1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
4 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
5 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
7 #include <linux/dma-direct.h>
8 #include <linux/dma-noncoherent.h>
9 #include <linux/dma-contiguous.h>
10 #include <linux/highmem.h>
12 #include <asm/cache.h>
13 #include <asm/cpu-type.h>
14 #include <asm/dma-coherence.h>
18 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
19 * fill random cachelines with stale data at any time, requiring an extra
22 * Warning on the terminology - Linux calls an uncached area coherent; MIPS
23 * terminology calls memory areas with hardware maintained coherency coherent.
25 * Note that the R14000 and R16000 should also be checked for in this condition.
26 * However this function is only called on non-I/O-coherent systems and only the
27 * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
30 static inline bool cpu_needs_post_dma_flush(struct device
*dev
)
32 switch (boot_cpu_type()) {
39 * Presence of MAARs suggests that the CPU supports
40 * speculatively prefetching data, and therefore requires
41 * the post-DMA flush/invalidate.
47 void *arch_dma_alloc(struct device
*dev
, size_t size
,
48 dma_addr_t
*dma_handle
, gfp_t gfp
, unsigned long attrs
)
52 ret
= dma_direct_alloc_pages(dev
, size
, dma_handle
, gfp
, attrs
);
53 if (ret
&& !(attrs
& DMA_ATTR_NON_CONSISTENT
)) {
54 dma_cache_wback_inv((unsigned long) ret
, size
);
55 ret
= (void *)UNCAC_ADDR(ret
);
61 void arch_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
62 dma_addr_t dma_addr
, unsigned long attrs
)
64 if (!(attrs
& DMA_ATTR_NON_CONSISTENT
))
65 cpu_addr
= (void *)CAC_ADDR((unsigned long)cpu_addr
);
66 dma_direct_free_pages(dev
, size
, cpu_addr
, dma_addr
, attrs
);
69 long arch_dma_coherent_to_pfn(struct device
*dev
, void *cpu_addr
,
72 unsigned long addr
= CAC_ADDR((unsigned long)cpu_addr
);
73 return page_to_pfn(virt_to_page((void *)addr
));
76 pgprot_t
arch_dma_mmap_pgprot(struct device
*dev
, pgprot_t prot
,
79 if (attrs
& DMA_ATTR_WRITE_COMBINE
)
80 return pgprot_writecombine(prot
);
81 return pgprot_noncached(prot
);
84 static inline void dma_sync_virt(void *addr
, size_t size
,
85 enum dma_data_direction dir
)
89 dma_cache_wback((unsigned long)addr
, size
);
93 dma_cache_inv((unsigned long)addr
, size
);
96 case DMA_BIDIRECTIONAL
:
97 dma_cache_wback_inv((unsigned long)addr
, size
);
106 * A single sg entry may refer to multiple physically contiguous pages. But
107 * we still need to process highmem pages individually. If highmem is not
108 * configured then the bulk of this loop gets optimized out.
110 static inline void dma_sync_phys(phys_addr_t paddr
, size_t size
,
111 enum dma_data_direction dir
)
113 struct page
*page
= pfn_to_page(paddr
>> PAGE_SHIFT
);
114 unsigned long offset
= paddr
& ~PAGE_MASK
;
120 if (PageHighMem(page
)) {
123 if (offset
+ len
> PAGE_SIZE
) {
124 if (offset
>= PAGE_SIZE
) {
125 page
+= offset
>> PAGE_SHIFT
;
126 offset
&= ~PAGE_MASK
;
128 len
= PAGE_SIZE
- offset
;
131 addr
= kmap_atomic(page
);
132 dma_sync_virt(addr
+ offset
, len
, dir
);
135 dma_sync_virt(page_address(page
) + offset
, size
, dir
);
142 void arch_sync_dma_for_device(struct device
*dev
, phys_addr_t paddr
,
143 size_t size
, enum dma_data_direction dir
)
145 dma_sync_phys(paddr
, size
, dir
);
148 void arch_sync_dma_for_cpu(struct device
*dev
, phys_addr_t paddr
,
149 size_t size
, enum dma_data_direction dir
)
151 if (cpu_needs_post_dma_flush(dev
))
152 dma_sync_phys(paddr
, size
, dir
);
155 void arch_dma_cache_sync(struct device
*dev
, void *vaddr
, size_t size
,
156 enum dma_data_direction direction
)
158 BUG_ON(direction
== DMA_NONE
);
160 dma_sync_virt(vaddr
, size
, direction
);