MIPS: eBPF: Fix icache flush end address
[linux/fpc-iii.git] / drivers / clocksource / timer-atmel-st.c
blobd2e660f475af6025077b045018c96c59e6bb40bb
1 /*
2 * linux/arch/arm/mach-at91/at91rm9200_time.c
4 * Copyright (C) 2003 SAN People
5 * Copyright (C) 2003 ATMEL
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/kernel.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/clk.h>
26 #include <linux/clockchips.h>
27 #include <linux/export.h>
28 #include <linux/mfd/syscon.h>
29 #include <linux/mfd/syscon/atmel-st.h>
30 #include <linux/of_irq.h>
31 #include <linux/regmap.h>
33 static unsigned long last_crtr;
34 static u32 irqmask;
35 static struct clock_event_device clkevt;
36 static struct regmap *regmap_st;
37 static int timer_latch;
40 * The ST_CRTR is updated asynchronously to the master clock ... but
41 * the updates as seen by the CPU don't seem to be strictly monotonic.
42 * Waiting until we read the same value twice avoids glitching.
44 static inline unsigned long read_CRTR(void)
46 unsigned int x1, x2;
48 regmap_read(regmap_st, AT91_ST_CRTR, &x1);
49 do {
50 regmap_read(regmap_st, AT91_ST_CRTR, &x2);
51 if (x1 == x2)
52 break;
53 x1 = x2;
54 } while (1);
55 return x1;
59 * IRQ handler for the timer.
61 static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id)
63 u32 sr;
65 regmap_read(regmap_st, AT91_ST_SR, &sr);
66 sr &= irqmask;
69 * irqs should be disabled here, but as the irq is shared they are only
70 * guaranteed to be off if the timer irq is registered first.
72 WARN_ON_ONCE(!irqs_disabled());
74 /* simulate "oneshot" timer with alarm */
75 if (sr & AT91_ST_ALMS) {
76 clkevt.event_handler(&clkevt);
77 return IRQ_HANDLED;
80 /* periodic mode should handle delayed ticks */
81 if (sr & AT91_ST_PITS) {
82 u32 crtr = read_CRTR();
84 while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) {
85 last_crtr += timer_latch;
86 clkevt.event_handler(&clkevt);
88 return IRQ_HANDLED;
91 /* this irq is shared ... */
92 return IRQ_NONE;
95 static u64 read_clk32k(struct clocksource *cs)
97 return read_CRTR();
100 static struct clocksource clk32k = {
101 .name = "32k_counter",
102 .rating = 150,
103 .read = read_clk32k,
104 .mask = CLOCKSOURCE_MASK(20),
105 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
108 static void clkdev32k_disable_and_flush_irq(void)
110 unsigned int val;
112 /* Disable and flush pending timer interrupts */
113 regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS);
114 regmap_read(regmap_st, AT91_ST_SR, &val);
115 last_crtr = read_CRTR();
118 static int clkevt32k_shutdown(struct clock_event_device *evt)
120 clkdev32k_disable_and_flush_irq();
121 irqmask = 0;
122 regmap_write(regmap_st, AT91_ST_IER, irqmask);
123 return 0;
126 static int clkevt32k_set_oneshot(struct clock_event_device *dev)
128 clkdev32k_disable_and_flush_irq();
131 * ALM for oneshot irqs, set by next_event()
132 * before 32 seconds have passed.
134 irqmask = AT91_ST_ALMS;
135 regmap_write(regmap_st, AT91_ST_RTAR, last_crtr);
136 regmap_write(regmap_st, AT91_ST_IER, irqmask);
137 return 0;
140 static int clkevt32k_set_periodic(struct clock_event_device *dev)
142 clkdev32k_disable_and_flush_irq();
144 /* PIT for periodic irqs; fixed rate of 1/HZ */
145 irqmask = AT91_ST_PITS;
146 regmap_write(regmap_st, AT91_ST_PIMR, timer_latch);
147 regmap_write(regmap_st, AT91_ST_IER, irqmask);
148 return 0;
151 static int
152 clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev)
154 u32 alm;
155 int status = 0;
156 unsigned int val;
158 BUG_ON(delta < 2);
160 /* The alarm IRQ uses absolute time (now+delta), not the relative
161 * time (delta) in our calling convention. Like all clockevents
162 * using such "match" hardware, we have a race to defend against.
164 * Our defense here is to have set up the clockevent device so the
165 * delta is at least two. That way we never end up writing RTAR
166 * with the value then held in CRTR ... which would mean the match
167 * wouldn't trigger until 32 seconds later, after CRTR wraps.
169 alm = read_CRTR();
171 /* Cancel any pending alarm; flush any pending IRQ */
172 regmap_write(regmap_st, AT91_ST_RTAR, alm);
173 regmap_read(regmap_st, AT91_ST_SR, &val);
175 /* Schedule alarm by writing RTAR. */
176 alm += delta;
177 regmap_write(regmap_st, AT91_ST_RTAR, alm);
179 return status;
182 static struct clock_event_device clkevt = {
183 .name = "at91_tick",
184 .features = CLOCK_EVT_FEAT_PERIODIC |
185 CLOCK_EVT_FEAT_ONESHOT,
186 .rating = 150,
187 .set_next_event = clkevt32k_next_event,
188 .set_state_shutdown = clkevt32k_shutdown,
189 .set_state_periodic = clkevt32k_set_periodic,
190 .set_state_oneshot = clkevt32k_set_oneshot,
191 .tick_resume = clkevt32k_shutdown,
195 * ST (system timer) module supports both clockevents and clocksource.
197 static int __init atmel_st_timer_init(struct device_node *node)
199 struct clk *sclk;
200 unsigned int sclk_rate, val;
201 int irq, ret;
203 regmap_st = syscon_node_to_regmap(node);
204 if (IS_ERR(regmap_st)) {
205 pr_err("Unable to get regmap\n");
206 return PTR_ERR(regmap_st);
209 /* Disable all timer interrupts, and clear any pending ones */
210 regmap_write(regmap_st, AT91_ST_IDR,
211 AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
212 regmap_read(regmap_st, AT91_ST_SR, &val);
214 /* Get the interrupts property */
215 irq = irq_of_parse_and_map(node, 0);
216 if (!irq) {
217 pr_err("Unable to get IRQ from DT\n");
218 return -EINVAL;
221 /* Make IRQs happen for the system timer */
222 ret = request_irq(irq, at91rm9200_timer_interrupt,
223 IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL,
224 "at91_tick", regmap_st);
225 if (ret) {
226 pr_err("Unable to setup IRQ\n");
227 return ret;
230 sclk = of_clk_get(node, 0);
231 if (IS_ERR(sclk)) {
232 pr_err("Unable to get slow clock\n");
233 return PTR_ERR(sclk);
236 ret = clk_prepare_enable(sclk);
237 if (ret) {
238 pr_err("Could not enable slow clock\n");
239 return ret;
242 sclk_rate = clk_get_rate(sclk);
243 if (!sclk_rate) {
244 pr_err("Invalid slow clock rate\n");
245 return -EINVAL;
247 timer_latch = (sclk_rate + HZ / 2) / HZ;
249 /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
250 * directly for the clocksource and all clockevents, after adjusting
251 * its prescaler from the 1 Hz default.
253 regmap_write(regmap_st, AT91_ST_RTMR, 1);
255 /* Setup timer clockevent, with minimum of two ticks (important!!) */
256 clkevt.cpumask = cpumask_of(0);
257 clockevents_config_and_register(&clkevt, sclk_rate,
258 2, AT91_ST_ALMV);
260 /* register clocksource */
261 return clocksource_register_hz(&clk32k, sclk_rate);
263 TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st",
264 atmel_st_timer_init);