2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/memblock.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
278 #include <net/xfrm.h>
280 #include <net/sock.h>
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
286 struct percpu_counter tcp_orphan_count
;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
289 long sysctl_tcp_mem
[3] __read_mostly
;
290 EXPORT_SYMBOL(sysctl_tcp_mem
);
292 atomic_long_t tcp_memory_allocated
; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated
);
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc
);
297 EXPORT_SYMBOL(tcp_have_smc
);
301 * Current number of TCP sockets.
303 struct percpu_counter tcp_sockets_allocated
;
304 EXPORT_SYMBOL(tcp_sockets_allocated
);
309 struct tcp_splice_state
{
310 struct pipe_inode_info
*pipe
;
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
321 unsigned long tcp_memory_pressure __read_mostly
;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure
);
324 void tcp_enter_memory_pressure(struct sock
*sk
)
328 if (tcp_memory_pressure
)
334 if (!cmpxchg(&tcp_memory_pressure
, 0, val
))
335 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure
);
339 void tcp_leave_memory_pressure(struct sock
*sk
)
343 if (!tcp_memory_pressure
)
345 val
= xchg(&tcp_memory_pressure
, 0);
347 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURESCHRONO
,
348 jiffies_to_msecs(jiffies
- val
));
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure
);
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
358 int period
= timeout
;
361 while (seconds
> period
&& res
< 255) {
364 if (timeout
> rto_max
)
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
381 if (timeout
> rto_max
)
389 static u64
tcp_compute_delivery_rate(const struct tcp_sock
*tp
)
391 u32 rate
= READ_ONCE(tp
->rate_delivered
);
392 u32 intv
= READ_ONCE(tp
->rate_interval_us
);
396 rate64
= (u64
)rate
* tp
->mss_cache
* USEC_PER_SEC
;
397 do_div(rate64
, intv
);
402 /* Address-family independent initialization for a tcp_sock.
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
407 void tcp_init_sock(struct sock
*sk
)
409 struct inet_connection_sock
*icsk
= inet_csk(sk
);
410 struct tcp_sock
*tp
= tcp_sk(sk
);
412 tp
->out_of_order_queue
= RB_ROOT
;
413 sk
->tcp_rtx_queue
= RB_ROOT
;
414 tcp_init_xmit_timers(sk
);
415 INIT_LIST_HEAD(&tp
->tsq_node
);
416 INIT_LIST_HEAD(&tp
->tsorted_sent_queue
);
418 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
419 tp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
420 minmax_reset(&tp
->rtt_min
, tcp_jiffies32
, ~0U);
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
427 tp
->snd_cwnd
= TCP_INIT_CWND
;
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp
->app_limited
= ~0U;
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
435 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
436 tp
->snd_cwnd_clamp
= ~0;
437 tp
->mss_cache
= TCP_MSS_DEFAULT
;
439 tp
->reordering
= sock_net(sk
)->ipv4
.sysctl_tcp_reordering
;
440 tcp_assign_congestion_control(sk
);
443 tp
->rack
.reo_wnd_steps
= 1;
445 sk
->sk_state
= TCP_CLOSE
;
447 sk
->sk_write_space
= sk_stream_write_space
;
448 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
450 icsk
->icsk_sync_mss
= tcp_sync_mss
;
452 sk
->sk_sndbuf
= sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[1];
453 sk
->sk_rcvbuf
= sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[1];
455 sk_sockets_allocated_inc(sk
);
456 sk
->sk_route_forced_caps
= NETIF_F_GSO
;
458 EXPORT_SYMBOL(tcp_init_sock
);
460 void tcp_init_transfer(struct sock
*sk
, int bpf_op
)
462 struct inet_connection_sock
*icsk
= inet_csk(sk
);
465 icsk
->icsk_af_ops
->rebuild_header(sk
);
466 tcp_init_metrics(sk
);
467 tcp_call_bpf(sk
, bpf_op
, 0, NULL
);
468 tcp_init_congestion_control(sk
);
469 tcp_init_buffer_space(sk
);
472 static void tcp_tx_timestamp(struct sock
*sk
, u16 tsflags
)
474 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
476 if (tsflags
&& skb
) {
477 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
478 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
480 sock_tx_timestamp(sk
, tsflags
, &shinfo
->tx_flags
);
481 if (tsflags
& SOF_TIMESTAMPING_TX_ACK
)
482 tcb
->txstamp_ack
= 1;
483 if (tsflags
& SOF_TIMESTAMPING_TX_RECORD_MASK
)
484 shinfo
->tskey
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- 1;
488 static inline bool tcp_stream_is_readable(const struct tcp_sock
*tp
,
489 int target
, struct sock
*sk
)
491 return (tp
->rcv_nxt
- tp
->copied_seq
>= target
) ||
492 (sk
->sk_prot
->stream_memory_read
?
493 sk
->sk_prot
->stream_memory_read(sk
) : false);
497 * Wait for a TCP event.
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
503 __poll_t
tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
506 struct sock
*sk
= sock
->sk
;
507 const struct tcp_sock
*tp
= tcp_sk(sk
);
510 sock_poll_wait(file
, sock
, wait
);
512 state
= inet_sk_state_load(sk
);
513 if (state
== TCP_LISTEN
)
514 return inet_csk_listen_poll(sk
);
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
550 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| state
== TCP_CLOSE
)
552 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
553 mask
|= EPOLLIN
| EPOLLRDNORM
| EPOLLRDHUP
;
555 /* Connected or passive Fast Open socket? */
556 if (state
!= TCP_SYN_SENT
&&
557 (state
!= TCP_SYN_RECV
|| tp
->fastopen_rsk
)) {
558 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
560 if (tp
->urg_seq
== tp
->copied_seq
&&
561 !sock_flag(sk
, SOCK_URGINLINE
) &&
565 if (tcp_stream_is_readable(tp
, target
, sk
))
566 mask
|= EPOLLIN
| EPOLLRDNORM
;
568 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
569 if (sk_stream_is_writeable(sk
)) {
570 mask
|= EPOLLOUT
| EPOLLWRNORM
;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
573 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
580 smp_mb__after_atomic();
581 if (sk_stream_is_writeable(sk
))
582 mask
|= EPOLLOUT
| EPOLLWRNORM
;
585 mask
|= EPOLLOUT
| EPOLLWRNORM
;
587 if (tp
->urg_data
& TCP_URG_VALID
)
589 } else if (state
== TCP_SYN_SENT
&& inet_sk(sk
)->defer_connect
) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
594 mask
|= EPOLLOUT
| EPOLLWRNORM
;
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
598 if (sk
->sk_err
|| !skb_queue_empty(&sk
->sk_error_queue
))
603 EXPORT_SYMBOL(tcp_poll
);
605 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
607 struct tcp_sock
*tp
= tcp_sk(sk
);
613 if (sk
->sk_state
== TCP_LISTEN
)
616 slow
= lock_sock_fast(sk
);
618 unlock_sock_fast(sk
, slow
);
621 answ
= tp
->urg_data
&& tp
->urg_seq
== tp
->copied_seq
;
624 if (sk
->sk_state
== TCP_LISTEN
)
627 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
630 answ
= tp
->write_seq
- tp
->snd_una
;
633 if (sk
->sk_state
== TCP_LISTEN
)
636 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
639 answ
= tp
->write_seq
- tp
->snd_nxt
;
645 return put_user(answ
, (int __user
*)arg
);
647 EXPORT_SYMBOL(tcp_ioctl
);
649 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
651 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
652 tp
->pushed_seq
= tp
->write_seq
;
655 static inline bool forced_push(const struct tcp_sock
*tp
)
657 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
660 static void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
662 struct tcp_sock
*tp
= tcp_sk(sk
);
663 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
666 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
667 tcb
->tcp_flags
= TCPHDR_ACK
;
669 __skb_header_release(skb
);
670 tcp_add_write_queue_tail(sk
, skb
);
671 sk
->sk_wmem_queued
+= skb
->truesize
;
672 sk_mem_charge(sk
, skb
->truesize
);
673 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
674 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
676 tcp_slow_start_after_idle_check(sk
);
679 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
682 tp
->snd_up
= tp
->write_seq
;
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
695 static bool tcp_should_autocork(struct sock
*sk
, struct sk_buff
*skb
,
698 return skb
->len
< size_goal
&&
699 sock_net(sk
)->ipv4
.sysctl_tcp_autocorking
&&
700 !tcp_rtx_queue_empty(sk
) &&
701 refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
;
704 static void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
705 int nonagle
, int size_goal
)
707 struct tcp_sock
*tp
= tcp_sk(sk
);
710 skb
= tcp_write_queue_tail(sk
);
713 if (!(flags
& MSG_MORE
) || forced_push(tp
))
714 tcp_mark_push(tp
, skb
);
716 tcp_mark_urg(tp
, flags
);
718 if (tcp_should_autocork(sk
, skb
, size_goal
)) {
720 /* avoid atomic op if TSQ_THROTTLED bit is already set */
721 if (!test_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
)) {
722 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPAUTOCORKING
);
723 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
725 /* It is possible TX completion already happened
726 * before we set TSQ_THROTTLED.
728 if (refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
)
732 if (flags
& MSG_MORE
)
733 nonagle
= TCP_NAGLE_CORK
;
735 __tcp_push_pending_frames(sk
, mss_now
, nonagle
);
738 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
739 unsigned int offset
, size_t len
)
741 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
744 ret
= skb_splice_bits(skb
, skb
->sk
, offset
, tss
->pipe
,
745 min(rd_desc
->count
, len
), tss
->flags
);
747 rd_desc
->count
-= ret
;
751 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
753 /* Store TCP splice context information in read_descriptor_t. */
754 read_descriptor_t rd_desc
= {
759 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
763 * tcp_splice_read - splice data from TCP socket to a pipe
764 * @sock: socket to splice from
765 * @ppos: position (not valid)
766 * @pipe: pipe to splice to
767 * @len: number of bytes to splice
768 * @flags: splice modifier flags
771 * Will read pages from given socket and fill them into a pipe.
774 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
775 struct pipe_inode_info
*pipe
, size_t len
,
778 struct sock
*sk
= sock
->sk
;
779 struct tcp_splice_state tss
= {
788 sock_rps_record_flow(sk
);
790 * We can't seek on a socket input
799 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
801 ret
= __tcp_splice_read(sk
, &tss
);
807 if (sock_flag(sk
, SOCK_DONE
))
810 ret
= sock_error(sk
);
813 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
815 if (sk
->sk_state
== TCP_CLOSE
) {
817 * This occurs when user tries to read
818 * from never connected socket.
827 /* if __tcp_splice_read() got nothing while we have
828 * an skb in receive queue, we do not want to loop.
829 * This might happen with URG data.
831 if (!skb_queue_empty(&sk
->sk_receive_queue
))
833 sk_wait_data(sk
, &timeo
, NULL
);
834 if (signal_pending(current
)) {
835 ret
= sock_intr_errno(timeo
);
848 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
849 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
850 signal_pending(current
))
861 EXPORT_SYMBOL(tcp_splice_read
);
863 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
,
868 /* The TCP header must be at least 32-bit aligned. */
869 size
= ALIGN(size
, 4);
871 if (unlikely(tcp_under_memory_pressure(sk
)))
872 sk_mem_reclaim_partial(sk
);
874 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
878 if (force_schedule
) {
879 mem_scheduled
= true;
880 sk_forced_mem_schedule(sk
, skb
->truesize
);
882 mem_scheduled
= sk_wmem_schedule(sk
, skb
->truesize
);
884 if (likely(mem_scheduled
)) {
885 skb_reserve(skb
, sk
->sk_prot
->max_header
);
887 * Make sure that we have exactly size bytes
888 * available to the caller, no more, no less.
890 skb
->reserved_tailroom
= skb
->end
- skb
->tail
- size
;
891 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
896 sk
->sk_prot
->enter_memory_pressure(sk
);
897 sk_stream_moderate_sndbuf(sk
);
902 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
905 struct tcp_sock
*tp
= tcp_sk(sk
);
906 u32 new_size_goal
, size_goal
;
911 /* Note : tcp_tso_autosize() will eventually split this later */
912 new_size_goal
= sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
;
913 new_size_goal
= tcp_bound_to_half_wnd(tp
, new_size_goal
);
915 /* We try hard to avoid divides here */
916 size_goal
= tp
->gso_segs
* mss_now
;
917 if (unlikely(new_size_goal
< size_goal
||
918 new_size_goal
>= size_goal
+ mss_now
)) {
919 tp
->gso_segs
= min_t(u16
, new_size_goal
/ mss_now
,
920 sk
->sk_gso_max_segs
);
921 size_goal
= tp
->gso_segs
* mss_now
;
924 return max(size_goal
, mss_now
);
927 static int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
931 mss_now
= tcp_current_mss(sk
);
932 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
937 ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
*page
, int offset
,
938 size_t size
, int flags
)
940 struct tcp_sock
*tp
= tcp_sk(sk
);
941 int mss_now
, size_goal
;
944 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
946 /* Wait for a connection to finish. One exception is TCP Fast Open
947 * (passive side) where data is allowed to be sent before a connection
948 * is fully established.
950 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
951 !tcp_passive_fastopen(sk
)) {
952 err
= sk_stream_wait_connect(sk
, &timeo
);
957 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
959 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
963 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
967 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
971 if (!skb
|| (copy
= size_goal
- skb
->len
) <= 0 ||
972 !tcp_skb_can_collapse_to(skb
)) {
974 if (!sk_stream_memory_free(sk
))
975 goto wait_for_sndbuf
;
977 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
,
978 tcp_rtx_and_write_queues_empty(sk
));
980 goto wait_for_memory
;
989 i
= skb_shinfo(skb
)->nr_frags
;
990 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
991 if (!can_coalesce
&& i
>= sysctl_max_skb_frags
) {
992 tcp_mark_push(tp
, skb
);
995 if (!sk_wmem_schedule(sk
, copy
))
996 goto wait_for_memory
;
999 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1002 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
1005 if (!(flags
& MSG_NO_SHARED_FRAGS
))
1006 skb_shinfo(skb
)->tx_flags
|= SKBTX_SHARED_FRAG
;
1009 skb
->data_len
+= copy
;
1010 skb
->truesize
+= copy
;
1011 sk
->sk_wmem_queued
+= copy
;
1012 sk_mem_charge(sk
, copy
);
1013 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1014 tp
->write_seq
+= copy
;
1015 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1016 tcp_skb_pcount_set(skb
, 0);
1019 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1027 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
1030 if (forced_push(tp
)) {
1031 tcp_mark_push(tp
, skb
);
1032 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1033 } else if (skb
== tcp_send_head(sk
))
1034 tcp_push_one(sk
, mss_now
);
1038 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1040 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1041 TCP_NAGLE_PUSH
, size_goal
);
1043 err
= sk_stream_wait_memory(sk
, &timeo
);
1047 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1052 tcp_tx_timestamp(sk
, sk
->sk_tsflags
);
1053 if (!(flags
& MSG_SENDPAGE_NOTLAST
))
1054 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1062 /* make sure we wake any epoll edge trigger waiter */
1063 if (unlikely(skb_queue_len(&sk
->sk_write_queue
) == 0 &&
1065 sk
->sk_write_space(sk
);
1066 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1068 return sk_stream_error(sk
, flags
, err
);
1070 EXPORT_SYMBOL_GPL(do_tcp_sendpages
);
1072 int tcp_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
1073 size_t size
, int flags
)
1075 if (!(sk
->sk_route_caps
& NETIF_F_SG
))
1076 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
1078 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1080 return do_tcp_sendpages(sk
, page
, offset
, size
, flags
);
1082 EXPORT_SYMBOL_GPL(tcp_sendpage_locked
);
1084 int tcp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1085 size_t size
, int flags
)
1090 ret
= tcp_sendpage_locked(sk
, page
, offset
, size
, flags
);
1095 EXPORT_SYMBOL(tcp_sendpage
);
1097 /* Do not bother using a page frag for very small frames.
1098 * But use this heuristic only for the first skb in write queue.
1100 * Having no payload in skb->head allows better SACK shifting
1101 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1102 * write queue has less skbs.
1103 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1104 * This also speeds up tso_fragment(), since it wont fallback
1105 * to tcp_fragment().
1107 static int linear_payload_sz(bool first_skb
)
1110 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER
);
1114 static int select_size(bool first_skb
, bool zc
)
1118 return linear_payload_sz(first_skb
);
1121 void tcp_free_fastopen_req(struct tcp_sock
*tp
)
1123 if (tp
->fastopen_req
) {
1124 kfree(tp
->fastopen_req
);
1125 tp
->fastopen_req
= NULL
;
1129 static int tcp_sendmsg_fastopen(struct sock
*sk
, struct msghdr
*msg
,
1130 int *copied
, size_t size
)
1132 struct tcp_sock
*tp
= tcp_sk(sk
);
1133 struct inet_sock
*inet
= inet_sk(sk
);
1134 struct sockaddr
*uaddr
= msg
->msg_name
;
1137 if (!(sock_net(sk
)->ipv4
.sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) ||
1138 (uaddr
&& msg
->msg_namelen
>= sizeof(uaddr
->sa_family
) &&
1139 uaddr
->sa_family
== AF_UNSPEC
))
1141 if (tp
->fastopen_req
)
1142 return -EALREADY
; /* Another Fast Open is in progress */
1144 tp
->fastopen_req
= kzalloc(sizeof(struct tcp_fastopen_request
),
1146 if (unlikely(!tp
->fastopen_req
))
1148 tp
->fastopen_req
->data
= msg
;
1149 tp
->fastopen_req
->size
= size
;
1151 if (inet
->defer_connect
) {
1152 err
= tcp_connect(sk
);
1153 /* Same failure procedure as in tcp_v4/6_connect */
1155 tcp_set_state(sk
, TCP_CLOSE
);
1156 inet
->inet_dport
= 0;
1157 sk
->sk_route_caps
= 0;
1160 flags
= (msg
->msg_flags
& MSG_DONTWAIT
) ? O_NONBLOCK
: 0;
1161 err
= __inet_stream_connect(sk
->sk_socket
, uaddr
,
1162 msg
->msg_namelen
, flags
, 1);
1163 /* fastopen_req could already be freed in __inet_stream_connect
1164 * if the connection times out or gets rst
1166 if (tp
->fastopen_req
) {
1167 *copied
= tp
->fastopen_req
->copied
;
1168 tcp_free_fastopen_req(tp
);
1169 inet
->defer_connect
= 0;
1174 int tcp_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1176 struct tcp_sock
*tp
= tcp_sk(sk
);
1177 struct ubuf_info
*uarg
= NULL
;
1178 struct sk_buff
*skb
;
1179 struct sockcm_cookie sockc
;
1180 int flags
, err
, copied
= 0;
1181 int mss_now
= 0, size_goal
, copied_syn
= 0;
1182 bool process_backlog
= false;
1186 flags
= msg
->msg_flags
;
1188 if (flags
& MSG_ZEROCOPY
&& size
&& sock_flag(sk
, SOCK_ZEROCOPY
)) {
1189 if ((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) {
1194 skb
= tcp_write_queue_tail(sk
);
1195 uarg
= sock_zerocopy_realloc(sk
, size
, skb_zcopy(skb
));
1201 zc
= sk
->sk_route_caps
& NETIF_F_SG
;
1206 if (unlikely(flags
& MSG_FASTOPEN
|| inet_sk(sk
)->defer_connect
) &&
1208 err
= tcp_sendmsg_fastopen(sk
, msg
, &copied_syn
, size
);
1209 if (err
== -EINPROGRESS
&& copied_syn
> 0)
1215 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1217 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1219 /* Wait for a connection to finish. One exception is TCP Fast Open
1220 * (passive side) where data is allowed to be sent before a connection
1221 * is fully established.
1223 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1224 !tcp_passive_fastopen(sk
)) {
1225 err
= sk_stream_wait_connect(sk
, &timeo
);
1230 if (unlikely(tp
->repair
)) {
1231 if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
1232 copied
= tcp_send_rcvq(sk
, msg
, size
);
1237 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1240 /* 'common' sending to sendq */
1243 sockcm_init(&sockc
, sk
);
1244 if (msg
->msg_controllen
) {
1245 err
= sock_cmsg_send(sk
, msg
, &sockc
);
1246 if (unlikely(err
)) {
1252 /* This should be in poll */
1253 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1255 /* Ok commence sending. */
1259 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1262 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1265 while (msg_data_left(msg
)) {
1268 skb
= tcp_write_queue_tail(sk
);
1270 copy
= size_goal
- skb
->len
;
1272 if (copy
<= 0 || !tcp_skb_can_collapse_to(skb
)) {
1277 if (!sk_stream_memory_free(sk
))
1278 goto wait_for_sndbuf
;
1280 if (process_backlog
&& sk_flush_backlog(sk
)) {
1281 process_backlog
= false;
1284 first_skb
= tcp_rtx_and_write_queues_empty(sk
);
1285 linear
= select_size(first_skb
, zc
);
1286 skb
= sk_stream_alloc_skb(sk
, linear
, sk
->sk_allocation
,
1289 goto wait_for_memory
;
1291 process_backlog
= true;
1292 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1294 skb_entail(sk
, skb
);
1297 /* All packets are restored as if they have
1298 * already been sent. skb_mstamp_ns isn't set to
1299 * avoid wrong rtt estimation.
1302 TCP_SKB_CB(skb
)->sacked
|= TCPCB_REPAIRED
;
1305 /* Try to append data to the end of skb. */
1306 if (copy
> msg_data_left(msg
))
1307 copy
= msg_data_left(msg
);
1309 /* Where to copy to? */
1310 if (skb_availroom(skb
) > 0 && !zc
) {
1311 /* We have some space in skb head. Superb! */
1312 copy
= min_t(int, copy
, skb_availroom(skb
));
1313 err
= skb_add_data_nocache(sk
, skb
, &msg
->msg_iter
, copy
);
1318 int i
= skb_shinfo(skb
)->nr_frags
;
1319 struct page_frag
*pfrag
= sk_page_frag(sk
);
1321 if (!sk_page_frag_refill(sk
, pfrag
))
1322 goto wait_for_memory
;
1324 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1326 if (i
>= sysctl_max_skb_frags
) {
1327 tcp_mark_push(tp
, skb
);
1333 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1335 if (!sk_wmem_schedule(sk
, copy
))
1336 goto wait_for_memory
;
1338 err
= skb_copy_to_page_nocache(sk
, &msg
->msg_iter
, skb
,
1345 /* Update the skb. */
1347 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1349 skb_fill_page_desc(skb
, i
, pfrag
->page
,
1350 pfrag
->offset
, copy
);
1351 page_ref_inc(pfrag
->page
);
1353 pfrag
->offset
+= copy
;
1355 err
= skb_zerocopy_iter_stream(sk
, skb
, msg
, copy
, uarg
);
1356 if (err
== -EMSGSIZE
|| err
== -EEXIST
) {
1357 tcp_mark_push(tp
, skb
);
1366 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1368 tp
->write_seq
+= copy
;
1369 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1370 tcp_skb_pcount_set(skb
, 0);
1373 if (!msg_data_left(msg
)) {
1374 if (unlikely(flags
& MSG_EOR
))
1375 TCP_SKB_CB(skb
)->eor
= 1;
1379 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
) || unlikely(tp
->repair
))
1382 if (forced_push(tp
)) {
1383 tcp_mark_push(tp
, skb
);
1384 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1385 } else if (skb
== tcp_send_head(sk
))
1386 tcp_push_one(sk
, mss_now
);
1390 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1393 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1394 TCP_NAGLE_PUSH
, size_goal
);
1396 err
= sk_stream_wait_memory(sk
, &timeo
);
1400 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1405 tcp_tx_timestamp(sk
, sockc
.tsflags
);
1406 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1409 sock_zerocopy_put(uarg
);
1410 return copied
+ copied_syn
;
1414 tcp_unlink_write_queue(skb
, sk
);
1415 /* It is the one place in all of TCP, except connection
1416 * reset, where we can be unlinking the send_head.
1418 tcp_check_send_head(sk
, skb
);
1419 sk_wmem_free_skb(sk
, skb
);
1423 if (copied
+ copied_syn
)
1426 sock_zerocopy_put_abort(uarg
);
1427 err
= sk_stream_error(sk
, flags
, err
);
1428 /* make sure we wake any epoll edge trigger waiter */
1429 if (unlikely(skb_queue_len(&sk
->sk_write_queue
) == 0 &&
1431 sk
->sk_write_space(sk
);
1432 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1436 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked
);
1438 int tcp_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1443 ret
= tcp_sendmsg_locked(sk
, msg
, size
);
1448 EXPORT_SYMBOL(tcp_sendmsg
);
1451 * Handle reading urgent data. BSD has very simple semantics for
1452 * this, no blocking and very strange errors 8)
1455 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1457 struct tcp_sock
*tp
= tcp_sk(sk
);
1459 /* No URG data to read. */
1460 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1461 tp
->urg_data
== TCP_URG_READ
)
1462 return -EINVAL
; /* Yes this is right ! */
1464 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1467 if (tp
->urg_data
& TCP_URG_VALID
) {
1469 char c
= tp
->urg_data
;
1471 if (!(flags
& MSG_PEEK
))
1472 tp
->urg_data
= TCP_URG_READ
;
1474 /* Read urgent data. */
1475 msg
->msg_flags
|= MSG_OOB
;
1478 if (!(flags
& MSG_TRUNC
))
1479 err
= memcpy_to_msg(msg
, &c
, 1);
1482 msg
->msg_flags
|= MSG_TRUNC
;
1484 return err
? -EFAULT
: len
;
1487 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1490 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1491 * the available implementations agree in this case:
1492 * this call should never block, independent of the
1493 * blocking state of the socket.
1494 * Mike <pall@rz.uni-karlsruhe.de>
1499 static int tcp_peek_sndq(struct sock
*sk
, struct msghdr
*msg
, int len
)
1501 struct sk_buff
*skb
;
1502 int copied
= 0, err
= 0;
1504 /* XXX -- need to support SO_PEEK_OFF */
1506 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
1507 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1513 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
1514 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1521 return err
?: copied
;
1524 /* Clean up the receive buffer for full frames taken by the user,
1525 * then send an ACK if necessary. COPIED is the number of bytes
1526 * tcp_recvmsg has given to the user so far, it speeds up the
1527 * calculation of whether or not we must ACK for the sake of
1530 static void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1532 struct tcp_sock
*tp
= tcp_sk(sk
);
1533 bool time_to_ack
= false;
1535 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1537 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1538 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1539 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1541 if (inet_csk_ack_scheduled(sk
)) {
1542 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1543 /* Delayed ACKs frequently hit locked sockets during bulk
1545 if (icsk
->icsk_ack
.blocked
||
1546 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1547 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1549 * If this read emptied read buffer, we send ACK, if
1550 * connection is not bidirectional, user drained
1551 * receive buffer and there was a small segment
1555 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1556 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1557 !icsk
->icsk_ack
.pingpong
)) &&
1558 !atomic_read(&sk
->sk_rmem_alloc
)))
1562 /* We send an ACK if we can now advertise a non-zero window
1563 * which has been raised "significantly".
1565 * Even if window raised up to infinity, do not send window open ACK
1566 * in states, where we will not receive more. It is useless.
1568 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1569 __u32 rcv_window_now
= tcp_receive_window(tp
);
1571 /* Optimize, __tcp_select_window() is not cheap. */
1572 if (2*rcv_window_now
<= tp
->window_clamp
) {
1573 __u32 new_window
= __tcp_select_window(sk
);
1575 /* Send ACK now, if this read freed lots of space
1576 * in our buffer. Certainly, new_window is new window.
1577 * We can advertise it now, if it is not less than current one.
1578 * "Lots" means "at least twice" here.
1580 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1588 static struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1590 struct sk_buff
*skb
;
1593 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1594 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1595 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
1596 pr_err_once("%s: found a SYN, please report !\n", __func__
);
1599 if (offset
< skb
->len
|| (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)) {
1603 /* This looks weird, but this can happen if TCP collapsing
1604 * splitted a fat GRO packet, while we released socket lock
1605 * in skb_splice_bits()
1607 sk_eat_skb(sk
, skb
);
1613 * This routine provides an alternative to tcp_recvmsg() for routines
1614 * that would like to handle copying from skbuffs directly in 'sendfile'
1617 * - It is assumed that the socket was locked by the caller.
1618 * - The routine does not block.
1619 * - At present, there is no support for reading OOB data
1620 * or for 'peeking' the socket using this routine
1621 * (although both would be easy to implement).
1623 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1624 sk_read_actor_t recv_actor
)
1626 struct sk_buff
*skb
;
1627 struct tcp_sock
*tp
= tcp_sk(sk
);
1628 u32 seq
= tp
->copied_seq
;
1632 if (sk
->sk_state
== TCP_LISTEN
)
1634 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1635 if (offset
< skb
->len
) {
1639 len
= skb
->len
- offset
;
1640 /* Stop reading if we hit a patch of urgent data */
1642 u32 urg_offset
= tp
->urg_seq
- seq
;
1643 if (urg_offset
< len
)
1648 used
= recv_actor(desc
, skb
, offset
, len
);
1653 } else if (used
<= len
) {
1658 /* If recv_actor drops the lock (e.g. TCP splice
1659 * receive) the skb pointer might be invalid when
1660 * getting here: tcp_collapse might have deleted it
1661 * while aggregating skbs from the socket queue.
1663 skb
= tcp_recv_skb(sk
, seq
- 1, &offset
);
1666 /* TCP coalescing might have appended data to the skb.
1667 * Try to splice more frags
1669 if (offset
+ 1 != skb
->len
)
1672 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) {
1673 sk_eat_skb(sk
, skb
);
1677 sk_eat_skb(sk
, skb
);
1680 tp
->copied_seq
= seq
;
1682 tp
->copied_seq
= seq
;
1684 tcp_rcv_space_adjust(sk
);
1686 /* Clean up data we have read: This will do ACK frames. */
1688 tcp_recv_skb(sk
, seq
, &offset
);
1689 tcp_cleanup_rbuf(sk
, copied
);
1693 EXPORT_SYMBOL(tcp_read_sock
);
1695 int tcp_peek_len(struct socket
*sock
)
1697 return tcp_inq(sock
->sk
);
1699 EXPORT_SYMBOL(tcp_peek_len
);
1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1702 int tcp_set_rcvlowat(struct sock
*sk
, int val
)
1706 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)
1707 cap
= sk
->sk_rcvbuf
>> 1;
1709 cap
= sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2] >> 1;
1710 val
= min(val
, cap
);
1711 sk
->sk_rcvlowat
= val
? : 1;
1713 /* Check if we need to signal EPOLLIN right now */
1716 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)
1720 if (val
> sk
->sk_rcvbuf
) {
1721 sk
->sk_rcvbuf
= val
;
1722 tcp_sk(sk
)->window_clamp
= tcp_win_from_space(sk
, val
);
1726 EXPORT_SYMBOL(tcp_set_rcvlowat
);
1729 static const struct vm_operations_struct tcp_vm_ops
= {
1732 int tcp_mmap(struct file
*file
, struct socket
*sock
,
1733 struct vm_area_struct
*vma
)
1735 if (vma
->vm_flags
& (VM_WRITE
| VM_EXEC
))
1737 vma
->vm_flags
&= ~(VM_MAYWRITE
| VM_MAYEXEC
);
1739 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1740 vma
->vm_flags
|= VM_MIXEDMAP
;
1742 vma
->vm_ops
= &tcp_vm_ops
;
1745 EXPORT_SYMBOL(tcp_mmap
);
1747 static int tcp_zerocopy_receive(struct sock
*sk
,
1748 struct tcp_zerocopy_receive
*zc
)
1750 unsigned long address
= (unsigned long)zc
->address
;
1751 const skb_frag_t
*frags
= NULL
;
1752 u32 length
= 0, seq
, offset
;
1753 struct vm_area_struct
*vma
;
1754 struct sk_buff
*skb
= NULL
;
1755 struct tcp_sock
*tp
;
1759 if (address
& (PAGE_SIZE
- 1) || address
!= zc
->address
)
1762 if (sk
->sk_state
== TCP_LISTEN
)
1765 sock_rps_record_flow(sk
);
1767 down_read(¤t
->mm
->mmap_sem
);
1770 vma
= find_vma(current
->mm
, address
);
1771 if (!vma
|| vma
->vm_start
> address
|| vma
->vm_ops
!= &tcp_vm_ops
)
1773 zc
->length
= min_t(unsigned long, zc
->length
, vma
->vm_end
- address
);
1776 seq
= tp
->copied_seq
;
1778 zc
->length
= min_t(u32
, zc
->length
, inq
);
1779 zc
->length
&= ~(PAGE_SIZE
- 1);
1781 zap_page_range(vma
, address
, zc
->length
);
1782 zc
->recv_skip_hint
= 0;
1784 zc
->recv_skip_hint
= inq
;
1787 while (length
+ PAGE_SIZE
<= zc
->length
) {
1788 if (zc
->recv_skip_hint
< PAGE_SIZE
) {
1791 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1793 skb
= tcp_recv_skb(sk
, seq
, &offset
);
1796 zc
->recv_skip_hint
= skb
->len
- offset
;
1797 offset
-= skb_headlen(skb
);
1798 if ((int)offset
< 0 || skb_has_frag_list(skb
))
1800 frags
= skb_shinfo(skb
)->frags
;
1802 if (frags
->size
> offset
)
1804 offset
-= frags
->size
;
1808 if (frags
->size
!= PAGE_SIZE
|| frags
->page_offset
) {
1809 int remaining
= zc
->recv_skip_hint
;
1811 while (remaining
&& (frags
->size
!= PAGE_SIZE
||
1812 frags
->page_offset
)) {
1813 remaining
-= frags
->size
;
1816 zc
->recv_skip_hint
-= remaining
;
1819 ret
= vm_insert_page(vma
, address
+ length
,
1820 skb_frag_page(frags
));
1823 length
+= PAGE_SIZE
;
1825 zc
->recv_skip_hint
-= PAGE_SIZE
;
1829 up_read(¤t
->mm
->mmap_sem
);
1831 tp
->copied_seq
= seq
;
1832 tcp_rcv_space_adjust(sk
);
1834 /* Clean up data we have read: This will do ACK frames. */
1835 tcp_recv_skb(sk
, seq
, &offset
);
1836 tcp_cleanup_rbuf(sk
, length
);
1838 if (length
== zc
->length
)
1839 zc
->recv_skip_hint
= 0;
1841 if (!zc
->recv_skip_hint
&& sock_flag(sk
, SOCK_DONE
))
1844 zc
->length
= length
;
1849 static void tcp_update_recv_tstamps(struct sk_buff
*skb
,
1850 struct scm_timestamping
*tss
)
1853 tss
->ts
[0] = ktime_to_timespec(skb
->tstamp
);
1855 tss
->ts
[0] = (struct timespec
) {0};
1857 if (skb_hwtstamps(skb
)->hwtstamp
)
1858 tss
->ts
[2] = ktime_to_timespec(skb_hwtstamps(skb
)->hwtstamp
);
1860 tss
->ts
[2] = (struct timespec
) {0};
1863 /* Similar to __sock_recv_timestamp, but does not require an skb */
1864 static void tcp_recv_timestamp(struct msghdr
*msg
, const struct sock
*sk
,
1865 struct scm_timestamping
*tss
)
1868 bool has_timestamping
= false;
1870 if (tss
->ts
[0].tv_sec
|| tss
->ts
[0].tv_nsec
) {
1871 if (sock_flag(sk
, SOCK_RCVTSTAMP
)) {
1872 if (sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
1873 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
1874 sizeof(tss
->ts
[0]), &tss
->ts
[0]);
1876 tv
.tv_sec
= tss
->ts
[0].tv_sec
;
1877 tv
.tv_usec
= tss
->ts
[0].tv_nsec
/ 1000;
1879 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
1884 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
)
1885 has_timestamping
= true;
1887 tss
->ts
[0] = (struct timespec
) {0};
1890 if (tss
->ts
[2].tv_sec
|| tss
->ts
[2].tv_nsec
) {
1891 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
)
1892 has_timestamping
= true;
1894 tss
->ts
[2] = (struct timespec
) {0};
1897 if (has_timestamping
) {
1898 tss
->ts
[1] = (struct timespec
) {0};
1899 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING
,
1904 static int tcp_inq_hint(struct sock
*sk
)
1906 const struct tcp_sock
*tp
= tcp_sk(sk
);
1907 u32 copied_seq
= READ_ONCE(tp
->copied_seq
);
1908 u32 rcv_nxt
= READ_ONCE(tp
->rcv_nxt
);
1911 inq
= rcv_nxt
- copied_seq
;
1912 if (unlikely(inq
< 0 || copied_seq
!= READ_ONCE(tp
->copied_seq
))) {
1914 inq
= tp
->rcv_nxt
- tp
->copied_seq
;
1921 * This routine copies from a sock struct into the user buffer.
1923 * Technical note: in 2.3 we work on _locked_ socket, so that
1924 * tricks with *seq access order and skb->users are not required.
1925 * Probably, code can be easily improved even more.
1928 int tcp_recvmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
, int nonblock
,
1929 int flags
, int *addr_len
)
1931 struct tcp_sock
*tp
= tcp_sk(sk
);
1937 int target
; /* Read at least this many bytes */
1939 struct sk_buff
*skb
, *last
;
1941 struct scm_timestamping tss
;
1942 bool has_tss
= false;
1945 if (unlikely(flags
& MSG_ERRQUEUE
))
1946 return inet_recv_error(sk
, msg
, len
, addr_len
);
1948 if (sk_can_busy_loop(sk
) && skb_queue_empty(&sk
->sk_receive_queue
) &&
1949 (sk
->sk_state
== TCP_ESTABLISHED
))
1950 sk_busy_loop(sk
, nonblock
);
1955 if (sk
->sk_state
== TCP_LISTEN
)
1958 has_cmsg
= tp
->recvmsg_inq
;
1959 timeo
= sock_rcvtimeo(sk
, nonblock
);
1961 /* Urgent data needs to be handled specially. */
1962 if (flags
& MSG_OOB
)
1965 if (unlikely(tp
->repair
)) {
1967 if (!(flags
& MSG_PEEK
))
1970 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
1974 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1977 /* 'common' recv queue MSG_PEEK-ing */
1980 seq
= &tp
->copied_seq
;
1981 if (flags
& MSG_PEEK
) {
1982 peek_seq
= tp
->copied_seq
;
1986 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1991 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1992 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
1995 if (signal_pending(current
)) {
1996 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
2001 /* Next get a buffer. */
2003 last
= skb_peek_tail(&sk
->sk_receive_queue
);
2004 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
2006 /* Now that we have two receive queues this
2009 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
2010 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2011 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
2015 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
2016 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2017 pr_err_once("%s: found a SYN, please report !\n", __func__
);
2020 if (offset
< skb
->len
)
2022 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2024 WARN(!(flags
& MSG_PEEK
),
2025 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2026 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
2029 /* Well, if we have backlog, try to process it now yet. */
2031 if (copied
>= target
&& !sk
->sk_backlog
.tail
)
2036 sk
->sk_state
== TCP_CLOSE
||
2037 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
2039 signal_pending(current
))
2042 if (sock_flag(sk
, SOCK_DONE
))
2046 copied
= sock_error(sk
);
2050 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
2053 if (sk
->sk_state
== TCP_CLOSE
) {
2054 /* This occurs when user tries to read
2055 * from never connected socket.
2066 if (signal_pending(current
)) {
2067 copied
= sock_intr_errno(timeo
);
2072 tcp_cleanup_rbuf(sk
, copied
);
2074 if (copied
>= target
) {
2075 /* Do not sleep, just process backlog. */
2079 sk_wait_data(sk
, &timeo
, last
);
2082 if ((flags
& MSG_PEEK
) &&
2083 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
2084 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2086 task_pid_nr(current
));
2087 peek_seq
= tp
->copied_seq
;
2092 /* Ok so how much can we use? */
2093 used
= skb
->len
- offset
;
2097 /* Do we have urgent data here? */
2099 u32 urg_offset
= tp
->urg_seq
- *seq
;
2100 if (urg_offset
< used
) {
2102 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
2115 if (!(flags
& MSG_TRUNC
)) {
2116 err
= skb_copy_datagram_msg(skb
, offset
, msg
, used
);
2118 /* Exception. Bailout! */
2129 tcp_rcv_space_adjust(sk
);
2132 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
2134 tcp_fast_path_check(sk
);
2136 if (used
+ offset
< skb
->len
)
2139 if (TCP_SKB_CB(skb
)->has_rxtstamp
) {
2140 tcp_update_recv_tstamps(skb
, &tss
);
2144 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2146 if (!(flags
& MSG_PEEK
))
2147 sk_eat_skb(sk
, skb
);
2151 /* Process the FIN. */
2153 if (!(flags
& MSG_PEEK
))
2154 sk_eat_skb(sk
, skb
);
2158 /* According to UNIX98, msg_name/msg_namelen are ignored
2159 * on connected socket. I was just happy when found this 8) --ANK
2162 /* Clean up data we have read: This will do ACK frames. */
2163 tcp_cleanup_rbuf(sk
, copied
);
2169 tcp_recv_timestamp(msg
, sk
, &tss
);
2170 if (tp
->recvmsg_inq
) {
2171 inq
= tcp_inq_hint(sk
);
2172 put_cmsg(msg
, SOL_TCP
, TCP_CM_INQ
, sizeof(inq
), &inq
);
2183 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
2187 err
= tcp_peek_sndq(sk
, msg
, len
);
2190 EXPORT_SYMBOL(tcp_recvmsg
);
2192 void tcp_set_state(struct sock
*sk
, int state
)
2194 int oldstate
= sk
->sk_state
;
2196 /* We defined a new enum for TCP states that are exported in BPF
2197 * so as not force the internal TCP states to be frozen. The
2198 * following checks will detect if an internal state value ever
2199 * differs from the BPF value. If this ever happens, then we will
2200 * need to remap the internal value to the BPF value before calling
2201 * tcp_call_bpf_2arg.
2203 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED
!= (int)TCP_ESTABLISHED
);
2204 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT
!= (int)TCP_SYN_SENT
);
2205 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV
!= (int)TCP_SYN_RECV
);
2206 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1
!= (int)TCP_FIN_WAIT1
);
2207 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2
!= (int)TCP_FIN_WAIT2
);
2208 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT
!= (int)TCP_TIME_WAIT
);
2209 BUILD_BUG_ON((int)BPF_TCP_CLOSE
!= (int)TCP_CLOSE
);
2210 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT
!= (int)TCP_CLOSE_WAIT
);
2211 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK
!= (int)TCP_LAST_ACK
);
2212 BUILD_BUG_ON((int)BPF_TCP_LISTEN
!= (int)TCP_LISTEN
);
2213 BUILD_BUG_ON((int)BPF_TCP_CLOSING
!= (int)TCP_CLOSING
);
2214 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV
!= (int)TCP_NEW_SYN_RECV
);
2215 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES
!= (int)TCP_MAX_STATES
);
2217 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
), BPF_SOCK_OPS_STATE_CB_FLAG
))
2218 tcp_call_bpf_2arg(sk
, BPF_SOCK_OPS_STATE_CB
, oldstate
, state
);
2221 case TCP_ESTABLISHED
:
2222 if (oldstate
!= TCP_ESTABLISHED
)
2223 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2227 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
2228 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
2230 sk
->sk_prot
->unhash(sk
);
2231 if (inet_csk(sk
)->icsk_bind_hash
&&
2232 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
2236 if (oldstate
== TCP_ESTABLISHED
)
2237 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2240 /* Change state AFTER socket is unhashed to avoid closed
2241 * socket sitting in hash tables.
2243 inet_sk_state_store(sk
, state
);
2246 SOCK_DEBUG(sk
, "TCP sk=%p, State %s -> %s\n", sk
, statename
[oldstate
], statename
[state
]);
2249 EXPORT_SYMBOL_GPL(tcp_set_state
);
2252 * State processing on a close. This implements the state shift for
2253 * sending our FIN frame. Note that we only send a FIN for some
2254 * states. A shutdown() may have already sent the FIN, or we may be
2258 static const unsigned char new_state
[16] = {
2259 /* current state: new state: action: */
2260 [0 /* (Invalid) */] = TCP_CLOSE
,
2261 [TCP_ESTABLISHED
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2262 [TCP_SYN_SENT
] = TCP_CLOSE
,
2263 [TCP_SYN_RECV
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2264 [TCP_FIN_WAIT1
] = TCP_FIN_WAIT1
,
2265 [TCP_FIN_WAIT2
] = TCP_FIN_WAIT2
,
2266 [TCP_TIME_WAIT
] = TCP_CLOSE
,
2267 [TCP_CLOSE
] = TCP_CLOSE
,
2268 [TCP_CLOSE_WAIT
] = TCP_LAST_ACK
| TCP_ACTION_FIN
,
2269 [TCP_LAST_ACK
] = TCP_LAST_ACK
,
2270 [TCP_LISTEN
] = TCP_CLOSE
,
2271 [TCP_CLOSING
] = TCP_CLOSING
,
2272 [TCP_NEW_SYN_RECV
] = TCP_CLOSE
, /* should not happen ! */
2275 static int tcp_close_state(struct sock
*sk
)
2277 int next
= (int)new_state
[sk
->sk_state
];
2278 int ns
= next
& TCP_STATE_MASK
;
2280 tcp_set_state(sk
, ns
);
2282 return next
& TCP_ACTION_FIN
;
2286 * Shutdown the sending side of a connection. Much like close except
2287 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2290 void tcp_shutdown(struct sock
*sk
, int how
)
2292 /* We need to grab some memory, and put together a FIN,
2293 * and then put it into the queue to be sent.
2294 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2296 if (!(how
& SEND_SHUTDOWN
))
2299 /* If we've already sent a FIN, or it's a closed state, skip this. */
2300 if ((1 << sk
->sk_state
) &
2301 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
2302 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
2303 /* Clear out any half completed packets. FIN if needed. */
2304 if (tcp_close_state(sk
))
2308 EXPORT_SYMBOL(tcp_shutdown
);
2310 bool tcp_check_oom(struct sock
*sk
, int shift
)
2312 bool too_many_orphans
, out_of_socket_memory
;
2314 too_many_orphans
= tcp_too_many_orphans(sk
, shift
);
2315 out_of_socket_memory
= tcp_out_of_memory(sk
);
2317 if (too_many_orphans
)
2318 net_info_ratelimited("too many orphaned sockets\n");
2319 if (out_of_socket_memory
)
2320 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2321 return too_many_orphans
|| out_of_socket_memory
;
2324 void tcp_close(struct sock
*sk
, long timeout
)
2326 struct sk_buff
*skb
;
2327 int data_was_unread
= 0;
2331 sk
->sk_shutdown
= SHUTDOWN_MASK
;
2333 if (sk
->sk_state
== TCP_LISTEN
) {
2334 tcp_set_state(sk
, TCP_CLOSE
);
2337 inet_csk_listen_stop(sk
);
2339 goto adjudge_to_death
;
2342 /* We need to flush the recv. buffs. We do this only on the
2343 * descriptor close, not protocol-sourced closes, because the
2344 * reader process may not have drained the data yet!
2346 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
2347 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
;
2349 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2351 data_was_unread
+= len
;
2357 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2358 if (sk
->sk_state
== TCP_CLOSE
)
2359 goto adjudge_to_death
;
2361 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2362 * data was lost. To witness the awful effects of the old behavior of
2363 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2364 * GET in an FTP client, suspend the process, wait for the client to
2365 * advertise a zero window, then kill -9 the FTP client, wheee...
2366 * Note: timeout is always zero in such a case.
2368 if (unlikely(tcp_sk(sk
)->repair
)) {
2369 sk
->sk_prot
->disconnect(sk
, 0);
2370 } else if (data_was_unread
) {
2371 /* Unread data was tossed, zap the connection. */
2372 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
2373 tcp_set_state(sk
, TCP_CLOSE
);
2374 tcp_send_active_reset(sk
, sk
->sk_allocation
);
2375 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
2376 /* Check zero linger _after_ checking for unread data. */
2377 sk
->sk_prot
->disconnect(sk
, 0);
2378 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
2379 } else if (tcp_close_state(sk
)) {
2380 /* We FIN if the application ate all the data before
2381 * zapping the connection.
2384 /* RED-PEN. Formally speaking, we have broken TCP state
2385 * machine. State transitions:
2387 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2388 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2389 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2391 * are legal only when FIN has been sent (i.e. in window),
2392 * rather than queued out of window. Purists blame.
2394 * F.e. "RFC state" is ESTABLISHED,
2395 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2397 * The visible declinations are that sometimes
2398 * we enter time-wait state, when it is not required really
2399 * (harmless), do not send active resets, when they are
2400 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2401 * they look as CLOSING or LAST_ACK for Linux)
2402 * Probably, I missed some more holelets.
2404 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2405 * in a single packet! (May consider it later but will
2406 * probably need API support or TCP_CORK SYN-ACK until
2407 * data is written and socket is closed.)
2412 sk_stream_wait_close(sk
, timeout
);
2415 state
= sk
->sk_state
;
2421 /* remove backlog if any, without releasing ownership. */
2424 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
2426 /* Have we already been destroyed by a softirq or backlog? */
2427 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
2430 /* This is a (useful) BSD violating of the RFC. There is a
2431 * problem with TCP as specified in that the other end could
2432 * keep a socket open forever with no application left this end.
2433 * We use a 1 minute timeout (about the same as BSD) then kill
2434 * our end. If they send after that then tough - BUT: long enough
2435 * that we won't make the old 4*rto = almost no time - whoops
2438 * Nope, it was not mistake. It is really desired behaviour
2439 * f.e. on http servers, when such sockets are useless, but
2440 * consume significant resources. Let's do it with special
2441 * linger2 option. --ANK
2444 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
2445 struct tcp_sock
*tp
= tcp_sk(sk
);
2446 if (tp
->linger2
< 0) {
2447 tcp_set_state(sk
, TCP_CLOSE
);
2448 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2449 __NET_INC_STATS(sock_net(sk
),
2450 LINUX_MIB_TCPABORTONLINGER
);
2452 const int tmo
= tcp_fin_time(sk
);
2454 if (tmo
> TCP_TIMEWAIT_LEN
) {
2455 inet_csk_reset_keepalive_timer(sk
,
2456 tmo
- TCP_TIMEWAIT_LEN
);
2458 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
2463 if (sk
->sk_state
!= TCP_CLOSE
) {
2465 if (tcp_check_oom(sk
, 0)) {
2466 tcp_set_state(sk
, TCP_CLOSE
);
2467 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2468 __NET_INC_STATS(sock_net(sk
),
2469 LINUX_MIB_TCPABORTONMEMORY
);
2470 } else if (!check_net(sock_net(sk
))) {
2471 /* Not possible to send reset; just close */
2472 tcp_set_state(sk
, TCP_CLOSE
);
2476 if (sk
->sk_state
== TCP_CLOSE
) {
2477 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
2478 /* We could get here with a non-NULL req if the socket is
2479 * aborted (e.g., closed with unread data) before 3WHS
2483 reqsk_fastopen_remove(sk
, req
, false);
2484 inet_csk_destroy_sock(sk
);
2486 /* Otherwise, socket is reprieved until protocol close. */
2494 EXPORT_SYMBOL(tcp_close
);
2496 /* These states need RST on ABORT according to RFC793 */
2498 static inline bool tcp_need_reset(int state
)
2500 return (1 << state
) &
2501 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2502 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2505 static void tcp_rtx_queue_purge(struct sock
*sk
)
2507 struct rb_node
*p
= rb_first(&sk
->tcp_rtx_queue
);
2510 struct sk_buff
*skb
= rb_to_skb(p
);
2513 /* Since we are deleting whole queue, no need to
2514 * list_del(&skb->tcp_tsorted_anchor)
2516 tcp_rtx_queue_unlink(skb
, sk
);
2517 sk_wmem_free_skb(sk
, skb
);
2521 void tcp_write_queue_purge(struct sock
*sk
)
2523 struct sk_buff
*skb
;
2525 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
2526 while ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
2527 tcp_skb_tsorted_anchor_cleanup(skb
);
2528 sk_wmem_free_skb(sk
, skb
);
2530 tcp_rtx_queue_purge(sk
);
2531 INIT_LIST_HEAD(&tcp_sk(sk
)->tsorted_sent_queue
);
2533 tcp_clear_all_retrans_hints(tcp_sk(sk
));
2534 tcp_sk(sk
)->packets_out
= 0;
2535 inet_csk(sk
)->icsk_backoff
= 0;
2538 int tcp_disconnect(struct sock
*sk
, int flags
)
2540 struct inet_sock
*inet
= inet_sk(sk
);
2541 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2542 struct tcp_sock
*tp
= tcp_sk(sk
);
2543 int old_state
= sk
->sk_state
;
2545 if (old_state
!= TCP_CLOSE
)
2546 tcp_set_state(sk
, TCP_CLOSE
);
2548 /* ABORT function of RFC793 */
2549 if (old_state
== TCP_LISTEN
) {
2550 inet_csk_listen_stop(sk
);
2551 } else if (unlikely(tp
->repair
)) {
2552 sk
->sk_err
= ECONNABORTED
;
2553 } else if (tcp_need_reset(old_state
) ||
2554 (tp
->snd_nxt
!= tp
->write_seq
&&
2555 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2556 /* The last check adjusts for discrepancy of Linux wrt. RFC
2559 tcp_send_active_reset(sk
, gfp_any());
2560 sk
->sk_err
= ECONNRESET
;
2561 } else if (old_state
== TCP_SYN_SENT
)
2562 sk
->sk_err
= ECONNRESET
;
2564 tcp_clear_xmit_timers(sk
);
2565 __skb_queue_purge(&sk
->sk_receive_queue
);
2566 tp
->copied_seq
= tp
->rcv_nxt
;
2568 tcp_write_queue_purge(sk
);
2569 tcp_fastopen_active_disable_ofo_check(sk
);
2570 skb_rbtree_purge(&tp
->out_of_order_queue
);
2572 inet
->inet_dport
= 0;
2574 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2575 inet_reset_saddr(sk
);
2577 sk
->sk_shutdown
= 0;
2578 sock_reset_flag(sk
, SOCK_DONE
);
2580 tp
->rcv_rtt_last_tsecr
= 0;
2581 tp
->write_seq
+= tp
->max_window
+ 2;
2582 if (tp
->write_seq
== 0)
2585 icsk
->icsk_probes_out
= 0;
2586 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2587 tp
->snd_cwnd_cnt
= 0;
2588 tp
->window_clamp
= 0;
2589 tp
->delivered_ce
= 0;
2590 tcp_set_ca_state(sk
, TCP_CA_Open
);
2591 tp
->is_sack_reneg
= 0;
2592 tcp_clear_retrans(tp
);
2593 inet_csk_delack_init(sk
);
2594 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2595 * issue in __tcp_select_window()
2597 icsk
->icsk_ack
.rcv_mss
= TCP_MIN_MSS
;
2598 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2600 dst_release(sk
->sk_rx_dst
);
2601 sk
->sk_rx_dst
= NULL
;
2602 tcp_saved_syn_free(tp
);
2603 tp
->compressed_ack
= 0;
2605 tp
->bytes_retrans
= 0;
2606 tp
->duplicate_sack
[0].start_seq
= 0;
2607 tp
->duplicate_sack
[0].end_seq
= 0;
2611 /* Clean up fastopen related fields */
2612 tcp_free_fastopen_req(tp
);
2613 inet
->defer_connect
= 0;
2615 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
2617 if (sk
->sk_frag
.page
) {
2618 put_page(sk
->sk_frag
.page
);
2619 sk
->sk_frag
.page
= NULL
;
2620 sk
->sk_frag
.offset
= 0;
2623 sk
->sk_error_report(sk
);
2626 EXPORT_SYMBOL(tcp_disconnect
);
2628 static inline bool tcp_can_repair_sock(const struct sock
*sk
)
2630 return ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
) &&
2631 (sk
->sk_state
!= TCP_LISTEN
);
2634 static int tcp_repair_set_window(struct tcp_sock
*tp
, char __user
*optbuf
, int len
)
2636 struct tcp_repair_window opt
;
2641 if (len
!= sizeof(opt
))
2644 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2647 if (opt
.max_window
< opt
.snd_wnd
)
2650 if (after(opt
.snd_wl1
, tp
->rcv_nxt
+ opt
.rcv_wnd
))
2653 if (after(opt
.rcv_wup
, tp
->rcv_nxt
))
2656 tp
->snd_wl1
= opt
.snd_wl1
;
2657 tp
->snd_wnd
= opt
.snd_wnd
;
2658 tp
->max_window
= opt
.max_window
;
2660 tp
->rcv_wnd
= opt
.rcv_wnd
;
2661 tp
->rcv_wup
= opt
.rcv_wup
;
2666 static int tcp_repair_options_est(struct sock
*sk
,
2667 struct tcp_repair_opt __user
*optbuf
, unsigned int len
)
2669 struct tcp_sock
*tp
= tcp_sk(sk
);
2670 struct tcp_repair_opt opt
;
2672 while (len
>= sizeof(opt
)) {
2673 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2679 switch (opt
.opt_code
) {
2681 tp
->rx_opt
.mss_clamp
= opt
.opt_val
;
2686 u16 snd_wscale
= opt
.opt_val
& 0xFFFF;
2687 u16 rcv_wscale
= opt
.opt_val
>> 16;
2689 if (snd_wscale
> TCP_MAX_WSCALE
|| rcv_wscale
> TCP_MAX_WSCALE
)
2692 tp
->rx_opt
.snd_wscale
= snd_wscale
;
2693 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2694 tp
->rx_opt
.wscale_ok
= 1;
2697 case TCPOPT_SACK_PERM
:
2698 if (opt
.opt_val
!= 0)
2701 tp
->rx_opt
.sack_ok
|= TCP_SACK_SEEN
;
2703 case TCPOPT_TIMESTAMP
:
2704 if (opt
.opt_val
!= 0)
2707 tp
->rx_opt
.tstamp_ok
= 1;
2716 * Socket option code for TCP.
2718 static int do_tcp_setsockopt(struct sock
*sk
, int level
,
2719 int optname
, char __user
*optval
, unsigned int optlen
)
2721 struct tcp_sock
*tp
= tcp_sk(sk
);
2722 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2723 struct net
*net
= sock_net(sk
);
2727 /* These are data/string values, all the others are ints */
2729 case TCP_CONGESTION
: {
2730 char name
[TCP_CA_NAME_MAX
];
2735 val
= strncpy_from_user(name
, optval
,
2736 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
2742 err
= tcp_set_congestion_control(sk
, name
, true, true);
2747 char name
[TCP_ULP_NAME_MAX
];
2752 val
= strncpy_from_user(name
, optval
,
2753 min_t(long, TCP_ULP_NAME_MAX
- 1,
2760 err
= tcp_set_ulp(sk
, name
);
2764 case TCP_FASTOPEN_KEY
: {
2765 __u8 key
[TCP_FASTOPEN_KEY_LENGTH
];
2767 if (optlen
!= sizeof(key
))
2770 if (copy_from_user(key
, optval
, optlen
))
2773 return tcp_fastopen_reset_cipher(net
, sk
, key
, sizeof(key
));
2780 if (optlen
< sizeof(int))
2783 if (get_user(val
, (int __user
*)optval
))
2790 /* Values greater than interface MTU won't take effect. However
2791 * at the point when this call is done we typically don't yet
2792 * know which interface is going to be used
2794 if (val
&& (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
)) {
2798 tp
->rx_opt
.user_mss
= val
;
2803 /* TCP_NODELAY is weaker than TCP_CORK, so that
2804 * this option on corked socket is remembered, but
2805 * it is not activated until cork is cleared.
2807 * However, when TCP_NODELAY is set we make
2808 * an explicit push, which overrides even TCP_CORK
2809 * for currently queued segments.
2811 tp
->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
2812 tcp_push_pending_frames(sk
);
2814 tp
->nonagle
&= ~TCP_NAGLE_OFF
;
2818 case TCP_THIN_LINEAR_TIMEOUTS
:
2819 if (val
< 0 || val
> 1)
2825 case TCP_THIN_DUPACK
:
2826 if (val
< 0 || val
> 1)
2831 if (!tcp_can_repair_sock(sk
))
2833 else if (val
== TCP_REPAIR_ON
) {
2835 sk
->sk_reuse
= SK_FORCE_REUSE
;
2836 tp
->repair_queue
= TCP_NO_QUEUE
;
2837 } else if (val
== TCP_REPAIR_OFF
) {
2839 sk
->sk_reuse
= SK_NO_REUSE
;
2840 tcp_send_window_probe(sk
);
2841 } else if (val
== TCP_REPAIR_OFF_NO_WP
) {
2843 sk
->sk_reuse
= SK_NO_REUSE
;
2849 case TCP_REPAIR_QUEUE
:
2852 else if ((unsigned int)val
< TCP_QUEUES_NR
)
2853 tp
->repair_queue
= val
;
2859 if (sk
->sk_state
!= TCP_CLOSE
)
2861 else if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2862 tp
->write_seq
= val
;
2863 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
2869 case TCP_REPAIR_OPTIONS
:
2872 else if (sk
->sk_state
== TCP_ESTABLISHED
)
2873 err
= tcp_repair_options_est(sk
,
2874 (struct tcp_repair_opt __user
*)optval
,
2881 /* When set indicates to always queue non-full frames.
2882 * Later the user clears this option and we transmit
2883 * any pending partial frames in the queue. This is
2884 * meant to be used alongside sendfile() to get properly
2885 * filled frames when the user (for example) must write
2886 * out headers with a write() call first and then use
2887 * sendfile to send out the data parts.
2889 * TCP_CORK can be set together with TCP_NODELAY and it is
2890 * stronger than TCP_NODELAY.
2893 tp
->nonagle
|= TCP_NAGLE_CORK
;
2895 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
2896 if (tp
->nonagle
&TCP_NAGLE_OFF
)
2897 tp
->nonagle
|= TCP_NAGLE_PUSH
;
2898 tcp_push_pending_frames(sk
);
2903 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
2906 tp
->keepalive_time
= val
* HZ
;
2907 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
2908 !((1 << sk
->sk_state
) &
2909 (TCPF_CLOSE
| TCPF_LISTEN
))) {
2910 u32 elapsed
= keepalive_time_elapsed(tp
);
2911 if (tp
->keepalive_time
> elapsed
)
2912 elapsed
= tp
->keepalive_time
- elapsed
;
2915 inet_csk_reset_keepalive_timer(sk
, elapsed
);
2920 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
2923 tp
->keepalive_intvl
= val
* HZ
;
2926 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
2929 tp
->keepalive_probes
= val
;
2932 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
2935 icsk
->icsk_syn_retries
= val
;
2939 if (val
< 0 || val
> 1)
2948 else if (val
> net
->ipv4
.sysctl_tcp_fin_timeout
/ HZ
)
2951 tp
->linger2
= val
* HZ
;
2954 case TCP_DEFER_ACCEPT
:
2955 /* Translate value in seconds to number of retransmits */
2956 icsk
->icsk_accept_queue
.rskq_defer_accept
=
2957 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
2961 case TCP_WINDOW_CLAMP
:
2963 if (sk
->sk_state
!= TCP_CLOSE
) {
2967 tp
->window_clamp
= 0;
2969 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
2970 SOCK_MIN_RCVBUF
/ 2 : val
;
2975 icsk
->icsk_ack
.pingpong
= 1;
2977 icsk
->icsk_ack
.pingpong
= 0;
2978 if ((1 << sk
->sk_state
) &
2979 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
2980 inet_csk_ack_scheduled(sk
)) {
2981 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
2982 tcp_cleanup_rbuf(sk
, 1);
2984 icsk
->icsk_ack
.pingpong
= 1;
2989 #ifdef CONFIG_TCP_MD5SIG
2991 case TCP_MD5SIG_EXT
:
2992 if ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
))
2993 err
= tp
->af_specific
->md5_parse(sk
, optname
, optval
, optlen
);
2998 case TCP_USER_TIMEOUT
:
2999 /* Cap the max time in ms TCP will retry or probe the window
3000 * before giving up and aborting (ETIMEDOUT) a connection.
3005 icsk
->icsk_user_timeout
= val
;
3009 if (val
>= 0 && ((1 << sk
->sk_state
) & (TCPF_CLOSE
|
3011 tcp_fastopen_init_key_once(net
);
3013 fastopen_queue_tune(sk
, val
);
3018 case TCP_FASTOPEN_CONNECT
:
3019 if (val
> 1 || val
< 0) {
3021 } else if (net
->ipv4
.sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) {
3022 if (sk
->sk_state
== TCP_CLOSE
)
3023 tp
->fastopen_connect
= val
;
3030 case TCP_FASTOPEN_NO_COOKIE
:
3031 if (val
> 1 || val
< 0)
3033 else if (!((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
3036 tp
->fastopen_no_cookie
= val
;
3042 tp
->tsoffset
= val
- tcp_time_stamp_raw();
3044 case TCP_REPAIR_WINDOW
:
3045 err
= tcp_repair_set_window(tp
, optval
, optlen
);
3047 case TCP_NOTSENT_LOWAT
:
3048 tp
->notsent_lowat
= val
;
3049 sk
->sk_write_space(sk
);
3052 if (val
> 1 || val
< 0)
3055 tp
->recvmsg_inq
= val
;
3066 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
3067 unsigned int optlen
)
3069 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3071 if (level
!= SOL_TCP
)
3072 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
3074 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
3076 EXPORT_SYMBOL(tcp_setsockopt
);
3078 #ifdef CONFIG_COMPAT
3079 int compat_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
3080 char __user
*optval
, unsigned int optlen
)
3082 if (level
!= SOL_TCP
)
3083 return inet_csk_compat_setsockopt(sk
, level
, optname
,
3085 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
3087 EXPORT_SYMBOL(compat_tcp_setsockopt
);
3090 static void tcp_get_info_chrono_stats(const struct tcp_sock
*tp
,
3091 struct tcp_info
*info
)
3093 u64 stats
[__TCP_CHRONO_MAX
], total
= 0;
3096 for (i
= TCP_CHRONO_BUSY
; i
< __TCP_CHRONO_MAX
; ++i
) {
3097 stats
[i
] = tp
->chrono_stat
[i
- 1];
3098 if (i
== tp
->chrono_type
)
3099 stats
[i
] += tcp_jiffies32
- tp
->chrono_start
;
3100 stats
[i
] *= USEC_PER_SEC
/ HZ
;
3104 info
->tcpi_busy_time
= total
;
3105 info
->tcpi_rwnd_limited
= stats
[TCP_CHRONO_RWND_LIMITED
];
3106 info
->tcpi_sndbuf_limited
= stats
[TCP_CHRONO_SNDBUF_LIMITED
];
3109 /* Return information about state of tcp endpoint in API format. */
3110 void tcp_get_info(struct sock
*sk
, struct tcp_info
*info
)
3112 const struct tcp_sock
*tp
= tcp_sk(sk
); /* iff sk_type == SOCK_STREAM */
3113 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3119 memset(info
, 0, sizeof(*info
));
3120 if (sk
->sk_type
!= SOCK_STREAM
)
3123 info
->tcpi_state
= inet_sk_state_load(sk
);
3125 /* Report meaningful fields for all TCP states, including listeners */
3126 rate
= READ_ONCE(sk
->sk_pacing_rate
);
3127 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
3128 info
->tcpi_pacing_rate
= rate64
;
3130 rate
= READ_ONCE(sk
->sk_max_pacing_rate
);
3131 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
3132 info
->tcpi_max_pacing_rate
= rate64
;
3134 info
->tcpi_reordering
= tp
->reordering
;
3135 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
3137 if (info
->tcpi_state
== TCP_LISTEN
) {
3138 /* listeners aliased fields :
3139 * tcpi_unacked -> Number of children ready for accept()
3140 * tcpi_sacked -> max backlog
3142 info
->tcpi_unacked
= sk
->sk_ack_backlog
;
3143 info
->tcpi_sacked
= sk
->sk_max_ack_backlog
;
3147 slow
= lock_sock_fast(sk
);
3149 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
3150 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
3151 info
->tcpi_probes
= icsk
->icsk_probes_out
;
3152 info
->tcpi_backoff
= icsk
->icsk_backoff
;
3154 if (tp
->rx_opt
.tstamp_ok
)
3155 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
3156 if (tcp_is_sack(tp
))
3157 info
->tcpi_options
|= TCPI_OPT_SACK
;
3158 if (tp
->rx_opt
.wscale_ok
) {
3159 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
3160 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
3161 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
3164 if (tp
->ecn_flags
& TCP_ECN_OK
)
3165 info
->tcpi_options
|= TCPI_OPT_ECN
;
3166 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
3167 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
3168 if (tp
->syn_data_acked
)
3169 info
->tcpi_options
|= TCPI_OPT_SYN_DATA
;
3171 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
3172 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
3173 info
->tcpi_snd_mss
= tp
->mss_cache
;
3174 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
3176 info
->tcpi_unacked
= tp
->packets_out
;
3177 info
->tcpi_sacked
= tp
->sacked_out
;
3179 info
->tcpi_lost
= tp
->lost_out
;
3180 info
->tcpi_retrans
= tp
->retrans_out
;
3182 now
= tcp_jiffies32
;
3183 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
3184 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
3185 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
3187 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
3188 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
3189 info
->tcpi_rtt
= tp
->srtt_us
>> 3;
3190 info
->tcpi_rttvar
= tp
->mdev_us
>> 2;
3191 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
3192 info
->tcpi_advmss
= tp
->advmss
;
3194 info
->tcpi_rcv_rtt
= tp
->rcv_rtt_est
.rtt_us
>> 3;
3195 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
3197 info
->tcpi_total_retrans
= tp
->total_retrans
;
3199 info
->tcpi_bytes_acked
= tp
->bytes_acked
;
3200 info
->tcpi_bytes_received
= tp
->bytes_received
;
3201 info
->tcpi_notsent_bytes
= max_t(int, 0, tp
->write_seq
- tp
->snd_nxt
);
3202 tcp_get_info_chrono_stats(tp
, info
);
3204 info
->tcpi_segs_out
= tp
->segs_out
;
3205 info
->tcpi_segs_in
= tp
->segs_in
;
3207 info
->tcpi_min_rtt
= tcp_min_rtt(tp
);
3208 info
->tcpi_data_segs_in
= tp
->data_segs_in
;
3209 info
->tcpi_data_segs_out
= tp
->data_segs_out
;
3211 info
->tcpi_delivery_rate_app_limited
= tp
->rate_app_limited
? 1 : 0;
3212 rate64
= tcp_compute_delivery_rate(tp
);
3214 info
->tcpi_delivery_rate
= rate64
;
3215 info
->tcpi_delivered
= tp
->delivered
;
3216 info
->tcpi_delivered_ce
= tp
->delivered_ce
;
3217 info
->tcpi_bytes_sent
= tp
->bytes_sent
;
3218 info
->tcpi_bytes_retrans
= tp
->bytes_retrans
;
3219 info
->tcpi_dsack_dups
= tp
->dsack_dups
;
3220 info
->tcpi_reord_seen
= tp
->reord_seen
;
3221 unlock_sock_fast(sk
, slow
);
3223 EXPORT_SYMBOL_GPL(tcp_get_info
);
3225 static size_t tcp_opt_stats_get_size(void)
3228 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BUSY */
3229 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_RWND_LIMITED */
3230 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_SNDBUF_LIMITED */
3231 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_DATA_SEGS_OUT */
3232 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_TOTAL_RETRANS */
3233 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_PACING_RATE */
3234 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_DELIVERY_RATE */
3235 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SND_CWND */
3236 nla_total_size(sizeof(u32
)) + /* TCP_NLA_REORDERING */
3237 nla_total_size(sizeof(u32
)) + /* TCP_NLA_MIN_RTT */
3238 nla_total_size(sizeof(u8
)) + /* TCP_NLA_RECUR_RETRANS */
3239 nla_total_size(sizeof(u8
)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3240 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SNDQ_SIZE */
3241 nla_total_size(sizeof(u8
)) + /* TCP_NLA_CA_STATE */
3242 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SND_SSTHRESH */
3243 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DELIVERED */
3244 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DELIVERED_CE */
3245 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BYTES_SENT */
3246 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BYTES_RETRANS */
3247 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DSACK_DUPS */
3248 nla_total_size(sizeof(u32
)) + /* TCP_NLA_REORD_SEEN */
3252 struct sk_buff
*tcp_get_timestamping_opt_stats(const struct sock
*sk
)
3254 const struct tcp_sock
*tp
= tcp_sk(sk
);
3255 struct sk_buff
*stats
;
3256 struct tcp_info info
;
3260 stats
= alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC
);
3264 tcp_get_info_chrono_stats(tp
, &info
);
3265 nla_put_u64_64bit(stats
, TCP_NLA_BUSY
,
3266 info
.tcpi_busy_time
, TCP_NLA_PAD
);
3267 nla_put_u64_64bit(stats
, TCP_NLA_RWND_LIMITED
,
3268 info
.tcpi_rwnd_limited
, TCP_NLA_PAD
);
3269 nla_put_u64_64bit(stats
, TCP_NLA_SNDBUF_LIMITED
,
3270 info
.tcpi_sndbuf_limited
, TCP_NLA_PAD
);
3271 nla_put_u64_64bit(stats
, TCP_NLA_DATA_SEGS_OUT
,
3272 tp
->data_segs_out
, TCP_NLA_PAD
);
3273 nla_put_u64_64bit(stats
, TCP_NLA_TOTAL_RETRANS
,
3274 tp
->total_retrans
, TCP_NLA_PAD
);
3276 rate
= READ_ONCE(sk
->sk_pacing_rate
);
3277 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
3278 nla_put_u64_64bit(stats
, TCP_NLA_PACING_RATE
, rate64
, TCP_NLA_PAD
);
3280 rate64
= tcp_compute_delivery_rate(tp
);
3281 nla_put_u64_64bit(stats
, TCP_NLA_DELIVERY_RATE
, rate64
, TCP_NLA_PAD
);
3283 nla_put_u32(stats
, TCP_NLA_SND_CWND
, tp
->snd_cwnd
);
3284 nla_put_u32(stats
, TCP_NLA_REORDERING
, tp
->reordering
);
3285 nla_put_u32(stats
, TCP_NLA_MIN_RTT
, tcp_min_rtt(tp
));
3287 nla_put_u8(stats
, TCP_NLA_RECUR_RETRANS
, inet_csk(sk
)->icsk_retransmits
);
3288 nla_put_u8(stats
, TCP_NLA_DELIVERY_RATE_APP_LMT
, !!tp
->rate_app_limited
);
3289 nla_put_u32(stats
, TCP_NLA_SND_SSTHRESH
, tp
->snd_ssthresh
);
3290 nla_put_u32(stats
, TCP_NLA_DELIVERED
, tp
->delivered
);
3291 nla_put_u32(stats
, TCP_NLA_DELIVERED_CE
, tp
->delivered_ce
);
3293 nla_put_u32(stats
, TCP_NLA_SNDQ_SIZE
, tp
->write_seq
- tp
->snd_una
);
3294 nla_put_u8(stats
, TCP_NLA_CA_STATE
, inet_csk(sk
)->icsk_ca_state
);
3296 nla_put_u64_64bit(stats
, TCP_NLA_BYTES_SENT
, tp
->bytes_sent
,
3298 nla_put_u64_64bit(stats
, TCP_NLA_BYTES_RETRANS
, tp
->bytes_retrans
,
3300 nla_put_u32(stats
, TCP_NLA_DSACK_DUPS
, tp
->dsack_dups
);
3301 nla_put_u32(stats
, TCP_NLA_REORD_SEEN
, tp
->reord_seen
);
3306 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
3307 int optname
, char __user
*optval
, int __user
*optlen
)
3309 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3310 struct tcp_sock
*tp
= tcp_sk(sk
);
3311 struct net
*net
= sock_net(sk
);
3314 if (get_user(len
, optlen
))
3317 len
= min_t(unsigned int, len
, sizeof(int));
3324 val
= tp
->mss_cache
;
3325 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
3326 val
= tp
->rx_opt
.user_mss
;
3328 val
= tp
->rx_opt
.mss_clamp
;
3331 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
3334 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
3337 val
= keepalive_time_when(tp
) / HZ
;
3340 val
= keepalive_intvl_when(tp
) / HZ
;
3343 val
= keepalive_probes(tp
);
3346 val
= icsk
->icsk_syn_retries
? : net
->ipv4
.sysctl_tcp_syn_retries
;
3351 val
= (val
? : net
->ipv4
.sysctl_tcp_fin_timeout
) / HZ
;
3353 case TCP_DEFER_ACCEPT
:
3354 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
3355 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
3357 case TCP_WINDOW_CLAMP
:
3358 val
= tp
->window_clamp
;
3361 struct tcp_info info
;
3363 if (get_user(len
, optlen
))
3366 tcp_get_info(sk
, &info
);
3368 len
= min_t(unsigned int, len
, sizeof(info
));
3369 if (put_user(len
, optlen
))
3371 if (copy_to_user(optval
, &info
, len
))
3376 const struct tcp_congestion_ops
*ca_ops
;
3377 union tcp_cc_info info
;
3381 if (get_user(len
, optlen
))
3384 ca_ops
= icsk
->icsk_ca_ops
;
3385 if (ca_ops
&& ca_ops
->get_info
)
3386 sz
= ca_ops
->get_info(sk
, ~0U, &attr
, &info
);
3388 len
= min_t(unsigned int, len
, sz
);
3389 if (put_user(len
, optlen
))
3391 if (copy_to_user(optval
, &info
, len
))
3396 val
= !icsk
->icsk_ack
.pingpong
;
3399 case TCP_CONGESTION
:
3400 if (get_user(len
, optlen
))
3402 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
3403 if (put_user(len
, optlen
))
3405 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
3410 if (get_user(len
, optlen
))
3412 len
= min_t(unsigned int, len
, TCP_ULP_NAME_MAX
);
3413 if (!icsk
->icsk_ulp_ops
) {
3414 if (put_user(0, optlen
))
3418 if (put_user(len
, optlen
))
3420 if (copy_to_user(optval
, icsk
->icsk_ulp_ops
->name
, len
))
3424 case TCP_FASTOPEN_KEY
: {
3425 __u8 key
[TCP_FASTOPEN_KEY_LENGTH
];
3426 struct tcp_fastopen_context
*ctx
;
3428 if (get_user(len
, optlen
))
3432 ctx
= rcu_dereference(icsk
->icsk_accept_queue
.fastopenq
.ctx
);
3434 memcpy(key
, ctx
->key
, sizeof(key
));
3439 len
= min_t(unsigned int, len
, sizeof(key
));
3440 if (put_user(len
, optlen
))
3442 if (copy_to_user(optval
, key
, len
))
3446 case TCP_THIN_LINEAR_TIMEOUTS
:
3450 case TCP_THIN_DUPACK
:
3458 case TCP_REPAIR_QUEUE
:
3460 val
= tp
->repair_queue
;
3465 case TCP_REPAIR_WINDOW
: {
3466 struct tcp_repair_window opt
;
3468 if (get_user(len
, optlen
))
3471 if (len
!= sizeof(opt
))
3477 opt
.snd_wl1
= tp
->snd_wl1
;
3478 opt
.snd_wnd
= tp
->snd_wnd
;
3479 opt
.max_window
= tp
->max_window
;
3480 opt
.rcv_wnd
= tp
->rcv_wnd
;
3481 opt
.rcv_wup
= tp
->rcv_wup
;
3483 if (copy_to_user(optval
, &opt
, len
))
3488 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
3489 val
= tp
->write_seq
;
3490 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
3496 case TCP_USER_TIMEOUT
:
3497 val
= icsk
->icsk_user_timeout
;
3501 val
= icsk
->icsk_accept_queue
.fastopenq
.max_qlen
;
3504 case TCP_FASTOPEN_CONNECT
:
3505 val
= tp
->fastopen_connect
;
3508 case TCP_FASTOPEN_NO_COOKIE
:
3509 val
= tp
->fastopen_no_cookie
;
3513 val
= tcp_time_stamp_raw() + tp
->tsoffset
;
3515 case TCP_NOTSENT_LOWAT
:
3516 val
= tp
->notsent_lowat
;
3519 val
= tp
->recvmsg_inq
;
3524 case TCP_SAVED_SYN
: {
3525 if (get_user(len
, optlen
))
3529 if (tp
->saved_syn
) {
3530 if (len
< tp
->saved_syn
[0]) {
3531 if (put_user(tp
->saved_syn
[0], optlen
)) {
3538 len
= tp
->saved_syn
[0];
3539 if (put_user(len
, optlen
)) {
3543 if (copy_to_user(optval
, tp
->saved_syn
+ 1, len
)) {
3547 tcp_saved_syn_free(tp
);
3552 if (put_user(len
, optlen
))
3558 case TCP_ZEROCOPY_RECEIVE
: {
3559 struct tcp_zerocopy_receive zc
;
3562 if (get_user(len
, optlen
))
3564 if (len
!= sizeof(zc
))
3566 if (copy_from_user(&zc
, optval
, len
))
3569 err
= tcp_zerocopy_receive(sk
, &zc
);
3571 if (!err
&& copy_to_user(optval
, &zc
, len
))
3577 return -ENOPROTOOPT
;
3580 if (put_user(len
, optlen
))
3582 if (copy_to_user(optval
, &val
, len
))
3587 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
3590 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3592 if (level
!= SOL_TCP
)
3593 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
3595 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
3597 EXPORT_SYMBOL(tcp_getsockopt
);
3599 #ifdef CONFIG_COMPAT
3600 int compat_tcp_getsockopt(struct sock
*sk
, int level
, int optname
,
3601 char __user
*optval
, int __user
*optlen
)
3603 if (level
!= SOL_TCP
)
3604 return inet_csk_compat_getsockopt(sk
, level
, optname
,
3606 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
3608 EXPORT_SYMBOL(compat_tcp_getsockopt
);
3611 #ifdef CONFIG_TCP_MD5SIG
3612 static DEFINE_PER_CPU(struct tcp_md5sig_pool
, tcp_md5sig_pool
);
3613 static DEFINE_MUTEX(tcp_md5sig_mutex
);
3614 static bool tcp_md5sig_pool_populated
= false;
3616 static void __tcp_alloc_md5sig_pool(void)
3618 struct crypto_ahash
*hash
;
3621 hash
= crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC
);
3625 for_each_possible_cpu(cpu
) {
3626 void *scratch
= per_cpu(tcp_md5sig_pool
, cpu
).scratch
;
3627 struct ahash_request
*req
;
3630 scratch
= kmalloc_node(sizeof(union tcp_md5sum_block
) +
3631 sizeof(struct tcphdr
),
3636 per_cpu(tcp_md5sig_pool
, cpu
).scratch
= scratch
;
3638 if (per_cpu(tcp_md5sig_pool
, cpu
).md5_req
)
3641 req
= ahash_request_alloc(hash
, GFP_KERNEL
);
3645 ahash_request_set_callback(req
, 0, NULL
, NULL
);
3647 per_cpu(tcp_md5sig_pool
, cpu
).md5_req
= req
;
3649 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3650 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3653 tcp_md5sig_pool_populated
= true;
3656 bool tcp_alloc_md5sig_pool(void)
3658 if (unlikely(!tcp_md5sig_pool_populated
)) {
3659 mutex_lock(&tcp_md5sig_mutex
);
3661 if (!tcp_md5sig_pool_populated
)
3662 __tcp_alloc_md5sig_pool();
3664 mutex_unlock(&tcp_md5sig_mutex
);
3666 return tcp_md5sig_pool_populated
;
3668 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
3672 * tcp_get_md5sig_pool - get md5sig_pool for this user
3674 * We use percpu structure, so if we succeed, we exit with preemption
3675 * and BH disabled, to make sure another thread or softirq handling
3676 * wont try to get same context.
3678 struct tcp_md5sig_pool
*tcp_get_md5sig_pool(void)
3682 if (tcp_md5sig_pool_populated
) {
3683 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3685 return this_cpu_ptr(&tcp_md5sig_pool
);
3690 EXPORT_SYMBOL(tcp_get_md5sig_pool
);
3692 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
3693 const struct sk_buff
*skb
, unsigned int header_len
)
3695 struct scatterlist sg
;
3696 const struct tcphdr
*tp
= tcp_hdr(skb
);
3697 struct ahash_request
*req
= hp
->md5_req
;
3699 const unsigned int head_data_len
= skb_headlen(skb
) > header_len
?
3700 skb_headlen(skb
) - header_len
: 0;
3701 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
3702 struct sk_buff
*frag_iter
;
3704 sg_init_table(&sg
, 1);
3706 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
3707 ahash_request_set_crypt(req
, &sg
, NULL
, head_data_len
);
3708 if (crypto_ahash_update(req
))
3711 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
3712 const struct skb_frag_struct
*f
= &shi
->frags
[i
];
3713 unsigned int offset
= f
->page_offset
;
3714 struct page
*page
= skb_frag_page(f
) + (offset
>> PAGE_SHIFT
);
3716 sg_set_page(&sg
, page
, skb_frag_size(f
),
3717 offset_in_page(offset
));
3718 ahash_request_set_crypt(req
, &sg
, NULL
, skb_frag_size(f
));
3719 if (crypto_ahash_update(req
))
3723 skb_walk_frags(skb
, frag_iter
)
3724 if (tcp_md5_hash_skb_data(hp
, frag_iter
, 0))
3729 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
3731 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, const struct tcp_md5sig_key
*key
)
3733 struct scatterlist sg
;
3735 sg_init_one(&sg
, key
->key
, key
->keylen
);
3736 ahash_request_set_crypt(hp
->md5_req
, &sg
, NULL
, key
->keylen
);
3737 return crypto_ahash_update(hp
->md5_req
);
3739 EXPORT_SYMBOL(tcp_md5_hash_key
);
3743 void tcp_done(struct sock
*sk
)
3745 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
3747 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
3748 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
3750 tcp_set_state(sk
, TCP_CLOSE
);
3751 tcp_clear_xmit_timers(sk
);
3753 reqsk_fastopen_remove(sk
, req
, false);
3755 sk
->sk_shutdown
= SHUTDOWN_MASK
;
3757 if (!sock_flag(sk
, SOCK_DEAD
))
3758 sk
->sk_state_change(sk
);
3760 inet_csk_destroy_sock(sk
);
3762 EXPORT_SYMBOL_GPL(tcp_done
);
3764 int tcp_abort(struct sock
*sk
, int err
)
3766 if (!sk_fullsock(sk
)) {
3767 if (sk
->sk_state
== TCP_NEW_SYN_RECV
) {
3768 struct request_sock
*req
= inet_reqsk(sk
);
3771 inet_csk_reqsk_queue_drop(req
->rsk_listener
, req
);
3778 /* Don't race with userspace socket closes such as tcp_close. */
3781 if (sk
->sk_state
== TCP_LISTEN
) {
3782 tcp_set_state(sk
, TCP_CLOSE
);
3783 inet_csk_listen_stop(sk
);
3786 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3790 if (!sock_flag(sk
, SOCK_DEAD
)) {
3792 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3794 sk
->sk_error_report(sk
);
3795 if (tcp_need_reset(sk
->sk_state
))
3796 tcp_send_active_reset(sk
, GFP_ATOMIC
);
3802 tcp_write_queue_purge(sk
);
3806 EXPORT_SYMBOL_GPL(tcp_abort
);
3808 extern struct tcp_congestion_ops tcp_reno
;
3810 static __initdata
unsigned long thash_entries
;
3811 static int __init
set_thash_entries(char *str
)
3818 ret
= kstrtoul(str
, 0, &thash_entries
);
3824 __setup("thash_entries=", set_thash_entries
);
3826 static void __init
tcp_init_mem(void)
3828 unsigned long limit
= nr_free_buffer_pages() / 16;
3830 limit
= max(limit
, 128UL);
3831 sysctl_tcp_mem
[0] = limit
/ 4 * 3; /* 4.68 % */
3832 sysctl_tcp_mem
[1] = limit
; /* 6.25 % */
3833 sysctl_tcp_mem
[2] = sysctl_tcp_mem
[0] * 2; /* 9.37 % */
3836 void __init
tcp_init(void)
3838 int max_rshare
, max_wshare
, cnt
;
3839 unsigned long limit
;
3842 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) >
3843 FIELD_SIZEOF(struct sk_buff
, cb
));
3845 percpu_counter_init(&tcp_sockets_allocated
, 0, GFP_KERNEL
);
3846 percpu_counter_init(&tcp_orphan_count
, 0, GFP_KERNEL
);
3847 inet_hashinfo_init(&tcp_hashinfo
);
3848 inet_hashinfo2_init(&tcp_hashinfo
, "tcp_listen_portaddr_hash",
3849 thash_entries
, 21, /* one slot per 2 MB*/
3851 tcp_hashinfo
.bind_bucket_cachep
=
3852 kmem_cache_create("tcp_bind_bucket",
3853 sizeof(struct inet_bind_bucket
), 0,
3854 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3856 /* Size and allocate the main established and bind bucket
3859 * The methodology is similar to that of the buffer cache.
3861 tcp_hashinfo
.ehash
=
3862 alloc_large_system_hash("TCP established",
3863 sizeof(struct inet_ehash_bucket
),
3865 17, /* one slot per 128 KB of memory */
3868 &tcp_hashinfo
.ehash_mask
,
3870 thash_entries
? 0 : 512 * 1024);
3871 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++)
3872 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
3874 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
3875 panic("TCP: failed to alloc ehash_locks");
3876 tcp_hashinfo
.bhash
=
3877 alloc_large_system_hash("TCP bind",
3878 sizeof(struct inet_bind_hashbucket
),
3879 tcp_hashinfo
.ehash_mask
+ 1,
3880 17, /* one slot per 128 KB of memory */
3882 &tcp_hashinfo
.bhash_size
,
3886 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
3887 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
3888 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
3889 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
3893 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
3894 sysctl_tcp_max_orphans
= cnt
/ 2;
3897 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3898 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
3899 max_wshare
= min(4UL*1024*1024, limit
);
3900 max_rshare
= min(6UL*1024*1024, limit
);
3902 init_net
.ipv4
.sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
3903 init_net
.ipv4
.sysctl_tcp_wmem
[1] = 16*1024;
3904 init_net
.ipv4
.sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
3906 init_net
.ipv4
.sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
3907 init_net
.ipv4
.sysctl_tcp_rmem
[1] = 131072;
3908 init_net
.ipv4
.sysctl_tcp_rmem
[2] = max(131072, max_rshare
);
3910 pr_info("Hash tables configured (established %u bind %u)\n",
3911 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
3915 BUG_ON(tcp_register_congestion_control(&tcp_reno
) != 0);