter_guest(p
);
899 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
900 * @addr: Address to start writing code.
902 * Assemble the code to handle return from the guest exit handler
903 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
904 * function generated by kvm_mips_build_vcpu_run().
906 * Returns: Next address after end of written function.
908 static void *kvm_mips_build_ret_to_host(void *addr
)
913 /* EBASE is already pointing to Linux */
914 UASM_i_LW(&p
, K1
, offsetof(struct kvm_vcpu_arch
, host_stack
), K1
);
915 UASM_i_ADDIU(&p
, K1
, K1
, -(int)sizeof(struct pt_regs
));
918 * r2/v0 is the return code, shift it down by 2 (arithmetic)
919 * to recover the err code
921 uasm_i_sra(&p
, K0
, V0
, 2);
922 uasm_i_move(&p
, V0
, K0
);
924 /* Load context saved on the host stack */
925 for (i
= 16; i
< 31; ++i
) {
928 UASM_i_LW(&p
, i
, offsetof(struct pt_regs
, regs
[i
]), K1
);
931 /* Restore RDHWR access */
932 UASM_i_LA_mostly(&p
, K0
, (long)&hwrena
);
933 uasm_i_lw(&p
, K0
, uasm_rel_lo((long)&hwrena
), K0
);
934 uasm_i_mtc0(&p
, K0
, C0_HWRENA
);
936 /* Restore RA, which is the address we will return to */
937 UASM_i_LW(&p
, RA
, offsetof(struct pt_regs
, regs
[RA
]), K1
);