MIPS: eBPF: Fix icache flush end address
[linux/fpc-iii.git] / arch / mips / mm / c-r4k.c
blob96d666a0f4a070fdcddb1c347db07c0aec765c65
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cps.h>
43 * Bits describing what cache ops an SMP callback function may perform.
45 * R4K_HIT - Virtual user or kernel address based cache operations. The
46 * active_mm must be checked before using user addresses, falling
47 * back to kmap.
48 * R4K_INDEX - Index based cache operations.
51 #define R4K_HIT BIT(0)
52 #define R4K_INDEX BIT(1)
54 /**
55 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
58 * Decides whether a cache op needs to be performed on every core in the system.
59 * This may change depending on the @type of cache operation, as well as the set
60 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61 * hotplug from changing the result.
63 * Returns: 1 if the cache operation @type should be done on every core in
64 * the system.
65 * 0 if the cache operation @type is globalized and only needs to
66 * be performed on a simple CPU.
68 static inline bool r4k_op_needs_ipi(unsigned int type)
70 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 if (type == R4K_HIT && mips_cm_present())
72 return false;
75 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 * be needed, but only if there are foreign CPUs (non-siblings with
77 * separate caches).
79 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80 #ifdef CONFIG_SMP
81 return !cpumask_empty(&cpu_foreign_map[0]);
82 #else
83 return false;
84 #endif
88 * Special Variant of smp_call_function for use by cache functions:
90 * o No return value
91 * o collapses to normal function call on UP kernels
92 * o collapses to normal function call on systems with a single shared
93 * primary cache.
94 * o doesn't disable interrupts on the local CPU
96 static inline void r4k_on_each_cpu(unsigned int type,
97 void (*func)(void *info), void *info)
99 preempt_disable();
100 if (r4k_op_needs_ipi(type))
101 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102 func, info, 1);
103 func(info);
104 preempt_enable();
108 * Must die.
110 static unsigned long icache_size __read_mostly;
111 static unsigned long dcache_size __read_mostly;
112 static unsigned long vcache_size __read_mostly;
113 static unsigned long scache_size __read_mostly;
116 * Dummy cache handling routines for machines without boardcaches
118 static void cache_noop(void) {}
120 static struct bcache_ops no_sc_ops = {
121 .bc_enable = (void *)cache_noop,
122 .bc_disable = (void *)cache_noop,
123 .bc_wback_inv = (void *)cache_noop,
124 .bc_inv = (void *)cache_noop
127 struct bcache_ops *bcops = &no_sc_ops;
129 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
132 #define R4600_HIT_CACHEOP_WAR_IMPL \
133 do { \
134 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
135 *(volatile unsigned long *)CKSEG1; \
136 if (R4600_V1_HIT_CACHEOP_WAR) \
137 __asm__ __volatile__("nop;nop;nop;nop"); \
138 } while (0)
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
144 R4600_HIT_CACHEOP_WAR_IMPL;
145 blast_dcache32_page(addr);
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
150 blast_dcache64_page(addr);
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
155 blast_dcache128_page(addr);
158 static void r4k_blast_dcache_page_setup(void)
160 unsigned long dc_lsize = cpu_dcache_line_size();
162 switch (dc_lsize) {
163 case 0:
164 r4k_blast_dcache_page = (void *)cache_noop;
165 break;
166 case 16:
167 r4k_blast_dcache_page = blast_dcache16_page;
168 break;
169 case 32:
170 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 break;
172 case 64:
173 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 break;
175 case 128:
176 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 break;
178 default:
179 break;
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page r4k_blast_dcache_page
185 #else
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
189 static void r4k_blast_dcache_user_page_setup(void)
191 unsigned long dc_lsize = cpu_dcache_line_size();
193 if (dc_lsize == 0)
194 r4k_blast_dcache_user_page = (void *)cache_noop;
195 else if (dc_lsize == 16)
196 r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 else if (dc_lsize == 32)
198 r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 else if (dc_lsize == 64)
200 r4k_blast_dcache_user_page = blast_dcache64_user_page;
203 #endif
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
207 static void r4k_blast_dcache_page_indexed_setup(void)
209 unsigned long dc_lsize = cpu_dcache_line_size();
211 if (dc_lsize == 0)
212 r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 else if (dc_lsize == 16)
214 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 else if (dc_lsize == 32)
216 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 else if (dc_lsize == 64)
218 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 else if (dc_lsize == 128)
220 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
226 static void r4k_blast_dcache_setup(void)
228 unsigned long dc_lsize = cpu_dcache_line_size();
230 if (dc_lsize == 0)
231 r4k_blast_dcache = (void *)cache_noop;
232 else if (dc_lsize == 16)
233 r4k_blast_dcache = blast_dcache16;
234 else if (dc_lsize == 32)
235 r4k_blast_dcache = blast_dcache32;
236 else if (dc_lsize == 64)
237 r4k_blast_dcache = blast_dcache64;
238 else if (dc_lsize == 128)
239 r4k_blast_dcache = blast_dcache128;
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244 __asm__ __volatile__( \
245 "b\t1f\n\t" \
246 ".align\t" #order "\n\t" \
247 "1:\n\t" \
249 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
252 static inline void blast_r4600_v1_icache32(void)
254 unsigned long flags;
256 local_irq_save(flags);
257 blast_icache32();
258 local_irq_restore(flags);
261 static inline void tx49_blast_icache32(void)
263 unsigned long start = INDEX_BASE;
264 unsigned long end = start + current_cpu_data.icache.waysize;
265 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 unsigned long ws_end = current_cpu_data.icache.ways <<
267 current_cpu_data.icache.waybit;
268 unsigned long ws, addr;
270 CACHE32_UNROLL32_ALIGN2;
271 /* I'm in even chunk. blast odd chunks */
272 for (ws = 0; ws < ws_end; ws += ws_inc)
273 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 cache32_unroll32(addr|ws, Index_Invalidate_I);
275 CACHE32_UNROLL32_ALIGN;
276 /* I'm in odd chunk. blast even chunks */
277 for (ws = 0; ws < ws_end; ws += ws_inc)
278 for (addr = start; addr < end; addr += 0x400 * 2)
279 cache32_unroll32(addr|ws, Index_Invalidate_I);
282 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
284 unsigned long flags;
286 local_irq_save(flags);
287 blast_icache32_page_indexed(page);
288 local_irq_restore(flags);
291 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
293 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
294 unsigned long start = INDEX_BASE + (page & indexmask);
295 unsigned long end = start + PAGE_SIZE;
296 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
297 unsigned long ws_end = current_cpu_data.icache.ways <<
298 current_cpu_data.icache.waybit;
299 unsigned long ws, addr;
301 CACHE32_UNROLL32_ALIGN2;
302 /* I'm in even chunk. blast odd chunks */
303 for (ws = 0; ws < ws_end; ws += ws_inc)
304 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
305 cache32_unroll32(addr|ws, Index_Invalidate_I);
306 CACHE32_UNROLL32_ALIGN;
307 /* I'm in odd chunk. blast even chunks */
308 for (ws = 0; ws < ws_end; ws += ws_inc)
309 for (addr = start; addr < end; addr += 0x400 * 2)
310 cache32_unroll32(addr|ws, Index_Invalidate_I);
313 static void (* r4k_blast_icache_page)(unsigned long addr);
315 static void r4k_blast_icache_page_setup(void)
317 unsigned long ic_lsize = cpu_icache_line_size();
319 if (ic_lsize == 0)
320 r4k_blast_icache_page = (void *)cache_noop;
321 else if (ic_lsize == 16)
322 r4k_blast_icache_page = blast_icache16_page;
323 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
324 r4k_blast_icache_page = loongson2_blast_icache32_page;
325 else if (ic_lsize == 32)
326 r4k_blast_icache_page = blast_icache32_page;
327 else if (ic_lsize == 64)
328 r4k_blast_icache_page = blast_icache64_page;
329 else if (ic_lsize == 128)
330 r4k_blast_icache_page = blast_icache128_page;
333 #ifndef CONFIG_EVA
334 #define r4k_blast_icache_user_page r4k_blast_icache_page
335 #else
337 static void (*r4k_blast_icache_user_page)(unsigned long addr);
339 static void r4k_blast_icache_user_page_setup(void)
341 unsigned long ic_lsize = cpu_icache_line_size();
343 if (ic_lsize == 0)
344 r4k_blast_icache_user_page = (void *)cache_noop;
345 else if (ic_lsize == 16)
346 r4k_blast_icache_user_page = blast_icache16_user_page;
347 else if (ic_lsize == 32)
348 r4k_blast_icache_user_page = blast_icache32_user_page;
349 else if (ic_lsize == 64)
350 r4k_blast_icache_user_page = blast_icache64_user_page;
353 #endif
355 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
357 static void r4k_blast_icache_page_indexed_setup(void)
359 unsigned long ic_lsize = cpu_icache_line_size();
361 if (ic_lsize == 0)
362 r4k_blast_icache_page_indexed = (void *)cache_noop;
363 else if (ic_lsize == 16)
364 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
365 else if (ic_lsize == 32) {
366 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
367 r4k_blast_icache_page_indexed =
368 blast_icache32_r4600_v1_page_indexed;
369 else if (TX49XX_ICACHE_INDEX_INV_WAR)
370 r4k_blast_icache_page_indexed =
371 tx49_blast_icache32_page_indexed;
372 else if (current_cpu_type() == CPU_LOONGSON2)
373 r4k_blast_icache_page_indexed =
374 loongson2_blast_icache32_page_indexed;
375 else
376 r4k_blast_icache_page_indexed =
377 blast_icache32_page_indexed;
378 } else if (ic_lsize == 64)
379 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
382 void (* r4k_blast_icache)(void);
383 EXPORT_SYMBOL(r4k_blast_icache);
385 static void r4k_blast_icache_setup(void)
387 unsigned long ic_lsize = cpu_icache_line_size();
389 if (ic_lsize == 0)
390 r4k_blast_icache = (void *)cache_noop;
391 else if (ic_lsize == 16)
392 r4k_blast_icache = blast_icache16;
393 else if (ic_lsize == 32) {
394 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
395 r4k_blast_icache = blast_r4600_v1_icache32;
396 else if (TX49XX_ICACHE_INDEX_INV_WAR)
397 r4k_blast_icache = tx49_blast_icache32;
398 else if (current_cpu_type() == CPU_LOONGSON2)
399 r4k_blast_icache = loongson2_blast_icache32;
400 else
401 r4k_blast_icache = blast_icache32;
402 } else if (ic_lsize == 64)
403 r4k_blast_icache = blast_icache64;
404 else if (ic_lsize == 128)
405 r4k_blast_icache = blast_icache128;
408 static void (* r4k_blast_scache_page)(unsigned long addr);
410 static void r4k_blast_scache_page_setup(void)
412 unsigned long sc_lsize = cpu_scache_line_size();
414 if (scache_size == 0)
415 r4k_blast_scache_page = (void *)cache_noop;
416 else if (sc_lsize == 16)
417 r4k_blast_scache_page = blast_scache16_page;
418 else if (sc_lsize == 32)
419 r4k_blast_scache_page = blast_scache32_page;
420 else if (sc_lsize == 64)
421 r4k_blast_scache_page = blast_scache64_page;
422 else if (sc_lsize == 128)
423 r4k_blast_scache_page = blast_scache128_page;
426 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
428 static void r4k_blast_scache_page_indexed_setup(void)
430 unsigned long sc_lsize = cpu_scache_line_size();
432 if (scache_size == 0)
433 r4k_blast_scache_page_indexed = (void *)cache_noop;
434 else if (sc_lsize == 16)
435 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
436 else if (sc_lsize == 32)
437 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
438 else if (sc_lsize == 64)
439 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
440 else if (sc_lsize == 128)
441 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
444 static void (* r4k_blast_scache)(void);
446 static void r4k_blast_scache_setup(void)
448 unsigned long sc_lsize = cpu_scache_line_size();
450 if (scache_size == 0)
451 r4k_blast_scache = (void *)cache_noop;
452 else if (sc_lsize == 16)
453 r4k_blast_scache = blast_scache16;
454 else if (sc_lsize == 32)
455 r4k_blast_scache = blast_scache32;
456 else if (sc_lsize == 64)
457 r4k_blast_scache = blast_scache64;
458 else if (sc_lsize == 128)
459 r4k_blast_scache = blast_scache128;
462 static void (*r4k_blast_scache_node)(long node);
464 static void r4k_blast_scache_node_setup(void)
466 unsigned long sc_lsize = cpu_scache_line_size();
468 if (current_cpu_type() != CPU_LOONGSON3)
469 r4k_blast_scache_node = (void *)cache_noop;
470 else if (sc_lsize == 16)
471 r4k_blast_scache_node = blast_scache16_node;
472 else if (sc_lsize == 32)
473 r4k_blast_scache_node = blast_scache32_node;
474 else if (sc_lsize == 64)
475 r4k_blast_scache_node = blast_scache64_node;
476 else if (sc_lsize == 128)
477 r4k_blast_scache_node = blast_scache128_node;
480 static inline void local_r4k___flush_cache_all(void * args)
482 switch (current_cpu_type()) {
483 case CPU_LOONGSON2:
484 case CPU_R4000SC:
485 case CPU_R4000MC:
486 case CPU_R4400SC:
487 case CPU_R4400MC:
488 case CPU_R10000:
489 case CPU_R12000:
490 case CPU_R14000:
491 case CPU_R16000:
493 * These caches are inclusive caches, that is, if something
494 * is not cached in the S-cache, we know it also won't be
495 * in one of the primary caches.
497 r4k_blast_scache();
498 break;
500 case CPU_LOONGSON3:
501 /* Use get_ebase_cpunum() for both NUMA=y/n */
502 r4k_blast_scache_node(get_ebase_cpunum() >> 2);
503 break;
505 case CPU_BMIPS5000:
506 r4k_blast_scache();
507 __sync();
508 break;
510 default:
511 r4k_blast_dcache();
512 r4k_blast_icache();
513 break;
517 static void r4k___flush_cache_all(void)
519 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
523 * has_valid_asid() - Determine if an mm already has an ASID.
524 * @mm: Memory map.
525 * @type: R4K_HIT or R4K_INDEX, type of cache op.
527 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
528 * of type @type within an r4k_on_each_cpu() call will affect. If
529 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
530 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
531 * will need to be checked.
533 * Must be called in non-preemptive context.
535 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
536 * 0 otherwise.
538 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
540 unsigned int i;
541 const cpumask_t *mask = cpu_present_mask;
543 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
544 #ifdef CONFIG_SMP
546 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
547 * each foreign core, so we only need to worry about siblings.
548 * Otherwise we need to worry about all present CPUs.
550 if (r4k_op_needs_ipi(type))
551 mask = &cpu_sibling_map[smp_processor_id()];
552 #endif
553 for_each_cpu(i, mask)
554 if (cpu_context(i, mm))
555 return 1;
556 return 0;
559 static void r4k__flush_cache_vmap(void)
561 r4k_blast_dcache();
564 static void r4k__flush_cache_vunmap(void)
566 r4k_blast_dcache();
570 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
571 * whole caches when vma is executable.
573 static inline void local_r4k_flush_cache_range(void * args)
575 struct vm_area_struct *vma = args;
576 int exec = vma->vm_flags & VM_EXEC;
578 if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
579 return;
582 * If dcache can alias, we must blast it since mapping is changing.
583 * If executable, we must ensure any dirty lines are written back far
584 * enough to be visible to icache.
586 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
587 r4k_blast_dcache();
588 /* If executable, blast stale lines from icache */
589 if (exec)
590 r4k_blast_icache();
593 static void r4k_flush_cache_range(struct vm_area_struct *vma,
594 unsigned long start, unsigned long end)
596 int exec = vma->vm_flags & VM_EXEC;
598 if (cpu_has_dc_aliases || exec)
599 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
602 static inline void local_r4k_flush_cache_mm(void * args)
604 struct mm_struct *mm = args;
606 if (!has_valid_asid(mm, R4K_INDEX))
607 return;
610 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
611 * only flush the primary caches but R1x000 behave sane ...
612 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
613 * caches, so we can bail out early.
615 if (current_cpu_type() == CPU_R4000SC ||
616 current_cpu_type() == CPU_R4000MC ||
617 current_cpu_type() == CPU_R4400SC ||
618 current_cpu_type() == CPU_R4400MC) {
619 r4k_blast_scache();
620 return;
623 r4k_blast_dcache();
626 static void r4k_flush_cache_mm(struct mm_struct *mm)
628 if (!cpu_has_dc_aliases)
629 return;
631 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
634 struct flush_cache_page_args {
635 struct vm_area_struct *vma;
636 unsigned long addr;
637 unsigned long pfn;
640 static inline void local_r4k_flush_cache_page(void *args)
642 struct flush_cache_page_args *fcp_args = args;
643 struct vm_area_struct *vma = fcp_args->vma;
644 unsigned long addr = fcp_args->addr;
645 struct page *page = pfn_to_page(fcp_args->pfn);
646 int exec = vma->vm_flags & VM_EXEC;
647 struct mm_struct *mm = vma->vm_mm;
648 int map_coherent = 0;
649 pgd_t *pgdp;
650 pud_t *pudp;
651 pmd_t *pmdp;
652 pte_t *ptep;
653 void *vaddr;
656 * If owns no valid ASID yet, cannot possibly have gotten
657 * this page into the cache.
659 if (!has_valid_asid(mm, R4K_HIT))
660 return;
662 addr &= PAGE_MASK;
663 pgdp = pgd_offset(mm, addr);
664 pudp = pud_offset(pgdp, addr);
665 pmdp = pmd_offset(pudp, addr);
666 ptep = pte_offset(pmdp, addr);
669 * If the page isn't marked valid, the page cannot possibly be
670 * in the cache.
672 if (!(pte_present(*ptep)))
673 return;
675 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
676 vaddr = NULL;
677 else {
679 * Use kmap_coherent or kmap_atomic to do flushes for
680 * another ASID than the current one.
682 map_coherent = (cpu_has_dc_aliases &&
683 page_mapcount(page) &&
684 !Page_dcache_dirty(page));
685 if (map_coherent)
686 vaddr = kmap_coherent(page, addr);
687 else
688 vaddr = kmap_atomic(page);
689 addr = (unsigned long)vaddr;
692 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
693 vaddr ? r4k_blast_dcache_page(addr) :
694 r4k_blast_dcache_user_page(addr);
695 if (exec && !cpu_icache_snoops_remote_store)
696 r4k_blast_scache_page(addr);
698 if (exec) {
699 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
700 int cpu = smp_processor_id();
702 if (cpu_context(cpu, mm) != 0)
703 drop_mmu_context(mm, cpu);
704 } else
705 vaddr ? r4k_blast_icache_page(addr) :
706 r4k_blast_icache_user_page(addr);
709 if (vaddr) {
710 if (map_coherent)
711 kunmap_coherent();
712 else
713 kunmap_atomic(vaddr);
717 static void r4k_flush_cache_page(struct vm_area_struct *vma,
718 unsigned long addr, unsigned long pfn)
720 struct flush_cache_page_args args;
722 args.vma = vma;
723 args.addr = addr;
724 args.pfn = pfn;
726 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
729 static inline void local_r4k_flush_data_cache_page(void * addr)
731 r4k_blast_dcache_page((unsigned long) addr);
734 static void r4k_flush_data_cache_page(unsigned long addr)
736 if (in_atomic())
737 local_r4k_flush_data_cache_page((void *)addr);
738 else
739 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
740 (void *) addr);
743 struct flush_icache_range_args {
744 unsigned long start;
745 unsigned long end;
746 unsigned int type;
747 bool user;
750 static inline void __local_r4k_flush_icache_range(unsigned long start,
751 unsigned long end,
752 unsigned int type,
753 bool user)
755 if (!cpu_has_ic_fills_f_dc) {
756 if (type == R4K_INDEX ||
757 (type & R4K_INDEX && end - start >= dcache_size)) {
758 r4k_blast_dcache();
759 } else {
760 R4600_HIT_CACHEOP_WAR_IMPL;
761 if (user)
762 protected_blast_dcache_range(start, end);
763 else
764 blast_dcache_range(start, end);
768 if (type == R4K_INDEX ||
769 (type & R4K_INDEX && end - start > icache_size))
770 r4k_blast_icache();
771 else {
772 switch (boot_cpu_type()) {
773 case CPU_LOONGSON2:
774 protected_loongson2_blast_icache_range(start, end);
775 break;
777 default:
778 if (user)
779 protected_blast_icache_range(start, end);
780 else
781 blast_icache_range(start, end);
782 break;
787 static inline void local_r4k_flush_icache_range(unsigned long start,
788 unsigned long end)
790 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
793 static inline void local_r4k_flush_icache_user_range(unsigned long start,
794 unsigned long end)
796 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
799 static inline void local_r4k_flush_icache_range_ipi(void *args)
801 struct flush_icache_range_args *fir_args = args;
802 unsigned long start = fir_args->start;
803 unsigned long end = fir_args->end;
804 unsigned int type = fir_args->type;
805 bool user = fir_args->user;
807 __local_r4k_flush_icache_range(start, end, type, user);
810 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
811 bool user)
813 struct flush_icache_range_args args;
814 unsigned long size, cache_size;
816 args.start = start;
817 args.end = end;
818 args.type = R4K_HIT | R4K_INDEX;
819 args.user = user;
822 * Indexed cache ops require an SMP call.
823 * Consider if that can or should be avoided.
825 preempt_disable();
826 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
828 * If address-based cache ops don't require an SMP call, then
829 * use them exclusively for small flushes.
831 size = end - start;
832 cache_size = icache_size;
833 if (!cpu_has_ic_fills_f_dc) {
834 size *= 2;
835 cache_size += dcache_size;
837 if (size <= cache_size)
838 args.type &= ~R4K_INDEX;
840 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
841 preempt_enable();
842 instruction_hazard();
845 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
847 return __r4k_flush_icache_range(start, end, false);
850 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
852 return __r4k_flush_icache_range(start, end, true);
855 #ifdef CONFIG_DMA_NONCOHERENT
857 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
859 /* Catch bad driver code */
860 if (WARN_ON(size == 0))
861 return;
863 preempt_disable();
864 if (cpu_has_inclusive_pcaches) {
865 if (size >= scache_size) {
866 if (current_cpu_type() != CPU_LOONGSON3)
867 r4k_blast_scache();
868 else
869 r4k_blast_scache_node(pa_to_nid(addr));
870 } else {
871 blast_scache_range(addr, addr + size);
873 preempt_enable();
874 __sync();
875 return;
879 * Either no secondary cache or the available caches don't have the
880 * subset property so we have to flush the primary caches
881 * explicitly.
882 * If we would need IPI to perform an INDEX-type operation, then
883 * we have to use the HIT-type alternative as IPI cannot be used
884 * here due to interrupts possibly being disabled.
886 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
887 r4k_blast_dcache();
888 } else {
889 R4600_HIT_CACHEOP_WAR_IMPL;
890 blast_dcache_range(addr, addr + size);
892 preempt_enable();
894 bc_wback_inv(addr, size);
895 __sync();
898 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
900 /* Catch bad driver code */
901 if (WARN_ON(size == 0))
902 return;
904 preempt_disable();
905 if (cpu_has_inclusive_pcaches) {
906 if (size >= scache_size) {
907 if (current_cpu_type() != CPU_LOONGSON3)
908 r4k_blast_scache();
909 else
910 r4k_blast_scache_node(pa_to_nid(addr));
911 } else {
913 * There is no clearly documented alignment requirement
914 * for the cache instruction on MIPS processors and
915 * some processors, among them the RM5200 and RM7000
916 * QED processors will throw an address error for cache
917 * hit ops with insufficient alignment. Solved by
918 * aligning the address to cache line size.
920 blast_inv_scache_range(addr, addr + size);
922 preempt_enable();
923 __sync();
924 return;
927 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
928 r4k_blast_dcache();
929 } else {
930 R4600_HIT_CACHEOP_WAR_IMPL;
931 blast_inv_dcache_range(addr, addr + size);
933 preempt_enable();
935 bc_inv(addr, size);
936 __sync();
938 #endif /* CONFIG_DMA_NONCOHERENT */
940 struct flush_cache_sigtramp_args {
941 struct mm_struct *mm;
942 struct page *page;
943 unsigned long addr;
947 * While we're protected against bad userland addresses we don't care
948 * very much about what happens in that case. Usually a segmentation
949 * fault will dump the process later on anyway ...
951 static void local_r4k_flush_cache_sigtramp(void *args)
953 struct flush_cache_sigtramp_args *fcs_args = args;
954 unsigned long addr = fcs_args->addr;
955 struct page *page = fcs_args->page;
956 struct mm_struct *mm = fcs_args->mm;
957 int map_coherent = 0;
958 void *vaddr;
960 unsigned long ic_lsize = cpu_icache_line_size();
961 unsigned long dc_lsize = cpu_dcache_line_size();
962 unsigned long sc_lsize = cpu_scache_line_size();
965 * If owns no valid ASID yet, cannot possibly have gotten
966 * this page into the cache.
968 if (!has_valid_asid(mm, R4K_HIT))
969 return;
971 if (mm == current->active_mm) {
972 vaddr = NULL;
973 } else {
975 * Use kmap_coherent or kmap_atomic to do flushes for
976 * another ASID than the current one.
978 map_coherent = (cpu_has_dc_aliases &&
979 page_mapcount(page) &&
980 !Page_dcache_dirty(page));
981 if (map_coherent)
982 vaddr = kmap_coherent(page, addr);
983 else
984 vaddr = kmap_atomic(page);
985 addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
988 R4600_HIT_CACHEOP_WAR_IMPL;
989 if (!cpu_has_ic_fills_f_dc) {
990 if (dc_lsize)
991 vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
992 : protected_writeback_dcache_line(
993 addr & ~(dc_lsize - 1));
994 if (!cpu_icache_snoops_remote_store && scache_size)
995 vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
996 : protected_writeback_scache_line(
997 addr & ~(sc_lsize - 1));
999 if (ic_lsize)
1000 vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
1001 : protected_flush_icache_line(addr & ~(ic_lsize - 1));
1003 if (vaddr) {
1004 if (map_coherent)
1005 kunmap_coherent();
1006 else
1007 kunmap_atomic(vaddr);
1010 if (MIPS4K_ICACHE_REFILL_WAR) {
1011 __asm__ __volatile__ (
1012 ".set push\n\t"
1013 ".set noat\n\t"
1014 ".set "MIPS_ISA_LEVEL"\n\t"
1015 #ifdef CONFIG_32BIT
1016 "la $at,1f\n\t"
1017 #endif
1018 #ifdef CONFIG_64BIT
1019 "dla $at,1f\n\t"
1020 #endif
1021 "cache %0,($at)\n\t"
1022 "nop; nop; nop\n"
1023 "1:\n\t"
1024 ".set pop"
1026 : "i" (Hit_Invalidate_I));
1028 if (MIPS_CACHE_SYNC_WAR)
1029 __asm__ __volatile__ ("sync");
1032 static void r4k_flush_cache_sigtramp(unsigned long addr)
1034 struct flush_cache_sigtramp_args args;
1035 int npages;
1037 down_read(&current->mm->mmap_sem);
1039 npages = get_user_pages_fast(addr, 1, 0, &args.page);
1040 if (npages < 1)
1041 goto out;
1043 args.mm = current->mm;
1044 args.addr = addr;
1046 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
1048 put_page(args.page);
1049 out:
1050 up_read(&current->mm->mmap_sem);
1053 static void r4k_flush_icache_all(void)
1055 if (cpu_has_vtag_icache)
1056 r4k_blast_icache();
1059 struct flush_kernel_vmap_range_args {
1060 unsigned long vaddr;
1061 int size;
1064 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
1067 * Aliases only affect the primary caches so don't bother with
1068 * S-caches or T-caches.
1070 r4k_blast_dcache();
1073 static inline void local_r4k_flush_kernel_vmap_range(void *args)
1075 struct flush_kernel_vmap_range_args *vmra = args;
1076 unsigned long vaddr = vmra->vaddr;
1077 int size = vmra->size;
1080 * Aliases only affect the primary caches so don't bother with
1081 * S-caches or T-caches.
1083 R4600_HIT_CACHEOP_WAR_IMPL;
1084 blast_dcache_range(vaddr, vaddr + size);
1087 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1089 struct flush_kernel_vmap_range_args args;
1091 args.vaddr = (unsigned long) vaddr;
1092 args.size = size;
1094 if (size >= dcache_size)
1095 r4k_on_each_cpu(R4K_INDEX,
1096 local_r4k_flush_kernel_vmap_range_index, NULL);
1097 else
1098 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1099 &args);
1102 static inline void rm7k_erratum31(void)
1104 const unsigned long ic_lsize = 32;
1105 unsigned long addr;
1107 /* RM7000 erratum #31. The icache is screwed at startup. */
1108 write_c0_taglo(0);
1109 write_c0_taghi(0);
1111 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1112 __asm__ __volatile__ (
1113 ".set push\n\t"
1114 ".set noreorder\n\t"
1115 ".set mips3\n\t"
1116 "cache\t%1, 0(%0)\n\t"
1117 "cache\t%1, 0x1000(%0)\n\t"
1118 "cache\t%1, 0x2000(%0)\n\t"
1119 "cache\t%1, 0x3000(%0)\n\t"
1120 "cache\t%2, 0(%0)\n\t"
1121 "cache\t%2, 0x1000(%0)\n\t"
1122 "cache\t%2, 0x2000(%0)\n\t"
1123 "cache\t%2, 0x3000(%0)\n\t"
1124 "cache\t%1, 0(%0)\n\t"
1125 "cache\t%1, 0x1000(%0)\n\t"
1126 "cache\t%1, 0x2000(%0)\n\t"
1127 "cache\t%1, 0x3000(%0)\n\t"
1128 ".set pop\n"
1130 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1134 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1136 unsigned int imp = c->processor_id & PRID_IMP_MASK;
1137 unsigned int rev = c->processor_id & PRID_REV_MASK;
1138 int present = 0;
1141 * Early versions of the 74K do not update the cache tags on a
1142 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1143 * aliases. In this case it is better to treat the cache as always
1144 * having aliases. Also disable the synonym tag update feature
1145 * where available. In this case no opportunistic tag update will
1146 * happen where a load causes a virtual address miss but a physical
1147 * address hit during a D-cache look-up.
1149 switch (imp) {
1150 case PRID_IMP_74K:
1151 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1152 present = 1;
1153 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1154 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1155 break;
1156 case PRID_IMP_1074K:
1157 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1158 present = 1;
1159 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1161 break;
1162 default:
1163 BUG();
1166 return present;
1169 static void b5k_instruction_hazard(void)
1171 __sync();
1172 __sync();
1173 __asm__ __volatile__(
1174 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1175 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1176 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1177 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1178 : : : "memory");
1181 static char *way_string[] = { NULL, "direct mapped", "2-way",
1182 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1183 "9-way", "10-way", "11-way", "12-way",
1184 "13-way", "14-way", "15-way", "16-way",
1187 static void probe_pcache(void)
1189 struct cpuinfo_mips *c = &current_cpu_data;
1190 unsigned int config = read_c0_config();
1191 unsigned int prid = read_c0_prid();
1192 int has_74k_erratum = 0;
1193 unsigned long config1;
1194 unsigned int lsize;
1196 switch (current_cpu_type()) {
1197 case CPU_R4600: /* QED style two way caches? */
1198 case CPU_R4700:
1199 case CPU_R5000:
1200 case CPU_NEVADA:
1201 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1202 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1203 c->icache.ways = 2;
1204 c->icache.waybit = __ffs(icache_size/2);
1206 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1207 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1208 c->dcache.ways = 2;
1209 c->dcache.waybit= __ffs(dcache_size/2);
1211 c->options |= MIPS_CPU_CACHE_CDEX_P;
1212 break;
1214 case CPU_R5432:
1215 case CPU_R5500:
1216 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1217 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1218 c->icache.ways = 2;
1219 c->icache.waybit= 0;
1221 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1222 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1223 c->dcache.ways = 2;
1224 c->dcache.waybit = 0;
1226 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1227 break;
1229 case CPU_TX49XX:
1230 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1231 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1232 c->icache.ways = 4;
1233 c->icache.waybit= 0;
1235 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1236 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1237 c->dcache.ways = 4;
1238 c->dcache.waybit = 0;
1240 c->options |= MIPS_CPU_CACHE_CDEX_P;
1241 c->options |= MIPS_CPU_PREFETCH;
1242 break;
1244 case CPU_R4000PC:
1245 case CPU_R4000SC:
1246 case CPU_R4000MC:
1247 case CPU_R4400PC:
1248 case CPU_R4400SC:
1249 case CPU_R4400MC:
1250 case CPU_R4300:
1251 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1252 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1253 c->icache.ways = 1;
1254 c->icache.waybit = 0; /* doesn't matter */
1256 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1257 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1258 c->dcache.ways = 1;
1259 c->dcache.waybit = 0; /* does not matter */
1261 c->options |= MIPS_CPU_CACHE_CDEX_P;
1262 break;
1264 case CPU_R10000:
1265 case CPU_R12000:
1266 case CPU_R14000:
1267 case CPU_R16000:
1268 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1269 c->icache.linesz = 64;
1270 c->icache.ways = 2;
1271 c->icache.waybit = 0;
1273 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1274 c->dcache.linesz = 32;
1275 c->dcache.ways = 2;
1276 c->dcache.waybit = 0;
1278 c->options |= MIPS_CPU_PREFETCH;
1279 break;
1281 case CPU_VR4133:
1282 write_c0_config(config & ~VR41_CONF_P4K);
1283 case CPU_VR4131:
1284 /* Workaround for cache instruction bug of VR4131 */
1285 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1286 c->processor_id == 0x0c82U) {
1287 config |= 0x00400000U;
1288 if (c->processor_id == 0x0c80U)
1289 config |= VR41_CONF_BP;
1290 write_c0_config(config);
1291 } else
1292 c->options |= MIPS_CPU_CACHE_CDEX_P;
1294 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1295 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1296 c->icache.ways = 2;
1297 c->icache.waybit = __ffs(icache_size/2);
1299 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1300 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1301 c->dcache.ways = 2;
1302 c->dcache.waybit = __ffs(dcache_size/2);
1303 break;
1305 case CPU_VR41XX:
1306 case CPU_VR4111:
1307 case CPU_VR4121:
1308 case CPU_VR4122:
1309 case CPU_VR4181:
1310 case CPU_VR4181A:
1311 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1312 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1313 c->icache.ways = 1;
1314 c->icache.waybit = 0; /* doesn't matter */
1316 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1317 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1318 c->dcache.ways = 1;
1319 c->dcache.waybit = 0; /* does not matter */
1321 c->options |= MIPS_CPU_CACHE_CDEX_P;
1322 break;
1324 case CPU_RM7000:
1325 rm7k_erratum31();
1327 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1328 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1329 c->icache.ways = 4;
1330 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1332 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1333 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1334 c->dcache.ways = 4;
1335 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1337 c->options |= MIPS_CPU_CACHE_CDEX_P;
1338 c->options |= MIPS_CPU_PREFETCH;
1339 break;
1341 case CPU_LOONGSON2:
1342 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1343 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1344 if (prid & 0x3)
1345 c->icache.ways = 4;
1346 else
1347 c->icache.ways = 2;
1348 c->icache.waybit = 0;
1350 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1351 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1352 if (prid & 0x3)
1353 c->dcache.ways = 4;
1354 else
1355 c->dcache.ways = 2;
1356 c->dcache.waybit = 0;
1357 break;
1359 case CPU_LOONGSON3:
1360 config1 = read_c0_config1();
1361 lsize = (config1 >> 19) & 7;
1362 if (lsize)
1363 c->icache.linesz = 2 << lsize;
1364 else
1365 c->icache.linesz = 0;
1366 c->icache.sets = 64 << ((config1 >> 22) & 7);
1367 c->icache.ways = 1 + ((config1 >> 16) & 7);
1368 icache_size = c->icache.sets *
1369 c->icache.ways *
1370 c->icache.linesz;
1371 c->icache.waybit = 0;
1373 lsize = (config1 >> 10) & 7;
1374 if (lsize)
1375 c->dcache.linesz = 2 << lsize;
1376 else
1377 c->dcache.linesz = 0;
1378 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1379 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1380 dcache_size = c->dcache.sets *
1381 c->dcache.ways *
1382 c->dcache.linesz;
1383 c->dcache.waybit = 0;
1384 if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2_0)
1385 c->options |= MIPS_CPU_PREFETCH;
1386 break;
1388 case CPU_CAVIUM_OCTEON3:
1389 /* For now lie about the number of ways. */
1390 c->icache.linesz = 128;
1391 c->icache.sets = 16;
1392 c->icache.ways = 8;
1393 c->icache.flags |= MIPS_CACHE_VTAG;
1394 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1396 c->dcache.linesz = 128;
1397 c->dcache.ways = 8;
1398 c->dcache.sets = 8;
1399 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1400 c->options |= MIPS_CPU_PREFETCH;
1401 break;
1403 default:
1404 if (!(config & MIPS_CONF_M))
1405 panic("Don't know how to probe P-caches on this cpu.");
1408 * So we seem to be a MIPS32 or MIPS64 CPU
1409 * So let's probe the I-cache ...
1411 config1 = read_c0_config1();
1413 lsize = (config1 >> 19) & 7;
1415 /* IL == 7 is reserved */
1416 if (lsize == 7)
1417 panic("Invalid icache line size");
1419 c->icache.linesz = lsize ? 2 << lsize : 0;
1421 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1422 c->icache.ways = 1 + ((config1 >> 16) & 7);
1424 icache_size = c->icache.sets *
1425 c->icache.ways *
1426 c->icache.linesz;
1427 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1429 if (config & MIPS_CONF_VI)
1430 c->icache.flags |= MIPS_CACHE_VTAG;
1433 * Now probe the MIPS32 / MIPS64 data cache.
1435 c->dcache.flags = 0;
1437 lsize = (config1 >> 10) & 7;
1439 /* DL == 7 is reserved */
1440 if (lsize == 7)
1441 panic("Invalid dcache line size");
1443 c->dcache.linesz = lsize ? 2 << lsize : 0;
1445 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1446 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1448 dcache_size = c->dcache.sets *
1449 c->dcache.ways *
1450 c->dcache.linesz;
1451 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1453 c->options |= MIPS_CPU_PREFETCH;
1454 break;
1458 * Processor configuration sanity check for the R4000SC erratum
1459 * #5. With page sizes larger than 32kB there is no possibility
1460 * to get a VCE exception anymore so we don't care about this
1461 * misconfiguration. The case is rather theoretical anyway;
1462 * presumably no vendor is shipping his hardware in the "bad"
1463 * configuration.
1465 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1466 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1467 !(config & CONF_SC) && c->icache.linesz != 16 &&
1468 PAGE_SIZE <= 0x8000)
1469 panic("Improper R4000SC processor configuration detected");
1471 /* compute a couple of other cache variables */
1472 c->icache.waysize = icache_size / c->icache.ways;
1473 c->dcache.waysize = dcache_size / c->dcache.ways;
1475 c->icache.sets = c->icache.linesz ?
1476 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1477 c->dcache.sets = c->dcache.linesz ?
1478 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1481 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1482 * virtually indexed so normally would suffer from aliases. So
1483 * normally they'd suffer from aliases but magic in the hardware deals
1484 * with that for us so we don't need to take care ourselves.
1486 switch (current_cpu_type()) {
1487 case CPU_20KC:
1488 case CPU_25KF:
1489 case CPU_I6400:
1490 case CPU_I6500:
1491 case CPU_SB1:
1492 case CPU_SB1A:
1493 case CPU_XLR:
1494 c->dcache.flags |= MIPS_CACHE_PINDEX;
1495 break;
1497 case CPU_R10000:
1498 case CPU_R12000:
1499 case CPU_R14000:
1500 case CPU_R16000:
1501 break;
1503 case CPU_74K:
1504 case CPU_1074K:
1505 has_74k_erratum = alias_74k_erratum(c);
1506 /* Fall through. */
1507 case CPU_M14KC:
1508 case CPU_M14KEC:
1509 case CPU_24K:
1510 case CPU_34K:
1511 case CPU_1004K:
1512 case CPU_INTERAPTIV:
1513 case CPU_P5600:
1514 case CPU_PROAPTIV:
1515 case CPU_M5150:
1516 case CPU_QEMU_GENERIC:
1517 case CPU_P6600:
1518 case CPU_M6250:
1519 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1520 (c->icache.waysize > PAGE_SIZE))
1521 c->icache.flags |= MIPS_CACHE_ALIASES;
1522 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1524 * Effectively physically indexed dcache,
1525 * thus no virtual aliases.
1527 c->dcache.flags |= MIPS_CACHE_PINDEX;
1528 break;
1530 default:
1531 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1532 c->dcache.flags |= MIPS_CACHE_ALIASES;
1535 /* Physically indexed caches don't suffer from virtual aliasing */
1536 if (c->dcache.flags & MIPS_CACHE_PINDEX)
1537 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1540 * In systems with CM the icache fills from L2 or closer caches, and
1541 * thus sees remote stores without needing to write them back any
1542 * further than that.
1544 if (mips_cm_present())
1545 c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1547 switch (current_cpu_type()) {
1548 case CPU_20KC:
1550 * Some older 20Kc chips doesn't have the 'VI' bit in
1551 * the config register.
1553 c->icache.flags |= MIPS_CACHE_VTAG;
1554 break;
1556 case CPU_ALCHEMY:
1557 case CPU_I6400:
1558 case CPU_I6500:
1559 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1560 break;
1562 case CPU_BMIPS5000:
1563 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1564 /* Cache aliases are handled in hardware; allow HIGHMEM */
1565 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1566 break;
1568 case CPU_LOONGSON2:
1570 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1571 * one op will act on all 4 ways
1573 c->icache.ways = 1;
1576 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1577 icache_size >> 10,
1578 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1579 way_string[c->icache.ways], c->icache.linesz);
1581 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1582 dcache_size >> 10, way_string[c->dcache.ways],
1583 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1584 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1585 "cache aliases" : "no aliases",
1586 c->dcache.linesz);
1589 static void probe_vcache(void)
1591 struct cpuinfo_mips *c = &current_cpu_data;
1592 unsigned int config2, lsize;
1594 if (current_cpu_type() != CPU_LOONGSON3)
1595 return;
1597 config2 = read_c0_config2();
1598 if ((lsize = ((config2 >> 20) & 15)))
1599 c->vcache.linesz = 2 << lsize;
1600 else
1601 c->vcache.linesz = lsize;
1603 c->vcache.sets = 64 << ((config2 >> 24) & 15);
1604 c->vcache.ways = 1 + ((config2 >> 16) & 15);
1606 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1608 c->vcache.waybit = 0;
1609 c->vcache.waysize = vcache_size / c->vcache.ways;
1611 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1612 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1616 * If you even _breathe_ on this function, look at the gcc output and make sure
1617 * it does not pop things on and off the stack for the cache sizing loop that
1618 * executes in KSEG1 space or else you will crash and burn badly. You have
1619 * been warned.
1621 static int probe_scache(void)
1623 unsigned long flags, addr, begin, end, pow2;
1624 unsigned int config = read_c0_config();
1625 struct cpuinfo_mips *c = &current_cpu_data;
1627 if (config & CONF_SC)
1628 return 0;
1630 begin = (unsigned long) &_stext;
1631 begin &= ~((4 * 1024 * 1024) - 1);
1632 end = begin + (4 * 1024 * 1024);
1635 * This is such a bitch, you'd think they would make it easy to do
1636 * this. Away you daemons of stupidity!
1638 local_irq_save(flags);
1640 /* Fill each size-multiple cache line with a valid tag. */
1641 pow2 = (64 * 1024);
1642 for (addr = begin; addr < end; addr = (begin + pow2)) {
1643 unsigned long *p = (unsigned long *) addr;
1644 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1645 pow2 <<= 1;
1648 /* Load first line with zero (therefore invalid) tag. */
1649 write_c0_taglo(0);
1650 write_c0_taghi(0);
1651 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1652 cache_op(Index_Store_Tag_I, begin);
1653 cache_op(Index_Store_Tag_D, begin);
1654 cache_op(Index_Store_Tag_SD, begin);
1656 /* Now search for the wrap around point. */
1657 pow2 = (128 * 1024);
1658 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1659 cache_op(Index_Load_Tag_SD, addr);
1660 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1661 if (!read_c0_taglo())
1662 break;
1663 pow2 <<= 1;
1665 local_irq_restore(flags);
1666 addr -= begin;
1668 scache_size = addr;
1669 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1670 c->scache.ways = 1;
1671 c->scache.waybit = 0; /* does not matter */
1673 return 1;
1676 static void __init loongson2_sc_init(void)
1678 struct cpuinfo_mips *c = &current_cpu_data;
1680 scache_size = 512*1024;
1681 c->scache.linesz = 32;
1682 c->scache.ways = 4;
1683 c->scache.waybit = 0;
1684 c->scache.waysize = scache_size / (c->scache.ways);
1685 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1686 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1687 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1689 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1692 static void __init loongson3_sc_init(void)
1694 struct cpuinfo_mips *c = &current_cpu_data;
1695 unsigned int config2, lsize;
1697 config2 = read_c0_config2();
1698 lsize = (config2 >> 4) & 15;
1699 if (lsize)
1700 c->scache.linesz = 2 << lsize;
1701 else
1702 c->scache.linesz = 0;
1703 c->scache.sets = 64 << ((config2 >> 8) & 15);
1704 c->scache.ways = 1 + (config2 & 15);
1706 scache_size = c->scache.sets *
1707 c->scache.ways *
1708 c->scache.linesz;
1709 /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1710 scache_size *= 4;
1711 c->scache.waybit = 0;
1712 c->scache.waysize = scache_size / c->scache.ways;
1713 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1714 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1715 if (scache_size)
1716 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1717 return;
1720 extern int r5k_sc_init(void);
1721 extern int rm7k_sc_init(void);
1722 extern int mips_sc_init(void);
1724 static void setup_scache(void)
1726 struct cpuinfo_mips *c = &current_cpu_data;
1727 unsigned int config = read_c0_config();
1728 int sc_present = 0;
1731 * Do the probing thing on R4000SC and R4400SC processors. Other
1732 * processors don't have a S-cache that would be relevant to the
1733 * Linux memory management.
1735 switch (current_cpu_type()) {
1736 case CPU_R4000SC:
1737 case CPU_R4000MC:
1738 case CPU_R4400SC:
1739 case CPU_R4400MC:
1740 sc_present = run_uncached(probe_scache);
1741 if (sc_present)
1742 c->options |= MIPS_CPU_CACHE_CDEX_S;
1743 break;
1745 case CPU_R10000:
1746 case CPU_R12000:
1747 case CPU_R14000:
1748 case CPU_R16000:
1749 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1750 c->scache.linesz = 64 << ((config >> 13) & 1);
1751 c->scache.ways = 2;
1752 c->scache.waybit= 0;
1753 sc_present = 1;
1754 break;
1756 case CPU_R5000:
1757 case CPU_NEVADA:
1758 #ifdef CONFIG_R5000_CPU_SCACHE
1759 r5k_sc_init();
1760 #endif
1761 return;
1763 case CPU_RM7000:
1764 #ifdef CONFIG_RM7000_CPU_SCACHE
1765 rm7k_sc_init();
1766 #endif
1767 return;
1769 case CPU_LOONGSON2:
1770 loongson2_sc_init();
1771 return;
1773 case CPU_LOONGSON3:
1774 loongson3_sc_init();
1775 return;
1777 case CPU_CAVIUM_OCTEON3:
1778 case CPU_XLP:
1779 /* don't need to worry about L2, fully coherent */
1780 return;
1782 default:
1783 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1784 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1785 MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1786 #ifdef CONFIG_MIPS_CPU_SCACHE
1787 if (mips_sc_init ()) {
1788 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1789 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1790 scache_size >> 10,
1791 way_string[c->scache.ways], c->scache.linesz);
1793 #else
1794 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1795 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1796 #endif
1797 return;
1799 sc_present = 0;
1802 if (!sc_present)
1803 return;
1805 /* compute a couple of other cache variables */
1806 c->scache.waysize = scache_size / c->scache.ways;
1808 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1810 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1811 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1813 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1816 void au1x00_fixup_config_od(void)
1819 * c0_config.od (bit 19) was write only (and read as 0)
1820 * on the early revisions of Alchemy SOCs. It disables the bus
1821 * transaction overlapping and needs to be set to fix various errata.
1823 switch (read_c0_prid()) {
1824 case 0x00030100: /* Au1000 DA */
1825 case 0x00030201: /* Au1000 HA */
1826 case 0x00030202: /* Au1000 HB */
1827 case 0x01030200: /* Au1500 AB */
1829 * Au1100 errata actually keeps silence about this bit, so we set it
1830 * just in case for those revisions that require it to be set according
1831 * to the (now gone) cpu table.
1833 case 0x02030200: /* Au1100 AB */
1834 case 0x02030201: /* Au1100 BA */
1835 case 0x02030202: /* Au1100 BC */
1836 set_c0_config(1 << 19);
1837 break;
1841 /* CP0 hazard avoidance. */
1842 #define NXP_BARRIER() \
1843 __asm__ __volatile__( \
1844 ".set noreorder\n\t" \
1845 "nop; nop; nop; nop; nop; nop;\n\t" \
1846 ".set reorder\n\t")
1848 static void nxp_pr4450_fixup_config(void)
1850 unsigned long config0;
1852 config0 = read_c0_config();
1854 /* clear all three cache coherency fields */
1855 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1856 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1857 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1858 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1859 write_c0_config(config0);
1860 NXP_BARRIER();
1863 static int cca = -1;
1865 static int __init cca_setup(char *str)
1867 get_option(&str, &cca);
1869 return 0;
1872 early_param("cca", cca_setup);
1874 static void coherency_setup(void)
1876 if (cca < 0 || cca > 7)
1877 cca = read_c0_config() & CONF_CM_CMASK;
1878 _page_cachable_default = cca << _CACHE_SHIFT;
1880 pr_debug("Using cache attribute %d\n", cca);
1881 change_c0_config(CONF_CM_CMASK, cca);
1884 * c0_status.cu=0 specifies that updates by the sc instruction use
1885 * the coherency mode specified by the TLB; 1 means cachable
1886 * coherent update on write will be used. Not all processors have
1887 * this bit and; some wire it to zero, others like Toshiba had the
1888 * silly idea of putting something else there ...
1890 switch (current_cpu_type()) {
1891 case CPU_R4000PC:
1892 case CPU_R4000SC:
1893 case CPU_R4000MC:
1894 case CPU_R4400PC:
1895 case CPU_R4400SC:
1896 case CPU_R4400MC:
1897 clear_c0_config(CONF_CU);
1898 break;
1900 * We need to catch the early Alchemy SOCs with
1901 * the write-only co_config.od bit and set it back to one on:
1902 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1904 case CPU_ALCHEMY:
1905 au1x00_fixup_config_od();
1906 break;
1908 case PRID_IMP_PR4450:
1909 nxp_pr4450_fixup_config();
1910 break;
1914 static void r4k_cache_error_setup(void)
1916 extern char __weak except_vec2_generic;
1917 extern char __weak except_vec2_sb1;
1919 switch (current_cpu_type()) {
1920 case CPU_SB1:
1921 case CPU_SB1A:
1922 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1923 break;
1925 default:
1926 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1927 break;
1931 void r4k_cache_init(void)
1933 extern void build_clear_page(void);
1934 extern void build_copy_page(void);
1935 struct cpuinfo_mips *c = &current_cpu_data;
1937 probe_pcache();
1938 probe_vcache();
1939 setup_scache();
1941 r4k_blast_dcache_page_setup();
1942 r4k_blast_dcache_page_indexed_setup();
1943 r4k_blast_dcache_setup();
1944 r4k_blast_icache_page_setup();
1945 r4k_blast_icache_page_indexed_setup();
1946 r4k_blast_icache_setup();
1947 r4k_blast_scache_page_setup();
1948 r4k_blast_scache_page_indexed_setup();
1949 r4k_blast_scache_setup();
1950 r4k_blast_scache_node_setup();
1951 #ifdef CONFIG_EVA
1952 r4k_blast_dcache_user_page_setup();
1953 r4k_blast_icache_user_page_setup();
1954 #endif
1957 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1958 * This code supports virtually indexed processors and will be
1959 * unnecessarily inefficient on physically indexed processors.
1961 if (c->dcache.linesz && cpu_has_dc_aliases)
1962 shm_align_mask = max_t( unsigned long,
1963 c->dcache.sets * c->dcache.linesz - 1,
1964 PAGE_SIZE - 1);
1965 else
1966 shm_align_mask = PAGE_SIZE-1;
1968 __flush_cache_vmap = r4k__flush_cache_vmap;
1969 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1971 flush_cache_all = cache_noop;
1972 __flush_cache_all = r4k___flush_cache_all;
1973 flush_cache_mm = r4k_flush_cache_mm;
1974 flush_cache_page = r4k_flush_cache_page;
1975 flush_cache_range = r4k_flush_cache_range;
1977 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1979 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1980 flush_icache_all = r4k_flush_icache_all;
1981 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1982 flush_data_cache_page = r4k_flush_data_cache_page;
1983 flush_icache_range = r4k_flush_icache_range;
1984 local_flush_icache_range = local_r4k_flush_icache_range;
1985 __flush_icache_user_range = r4k_flush_icache_user_range;
1986 __local_flush_icache_user_range = local_r4k_flush_icache_user_range;
1988 #ifdef CONFIG_DMA_NONCOHERENT
1989 #ifdef CONFIG_DMA_MAYBE_COHERENT
1990 if (coherentio == IO_COHERENCE_ENABLED ||
1991 (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
1992 _dma_cache_wback_inv = (void *)cache_noop;
1993 _dma_cache_wback = (void *)cache_noop;
1994 _dma_cache_inv = (void *)cache_noop;
1995 } else
1996 #endif /* CONFIG_DMA_MAYBE_COHERENT */
1998 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1999 _dma_cache_wback = r4k_dma_cache_wback_inv;
2000 _dma_cache_inv = r4k_dma_cache_inv;
2002 #endif /* CONFIG_DMA_NONCOHERENT */
2004 build_clear_page();
2005 build_copy_page();
2008 * We want to run CMP kernels on core with and without coherent
2009 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
2010 * or not to flush caches.
2012 local_r4k___flush_cache_all(NULL);
2014 coherency_setup();
2015 board_cache_error_setup = r4k_cache_error_setup;
2018 * Per-CPU overrides
2020 switch (current_cpu_type()) {
2021 case CPU_BMIPS4350:
2022 case CPU_BMIPS4380:
2023 /* No IPI is needed because all CPUs share the same D$ */
2024 flush_data_cache_page = r4k_blast_dcache_page;
2025 break;
2026 case CPU_BMIPS5000:
2027 /* We lose our superpowers if L2 is disabled */
2028 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
2029 break;
2031 /* I$ fills from D$ just by emptying the write buffers */
2032 flush_cache_page = (void *)b5k_instruction_hazard;
2033 flush_cache_range = (void *)b5k_instruction_hazard;
2034 flush_cache_sigtramp = (void *)b5k_instruction_hazard;
2035 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
2036 flush_data_cache_page = (void *)b5k_instruction_hazard;
2037 flush_icache_range = (void *)b5k_instruction_hazard;
2038 local_flush_icache_range = (void *)b5k_instruction_hazard;
2041 /* Optimization: an L2 flush implicitly flushes the L1 */
2042 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
2043 break;
2044 case CPU_LOONGSON3:
2045 /* Loongson-3 maintains cache coherency by hardware */
2046 __flush_cache_all = cache_noop;
2047 __flush_cache_vmap = cache_noop;
2048 __flush_cache_vunmap = cache_noop;
2049 __flush_kernel_vmap_range = (void *)cache_noop;
2050 flush_cache_mm = (void *)cache_noop;
2051 flush_cache_page = (void *)cache_noop;
2052 flush_cache_range = (void *)cache_noop;
2053 flush_cache_sigtramp = (void *)cache_noop;
2054 flush_icache_all = (void *)cache_noop;
2055 flush_data_cache_page = (void *)cache_noop;
2056 local_flush_data_cache_page = (void *)cache_noop;
2057 break;
2061 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
2062 void *v)
2064 switch (cmd) {
2065 case CPU_PM_ENTER_FAILED:
2066 case CPU_PM_EXIT:
2067 coherency_setup();
2068 break;
2071 return NOTIFY_OK;
2074 static struct notifier_block r4k_cache_pm_notifier_block = {
2075 .notifier_call = r4k_cache_pm_notifier,
2078 int __init r4k_cache_init_pm(void)
2080 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2082 arch_initcall(r4k_cache_init_pm);