2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
149 #include "net-sysfs.h"
151 #define MAX_GRO_SKBS 8
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 static DEFINE_SPINLOCK(ptype_lock
);
157 static DEFINE_SPINLOCK(offload_lock
);
158 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
159 struct list_head ptype_all __read_mostly
; /* Taps */
160 static struct list_head offload_base __read_mostly
;
162 static int netif_rx_internal(struct sk_buff
*skb
);
163 static int call_netdevice_notifiers_info(unsigned long val
,
164 struct netdev_notifier_info
*info
);
165 static struct napi_struct
*napi_by_id(unsigned int napi_id
);
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
186 DEFINE_RWLOCK(dev_base_lock
);
187 EXPORT_SYMBOL(dev_base_lock
);
189 static DEFINE_MUTEX(ifalias_mutex
);
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock
);
194 static unsigned int napi_gen_id
= NR_CPUS
;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
197 static seqcount_t devnet_rename_seq
;
199 static inline void dev_base_seq_inc(struct net
*net
)
201 while (++net
->dev_base_seq
== 0)
205 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
207 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
209 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
212 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
214 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
217 static inline void rps_lock(struct softnet_data
*sd
)
220 spin_lock(&sd
->input_pkt_queue
.lock
);
224 static inline void rps_unlock(struct softnet_data
*sd
)
227 spin_unlock(&sd
->input_pkt_queue
.lock
);
231 /* Device list insertion */
232 static void list_netdevice(struct net_device
*dev
)
234 struct net
*net
= dev_net(dev
);
238 write_lock_bh(&dev_base_lock
);
239 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
240 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
241 hlist_add_head_rcu(&dev
->index_hlist
,
242 dev_index_hash(net
, dev
->ifindex
));
243 write_unlock_bh(&dev_base_lock
);
245 dev_base_seq_inc(net
);
248 /* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
251 static void unlist_netdevice(struct net_device
*dev
)
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock
);
257 list_del_rcu(&dev
->dev_list
);
258 hlist_del_rcu(&dev
->name_hlist
);
259 hlist_del_rcu(&dev
->index_hlist
);
260 write_unlock_bh(&dev_base_lock
);
262 dev_base_seq_inc(dev_net(dev
));
269 static RAW_NOTIFIER_HEAD(netdev_chain
);
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
277 EXPORT_PER_CPU_SYMBOL(softnet_data
);
279 #ifdef CONFIG_LOCKDEP
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
284 static const unsigned short netdev_lock_type
[] = {
285 ARPHRD_NETROM
, ARPHRD_ETHER
, ARPHRD_EETHER
, ARPHRD_AX25
,
286 ARPHRD_PRONET
, ARPHRD_CHAOS
, ARPHRD_IEEE802
, ARPHRD_ARCNET
,
287 ARPHRD_APPLETLK
, ARPHRD_DLCI
, ARPHRD_ATM
, ARPHRD_METRICOM
,
288 ARPHRD_IEEE1394
, ARPHRD_EUI64
, ARPHRD_INFINIBAND
, ARPHRD_SLIP
,
289 ARPHRD_CSLIP
, ARPHRD_SLIP6
, ARPHRD_CSLIP6
, ARPHRD_RSRVD
,
290 ARPHRD_ADAPT
, ARPHRD_ROSE
, ARPHRD_X25
, ARPHRD_HWX25
,
291 ARPHRD_PPP
, ARPHRD_CISCO
, ARPHRD_LAPB
, ARPHRD_DDCMP
,
292 ARPHRD_RAWHDLC
, ARPHRD_TUNNEL
, ARPHRD_TUNNEL6
, ARPHRD_FRAD
,
293 ARPHRD_SKIP
, ARPHRD_LOOPBACK
, ARPHRD_LOCALTLK
, ARPHRD_FDDI
,
294 ARPHRD_BIF
, ARPHRD_SIT
, ARPHRD_IPDDP
, ARPHRD_IPGRE
,
295 ARPHRD_PIMREG
, ARPHRD_HIPPI
, ARPHRD_ASH
, ARPHRD_ECONET
,
296 ARPHRD_IRDA
, ARPHRD_FCPP
, ARPHRD_FCAL
, ARPHRD_FCPL
,
297 ARPHRD_FCFABRIC
, ARPHRD_IEEE80211
, ARPHRD_IEEE80211_PRISM
,
298 ARPHRD_IEEE80211_RADIOTAP
, ARPHRD_PHONET
, ARPHRD_PHONET_PIPE
,
299 ARPHRD_IEEE802154
, ARPHRD_VOID
, ARPHRD_NONE
};
301 static const char *const netdev_lock_name
[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 static struct lock_class_key netdev_xmit_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
319 static struct lock_class_key netdev_addr_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type
)
325 for (i
= 0; i
< ARRAY_SIZE(netdev_lock_type
); i
++)
326 if (netdev_lock_type
[i
] == dev_type
)
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type
) - 1;
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
333 unsigned short dev_type
)
337 i
= netdev_lock_pos(dev_type
);
338 lockdep_set_class_and_name(lock
, &netdev_xmit_lock_key
[i
],
339 netdev_lock_name
[i
]);
342 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
346 i
= netdev_lock_pos(dev
->type
);
347 lockdep_set_class_and_name(&dev
->addr_list_lock
,
348 &netdev_addr_lock_key
[i
],
349 netdev_lock_name
[i
]);
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
353 unsigned short dev_type
)
356 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
361 /*******************************************************************************
363 * Protocol management and registration routines
365 *******************************************************************************/
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
384 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
386 if (pt
->type
== htons(ETH_P_ALL
))
387 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
389 return pt
->dev
? &pt
->dev
->ptype_specific
:
390 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
406 void dev_add_pack(struct packet_type
*pt
)
408 struct list_head
*head
= ptype_head(pt
);
410 spin_lock(&ptype_lock
);
411 list_add_rcu(&pt
->list
, head
);
412 spin_unlock(&ptype_lock
);
414 EXPORT_SYMBOL(dev_add_pack
);
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
429 void __dev_remove_pack(struct packet_type
*pt
)
431 struct list_head
*head
= ptype_head(pt
);
432 struct packet_type
*pt1
;
434 spin_lock(&ptype_lock
);
436 list_for_each_entry(pt1
, head
, list
) {
438 list_del_rcu(&pt
->list
);
443 pr_warn("dev_remove_pack: %p not found\n", pt
);
445 spin_unlock(&ptype_lock
);
447 EXPORT_SYMBOL(__dev_remove_pack
);
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
458 * This call sleeps to guarantee that no CPU is looking at the packet
461 void dev_remove_pack(struct packet_type
*pt
)
463 __dev_remove_pack(pt
);
467 EXPORT_SYMBOL(dev_remove_pack
);
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
482 void dev_add_offload(struct packet_offload
*po
)
484 struct packet_offload
*elem
;
486 spin_lock(&offload_lock
);
487 list_for_each_entry(elem
, &offload_base
, list
) {
488 if (po
->priority
< elem
->priority
)
491 list_add_rcu(&po
->list
, elem
->list
.prev
);
492 spin_unlock(&offload_lock
);
494 EXPORT_SYMBOL(dev_add_offload
);
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
509 static void __dev_remove_offload(struct packet_offload
*po
)
511 struct list_head
*head
= &offload_base
;
512 struct packet_offload
*po1
;
514 spin_lock(&offload_lock
);
516 list_for_each_entry(po1
, head
, list
) {
518 list_del_rcu(&po
->list
);
523 pr_warn("dev_remove_offload: %p not found\n", po
);
525 spin_unlock(&offload_lock
);
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
537 * This call sleeps to guarantee that no CPU is looking at the packet
540 void dev_remove_offload(struct packet_offload
*po
)
542 __dev_remove_offload(po
);
546 EXPORT_SYMBOL(dev_remove_offload
);
548 /******************************************************************************
550 * Device Boot-time Settings Routines
552 ******************************************************************************/
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
566 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
568 struct netdev_boot_setup
*s
;
572 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
573 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
574 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
575 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
576 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
581 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
593 int netdev_boot_setup_check(struct net_device
*dev
)
595 struct netdev_boot_setup
*s
= dev_boot_setup
;
598 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
599 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
600 !strcmp(dev
->name
, s
[i
].name
)) {
601 dev
->irq
= s
[i
].map
.irq
;
602 dev
->base_addr
= s
[i
].map
.base_addr
;
603 dev
->mem_start
= s
[i
].map
.mem_start
;
604 dev
->mem_end
= s
[i
].map
.mem_end
;
610 EXPORT_SYMBOL(netdev_boot_setup_check
);
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
623 unsigned long netdev_boot_base(const char *prefix
, int unit
)
625 const struct netdev_boot_setup
*s
= dev_boot_setup
;
629 sprintf(name
, "%s%d", prefix
, unit
);
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
635 if (__dev_get_by_name(&init_net
, name
))
638 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
639 if (!strcmp(name
, s
[i
].name
))
640 return s
[i
].map
.base_addr
;
645 * Saves at boot time configured settings for any netdevice.
647 int __init
netdev_boot_setup(char *str
)
652 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
657 memset(&map
, 0, sizeof(map
));
661 map
.base_addr
= ints
[2];
663 map
.mem_start
= ints
[3];
665 map
.mem_end
= ints
[4];
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str
, &map
);
671 __setup("netdev=", netdev_boot_setup
);
673 /*******************************************************************************
675 * Device Interface Subroutines
677 *******************************************************************************/
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 int dev_get_iflink(const struct net_device
*dev
)
689 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
690 return dev
->netdev_ops
->ndo_get_iflink(dev
);
694 EXPORT_SYMBOL(dev_get_iflink
);
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
705 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
707 struct ip_tunnel_info
*info
;
709 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
712 info
= skb_tunnel_info_unclone(skb
);
715 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
718 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
734 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
736 struct net_device
*dev
;
737 struct hlist_head
*head
= dev_name_hash(net
, name
);
739 hlist_for_each_entry(dev
, head
, name_hlist
)
740 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
745 EXPORT_SYMBOL(__dev_get_by_name
);
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
759 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
761 struct net_device
*dev
;
762 struct hlist_head
*head
= dev_name_hash(net
, name
);
764 hlist_for_each_entry_rcu(dev
, head
, name_hlist
)
765 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
770 EXPORT_SYMBOL(dev_get_by_name_rcu
);
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
784 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
786 struct net_device
*dev
;
789 dev
= dev_get_by_name_rcu(net
, name
);
795 EXPORT_SYMBOL(dev_get_by_name
);
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
809 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
811 struct net_device
*dev
;
812 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
814 hlist_for_each_entry(dev
, head
, index_hlist
)
815 if (dev
->ifindex
== ifindex
)
820 EXPORT_SYMBOL(__dev_get_by_index
);
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
833 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
835 struct net_device
*dev
;
836 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
838 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
839 if (dev
->ifindex
== ifindex
)
844 EXPORT_SYMBOL(dev_get_by_index_rcu
);
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
858 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
860 struct net_device
*dev
;
863 dev
= dev_get_by_index_rcu(net
, ifindex
);
869 EXPORT_SYMBOL(dev_get_by_index
);
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
881 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
883 struct napi_struct
*napi
;
885 WARN_ON_ONCE(!rcu_read_lock_held());
887 if (napi_id
< MIN_NAPI_ID
)
890 napi
= napi_by_id(napi_id
);
892 return napi
? napi
->dev
: NULL
;
894 EXPORT_SYMBOL(dev_get_by_napi_id
);
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
906 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
908 struct net_device
*dev
;
912 seq
= raw_seqcount_begin(&devnet_rename_seq
);
914 dev
= dev_get_by_index_rcu(net
, ifindex
);
920 strcpy(name
, dev
->name
);
922 if (read_seqcount_retry(&devnet_rename_seq
, seq
)) {
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
944 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
947 struct net_device
*dev
;
949 for_each_netdev_rcu(net
, dev
)
950 if (dev
->type
== type
&&
951 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
958 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
960 struct net_device
*dev
;
963 for_each_netdev(net
, dev
)
964 if (dev
->type
== type
)
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
971 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
973 struct net_device
*dev
, *ret
= NULL
;
976 for_each_netdev_rcu(net
, dev
)
977 if (dev
->type
== type
) {
985 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
998 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
1001 struct net_device
*dev
, *ret
;
1006 for_each_netdev(net
, dev
) {
1007 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1014 EXPORT_SYMBOL(__dev_get_by_flags
);
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1024 bool dev_valid_name(const char *name
)
1028 if (strnlen(name
, IFNAMSIZ
) == IFNAMSIZ
)
1030 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1034 if (*name
== '/' || *name
== ':' || isspace(*name
))
1040 EXPORT_SYMBOL(dev_valid_name
);
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1057 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1061 const int max_netdevices
= 8*PAGE_SIZE
;
1062 unsigned long *inuse
;
1063 struct net_device
*d
;
1065 if (!dev_valid_name(name
))
1068 p
= strchr(name
, '%');
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1075 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1078 /* Use one page as a bit array of possible slots */
1079 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1083 for_each_netdev(net
, d
) {
1084 if (!sscanf(d
->name
, name
, &i
))
1086 if (i
< 0 || i
>= max_netdevices
)
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf
, IFNAMSIZ
, name
, i
);
1091 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1095 i
= find_first_zero_bit(inuse
, max_netdevices
);
1096 free_page((unsigned long) inuse
);
1099 snprintf(buf
, IFNAMSIZ
, name
, i
);
1100 if (!__dev_get_by_name(net
, buf
))
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1110 static int dev_alloc_name_ns(struct net
*net
,
1111 struct net_device
*dev
,
1118 ret
= __dev_alloc_name(net
, name
, buf
);
1120 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1125 * dev_alloc_name - allocate a name for a device
1127 * @name: name format string
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1138 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1140 return dev_alloc_name_ns(dev_net(dev
), dev
, name
);
1142 EXPORT_SYMBOL(dev_alloc_name
);
1144 int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1149 if (!dev_valid_name(name
))
1152 if (strchr(name
, '%'))
1153 return dev_alloc_name_ns(net
, dev
, name
);
1154 else if (__dev_get_by_name(net
, name
))
1156 else if (dev
->name
!= name
)
1157 strlcpy(dev
->name
, name
, IFNAMSIZ
);
1161 EXPORT_SYMBOL(dev_get_valid_name
);
1164 * dev_change_name - change name of a device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1168 * Change name of a device, can pass format strings "eth%d".
1171 int dev_change_name(struct net_device
*dev
, const char *newname
)
1173 unsigned char old_assign_type
;
1174 char oldname
[IFNAMSIZ
];
1180 BUG_ON(!dev_net(dev
));
1183 if (dev
->flags
& IFF_UP
)
1186 write_seqcount_begin(&devnet_rename_seq
);
1188 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1189 write_seqcount_end(&devnet_rename_seq
);
1193 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1195 err
= dev_get_valid_name(net
, dev
, newname
);
1197 write_seqcount_end(&devnet_rename_seq
);
1201 if (oldname
[0] && !strchr(oldname
, '%'))
1202 netdev_info(dev
, "renamed from %s\n", oldname
);
1204 old_assign_type
= dev
->name_assign_type
;
1205 dev
->name_assign_type
= NET_NAME_RENAMED
;
1208 ret
= device_rename(&dev
->dev
, dev
->name
);
1210 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1211 dev
->name_assign_type
= old_assign_type
;
1212 write_seqcount_end(&devnet_rename_seq
);
1216 write_seqcount_end(&devnet_rename_seq
);
1218 netdev_adjacent_rename_links(dev
, oldname
);
1220 write_lock_bh(&dev_base_lock
);
1221 hlist_del_rcu(&dev
->name_hlist
);
1222 write_unlock_bh(&dev_base_lock
);
1226 write_lock_bh(&dev_base_lock
);
1227 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
1228 write_unlock_bh(&dev_base_lock
);
1230 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1231 ret
= notifier_to_errno(ret
);
1234 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 write_seqcount_begin(&devnet_rename_seq
);
1238 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1239 memcpy(oldname
, newname
, IFNAMSIZ
);
1240 dev
->name_assign_type
= old_assign_type
;
1241 old_assign_type
= NET_NAME_RENAMED
;
1244 pr_err("%s: name change rollback failed: %d\n",
1253 * dev_set_alias - change ifalias of a device
1255 * @alias: name up to IFALIASZ
1256 * @len: limit of bytes to copy from info
1258 * Set ifalias for a device,
1260 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1262 struct dev_ifalias
*new_alias
= NULL
;
1264 if (len
>= IFALIASZ
)
1268 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1272 memcpy(new_alias
->ifalias
, alias
, len
);
1273 new_alias
->ifalias
[len
] = 0;
1276 mutex_lock(&ifalias_mutex
);
1277 rcu_swap_protected(dev
->ifalias
, new_alias
,
1278 mutex_is_locked(&ifalias_mutex
));
1279 mutex_unlock(&ifalias_mutex
);
1282 kfree_rcu(new_alias
, rcuhead
);
1286 EXPORT_SYMBOL(dev_set_alias
);
1289 * dev_get_alias - get ifalias of a device
1291 * @name: buffer to store name of ifalias
1292 * @len: size of buffer
1294 * get ifalias for a device. Caller must make sure dev cannot go
1295 * away, e.g. rcu read lock or own a reference count to device.
1297 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1299 const struct dev_ifalias
*alias
;
1303 alias
= rcu_dereference(dev
->ifalias
);
1305 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1312 * netdev_features_change - device changes features
1313 * @dev: device to cause notification
1315 * Called to indicate a device has changed features.
1317 void netdev_features_change(struct net_device
*dev
)
1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1321 EXPORT_SYMBOL(netdev_features_change
);
1324 * netdev_state_change - device changes state
1325 * @dev: device to cause notification
1327 * Called to indicate a device has changed state. This function calls
1328 * the notifier chains for netdev_chain and sends a NEWLINK message
1329 * to the routing socket.
1331 void netdev_state_change(struct net_device
*dev
)
1333 if (dev
->flags
& IFF_UP
) {
1334 struct netdev_notifier_change_info change_info
= {
1338 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1340 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1343 EXPORT_SYMBOL(netdev_state_change
);
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1355 void netdev_notify_peers(struct net_device
*dev
)
1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1362 EXPORT_SYMBOL(netdev_notify_peers
);
1364 static int __dev_open(struct net_device
*dev
)
1366 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1371 if (!netif_device_present(dev
))
1374 /* Block netpoll from trying to do any rx path servicing.
1375 * If we don't do this there is a chance ndo_poll_controller
1376 * or ndo_poll may be running while we open the device
1378 netpoll_poll_disable(dev
);
1380 ret
= call_netdevice_notifiers(NETDEV_PRE_UP
, dev
);
1381 ret
= notifier_to_errno(ret
);
1385 set_bit(__LINK_STATE_START
, &dev
->state
);
1387 if (ops
->ndo_validate_addr
)
1388 ret
= ops
->ndo_validate_addr(dev
);
1390 if (!ret
&& ops
->ndo_open
)
1391 ret
= ops
->ndo_open(dev
);
1393 netpoll_poll_enable(dev
);
1396 clear_bit(__LINK_STATE_START
, &dev
->state
);
1398 dev
->flags
|= IFF_UP
;
1399 dev_set_rx_mode(dev
);
1401 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1408 * dev_open - prepare an interface for use.
1409 * @dev: device to open
1411 * Takes a device from down to up state. The device's private open
1412 * function is invoked and then the multicast lists are loaded. Finally
1413 * the device is moved into the up state and a %NETDEV_UP message is
1414 * sent to the netdev notifier chain.
1416 * Calling this function on an active interface is a nop. On a failure
1417 * a negative errno code is returned.
1419 int dev_open(struct net_device
*dev
)
1423 if (dev
->flags
& IFF_UP
)
1426 ret
= __dev_open(dev
);
1430 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1431 call_netdevice_notifiers(NETDEV_UP
, dev
);
1435 EXPORT_SYMBOL(dev_open
);
1437 static void __dev_close_many(struct list_head
*head
)
1439 struct net_device
*dev
;
1444 list_for_each_entry(dev
, head
, close_list
) {
1445 /* Temporarily disable netpoll until the interface is down */
1446 netpoll_poll_disable(dev
);
1448 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1450 clear_bit(__LINK_STATE_START
, &dev
->state
);
1452 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453 * can be even on different cpu. So just clear netif_running().
1455 * dev->stop() will invoke napi_disable() on all of it's
1456 * napi_struct instances on this device.
1458 smp_mb__after_atomic(); /* Commit netif_running(). */
1461 dev_deactivate_many(head
);
1463 list_for_each_entry(dev
, head
, close_list
) {
1464 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1467 * Call the device specific close. This cannot fail.
1468 * Only if device is UP
1470 * We allow it to be called even after a DETACH hot-plug
1476 dev
->flags
&= ~IFF_UP
;
1477 netpoll_poll_enable(dev
);
1481 static void __dev_close(struct net_device
*dev
)
1485 list_add(&dev
->close_list
, &single
);
1486 __dev_close_many(&single
);
1490 void dev_close_many(struct list_head
*head
, bool unlink
)
1492 struct net_device
*dev
, *tmp
;
1494 /* Remove the devices that don't need to be closed */
1495 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1496 if (!(dev
->flags
& IFF_UP
))
1497 list_del_init(&dev
->close_list
);
1499 __dev_close_many(head
);
1501 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1502 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1503 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1505 list_del_init(&dev
->close_list
);
1508 EXPORT_SYMBOL(dev_close_many
);
1511 * dev_close - shutdown an interface.
1512 * @dev: device to shutdown
1514 * This function moves an active device into down state. A
1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519 void dev_close(struct net_device
*dev
)
1521 if (dev
->flags
& IFF_UP
) {
1524 list_add(&dev
->close_list
, &single
);
1525 dev_close_many(&single
, true);
1529 EXPORT_SYMBOL(dev_close
);
1533 * dev_disable_lro - disable Large Receive Offload on a device
1536 * Disable Large Receive Offload (LRO) on a net device. Must be
1537 * called under RTNL. This is needed if received packets may be
1538 * forwarded to another interface.
1540 void dev_disable_lro(struct net_device
*dev
)
1542 struct net_device
*lower_dev
;
1543 struct list_head
*iter
;
1545 dev
->wanted_features
&= ~NETIF_F_LRO
;
1546 netdev_update_features(dev
);
1548 if (unlikely(dev
->features
& NETIF_F_LRO
))
1549 netdev_WARN(dev
, "failed to disable LRO!\n");
1551 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1552 dev_disable_lro(lower_dev
);
1554 EXPORT_SYMBOL(dev_disable_lro
);
1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1561 * called under RTNL. This is needed if Generic XDP is installed on
1564 static void dev_disable_gro_hw(struct net_device
*dev
)
1566 dev
->wanted_features
&= ~NETIF_F_GRO_HW
;
1567 netdev_update_features(dev
);
1569 if (unlikely(dev
->features
& NETIF_F_GRO_HW
))
1570 netdev_WARN(dev
, "failed to disable GRO_HW!\n");
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd
)
1576 case NETDEV_##val: \
1577 return "NETDEV_" __stringify(val);
1579 N(UP
) N(DOWN
) N(REBOOT
) N(CHANGE
) N(REGISTER
) N(UNREGISTER
)
1580 N(CHANGEMTU
) N(CHANGEADDR
) N(GOING_DOWN
) N(CHANGENAME
) N(FEAT_CHANGE
)
1581 N(BONDING_FAILOVER
) N(PRE_UP
) N(PRE_TYPE_CHANGE
) N(POST_TYPE_CHANGE
)
1582 N(POST_INIT
) N(RELEASE
) N(NOTIFY_PEERS
) N(JOIN
) N(CHANGEUPPER
)
1583 N(RESEND_IGMP
) N(PRECHANGEMTU
) N(CHANGEINFODATA
) N(BONDING_INFO
)
1584 N(PRECHANGEUPPER
) N(CHANGELOWERSTATE
) N(UDP_TUNNEL_PUSH_INFO
)
1585 N(UDP_TUNNEL_DROP_INFO
) N(CHANGE_TX_QUEUE_LEN
)
1586 N(CVLAN_FILTER_PUSH_INFO
) N(CVLAN_FILTER_DROP_INFO
)
1587 N(SVLAN_FILTER_PUSH_INFO
) N(SVLAN_FILTER_DROP_INFO
)
1590 return "UNKNOWN_NETDEV_EVENT";
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name
);
1594 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1595 struct net_device
*dev
)
1597 struct netdev_notifier_info info
= {
1601 return nb
->notifier_call(nb
, val
, &info
);
1604 static int dev_boot_phase
= 1;
1607 * register_netdevice_notifier - register a network notifier block
1610 * Register a notifier to be called when network device events occur.
1611 * The notifier passed is linked into the kernel structures and must
1612 * not be reused until it has been unregistered. A negative errno code
1613 * is returned on a failure.
1615 * When registered all registration and up events are replayed
1616 * to the new notifier to allow device to have a race free
1617 * view of the network device list.
1620 int register_netdevice_notifier(struct notifier_block
*nb
)
1622 struct net_device
*dev
;
1623 struct net_device
*last
;
1627 /* Close race with setup_net() and cleanup_net() */
1628 down_write(&pernet_ops_rwsem
);
1630 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1636 for_each_netdev(net
, dev
) {
1637 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1638 err
= notifier_to_errno(err
);
1642 if (!(dev
->flags
& IFF_UP
))
1645 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1651 up_write(&pernet_ops_rwsem
);
1657 for_each_netdev(net
, dev
) {
1661 if (dev
->flags
& IFF_UP
) {
1662 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1664 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1666 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1671 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1674 EXPORT_SYMBOL(register_netdevice_notifier
);
1677 * unregister_netdevice_notifier - unregister a network notifier block
1680 * Unregister a notifier previously registered by
1681 * register_netdevice_notifier(). The notifier is unlinked into the
1682 * kernel structures and may then be reused. A negative errno code
1683 * is returned on a failure.
1685 * After unregistering unregister and down device events are synthesized
1686 * for all devices on the device list to the removed notifier to remove
1687 * the need for special case cleanup code.
1690 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1692 struct net_device
*dev
;
1696 /* Close race with setup_net() and cleanup_net() */
1697 down_write(&pernet_ops_rwsem
);
1699 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1704 for_each_netdev(net
, dev
) {
1705 if (dev
->flags
& IFF_UP
) {
1706 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1708 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1710 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1715 up_write(&pernet_ops_rwsem
);
1718 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1721 * call_netdevice_notifiers_info - call all network notifier blocks
1722 * @val: value passed unmodified to notifier function
1723 * @info: notifier information data
1725 * Call all network notifier blocks. Parameters and return value
1726 * are as for raw_notifier_call_chain().
1729 static int call_netdevice_notifiers_info(unsigned long val
,
1730 struct netdev_notifier_info
*info
)
1733 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1737 * call_netdevice_notifiers - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @dev: net_device pointer passed unmodified to notifier function
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1745 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1747 struct netdev_notifier_info info
= {
1751 return call_netdevice_notifiers_info(val
, &info
);
1753 EXPORT_SYMBOL(call_netdevice_notifiers
);
1756 * call_netdevice_notifiers_mtu - call all network notifier blocks
1757 * @val: value passed unmodified to notifier function
1758 * @dev: net_device pointer passed unmodified to notifier function
1759 * @arg: additional u32 argument passed to the notifier function
1761 * Call all network notifier blocks. Parameters and return value
1762 * are as for raw_notifier_call_chain().
1764 static int call_netdevice_notifiers_mtu(unsigned long val
,
1765 struct net_device
*dev
, u32 arg
)
1767 struct netdev_notifier_info_ext info
= {
1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext
, info
) != 0);
1774 return call_netdevice_notifiers_info(val
, &info
.info
);
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key
);
1780 void net_inc_ingress_queue(void)
1782 static_branch_inc(&ingress_needed_key
);
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
1786 void net_dec_ingress_queue(void)
1788 static_branch_dec(&ingress_needed_key
);
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key
);
1796 void net_inc_egress_queue(void)
1798 static_branch_inc(&egress_needed_key
);
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
1802 void net_dec_egress_queue(void)
1804 static_branch_dec(&egress_needed_key
);
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key
);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred
;
1812 static atomic_t netstamp_wanted
;
1813 static void netstamp_clear(struct work_struct
*work
)
1815 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
1818 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
1820 static_branch_enable(&netstamp_needed_key
);
1822 static_branch_disable(&netstamp_needed_key
);
1824 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
1827 void net_enable_timestamp(void)
1829 #ifdef HAVE_JUMP_LABEL
1833 wanted
= atomic_read(&netstamp_wanted
);
1836 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
1839 atomic_inc(&netstamp_needed_deferred
);
1840 schedule_work(&netstamp_work
);
1842 static_branch_inc(&netstamp_needed_key
);
1845 EXPORT_SYMBOL(net_enable_timestamp
);
1847 void net_disable_timestamp(void)
1849 #ifdef HAVE_JUMP_LABEL
1853 wanted
= atomic_read(&netstamp_wanted
);
1856 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
1859 atomic_dec(&netstamp_needed_deferred
);
1860 schedule_work(&netstamp_work
);
1862 static_branch_dec(&netstamp_needed_key
);
1865 EXPORT_SYMBOL(net_disable_timestamp
);
1867 static inline void net_timestamp_set(struct sk_buff
*skb
)
1870 if (static_branch_unlikely(&netstamp_needed_key
))
1871 __net_timestamp(skb
);
1874 #define net_timestamp_check(COND, SKB) \
1875 if (static_branch_unlikely(&netstamp_needed_key)) { \
1876 if ((COND) && !(SKB)->tstamp) \
1877 __net_timestamp(SKB); \
1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1884 if (!(dev
->flags
& IFF_UP
))
1887 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
1888 if (skb
->len
<= len
)
1891 /* if TSO is enabled, we don't care about the length as the packet
1892 * could be forwarded without being segmented before
1894 if (skb_is_gso(skb
))
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
1901 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1903 int ret
= ____dev_forward_skb(dev
, skb
);
1906 skb
->protocol
= eth_type_trans(skb
, dev
);
1907 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
1915 * dev_forward_skb - loopback an skb to another netif
1917 * @dev: destination network device
1918 * @skb: buffer to forward
1921 * NET_RX_SUCCESS (no congestion)
1922 * NET_RX_DROP (packet was dropped, but freed)
1924 * dev_forward_skb can be used for injecting an skb from the
1925 * start_xmit function of one device into the receive queue
1926 * of another device.
1928 * The receiving device may be in another namespace, so
1929 * we have to clear all information in the skb that could
1930 * impact namespace isolation.
1932 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1934 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
1936 EXPORT_SYMBOL_GPL(dev_forward_skb
);
1938 static inline int deliver_skb(struct sk_buff
*skb
,
1939 struct packet_type
*pt_prev
,
1940 struct net_device
*orig_dev
)
1942 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
1944 refcount_inc(&skb
->users
);
1945 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
1948 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
1949 struct packet_type
**pt
,
1950 struct net_device
*orig_dev
,
1952 struct list_head
*ptype_list
)
1954 struct packet_type
*ptype
, *pt_prev
= *pt
;
1956 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1957 if (ptype
->type
!= type
)
1960 deliver_skb(skb
, pt_prev
, orig_dev
);
1966 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
1968 if (!ptype
->af_packet_priv
|| !skb
->sk
)
1971 if (ptype
->id_match
)
1972 return ptype
->id_match(ptype
, skb
->sk
);
1973 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
1980 * dev_nit_active - return true if any network interface taps are in use
1982 * @dev: network device to check for the presence of taps
1984 bool dev_nit_active(struct net_device
*dev
)
1986 return !list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
);
1988 EXPORT_SYMBOL_GPL(dev_nit_active
);
1991 * Support routine. Sends outgoing frames to any network
1992 * taps currently in use.
1995 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
1997 struct packet_type
*ptype
;
1998 struct sk_buff
*skb2
= NULL
;
1999 struct packet_type
*pt_prev
= NULL
;
2000 struct list_head
*ptype_list
= &ptype_all
;
2004 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2005 if (ptype
->ignore_outgoing
)
2008 /* Never send packets back to the socket
2009 * they originated from - MvS (miquels@drinkel.ow.org)
2011 if (skb_loop_sk(ptype
, skb
))
2015 deliver_skb(skb2
, pt_prev
, skb
->dev
);
2020 /* need to clone skb, done only once */
2021 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2025 net_timestamp_set(skb2
);
2027 /* skb->nh should be correctly
2028 * set by sender, so that the second statement is
2029 * just protection against buggy protocols.
2031 skb_reset_mac_header(skb2
);
2033 if (skb_network_header(skb2
) < skb2
->data
||
2034 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
2035 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036 ntohs(skb2
->protocol
),
2038 skb_reset_network_header(skb2
);
2041 skb2
->transport_header
= skb2
->network_header
;
2042 skb2
->pkt_type
= PACKET_OUTGOING
;
2046 if (ptype_list
== &ptype_all
) {
2047 ptype_list
= &dev
->ptype_all
;
2052 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
2053 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
2062 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063 * @dev: Network device
2064 * @txq: number of queues available
2066 * If real_num_tx_queues is changed the tc mappings may no longer be
2067 * valid. To resolve this verify the tc mapping remains valid and if
2068 * not NULL the mapping. With no priorities mapping to this
2069 * offset/count pair it will no longer be used. In the worst case TC0
2070 * is invalid nothing can be done so disable priority mappings. If is
2071 * expected that drivers will fix this mapping if they can before
2072 * calling netif_set_real_num_tx_queues.
2074 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
2077 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2079 /* If TC0 is invalidated disable TC mapping */
2080 if (tc
->offset
+ tc
->count
> txq
) {
2081 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2086 /* Invalidated prio to tc mappings set to TC0 */
2087 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
2088 int q
= netdev_get_prio_tc_map(dev
, i
);
2090 tc
= &dev
->tc_to_txq
[q
];
2091 if (tc
->offset
+ tc
->count
> txq
) {
2092 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2094 netdev_set_prio_tc_map(dev
, i
, 0);
2099 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2102 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2105 /* walk through the TCs and see if it falls into any of them */
2106 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2107 if ((txq
- tc
->offset
) < tc
->count
)
2111 /* didn't find it, just return -1 to indicate no match */
2117 EXPORT_SYMBOL(netdev_txq_to_tc
);
2120 struct static_key xps_needed __read_mostly
;
2121 EXPORT_SYMBOL(xps_needed
);
2122 struct static_key xps_rxqs_needed __read_mostly
;
2123 EXPORT_SYMBOL(xps_rxqs_needed
);
2124 static DEFINE_MUTEX(xps_map_mutex
);
2125 #define xmap_dereference(P) \
2126 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2128 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2131 struct xps_map
*map
= NULL
;
2135 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2139 for (pos
= map
->len
; pos
--;) {
2140 if (map
->queues
[pos
] != index
)
2144 map
->queues
[pos
] = map
->queues
[--map
->len
];
2148 RCU_INIT_POINTER(dev_maps
->attr_map
[tci
], NULL
);
2149 kfree_rcu(map
, rcu
);
2156 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2157 struct xps_dev_maps
*dev_maps
,
2158 int cpu
, u16 offset
, u16 count
)
2160 int num_tc
= dev
->num_tc
? : 1;
2161 bool active
= false;
2164 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2167 for (i
= count
, j
= offset
; i
--; j
++) {
2168 if (!remove_xps_queue(dev_maps
, tci
, j
))
2178 static void reset_xps_maps(struct net_device
*dev
,
2179 struct xps_dev_maps
*dev_maps
,
2183 static_key_slow_dec_cpuslocked(&xps_rxqs_needed
);
2184 RCU_INIT_POINTER(dev
->xps_rxqs_map
, NULL
);
2186 RCU_INIT_POINTER(dev
->xps_cpus_map
, NULL
);
2188 static_key_slow_dec_cpuslocked(&xps_needed
);
2189 kfree_rcu(dev_maps
, rcu
);
2192 static void clean_xps_maps(struct net_device
*dev
, const unsigned long *mask
,
2193 struct xps_dev_maps
*dev_maps
, unsigned int nr_ids
,
2194 u16 offset
, u16 count
, bool is_rxqs_map
)
2196 bool active
= false;
2199 for (j
= -1; j
= netif_attrmask_next(j
, mask
, nr_ids
),
2201 active
|= remove_xps_queue_cpu(dev
, dev_maps
, j
, offset
,
2204 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2207 for (i
= offset
+ (count
- 1); count
--; i
--) {
2208 netdev_queue_numa_node_write(
2209 netdev_get_tx_queue(dev
, i
),
2215 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2218 const unsigned long *possible_mask
= NULL
;
2219 struct xps_dev_maps
*dev_maps
;
2220 unsigned int nr_ids
;
2222 if (!static_key_false(&xps_needed
))
2226 mutex_lock(&xps_map_mutex
);
2228 if (static_key_false(&xps_rxqs_needed
)) {
2229 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2231 nr_ids
= dev
->num_rx_queues
;
2232 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
,
2233 offset
, count
, true);
2237 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2241 if (num_possible_cpus() > 1)
2242 possible_mask
= cpumask_bits(cpu_possible_mask
);
2243 nr_ids
= nr_cpu_ids
;
2244 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
, offset
, count
,
2248 mutex_unlock(&xps_map_mutex
);
2252 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2254 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2257 static struct xps_map
*expand_xps_map(struct xps_map
*map
, int attr_index
,
2258 u16 index
, bool is_rxqs_map
)
2260 struct xps_map
*new_map
;
2261 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2264 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2265 if (map
->queues
[pos
] != index
)
2270 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2272 if (pos
< map
->alloc_len
)
2275 alloc_len
= map
->alloc_len
* 2;
2278 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2282 new_map
= kzalloc(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
);
2284 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2285 cpu_to_node(attr_index
));
2289 for (i
= 0; i
< pos
; i
++)
2290 new_map
->queues
[i
] = map
->queues
[i
];
2291 new_map
->alloc_len
= alloc_len
;
2297 /* Must be called under cpus_read_lock */
2298 int __netif_set_xps_queue(struct net_device
*dev
, const unsigned long *mask
,
2299 u16 index
, bool is_rxqs_map
)
2301 const unsigned long *online_mask
= NULL
, *possible_mask
= NULL
;
2302 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2303 int i
, j
, tci
, numa_node_id
= -2;
2304 int maps_sz
, num_tc
= 1, tc
= 0;
2305 struct xps_map
*map
, *new_map
;
2306 bool active
= false;
2307 unsigned int nr_ids
;
2310 /* Do not allow XPS on subordinate device directly */
2311 num_tc
= dev
->num_tc
;
2315 /* If queue belongs to subordinate dev use its map */
2316 dev
= netdev_get_tx_queue(dev
, index
)->sb_dev
? : dev
;
2318 tc
= netdev_txq_to_tc(dev
, index
);
2323 mutex_lock(&xps_map_mutex
);
2325 maps_sz
= XPS_RXQ_DEV_MAPS_SIZE(num_tc
, dev
->num_rx_queues
);
2326 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2327 nr_ids
= dev
->num_rx_queues
;
2329 maps_sz
= XPS_CPU_DEV_MAPS_SIZE(num_tc
);
2330 if (num_possible_cpus() > 1) {
2331 online_mask
= cpumask_bits(cpu_online_mask
);
2332 possible_mask
= cpumask_bits(cpu_possible_mask
);
2334 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2335 nr_ids
= nr_cpu_ids
;
2338 if (maps_sz
< L1_CACHE_BYTES
)
2339 maps_sz
= L1_CACHE_BYTES
;
2341 /* allocate memory for queue storage */
2342 for (j
= -1; j
= netif_attrmask_next_and(j
, online_mask
, mask
, nr_ids
),
2345 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2346 if (!new_dev_maps
) {
2347 mutex_unlock(&xps_map_mutex
);
2351 tci
= j
* num_tc
+ tc
;
2352 map
= dev_maps
? xmap_dereference(dev_maps
->attr_map
[tci
]) :
2355 map
= expand_xps_map(map
, j
, index
, is_rxqs_map
);
2359 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2363 goto out_no_new_maps
;
2366 /* Increment static keys at most once per type */
2367 static_key_slow_inc_cpuslocked(&xps_needed
);
2369 static_key_slow_inc_cpuslocked(&xps_rxqs_needed
);
2372 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2374 /* copy maps belonging to foreign traffic classes */
2375 for (i
= tc
, tci
= j
* num_tc
; dev_maps
&& i
--; tci
++) {
2376 /* fill in the new device map from the old device map */
2377 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2378 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2381 /* We need to explicitly update tci as prevous loop
2382 * could break out early if dev_maps is NULL.
2384 tci
= j
* num_tc
+ tc
;
2386 if (netif_attr_test_mask(j
, mask
, nr_ids
) &&
2387 netif_attr_test_online(j
, online_mask
, nr_ids
)) {
2388 /* add tx-queue to CPU/rx-queue maps */
2391 map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2392 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2395 if (pos
== map
->len
)
2396 map
->queues
[map
->len
++] = index
;
2399 if (numa_node_id
== -2)
2400 numa_node_id
= cpu_to_node(j
);
2401 else if (numa_node_id
!= cpu_to_node(j
))
2405 } else if (dev_maps
) {
2406 /* fill in the new device map from the old device map */
2407 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2408 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2411 /* copy maps belonging to foreign traffic classes */
2412 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2413 /* fill in the new device map from the old device map */
2414 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2415 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2420 rcu_assign_pointer(dev
->xps_rxqs_map
, new_dev_maps
);
2422 rcu_assign_pointer(dev
->xps_cpus_map
, new_dev_maps
);
2424 /* Cleanup old maps */
2426 goto out_no_old_maps
;
2428 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2430 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2431 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2432 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2433 if (map
&& map
!= new_map
)
2434 kfree_rcu(map
, rcu
);
2438 kfree_rcu(dev_maps
, rcu
);
2441 dev_maps
= new_dev_maps
;
2446 /* update Tx queue numa node */
2447 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2448 (numa_node_id
>= 0) ?
2449 numa_node_id
: NUMA_NO_NODE
);
2455 /* removes tx-queue from unused CPUs/rx-queues */
2456 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2458 for (i
= tc
, tci
= j
* num_tc
; i
--; tci
++)
2459 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2460 if (!netif_attr_test_mask(j
, mask
, nr_ids
) ||
2461 !netif_attr_test_online(j
, online_mask
, nr_ids
))
2462 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2463 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2464 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2467 /* free map if not active */
2469 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2472 mutex_unlock(&xps_map_mutex
);
2476 /* remove any maps that we added */
2477 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2479 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2480 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2482 xmap_dereference(dev_maps
->attr_map
[tci
]) :
2484 if (new_map
&& new_map
!= map
)
2489 mutex_unlock(&xps_map_mutex
);
2491 kfree(new_dev_maps
);
2494 EXPORT_SYMBOL_GPL(__netif_set_xps_queue
);
2496 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2502 ret
= __netif_set_xps_queue(dev
, cpumask_bits(mask
), index
, false);
2507 EXPORT_SYMBOL(netif_set_xps_queue
);
2510 static void netdev_unbind_all_sb_channels(struct net_device
*dev
)
2512 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2514 /* Unbind any subordinate channels */
2515 while (txq
-- != &dev
->_tx
[0]) {
2517 netdev_unbind_sb_channel(dev
, txq
->sb_dev
);
2521 void netdev_reset_tc(struct net_device
*dev
)
2524 netif_reset_xps_queues_gt(dev
, 0);
2526 netdev_unbind_all_sb_channels(dev
);
2528 /* Reset TC configuration of device */
2530 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2531 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2533 EXPORT_SYMBOL(netdev_reset_tc
);
2535 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2537 if (tc
>= dev
->num_tc
)
2541 netif_reset_xps_queues(dev
, offset
, count
);
2543 dev
->tc_to_txq
[tc
].count
= count
;
2544 dev
->tc_to_txq
[tc
].offset
= offset
;
2547 EXPORT_SYMBOL(netdev_set_tc_queue
);
2549 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2551 if (num_tc
> TC_MAX_QUEUE
)
2555 netif_reset_xps_queues_gt(dev
, 0);
2557 netdev_unbind_all_sb_channels(dev
);
2559 dev
->num_tc
= num_tc
;
2562 EXPORT_SYMBOL(netdev_set_num_tc
);
2564 void netdev_unbind_sb_channel(struct net_device
*dev
,
2565 struct net_device
*sb_dev
)
2567 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2570 netif_reset_xps_queues_gt(sb_dev
, 0);
2572 memset(sb_dev
->tc_to_txq
, 0, sizeof(sb_dev
->tc_to_txq
));
2573 memset(sb_dev
->prio_tc_map
, 0, sizeof(sb_dev
->prio_tc_map
));
2575 while (txq
-- != &dev
->_tx
[0]) {
2576 if (txq
->sb_dev
== sb_dev
)
2580 EXPORT_SYMBOL(netdev_unbind_sb_channel
);
2582 int netdev_bind_sb_channel_queue(struct net_device
*dev
,
2583 struct net_device
*sb_dev
,
2584 u8 tc
, u16 count
, u16 offset
)
2586 /* Make certain the sb_dev and dev are already configured */
2587 if (sb_dev
->num_tc
>= 0 || tc
>= dev
->num_tc
)
2590 /* We cannot hand out queues we don't have */
2591 if ((offset
+ count
) > dev
->real_num_tx_queues
)
2594 /* Record the mapping */
2595 sb_dev
->tc_to_txq
[tc
].count
= count
;
2596 sb_dev
->tc_to_txq
[tc
].offset
= offset
;
2598 /* Provide a way for Tx queue to find the tc_to_txq map or
2599 * XPS map for itself.
2602 netdev_get_tx_queue(dev
, count
+ offset
)->sb_dev
= sb_dev
;
2606 EXPORT_SYMBOL(netdev_bind_sb_channel_queue
);
2608 int netdev_set_sb_channel(struct net_device
*dev
, u16 channel
)
2610 /* Do not use a multiqueue device to represent a subordinate channel */
2611 if (netif_is_multiqueue(dev
))
2614 /* We allow channels 1 - 32767 to be used for subordinate channels.
2615 * Channel 0 is meant to be "native" mode and used only to represent
2616 * the main root device. We allow writing 0 to reset the device back
2617 * to normal mode after being used as a subordinate channel.
2619 if (channel
> S16_MAX
)
2622 dev
->num_tc
= -channel
;
2626 EXPORT_SYMBOL(netdev_set_sb_channel
);
2629 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2630 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2632 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2637 disabling
= txq
< dev
->real_num_tx_queues
;
2639 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2642 if (dev
->reg_state
== NETREG_REGISTERED
||
2643 dev
->reg_state
== NETREG_UNREGISTERING
) {
2646 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2652 netif_setup_tc(dev
, txq
);
2654 dev
->real_num_tx_queues
= txq
;
2658 qdisc_reset_all_tx_gt(dev
, txq
);
2660 netif_reset_xps_queues_gt(dev
, txq
);
2664 dev
->real_num_tx_queues
= txq
;
2669 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2673 * netif_set_real_num_rx_queues - set actual number of RX queues used
2674 * @dev: Network device
2675 * @rxq: Actual number of RX queues
2677 * This must be called either with the rtnl_lock held or before
2678 * registration of the net device. Returns 0 on success, or a
2679 * negative error code. If called before registration, it always
2682 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2686 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2689 if (dev
->reg_state
== NETREG_REGISTERED
) {
2692 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2698 dev
->real_num_rx_queues
= rxq
;
2701 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2705 * netif_get_num_default_rss_queues - default number of RSS queues
2707 * This routine should set an upper limit on the number of RSS queues
2708 * used by default by multiqueue devices.
2710 int netif_get_num_default_rss_queues(void)
2712 return is_kdump_kernel() ?
2713 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2715 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2717 static void __netif_reschedule(struct Qdisc
*q
)
2719 struct softnet_data
*sd
;
2720 unsigned long flags
;
2722 local_irq_save(flags
);
2723 sd
= this_cpu_ptr(&softnet_data
);
2724 q
->next_sched
= NULL
;
2725 *sd
->output_queue_tailp
= q
;
2726 sd
->output_queue_tailp
= &q
->next_sched
;
2727 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2728 local_irq_restore(flags
);
2731 void __netif_schedule(struct Qdisc
*q
)
2733 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2734 __netif_reschedule(q
);
2736 EXPORT_SYMBOL(__netif_schedule
);
2738 struct dev_kfree_skb_cb
{
2739 enum skb_free_reason reason
;
2742 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2744 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2747 void netif_schedule_queue(struct netdev_queue
*txq
)
2750 if (!(txq
->state
& QUEUE_STATE_ANY_XOFF
)) {
2751 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2753 __netif_schedule(q
);
2757 EXPORT_SYMBOL(netif_schedule_queue
);
2759 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2761 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2765 q
= rcu_dereference(dev_queue
->qdisc
);
2766 __netif_schedule(q
);
2770 EXPORT_SYMBOL(netif_tx_wake_queue
);
2772 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2774 unsigned long flags
;
2779 if (likely(refcount_read(&skb
->users
) == 1)) {
2781 refcount_set(&skb
->users
, 0);
2782 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
2785 get_kfree_skb_cb(skb
)->reason
= reason
;
2786 local_irq_save(flags
);
2787 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
2788 __this_cpu_write(softnet_data
.completion_queue
, skb
);
2789 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2790 local_irq_restore(flags
);
2792 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
2794 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
2796 if (in_irq() || irqs_disabled())
2797 __dev_kfree_skb_irq(skb
, reason
);
2801 EXPORT_SYMBOL(__dev_kfree_skb_any
);
2805 * netif_device_detach - mark device as removed
2806 * @dev: network device
2808 * Mark device as removed from system and therefore no longer available.
2810 void netif_device_detach(struct net_device
*dev
)
2812 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2813 netif_running(dev
)) {
2814 netif_tx_stop_all_queues(dev
);
2817 EXPORT_SYMBOL(netif_device_detach
);
2820 * netif_device_attach - mark device as attached
2821 * @dev: network device
2823 * Mark device as attached from system and restart if needed.
2825 void netif_device_attach(struct net_device
*dev
)
2827 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2828 netif_running(dev
)) {
2829 netif_tx_wake_all_queues(dev
);
2830 __netdev_watchdog_up(dev
);
2833 EXPORT_SYMBOL(netif_device_attach
);
2836 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2837 * to be used as a distribution range.
2839 static u16
skb_tx_hash(const struct net_device
*dev
,
2840 const struct net_device
*sb_dev
,
2841 struct sk_buff
*skb
)
2845 u16 qcount
= dev
->real_num_tx_queues
;
2848 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
2850 qoffset
= sb_dev
->tc_to_txq
[tc
].offset
;
2851 qcount
= sb_dev
->tc_to_txq
[tc
].count
;
2854 if (skb_rx_queue_recorded(skb
)) {
2855 hash
= skb_get_rx_queue(skb
);
2856 while (unlikely(hash
>= qcount
))
2858 return hash
+ qoffset
;
2861 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
2864 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
2866 static const netdev_features_t null_features
;
2867 struct net_device
*dev
= skb
->dev
;
2868 const char *name
= "";
2870 if (!net_ratelimit())
2874 if (dev
->dev
.parent
)
2875 name
= dev_driver_string(dev
->dev
.parent
);
2877 name
= netdev_name(dev
);
2879 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2880 "gso_type=%d ip_summed=%d\n",
2881 name
, dev
? &dev
->features
: &null_features
,
2882 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
,
2883 skb
->len
, skb
->data_len
, skb_shinfo(skb
)->gso_size
,
2884 skb_shinfo(skb
)->gso_type
, skb
->ip_summed
);
2888 * Invalidate hardware checksum when packet is to be mangled, and
2889 * complete checksum manually on outgoing path.
2891 int skb_checksum_help(struct sk_buff
*skb
)
2894 int ret
= 0, offset
;
2896 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2897 goto out_set_summed
;
2899 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
2900 skb_warn_bad_offload(skb
);
2904 /* Before computing a checksum, we should make sure no frag could
2905 * be modified by an external entity : checksum could be wrong.
2907 if (skb_has_shared_frag(skb
)) {
2908 ret
= __skb_linearize(skb
);
2913 offset
= skb_checksum_start_offset(skb
);
2914 BUG_ON(offset
>= skb_headlen(skb
));
2915 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2917 offset
+= skb
->csum_offset
;
2918 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
2920 if (skb_cloned(skb
) &&
2921 !skb_clone_writable(skb
, offset
+ sizeof(__sum16
))) {
2922 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2927 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
2929 skb
->ip_summed
= CHECKSUM_NONE
;
2933 EXPORT_SYMBOL(skb_checksum_help
);
2935 int skb_crc32c_csum_help(struct sk_buff
*skb
)
2938 int ret
= 0, offset
, start
;
2940 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2943 if (unlikely(skb_is_gso(skb
)))
2946 /* Before computing a checksum, we should make sure no frag could
2947 * be modified by an external entity : checksum could be wrong.
2949 if (unlikely(skb_has_shared_frag(skb
))) {
2950 ret
= __skb_linearize(skb
);
2954 start
= skb_checksum_start_offset(skb
);
2955 offset
= start
+ offsetof(struct sctphdr
, checksum
);
2956 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
2960 if (skb_cloned(skb
) &&
2961 !skb_clone_writable(skb
, offset
+ sizeof(__le32
))) {
2962 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2966 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
2967 skb
->len
- start
, ~(__u32
)0,
2969 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
2970 skb
->ip_summed
= CHECKSUM_NONE
;
2971 skb
->csum_not_inet
= 0;
2976 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
2978 __be16 type
= skb
->protocol
;
2980 /* Tunnel gso handlers can set protocol to ethernet. */
2981 if (type
== htons(ETH_P_TEB
)) {
2984 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
2987 eth
= (struct ethhdr
*)skb
->data
;
2988 type
= eth
->h_proto
;
2991 return __vlan_get_protocol(skb
, type
, depth
);
2995 * skb_mac_gso_segment - mac layer segmentation handler.
2996 * @skb: buffer to segment
2997 * @features: features for the output path (see dev->features)
2999 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
3000 netdev_features_t features
)
3002 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
3003 struct packet_offload
*ptype
;
3004 int vlan_depth
= skb
->mac_len
;
3005 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
3007 if (unlikely(!type
))
3008 return ERR_PTR(-EINVAL
);
3010 __skb_pull(skb
, vlan_depth
);
3013 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
3014 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
3015 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
3021 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
3025 EXPORT_SYMBOL(skb_mac_gso_segment
);
3028 /* openvswitch calls this on rx path, so we need a different check.
3030 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
3033 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
3034 skb
->ip_summed
!= CHECKSUM_UNNECESSARY
;
3036 return skb
->ip_summed
== CHECKSUM_NONE
;
3040 * __skb_gso_segment - Perform segmentation on skb.
3041 * @skb: buffer to segment
3042 * @features: features for the output path (see dev->features)
3043 * @tx_path: whether it is called in TX path
3045 * This function segments the given skb and returns a list of segments.
3047 * It may return NULL if the skb requires no segmentation. This is
3048 * only possible when GSO is used for verifying header integrity.
3050 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3052 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
3053 netdev_features_t features
, bool tx_path
)
3055 struct sk_buff
*segs
;
3057 if (unlikely(skb_needs_check(skb
, tx_path
))) {
3060 /* We're going to init ->check field in TCP or UDP header */
3061 err
= skb_cow_head(skb
, 0);
3063 return ERR_PTR(err
);
3066 /* Only report GSO partial support if it will enable us to
3067 * support segmentation on this frame without needing additional
3070 if (features
& NETIF_F_GSO_PARTIAL
) {
3071 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
3072 struct net_device
*dev
= skb
->dev
;
3074 partial_features
|= dev
->features
& dev
->gso_partial_features
;
3075 if (!skb_gso_ok(skb
, features
| partial_features
))
3076 features
&= ~NETIF_F_GSO_PARTIAL
;
3079 BUILD_BUG_ON(SKB_SGO_CB_OFFSET
+
3080 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
3082 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
3083 SKB_GSO_CB(skb
)->encap_level
= 0;
3085 skb_reset_mac_header(skb
);
3086 skb_reset_mac_len(skb
);
3088 segs
= skb_mac_gso_segment(skb
, features
);
3090 if (unlikely(skb_needs_check(skb
, tx_path
) && !IS_ERR(segs
)))
3091 skb_warn_bad_offload(skb
);
3095 EXPORT_SYMBOL(__skb_gso_segment
);
3097 /* Take action when hardware reception checksum errors are detected. */
3099 void netdev_rx_csum_fault(struct net_device
*dev
)
3101 if (net_ratelimit()) {
3102 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
3106 EXPORT_SYMBOL(netdev_rx_csum_fault
);
3109 /* XXX: check that highmem exists at all on the given machine. */
3110 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
3112 #ifdef CONFIG_HIGHMEM
3115 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
3116 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3117 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3119 if (PageHighMem(skb_frag_page(frag
)))
3127 /* If MPLS offload request, verify we are testing hardware MPLS features
3128 * instead of standard features for the netdev.
3130 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3131 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3132 netdev_features_t features
,
3135 if (eth_p_mpls(type
))
3136 features
&= skb
->dev
->mpls_features
;
3141 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3142 netdev_features_t features
,
3149 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
3150 netdev_features_t features
)
3155 type
= skb_network_protocol(skb
, &tmp
);
3156 features
= net_mpls_features(skb
, features
, type
);
3158 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
3159 !can_checksum_protocol(features
, type
)) {
3160 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3162 if (illegal_highdma(skb
->dev
, skb
))
3163 features
&= ~NETIF_F_SG
;
3168 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
3169 struct net_device
*dev
,
3170 netdev_features_t features
)
3174 EXPORT_SYMBOL(passthru_features_check
);
3176 static netdev_features_t
dflt_features_check(struct sk_buff
*skb
,
3177 struct net_device
*dev
,
3178 netdev_features_t features
)
3180 return vlan_features_check(skb
, features
);
3183 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
3184 struct net_device
*dev
,
3185 netdev_features_t features
)
3187 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
3189 if (gso_segs
> dev
->gso_max_segs
)
3190 return features
& ~NETIF_F_GSO_MASK
;
3192 /* Support for GSO partial features requires software
3193 * intervention before we can actually process the packets
3194 * so we need to strip support for any partial features now
3195 * and we can pull them back in after we have partially
3196 * segmented the frame.
3198 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
3199 features
&= ~dev
->gso_partial_features
;
3201 /* Make sure to clear the IPv4 ID mangling feature if the
3202 * IPv4 header has the potential to be fragmented.
3204 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
3205 struct iphdr
*iph
= skb
->encapsulation
?
3206 inner_ip_hdr(skb
) : ip_hdr(skb
);
3208 if (!(iph
->frag_off
& htons(IP_DF
)))
3209 features
&= ~NETIF_F_TSO_MANGLEID
;
3215 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
3217 struct net_device
*dev
= skb
->dev
;
3218 netdev_features_t features
= dev
->features
;
3220 if (skb_is_gso(skb
))
3221 features
= gso_features_check(skb
, dev
, features
);
3223 /* If encapsulation offload request, verify we are testing
3224 * hardware encapsulation features instead of standard
3225 * features for the netdev
3227 if (skb
->encapsulation
)
3228 features
&= dev
->hw_enc_features
;
3230 if (skb_vlan_tagged(skb
))
3231 features
= netdev_intersect_features(features
,
3232 dev
->vlan_features
|
3233 NETIF_F_HW_VLAN_CTAG_TX
|
3234 NETIF_F_HW_VLAN_STAG_TX
);
3236 if (dev
->netdev_ops
->ndo_features_check
)
3237 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
3240 features
&= dflt_features_check(skb
, dev
, features
);
3242 return harmonize_features(skb
, features
);
3244 EXPORT_SYMBOL(netif_skb_features
);
3246 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
3247 struct netdev_queue
*txq
, bool more
)
3252 if (dev_nit_active(dev
))
3253 dev_queue_xmit_nit(skb
, dev
);
3256 trace_net_dev_start_xmit(skb
, dev
);
3257 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
3258 trace_net_dev_xmit(skb
, rc
, dev
, len
);
3263 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
3264 struct netdev_queue
*txq
, int *ret
)
3266 struct sk_buff
*skb
= first
;
3267 int rc
= NETDEV_TX_OK
;
3270 struct sk_buff
*next
= skb
->next
;
3272 skb_mark_not_on_list(skb
);
3273 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3274 if (unlikely(!dev_xmit_complete(rc
))) {
3280 if (netif_tx_queue_stopped(txq
) && skb
) {
3281 rc
= NETDEV_TX_BUSY
;
3291 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3292 netdev_features_t features
)
3294 if (skb_vlan_tag_present(skb
) &&
3295 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3296 skb
= __vlan_hwaccel_push_inside(skb
);
3300 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3301 const netdev_features_t features
)
3303 if (unlikely(skb
->csum_not_inet
))
3304 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3305 skb_crc32c_csum_help(skb
);
3307 return !!(features
& NETIF_F_CSUM_MASK
) ? 0 : skb_checksum_help(skb
);
3309 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3311 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3313 netdev_features_t features
;
3315 features
= netif_skb_features(skb
);
3316 skb
= validate_xmit_vlan(skb
, features
);
3320 skb
= sk_validate_xmit_skb(skb
, dev
);
3324 if (netif_needs_gso(skb
, features
)) {
3325 struct sk_buff
*segs
;
3327 segs
= skb_gso_segment(skb
, features
);
3335 if (skb_needs_linearize(skb
, features
) &&
3336 __skb_linearize(skb
))
3339 /* If packet is not checksummed and device does not
3340 * support checksumming for this protocol, complete
3341 * checksumming here.
3343 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3344 if (skb
->encapsulation
)
3345 skb_set_inner_transport_header(skb
,
3346 skb_checksum_start_offset(skb
));
3348 skb_set_transport_header(skb
,
3349 skb_checksum_start_offset(skb
));
3350 if (skb_csum_hwoffload_help(skb
, features
))
3355 skb
= validate_xmit_xfrm(skb
, features
, again
);
3362 atomic_long_inc(&dev
->tx_dropped
);
3366 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3368 struct sk_buff
*next
, *head
= NULL
, *tail
;
3370 for (; skb
!= NULL
; skb
= next
) {
3372 skb_mark_not_on_list(skb
);
3374 /* in case skb wont be segmented, point to itself */
3377 skb
= validate_xmit_skb(skb
, dev
, again
);
3385 /* If skb was segmented, skb->prev points to
3386 * the last segment. If not, it still contains skb.
3392 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3394 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3396 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3398 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3400 /* To get more precise estimation of bytes sent on wire,
3401 * we add to pkt_len the headers size of all segments
3403 if (shinfo
->gso_size
) {
3404 unsigned int hdr_len
;
3405 u16 gso_segs
= shinfo
->gso_segs
;
3407 /* mac layer + network layer */
3408 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3410 /* + transport layer */
3411 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
3412 const struct tcphdr
*th
;
3413 struct tcphdr _tcphdr
;
3415 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
3416 sizeof(_tcphdr
), &_tcphdr
);
3418 hdr_len
+= __tcp_hdrlen(th
);
3420 struct udphdr _udphdr
;
3422 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
3423 sizeof(_udphdr
), &_udphdr
))
3424 hdr_len
+= sizeof(struct udphdr
);
3427 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3428 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3431 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3435 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3436 struct net_device
*dev
,
3437 struct netdev_queue
*txq
)
3439 spinlock_t
*root_lock
= qdisc_lock(q
);
3440 struct sk_buff
*to_free
= NULL
;
3444 qdisc_calculate_pkt_len(skb
, q
);
3446 if (q
->flags
& TCQ_F_NOLOCK
) {
3447 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3448 __qdisc_drop(skb
, &to_free
);
3451 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3455 if (unlikely(to_free
))
3456 kfree_skb_list(to_free
);
3461 * Heuristic to force contended enqueues to serialize on a
3462 * separate lock before trying to get qdisc main lock.
3463 * This permits qdisc->running owner to get the lock more
3464 * often and dequeue packets faster.
3466 contended
= qdisc_is_running(q
);
3467 if (unlikely(contended
))
3468 spin_lock(&q
->busylock
);
3470 spin_lock(root_lock
);
3471 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3472 __qdisc_drop(skb
, &to_free
);
3474 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3475 qdisc_run_begin(q
)) {
3477 * This is a work-conserving queue; there are no old skbs
3478 * waiting to be sent out; and the qdisc is not running -
3479 * xmit the skb directly.
3482 qdisc_bstats_update(q
, skb
);
3484 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3485 if (unlikely(contended
)) {
3486 spin_unlock(&q
->busylock
);
3493 rc
= NET_XMIT_SUCCESS
;
3495 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3496 if (qdisc_run_begin(q
)) {
3497 if (unlikely(contended
)) {
3498 spin_unlock(&q
->busylock
);
3505 spin_unlock(root_lock
);
3506 if (unlikely(to_free
))
3507 kfree_skb_list(to_free
);
3508 if (unlikely(contended
))
3509 spin_unlock(&q
->busylock
);
3513 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3514 static void skb_update_prio(struct sk_buff
*skb
)
3516 const struct netprio_map
*map
;
3517 const struct sock
*sk
;
3518 unsigned int prioidx
;
3522 map
= rcu_dereference_bh(skb
->dev
->priomap
);
3525 sk
= skb_to_full_sk(skb
);
3529 prioidx
= sock_cgroup_prioidx(&sk
->sk_cgrp_data
);
3531 if (prioidx
< map
->priomap_len
)
3532 skb
->priority
= map
->priomap
[prioidx
];
3535 #define skb_update_prio(skb)
3538 DEFINE_PER_CPU(int, xmit_recursion
);
3539 EXPORT_SYMBOL(xmit_recursion
);
3542 * dev_loopback_xmit - loop back @skb
3543 * @net: network namespace this loopback is happening in
3544 * @sk: sk needed to be a netfilter okfn
3545 * @skb: buffer to transmit
3547 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3549 skb_reset_mac_header(skb
);
3550 __skb_pull(skb
, skb_network_offset(skb
));
3551 skb
->pkt_type
= PACKET_LOOPBACK
;
3552 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3553 WARN_ON(!skb_dst(skb
));
3558 EXPORT_SYMBOL(dev_loopback_xmit
);
3560 #ifdef CONFIG_NET_EGRESS
3561 static struct sk_buff
*
3562 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3564 struct mini_Qdisc
*miniq
= rcu_dereference_bh(dev
->miniq_egress
);
3565 struct tcf_result cl_res
;
3570 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3571 mini_qdisc_bstats_cpu_update(miniq
, skb
);
3573 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
3575 case TC_ACT_RECLASSIFY
:
3576 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3579 mini_qdisc_qstats_cpu_drop(miniq
);
3580 *ret
= NET_XMIT_DROP
;
3586 *ret
= NET_XMIT_SUCCESS
;
3589 case TC_ACT_REDIRECT
:
3590 /* No need to push/pop skb's mac_header here on egress! */
3591 skb_do_redirect(skb
);
3592 *ret
= NET_XMIT_SUCCESS
;
3600 #endif /* CONFIG_NET_EGRESS */
3603 static int __get_xps_queue_idx(struct net_device
*dev
, struct sk_buff
*skb
,
3604 struct xps_dev_maps
*dev_maps
, unsigned int tci
)
3606 struct xps_map
*map
;
3607 int queue_index
= -1;
3611 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3614 map
= rcu_dereference(dev_maps
->attr_map
[tci
]);
3617 queue_index
= map
->queues
[0];
3619 queue_index
= map
->queues
[reciprocal_scale(
3620 skb_get_hash(skb
), map
->len
)];
3621 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3628 static int get_xps_queue(struct net_device
*dev
, struct net_device
*sb_dev
,
3629 struct sk_buff
*skb
)
3632 struct xps_dev_maps
*dev_maps
;
3633 struct sock
*sk
= skb
->sk
;
3634 int queue_index
= -1;
3636 if (!static_key_false(&xps_needed
))
3640 if (!static_key_false(&xps_rxqs_needed
))
3643 dev_maps
= rcu_dereference(sb_dev
->xps_rxqs_map
);
3645 int tci
= sk_rx_queue_get(sk
);
3647 if (tci
>= 0 && tci
< dev
->num_rx_queues
)
3648 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3653 if (queue_index
< 0) {
3654 dev_maps
= rcu_dereference(sb_dev
->xps_cpus_map
);
3656 unsigned int tci
= skb
->sender_cpu
- 1;
3658 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3670 u16
dev_pick_tx_zero(struct net_device
*dev
, struct sk_buff
*skb
,
3671 struct net_device
*sb_dev
,
3672 select_queue_fallback_t fallback
)
3676 EXPORT_SYMBOL(dev_pick_tx_zero
);
3678 u16
dev_pick_tx_cpu_id(struct net_device
*dev
, struct sk_buff
*skb
,
3679 struct net_device
*sb_dev
,
3680 select_queue_fallback_t fallback
)
3682 return (u16
)raw_smp_processor_id() % dev
->real_num_tx_queues
;
3684 EXPORT_SYMBOL(dev_pick_tx_cpu_id
);
3686 static u16
__netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
,
3687 struct net_device
*sb_dev
)
3689 struct sock
*sk
= skb
->sk
;
3690 int queue_index
= sk_tx_queue_get(sk
);
3692 sb_dev
= sb_dev
? : dev
;
3694 if (queue_index
< 0 || skb
->ooo_okay
||
3695 queue_index
>= dev
->real_num_tx_queues
) {
3696 int new_index
= get_xps_queue(dev
, sb_dev
, skb
);
3699 new_index
= skb_tx_hash(dev
, sb_dev
, skb
);
3701 if (queue_index
!= new_index
&& sk
&&
3703 rcu_access_pointer(sk
->sk_dst_cache
))
3704 sk_tx_queue_set(sk
, new_index
);
3706 queue_index
= new_index
;
3712 struct netdev_queue
*netdev_pick_tx(struct net_device
*dev
,
3713 struct sk_buff
*skb
,
3714 struct net_device
*sb_dev
)
3716 int queue_index
= 0;
3719 u32 sender_cpu
= skb
->sender_cpu
- 1;
3721 if (sender_cpu
>= (u32
)NR_CPUS
)
3722 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3725 if (dev
->real_num_tx_queues
!= 1) {
3726 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3728 if (ops
->ndo_select_queue
)
3729 queue_index
= ops
->ndo_select_queue(dev
, skb
, sb_dev
,
3732 queue_index
= __netdev_pick_tx(dev
, skb
, sb_dev
);
3734 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3737 skb_set_queue_mapping(skb
, queue_index
);
3738 return netdev_get_tx_queue(dev
, queue_index
);
3742 * __dev_queue_xmit - transmit a buffer
3743 * @skb: buffer to transmit
3744 * @sb_dev: suboordinate device used for L2 forwarding offload
3746 * Queue a buffer for transmission to a network device. The caller must
3747 * have set the device and priority and built the buffer before calling
3748 * this function. The function can be called from an interrupt.
3750 * A negative errno code is returned on a failure. A success does not
3751 * guarantee the frame will be transmitted as it may be dropped due
3752 * to congestion or traffic shaping.
3754 * -----------------------------------------------------------------------------------
3755 * I notice this method can also return errors from the queue disciplines,
3756 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3759 * Regardless of the return value, the skb is consumed, so it is currently
3760 * difficult to retry a send to this method. (You can bump the ref count
3761 * before sending to hold a reference for retry if you are careful.)
3763 * When calling this method, interrupts MUST be enabled. This is because
3764 * the BH enable code must have IRQs enabled so that it will not deadlock.
3767 static int __dev_queue_xmit(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3769 struct net_device
*dev
= skb
->dev
;
3770 struct netdev_queue
*txq
;
3775 skb_reset_mac_header(skb
);
3777 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3778 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3780 /* Disable soft irqs for various locks below. Also
3781 * stops preemption for RCU.
3785 skb_update_prio(skb
);
3787 qdisc_pkt_len_init(skb
);
3788 #ifdef CONFIG_NET_CLS_ACT
3789 skb
->tc_at_ingress
= 0;
3790 # ifdef CONFIG_NET_EGRESS
3791 if (static_branch_unlikely(&egress_needed_key
)) {
3792 skb
= sch_handle_egress(skb
, &rc
, dev
);
3798 /* If device/qdisc don't need skb->dst, release it right now while
3799 * its hot in this cpu cache.
3801 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
3806 txq
= netdev_pick_tx(dev
, skb
, sb_dev
);
3807 q
= rcu_dereference_bh(txq
->qdisc
);
3809 trace_net_dev_queue(skb
);
3811 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
3815 /* The device has no queue. Common case for software devices:
3816 * loopback, all the sorts of tunnels...
3818 * Really, it is unlikely that netif_tx_lock protection is necessary
3819 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3821 * However, it is possible, that they rely on protection
3824 * Check this and shot the lock. It is not prone from deadlocks.
3825 *Either shot noqueue qdisc, it is even simpler 8)
3827 if (dev
->flags
& IFF_UP
) {
3828 int cpu
= smp_processor_id(); /* ok because BHs are off */
3830 if (txq
->xmit_lock_owner
!= cpu
) {
3831 if (unlikely(__this_cpu_read(xmit_recursion
) >
3832 XMIT_RECURSION_LIMIT
))
3833 goto recursion_alert
;
3835 skb
= validate_xmit_skb(skb
, dev
, &again
);
3839 HARD_TX_LOCK(dev
, txq
, cpu
);
3841 if (!netif_xmit_stopped(txq
)) {
3842 __this_cpu_inc(xmit_recursion
);
3843 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
3844 __this_cpu_dec(xmit_recursion
);
3845 if (dev_xmit_complete(rc
)) {
3846 HARD_TX_UNLOCK(dev
, txq
);
3850 HARD_TX_UNLOCK(dev
, txq
);
3851 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3854 /* Recursion is detected! It is possible,
3858 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3864 rcu_read_unlock_bh();
3866 atomic_long_inc(&dev
->tx_dropped
);
3867 kfree_skb_list(skb
);
3870 rcu_read_unlock_bh();
3874 int dev_queue_xmit(struct sk_buff
*skb
)
3876 return __dev_queue_xmit(skb
, NULL
);
3878 EXPORT_SYMBOL(dev_queue_xmit
);
3880 int dev_queue_xmit_accel(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3882 return __dev_queue_xmit(skb
, sb_dev
);
3884 EXPORT_SYMBOL(dev_queue_xmit_accel
);
3886 int dev_direct_xmit(struct sk_buff
*skb
, u16 queue_id
)
3888 struct net_device
*dev
= skb
->dev
;
3889 struct sk_buff
*orig_skb
= skb
;
3890 struct netdev_queue
*txq
;
3891 int ret
= NETDEV_TX_BUSY
;
3894 if (unlikely(!netif_running(dev
) ||
3895 !netif_carrier_ok(dev
)))
3898 skb
= validate_xmit_skb_list(skb
, dev
, &again
);
3899 if (skb
!= orig_skb
)
3902 skb_set_queue_mapping(skb
, queue_id
);
3903 txq
= skb_get_tx_queue(dev
, skb
);
3907 HARD_TX_LOCK(dev
, txq
, smp_processor_id());
3908 if (!netif_xmit_frozen_or_drv_stopped(txq
))
3909 ret
= netdev_start_xmit(skb
, dev
, txq
, false);
3910 HARD_TX_UNLOCK(dev
, txq
);
3914 if (!dev_xmit_complete(ret
))
3919 atomic_long_inc(&dev
->tx_dropped
);
3920 kfree_skb_list(skb
);
3921 return NET_XMIT_DROP
;
3923 EXPORT_SYMBOL(dev_direct_xmit
);
3925 /*************************************************************************
3927 *************************************************************************/
3929 int netdev_max_backlog __read_mostly
= 1000;
3930 EXPORT_SYMBOL(netdev_max_backlog
);
3932 int netdev_tstamp_prequeue __read_mostly
= 1;
3933 int netdev_budget __read_mostly
= 300;
3934 unsigned int __read_mostly netdev_budget_usecs
= 2000;
3935 int weight_p __read_mostly
= 64; /* old backlog weight */
3936 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
3937 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
3938 int dev_rx_weight __read_mostly
= 64;
3939 int dev_tx_weight __read_mostly
= 64;
3941 /* Called with irq disabled */
3942 static inline void ____napi_schedule(struct softnet_data
*sd
,
3943 struct napi_struct
*napi
)
3945 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
3946 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3951 /* One global table that all flow-based protocols share. */
3952 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
3953 EXPORT_SYMBOL(rps_sock_flow_table
);
3954 u32 rps_cpu_mask __read_mostly
;
3955 EXPORT_SYMBOL(rps_cpu_mask
);
3957 struct static_key rps_needed __read_mostly
;
3958 EXPORT_SYMBOL(rps_needed
);
3959 struct static_key rfs_needed __read_mostly
;
3960 EXPORT_SYMBOL(rfs_needed
);
3962 static struct rps_dev_flow
*
3963 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3964 struct rps_dev_flow
*rflow
, u16 next_cpu
)
3966 if (next_cpu
< nr_cpu_ids
) {
3967 #ifdef CONFIG_RFS_ACCEL
3968 struct netdev_rx_queue
*rxqueue
;
3969 struct rps_dev_flow_table
*flow_table
;
3970 struct rps_dev_flow
*old_rflow
;
3975 /* Should we steer this flow to a different hardware queue? */
3976 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
3977 !(dev
->features
& NETIF_F_NTUPLE
))
3979 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
3980 if (rxq_index
== skb_get_rx_queue(skb
))
3983 rxqueue
= dev
->_rx
+ rxq_index
;
3984 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3987 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
3988 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
3989 rxq_index
, flow_id
);
3993 rflow
= &flow_table
->flows
[flow_id
];
3995 if (old_rflow
->filter
== rflow
->filter
)
3996 old_rflow
->filter
= RPS_NO_FILTER
;
4000 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
4003 rflow
->cpu
= next_cpu
;
4008 * get_rps_cpu is called from netif_receive_skb and returns the target
4009 * CPU from the RPS map of the receiving queue for a given skb.
4010 * rcu_read_lock must be held on entry.
4012 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4013 struct rps_dev_flow
**rflowp
)
4015 const struct rps_sock_flow_table
*sock_flow_table
;
4016 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
4017 struct rps_dev_flow_table
*flow_table
;
4018 struct rps_map
*map
;
4023 if (skb_rx_queue_recorded(skb
)) {
4024 u16 index
= skb_get_rx_queue(skb
);
4026 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4027 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4028 "%s received packet on queue %u, but number "
4029 "of RX queues is %u\n",
4030 dev
->name
, index
, dev
->real_num_rx_queues
);
4036 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4038 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4039 map
= rcu_dereference(rxqueue
->rps_map
);
4040 if (!flow_table
&& !map
)
4043 skb_reset_network_header(skb
);
4044 hash
= skb_get_hash(skb
);
4048 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
4049 if (flow_table
&& sock_flow_table
) {
4050 struct rps_dev_flow
*rflow
;
4054 /* First check into global flow table if there is a match */
4055 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
4056 if ((ident
^ hash
) & ~rps_cpu_mask
)
4059 next_cpu
= ident
& rps_cpu_mask
;
4061 /* OK, now we know there is a match,
4062 * we can look at the local (per receive queue) flow table
4064 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
4068 * If the desired CPU (where last recvmsg was done) is
4069 * different from current CPU (one in the rx-queue flow
4070 * table entry), switch if one of the following holds:
4071 * - Current CPU is unset (>= nr_cpu_ids).
4072 * - Current CPU is offline.
4073 * - The current CPU's queue tail has advanced beyond the
4074 * last packet that was enqueued using this table entry.
4075 * This guarantees that all previous packets for the flow
4076 * have been dequeued, thus preserving in order delivery.
4078 if (unlikely(tcpu
!= next_cpu
) &&
4079 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
4080 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
4081 rflow
->last_qtail
)) >= 0)) {
4083 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
4086 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
4096 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
4097 if (cpu_online(tcpu
)) {
4107 #ifdef CONFIG_RFS_ACCEL
4110 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4111 * @dev: Device on which the filter was set
4112 * @rxq_index: RX queue index
4113 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4114 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4116 * Drivers that implement ndo_rx_flow_steer() should periodically call
4117 * this function for each installed filter and remove the filters for
4118 * which it returns %true.
4120 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
4121 u32 flow_id
, u16 filter_id
)
4123 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
4124 struct rps_dev_flow_table
*flow_table
;
4125 struct rps_dev_flow
*rflow
;
4130 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4131 if (flow_table
&& flow_id
<= flow_table
->mask
) {
4132 rflow
= &flow_table
->flows
[flow_id
];
4133 cpu
= READ_ONCE(rflow
->cpu
);
4134 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
4135 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
4136 rflow
->last_qtail
) <
4137 (int)(10 * flow_table
->mask
)))
4143 EXPORT_SYMBOL(rps_may_expire_flow
);
4145 #endif /* CONFIG_RFS_ACCEL */
4147 /* Called from hardirq (IPI) context */
4148 static void rps_trigger_softirq(void *data
)
4150 struct softnet_data
*sd
= data
;
4152 ____napi_schedule(sd
, &sd
->backlog
);
4156 #endif /* CONFIG_RPS */
4159 * Check if this softnet_data structure is another cpu one
4160 * If yes, queue it to our IPI list and return 1
4163 static int rps_ipi_queued(struct softnet_data
*sd
)
4166 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
4169 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
4170 mysd
->rps_ipi_list
= sd
;
4172 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4175 #endif /* CONFIG_RPS */
4179 #ifdef CONFIG_NET_FLOW_LIMIT
4180 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
4183 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
4185 #ifdef CONFIG_NET_FLOW_LIMIT
4186 struct sd_flow_limit
*fl
;
4187 struct softnet_data
*sd
;
4188 unsigned int old_flow
, new_flow
;
4190 if (qlen
< (netdev_max_backlog
>> 1))
4193 sd
= this_cpu_ptr(&softnet_data
);
4196 fl
= rcu_dereference(sd
->flow_limit
);
4198 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
4199 old_flow
= fl
->history
[fl
->history_head
];
4200 fl
->history
[fl
->history_head
] = new_flow
;
4203 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
4205 if (likely(fl
->buckets
[old_flow
]))
4206 fl
->buckets
[old_flow
]--;
4208 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
4220 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4221 * queue (may be a remote CPU queue).
4223 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
4224 unsigned int *qtail
)
4226 struct softnet_data
*sd
;
4227 unsigned long flags
;
4230 sd
= &per_cpu(softnet_data
, cpu
);
4232 local_irq_save(flags
);
4235 if (!netif_running(skb
->dev
))
4237 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
4238 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
4241 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
4242 input_queue_tail_incr_save(sd
, qtail
);
4244 local_irq_restore(flags
);
4245 return NET_RX_SUCCESS
;
4248 /* Schedule NAPI for backlog device
4249 * We can use non atomic operation since we own the queue lock
4251 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
4252 if (!rps_ipi_queued(sd
))
4253 ____napi_schedule(sd
, &sd
->backlog
);
4262 local_irq_restore(flags
);
4264 atomic_long_inc(&skb
->dev
->rx_dropped
);
4269 static struct netdev_rx_queue
*netif_get_rxqueue(struct sk_buff
*skb
)
4271 struct net_device
*dev
= skb
->dev
;
4272 struct netdev_rx_queue
*rxqueue
;
4276 if (skb_rx_queue_recorded(skb
)) {
4277 u16 index
= skb_get_rx_queue(skb
);
4279 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4280 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4281 "%s received packet on queue %u, but number "
4282 "of RX queues is %u\n",
4283 dev
->name
, index
, dev
->real_num_rx_queues
);
4285 return rxqueue
; /* Return first rxqueue */
4292 static u32
netif_receive_generic_xdp(struct sk_buff
*skb
,
4293 struct xdp_buff
*xdp
,
4294 struct bpf_prog
*xdp_prog
)
4296 struct netdev_rx_queue
*rxqueue
;
4297 void *orig_data
, *orig_data_end
;
4298 u32 metalen
, act
= XDP_DROP
;
4299 __be16 orig_eth_type
;
4305 /* Reinjected packets coming from act_mirred or similar should
4306 * not get XDP generic processing.
4308 if (skb_cloned(skb
) || skb_is_tc_redirected(skb
))
4311 /* XDP packets must be linear and must have sufficient headroom
4312 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4313 * native XDP provides, thus we need to do it here as well.
4315 if (skb_is_nonlinear(skb
) ||
4316 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
4317 int hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
4318 int troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
4320 /* In case we have to go down the path and also linearize,
4321 * then lets do the pskb_expand_head() work just once here.
4323 if (pskb_expand_head(skb
,
4324 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
4325 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
))
4327 if (skb_linearize(skb
))
4331 /* The XDP program wants to see the packet starting at the MAC
4334 mac_len
= skb
->data
- skb_mac_header(skb
);
4335 hlen
= skb_headlen(skb
) + mac_len
;
4336 xdp
->data
= skb
->data
- mac_len
;
4337 xdp
->data_meta
= xdp
->data
;
4338 xdp
->data_end
= xdp
->data
+ hlen
;
4339 xdp
->data_hard_start
= skb
->data
- skb_headroom(skb
);
4340 orig_data_end
= xdp
->data_end
;
4341 orig_data
= xdp
->data
;
4342 eth
= (struct ethhdr
*)xdp
->data
;
4343 orig_bcast
= is_multicast_ether_addr_64bits(eth
->h_dest
);
4344 orig_eth_type
= eth
->h_proto
;
4346 rxqueue
= netif_get_rxqueue(skb
);
4347 xdp
->rxq
= &rxqueue
->xdp_rxq
;
4349 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
4351 off
= xdp
->data
- orig_data
;
4353 __skb_pull(skb
, off
);
4355 __skb_push(skb
, -off
);
4356 skb
->mac_header
+= off
;
4358 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4361 off
= orig_data_end
- xdp
->data_end
;
4363 skb_set_tail_pointer(skb
, xdp
->data_end
- xdp
->data
);
4368 /* check if XDP changed eth hdr such SKB needs update */
4369 eth
= (struct ethhdr
*)xdp
->data
;
4370 if ((orig_eth_type
!= eth
->h_proto
) ||
4371 (orig_bcast
!= is_multicast_ether_addr_64bits(eth
->h_dest
))) {
4372 __skb_push(skb
, ETH_HLEN
);
4373 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
4379 __skb_push(skb
, mac_len
);
4382 metalen
= xdp
->data
- xdp
->data_meta
;
4384 skb_metadata_set(skb
, metalen
);
4387 bpf_warn_invalid_xdp_action(act
);
4390 trace_xdp_exception(skb
->dev
, xdp_prog
, act
);
4401 /* When doing generic XDP we have to bypass the qdisc layer and the
4402 * network taps in order to match in-driver-XDP behavior.
4404 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
4406 struct net_device
*dev
= skb
->dev
;
4407 struct netdev_queue
*txq
;
4408 bool free_skb
= true;
4411 txq
= netdev_pick_tx(dev
, skb
, NULL
);
4412 cpu
= smp_processor_id();
4413 HARD_TX_LOCK(dev
, txq
, cpu
);
4414 if (!netif_xmit_stopped(txq
)) {
4415 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
4416 if (dev_xmit_complete(rc
))
4419 HARD_TX_UNLOCK(dev
, txq
);
4421 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
4425 EXPORT_SYMBOL_GPL(generic_xdp_tx
);
4427 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key
);
4429 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
*skb
)
4432 struct xdp_buff xdp
;
4436 act
= netif_receive_generic_xdp(skb
, &xdp
, xdp_prog
);
4437 if (act
!= XDP_PASS
) {
4440 err
= xdp_do_generic_redirect(skb
->dev
, skb
,
4446 generic_xdp_tx(skb
, xdp_prog
);
4457 EXPORT_SYMBOL_GPL(do_xdp_generic
);
4459 static int netif_rx_internal(struct sk_buff
*skb
)
4463 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4465 trace_netif_rx(skb
);
4467 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
4472 ret
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4476 /* Consider XDP consuming the packet a success from
4477 * the netdev point of view we do not want to count
4480 if (ret
!= XDP_PASS
)
4481 return NET_RX_SUCCESS
;
4485 if (static_key_false(&rps_needed
)) {
4486 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4492 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4494 cpu
= smp_processor_id();
4496 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4505 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
4512 * netif_rx - post buffer to the network code
4513 * @skb: buffer to post
4515 * This function receives a packet from a device driver and queues it for
4516 * the upper (protocol) levels to process. It always succeeds. The buffer
4517 * may be dropped during processing for congestion control or by the
4521 * NET_RX_SUCCESS (no congestion)
4522 * NET_RX_DROP (packet was dropped)
4526 int netif_rx(struct sk_buff
*skb
)
4528 trace_netif_rx_entry(skb
);
4530 return netif_rx_internal(skb
);
4532 EXPORT_SYMBOL(netif_rx
);
4534 int netif_rx_ni(struct sk_buff
*skb
)
4538 trace_netif_rx_ni_entry(skb
);
4541 err
= netif_rx_internal(skb
);
4542 if (local_softirq_pending())
4548 EXPORT_SYMBOL(netif_rx_ni
);
4550 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
4552 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
4554 if (sd
->completion_queue
) {
4555 struct sk_buff
*clist
;
4557 local_irq_disable();
4558 clist
= sd
->completion_queue
;
4559 sd
->completion_queue
= NULL
;
4563 struct sk_buff
*skb
= clist
;
4565 clist
= clist
->next
;
4567 WARN_ON(refcount_read(&skb
->users
));
4568 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
4569 trace_consume_skb(skb
);
4571 trace_kfree_skb(skb
, net_tx_action
);
4573 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
4576 __kfree_skb_defer(skb
);
4579 __kfree_skb_flush();
4582 if (sd
->output_queue
) {
4585 local_irq_disable();
4586 head
= sd
->output_queue
;
4587 sd
->output_queue
= NULL
;
4588 sd
->output_queue_tailp
= &sd
->output_queue
;
4592 struct Qdisc
*q
= head
;
4593 spinlock_t
*root_lock
= NULL
;
4595 head
= head
->next_sched
;
4597 if (!(q
->flags
& TCQ_F_NOLOCK
)) {
4598 root_lock
= qdisc_lock(q
);
4599 spin_lock(root_lock
);
4601 /* We need to make sure head->next_sched is read
4602 * before clearing __QDISC_STATE_SCHED
4604 smp_mb__before_atomic();
4605 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
4608 spin_unlock(root_lock
);
4612 xfrm_dev_backlog(sd
);
4615 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4616 /* This hook is defined here for ATM LANE */
4617 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
4618 unsigned char *addr
) __read_mostly
;
4619 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
4622 static inline struct sk_buff
*
4623 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4624 struct net_device
*orig_dev
)
4626 #ifdef CONFIG_NET_CLS_ACT
4627 struct mini_Qdisc
*miniq
= rcu_dereference_bh(skb
->dev
->miniq_ingress
);
4628 struct tcf_result cl_res
;
4630 /* If there's at least one ingress present somewhere (so
4631 * we get here via enabled static key), remaining devices
4632 * that are not configured with an ingress qdisc will bail
4639 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4643 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4644 skb
->tc_at_ingress
= 1;
4645 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4647 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
4649 case TC_ACT_RECLASSIFY
:
4650 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
4653 mini_qdisc_qstats_cpu_drop(miniq
);
4661 case TC_ACT_REDIRECT
:
4662 /* skb_mac_header check was done by cls/act_bpf, so
4663 * we can safely push the L2 header back before
4664 * redirecting to another netdev
4666 __skb_push(skb
, skb
->mac_len
);
4667 skb_do_redirect(skb
);
4669 case TC_ACT_REINSERT
:
4670 /* this does not scrub the packet, and updates stats on error */
4671 skb_tc_reinsert(skb
, &cl_res
);
4676 #endif /* CONFIG_NET_CLS_ACT */
4681 * netdev_is_rx_handler_busy - check if receive handler is registered
4682 * @dev: device to check
4684 * Check if a receive handler is already registered for a given device.
4685 * Return true if there one.
4687 * The caller must hold the rtnl_mutex.
4689 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
4692 return dev
&& rtnl_dereference(dev
->rx_handler
);
4694 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
4697 * netdev_rx_handler_register - register receive handler
4698 * @dev: device to register a handler for
4699 * @rx_handler: receive handler to register
4700 * @rx_handler_data: data pointer that is used by rx handler
4702 * Register a receive handler for a device. This handler will then be
4703 * called from __netif_receive_skb. A negative errno code is returned
4706 * The caller must hold the rtnl_mutex.
4708 * For a general description of rx_handler, see enum rx_handler_result.
4710 int netdev_rx_handler_register(struct net_device
*dev
,
4711 rx_handler_func_t
*rx_handler
,
4712 void *rx_handler_data
)
4714 if (netdev_is_rx_handler_busy(dev
))
4717 if (dev
->priv_flags
& IFF_NO_RX_HANDLER
)
4720 /* Note: rx_handler_data must be set before rx_handler */
4721 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4722 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4726 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4729 * netdev_rx_handler_unregister - unregister receive handler
4730 * @dev: device to unregister a handler from
4732 * Unregister a receive handler from a device.
4734 * The caller must hold the rtnl_mutex.
4736 void netdev_rx_handler_unregister(struct net_device
*dev
)
4740 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4741 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4742 * section has a guarantee to see a non NULL rx_handler_data
4746 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4748 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4751 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4752 * the special handling of PFMEMALLOC skbs.
4754 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4756 switch (skb
->protocol
) {
4757 case htons(ETH_P_ARP
):
4758 case htons(ETH_P_IP
):
4759 case htons(ETH_P_IPV6
):
4760 case htons(ETH_P_8021Q
):
4761 case htons(ETH_P_8021AD
):
4768 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4769 int *ret
, struct net_device
*orig_dev
)
4771 #ifdef CONFIG_NETFILTER_INGRESS
4772 if (nf_hook_ingress_active(skb
)) {
4776 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4781 ingress_retval
= nf_hook_ingress(skb
);
4783 return ingress_retval
;
4785 #endif /* CONFIG_NETFILTER_INGRESS */
4789 static int __netif_receive_skb_core(struct sk_buff
*skb
, bool pfmemalloc
,
4790 struct packet_type
**ppt_prev
)
4792 struct packet_type
*ptype
, *pt_prev
;
4793 rx_handler_func_t
*rx_handler
;
4794 struct net_device
*orig_dev
;
4795 bool deliver_exact
= false;
4796 int ret
= NET_RX_DROP
;
4799 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
4801 trace_netif_receive_skb(skb
);
4803 orig_dev
= skb
->dev
;
4805 skb_reset_network_header(skb
);
4806 if (!skb_transport_header_was_set(skb
))
4807 skb_reset_transport_header(skb
);
4808 skb_reset_mac_len(skb
);
4813 skb
->skb_iif
= skb
->dev
->ifindex
;
4815 __this_cpu_inc(softnet_data
.processed
);
4817 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4818 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4819 skb
= skb_vlan_untag(skb
);
4824 if (skb_skip_tc_classify(skb
))
4830 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
4832 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4836 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
4838 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4843 #ifdef CONFIG_NET_INGRESS
4844 if (static_branch_unlikely(&ingress_needed_key
)) {
4845 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
4849 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
4855 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
4858 if (skb_vlan_tag_present(skb
)) {
4860 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4863 if (vlan_do_receive(&skb
))
4865 else if (unlikely(!skb
))
4869 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
4872 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4875 switch (rx_handler(&skb
)) {
4876 case RX_HANDLER_CONSUMED
:
4877 ret
= NET_RX_SUCCESS
;
4879 case RX_HANDLER_ANOTHER
:
4881 case RX_HANDLER_EXACT
:
4882 deliver_exact
= true;
4883 case RX_HANDLER_PASS
:
4890 if (unlikely(skb_vlan_tag_present(skb
))) {
4891 if (skb_vlan_tag_get_id(skb
))
4892 skb
->pkt_type
= PACKET_OTHERHOST
;
4893 /* Note: we might in the future use prio bits
4894 * and set skb->priority like in vlan_do_receive()
4895 * For the time being, just ignore Priority Code Point
4900 type
= skb
->protocol
;
4902 /* deliver only exact match when indicated */
4903 if (likely(!deliver_exact
)) {
4904 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4905 &ptype_base
[ntohs(type
) &
4909 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4910 &orig_dev
->ptype_specific
);
4912 if (unlikely(skb
->dev
!= orig_dev
)) {
4913 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4914 &skb
->dev
->ptype_specific
);
4918 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
4920 *ppt_prev
= pt_prev
;
4924 atomic_long_inc(&skb
->dev
->rx_dropped
);
4926 atomic_long_inc(&skb
->dev
->rx_nohandler
);
4928 /* Jamal, now you will not able to escape explaining
4929 * me how you were going to use this. :-)
4938 static int __netif_receive_skb_one_core(struct sk_buff
*skb
, bool pfmemalloc
)
4940 struct net_device
*orig_dev
= skb
->dev
;
4941 struct packet_type
*pt_prev
= NULL
;
4944 ret
= __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
4946 ret
= pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
4951 * netif_receive_skb_core - special purpose version of netif_receive_skb
4952 * @skb: buffer to process
4954 * More direct receive version of netif_receive_skb(). It should
4955 * only be used by callers that have a need to skip RPS and Generic XDP.
4956 * Caller must also take care of handling if (page_is_)pfmemalloc.
4958 * This function may only be called from softirq context and interrupts
4959 * should be enabled.
4961 * Return values (usually ignored):
4962 * NET_RX_SUCCESS: no congestion
4963 * NET_RX_DROP: packet was dropped
4965 int netif_receive_skb_core(struct sk_buff
*skb
)
4970 ret
= __netif_receive_skb_one_core(skb
, false);
4975 EXPORT_SYMBOL(netif_receive_skb_core
);
4977 static inline void __netif_receive_skb_list_ptype(struct list_head
*head
,
4978 struct packet_type
*pt_prev
,
4979 struct net_device
*orig_dev
)
4981 struct sk_buff
*skb
, *next
;
4985 if (list_empty(head
))
4987 if (pt_prev
->list_func
!= NULL
)
4988 pt_prev
->list_func(head
, pt_prev
, orig_dev
);
4990 list_for_each_entry_safe(skb
, next
, head
, list
)
4991 pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
4994 static void __netif_receive_skb_list_core(struct list_head
*head
, bool pfmemalloc
)
4996 /* Fast-path assumptions:
4997 * - There is no RX handler.
4998 * - Only one packet_type matches.
4999 * If either of these fails, we will end up doing some per-packet
5000 * processing in-line, then handling the 'last ptype' for the whole
5001 * sublist. This can't cause out-of-order delivery to any single ptype,
5002 * because the 'last ptype' must be constant across the sublist, and all
5003 * other ptypes are handled per-packet.
5005 /* Current (common) ptype of sublist */
5006 struct packet_type
*pt_curr
= NULL
;
5007 /* Current (common) orig_dev of sublist */
5008 struct net_device
*od_curr
= NULL
;
5009 struct list_head sublist
;
5010 struct sk_buff
*skb
, *next
;
5012 INIT_LIST_HEAD(&sublist
);
5013 list_for_each_entry_safe(skb
, next
, head
, list
) {
5014 struct net_device
*orig_dev
= skb
->dev
;
5015 struct packet_type
*pt_prev
= NULL
;
5017 skb_list_del_init(skb
);
5018 __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
5021 if (pt_curr
!= pt_prev
|| od_curr
!= orig_dev
) {
5022 /* dispatch old sublist */
5023 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5024 /* start new sublist */
5025 INIT_LIST_HEAD(&sublist
);
5029 list_add_tail(&skb
->list
, &sublist
);
5032 /* dispatch final sublist */
5033 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5036 static int __netif_receive_skb(struct sk_buff
*skb
)
5040 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
5041 unsigned int noreclaim_flag
;
5044 * PFMEMALLOC skbs are special, they should
5045 * - be delivered to SOCK_MEMALLOC sockets only
5046 * - stay away from userspace
5047 * - have bounded memory usage
5049 * Use PF_MEMALLOC as this saves us from propagating the allocation
5050 * context down to all allocation sites.
5052 noreclaim_flag
= memalloc_noreclaim_save();
5053 ret
= __netif_receive_skb_one_core(skb
, true);
5054 memalloc_noreclaim_restore(noreclaim_flag
);
5056 ret
= __netif_receive_skb_one_core(skb
, false);
5061 static void __netif_receive_skb_list(struct list_head
*head
)
5063 unsigned long noreclaim_flag
= 0;
5064 struct sk_buff
*skb
, *next
;
5065 bool pfmemalloc
= false; /* Is current sublist PF_MEMALLOC? */
5067 list_for_each_entry_safe(skb
, next
, head
, list
) {
5068 if ((sk_memalloc_socks() && skb_pfmemalloc(skb
)) != pfmemalloc
) {
5069 struct list_head sublist
;
5071 /* Handle the previous sublist */
5072 list_cut_before(&sublist
, head
, &skb
->list
);
5073 if (!list_empty(&sublist
))
5074 __netif_receive_skb_list_core(&sublist
, pfmemalloc
);
5075 pfmemalloc
= !pfmemalloc
;
5076 /* See comments in __netif_receive_skb */
5078 noreclaim_flag
= memalloc_noreclaim_save();
5080 memalloc_noreclaim_restore(noreclaim_flag
);
5083 /* Handle the remaining sublist */
5084 if (!list_empty(head
))
5085 __netif_receive_skb_list_core(head
, pfmemalloc
);
5086 /* Restore pflags */
5088 memalloc_noreclaim_restore(noreclaim_flag
);
5091 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
5093 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
5094 struct bpf_prog
*new = xdp
->prog
;
5097 switch (xdp
->command
) {
5098 case XDP_SETUP_PROG
:
5099 rcu_assign_pointer(dev
->xdp_prog
, new);
5104 static_branch_dec(&generic_xdp_needed_key
);
5105 } else if (new && !old
) {
5106 static_branch_inc(&generic_xdp_needed_key
);
5107 dev_disable_lro(dev
);
5108 dev_disable_gro_hw(dev
);
5112 case XDP_QUERY_PROG
:
5113 xdp
->prog_id
= old
? old
->aux
->id
: 0;
5124 static int netif_receive_skb_internal(struct sk_buff
*skb
)
5128 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5130 if (skb_defer_rx_timestamp(skb
))
5131 return NET_RX_SUCCESS
;
5133 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
5138 ret
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
5142 if (ret
!= XDP_PASS
)
5148 if (static_key_false(&rps_needed
)) {
5149 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5150 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5153 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5159 ret
= __netif_receive_skb(skb
);
5164 static void netif_receive_skb_list_internal(struct list_head
*head
)
5166 struct bpf_prog
*xdp_prog
= NULL
;
5167 struct sk_buff
*skb
, *next
;
5168 struct list_head sublist
;
5170 INIT_LIST_HEAD(&sublist
);
5171 list_for_each_entry_safe(skb
, next
, head
, list
) {
5172 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5173 skb_list_del_init(skb
);
5174 if (!skb_defer_rx_timestamp(skb
))
5175 list_add_tail(&skb
->list
, &sublist
);
5177 list_splice_init(&sublist
, head
);
5179 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
5182 list_for_each_entry_safe(skb
, next
, head
, list
) {
5183 xdp_prog
= rcu_dereference(skb
->dev
->xdp_prog
);
5184 skb_list_del_init(skb
);
5185 if (do_xdp_generic(xdp_prog
, skb
) == XDP_PASS
)
5186 list_add_tail(&skb
->list
, &sublist
);
5190 /* Put passed packets back on main list */
5191 list_splice_init(&sublist
, head
);
5196 if (static_key_false(&rps_needed
)) {
5197 list_for_each_entry_safe(skb
, next
, head
, list
) {
5198 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5199 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5202 /* Will be handled, remove from list */
5203 skb_list_del_init(skb
);
5204 enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5209 __netif_receive_skb_list(head
);
5214 * netif_receive_skb - process receive buffer from network
5215 * @skb: buffer to process
5217 * netif_receive_skb() is the main receive data processing function.
5218 * It always succeeds. The buffer may be dropped during processing
5219 * for congestion control or by the protocol layers.
5221 * This function may only be called from softirq context and interrupts
5222 * should be enabled.
5224 * Return values (usually ignored):
5225 * NET_RX_SUCCESS: no congestion
5226 * NET_RX_DROP: packet was dropped
5228 int netif_receive_skb(struct sk_buff
*skb
)
5230 trace_netif_receive_skb_entry(skb
);
5232 return netif_receive_skb_internal(skb
);
5234 EXPORT_SYMBOL(netif_receive_skb
);
5237 * netif_receive_skb_list - process many receive buffers from network
5238 * @head: list of skbs to process.
5240 * Since return value of netif_receive_skb() is normally ignored, and
5241 * wouldn't be meaningful for a list, this function returns void.
5243 * This function may only be called from softirq context and interrupts
5244 * should be enabled.
5246 void netif_receive_skb_list(struct list_head
*head
)
5248 struct sk_buff
*skb
;
5250 if (list_empty(head
))
5252 list_for_each_entry(skb
, head
, list
)
5253 trace_netif_receive_skb_list_entry(skb
);
5254 netif_receive_skb_list_internal(head
);
5256 EXPORT_SYMBOL(netif_receive_skb_list
);
5258 DEFINE_PER_CPU(struct work_struct
, flush_works
);
5260 /* Network device is going away, flush any packets still pending */
5261 static void flush_backlog(struct work_struct
*work
)
5263 struct sk_buff
*skb
, *tmp
;
5264 struct softnet_data
*sd
;
5267 sd
= this_cpu_ptr(&softnet_data
);
5269 local_irq_disable();
5271 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
5272 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5273 __skb_unlink(skb
, &sd
->input_pkt_queue
);
5275 input_queue_head_incr(sd
);
5281 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
5282 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5283 __skb_unlink(skb
, &sd
->process_queue
);
5285 input_queue_head_incr(sd
);
5291 static void flush_all_backlogs(void)
5297 for_each_online_cpu(cpu
)
5298 queue_work_on(cpu
, system_highpri_wq
,
5299 per_cpu_ptr(&flush_works
, cpu
));
5301 for_each_online_cpu(cpu
)
5302 flush_work(per_cpu_ptr(&flush_works
, cpu
));
5307 static int napi_gro_complete(struct sk_buff
*skb
)
5309 struct packet_offload
*ptype
;
5310 __be16 type
= skb
->protocol
;
5311 struct list_head
*head
= &offload_base
;
5314 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
5316 if (NAPI_GRO_CB(skb
)->count
== 1) {
5317 skb_shinfo(skb
)->gso_size
= 0;
5322 list_for_each_entry_rcu(ptype
, head
, list
) {
5323 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5326 err
= ptype
->callbacks
.gro_complete(skb
, 0);
5332 WARN_ON(&ptype
->list
== head
);
5334 return NET_RX_SUCCESS
;
5338 return netif_receive_skb_internal(skb
);
5341 static void __napi_gro_flush_chain(struct napi_struct
*napi
, u32 index
,
5344 struct list_head
*head
= &napi
->gro_hash
[index
].list
;
5345 struct sk_buff
*skb
, *p
;
5347 list_for_each_entry_safe_reverse(skb
, p
, head
, list
) {
5348 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
5350 skb_list_del_init(skb
);
5351 napi_gro_complete(skb
);
5352 napi
->gro_hash
[index
].count
--;
5355 if (!napi
->gro_hash
[index
].count
)
5356 __clear_bit(index
, &napi
->gro_bitmask
);
5359 /* napi->gro_hash[].list contains packets ordered by age.
5360 * youngest packets at the head of it.
5361 * Complete skbs in reverse order to reduce latencies.
5363 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
5367 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
5368 if (test_bit(i
, &napi
->gro_bitmask
))
5369 __napi_gro_flush_chain(napi
, i
, flush_old
);
5372 EXPORT_SYMBOL(napi_gro_flush
);
5374 static struct list_head
*gro_list_prepare(struct napi_struct
*napi
,
5375 struct sk_buff
*skb
)
5377 unsigned int maclen
= skb
->dev
->hard_header_len
;
5378 u32 hash
= skb_get_hash_raw(skb
);
5379 struct list_head
*head
;
5382 head
= &napi
->gro_hash
[hash
& (GRO_HASH_BUCKETS
- 1)].list
;
5383 list_for_each_entry(p
, head
, list
) {
5384 unsigned long diffs
;
5386 NAPI_GRO_CB(p
)->flush
= 0;
5388 if (hash
!= skb_get_hash_raw(p
)) {
5389 NAPI_GRO_CB(p
)->same_flow
= 0;
5393 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
5394 diffs
|= p
->vlan_tci
^ skb
->vlan_tci
;
5395 diffs
|= skb_metadata_dst_cmp(p
, skb
);
5396 diffs
|= skb_metadata_differs(p
, skb
);
5397 if (maclen
== ETH_HLEN
)
5398 diffs
|= compare_ether_header(skb_mac_header(p
),
5399 skb_mac_header(skb
));
5401 diffs
= memcmp(skb_mac_header(p
),
5402 skb_mac_header(skb
),
5404 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
5410 static void skb_gro_reset_offset(struct sk_buff
*skb
)
5412 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5413 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
5415 NAPI_GRO_CB(skb
)->data_offset
= 0;
5416 NAPI_GRO_CB(skb
)->frag0
= NULL
;
5417 NAPI_GRO_CB(skb
)->frag0_len
= 0;
5419 if (skb_mac_header(skb
) == skb_tail_pointer(skb
) &&
5421 !PageHighMem(skb_frag_page(frag0
))) {
5422 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
5423 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
5424 skb_frag_size(frag0
),
5425 skb
->end
- skb
->tail
);
5429 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
5431 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5433 BUG_ON(skb
->end
- skb
->tail
< grow
);
5435 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
5437 skb
->data_len
-= grow
;
5440 pinfo
->frags
[0].page_offset
+= grow
;
5441 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
5443 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
5444 skb_frag_unref(skb
, 0);
5445 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
5446 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
5450 static void gro_flush_oldest(struct list_head
*head
)
5452 struct sk_buff
*oldest
;
5454 oldest
= list_last_entry(head
, struct sk_buff
, list
);
5456 /* We are called with head length >= MAX_GRO_SKBS, so this is
5459 if (WARN_ON_ONCE(!oldest
))
5462 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5465 skb_list_del_init(oldest
);
5466 napi_gro_complete(oldest
);
5469 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5471 u32 hash
= skb_get_hash_raw(skb
) & (GRO_HASH_BUCKETS
- 1);
5472 struct list_head
*head
= &offload_base
;
5473 struct packet_offload
*ptype
;
5474 __be16 type
= skb
->protocol
;
5475 struct list_head
*gro_head
;
5476 struct sk_buff
*pp
= NULL
;
5477 enum gro_result ret
;
5481 if (netif_elide_gro(skb
->dev
))
5484 gro_head
= gro_list_prepare(napi
, skb
);
5487 list_for_each_entry_rcu(ptype
, head
, list
) {
5488 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5491 skb_set_network_header(skb
, skb_gro_offset(skb
));
5492 skb_reset_mac_len(skb
);
5493 NAPI_GRO_CB(skb
)->same_flow
= 0;
5494 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
5495 NAPI_GRO_CB(skb
)->free
= 0;
5496 NAPI_GRO_CB(skb
)->encap_mark
= 0;
5497 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
5498 NAPI_GRO_CB(skb
)->is_fou
= 0;
5499 NAPI_GRO_CB(skb
)->is_atomic
= 1;
5500 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
5502 /* Setup for GRO checksum validation */
5503 switch (skb
->ip_summed
) {
5504 case CHECKSUM_COMPLETE
:
5505 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
5506 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5507 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5509 case CHECKSUM_UNNECESSARY
:
5510 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
5511 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5514 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5515 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5518 pp
= ptype
->callbacks
.gro_receive(gro_head
, skb
);
5523 if (&ptype
->list
== head
)
5526 if (IS_ERR(pp
) && PTR_ERR(pp
) == -EINPROGRESS
) {
5531 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
5532 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
5535 skb_list_del_init(pp
);
5536 napi_gro_complete(pp
);
5537 napi
->gro_hash
[hash
].count
--;
5543 if (NAPI_GRO_CB(skb
)->flush
)
5546 if (unlikely(napi
->gro_hash
[hash
].count
>= MAX_GRO_SKBS
)) {
5547 gro_flush_oldest(gro_head
);
5549 napi
->gro_hash
[hash
].count
++;
5551 NAPI_GRO_CB(skb
)->count
= 1;
5552 NAPI_GRO_CB(skb
)->age
= jiffies
;
5553 NAPI_GRO_CB(skb
)->last
= skb
;
5554 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
5555 list_add(&skb
->list
, gro_head
);
5559 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
5561 gro_pull_from_frag0(skb
, grow
);
5563 if (napi
->gro_hash
[hash
].count
) {
5564 if (!test_bit(hash
, &napi
->gro_bitmask
))
5565 __set_bit(hash
, &napi
->gro_bitmask
);
5566 } else if (test_bit(hash
, &napi
->gro_bitmask
)) {
5567 __clear_bit(hash
, &napi
->gro_bitmask
);
5577 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
5579 struct list_head
*offload_head
= &offload_base
;
5580 struct packet_offload
*ptype
;
5582 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5583 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5589 EXPORT_SYMBOL(gro_find_receive_by_type
);
5591 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
5593 struct list_head
*offload_head
= &offload_base
;
5594 struct packet_offload
*ptype
;
5596 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5597 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5603 EXPORT_SYMBOL(gro_find_complete_by_type
);
5605 static void napi_skb_free_stolen_head(struct sk_buff
*skb
)
5609 kmem_cache_free(skbuff_head_cache
, skb
);
5612 static gro_result_t
napi_skb_finish(gro_result_t ret
, struct sk_buff
*skb
)
5616 if (netif_receive_skb_internal(skb
))
5624 case GRO_MERGED_FREE
:
5625 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5626 napi_skb_free_stolen_head(skb
);
5640 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5642 skb_mark_napi_id(skb
, napi
);
5643 trace_napi_gro_receive_entry(skb
);
5645 skb_gro_reset_offset(skb
);
5647 return napi_skb_finish(dev_gro_receive(napi
, skb
), skb
);
5649 EXPORT_SYMBOL(napi_gro_receive
);
5651 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
5653 if (unlikely(skb
->pfmemalloc
)) {
5657 __skb_pull(skb
, skb_headlen(skb
));
5658 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5659 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
5661 skb
->dev
= napi
->dev
;
5664 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5665 skb
->pkt_type
= PACKET_HOST
;
5667 skb
->encapsulation
= 0;
5668 skb_shinfo(skb
)->gso_type
= 0;
5669 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
5675 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
5677 struct sk_buff
*skb
= napi
->skb
;
5680 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
5683 skb_mark_napi_id(skb
, napi
);
5688 EXPORT_SYMBOL(napi_get_frags
);
5690 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
5691 struct sk_buff
*skb
,
5697 __skb_push(skb
, ETH_HLEN
);
5698 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5699 if (ret
== GRO_NORMAL
&& netif_receive_skb_internal(skb
))
5704 napi_reuse_skb(napi
, skb
);
5707 case GRO_MERGED_FREE
:
5708 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5709 napi_skb_free_stolen_head(skb
);
5711 napi_reuse_skb(napi
, skb
);
5722 /* Upper GRO stack assumes network header starts at gro_offset=0
5723 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5724 * We copy ethernet header into skb->data to have a common layout.
5726 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
5728 struct sk_buff
*skb
= napi
->skb
;
5729 const struct ethhdr
*eth
;
5730 unsigned int hlen
= sizeof(*eth
);
5734 skb_reset_mac_header(skb
);
5735 skb_gro_reset_offset(skb
);
5737 eth
= skb_gro_header_fast(skb
, 0);
5738 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
5739 eth
= skb_gro_header_slow(skb
, hlen
, 0);
5740 if (unlikely(!eth
)) {
5741 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5742 __func__
, napi
->dev
->name
);
5743 napi_reuse_skb(napi
, skb
);
5747 gro_pull_from_frag0(skb
, hlen
);
5748 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
5749 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
5751 __skb_pull(skb
, hlen
);
5754 * This works because the only protocols we care about don't require
5756 * We'll fix it up properly in napi_frags_finish()
5758 skb
->protocol
= eth
->h_proto
;
5763 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
5765 struct sk_buff
*skb
= napi_frags_skb(napi
);
5770 trace_napi_gro_frags_entry(skb
);
5772 return napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
5774 EXPORT_SYMBOL(napi_gro_frags
);
5776 /* Compute the checksum from gro_offset and return the folded value
5777 * after adding in any pseudo checksum.
5779 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
5784 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
5786 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5787 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
5789 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
5790 !skb
->csum_complete_sw
)
5791 netdev_rx_csum_fault(skb
->dev
);
5794 NAPI_GRO_CB(skb
)->csum
= wsum
;
5795 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5799 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
5801 static void net_rps_send_ipi(struct softnet_data
*remsd
)
5805 struct softnet_data
*next
= remsd
->rps_ipi_next
;
5807 if (cpu_online(remsd
->cpu
))
5808 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
5815 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5816 * Note: called with local irq disabled, but exits with local irq enabled.
5818 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
5821 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
5824 sd
->rps_ipi_list
= NULL
;
5828 /* Send pending IPI's to kick RPS processing on remote cpus. */
5829 net_rps_send_ipi(remsd
);
5835 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
5838 return sd
->rps_ipi_list
!= NULL
;
5844 static int process_backlog(struct napi_struct
*napi
, int quota
)
5846 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
5850 /* Check if we have pending ipi, its better to send them now,
5851 * not waiting net_rx_action() end.
5853 if (sd_has_rps_ipi_waiting(sd
)) {
5854 local_irq_disable();
5855 net_rps_action_and_irq_enable(sd
);
5858 napi
->weight
= dev_rx_weight
;
5860 struct sk_buff
*skb
;
5862 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
5864 __netif_receive_skb(skb
);
5866 input_queue_head_incr(sd
);
5867 if (++work
>= quota
)
5872 local_irq_disable();
5874 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
5876 * Inline a custom version of __napi_complete().
5877 * only current cpu owns and manipulates this napi,
5878 * and NAPI_STATE_SCHED is the only possible flag set
5880 * We can use a plain write instead of clear_bit(),
5881 * and we dont need an smp_mb() memory barrier.
5886 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
5887 &sd
->process_queue
);
5897 * __napi_schedule - schedule for receive
5898 * @n: entry to schedule
5900 * The entry's receive function will be scheduled to run.
5901 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5903 void __napi_schedule(struct napi_struct
*n
)
5905 unsigned long flags
;
5907 local_irq_save(flags
);
5908 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5909 local_irq_restore(flags
);
5911 EXPORT_SYMBOL(__napi_schedule
);
5914 * napi_schedule_prep - check if napi can be scheduled
5917 * Test if NAPI routine is already running, and if not mark
5918 * it as running. This is used as a condition variable
5919 * insure only one NAPI poll instance runs. We also make
5920 * sure there is no pending NAPI disable.
5922 bool napi_schedule_prep(struct napi_struct
*n
)
5924 unsigned long val
, new;
5927 val
= READ_ONCE(n
->state
);
5928 if (unlikely(val
& NAPIF_STATE_DISABLE
))
5930 new = val
| NAPIF_STATE_SCHED
;
5932 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5933 * This was suggested by Alexander Duyck, as compiler
5934 * emits better code than :
5935 * if (val & NAPIF_STATE_SCHED)
5936 * new |= NAPIF_STATE_MISSED;
5938 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
5940 } while (cmpxchg(&n
->state
, val
, new) != val
);
5942 return !(val
& NAPIF_STATE_SCHED
);
5944 EXPORT_SYMBOL(napi_schedule_prep
);
5947 * __napi_schedule_irqoff - schedule for receive
5948 * @n: entry to schedule
5950 * Variant of __napi_schedule() assuming hard irqs are masked
5952 void __napi_schedule_irqoff(struct napi_struct
*n
)
5954 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5956 EXPORT_SYMBOL(__napi_schedule_irqoff
);
5958 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
5960 unsigned long flags
, val
, new;
5963 * 1) Don't let napi dequeue from the cpu poll list
5964 * just in case its running on a different cpu.
5965 * 2) If we are busy polling, do nothing here, we have
5966 * the guarantee we will be called later.
5968 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
5969 NAPIF_STATE_IN_BUSY_POLL
)))
5972 if (n
->gro_bitmask
) {
5973 unsigned long timeout
= 0;
5976 timeout
= n
->dev
->gro_flush_timeout
;
5978 /* When the NAPI instance uses a timeout and keeps postponing
5979 * it, we need to bound somehow the time packets are kept in
5982 napi_gro_flush(n
, !!timeout
);
5984 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
5985 HRTIMER_MODE_REL_PINNED
);
5987 if (unlikely(!list_empty(&n
->poll_list
))) {
5988 /* If n->poll_list is not empty, we need to mask irqs */
5989 local_irq_save(flags
);
5990 list_del_init(&n
->poll_list
);
5991 local_irq_restore(flags
);
5995 val
= READ_ONCE(n
->state
);
5997 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
5999 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
6001 /* If STATE_MISSED was set, leave STATE_SCHED set,
6002 * because we will call napi->poll() one more time.
6003 * This C code was suggested by Alexander Duyck to help gcc.
6005 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
6007 } while (cmpxchg(&n
->state
, val
, new) != val
);
6009 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
6016 EXPORT_SYMBOL(napi_complete_done
);
6018 /* must be called under rcu_read_lock(), as we dont take a reference */
6019 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
6021 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
6022 struct napi_struct
*napi
;
6024 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
6025 if (napi
->napi_id
== napi_id
)
6031 #if defined(CONFIG_NET_RX_BUSY_POLL)
6033 #define BUSY_POLL_BUDGET 8
6035 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
6039 /* Busy polling means there is a high chance device driver hard irq
6040 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6041 * set in napi_schedule_prep().
6042 * Since we are about to call napi->poll() once more, we can safely
6043 * clear NAPI_STATE_MISSED.
6045 * Note: x86 could use a single "lock and ..." instruction
6046 * to perform these two clear_bit()
6048 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
6049 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
6053 /* All we really want here is to re-enable device interrupts.
6054 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6056 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
6057 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
6058 netpoll_poll_unlock(have_poll_lock
);
6059 if (rc
== BUSY_POLL_BUDGET
)
6060 __napi_schedule(napi
);
6064 void napi_busy_loop(unsigned int napi_id
,
6065 bool (*loop_end
)(void *, unsigned long),
6068 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
6069 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
6070 void *have_poll_lock
= NULL
;
6071 struct napi_struct
*napi
;
6078 napi
= napi_by_id(napi_id
);
6088 unsigned long val
= READ_ONCE(napi
->state
);
6090 /* If multiple threads are competing for this napi,
6091 * we avoid dirtying napi->state as much as we can.
6093 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
6094 NAPIF_STATE_IN_BUSY_POLL
))
6096 if (cmpxchg(&napi
->state
, val
,
6097 val
| NAPIF_STATE_IN_BUSY_POLL
|
6098 NAPIF_STATE_SCHED
) != val
)
6100 have_poll_lock
= netpoll_poll_lock(napi
);
6101 napi_poll
= napi
->poll
;
6103 work
= napi_poll(napi
, BUSY_POLL_BUDGET
);
6104 trace_napi_poll(napi
, work
, BUSY_POLL_BUDGET
);
6107 __NET_ADD_STATS(dev_net(napi
->dev
),
6108 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
6111 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
6114 if (unlikely(need_resched())) {
6116 busy_poll_stop(napi
, have_poll_lock
);
6120 if (loop_end(loop_end_arg
, start_time
))
6127 busy_poll_stop(napi
, have_poll_lock
);
6132 EXPORT_SYMBOL(napi_busy_loop
);
6134 #endif /* CONFIG_NET_RX_BUSY_POLL */
6136 static void napi_hash_add(struct napi_struct
*napi
)
6138 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
6139 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
6142 spin_lock(&napi_hash_lock
);
6144 /* 0..NR_CPUS range is reserved for sender_cpu use */
6146 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
6147 napi_gen_id
= MIN_NAPI_ID
;
6148 } while (napi_by_id(napi_gen_id
));
6149 napi
->napi_id
= napi_gen_id
;
6151 hlist_add_head_rcu(&napi
->napi_hash_node
,
6152 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
6154 spin_unlock(&napi_hash_lock
);
6157 /* Warning : caller is responsible to make sure rcu grace period
6158 * is respected before freeing memory containing @napi
6160 bool napi_hash_del(struct napi_struct
*napi
)
6162 bool rcu_sync_needed
= false;
6164 spin_lock(&napi_hash_lock
);
6166 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
6167 rcu_sync_needed
= true;
6168 hlist_del_rcu(&napi
->napi_hash_node
);
6170 spin_unlock(&napi_hash_lock
);
6171 return rcu_sync_needed
;
6173 EXPORT_SYMBOL_GPL(napi_hash_del
);
6175 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
6177 struct napi_struct
*napi
;
6179 napi
= container_of(timer
, struct napi_struct
, timer
);
6181 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6182 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6184 if (napi
->gro_bitmask
&& !napi_disable_pending(napi
) &&
6185 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
6186 __napi_schedule_irqoff(napi
);
6188 return HRTIMER_NORESTART
;
6191 static void init_gro_hash(struct napi_struct
*napi
)
6195 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6196 INIT_LIST_HEAD(&napi
->gro_hash
[i
].list
);
6197 napi
->gro_hash
[i
].count
= 0;
6199 napi
->gro_bitmask
= 0;
6202 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
6203 int (*poll
)(struct napi_struct
*, int), int weight
)
6205 INIT_LIST_HEAD(&napi
->poll_list
);
6206 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
6207 napi
->timer
.function
= napi_watchdog
;
6208 init_gro_hash(napi
);
6211 if (weight
> NAPI_POLL_WEIGHT
)
6212 netdev_err_once(dev
, "%s() called with weight %d\n", __func__
,
6214 napi
->weight
= weight
;
6215 list_add(&napi
->dev_list
, &dev
->napi_list
);
6217 #ifdef CONFIG_NETPOLL
6218 napi
->poll_owner
= -1;
6220 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
6221 napi_hash_add(napi
);
6223 EXPORT_SYMBOL(netif_napi_add
);
6225 void napi_disable(struct napi_struct
*n
)
6228 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
6230 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
6232 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
6235 hrtimer_cancel(&n
->timer
);
6237 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
6239 EXPORT_SYMBOL(napi_disable
);
6241 static void flush_gro_hash(struct napi_struct
*napi
)
6245 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6246 struct sk_buff
*skb
, *n
;
6248 list_for_each_entry_safe(skb
, n
, &napi
->gro_hash
[i
].list
, list
)
6250 napi
->gro_hash
[i
].count
= 0;
6254 /* Must be called in process context */
6255 void netif_napi_del(struct napi_struct
*napi
)
6258 if (napi_hash_del(napi
))
6260 list_del_init(&napi
->dev_list
);
6261 napi_free_frags(napi
);
6263 flush_gro_hash(napi
);
6264 napi
->gro_bitmask
= 0;
6266 EXPORT_SYMBOL(netif_napi_del
);
6268 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
6273 list_del_init(&n
->poll_list
);
6275 have
= netpoll_poll_lock(n
);
6279 /* This NAPI_STATE_SCHED test is for avoiding a race
6280 * with netpoll's poll_napi(). Only the entity which
6281 * obtains the lock and sees NAPI_STATE_SCHED set will
6282 * actually make the ->poll() call. Therefore we avoid
6283 * accidentally calling ->poll() when NAPI is not scheduled.
6286 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
6287 work
= n
->poll(n
, weight
);
6288 trace_napi_poll(n
, work
, weight
);
6291 WARN_ON_ONCE(work
> weight
);
6293 if (likely(work
< weight
))
6296 /* Drivers must not modify the NAPI state if they
6297 * consume the entire weight. In such cases this code
6298 * still "owns" the NAPI instance and therefore can
6299 * move the instance around on the list at-will.
6301 if (unlikely(napi_disable_pending(n
))) {
6306 if (n
->gro_bitmask
) {
6307 /* flush too old packets
6308 * If HZ < 1000, flush all packets.
6310 napi_gro_flush(n
, HZ
>= 1000);
6313 /* Some drivers may have called napi_schedule
6314 * prior to exhausting their budget.
6316 if (unlikely(!list_empty(&n
->poll_list
))) {
6317 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6318 n
->dev
? n
->dev
->name
: "backlog");
6322 list_add_tail(&n
->poll_list
, repoll
);
6325 netpoll_poll_unlock(have
);
6330 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
6332 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
6333 unsigned long time_limit
= jiffies
+
6334 usecs_to_jiffies(netdev_budget_usecs
);
6335 int budget
= netdev_budget
;
6339 local_irq_disable();
6340 list_splice_init(&sd
->poll_list
, &list
);
6344 struct napi_struct
*n
;
6346 if (list_empty(&list
)) {
6347 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
6352 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
6353 budget
-= napi_poll(n
, &repoll
);
6355 /* If softirq window is exhausted then punt.
6356 * Allow this to run for 2 jiffies since which will allow
6357 * an average latency of 1.5/HZ.
6359 if (unlikely(budget
<= 0 ||
6360 time_after_eq(jiffies
, time_limit
))) {
6366 local_irq_disable();
6368 list_splice_tail_init(&sd
->poll_list
, &list
);
6369 list_splice_tail(&repoll
, &list
);
6370 list_splice(&list
, &sd
->poll_list
);
6371 if (!list_empty(&sd
->poll_list
))
6372 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
6374 net_rps_action_and_irq_enable(sd
);
6376 __kfree_skb_flush();
6379 struct netdev_adjacent
{
6380 struct net_device
*dev
;
6382 /* upper master flag, there can only be one master device per list */
6385 /* counter for the number of times this device was added to us */
6388 /* private field for the users */
6391 struct list_head list
;
6392 struct rcu_head rcu
;
6395 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
6396 struct list_head
*adj_list
)
6398 struct netdev_adjacent
*adj
;
6400 list_for_each_entry(adj
, adj_list
, list
) {
6401 if (adj
->dev
== adj_dev
)
6407 static int __netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
6409 struct net_device
*dev
= data
;
6411 return upper_dev
== dev
;
6415 * netdev_has_upper_dev - Check if device is linked to an upper device
6417 * @upper_dev: upper device to check
6419 * Find out if a device is linked to specified upper device and return true
6420 * in case it is. Note that this checks only immediate upper device,
6421 * not through a complete stack of devices. The caller must hold the RTNL lock.
6423 bool netdev_has_upper_dev(struct net_device
*dev
,
6424 struct net_device
*upper_dev
)
6428 return netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
6431 EXPORT_SYMBOL(netdev_has_upper_dev
);
6434 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6436 * @upper_dev: upper device to check
6438 * Find out if a device is linked to specified upper device and return true
6439 * in case it is. Note that this checks the entire upper device chain.
6440 * The caller must hold rcu lock.
6443 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
6444 struct net_device
*upper_dev
)
6446 return !!netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
6449 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
6452 * netdev_has_any_upper_dev - Check if device is linked to some device
6455 * Find out if a device is linked to an upper device and return true in case
6456 * it is. The caller must hold the RTNL lock.
6458 bool netdev_has_any_upper_dev(struct net_device
*dev
)
6462 return !list_empty(&dev
->adj_list
.upper
);
6464 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
6467 * netdev_master_upper_dev_get - Get master upper device
6470 * Find a master upper device and return pointer to it or NULL in case
6471 * it's not there. The caller must hold the RTNL lock.
6473 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
6475 struct netdev_adjacent
*upper
;
6479 if (list_empty(&dev
->adj_list
.upper
))
6482 upper
= list_first_entry(&dev
->adj_list
.upper
,
6483 struct netdev_adjacent
, list
);
6484 if (likely(upper
->master
))
6488 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
6491 * netdev_has_any_lower_dev - Check if device is linked to some device
6494 * Find out if a device is linked to a lower device and return true in case
6495 * it is. The caller must hold the RTNL lock.
6497 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
6501 return !list_empty(&dev
->adj_list
.lower
);
6504 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
6506 struct netdev_adjacent
*adj
;
6508 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
6510 return adj
->private;
6512 EXPORT_SYMBOL(netdev_adjacent_get_private
);
6515 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6517 * @iter: list_head ** of the current position
6519 * Gets the next device from the dev's upper list, starting from iter
6520 * position. The caller must hold RCU read lock.
6522 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
6523 struct list_head
**iter
)
6525 struct netdev_adjacent
*upper
;
6527 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6529 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6531 if (&upper
->list
== &dev
->adj_list
.upper
)
6534 *iter
= &upper
->list
;
6538 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
6540 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
6541 struct list_head
**iter
)
6543 struct netdev_adjacent
*upper
;
6545 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6547 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6549 if (&upper
->list
== &dev
->adj_list
.upper
)
6552 *iter
= &upper
->list
;
6557 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
6558 int (*fn
)(struct net_device
*dev
,
6562 struct net_device
*udev
;
6563 struct list_head
*iter
;
6566 for (iter
= &dev
->adj_list
.upper
,
6567 udev
= netdev_next_upper_dev_rcu(dev
, &iter
);
6569 udev
= netdev_next_upper_dev_rcu(dev
, &iter
)) {
6570 /* first is the upper device itself */
6571 ret
= fn(udev
, data
);
6575 /* then look at all of its upper devices */
6576 ret
= netdev_walk_all_upper_dev_rcu(udev
, fn
, data
);
6583 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
6586 * netdev_lower_get_next_private - Get the next ->private from the
6587 * lower neighbour list
6589 * @iter: list_head ** of the current position
6591 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6592 * list, starting from iter position. The caller must hold either hold the
6593 * RTNL lock or its own locking that guarantees that the neighbour lower
6594 * list will remain unchanged.
6596 void *netdev_lower_get_next_private(struct net_device
*dev
,
6597 struct list_head
**iter
)
6599 struct netdev_adjacent
*lower
;
6601 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6603 if (&lower
->list
== &dev
->adj_list
.lower
)
6606 *iter
= lower
->list
.next
;
6608 return lower
->private;
6610 EXPORT_SYMBOL(netdev_lower_get_next_private
);
6613 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6614 * lower neighbour list, RCU
6617 * @iter: list_head ** of the current position
6619 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6620 * list, starting from iter position. The caller must hold RCU read lock.
6622 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
6623 struct list_head
**iter
)
6625 struct netdev_adjacent
*lower
;
6627 WARN_ON_ONCE(!rcu_read_lock_held());
6629 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6631 if (&lower
->list
== &dev
->adj_list
.lower
)
6634 *iter
= &lower
->list
;
6636 return lower
->private;
6638 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
6641 * netdev_lower_get_next - Get the next device from the lower neighbour
6644 * @iter: list_head ** of the current position
6646 * Gets the next netdev_adjacent from the dev's lower neighbour
6647 * list, starting from iter position. The caller must hold RTNL lock or
6648 * its own locking that guarantees that the neighbour lower
6649 * list will remain unchanged.
6651 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
6653 struct netdev_adjacent
*lower
;
6655 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6657 if (&lower
->list
== &dev
->adj_list
.lower
)
6660 *iter
= lower
->list
.next
;
6664 EXPORT_SYMBOL(netdev_lower_get_next
);
6666 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
6667 struct list_head
**iter
)
6669 struct netdev_adjacent
*lower
;
6671 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
6673 if (&lower
->list
== &dev
->adj_list
.lower
)
6676 *iter
= &lower
->list
;
6681 int netdev_walk_all_lower_dev(struct net_device
*dev
,
6682 int (*fn
)(struct net_device
*dev
,
6686 struct net_device
*ldev
;
6687 struct list_head
*iter
;
6690 for (iter
= &dev
->adj_list
.lower
,
6691 ldev
= netdev_next_lower_dev(dev
, &iter
);
6693 ldev
= netdev_next_lower_dev(dev
, &iter
)) {
6694 /* first is the lower device itself */
6695 ret
= fn(ldev
, data
);
6699 /* then look at all of its lower devices */
6700 ret
= netdev_walk_all_lower_dev(ldev
, fn
, data
);
6707 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
6709 static struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
6710 struct list_head
**iter
)
6712 struct netdev_adjacent
*lower
;
6714 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6715 if (&lower
->list
== &dev
->adj_list
.lower
)
6718 *iter
= &lower
->list
;
6723 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
6724 int (*fn
)(struct net_device
*dev
,
6728 struct net_device
*ldev
;
6729 struct list_head
*iter
;
6732 for (iter
= &dev
->adj_list
.lower
,
6733 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
);
6735 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
)) {
6736 /* first is the lower device itself */
6737 ret
= fn(ldev
, data
);
6741 /* then look at all of its lower devices */
6742 ret
= netdev_walk_all_lower_dev_rcu(ldev
, fn
, data
);
6749 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
6752 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6753 * lower neighbour list, RCU
6757 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6758 * list. The caller must hold RCU read lock.
6760 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
6762 struct netdev_adjacent
*lower
;
6764 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
6765 struct netdev_adjacent
, list
);
6767 return lower
->private;
6770 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
6773 * netdev_master_upper_dev_get_rcu - Get master upper device
6776 * Find a master upper device and return pointer to it or NULL in case
6777 * it's not there. The caller must hold the RCU read lock.
6779 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
6781 struct netdev_adjacent
*upper
;
6783 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
6784 struct netdev_adjacent
, list
);
6785 if (upper
&& likely(upper
->master
))
6789 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
6791 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
6792 struct net_device
*adj_dev
,
6793 struct list_head
*dev_list
)
6795 char linkname
[IFNAMSIZ
+7];
6797 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6798 "upper_%s" : "lower_%s", adj_dev
->name
);
6799 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
6802 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
6804 struct list_head
*dev_list
)
6806 char linkname
[IFNAMSIZ
+7];
6808 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6809 "upper_%s" : "lower_%s", name
);
6810 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
6813 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
6814 struct net_device
*adj_dev
,
6815 struct list_head
*dev_list
)
6817 return (dev_list
== &dev
->adj_list
.upper
||
6818 dev_list
== &dev
->adj_list
.lower
) &&
6819 net_eq(dev_net(dev
), dev_net(adj_dev
));
6822 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
6823 struct net_device
*adj_dev
,
6824 struct list_head
*dev_list
,
6825 void *private, bool master
)
6827 struct netdev_adjacent
*adj
;
6830 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6834 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6835 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
6840 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
6845 adj
->master
= master
;
6847 adj
->private = private;
6850 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6851 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
6853 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
6854 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
6859 /* Ensure that master link is always the first item in list. */
6861 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
6862 &(adj_dev
->dev
.kobj
), "master");
6864 goto remove_symlinks
;
6866 list_add_rcu(&adj
->list
, dev_list
);
6868 list_add_tail_rcu(&adj
->list
, dev_list
);
6874 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6875 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6883 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
6884 struct net_device
*adj_dev
,
6886 struct list_head
*dev_list
)
6888 struct netdev_adjacent
*adj
;
6890 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6891 dev
->name
, adj_dev
->name
, ref_nr
);
6893 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6896 pr_err("Adjacency does not exist for device %s from %s\n",
6897 dev
->name
, adj_dev
->name
);
6902 if (adj
->ref_nr
> ref_nr
) {
6903 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6904 dev
->name
, adj_dev
->name
, ref_nr
,
6905 adj
->ref_nr
- ref_nr
);
6906 adj
->ref_nr
-= ref_nr
;
6911 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
6913 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6914 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6916 list_del_rcu(&adj
->list
);
6917 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6918 adj_dev
->name
, dev
->name
, adj_dev
->name
);
6920 kfree_rcu(adj
, rcu
);
6923 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
6924 struct net_device
*upper_dev
,
6925 struct list_head
*up_list
,
6926 struct list_head
*down_list
,
6927 void *private, bool master
)
6931 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
6936 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
6939 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
6946 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
6947 struct net_device
*upper_dev
,
6949 struct list_head
*up_list
,
6950 struct list_head
*down_list
)
6952 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
6953 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
6956 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
6957 struct net_device
*upper_dev
,
6958 void *private, bool master
)
6960 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
6961 &dev
->adj_list
.upper
,
6962 &upper_dev
->adj_list
.lower
,
6966 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
6967 struct net_device
*upper_dev
)
6969 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
6970 &dev
->adj_list
.upper
,
6971 &upper_dev
->adj_list
.lower
);
6974 static int __netdev_upper_dev_link(struct net_device
*dev
,
6975 struct net_device
*upper_dev
, bool master
,
6976 void *upper_priv
, void *upper_info
,
6977 struct netlink_ext_ack
*extack
)
6979 struct netdev_notifier_changeupper_info changeupper_info
= {
6984 .upper_dev
= upper_dev
,
6987 .upper_info
= upper_info
,
6989 struct net_device
*master_dev
;
6994 if (dev
== upper_dev
)
6997 /* To prevent loops, check if dev is not upper device to upper_dev. */
6998 if (netdev_has_upper_dev(upper_dev
, dev
))
7002 if (netdev_has_upper_dev(dev
, upper_dev
))
7005 master_dev
= netdev_master_upper_dev_get(dev
);
7007 return master_dev
== upper_dev
? -EEXIST
: -EBUSY
;
7010 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7011 &changeupper_info
.info
);
7012 ret
= notifier_to_errno(ret
);
7016 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
7021 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7022 &changeupper_info
.info
);
7023 ret
= notifier_to_errno(ret
);
7030 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7036 * netdev_upper_dev_link - Add a link to the upper device
7038 * @upper_dev: new upper device
7039 * @extack: netlink extended ack
7041 * Adds a link to device which is upper to this one. The caller must hold
7042 * the RTNL lock. On a failure a negative errno code is returned.
7043 * On success the reference counts are adjusted and the function
7046 int netdev_upper_dev_link(struct net_device
*dev
,
7047 struct net_device
*upper_dev
,
7048 struct netlink_ext_ack
*extack
)
7050 return __netdev_upper_dev_link(dev
, upper_dev
, false,
7051 NULL
, NULL
, extack
);
7053 EXPORT_SYMBOL(netdev_upper_dev_link
);
7056 * netdev_master_upper_dev_link - Add a master link to the upper device
7058 * @upper_dev: new upper device
7059 * @upper_priv: upper device private
7060 * @upper_info: upper info to be passed down via notifier
7061 * @extack: netlink extended ack
7063 * Adds a link to device which is upper to this one. In this case, only
7064 * one master upper device can be linked, although other non-master devices
7065 * might be linked as well. The caller must hold the RTNL lock.
7066 * On a failure a negative errno code is returned. On success the reference
7067 * counts are adjusted and the function returns zero.
7069 int netdev_master_upper_dev_link(struct net_device
*dev
,
7070 struct net_device
*upper_dev
,
7071 void *upper_priv
, void *upper_info
,
7072 struct netlink_ext_ack
*extack
)
7074 return __netdev_upper_dev_link(dev
, upper_dev
, true,
7075 upper_priv
, upper_info
, extack
);
7077 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
7080 * netdev_upper_dev_unlink - Removes a link to upper device
7082 * @upper_dev: new upper device
7084 * Removes a link to device which is upper to this one. The caller must hold
7087 void netdev_upper_dev_unlink(struct net_device
*dev
,
7088 struct net_device
*upper_dev
)
7090 struct netdev_notifier_changeupper_info changeupper_info
= {
7094 .upper_dev
= upper_dev
,
7100 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
7102 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7103 &changeupper_info
.info
);
7105 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7107 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7108 &changeupper_info
.info
);
7110 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
7113 * netdev_bonding_info_change - Dispatch event about slave change
7115 * @bonding_info: info to dispatch
7117 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7118 * The caller must hold the RTNL lock.
7120 void netdev_bonding_info_change(struct net_device
*dev
,
7121 struct netdev_bonding_info
*bonding_info
)
7123 struct netdev_notifier_bonding_info info
= {
7127 memcpy(&info
.bonding_info
, bonding_info
,
7128 sizeof(struct netdev_bonding_info
));
7129 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
7132 EXPORT_SYMBOL(netdev_bonding_info_change
);
7134 static void netdev_adjacent_add_links(struct net_device
*dev
)
7136 struct netdev_adjacent
*iter
;
7138 struct net
*net
= dev_net(dev
);
7140 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7141 if (!net_eq(net
, dev_net(iter
->dev
)))
7143 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7144 &iter
->dev
->adj_list
.lower
);
7145 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7146 &dev
->adj_list
.upper
);
7149 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7150 if (!net_eq(net
, dev_net(iter
->dev
)))
7152 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7153 &iter
->dev
->adj_list
.upper
);
7154 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7155 &dev
->adj_list
.lower
);
7159 static void netdev_adjacent_del_links(struct net_device
*dev
)
7161 struct netdev_adjacent
*iter
;
7163 struct net
*net
= dev_net(dev
);
7165 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7166 if (!net_eq(net
, dev_net(iter
->dev
)))
7168 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7169 &iter
->dev
->adj_list
.lower
);
7170 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7171 &dev
->adj_list
.upper
);
7174 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7175 if (!net_eq(net
, dev_net(iter
->dev
)))
7177 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7178 &iter
->dev
->adj_list
.upper
);
7179 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7180 &dev
->adj_list
.lower
);
7184 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
7186 struct netdev_adjacent
*iter
;
7188 struct net
*net
= dev_net(dev
);
7190 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7191 if (!net_eq(net
, dev_net(iter
->dev
)))
7193 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7194 &iter
->dev
->adj_list
.lower
);
7195 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7196 &iter
->dev
->adj_list
.lower
);
7199 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7200 if (!net_eq(net
, dev_net(iter
->dev
)))
7202 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7203 &iter
->dev
->adj_list
.upper
);
7204 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7205 &iter
->dev
->adj_list
.upper
);
7209 void *netdev_lower_dev_get_private(struct net_device
*dev
,
7210 struct net_device
*lower_dev
)
7212 struct netdev_adjacent
*lower
;
7216 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
7220 return lower
->private;
7222 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
7225 int dev_get_nest_level(struct net_device
*dev
)
7227 struct net_device
*lower
= NULL
;
7228 struct list_head
*iter
;
7234 netdev_for_each_lower_dev(dev
, lower
, iter
) {
7235 nest
= dev_get_nest_level(lower
);
7236 if (max_nest
< nest
)
7240 return max_nest
+ 1;
7242 EXPORT_SYMBOL(dev_get_nest_level
);
7245 * netdev_lower_change - Dispatch event about lower device state change
7246 * @lower_dev: device
7247 * @lower_state_info: state to dispatch
7249 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7250 * The caller must hold the RTNL lock.
7252 void netdev_lower_state_changed(struct net_device
*lower_dev
,
7253 void *lower_state_info
)
7255 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
7256 .info
.dev
= lower_dev
,
7260 changelowerstate_info
.lower_state_info
= lower_state_info
;
7261 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
7262 &changelowerstate_info
.info
);
7264 EXPORT_SYMBOL(netdev_lower_state_changed
);
7266 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
7268 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7270 if (ops
->ndo_change_rx_flags
)
7271 ops
->ndo_change_rx_flags(dev
, flags
);
7274 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
7276 unsigned int old_flags
= dev
->flags
;
7282 dev
->flags
|= IFF_PROMISC
;
7283 dev
->promiscuity
+= inc
;
7284 if (dev
->promiscuity
== 0) {
7287 * If inc causes overflow, untouch promisc and return error.
7290 dev
->flags
&= ~IFF_PROMISC
;
7292 dev
->promiscuity
-= inc
;
7293 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7298 if (dev
->flags
!= old_flags
) {
7299 pr_info("device %s %s promiscuous mode\n",
7301 dev
->flags
& IFF_PROMISC
? "entered" : "left");
7302 if (audit_enabled
) {
7303 current_uid_gid(&uid
, &gid
);
7304 audit_log(audit_context(), GFP_ATOMIC
,
7305 AUDIT_ANOM_PROMISCUOUS
,
7306 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7307 dev
->name
, (dev
->flags
& IFF_PROMISC
),
7308 (old_flags
& IFF_PROMISC
),
7309 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
7310 from_kuid(&init_user_ns
, uid
),
7311 from_kgid(&init_user_ns
, gid
),
7312 audit_get_sessionid(current
));
7315 dev_change_rx_flags(dev
, IFF_PROMISC
);
7318 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
7323 * dev_set_promiscuity - update promiscuity count on a device
7327 * Add or remove promiscuity from a device. While the count in the device
7328 * remains above zero the interface remains promiscuous. Once it hits zero
7329 * the device reverts back to normal filtering operation. A negative inc
7330 * value is used to drop promiscuity on the device.
7331 * Return 0 if successful or a negative errno code on error.
7333 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
7335 unsigned int old_flags
= dev
->flags
;
7338 err
= __dev_set_promiscuity(dev
, inc
, true);
7341 if (dev
->flags
!= old_flags
)
7342 dev_set_rx_mode(dev
);
7345 EXPORT_SYMBOL(dev_set_promiscuity
);
7347 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
7349 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7353 dev
->flags
|= IFF_ALLMULTI
;
7354 dev
->allmulti
+= inc
;
7355 if (dev
->allmulti
== 0) {
7358 * If inc causes overflow, untouch allmulti and return error.
7361 dev
->flags
&= ~IFF_ALLMULTI
;
7363 dev
->allmulti
-= inc
;
7364 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7369 if (dev
->flags
^ old_flags
) {
7370 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
7371 dev_set_rx_mode(dev
);
7373 __dev_notify_flags(dev
, old_flags
,
7374 dev
->gflags
^ old_gflags
);
7380 * dev_set_allmulti - update allmulti count on a device
7384 * Add or remove reception of all multicast frames to a device. While the
7385 * count in the device remains above zero the interface remains listening
7386 * to all interfaces. Once it hits zero the device reverts back to normal
7387 * filtering operation. A negative @inc value is used to drop the counter
7388 * when releasing a resource needing all multicasts.
7389 * Return 0 if successful or a negative errno code on error.
7392 int dev_set_allmulti(struct net_device
*dev
, int inc
)
7394 return __dev_set_allmulti(dev
, inc
, true);
7396 EXPORT_SYMBOL(dev_set_allmulti
);
7399 * Upload unicast and multicast address lists to device and
7400 * configure RX filtering. When the device doesn't support unicast
7401 * filtering it is put in promiscuous mode while unicast addresses
7404 void __dev_set_rx_mode(struct net_device
*dev
)
7406 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7408 /* dev_open will call this function so the list will stay sane. */
7409 if (!(dev
->flags
&IFF_UP
))
7412 if (!netif_device_present(dev
))
7415 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
7416 /* Unicast addresses changes may only happen under the rtnl,
7417 * therefore calling __dev_set_promiscuity here is safe.
7419 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
7420 __dev_set_promiscuity(dev
, 1, false);
7421 dev
->uc_promisc
= true;
7422 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
7423 __dev_set_promiscuity(dev
, -1, false);
7424 dev
->uc_promisc
= false;
7428 if (ops
->ndo_set_rx_mode
)
7429 ops
->ndo_set_rx_mode(dev
);
7432 void dev_set_rx_mode(struct net_device
*dev
)
7434 netif_addr_lock_bh(dev
);
7435 __dev_set_rx_mode(dev
);
7436 netif_addr_unlock_bh(dev
);
7440 * dev_get_flags - get flags reported to userspace
7443 * Get the combination of flag bits exported through APIs to userspace.
7445 unsigned int dev_get_flags(const struct net_device
*dev
)
7449 flags
= (dev
->flags
& ~(IFF_PROMISC
|
7454 (dev
->gflags
& (IFF_PROMISC
|
7457 if (netif_running(dev
)) {
7458 if (netif_oper_up(dev
))
7459 flags
|= IFF_RUNNING
;
7460 if (netif_carrier_ok(dev
))
7461 flags
|= IFF_LOWER_UP
;
7462 if (netif_dormant(dev
))
7463 flags
|= IFF_DORMANT
;
7468 EXPORT_SYMBOL(dev_get_flags
);
7470 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
)
7472 unsigned int old_flags
= dev
->flags
;
7478 * Set the flags on our device.
7481 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
7482 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
7484 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
7488 * Load in the correct multicast list now the flags have changed.
7491 if ((old_flags
^ flags
) & IFF_MULTICAST
)
7492 dev_change_rx_flags(dev
, IFF_MULTICAST
);
7494 dev_set_rx_mode(dev
);
7497 * Have we downed the interface. We handle IFF_UP ourselves
7498 * according to user attempts to set it, rather than blindly
7503 if ((old_flags
^ flags
) & IFF_UP
) {
7504 if (old_flags
& IFF_UP
)
7507 ret
= __dev_open(dev
);
7510 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
7511 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
7512 unsigned int old_flags
= dev
->flags
;
7514 dev
->gflags
^= IFF_PROMISC
;
7516 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
7517 if (dev
->flags
!= old_flags
)
7518 dev_set_rx_mode(dev
);
7521 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7522 * is important. Some (broken) drivers set IFF_PROMISC, when
7523 * IFF_ALLMULTI is requested not asking us and not reporting.
7525 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
7526 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
7528 dev
->gflags
^= IFF_ALLMULTI
;
7529 __dev_set_allmulti(dev
, inc
, false);
7535 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
7536 unsigned int gchanges
)
7538 unsigned int changes
= dev
->flags
^ old_flags
;
7541 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
7543 if (changes
& IFF_UP
) {
7544 if (dev
->flags
& IFF_UP
)
7545 call_netdevice_notifiers(NETDEV_UP
, dev
);
7547 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
7550 if (dev
->flags
& IFF_UP
&&
7551 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
7552 struct netdev_notifier_change_info change_info
= {
7556 .flags_changed
= changes
,
7559 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
7564 * dev_change_flags - change device settings
7566 * @flags: device state flags
7568 * Change settings on device based state flags. The flags are
7569 * in the userspace exported format.
7571 int dev_change_flags(struct net_device
*dev
, unsigned int flags
)
7574 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7576 ret
= __dev_change_flags(dev
, flags
);
7580 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
7581 __dev_notify_flags(dev
, old_flags
, changes
);
7584 EXPORT_SYMBOL(dev_change_flags
);
7586 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7588 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7590 if (ops
->ndo_change_mtu
)
7591 return ops
->ndo_change_mtu(dev
, new_mtu
);
7596 EXPORT_SYMBOL(__dev_set_mtu
);
7599 * dev_set_mtu_ext - Change maximum transfer unit
7601 * @new_mtu: new transfer unit
7602 * @extack: netlink extended ack
7604 * Change the maximum transfer size of the network device.
7606 int dev_set_mtu_ext(struct net_device
*dev
, int new_mtu
,
7607 struct netlink_ext_ack
*extack
)
7611 if (new_mtu
== dev
->mtu
)
7614 /* MTU must be positive, and in range */
7615 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
7616 NL_SET_ERR_MSG(extack
, "mtu less than device minimum");
7620 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
7621 NL_SET_ERR_MSG(extack
, "mtu greater than device maximum");
7625 if (!netif_device_present(dev
))
7628 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
7629 err
= notifier_to_errno(err
);
7633 orig_mtu
= dev
->mtu
;
7634 err
= __dev_set_mtu(dev
, new_mtu
);
7637 err
= call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
7639 err
= notifier_to_errno(err
);
7641 /* setting mtu back and notifying everyone again,
7642 * so that they have a chance to revert changes.
7644 __dev_set_mtu(dev
, orig_mtu
);
7645 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
7652 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7654 struct netlink_ext_ack extack
;
7657 memset(&extack
, 0, sizeof(extack
));
7658 err
= dev_set_mtu_ext(dev
, new_mtu
, &extack
);
7659 if (err
&& extack
._msg
)
7660 net_err_ratelimited("%s: %s\n", dev
->name
, extack
._msg
);
7663 EXPORT_SYMBOL(dev_set_mtu
);
7666 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7668 * @new_len: new tx queue length
7670 int dev_change_tx_queue_len(struct net_device
*dev
, unsigned long new_len
)
7672 unsigned int orig_len
= dev
->tx_queue_len
;
7675 if (new_len
!= (unsigned int)new_len
)
7678 if (new_len
!= orig_len
) {
7679 dev
->tx_queue_len
= new_len
;
7680 res
= call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN
, dev
);
7681 res
= notifier_to_errno(res
);
7684 res
= dev_qdisc_change_tx_queue_len(dev
);
7692 netdev_err(dev
, "refused to change device tx_queue_len\n");
7693 dev
->tx_queue_len
= orig_len
;
7698 * dev_set_group - Change group this device belongs to
7700 * @new_group: group this device should belong to
7702 void dev_set_group(struct net_device
*dev
, int new_group
)
7704 dev
->group
= new_group
;
7706 EXPORT_SYMBOL(dev_set_group
);
7709 * dev_set_mac_address - Change Media Access Control Address
7713 * Change the hardware (MAC) address of the device
7715 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
)
7717 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7720 if (!ops
->ndo_set_mac_address
)
7722 if (sa
->sa_family
!= dev
->type
)
7724 if (!netif_device_present(dev
))
7726 err
= ops
->ndo_set_mac_address(dev
, sa
);
7729 dev
->addr_assign_type
= NET_ADDR_SET
;
7730 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
7731 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
7734 EXPORT_SYMBOL(dev_set_mac_address
);
7737 * dev_change_carrier - Change device carrier
7739 * @new_carrier: new value
7741 * Change device carrier
7743 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
7745 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7747 if (!ops
->ndo_change_carrier
)
7749 if (!netif_device_present(dev
))
7751 return ops
->ndo_change_carrier(dev
, new_carrier
);
7753 EXPORT_SYMBOL(dev_change_carrier
);
7756 * dev_get_phys_port_id - Get device physical port ID
7760 * Get device physical port ID
7762 int dev_get_phys_port_id(struct net_device
*dev
,
7763 struct netdev_phys_item_id
*ppid
)
7765 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7767 if (!ops
->ndo_get_phys_port_id
)
7769 return ops
->ndo_get_phys_port_id(dev
, ppid
);
7771 EXPORT_SYMBOL(dev_get_phys_port_id
);
7774 * dev_get_phys_port_name - Get device physical port name
7777 * @len: limit of bytes to copy to name
7779 * Get device physical port name
7781 int dev_get_phys_port_name(struct net_device
*dev
,
7782 char *name
, size_t len
)
7784 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7786 if (!ops
->ndo_get_phys_port_name
)
7788 return ops
->ndo_get_phys_port_name(dev
, name
, len
);
7790 EXPORT_SYMBOL(dev_get_phys_port_name
);
7793 * dev_change_proto_down - update protocol port state information
7795 * @proto_down: new value
7797 * This info can be used by switch drivers to set the phys state of the
7800 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
7802 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7804 if (!ops
->ndo_change_proto_down
)
7806 if (!netif_device_present(dev
))
7808 return ops
->ndo_change_proto_down(dev
, proto_down
);
7810 EXPORT_SYMBOL(dev_change_proto_down
);
7812 u32
__dev_xdp_query(struct net_device
*dev
, bpf_op_t bpf_op
,
7813 enum bpf_netdev_command cmd
)
7815 struct netdev_bpf xdp
;
7820 memset(&xdp
, 0, sizeof(xdp
));
7823 /* Query must always succeed. */
7824 WARN_ON(bpf_op(dev
, &xdp
) < 0 && cmd
== XDP_QUERY_PROG
);
7829 static int dev_xdp_install(struct net_device
*dev
, bpf_op_t bpf_op
,
7830 struct netlink_ext_ack
*extack
, u32 flags
,
7831 struct bpf_prog
*prog
)
7833 struct netdev_bpf xdp
;
7835 memset(&xdp
, 0, sizeof(xdp
));
7836 if (flags
& XDP_FLAGS_HW_MODE
)
7837 xdp
.command
= XDP_SETUP_PROG_HW
;
7839 xdp
.command
= XDP_SETUP_PROG
;
7840 xdp
.extack
= extack
;
7844 return bpf_op(dev
, &xdp
);
7847 static void dev_xdp_uninstall(struct net_device
*dev
)
7849 struct netdev_bpf xdp
;
7852 /* Remove generic XDP */
7853 WARN_ON(dev_xdp_install(dev
, generic_xdp_install
, NULL
, 0, NULL
));
7855 /* Remove from the driver */
7856 ndo_bpf
= dev
->netdev_ops
->ndo_bpf
;
7860 memset(&xdp
, 0, sizeof(xdp
));
7861 xdp
.command
= XDP_QUERY_PROG
;
7862 WARN_ON(ndo_bpf(dev
, &xdp
));
7864 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
7867 /* Remove HW offload */
7868 memset(&xdp
, 0, sizeof(xdp
));
7869 xdp
.command
= XDP_QUERY_PROG_HW
;
7870 if (!ndo_bpf(dev
, &xdp
) && xdp
.prog_id
)
7871 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
7876 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7878 * @extack: netlink extended ack
7879 * @fd: new program fd or negative value to clear
7880 * @flags: xdp-related flags
7882 * Set or clear a bpf program for a device
7884 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
7887 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7888 enum bpf_netdev_command query
;
7889 struct bpf_prog
*prog
= NULL
;
7890 bpf_op_t bpf_op
, bpf_chk
;
7895 query
= flags
& XDP_FLAGS_HW_MODE
? XDP_QUERY_PROG_HW
: XDP_QUERY_PROG
;
7897 bpf_op
= bpf_chk
= ops
->ndo_bpf
;
7898 if (!bpf_op
&& (flags
& (XDP_FLAGS_DRV_MODE
| XDP_FLAGS_HW_MODE
)))
7900 if (!bpf_op
|| (flags
& XDP_FLAGS_SKB_MODE
))
7901 bpf_op
= generic_xdp_install
;
7902 if (bpf_op
== bpf_chk
)
7903 bpf_chk
= generic_xdp_install
;
7906 if (__dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG
) ||
7907 __dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG_HW
))
7909 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) &&
7910 __dev_xdp_query(dev
, bpf_op
, query
))
7913 prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
7914 bpf_op
== ops
->ndo_bpf
);
7916 return PTR_ERR(prog
);
7918 if (!(flags
& XDP_FLAGS_HW_MODE
) &&
7919 bpf_prog_is_dev_bound(prog
->aux
)) {
7920 NL_SET_ERR_MSG(extack
, "using device-bound program without HW_MODE flag is not supported");
7926 err
= dev_xdp_install(dev
, bpf_op
, extack
, flags
, prog
);
7927 if (err
< 0 && prog
)
7934 * dev_new_index - allocate an ifindex
7935 * @net: the applicable net namespace
7937 * Returns a suitable unique value for a new device interface
7938 * number. The caller must hold the rtnl semaphore or the
7939 * dev_base_lock to be sure it remains unique.
7941 static int dev_new_index(struct net
*net
)
7943 int ifindex
= net
->ifindex
;
7948 if (!__dev_get_by_index(net
, ifindex
))
7949 return net
->ifindex
= ifindex
;
7953 /* Delayed registration/unregisteration */
7954 static LIST_HEAD(net_todo_list
);
7955 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
7957 static void net_set_todo(struct net_device
*dev
)
7959 list_add_tail(&dev
->todo_list
, &net_todo_list
);
7960 dev_net(dev
)->dev_unreg_count
++;
7963 static void rollback_registered_many(struct list_head
*head
)
7965 struct net_device
*dev
, *tmp
;
7966 LIST_HEAD(close_head
);
7968 BUG_ON(dev_boot_phase
);
7971 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
7972 /* Some devices call without registering
7973 * for initialization unwind. Remove those
7974 * devices and proceed with the remaining.
7976 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
7977 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7981 list_del(&dev
->unreg_list
);
7984 dev
->dismantle
= true;
7985 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
7988 /* If device is running, close it first. */
7989 list_for_each_entry(dev
, head
, unreg_list
)
7990 list_add_tail(&dev
->close_list
, &close_head
);
7991 dev_close_many(&close_head
, true);
7993 list_for_each_entry(dev
, head
, unreg_list
) {
7994 /* And unlink it from device chain. */
7995 unlist_netdevice(dev
);
7997 dev
->reg_state
= NETREG_UNREGISTERING
;
7999 flush_all_backlogs();
8003 list_for_each_entry(dev
, head
, unreg_list
) {
8004 struct sk_buff
*skb
= NULL
;
8006 /* Shutdown queueing discipline. */
8009 dev_xdp_uninstall(dev
);
8011 /* Notify protocols, that we are about to destroy
8012 * this device. They should clean all the things.
8014 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8016 if (!dev
->rtnl_link_ops
||
8017 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8018 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
8019 GFP_KERNEL
, NULL
, 0);
8022 * Flush the unicast and multicast chains
8027 if (dev
->netdev_ops
->ndo_uninit
)
8028 dev
->netdev_ops
->ndo_uninit(dev
);
8031 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
8033 /* Notifier chain MUST detach us all upper devices. */
8034 WARN_ON(netdev_has_any_upper_dev(dev
));
8035 WARN_ON(netdev_has_any_lower_dev(dev
));
8037 /* Remove entries from kobject tree */
8038 netdev_unregister_kobject(dev
);
8040 /* Remove XPS queueing entries */
8041 netif_reset_xps_queues_gt(dev
, 0);
8047 list_for_each_entry(dev
, head
, unreg_list
)
8051 static void rollback_registered(struct net_device
*dev
)
8055 list_add(&dev
->unreg_list
, &single
);
8056 rollback_registered_many(&single
);
8060 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
8061 struct net_device
*upper
, netdev_features_t features
)
8063 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8064 netdev_features_t feature
;
8067 for_each_netdev_feature(upper_disables
, feature_bit
) {
8068 feature
= __NETIF_F_BIT(feature_bit
);
8069 if (!(upper
->wanted_features
& feature
)
8070 && (features
& feature
)) {
8071 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
8072 &feature
, upper
->name
);
8073 features
&= ~feature
;
8080 static void netdev_sync_lower_features(struct net_device
*upper
,
8081 struct net_device
*lower
, netdev_features_t features
)
8083 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8084 netdev_features_t feature
;
8087 for_each_netdev_feature(upper_disables
, feature_bit
) {
8088 feature
= __NETIF_F_BIT(feature_bit
);
8089 if (!(features
& feature
) && (lower
->features
& feature
)) {
8090 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
8091 &feature
, lower
->name
);
8092 lower
->wanted_features
&= ~feature
;
8093 netdev_update_features(lower
);
8095 if (unlikely(lower
->features
& feature
))
8096 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
8097 &feature
, lower
->name
);
8102 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
8103 netdev_features_t features
)
8105 /* Fix illegal checksum combinations */
8106 if ((features
& NETIF_F_HW_CSUM
) &&
8107 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
8108 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
8109 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
8112 /* TSO requires that SG is present as well. */
8113 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
8114 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
8115 features
&= ~NETIF_F_ALL_TSO
;
8118 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
8119 !(features
& NETIF_F_IP_CSUM
)) {
8120 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
8121 features
&= ~NETIF_F_TSO
;
8122 features
&= ~NETIF_F_TSO_ECN
;
8125 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
8126 !(features
& NETIF_F_IPV6_CSUM
)) {
8127 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
8128 features
&= ~NETIF_F_TSO6
;
8131 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8132 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
8133 features
&= ~NETIF_F_TSO_MANGLEID
;
8135 /* TSO ECN requires that TSO is present as well. */
8136 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
8137 features
&= ~NETIF_F_TSO_ECN
;
8139 /* Software GSO depends on SG. */
8140 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
8141 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
8142 features
&= ~NETIF_F_GSO
;
8145 /* GSO partial features require GSO partial be set */
8146 if ((features
& dev
->gso_partial_features
) &&
8147 !(features
& NETIF_F_GSO_PARTIAL
)) {
8149 "Dropping partially supported GSO features since no GSO partial.\n");
8150 features
&= ~dev
->gso_partial_features
;
8153 if (!(features
& NETIF_F_RXCSUM
)) {
8154 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8155 * successfully merged by hardware must also have the
8156 * checksum verified by hardware. If the user does not
8157 * want to enable RXCSUM, logically, we should disable GRO_HW.
8159 if (features
& NETIF_F_GRO_HW
) {
8160 netdev_dbg(dev
, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8161 features
&= ~NETIF_F_GRO_HW
;
8165 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8166 if (features
& NETIF_F_RXFCS
) {
8167 if (features
& NETIF_F_LRO
) {
8168 netdev_dbg(dev
, "Dropping LRO feature since RX-FCS is requested.\n");
8169 features
&= ~NETIF_F_LRO
;
8172 if (features
& NETIF_F_GRO_HW
) {
8173 netdev_dbg(dev
, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8174 features
&= ~NETIF_F_GRO_HW
;
8181 int __netdev_update_features(struct net_device
*dev
)
8183 struct net_device
*upper
, *lower
;
8184 netdev_features_t features
;
8185 struct list_head
*iter
;
8190 features
= netdev_get_wanted_features(dev
);
8192 if (dev
->netdev_ops
->ndo_fix_features
)
8193 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
8195 /* driver might be less strict about feature dependencies */
8196 features
= netdev_fix_features(dev
, features
);
8198 /* some features can't be enabled if they're off an an upper device */
8199 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
8200 features
= netdev_sync_upper_features(dev
, upper
, features
);
8202 if (dev
->features
== features
)
8205 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
8206 &dev
->features
, &features
);
8208 if (dev
->netdev_ops
->ndo_set_features
)
8209 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
8213 if (unlikely(err
< 0)) {
8215 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8216 err
, &features
, &dev
->features
);
8217 /* return non-0 since some features might have changed and
8218 * it's better to fire a spurious notification than miss it
8224 /* some features must be disabled on lower devices when disabled
8225 * on an upper device (think: bonding master or bridge)
8227 netdev_for_each_lower_dev(dev
, lower
, iter
)
8228 netdev_sync_lower_features(dev
, lower
, features
);
8231 netdev_features_t diff
= features
^ dev
->features
;
8233 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8234 /* udp_tunnel_{get,drop}_rx_info both need
8235 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8236 * device, or they won't do anything.
8237 * Thus we need to update dev->features
8238 * *before* calling udp_tunnel_get_rx_info,
8239 * but *after* calling udp_tunnel_drop_rx_info.
8241 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8242 dev
->features
= features
;
8243 udp_tunnel_get_rx_info(dev
);
8245 udp_tunnel_drop_rx_info(dev
);
8249 if (diff
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8250 if (features
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8251 dev
->features
= features
;
8252 err
|= vlan_get_rx_ctag_filter_info(dev
);
8254 vlan_drop_rx_ctag_filter_info(dev
);
8258 if (diff
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8259 if (features
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8260 dev
->features
= features
;
8261 err
|= vlan_get_rx_stag_filter_info(dev
);
8263 vlan_drop_rx_stag_filter_info(dev
);
8267 dev
->features
= features
;
8270 return err
< 0 ? 0 : 1;
8274 * netdev_update_features - recalculate device features
8275 * @dev: the device to check
8277 * Recalculate dev->features set and send notifications if it
8278 * has changed. Should be called after driver or hardware dependent
8279 * conditions might have changed that influence the features.
8281 void netdev_update_features(struct net_device
*dev
)
8283 if (__netdev_update_features(dev
))
8284 netdev_features_change(dev
);
8286 EXPORT_SYMBOL(netdev_update_features
);
8289 * netdev_change_features - recalculate device features
8290 * @dev: the device to check
8292 * Recalculate dev->features set and send notifications even
8293 * if they have not changed. Should be called instead of
8294 * netdev_update_features() if also dev->vlan_features might
8295 * have changed to allow the changes to be propagated to stacked
8298 void netdev_change_features(struct net_device
*dev
)
8300 __netdev_update_features(dev
);
8301 netdev_features_change(dev
);
8303 EXPORT_SYMBOL(netdev_change_features
);
8306 * netif_stacked_transfer_operstate - transfer operstate
8307 * @rootdev: the root or lower level device to transfer state from
8308 * @dev: the device to transfer operstate to
8310 * Transfer operational state from root to device. This is normally
8311 * called when a stacking relationship exists between the root
8312 * device and the device(a leaf device).
8314 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
8315 struct net_device
*dev
)
8317 if (rootdev
->operstate
== IF_OPER_DORMANT
)
8318 netif_dormant_on(dev
);
8320 netif_dormant_off(dev
);
8322 if (netif_carrier_ok(rootdev
))
8323 netif_carrier_on(dev
);
8325 netif_carrier_off(dev
);
8327 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
8329 static int netif_alloc_rx_queues(struct net_device
*dev
)
8331 unsigned int i
, count
= dev
->num_rx_queues
;
8332 struct netdev_rx_queue
*rx
;
8333 size_t sz
= count
* sizeof(*rx
);
8338 rx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8344 for (i
= 0; i
< count
; i
++) {
8347 /* XDP RX-queue setup */
8348 err
= xdp_rxq_info_reg(&rx
[i
].xdp_rxq
, dev
, i
);
8355 /* Rollback successful reg's and free other resources */
8357 xdp_rxq_info_unreg(&rx
[i
].xdp_rxq
);
8363 static void netif_free_rx_queues(struct net_device
*dev
)
8365 unsigned int i
, count
= dev
->num_rx_queues
;
8367 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8371 for (i
= 0; i
< count
; i
++)
8372 xdp_rxq_info_unreg(&dev
->_rx
[i
].xdp_rxq
);
8377 static void netdev_init_one_queue(struct net_device
*dev
,
8378 struct netdev_queue
*queue
, void *_unused
)
8380 /* Initialize queue lock */
8381 spin_lock_init(&queue
->_xmit_lock
);
8382 netdev_set_xmit_lockdep_class(&queue
->_xmit_lock
, dev
->type
);
8383 queue
->xmit_lock_owner
= -1;
8384 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
8387 dql_init(&queue
->dql
, HZ
);
8391 static void netif_free_tx_queues(struct net_device
*dev
)
8396 static int netif_alloc_netdev_queues(struct net_device
*dev
)
8398 unsigned int count
= dev
->num_tx_queues
;
8399 struct netdev_queue
*tx
;
8400 size_t sz
= count
* sizeof(*tx
);
8402 if (count
< 1 || count
> 0xffff)
8405 tx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8411 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
8412 spin_lock_init(&dev
->tx_global_lock
);
8417 void netif_tx_stop_all_queues(struct net_device
*dev
)
8421 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
8422 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
8424 netif_tx_stop_queue(txq
);
8427 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
8430 * register_netdevice - register a network device
8431 * @dev: device to register
8433 * Take a completed network device structure and add it to the kernel
8434 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8435 * chain. 0 is returned on success. A negative errno code is returned
8436 * on a failure to set up the device, or if the name is a duplicate.
8438 * Callers must hold the rtnl semaphore. You may want
8439 * register_netdev() instead of this.
8442 * The locking appears insufficient to guarantee two parallel registers
8443 * will not get the same name.
8446 int register_netdevice(struct net_device
*dev
)
8449 struct net
*net
= dev_net(dev
);
8451 BUILD_BUG_ON(sizeof(netdev_features_t
) * BITS_PER_BYTE
<
8452 NETDEV_FEATURE_COUNT
);
8453 BUG_ON(dev_boot_phase
);
8458 /* When net_device's are persistent, this will be fatal. */
8459 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
8462 spin_lock_init(&dev
->addr_list_lock
);
8463 netdev_set_addr_lockdep_class(dev
);
8465 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
8469 /* Init, if this function is available */
8470 if (dev
->netdev_ops
->ndo_init
) {
8471 ret
= dev
->netdev_ops
->ndo_init(dev
);
8479 if (((dev
->hw_features
| dev
->features
) &
8480 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
8481 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
8482 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
8483 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
8490 dev
->ifindex
= dev_new_index(net
);
8491 else if (__dev_get_by_index(net
, dev
->ifindex
))
8494 /* Transfer changeable features to wanted_features and enable
8495 * software offloads (GSO and GRO).
8497 dev
->hw_features
|= NETIF_F_SOFT_FEATURES
;
8498 dev
->features
|= NETIF_F_SOFT_FEATURES
;
8500 if (dev
->netdev_ops
->ndo_udp_tunnel_add
) {
8501 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
8502 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
8505 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
8507 if (!(dev
->flags
& IFF_LOOPBACK
))
8508 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
8510 /* If IPv4 TCP segmentation offload is supported we should also
8511 * allow the device to enable segmenting the frame with the option
8512 * of ignoring a static IP ID value. This doesn't enable the
8513 * feature itself but allows the user to enable it later.
8515 if (dev
->hw_features
& NETIF_F_TSO
)
8516 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
8517 if (dev
->vlan_features
& NETIF_F_TSO
)
8518 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
8519 if (dev
->mpls_features
& NETIF_F_TSO
)
8520 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
8521 if (dev
->hw_enc_features
& NETIF_F_TSO
)
8522 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
8524 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8526 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
8528 /* Make NETIF_F_SG inheritable to tunnel devices.
8530 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
8532 /* Make NETIF_F_SG inheritable to MPLS.
8534 dev
->mpls_features
|= NETIF_F_SG
;
8536 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
8537 ret
= notifier_to_errno(ret
);
8541 ret
= netdev_register_kobject(dev
);
8544 dev
->reg_state
= NETREG_REGISTERED
;
8546 __netdev_update_features(dev
);
8549 * Default initial state at registry is that the
8550 * device is present.
8553 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8555 linkwatch_init_dev(dev
);
8557 dev_init_scheduler(dev
);
8559 list_netdevice(dev
);
8560 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
8562 /* If the device has permanent device address, driver should
8563 * set dev_addr and also addr_assign_type should be set to
8564 * NET_ADDR_PERM (default value).
8566 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
8567 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
8569 /* Notify protocols, that a new device appeared. */
8570 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
8571 ret
= notifier_to_errno(ret
);
8573 rollback_registered(dev
);
8574 dev
->reg_state
= NETREG_UNREGISTERED
;
8577 * Prevent userspace races by waiting until the network
8578 * device is fully setup before sending notifications.
8580 if (!dev
->rtnl_link_ops
||
8581 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8582 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
8588 if (dev
->netdev_ops
->ndo_uninit
)
8589 dev
->netdev_ops
->ndo_uninit(dev
);
8590 if (dev
->priv_destructor
)
8591 dev
->priv_destructor(dev
);
8594 EXPORT_SYMBOL(register_netdevice
);
8597 * init_dummy_netdev - init a dummy network device for NAPI
8598 * @dev: device to init
8600 * This takes a network device structure and initialize the minimum
8601 * amount of fields so it can be used to schedule NAPI polls without
8602 * registering a full blown interface. This is to be used by drivers
8603 * that need to tie several hardware interfaces to a single NAPI
8604 * poll scheduler due to HW limitations.
8606 int init_dummy_netdev(struct net_device
*dev
)
8608 /* Clear everything. Note we don't initialize spinlocks
8609 * are they aren't supposed to be taken by any of the
8610 * NAPI code and this dummy netdev is supposed to be
8611 * only ever used for NAPI polls
8613 memset(dev
, 0, sizeof(struct net_device
));
8615 /* make sure we BUG if trying to hit standard
8616 * register/unregister code path
8618 dev
->reg_state
= NETREG_DUMMY
;
8620 /* NAPI wants this */
8621 INIT_LIST_HEAD(&dev
->napi_list
);
8623 /* a dummy interface is started by default */
8624 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8625 set_bit(__LINK_STATE_START
, &dev
->state
);
8627 /* napi_busy_loop stats accounting wants this */
8628 dev_net_set(dev
, &init_net
);
8630 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8631 * because users of this 'device' dont need to change
8637 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
8641 * register_netdev - register a network device
8642 * @dev: device to register
8644 * Take a completed network device structure and add it to the kernel
8645 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8646 * chain. 0 is returned on success. A negative errno code is returned
8647 * on a failure to set up the device, or if the name is a duplicate.
8649 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8650 * and expands the device name if you passed a format string to
8653 int register_netdev(struct net_device
*dev
)
8657 if (rtnl_lock_killable())
8659 err
= register_netdevice(dev
);
8663 EXPORT_SYMBOL(register_netdev
);
8665 int netdev_refcnt_read(const struct net_device
*dev
)
8669 for_each_possible_cpu(i
)
8670 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
8673 EXPORT_SYMBOL(netdev_refcnt_read
);
8676 * netdev_wait_allrefs - wait until all references are gone.
8677 * @dev: target net_device
8679 * This is called when unregistering network devices.
8681 * Any protocol or device that holds a reference should register
8682 * for netdevice notification, and cleanup and put back the
8683 * reference if they receive an UNREGISTER event.
8684 * We can get stuck here if buggy protocols don't correctly
8687 static void netdev_wait_allrefs(struct net_device
*dev
)
8689 unsigned long rebroadcast_time
, warning_time
;
8692 linkwatch_forget_dev(dev
);
8694 rebroadcast_time
= warning_time
= jiffies
;
8695 refcnt
= netdev_refcnt_read(dev
);
8697 while (refcnt
!= 0) {
8698 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
8701 /* Rebroadcast unregister notification */
8702 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8708 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
8710 /* We must not have linkwatch events
8711 * pending on unregister. If this
8712 * happens, we simply run the queue
8713 * unscheduled, resulting in a noop
8716 linkwatch_run_queue();
8721 rebroadcast_time
= jiffies
;
8726 refcnt
= netdev_refcnt_read(dev
);
8728 if (time_after(jiffies
, warning_time
+ 10 * HZ
)) {
8729 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8731 warning_time
= jiffies
;
8740 * register_netdevice(x1);
8741 * register_netdevice(x2);
8743 * unregister_netdevice(y1);
8744 * unregister_netdevice(y2);
8750 * We are invoked by rtnl_unlock().
8751 * This allows us to deal with problems:
8752 * 1) We can delete sysfs objects which invoke hotplug
8753 * without deadlocking with linkwatch via keventd.
8754 * 2) Since we run with the RTNL semaphore not held, we can sleep
8755 * safely in order to wait for the netdev refcnt to drop to zero.
8757 * We must not return until all unregister events added during
8758 * the interval the lock was held have been completed.
8760 void netdev_run_todo(void)
8762 struct list_head list
;
8764 /* Snapshot list, allow later requests */
8765 list_replace_init(&net_todo_list
, &list
);
8770 /* Wait for rcu callbacks to finish before next phase */
8771 if (!list_empty(&list
))
8774 while (!list_empty(&list
)) {
8775 struct net_device
*dev
8776 = list_first_entry(&list
, struct net_device
, todo_list
);
8777 list_del(&dev
->todo_list
);
8779 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
8780 pr_err("network todo '%s' but state %d\n",
8781 dev
->name
, dev
->reg_state
);
8786 dev
->reg_state
= NETREG_UNREGISTERED
;
8788 netdev_wait_allrefs(dev
);
8791 BUG_ON(netdev_refcnt_read(dev
));
8792 BUG_ON(!list_empty(&dev
->ptype_all
));
8793 BUG_ON(!list_empty(&dev
->ptype_specific
));
8794 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
8795 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
8796 #if IS_ENABLED(CONFIG_DECNET)
8797 WARN_ON(dev
->dn_ptr
);
8799 if (dev
->priv_destructor
)
8800 dev
->priv_destructor(dev
);
8801 if (dev
->needs_free_netdev
)
8804 /* Report a network device has been unregistered */
8806 dev_net(dev
)->dev_unreg_count
--;
8808 wake_up(&netdev_unregistering_wq
);
8810 /* Free network device */
8811 kobject_put(&dev
->dev
.kobj
);
8815 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8816 * all the same fields in the same order as net_device_stats, with only
8817 * the type differing, but rtnl_link_stats64 may have additional fields
8818 * at the end for newer counters.
8820 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
8821 const struct net_device_stats
*netdev_stats
)
8823 #if BITS_PER_LONG == 64
8824 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
8825 memcpy(stats64
, netdev_stats
, sizeof(*netdev_stats
));
8826 /* zero out counters that only exist in rtnl_link_stats64 */
8827 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
8828 sizeof(*stats64
) - sizeof(*netdev_stats
));
8830 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
8831 const unsigned long *src
= (const unsigned long *)netdev_stats
;
8832 u64
*dst
= (u64
*)stats64
;
8834 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
8835 for (i
= 0; i
< n
; i
++)
8837 /* zero out counters that only exist in rtnl_link_stats64 */
8838 memset((char *)stats64
+ n
* sizeof(u64
), 0,
8839 sizeof(*stats64
) - n
* sizeof(u64
));
8842 EXPORT_SYMBOL(netdev_stats_to_stats64
);
8845 * dev_get_stats - get network device statistics
8846 * @dev: device to get statistics from
8847 * @storage: place to store stats
8849 * Get network statistics from device. Return @storage.
8850 * The device driver may provide its own method by setting
8851 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8852 * otherwise the internal statistics structure is used.
8854 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
8855 struct rtnl_link_stats64
*storage
)
8857 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8859 if (ops
->ndo_get_stats64
) {
8860 memset(storage
, 0, sizeof(*storage
));
8861 ops
->ndo_get_stats64(dev
, storage
);
8862 } else if (ops
->ndo_get_stats
) {
8863 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
8865 netdev_stats_to_stats64(storage
, &dev
->stats
);
8867 storage
->rx_dropped
+= (unsigned long)atomic_long_read(&dev
->rx_dropped
);
8868 storage
->tx_dropped
+= (unsigned long)atomic_long_read(&dev
->tx_dropped
);
8869 storage
->rx_nohandler
+= (unsigned long)atomic_long_read(&dev
->rx_nohandler
);
8872 EXPORT_SYMBOL(dev_get_stats
);
8874 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
8876 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
8878 #ifdef CONFIG_NET_CLS_ACT
8881 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
8884 netdev_init_one_queue(dev
, queue
, NULL
);
8885 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
8886 queue
->qdisc_sleeping
= &noop_qdisc
;
8887 rcu_assign_pointer(dev
->ingress_queue
, queue
);
8892 static const struct ethtool_ops default_ethtool_ops
;
8894 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
8895 const struct ethtool_ops
*ops
)
8897 if (dev
->ethtool_ops
== &default_ethtool_ops
)
8898 dev
->ethtool_ops
= ops
;
8900 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
8902 void netdev_freemem(struct net_device
*dev
)
8904 char *addr
= (char *)dev
- dev
->padded
;
8910 * alloc_netdev_mqs - allocate network device
8911 * @sizeof_priv: size of private data to allocate space for
8912 * @name: device name format string
8913 * @name_assign_type: origin of device name
8914 * @setup: callback to initialize device
8915 * @txqs: the number of TX subqueues to allocate
8916 * @rxqs: the number of RX subqueues to allocate
8918 * Allocates a struct net_device with private data area for driver use
8919 * and performs basic initialization. Also allocates subqueue structs
8920 * for each queue on the device.
8922 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
8923 unsigned char name_assign_type
,
8924 void (*setup
)(struct net_device
*),
8925 unsigned int txqs
, unsigned int rxqs
)
8927 struct net_device
*dev
;
8928 unsigned int alloc_size
;
8929 struct net_device
*p
;
8931 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
8934 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8939 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8943 alloc_size
= sizeof(struct net_device
);
8945 /* ensure 32-byte alignment of private area */
8946 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
8947 alloc_size
+= sizeof_priv
;
8949 /* ensure 32-byte alignment of whole construct */
8950 alloc_size
+= NETDEV_ALIGN
- 1;
8952 p
= kvzalloc(alloc_size
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8956 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
8957 dev
->padded
= (char *)dev
- (char *)p
;
8959 dev
->pcpu_refcnt
= alloc_percpu(int);
8960 if (!dev
->pcpu_refcnt
)
8963 if (dev_addr_init(dev
))
8969 dev_net_set(dev
, &init_net
);
8971 dev
->gso_max_size
= GSO_MAX_SIZE
;
8972 dev
->gso_max_segs
= GSO_MAX_SEGS
;
8974 INIT_LIST_HEAD(&dev
->napi_list
);
8975 INIT_LIST_HEAD(&dev
->unreg_list
);
8976 INIT_LIST_HEAD(&dev
->close_list
);
8977 INIT_LIST_HEAD(&dev
->link_watch_list
);
8978 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
8979 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
8980 INIT_LIST_HEAD(&dev
->ptype_all
);
8981 INIT_LIST_HEAD(&dev
->ptype_specific
);
8982 #ifdef CONFIG_NET_SCHED
8983 hash_init(dev
->qdisc_hash
);
8985 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
8988 if (!dev
->tx_queue_len
) {
8989 dev
->priv_flags
|= IFF_NO_QUEUE
;
8990 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
8993 dev
->num_tx_queues
= txqs
;
8994 dev
->real_num_tx_queues
= txqs
;
8995 if (netif_alloc_netdev_queues(dev
))
8998 dev
->num_rx_queues
= rxqs
;
8999 dev
->real_num_rx_queues
= rxqs
;
9000 if (netif_alloc_rx_queues(dev
))
9003 strcpy(dev
->name
, name
);
9004 dev
->name_assign_type
= name_assign_type
;
9005 dev
->group
= INIT_NETDEV_GROUP
;
9006 if (!dev
->ethtool_ops
)
9007 dev
->ethtool_ops
= &default_ethtool_ops
;
9009 nf_hook_ingress_init(dev
);
9018 free_percpu(dev
->pcpu_refcnt
);
9020 netdev_freemem(dev
);
9023 EXPORT_SYMBOL(alloc_netdev_mqs
);
9026 * free_netdev - free network device
9029 * This function does the last stage of destroying an allocated device
9030 * interface. The reference to the device object is released. If this
9031 * is the last reference then it will be freed.Must be called in process
9034 void free_netdev(struct net_device
*dev
)
9036 struct napi_struct
*p
, *n
;
9039 netif_free_tx_queues(dev
);
9040 netif_free_rx_queues(dev
);
9042 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
9044 /* Flush device addresses */
9045 dev_addr_flush(dev
);
9047 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
9050 free_percpu(dev
->pcpu_refcnt
);
9051 dev
->pcpu_refcnt
= NULL
;
9053 /* Compatibility with error handling in drivers */
9054 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
9055 netdev_freemem(dev
);
9059 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
9060 dev
->reg_state
= NETREG_RELEASED
;
9062 /* will free via device release */
9063 put_device(&dev
->dev
);
9065 EXPORT_SYMBOL(free_netdev
);
9068 * synchronize_net - Synchronize with packet receive processing
9070 * Wait for packets currently being received to be done.
9071 * Does not block later packets from starting.
9073 void synchronize_net(void)
9076 if (rtnl_is_locked())
9077 synchronize_rcu_expedited();
9081 EXPORT_SYMBOL(synchronize_net
);
9084 * unregister_netdevice_queue - remove device from the kernel
9088 * This function shuts down a device interface and removes it
9089 * from the kernel tables.
9090 * If head not NULL, device is queued to be unregistered later.
9092 * Callers must hold the rtnl semaphore. You may want
9093 * unregister_netdev() instead of this.
9096 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
9101 list_move_tail(&dev
->unreg_list
, head
);
9103 rollback_registered(dev
);
9104 /* Finish processing unregister after unlock */
9108 EXPORT_SYMBOL(unregister_netdevice_queue
);
9111 * unregister_netdevice_many - unregister many devices
9112 * @head: list of devices
9114 * Note: As most callers use a stack allocated list_head,
9115 * we force a list_del() to make sure stack wont be corrupted later.
9117 void unregister_netdevice_many(struct list_head
*head
)
9119 struct net_device
*dev
;
9121 if (!list_empty(head
)) {
9122 rollback_registered_many(head
);
9123 list_for_each_entry(dev
, head
, unreg_list
)
9128 EXPORT_SYMBOL(unregister_netdevice_many
);
9131 * unregister_netdev - remove device from the kernel
9134 * This function shuts down a device interface and removes it
9135 * from the kernel tables.
9137 * This is just a wrapper for unregister_netdevice that takes
9138 * the rtnl semaphore. In general you want to use this and not
9139 * unregister_netdevice.
9141 void unregister_netdev(struct net_device
*dev
)
9144 unregister_netdevice(dev
);
9147 EXPORT_SYMBOL(unregister_netdev
);
9150 * dev_change_net_namespace - move device to different nethost namespace
9152 * @net: network namespace
9153 * @pat: If not NULL name pattern to try if the current device name
9154 * is already taken in the destination network namespace.
9156 * This function shuts down a device interface and moves it
9157 * to a new network namespace. On success 0 is returned, on
9158 * a failure a netagive errno code is returned.
9160 * Callers must hold the rtnl semaphore.
9163 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
9165 int err
, new_nsid
, new_ifindex
;
9169 /* Don't allow namespace local devices to be moved. */
9171 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9174 /* Ensure the device has been registrered */
9175 if (dev
->reg_state
!= NETREG_REGISTERED
)
9178 /* Get out if there is nothing todo */
9180 if (net_eq(dev_net(dev
), net
))
9183 /* Pick the destination device name, and ensure
9184 * we can use it in the destination network namespace.
9187 if (__dev_get_by_name(net
, dev
->name
)) {
9188 /* We get here if we can't use the current device name */
9191 err
= dev_get_valid_name(net
, dev
, pat
);
9197 * And now a mini version of register_netdevice unregister_netdevice.
9200 /* If device is running close it first. */
9203 /* And unlink it from device chain */
9204 unlist_netdevice(dev
);
9208 /* Shutdown queueing discipline. */
9211 /* Notify protocols, that we are about to destroy
9212 * this device. They should clean all the things.
9214 * Note that dev->reg_state stays at NETREG_REGISTERED.
9215 * This is wanted because this way 8021q and macvlan know
9216 * the device is just moving and can keep their slaves up.
9218 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
9221 new_nsid
= peernet2id_alloc(dev_net(dev
), net
);
9222 /* If there is an ifindex conflict assign a new one */
9223 if (__dev_get_by_index(net
, dev
->ifindex
))
9224 new_ifindex
= dev_new_index(net
);
9226 new_ifindex
= dev
->ifindex
;
9228 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
,
9232 * Flush the unicast and multicast chains
9237 /* Send a netdev-removed uevent to the old namespace */
9238 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
9239 netdev_adjacent_del_links(dev
);
9241 /* Actually switch the network namespace */
9242 dev_net_set(dev
, net
);
9243 dev
->ifindex
= new_ifindex
;
9245 /* Send a netdev-add uevent to the new namespace */
9246 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
9247 netdev_adjacent_add_links(dev
);
9249 /* Fixup kobjects */
9250 err
= device_rename(&dev
->dev
, dev
->name
);
9253 /* Add the device back in the hashes */
9254 list_netdevice(dev
);
9256 /* Notify protocols, that a new device appeared. */
9257 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
9260 * Prevent userspace races by waiting until the network
9261 * device is fully setup before sending notifications.
9263 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
9270 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
9272 static int dev_cpu_dead(unsigned int oldcpu
)
9274 struct sk_buff
**list_skb
;
9275 struct sk_buff
*skb
;
9277 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
9279 local_irq_disable();
9280 cpu
= smp_processor_id();
9281 sd
= &per_cpu(softnet_data
, cpu
);
9282 oldsd
= &per_cpu(softnet_data
, oldcpu
);
9284 /* Find end of our completion_queue. */
9285 list_skb
= &sd
->completion_queue
;
9287 list_skb
= &(*list_skb
)->next
;
9288 /* Append completion queue from offline CPU. */
9289 *list_skb
= oldsd
->completion_queue
;
9290 oldsd
->completion_queue
= NULL
;
9292 /* Append output queue from offline CPU. */
9293 if (oldsd
->output_queue
) {
9294 *sd
->output_queue_tailp
= oldsd
->output_queue
;
9295 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
9296 oldsd
->output_queue
= NULL
;
9297 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
9299 /* Append NAPI poll list from offline CPU, with one exception :
9300 * process_backlog() must be called by cpu owning percpu backlog.
9301 * We properly handle process_queue & input_pkt_queue later.
9303 while (!list_empty(&oldsd
->poll_list
)) {
9304 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
9308 list_del_init(&napi
->poll_list
);
9309 if (napi
->poll
== process_backlog
)
9312 ____napi_schedule(sd
, napi
);
9315 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
9319 remsd
= oldsd
->rps_ipi_list
;
9320 oldsd
->rps_ipi_list
= NULL
;
9322 /* send out pending IPI's on offline CPU */
9323 net_rps_send_ipi(remsd
);
9325 /* Process offline CPU's input_pkt_queue */
9326 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
9328 input_queue_head_incr(oldsd
);
9330 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
9332 input_queue_head_incr(oldsd
);
9339 * netdev_increment_features - increment feature set by one
9340 * @all: current feature set
9341 * @one: new feature set
9342 * @mask: mask feature set
9344 * Computes a new feature set after adding a device with feature set
9345 * @one to the master device with current feature set @all. Will not
9346 * enable anything that is off in @mask. Returns the new feature set.
9348 netdev_features_t
netdev_increment_features(netdev_features_t all
,
9349 netdev_features_t one
, netdev_features_t mask
)
9351 if (mask
& NETIF_F_HW_CSUM
)
9352 mask
|= NETIF_F_CSUM_MASK
;
9353 mask
|= NETIF_F_VLAN_CHALLENGED
;
9355 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
9356 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
9358 /* If one device supports hw checksumming, set for all. */
9359 if (all
& NETIF_F_HW_CSUM
)
9360 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
9364 EXPORT_SYMBOL(netdev_increment_features
);
9366 static struct hlist_head
* __net_init
netdev_create_hash(void)
9369 struct hlist_head
*hash
;
9371 hash
= kmalloc_array(NETDEV_HASHENTRIES
, sizeof(*hash
), GFP_KERNEL
);
9373 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
9374 INIT_HLIST_HEAD(&hash
[i
]);
9379 /* Initialize per network namespace state */
9380 static int __net_init
netdev_init(struct net
*net
)
9382 BUILD_BUG_ON(GRO_HASH_BUCKETS
>
9383 8 * FIELD_SIZEOF(struct napi_struct
, gro_bitmask
));
9385 if (net
!= &init_net
)
9386 INIT_LIST_HEAD(&net
->dev_base_head
);
9388 net
->dev_name_head
= netdev_create_hash();
9389 if (net
->dev_name_head
== NULL
)
9392 net
->dev_index_head
= netdev_create_hash();
9393 if (net
->dev_index_head
== NULL
)
9399 kfree(net
->dev_name_head
);
9405 * netdev_drivername - network driver for the device
9406 * @dev: network device
9408 * Determine network driver for device.
9410 const char *netdev_drivername(const struct net_device
*dev
)
9412 const struct device_driver
*driver
;
9413 const struct device
*parent
;
9414 const char *empty
= "";
9416 parent
= dev
->dev
.parent
;
9420 driver
= parent
->driver
;
9421 if (driver
&& driver
->name
)
9422 return driver
->name
;
9426 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
9427 struct va_format
*vaf
)
9429 if (dev
&& dev
->dev
.parent
) {
9430 dev_printk_emit(level
[1] - '0',
9433 dev_driver_string(dev
->dev
.parent
),
9434 dev_name(dev
->dev
.parent
),
9435 netdev_name(dev
), netdev_reg_state(dev
),
9438 printk("%s%s%s: %pV",
9439 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
9441 printk("%s(NULL net_device): %pV", level
, vaf
);
9445 void netdev_printk(const char *level
, const struct net_device
*dev
,
9446 const char *format
, ...)
9448 struct va_format vaf
;
9451 va_start(args
, format
);
9456 __netdev_printk(level
, dev
, &vaf
);
9460 EXPORT_SYMBOL(netdev_printk
);
9462 #define define_netdev_printk_level(func, level) \
9463 void func(const struct net_device *dev, const char *fmt, ...) \
9465 struct va_format vaf; \
9468 va_start(args, fmt); \
9473 __netdev_printk(level, dev, &vaf); \
9477 EXPORT_SYMBOL(func);
9479 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
9480 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
9481 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
9482 define_netdev_printk_level(netdev_err
, KERN_ERR
);
9483 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
9484 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
9485 define_netdev_printk_level(netdev_info
, KERN_INFO
);
9487 static void __net_exit
netdev_exit(struct net
*net
)
9489 kfree(net
->dev_name_head
);
9490 kfree(net
->dev_index_head
);
9491 if (net
!= &init_net
)
9492 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
9495 static struct pernet_operations __net_initdata netdev_net_ops
= {
9496 .init
= netdev_init
,
9497 .exit
= netdev_exit
,
9500 static void __net_exit
default_device_exit(struct net
*net
)
9502 struct net_device
*dev
, *aux
;
9504 * Push all migratable network devices back to the
9505 * initial network namespace
9508 for_each_netdev_safe(net
, dev
, aux
) {
9510 char fb_name
[IFNAMSIZ
];
9512 /* Ignore unmoveable devices (i.e. loopback) */
9513 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9516 /* Leave virtual devices for the generic cleanup */
9517 if (dev
->rtnl_link_ops
)
9520 /* Push remaining network devices to init_net */
9521 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
9522 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
9524 pr_emerg("%s: failed to move %s to init_net: %d\n",
9525 __func__
, dev
->name
, err
);
9532 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
9534 /* Return with the rtnl_lock held when there are no network
9535 * devices unregistering in any network namespace in net_list.
9539 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
9541 add_wait_queue(&netdev_unregistering_wq
, &wait
);
9543 unregistering
= false;
9545 list_for_each_entry(net
, net_list
, exit_list
) {
9546 if (net
->dev_unreg_count
> 0) {
9547 unregistering
= true;
9555 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
9557 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
9560 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
9562 /* At exit all network devices most be removed from a network
9563 * namespace. Do this in the reverse order of registration.
9564 * Do this across as many network namespaces as possible to
9565 * improve batching efficiency.
9567 struct net_device
*dev
;
9569 LIST_HEAD(dev_kill_list
);
9571 /* To prevent network device cleanup code from dereferencing
9572 * loopback devices or network devices that have been freed
9573 * wait here for all pending unregistrations to complete,
9574 * before unregistring the loopback device and allowing the
9575 * network namespace be freed.
9577 * The netdev todo list containing all network devices
9578 * unregistrations that happen in default_device_exit_batch
9579 * will run in the rtnl_unlock() at the end of
9580 * default_device_exit_batch.
9582 rtnl_lock_unregistering(net_list
);
9583 list_for_each_entry(net
, net_list
, exit_list
) {
9584 for_each_netdev_reverse(net
, dev
) {
9585 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
9586 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
9588 unregister_netdevice_queue(dev
, &dev_kill_list
);
9591 unregister_netdevice_many(&dev_kill_list
);
9595 static struct pernet_operations __net_initdata default_device_ops
= {
9596 .exit
= default_device_exit
,
9597 .exit_batch
= default_device_exit_batch
,
9601 * Initialize the DEV module. At boot time this walks the device list and
9602 * unhooks any devices that fail to initialise (normally hardware not
9603 * present) and leaves us with a valid list of present and active devices.
9608 * This is called single threaded during boot, so no need
9609 * to take the rtnl semaphore.
9611 static int __init
net_dev_init(void)
9613 int i
, rc
= -ENOMEM
;
9615 BUG_ON(!dev_boot_phase
);
9617 if (dev_proc_init())
9620 if (netdev_kobject_init())
9623 INIT_LIST_HEAD(&ptype_all
);
9624 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
9625 INIT_LIST_HEAD(&ptype_base
[i
]);
9627 INIT_LIST_HEAD(&offload_base
);
9629 if (register_pernet_subsys(&netdev_net_ops
))
9633 * Initialise the packet receive queues.
9636 for_each_possible_cpu(i
) {
9637 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
9638 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
9640 INIT_WORK(flush
, flush_backlog
);
9642 skb_queue_head_init(&sd
->input_pkt_queue
);
9643 skb_queue_head_init(&sd
->process_queue
);
9644 #ifdef CONFIG_XFRM_OFFLOAD
9645 skb_queue_head_init(&sd
->xfrm_backlog
);
9647 INIT_LIST_HEAD(&sd
->poll_list
);
9648 sd
->output_queue_tailp
= &sd
->output_queue
;
9650 sd
->csd
.func
= rps_trigger_softirq
;
9655 init_gro_hash(&sd
->backlog
);
9656 sd
->backlog
.poll
= process_backlog
;
9657 sd
->backlog
.weight
= weight_p
;
9662 /* The loopback device is special if any other network devices
9663 * is present in a network namespace the loopback device must
9664 * be present. Since we now dynamically allocate and free the
9665 * loopback device ensure this invariant is maintained by
9666 * keeping the loopback device as the first device on the
9667 * list of network devices. Ensuring the loopback devices
9668 * is the first device that appears and the last network device
9671 if (register_pernet_device(&loopback_net_ops
))
9674 if (register_pernet_device(&default_device_ops
))
9677 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
9678 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
9680 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
9681 NULL
, dev_cpu_dead
);
9688 subsys_initcall(net_dev_init
);