1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
83 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled
);
118 void clean_acked_data_enable(struct inet_connection_sock
*icsk
,
119 void (*cad
)(struct sock
*sk
, u32 ack_seq
))
121 icsk
->icsk_clean_acked
= cad
;
122 static_branch_inc(&clean_acked_data_enabled
);
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable
);
126 void clean_acked_data_disable(struct inet_connection_sock
*icsk
)
128 static_branch_dec(&clean_acked_data_enabled
);
129 icsk
->icsk_clean_acked
= NULL
;
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable
);
134 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
137 static bool __once __read_mostly
;
140 struct net_device
*dev
;
145 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
146 if (!dev
|| len
>= dev
->mtu
)
147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 dev
? dev
->name
: "Unknown driver");
153 /* Adapt the MSS value used to make delayed ack decision to the
156 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
158 struct inet_connection_sock
*icsk
= inet_csk(sk
);
159 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
162 icsk
->icsk_ack
.last_seg_size
= 0;
164 /* skb->len may jitter because of SACKs, even if peer
165 * sends good full-sized frames.
167 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
168 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
169 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
171 /* Account for possibly-removed options */
172 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
173 MAX_TCP_OPTION_SPACE
))
174 tcp_gro_dev_warn(sk
, skb
, len
);
176 /* Otherwise, we make more careful check taking into account,
177 * that SACKs block is variable.
179 * "len" is invariant segment length, including TCP header.
181 len
+= skb
->data
- skb_transport_header(skb
);
182 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
183 /* If PSH is not set, packet should be
184 * full sized, provided peer TCP is not badly broken.
185 * This observation (if it is correct 8)) allows
186 * to handle super-low mtu links fairly.
188 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
189 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
190 /* Subtract also invariant (if peer is RFC compliant),
191 * tcp header plus fixed timestamp option length.
192 * Resulting "len" is MSS free of SACK jitter.
194 len
-= tcp_sk(sk
)->tcp_header_len
;
195 icsk
->icsk_ack
.last_seg_size
= len
;
197 icsk
->icsk_ack
.rcv_mss
= len
;
201 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
202 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
203 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
207 static void tcp_incr_quickack(struct sock
*sk
, unsigned int max_quickacks
)
209 struct inet_connection_sock
*icsk
= inet_csk(sk
);
210 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
214 quickacks
= min(quickacks
, max_quickacks
);
215 if (quickacks
> icsk
->icsk_ack
.quick
)
216 icsk
->icsk_ack
.quick
= quickacks
;
219 void tcp_enter_quickack_mode(struct sock
*sk
, unsigned int max_quickacks
)
221 struct inet_connection_sock
*icsk
= inet_csk(sk
);
223 tcp_incr_quickack(sk
, max_quickacks
);
224 icsk
->icsk_ack
.pingpong
= 0;
225 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
227 EXPORT_SYMBOL(tcp_enter_quickack_mode
);
229 /* Send ACKs quickly, if "quick" count is not exhausted
230 * and the session is not interactive.
233 static bool tcp_in_quickack_mode(struct sock
*sk
)
235 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
236 const struct dst_entry
*dst
= __sk_dst_get(sk
);
238 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
239 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
242 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
244 if (tp
->ecn_flags
& TCP_ECN_OK
)
245 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
248 static void tcp_ecn_accept_cwr(struct sock
*sk
, const struct sk_buff
*skb
)
250 if (tcp_hdr(skb
)->cwr
) {
251 tcp_sk(sk
)->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
253 /* If the sender is telling us it has entered CWR, then its
254 * cwnd may be very low (even just 1 packet), so we should ACK
257 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
261 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
263 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
266 static void __tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
268 struct tcp_sock
*tp
= tcp_sk(sk
);
270 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
271 case INET_ECN_NOT_ECT
:
272 /* Funny extension: if ECT is not set on a segment,
273 * and we already seen ECT on a previous segment,
274 * it is probably a retransmit.
276 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
277 tcp_enter_quickack_mode(sk
, 2);
280 if (tcp_ca_needs_ecn(sk
))
281 tcp_ca_event(sk
, CA_EVENT_ECN_IS_CE
);
283 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
284 /* Better not delay acks, sender can have a very low cwnd */
285 tcp_enter_quickack_mode(sk
, 2);
286 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
288 tp
->ecn_flags
|= TCP_ECN_SEEN
;
291 if (tcp_ca_needs_ecn(sk
))
292 tcp_ca_event(sk
, CA_EVENT_ECN_NO_CE
);
293 tp
->ecn_flags
|= TCP_ECN_SEEN
;
298 static void tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
300 if (tcp_sk(sk
)->ecn_flags
& TCP_ECN_OK
)
301 __tcp_ecn_check_ce(sk
, skb
);
304 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
306 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
307 tp
->ecn_flags
&= ~TCP_ECN_OK
;
310 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
312 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
313 tp
->ecn_flags
&= ~TCP_ECN_OK
;
316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
318 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
323 /* Buffer size and advertised window tuning.
325 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
328 static void tcp_sndbuf_expand(struct sock
*sk
)
330 const struct tcp_sock
*tp
= tcp_sk(sk
);
331 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
335 /* Worst case is non GSO/TSO : each frame consumes one skb
336 * and skb->head is kmalloced using power of two area of memory
338 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
342 per_mss
= roundup_pow_of_two(per_mss
) +
343 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
345 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
346 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
348 /* Fast Recovery (RFC 5681 3.2) :
349 * Cubic needs 1.7 factor, rounded to 2 to include
350 * extra cushion (application might react slowly to EPOLLOUT)
352 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
353 sndmem
*= nr_segs
* per_mss
;
355 if (sk
->sk_sndbuf
< sndmem
)
356 sk
->sk_sndbuf
= min(sndmem
, sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[2]);
359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
361 * All tcp_full_space() is split to two parts: "network" buffer, allocated
362 * forward and advertised in receiver window (tp->rcv_wnd) and
363 * "application buffer", required to isolate scheduling/application
364 * latencies from network.
365 * window_clamp is maximal advertised window. It can be less than
366 * tcp_full_space(), in this case tcp_full_space() - window_clamp
367 * is reserved for "application" buffer. The less window_clamp is
368 * the smoother our behaviour from viewpoint of network, but the lower
369 * throughput and the higher sensitivity of the connection to losses. 8)
371 * rcv_ssthresh is more strict window_clamp used at "slow start"
372 * phase to predict further behaviour of this connection.
373 * It is used for two goals:
374 * - to enforce header prediction at sender, even when application
375 * requires some significant "application buffer". It is check #1.
376 * - to prevent pruning of receive queue because of misprediction
377 * of receiver window. Check #2.
379 * The scheme does not work when sender sends good segments opening
380 * window and then starts to feed us spaghetti. But it should work
381 * in common situations. Otherwise, we have to rely on queue collapsing.
384 /* Slow part of check#2. */
385 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
387 struct tcp_sock
*tp
= tcp_sk(sk
);
389 int truesize
= tcp_win_from_space(sk
, skb
->truesize
) >> 1;
390 int window
= tcp_win_from_space(sk
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]) >> 1;
392 while (tp
->rcv_ssthresh
<= window
) {
393 if (truesize
<= skb
->len
)
394 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
402 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
404 struct tcp_sock
*tp
= tcp_sk(sk
);
407 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
408 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
409 !tcp_under_memory_pressure(sk
)) {
412 /* Check #2. Increase window, if skb with such overhead
413 * will fit to rcvbuf in future.
415 if (tcp_win_from_space(sk
, skb
->truesize
) <= skb
->len
)
416 incr
= 2 * tp
->advmss
;
418 incr
= __tcp_grow_window(sk
, skb
);
421 incr
= max_t(int, incr
, 2 * skb
->len
);
422 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
424 inet_csk(sk
)->icsk_ack
.quick
|= 1;
429 /* 3. Try to fixup all. It is made immediately after connection enters
432 void tcp_init_buffer_space(struct sock
*sk
)
434 int tcp_app_win
= sock_net(sk
)->ipv4
.sysctl_tcp_app_win
;
435 struct tcp_sock
*tp
= tcp_sk(sk
);
438 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
439 tcp_sndbuf_expand(sk
);
441 tp
->rcvq_space
.space
= min_t(u32
, tp
->rcv_wnd
, TCP_INIT_CWND
* tp
->advmss
);
442 tcp_mstamp_refresh(tp
);
443 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
444 tp
->rcvq_space
.seq
= tp
->copied_seq
;
446 maxwin
= tcp_full_space(sk
);
448 if (tp
->window_clamp
>= maxwin
) {
449 tp
->window_clamp
= maxwin
;
451 if (tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
452 tp
->window_clamp
= max(maxwin
-
453 (maxwin
>> tcp_app_win
),
457 /* Force reservation of one segment. */
459 tp
->window_clamp
> 2 * tp
->advmss
&&
460 tp
->window_clamp
+ tp
->advmss
> maxwin
)
461 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
463 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
464 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
467 /* 4. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock
*sk
)
470 struct tcp_sock
*tp
= tcp_sk(sk
);
471 struct inet_connection_sock
*icsk
= inet_csk(sk
);
472 struct net
*net
= sock_net(sk
);
474 icsk
->icsk_ack
.quick
= 0;
476 if (sk
->sk_rcvbuf
< net
->ipv4
.sysctl_tcp_rmem
[2] &&
477 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
478 !tcp_under_memory_pressure(sk
) &&
479 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
480 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
481 net
->ipv4
.sysctl_tcp_rmem
[2]);
483 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
484 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 void tcp_initialize_rcv_mss(struct sock
*sk
)
496 const struct tcp_sock
*tp
= tcp_sk(sk
);
497 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
499 hint
= min(hint
, tp
->rcv_wnd
/ 2);
500 hint
= min(hint
, TCP_MSS_DEFAULT
);
501 hint
= max(hint
, TCP_MIN_MSS
);
503 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
507 /* Receiver "autotuning" code.
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
518 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
520 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
523 if (new_sample
!= 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
529 * Also, since we are only going for a minimum in the
530 * non-timestamp case, we do not smooth things out
531 * else with timestamps disabled convergence takes too
535 m
-= (new_sample
>> 3);
543 /* No previous measure. */
547 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
550 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
554 if (tp
->rcv_rtt_est
.time
== 0)
556 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
558 delta_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcv_rtt_est
.time
);
561 tcp_rcv_rtt_update(tp
, delta_us
, 1);
564 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
565 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
568 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
569 const struct sk_buff
*skb
)
571 struct tcp_sock
*tp
= tcp_sk(sk
);
573 if (tp
->rx_opt
.rcv_tsecr
== tp
->rcv_rtt_last_tsecr
)
575 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
577 if (TCP_SKB_CB(skb
)->end_seq
-
578 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
) {
579 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
582 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
585 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
586 tcp_rcv_rtt_update(tp
, delta_us
, 0);
592 * This function should be called every time data is copied to user space.
593 * It calculates the appropriate TCP receive buffer space.
595 void tcp_rcv_space_adjust(struct sock
*sk
)
597 struct tcp_sock
*tp
= tcp_sk(sk
);
601 trace_tcp_rcv_space_adjust(sk
);
603 tcp_mstamp_refresh(tp
);
604 time
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcvq_space
.time
);
605 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
608 /* Number of bytes copied to user in last RTT */
609 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
610 if (copied
<= tp
->rcvq_space
.space
)
614 * copied = bytes received in previous RTT, our base window
615 * To cope with packet losses, we need a 2x factor
616 * To cope with slow start, and sender growing its cwin by 100 %
617 * every RTT, we need a 4x factor, because the ACK we are sending
618 * now is for the next RTT, not the current one :
619 * <prev RTT . ><current RTT .. ><next RTT .... >
622 if (sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
&&
623 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
627 /* minimal window to cope with packet losses, assuming
628 * steady state. Add some cushion because of small variations.
630 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
632 /* Accommodate for sender rate increase (eg. slow start) */
633 grow
= rcvwin
* (copied
- tp
->rcvq_space
.space
);
634 do_div(grow
, tp
->rcvq_space
.space
);
635 rcvwin
+= (grow
<< 1);
637 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
638 while (tcp_win_from_space(sk
, rcvmem
) < tp
->advmss
)
641 do_div(rcvwin
, tp
->advmss
);
642 rcvbuf
= min_t(u64
, rcvwin
* rcvmem
,
643 sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
644 if (rcvbuf
> sk
->sk_rcvbuf
) {
645 sk
->sk_rcvbuf
= rcvbuf
;
647 /* Make the window clamp follow along. */
648 tp
->window_clamp
= tcp_win_from_space(sk
, rcvbuf
);
651 tp
->rcvq_space
.space
= copied
;
654 tp
->rcvq_space
.seq
= tp
->copied_seq
;
655 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
658 /* There is something which you must keep in mind when you analyze the
659 * behavior of the tp->ato delayed ack timeout interval. When a
660 * connection starts up, we want to ack as quickly as possible. The
661 * problem is that "good" TCP's do slow start at the beginning of data
662 * transmission. The means that until we send the first few ACK's the
663 * sender will sit on his end and only queue most of his data, because
664 * he can only send snd_cwnd unacked packets at any given time. For
665 * each ACK we send, he increments snd_cwnd and transmits more of his
668 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
670 struct tcp_sock
*tp
= tcp_sk(sk
);
671 struct inet_connection_sock
*icsk
= inet_csk(sk
);
674 inet_csk_schedule_ack(sk
);
676 tcp_measure_rcv_mss(sk
, skb
);
678 tcp_rcv_rtt_measure(tp
);
682 if (!icsk
->icsk_ack
.ato
) {
683 /* The _first_ data packet received, initialize
684 * delayed ACK engine.
686 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
687 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
689 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
691 if (m
<= TCP_ATO_MIN
/ 2) {
692 /* The fastest case is the first. */
693 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
694 } else if (m
< icsk
->icsk_ack
.ato
) {
695 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
696 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
697 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
698 } else if (m
> icsk
->icsk_rto
) {
699 /* Too long gap. Apparently sender failed to
700 * restart window, so that we send ACKs quickly.
702 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
706 icsk
->icsk_ack
.lrcvtime
= now
;
708 tcp_ecn_check_ce(sk
, skb
);
711 tcp_grow_window(sk
, skb
);
714 /* Called to compute a smoothed rtt estimate. The data fed to this
715 * routine either comes from timestamps, or from segments that were
716 * known _not_ to have been retransmitted [see Karn/Partridge
717 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
718 * piece by Van Jacobson.
719 * NOTE: the next three routines used to be one big routine.
720 * To save cycles in the RFC 1323 implementation it was better to break
721 * it up into three procedures. -- erics
723 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
725 struct tcp_sock
*tp
= tcp_sk(sk
);
726 long m
= mrtt_us
; /* RTT */
727 u32 srtt
= tp
->srtt_us
;
729 /* The following amusing code comes from Jacobson's
730 * article in SIGCOMM '88. Note that rtt and mdev
731 * are scaled versions of rtt and mean deviation.
732 * This is designed to be as fast as possible
733 * m stands for "measurement".
735 * On a 1990 paper the rto value is changed to:
736 * RTO = rtt + 4 * mdev
738 * Funny. This algorithm seems to be very broken.
739 * These formulae increase RTO, when it should be decreased, increase
740 * too slowly, when it should be increased quickly, decrease too quickly
741 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
742 * does not matter how to _calculate_ it. Seems, it was trap
743 * that VJ failed to avoid. 8)
746 m
-= (srtt
>> 3); /* m is now error in rtt est */
747 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
749 m
= -m
; /* m is now abs(error) */
750 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
751 /* This is similar to one of Eifel findings.
752 * Eifel blocks mdev updates when rtt decreases.
753 * This solution is a bit different: we use finer gain
754 * for mdev in this case (alpha*beta).
755 * Like Eifel it also prevents growth of rto,
756 * but also it limits too fast rto decreases,
757 * happening in pure Eifel.
762 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
764 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
765 if (tp
->mdev_us
> tp
->mdev_max_us
) {
766 tp
->mdev_max_us
= tp
->mdev_us
;
767 if (tp
->mdev_max_us
> tp
->rttvar_us
)
768 tp
->rttvar_us
= tp
->mdev_max_us
;
770 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
771 if (tp
->mdev_max_us
< tp
->rttvar_us
)
772 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
773 tp
->rtt_seq
= tp
->snd_nxt
;
774 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
777 /* no previous measure. */
778 srtt
= m
<< 3; /* take the measured time to be rtt */
779 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
780 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
781 tp
->mdev_max_us
= tp
->rttvar_us
;
782 tp
->rtt_seq
= tp
->snd_nxt
;
784 tp
->srtt_us
= max(1U, srtt
);
787 static void tcp_update_pacing_rate(struct sock
*sk
)
789 const struct tcp_sock
*tp
= tcp_sk(sk
);
792 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
793 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
795 /* current rate is (cwnd * mss) / srtt
796 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
797 * In Congestion Avoidance phase, set it to 120 % the current rate.
799 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
800 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
801 * end of slow start and should slow down.
803 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
804 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ss_ratio
;
806 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ca_ratio
;
808 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
810 if (likely(tp
->srtt_us
))
811 do_div(rate
, tp
->srtt_us
);
813 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
814 * without any lock. We want to make sure compiler wont store
815 * intermediate values in this location.
817 WRITE_ONCE(sk
->sk_pacing_rate
, min_t(u64
, rate
,
818 sk
->sk_max_pacing_rate
));
821 /* Calculate rto without backoff. This is the second half of Van Jacobson's
822 * routine referred to above.
824 static void tcp_set_rto(struct sock
*sk
)
826 const struct tcp_sock
*tp
= tcp_sk(sk
);
827 /* Old crap is replaced with new one. 8)
830 * 1. If rtt variance happened to be less 50msec, it is hallucination.
831 * It cannot be less due to utterly erratic ACK generation made
832 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
833 * to do with delayed acks, because at cwnd>2 true delack timeout
834 * is invisible. Actually, Linux-2.4 also generates erratic
835 * ACKs in some circumstances.
837 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
839 /* 2. Fixups made earlier cannot be right.
840 * If we do not estimate RTO correctly without them,
841 * all the algo is pure shit and should be replaced
842 * with correct one. It is exactly, which we pretend to do.
845 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
846 * guarantees that rto is higher.
851 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
853 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
856 cwnd
= TCP_INIT_CWND
;
857 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock
*tp
)
863 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
864 tp
->rack
.dsack_seen
= 1;
868 /* It's reordering when higher sequence was delivered (i.e. sacked) before
869 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
870 * distance is approximated in full-mss packet distance ("reordering").
872 static void tcp_check_sack_reordering(struct sock
*sk
, const u32 low_seq
,
875 struct tcp_sock
*tp
= tcp_sk(sk
);
876 const u32 mss
= tp
->mss_cache
;
879 fack
= tcp_highest_sack_seq(tp
);
880 if (!before(low_seq
, fack
))
883 metric
= fack
- low_seq
;
884 if ((metric
> tp
->reordering
* mss
) && mss
) {
885 #if FASTRETRANS_DEBUG > 1
886 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
887 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
891 tp
->undo_marker
? tp
->undo_retrans
: 0);
893 tp
->reordering
= min_t(u32
, (metric
+ mss
- 1) / mss
,
894 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
897 /* This exciting event is worth to be remembered. 8) */
899 NET_INC_STATS(sock_net(sk
),
900 ts
? LINUX_MIB_TCPTSREORDER
: LINUX_MIB_TCPSACKREORDER
);
903 /* This must be called before lost_out is incremented */
904 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
906 if (!tp
->retransmit_skb_hint
||
907 before(TCP_SKB_CB(skb
)->seq
,
908 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
909 tp
->retransmit_skb_hint
= skb
;
912 /* Sum the number of packets on the wire we have marked as lost.
913 * There are two cases we care about here:
914 * a) Packet hasn't been marked lost (nor retransmitted),
915 * and this is the first loss.
916 * b) Packet has been marked both lost and retransmitted,
917 * and this means we think it was lost again.
919 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
921 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
923 if (!(sacked
& TCPCB_LOST
) ||
924 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
925 tp
->lost
+= tcp_skb_pcount(skb
);
928 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
930 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
931 tcp_verify_retransmit_hint(tp
, skb
);
933 tp
->lost_out
+= tcp_skb_pcount(skb
);
934 tcp_sum_lost(tp
, skb
);
935 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
941 tcp_verify_retransmit_hint(tp
, skb
);
943 tcp_sum_lost(tp
, skb
);
944 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
945 tp
->lost_out
+= tcp_skb_pcount(skb
);
946 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
950 /* This procedure tags the retransmission queue when SACKs arrive.
952 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
953 * Packets in queue with these bits set are counted in variables
954 * sacked_out, retrans_out and lost_out, correspondingly.
956 * Valid combinations are:
957 * Tag InFlight Description
958 * 0 1 - orig segment is in flight.
959 * S 0 - nothing flies, orig reached receiver.
960 * L 0 - nothing flies, orig lost by net.
961 * R 2 - both orig and retransmit are in flight.
962 * L|R 1 - orig is lost, retransmit is in flight.
963 * S|R 1 - orig reached receiver, retrans is still in flight.
964 * (L|S|R is logically valid, it could occur when L|R is sacked,
965 * but it is equivalent to plain S and code short-curcuits it to S.
966 * L|S is logically invalid, it would mean -1 packet in flight 8))
968 * These 6 states form finite state machine, controlled by the following events:
969 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
970 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
971 * 3. Loss detection event of two flavors:
972 * A. Scoreboard estimator decided the packet is lost.
973 * A'. Reno "three dupacks" marks head of queue lost.
974 * B. SACK arrives sacking SND.NXT at the moment, when the
975 * segment was retransmitted.
976 * 4. D-SACK added new rule: D-SACK changes any tag to S.
978 * It is pleasant to note, that state diagram turns out to be commutative,
979 * so that we are allowed not to be bothered by order of our actions,
980 * when multiple events arrive simultaneously. (see the function below).
982 * Reordering detection.
983 * --------------------
984 * Reordering metric is maximal distance, which a packet can be displaced
985 * in packet stream. With SACKs we can estimate it:
987 * 1. SACK fills old hole and the corresponding segment was not
988 * ever retransmitted -> reordering. Alas, we cannot use it
989 * when segment was retransmitted.
990 * 2. The last flaw is solved with D-SACK. D-SACK arrives
991 * for retransmitted and already SACKed segment -> reordering..
992 * Both of these heuristics are not used in Loss state, when we cannot
993 * account for retransmits accurately.
995 * SACK block validation.
996 * ----------------------
998 * SACK block range validation checks that the received SACK block fits to
999 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000 * Note that SND.UNA is not included to the range though being valid because
1001 * it means that the receiver is rather inconsistent with itself reporting
1002 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003 * perfectly valid, however, in light of RFC2018 which explicitly states
1004 * that "SACK block MUST reflect the newest segment. Even if the newest
1005 * segment is going to be discarded ...", not that it looks very clever
1006 * in case of head skb. Due to potentional receiver driven attacks, we
1007 * choose to avoid immediate execution of a walk in write queue due to
1008 * reneging and defer head skb's loss recovery to standard loss recovery
1009 * procedure that will eventually trigger (nothing forbids us doing this).
1011 * Implements also blockage to start_seq wrap-around. Problem lies in the
1012 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013 * there's no guarantee that it will be before snd_nxt (n). The problem
1014 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1017 * <- outs wnd -> <- wrapzone ->
1018 * u e n u_w e_w s n_w
1020 * |<------------+------+----- TCP seqno space --------------+---------->|
1021 * ...-- <2^31 ->| |<--------...
1022 * ...---- >2^31 ------>| |<--------...
1024 * Current code wouldn't be vulnerable but it's better still to discard such
1025 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028 * equal to the ideal case (infinite seqno space without wrap caused issues).
1030 * With D-SACK the lower bound is extended to cover sequence space below
1031 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1032 * again, D-SACK block must not to go across snd_una (for the same reason as
1033 * for the normal SACK blocks, explained above). But there all simplicity
1034 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035 * fully below undo_marker they do not affect behavior in anyway and can
1036 * therefore be safely ignored. In rare cases (which are more or less
1037 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038 * fragmentation and packet reordering past skb's retransmission. To consider
1039 * them correctly, the acceptable range must be extended even more though
1040 * the exact amount is rather hard to quantify. However, tp->max_window can
1041 * be used as an exaggerated estimate.
1043 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1044 u32 start_seq
, u32 end_seq
)
1046 /* Too far in future, or reversed (interpretation is ambiguous) */
1047 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1050 /* Nasty start_seq wrap-around check (see comments above) */
1051 if (!before(start_seq
, tp
->snd_nxt
))
1054 /* In outstanding window? ...This is valid exit for D-SACKs too.
1055 * start_seq == snd_una is non-sensical (see comments above)
1057 if (after(start_seq
, tp
->snd_una
))
1060 if (!is_dsack
|| !tp
->undo_marker
)
1063 /* ...Then it's D-SACK, and must reside below snd_una completely */
1064 if (after(end_seq
, tp
->snd_una
))
1067 if (!before(start_seq
, tp
->undo_marker
))
1071 if (!after(end_seq
, tp
->undo_marker
))
1074 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 * start_seq < undo_marker and end_seq >= undo_marker.
1077 return !before(start_seq
, end_seq
- tp
->max_window
);
1080 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1081 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1084 struct tcp_sock
*tp
= tcp_sk(sk
);
1085 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1086 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1087 bool dup_sack
= false;
1089 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1092 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1093 } else if (num_sacks
> 1) {
1094 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1095 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1097 if (!after(end_seq_0
, end_seq_1
) &&
1098 !before(start_seq_0
, start_seq_1
)) {
1101 NET_INC_STATS(sock_net(sk
),
1102 LINUX_MIB_TCPDSACKOFORECV
);
1106 /* D-SACK for already forgotten data... Do dumb counting. */
1107 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1108 !after(end_seq_0
, prior_snd_una
) &&
1109 after(end_seq_0
, tp
->undo_marker
))
1115 struct tcp_sacktag_state
{
1117 /* Timestamps for earliest and latest never-retransmitted segment
1118 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1119 * but congestion control should still get an accurate delay signal.
1123 struct rate_sample
*rate
;
1125 unsigned int mss_now
;
1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1129 * the incoming SACK may not exactly match but we can find smaller MSS
1130 * aligned portion of it that matches. Therefore we might need to fragment
1131 * which may fail and creates some hassle (caller must handle error case
1134 * FIXME: this could be merged to shift decision code
1136 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1137 u32 start_seq
, u32 end_seq
)
1141 unsigned int pkt_len
;
1144 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1145 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1147 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1148 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1149 mss
= tcp_skb_mss(skb
);
1150 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1153 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1157 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1162 /* Round if necessary so that SACKs cover only full MSSes
1163 * and/or the remaining small portion (if present)
1165 if (pkt_len
> mss
) {
1166 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1167 if (!in_sack
&& new_len
< pkt_len
)
1172 if (pkt_len
>= skb
->len
&& !in_sack
)
1175 err
= tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
1176 pkt_len
, mss
, GFP_ATOMIC
);
1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1185 static u8
tcp_sacktag_one(struct sock
*sk
,
1186 struct tcp_sacktag_state
*state
, u8 sacked
,
1187 u32 start_seq
, u32 end_seq
,
1188 int dup_sack
, int pcount
,
1191 struct tcp_sock
*tp
= tcp_sk(sk
);
1193 /* Account D-SACK for retransmitted packet. */
1194 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1195 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1196 after(end_seq
, tp
->undo_marker
))
1198 if ((sacked
& TCPCB_SACKED_ACKED
) &&
1199 before(start_seq
, state
->reord
))
1200 state
->reord
= start_seq
;
1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 if (!after(end_seq
, tp
->snd_una
))
1207 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1208 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1210 if (sacked
& TCPCB_SACKED_RETRANS
) {
1211 /* If the segment is not tagged as lost,
1212 * we do not clear RETRANS, believing
1213 * that retransmission is still in flight.
1215 if (sacked
& TCPCB_LOST
) {
1216 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1217 tp
->lost_out
-= pcount
;
1218 tp
->retrans_out
-= pcount
;
1221 if (!(sacked
& TCPCB_RETRANS
)) {
1222 /* New sack for not retransmitted frame,
1223 * which was in hole. It is reordering.
1225 if (before(start_seq
,
1226 tcp_highest_sack_seq(tp
)) &&
1227 before(start_seq
, state
->reord
))
1228 state
->reord
= start_seq
;
1230 if (!after(end_seq
, tp
->high_seq
))
1231 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1232 if (state
->first_sackt
== 0)
1233 state
->first_sackt
= xmit_time
;
1234 state
->last_sackt
= xmit_time
;
1237 if (sacked
& TCPCB_LOST
) {
1238 sacked
&= ~TCPCB_LOST
;
1239 tp
->lost_out
-= pcount
;
1243 sacked
|= TCPCB_SACKED_ACKED
;
1244 state
->flag
|= FLAG_DATA_SACKED
;
1245 tp
->sacked_out
+= pcount
;
1246 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1248 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1249 if (tp
->lost_skb_hint
&&
1250 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1251 tp
->lost_cnt_hint
+= pcount
;
1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 * are accounted above as well.
1258 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1259 sacked
&= ~TCPCB_SACKED_RETRANS
;
1260 tp
->retrans_out
-= pcount
;
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*prev
,
1270 struct sk_buff
*skb
,
1271 struct tcp_sacktag_state
*state
,
1272 unsigned int pcount
, int shifted
, int mss
,
1275 struct tcp_sock
*tp
= tcp_sk(sk
);
1276 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1277 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1281 /* Adjust counters and hints for the newly sacked sequence
1282 * range but discard the return value since prev is already
1283 * marked. We must tag the range first because the seq
1284 * advancement below implicitly advances
1285 * tcp_highest_sack_seq() when skb is highest_sack.
1287 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1288 start_seq
, end_seq
, dup_sack
, pcount
,
1289 tcp_skb_timestamp_us(skb
));
1290 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1292 if (skb
== tp
->lost_skb_hint
)
1293 tp
->lost_cnt_hint
+= pcount
;
1295 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1296 TCP_SKB_CB(skb
)->seq
+= shifted
;
1298 tcp_skb_pcount_add(prev
, pcount
);
1299 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1300 tcp_skb_pcount_add(skb
, -pcount
);
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1307 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1308 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 if (tcp_skb_pcount(skb
) <= 1)
1312 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1314 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1315 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1318 BUG_ON(!tcp_skb_pcount(skb
));
1319 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1323 /* Whole SKB was eaten :-) */
1325 if (skb
== tp
->retransmit_skb_hint
)
1326 tp
->retransmit_skb_hint
= prev
;
1327 if (skb
== tp
->lost_skb_hint
) {
1328 tp
->lost_skb_hint
= prev
;
1329 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1332 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1333 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1334 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1335 TCP_SKB_CB(prev
)->end_seq
++;
1337 if (skb
== tcp_highest_sack(sk
))
1338 tcp_advance_highest_sack(sk
, skb
);
1340 tcp_skb_collapse_tstamp(prev
, skb
);
1341 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
))
1342 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
= 0;
1344 tcp_rtx_queue_unlink_and_free(skb
, sk
);
1346 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1351 /* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1354 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1356 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff
*skb
)
1362 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1368 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1369 struct tcp_sacktag_state
*state
,
1370 u32 start_seq
, u32 end_seq
,
1373 struct tcp_sock
*tp
= tcp_sk(sk
);
1374 struct sk_buff
*prev
;
1380 /* Normally R but no L won't result in plain S */
1382 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1384 if (!skb_can_shift(skb
))
1386 /* This frame is about to be dropped (was ACKed). */
1387 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1390 /* Can only happen with delayed DSACK + discard craziness */
1391 prev
= skb_rb_prev(skb
);
1395 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1398 if (!tcp_skb_can_collapse_to(prev
))
1401 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1402 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1406 pcount
= tcp_skb_pcount(skb
);
1407 mss
= tcp_skb_seglen(skb
);
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1412 if (mss
!= tcp_skb_seglen(prev
))
1415 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1421 if (tcp_skb_pcount(skb
) <= 1)
1424 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1440 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1442 BUG_ON(len
> skb
->len
);
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1448 mss
= tcp_skb_mss(skb
);
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1453 if (mss
!= tcp_skb_seglen(prev
))
1458 } else if (len
< mss
) {
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1470 if (!skb_shift(prev
, skb
, len
))
1472 if (!tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1478 skb
= skb_rb_next(prev
);
1482 if (!skb_can_shift(skb
) ||
1483 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1484 (mss
!= tcp_skb_seglen(skb
)))
1488 if (skb_shift(prev
, skb
, len
)) {
1489 pcount
+= tcp_skb_pcount(skb
);
1490 tcp_shifted_skb(sk
, prev
, skb
, state
, tcp_skb_pcount(skb
),
1501 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1505 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1506 struct tcp_sack_block
*next_dup
,
1507 struct tcp_sacktag_state
*state
,
1508 u32 start_seq
, u32 end_seq
,
1511 struct tcp_sock
*tp
= tcp_sk(sk
);
1512 struct sk_buff
*tmp
;
1514 skb_rbtree_walk_from(skb
) {
1516 bool dup_sack
= dup_sack_in
;
1518 /* queue is in-order => we can short-circuit the walk early */
1519 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1523 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1524 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1525 next_dup
->start_seq
,
1531 /* skb reference here is a bit tricky to get right, since
1532 * shifting can eat and free both this skb and the next,
1533 * so not even _safe variant of the loop is enough.
1536 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1537 start_seq
, end_seq
, dup_sack
);
1546 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1552 if (unlikely(in_sack
< 0))
1556 TCP_SKB_CB(skb
)->sacked
=
1559 TCP_SKB_CB(skb
)->sacked
,
1560 TCP_SKB_CB(skb
)->seq
,
1561 TCP_SKB_CB(skb
)->end_seq
,
1563 tcp_skb_pcount(skb
),
1564 tcp_skb_timestamp_us(skb
));
1565 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1566 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1567 list_del_init(&skb
->tcp_tsorted_anchor
);
1569 if (!before(TCP_SKB_CB(skb
)->seq
,
1570 tcp_highest_sack_seq(tp
)))
1571 tcp_advance_highest_sack(sk
, skb
);
1577 static struct sk_buff
*tcp_sacktag_bsearch(struct sock
*sk
,
1578 struct tcp_sacktag_state
*state
,
1581 struct rb_node
*parent
, **p
= &sk
->tcp_rtx_queue
.rb_node
;
1582 struct sk_buff
*skb
;
1586 skb
= rb_to_skb(parent
);
1587 if (before(seq
, TCP_SKB_CB(skb
)->seq
)) {
1588 p
= &parent
->rb_left
;
1591 if (!before(seq
, TCP_SKB_CB(skb
)->end_seq
)) {
1592 p
= &parent
->rb_right
;
1600 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1601 struct tcp_sacktag_state
*state
,
1604 if (skb
&& after(TCP_SKB_CB(skb
)->seq
, skip_to_seq
))
1607 return tcp_sacktag_bsearch(sk
, state
, skip_to_seq
);
1610 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1612 struct tcp_sack_block
*next_dup
,
1613 struct tcp_sacktag_state
*state
,
1619 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1620 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1621 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1622 next_dup
->start_seq
, next_dup
->end_seq
,
1629 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1631 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1635 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1636 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1638 struct tcp_sock
*tp
= tcp_sk(sk
);
1639 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1640 TCP_SKB_CB(ack_skb
)->sacked
);
1641 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1642 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1643 struct tcp_sack_block
*cache
;
1644 struct sk_buff
*skb
;
1645 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1647 bool found_dup_sack
= false;
1649 int first_sack_index
;
1652 state
->reord
= tp
->snd_nxt
;
1654 if (!tp
->sacked_out
)
1655 tcp_highest_sack_reset(sk
);
1657 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1658 num_sacks
, prior_snd_una
);
1659 if (found_dup_sack
) {
1660 state
->flag
|= FLAG_DSACKING_ACK
;
1661 tp
->delivered
++; /* A spurious retransmission is delivered */
1664 /* Eliminate too old ACKs, but take into
1665 * account more or less fresh ones, they can
1666 * contain valid SACK info.
1668 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1671 if (!tp
->packets_out
)
1675 first_sack_index
= 0;
1676 for (i
= 0; i
< num_sacks
; i
++) {
1677 bool dup_sack
= !i
&& found_dup_sack
;
1679 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1680 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1682 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1683 sp
[used_sacks
].start_seq
,
1684 sp
[used_sacks
].end_seq
)) {
1688 if (!tp
->undo_marker
)
1689 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1691 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1693 /* Don't count olds caused by ACK reordering */
1694 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1695 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1697 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1700 NET_INC_STATS(sock_net(sk
), mib_idx
);
1702 first_sack_index
= -1;
1706 /* Ignore very old stuff early */
1707 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1713 /* order SACK blocks to allow in order walk of the retrans queue */
1714 for (i
= used_sacks
- 1; i
> 0; i
--) {
1715 for (j
= 0; j
< i
; j
++) {
1716 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1717 swap(sp
[j
], sp
[j
+ 1]);
1719 /* Track where the first SACK block goes to */
1720 if (j
== first_sack_index
)
1721 first_sack_index
= j
+ 1;
1726 state
->mss_now
= tcp_current_mss(sk
);
1730 if (!tp
->sacked_out
) {
1731 /* It's already past, so skip checking against it */
1732 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1734 cache
= tp
->recv_sack_cache
;
1735 /* Skip empty blocks in at head of the cache */
1736 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1741 while (i
< used_sacks
) {
1742 u32 start_seq
= sp
[i
].start_seq
;
1743 u32 end_seq
= sp
[i
].end_seq
;
1744 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1745 struct tcp_sack_block
*next_dup
= NULL
;
1747 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1748 next_dup
= &sp
[i
+ 1];
1750 /* Skip too early cached blocks */
1751 while (tcp_sack_cache_ok(tp
, cache
) &&
1752 !before(start_seq
, cache
->end_seq
))
1755 /* Can skip some work by looking recv_sack_cache? */
1756 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1757 after(end_seq
, cache
->start_seq
)) {
1760 if (before(start_seq
, cache
->start_seq
)) {
1761 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1763 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1770 /* Rest of the block already fully processed? */
1771 if (!after(end_seq
, cache
->end_seq
))
1774 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1778 /* ...tail remains todo... */
1779 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1780 /* ...but better entrypoint exists! */
1781 skb
= tcp_highest_sack(sk
);
1788 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1789 /* Check overlap against next cached too (past this one already) */
1794 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1795 skb
= tcp_highest_sack(sk
);
1799 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1802 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1803 start_seq
, end_seq
, dup_sack
);
1809 /* Clear the head of the cache sack blocks so we can skip it next time */
1810 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1811 tp
->recv_sack_cache
[i
].start_seq
= 0;
1812 tp
->recv_sack_cache
[i
].end_seq
= 0;
1814 for (j
= 0; j
< used_sacks
; j
++)
1815 tp
->recv_sack_cache
[i
++] = sp
[j
];
1817 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
|| tp
->undo_marker
)
1818 tcp_check_sack_reordering(sk
, state
->reord
, 0);
1820 tcp_verify_left_out(tp
);
1823 #if FASTRETRANS_DEBUG > 0
1824 WARN_ON((int)tp
->sacked_out
< 0);
1825 WARN_ON((int)tp
->lost_out
< 0);
1826 WARN_ON((int)tp
->retrans_out
< 0);
1827 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1832 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1833 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1835 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1839 holes
= max(tp
->lost_out
, 1U);
1840 holes
= min(holes
, tp
->packets_out
);
1842 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1843 tp
->sacked_out
= tp
->packets_out
- holes
;
1849 /* If we receive more dupacks than we expected counting segments
1850 * in assumption of absent reordering, interpret this as reordering.
1851 * The only another reason could be bug in receiver TCP.
1853 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1855 struct tcp_sock
*tp
= tcp_sk(sk
);
1857 if (!tcp_limit_reno_sacked(tp
))
1860 tp
->reordering
= min_t(u32
, tp
->packets_out
+ addend
,
1861 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
1863 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRENOREORDER
);
1866 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1868 static void tcp_add_reno_sack(struct sock
*sk
)
1870 struct tcp_sock
*tp
= tcp_sk(sk
);
1871 u32 prior_sacked
= tp
->sacked_out
;
1874 tcp_check_reno_reordering(sk
, 0);
1875 if (tp
->sacked_out
> prior_sacked
)
1876 tp
->delivered
++; /* Some out-of-order packet is delivered */
1877 tcp_verify_left_out(tp
);
1880 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1882 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1884 struct tcp_sock
*tp
= tcp_sk(sk
);
1887 /* One ACK acked hole. The rest eat duplicate ACKs. */
1888 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1889 if (acked
- 1 >= tp
->sacked_out
)
1892 tp
->sacked_out
-= acked
- 1;
1894 tcp_check_reno_reordering(sk
, acked
);
1895 tcp_verify_left_out(tp
);
1898 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1903 void tcp_clear_retrans(struct tcp_sock
*tp
)
1905 tp
->retrans_out
= 0;
1907 tp
->undo_marker
= 0;
1908 tp
->undo_retrans
= -1;
1912 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1914 tp
->undo_marker
= tp
->snd_una
;
1915 /* Retransmission still in flight may cause DSACKs later. */
1916 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1919 static bool tcp_is_rack(const struct sock
*sk
)
1921 return sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
;
1924 /* If we detect SACK reneging, forget all SACK information
1925 * and reset tags completely, otherwise preserve SACKs. If receiver
1926 * dropped its ofo queue, we will know this due to reneging detection.
1928 static void tcp_timeout_mark_lost(struct sock
*sk
)
1930 struct tcp_sock
*tp
= tcp_sk(sk
);
1931 struct sk_buff
*skb
, *head
;
1932 bool is_reneg
; /* is receiver reneging on SACKs? */
1934 head
= tcp_rtx_queue_head(sk
);
1935 is_reneg
= head
&& (TCP_SKB_CB(head
)->sacked
& TCPCB_SACKED_ACKED
);
1937 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1939 /* Mark SACK reneging until we recover from this loss event. */
1940 tp
->is_sack_reneg
= 1;
1941 } else if (tcp_is_reno(tp
)) {
1942 tcp_reset_reno_sack(tp
);
1946 skb_rbtree_walk_from(skb
) {
1948 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1949 else if (tcp_is_rack(sk
) && skb
!= head
&&
1950 tcp_rack_skb_timeout(tp
, skb
, 0) > 0)
1951 continue; /* Don't mark recently sent ones lost yet */
1952 tcp_mark_skb_lost(sk
, skb
);
1954 tcp_verify_left_out(tp
);
1955 tcp_clear_all_retrans_hints(tp
);
1958 /* Enter Loss state. */
1959 void tcp_enter_loss(struct sock
*sk
)
1961 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1962 struct tcp_sock
*tp
= tcp_sk(sk
);
1963 struct net
*net
= sock_net(sk
);
1964 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1966 tcp_timeout_mark_lost(sk
);
1968 /* Reduce ssthresh if it has not yet been made inside this window. */
1969 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1970 !after(tp
->high_seq
, tp
->snd_una
) ||
1971 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1972 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1973 tp
->prior_cwnd
= tp
->snd_cwnd
;
1974 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1975 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1978 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 1;
1979 tp
->snd_cwnd_cnt
= 0;
1980 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1982 /* Timeout in disordered state after receiving substantial DUPACKs
1983 * suggests that the degree of reordering is over-estimated.
1985 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1986 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1987 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1988 net
->ipv4
.sysctl_tcp_reordering
);
1989 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1990 tp
->high_seq
= tp
->snd_nxt
;
1991 tcp_ecn_queue_cwr(tp
);
1993 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1994 * loss recovery is underway except recurring timeout(s) on
1995 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1997 tp
->frto
= net
->ipv4
.sysctl_tcp_frto
&&
1998 (new_recovery
|| icsk
->icsk_retransmits
) &&
1999 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2002 /* If ACK arrived pointing to a remembered SACK, it means that our
2003 * remembered SACKs do not reflect real state of receiver i.e.
2004 * receiver _host_ is heavily congested (or buggy).
2006 * To avoid big spurious retransmission bursts due to transient SACK
2007 * scoreboard oddities that look like reneging, we give the receiver a
2008 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2009 * restore sanity to the SACK scoreboard. If the apparent reneging
2010 * persists until this RTO then we'll clear the SACK scoreboard.
2012 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2014 if (flag
& FLAG_SACK_RENEGING
) {
2015 struct tcp_sock
*tp
= tcp_sk(sk
);
2016 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2017 msecs_to_jiffies(10));
2019 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2020 delay
, TCP_RTO_MAX
);
2026 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2027 * counter when SACK is enabled (without SACK, sacked_out is used for
2030 * With reordering, holes may still be in flight, so RFC3517 recovery
2031 * uses pure sacked_out (total number of SACKed segments) even though
2032 * it violates the RFC that uses duplicate ACKs, often these are equal
2033 * but when e.g. out-of-window ACKs or packet duplication occurs,
2034 * they differ. Since neither occurs due to loss, TCP should really
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2039 return tp
->sacked_out
+ 1;
2042 /* Linux NewReno/SACK/ECN state machine.
2043 * --------------------------------------
2045 * "Open" Normal state, no dubious events, fast path.
2046 * "Disorder" In all the respects it is "Open",
2047 * but requires a bit more attention. It is entered when
2048 * we see some SACKs or dupacks. It is split of "Open"
2049 * mainly to move some processing from fast path to slow one.
2050 * "CWR" CWND was reduced due to some Congestion Notification event.
2051 * It can be ECN, ICMP source quench, local device congestion.
2052 * "Recovery" CWND was reduced, we are fast-retransmitting.
2053 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2055 * tcp_fastretrans_alert() is entered:
2056 * - each incoming ACK, if state is not "Open"
2057 * - when arrived ACK is unusual, namely:
2062 * Counting packets in flight is pretty simple.
2064 * in_flight = packets_out - left_out + retrans_out
2066 * packets_out is SND.NXT-SND.UNA counted in packets.
2068 * retrans_out is number of retransmitted segments.
2070 * left_out is number of segments left network, but not ACKed yet.
2072 * left_out = sacked_out + lost_out
2074 * sacked_out: Packets, which arrived to receiver out of order
2075 * and hence not ACKed. With SACKs this number is simply
2076 * amount of SACKed data. Even without SACKs
2077 * it is easy to give pretty reliable estimate of this number,
2078 * counting duplicate ACKs.
2080 * lost_out: Packets lost by network. TCP has no explicit
2081 * "loss notification" feedback from network (for now).
2082 * It means that this number can be only _guessed_.
2083 * Actually, it is the heuristics to predict lossage that
2084 * distinguishes different algorithms.
2086 * F.e. after RTO, when all the queue is considered as lost,
2087 * lost_out = packets_out and in_flight = retrans_out.
2089 * Essentially, we have now a few algorithms detecting
2092 * If the receiver supports SACK:
2094 * RFC6675/3517: It is the conventional algorithm. A packet is
2095 * considered lost if the number of higher sequence packets
2096 * SACKed is greater than or equal the DUPACK thoreshold
2097 * (reordering). This is implemented in tcp_mark_head_lost and
2098 * tcp_update_scoreboard.
2100 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2101 * (2017-) that checks timing instead of counting DUPACKs.
2102 * Essentially a packet is considered lost if it's not S/ACKed
2103 * after RTT + reordering_window, where both metrics are
2104 * dynamically measured and adjusted. This is implemented in
2105 * tcp_rack_mark_lost.
2107 * If the receiver does not support SACK:
2109 * NewReno (RFC6582): in Recovery we assume that one segment
2110 * is lost (classic Reno). While we are in Recovery and
2111 * a partial ACK arrives, we assume that one more packet
2112 * is lost (NewReno). This heuristics are the same in NewReno
2115 * Really tricky (and requiring careful tuning) part of algorithm
2116 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2117 * The first determines the moment _when_ we should reduce CWND and,
2118 * hence, slow down forward transmission. In fact, it determines the moment
2119 * when we decide that hole is caused by loss, rather than by a reorder.
2121 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2122 * holes, caused by lost packets.
2124 * And the most logically complicated part of algorithm is undo
2125 * heuristics. We detect false retransmits due to both too early
2126 * fast retransmit (reordering) and underestimated RTO, analyzing
2127 * timestamps and D-SACKs. When we detect that some segments were
2128 * retransmitted by mistake and CWND reduction was wrong, we undo
2129 * window reduction and abort recovery phase. This logic is hidden
2130 * inside several functions named tcp_try_undo_<something>.
2133 /* This function decides, when we should leave Disordered state
2134 * and enter Recovery phase, reducing congestion window.
2136 * Main question: may we further continue forward transmission
2137 * with the same cwnd?
2139 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2141 struct tcp_sock
*tp
= tcp_sk(sk
);
2143 /* Trick#1: The loss is proven. */
2147 /* Not-A-Trick#2 : Classic rule... */
2148 if (!tcp_is_rack(sk
) && tcp_dupack_heuristics(tp
) > tp
->reordering
)
2154 /* Detect loss in event "A" above by marking head of queue up as lost.
2155 * For non-SACK(Reno) senders, the first "packets" number of segments
2156 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2157 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2158 * the maximum SACKed segments to pass before reaching this limit.
2160 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2162 struct tcp_sock
*tp
= tcp_sk(sk
);
2163 struct sk_buff
*skb
;
2164 int cnt
, oldcnt
, lost
;
2166 /* Use SACK to deduce losses of new sequences sent during recovery */
2167 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2169 WARN_ON(packets
> tp
->packets_out
);
2170 skb
= tp
->lost_skb_hint
;
2172 /* Head already handled? */
2173 if (mark_head
&& after(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
))
2175 cnt
= tp
->lost_cnt_hint
;
2177 skb
= tcp_rtx_queue_head(sk
);
2181 skb_rbtree_walk_from(skb
) {
2182 /* TODO: do this better */
2183 /* this is not the most efficient way to do this... */
2184 tp
->lost_skb_hint
= skb
;
2185 tp
->lost_cnt_hint
= cnt
;
2187 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2191 if (tcp_is_reno(tp
) ||
2192 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2193 cnt
+= tcp_skb_pcount(skb
);
2195 if (cnt
> packets
) {
2196 if (tcp_is_sack(tp
) ||
2197 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2198 (oldcnt
>= packets
))
2201 mss
= tcp_skb_mss(skb
);
2202 /* If needed, chop off the prefix to mark as lost. */
2203 lost
= (packets
- oldcnt
) * mss
;
2204 if (lost
< skb
->len
&&
2205 tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2206 lost
, mss
, GFP_ATOMIC
) < 0)
2211 tcp_skb_mark_lost(tp
, skb
);
2216 tcp_verify_left_out(tp
);
2219 /* Account newly detected lost packet(s) */
2221 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2223 struct tcp_sock
*tp
= tcp_sk(sk
);
2225 if (tcp_is_sack(tp
)) {
2226 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2227 if (sacked_upto
>= 0)
2228 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2229 else if (fast_rexmit
)
2230 tcp_mark_head_lost(sk
, 1, 1);
2234 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2236 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2237 before(tp
->rx_opt
.rcv_tsecr
, when
);
2240 /* skb is spurious retransmitted if the returned timestamp echo
2241 * reply is prior to the skb transmission time
2243 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2244 const struct sk_buff
*skb
)
2246 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2247 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2250 /* Nothing was retransmitted or returned timestamp is less
2251 * than timestamp of the first retransmission.
2253 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2255 return !tp
->retrans_stamp
||
2256 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2259 /* Undo procedures. */
2261 /* We can clear retrans_stamp when there are no retransmissions in the
2262 * window. It would seem that it is trivially available for us in
2263 * tp->retrans_out, however, that kind of assumptions doesn't consider
2264 * what will happen if errors occur when sending retransmission for the
2265 * second time. ...It could the that such segment has only
2266 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2267 * the head skb is enough except for some reneging corner cases that
2268 * are not worth the effort.
2270 * Main reason for all this complexity is the fact that connection dying
2271 * time now depends on the validity of the retrans_stamp, in particular,
2272 * that successive retransmissions of a segment must not advance
2273 * retrans_stamp under any conditions.
2275 static bool tcp_any_retrans_done(const struct sock
*sk
)
2277 const struct tcp_sock
*tp
= tcp_sk(sk
);
2278 struct sk_buff
*skb
;
2280 if (tp
->retrans_out
)
2283 skb
= tcp_rtx_queue_head(sk
);
2284 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2290 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2292 #if FASTRETRANS_DEBUG > 1
2293 struct tcp_sock
*tp
= tcp_sk(sk
);
2294 struct inet_sock
*inet
= inet_sk(sk
);
2296 if (sk
->sk_family
== AF_INET
) {
2297 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2299 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2300 tp
->snd_cwnd
, tcp_left_out(tp
),
2301 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2304 #if IS_ENABLED(CONFIG_IPV6)
2305 else if (sk
->sk_family
== AF_INET6
) {
2306 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2308 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2309 tp
->snd_cwnd
, tcp_left_out(tp
),
2310 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2317 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2319 struct tcp_sock
*tp
= tcp_sk(sk
);
2322 struct sk_buff
*skb
;
2324 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2325 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2328 tcp_clear_all_retrans_hints(tp
);
2331 if (tp
->prior_ssthresh
) {
2332 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2334 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2336 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2337 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2338 tcp_ecn_withdraw_cwr(tp
);
2341 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2342 tp
->undo_marker
= 0;
2343 tp
->rack
.advanced
= 1; /* Force RACK to re-exam losses */
2346 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2348 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2351 /* People celebrate: "We love our President!" */
2352 static bool tcp_try_undo_recovery(struct sock
*sk
)
2354 struct tcp_sock
*tp
= tcp_sk(sk
);
2356 if (tcp_may_undo(tp
)) {
2359 /* Happy end! We did not retransmit anything
2360 * or our original transmission succeeded.
2362 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2363 tcp_undo_cwnd_reduction(sk
, false);
2364 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2365 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2367 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2369 NET_INC_STATS(sock_net(sk
), mib_idx
);
2370 } else if (tp
->rack
.reo_wnd_persist
) {
2371 tp
->rack
.reo_wnd_persist
--;
2373 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2374 /* Hold old state until something *above* high_seq
2375 * is ACKed. For Reno it is MUST to prevent false
2376 * fast retransmits (RFC2582). SACK TCP is safe. */
2377 if (!tcp_any_retrans_done(sk
))
2378 tp
->retrans_stamp
= 0;
2381 tcp_set_ca_state(sk
, TCP_CA_Open
);
2382 tp
->is_sack_reneg
= 0;
2386 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2387 static bool tcp_try_undo_dsack(struct sock
*sk
)
2389 struct tcp_sock
*tp
= tcp_sk(sk
);
2391 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2392 tp
->rack
.reo_wnd_persist
= min(TCP_RACK_RECOVERY_THRESH
,
2393 tp
->rack
.reo_wnd_persist
+ 1);
2394 DBGUNDO(sk
, "D-SACK");
2395 tcp_undo_cwnd_reduction(sk
, false);
2396 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2402 /* Undo during loss recovery after partial ACK or using F-RTO. */
2403 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2405 struct tcp_sock
*tp
= tcp_sk(sk
);
2407 if (frto_undo
|| tcp_may_undo(tp
)) {
2408 tcp_undo_cwnd_reduction(sk
, true);
2410 DBGUNDO(sk
, "partial loss");
2411 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2413 NET_INC_STATS(sock_net(sk
),
2414 LINUX_MIB_TCPSPURIOUSRTOS
);
2415 inet_csk(sk
)->icsk_retransmits
= 0;
2416 if (frto_undo
|| tcp_is_sack(tp
)) {
2417 tcp_set_ca_state(sk
, TCP_CA_Open
);
2418 tp
->is_sack_reneg
= 0;
2425 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2426 * It computes the number of packets to send (sndcnt) based on packets newly
2428 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2429 * cwnd reductions across a full RTT.
2430 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2431 * But when the retransmits are acked without further losses, PRR
2432 * slow starts cwnd up to ssthresh to speed up the recovery.
2434 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2436 struct tcp_sock
*tp
= tcp_sk(sk
);
2438 tp
->high_seq
= tp
->snd_nxt
;
2439 tp
->tlp_high_seq
= 0;
2440 tp
->snd_cwnd_cnt
= 0;
2441 tp
->prior_cwnd
= tp
->snd_cwnd
;
2442 tp
->prr_delivered
= 0;
2444 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2445 tcp_ecn_queue_cwr(tp
);
2448 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2450 struct tcp_sock
*tp
= tcp_sk(sk
);
2452 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2454 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2457 tp
->prr_delivered
+= newly_acked_sacked
;
2459 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2461 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2462 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2463 !(flag
& FLAG_LOST_RETRANS
)) {
2464 sndcnt
= min_t(int, delta
,
2465 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2466 newly_acked_sacked
) + 1);
2468 sndcnt
= min(delta
, newly_acked_sacked
);
2470 /* Force a fast retransmit upon entering fast recovery */
2471 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2472 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2475 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2477 struct tcp_sock
*tp
= tcp_sk(sk
);
2479 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2482 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2483 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2484 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2485 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2486 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2488 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2491 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2492 void tcp_enter_cwr(struct sock
*sk
)
2494 struct tcp_sock
*tp
= tcp_sk(sk
);
2496 tp
->prior_ssthresh
= 0;
2497 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2498 tp
->undo_marker
= 0;
2499 tcp_init_cwnd_reduction(sk
);
2500 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2503 EXPORT_SYMBOL(tcp_enter_cwr
);
2505 static void tcp_try_keep_open(struct sock
*sk
)
2507 struct tcp_sock
*tp
= tcp_sk(sk
);
2508 int state
= TCP_CA_Open
;
2510 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2511 state
= TCP_CA_Disorder
;
2513 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2514 tcp_set_ca_state(sk
, state
);
2515 tp
->high_seq
= tp
->snd_nxt
;
2519 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2521 struct tcp_sock
*tp
= tcp_sk(sk
);
2523 tcp_verify_left_out(tp
);
2525 if (!tcp_any_retrans_done(sk
))
2526 tp
->retrans_stamp
= 0;
2528 if (flag
& FLAG_ECE
)
2531 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2532 tcp_try_keep_open(sk
);
2536 static void tcp_mtup_probe_failed(struct sock
*sk
)
2538 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2540 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2541 icsk
->icsk_mtup
.probe_size
= 0;
2542 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2545 static void tcp_mtup_probe_success(struct sock
*sk
)
2547 struct tcp_sock
*tp
= tcp_sk(sk
);
2548 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2550 /* FIXME: breaks with very large cwnd */
2551 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2552 tp
->snd_cwnd
= tp
->snd_cwnd
*
2553 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2554 icsk
->icsk_mtup
.probe_size
;
2555 tp
->snd_cwnd_cnt
= 0;
2556 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2557 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2559 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2560 icsk
->icsk_mtup
.probe_size
= 0;
2561 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2562 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2565 /* Do a simple retransmit without using the backoff mechanisms in
2566 * tcp_timer. This is used for path mtu discovery.
2567 * The socket is already locked here.
2569 void tcp_simple_retransmit(struct sock
*sk
)
2571 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2572 struct tcp_sock
*tp
= tcp_sk(sk
);
2573 struct sk_buff
*skb
;
2574 unsigned int mss
= tcp_current_mss(sk
);
2576 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2577 if (tcp_skb_seglen(skb
) > mss
&&
2578 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2579 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2580 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2581 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2583 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2587 tcp_clear_retrans_hints_partial(tp
);
2592 if (tcp_is_reno(tp
))
2593 tcp_limit_reno_sacked(tp
);
2595 tcp_verify_left_out(tp
);
2597 /* Don't muck with the congestion window here.
2598 * Reason is that we do not increase amount of _data_
2599 * in network, but units changed and effective
2600 * cwnd/ssthresh really reduced now.
2602 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2603 tp
->high_seq
= tp
->snd_nxt
;
2604 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2605 tp
->prior_ssthresh
= 0;
2606 tp
->undo_marker
= 0;
2607 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2609 tcp_xmit_retransmit_queue(sk
);
2611 EXPORT_SYMBOL(tcp_simple_retransmit
);
2613 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2615 struct tcp_sock
*tp
= tcp_sk(sk
);
2618 if (tcp_is_reno(tp
))
2619 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2621 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2623 NET_INC_STATS(sock_net(sk
), mib_idx
);
2625 tp
->prior_ssthresh
= 0;
2628 if (!tcp_in_cwnd_reduction(sk
)) {
2630 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2631 tcp_init_cwnd_reduction(sk
);
2633 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2636 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2637 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2639 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2642 struct tcp_sock
*tp
= tcp_sk(sk
);
2643 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2645 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2646 tcp_try_undo_loss(sk
, false))
2649 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2650 /* Step 3.b. A timeout is spurious if not all data are
2651 * lost, i.e., never-retransmitted data are (s)acked.
2653 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2654 tcp_try_undo_loss(sk
, true))
2657 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2658 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2659 tp
->frto
= 0; /* Step 3.a. loss was real */
2660 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2661 tp
->high_seq
= tp
->snd_nxt
;
2662 /* Step 2.b. Try send new data (but deferred until cwnd
2663 * is updated in tcp_ack()). Otherwise fall back to
2664 * the conventional recovery.
2666 if (!tcp_write_queue_empty(sk
) &&
2667 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2668 *rexmit
= REXMIT_NEW
;
2676 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2677 tcp_try_undo_recovery(sk
);
2680 if (tcp_is_reno(tp
)) {
2681 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2682 * delivered. Lower inflight to clock out (re)tranmissions.
2684 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2685 tcp_add_reno_sack(sk
);
2686 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2687 tcp_reset_reno_sack(tp
);
2689 *rexmit
= REXMIT_LOST
;
2692 /* Undo during fast recovery after partial ACK. */
2693 static bool tcp_try_undo_partial(struct sock
*sk
, u32 prior_snd_una
)
2695 struct tcp_sock
*tp
= tcp_sk(sk
);
2697 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2698 /* Plain luck! Hole if filled with delayed
2699 * packet, rather than with a retransmit. Check reordering.
2701 tcp_check_sack_reordering(sk
, prior_snd_una
, 1);
2703 /* We are getting evidence that the reordering degree is higher
2704 * than we realized. If there are no retransmits out then we
2705 * can undo. Otherwise we clock out new packets but do not
2706 * mark more packets lost or retransmit more.
2708 if (tp
->retrans_out
)
2711 if (!tcp_any_retrans_done(sk
))
2712 tp
->retrans_stamp
= 0;
2714 DBGUNDO(sk
, "partial recovery");
2715 tcp_undo_cwnd_reduction(sk
, true);
2716 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2717 tcp_try_keep_open(sk
);
2723 static void tcp_identify_packet_loss(struct sock
*sk
, int *ack_flag
)
2725 struct tcp_sock
*tp
= tcp_sk(sk
);
2727 if (tcp_rtx_queue_empty(sk
))
2730 if (unlikely(tcp_is_reno(tp
))) {
2731 tcp_newreno_mark_lost(sk
, *ack_flag
& FLAG_SND_UNA_ADVANCED
);
2732 } else if (tcp_is_rack(sk
)) {
2733 u32 prior_retrans
= tp
->retrans_out
;
2735 tcp_rack_mark_lost(sk
);
2736 if (prior_retrans
> tp
->retrans_out
)
2737 *ack_flag
|= FLAG_LOST_RETRANS
;
2741 static bool tcp_force_fast_retransmit(struct sock
*sk
)
2743 struct tcp_sock
*tp
= tcp_sk(sk
);
2745 return after(tcp_highest_sack_seq(tp
),
2746 tp
->snd_una
+ tp
->reordering
* tp
->mss_cache
);
2749 /* Process an event, which can update packets-in-flight not trivially.
2750 * Main goal of this function is to calculate new estimate for left_out,
2751 * taking into account both packets sitting in receiver's buffer and
2752 * packets lost by network.
2754 * Besides that it updates the congestion state when packet loss or ECN
2755 * is detected. But it does not reduce the cwnd, it is done by the
2756 * congestion control later.
2758 * It does _not_ decide what to send, it is made in function
2759 * tcp_xmit_retransmit_queue().
2761 static void tcp_fastretrans_alert(struct sock
*sk
, const u32 prior_snd_una
,
2762 bool is_dupack
, int *ack_flag
, int *rexmit
)
2764 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2765 struct tcp_sock
*tp
= tcp_sk(sk
);
2766 int fast_rexmit
= 0, flag
= *ack_flag
;
2767 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2768 tcp_force_fast_retransmit(sk
));
2770 if (!tp
->packets_out
&& tp
->sacked_out
)
2773 /* Now state machine starts.
2774 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2775 if (flag
& FLAG_ECE
)
2776 tp
->prior_ssthresh
= 0;
2778 /* B. In all the states check for reneging SACKs. */
2779 if (tcp_check_sack_reneging(sk
, flag
))
2782 /* C. Check consistency of the current state. */
2783 tcp_verify_left_out(tp
);
2785 /* D. Check state exit conditions. State can be terminated
2786 * when high_seq is ACKed. */
2787 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2788 WARN_ON(tp
->retrans_out
!= 0);
2789 tp
->retrans_stamp
= 0;
2790 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2791 switch (icsk
->icsk_ca_state
) {
2793 /* CWR is to be held something *above* high_seq
2794 * is ACKed for CWR bit to reach receiver. */
2795 if (tp
->snd_una
!= tp
->high_seq
) {
2796 tcp_end_cwnd_reduction(sk
);
2797 tcp_set_ca_state(sk
, TCP_CA_Open
);
2801 case TCP_CA_Recovery
:
2802 if (tcp_is_reno(tp
))
2803 tcp_reset_reno_sack(tp
);
2804 if (tcp_try_undo_recovery(sk
))
2806 tcp_end_cwnd_reduction(sk
);
2811 /* E. Process state. */
2812 switch (icsk
->icsk_ca_state
) {
2813 case TCP_CA_Recovery
:
2814 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2815 if (tcp_is_reno(tp
) && is_dupack
)
2816 tcp_add_reno_sack(sk
);
2818 if (tcp_try_undo_partial(sk
, prior_snd_una
))
2820 /* Partial ACK arrived. Force fast retransmit. */
2821 do_lost
= tcp_is_reno(tp
) ||
2822 tcp_force_fast_retransmit(sk
);
2824 if (tcp_try_undo_dsack(sk
)) {
2825 tcp_try_keep_open(sk
);
2828 tcp_identify_packet_loss(sk
, ack_flag
);
2831 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2832 tcp_identify_packet_loss(sk
, ack_flag
);
2833 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2834 (*ack_flag
& FLAG_LOST_RETRANS
)))
2836 /* Change state if cwnd is undone or retransmits are lost */
2839 if (tcp_is_reno(tp
)) {
2840 if (flag
& FLAG_SND_UNA_ADVANCED
)
2841 tcp_reset_reno_sack(tp
);
2843 tcp_add_reno_sack(sk
);
2846 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2847 tcp_try_undo_dsack(sk
);
2849 tcp_identify_packet_loss(sk
, ack_flag
);
2850 if (!tcp_time_to_recover(sk
, flag
)) {
2851 tcp_try_to_open(sk
, flag
);
2855 /* MTU probe failure: don't reduce cwnd */
2856 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2857 icsk
->icsk_mtup
.probe_size
&&
2858 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2859 tcp_mtup_probe_failed(sk
);
2860 /* Restores the reduction we did in tcp_mtup_probe() */
2862 tcp_simple_retransmit(sk
);
2866 /* Otherwise enter Recovery state */
2867 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2871 if (!tcp_is_rack(sk
) && do_lost
)
2872 tcp_update_scoreboard(sk
, fast_rexmit
);
2873 *rexmit
= REXMIT_LOST
;
2876 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
, const int flag
)
2878 u32 wlen
= sock_net(sk
)->ipv4
.sysctl_tcp_min_rtt_wlen
* HZ
;
2879 struct tcp_sock
*tp
= tcp_sk(sk
);
2881 if ((flag
& FLAG_ACK_MAYBE_DELAYED
) && rtt_us
> tcp_min_rtt(tp
)) {
2882 /* If the remote keeps returning delayed ACKs, eventually
2883 * the min filter would pick it up and overestimate the
2884 * prop. delay when it expires. Skip suspected delayed ACKs.
2888 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_jiffies32
,
2889 rtt_us
? : jiffies_to_usecs(1));
2892 static bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2893 long seq_rtt_us
, long sack_rtt_us
,
2894 long ca_rtt_us
, struct rate_sample
*rs
)
2896 const struct tcp_sock
*tp
= tcp_sk(sk
);
2898 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2899 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2900 * Karn's algorithm forbids taking RTT if some retransmitted data
2901 * is acked (RFC6298).
2904 seq_rtt_us
= sack_rtt_us
;
2906 /* RTTM Rule: A TSecr value received in a segment is used to
2907 * update the averaged RTT measurement only if the segment
2908 * acknowledges some new data, i.e., only if it advances the
2909 * left edge of the send window.
2910 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2912 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2913 flag
& FLAG_ACKED
) {
2914 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
2916 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
2917 seq_rtt_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
2918 ca_rtt_us
= seq_rtt_us
;
2921 rs
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet (or -1) */
2925 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2926 * always taken together with ACK, SACK, or TS-opts. Any negative
2927 * values will be skipped with the seq_rtt_us < 0 check above.
2929 tcp_update_rtt_min(sk
, ca_rtt_us
, flag
);
2930 tcp_rtt_estimator(sk
, seq_rtt_us
);
2933 /* RFC6298: only reset backoff on valid RTT measurement. */
2934 inet_csk(sk
)->icsk_backoff
= 0;
2938 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2939 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2941 struct rate_sample rs
;
2944 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
)
2945 rtt_us
= tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req
)->snt_synack
);
2947 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
, &rs
);
2951 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2953 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2955 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2956 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_jiffies32
;
2959 /* Restart timer after forward progress on connection.
2960 * RFC2988 recommends to restart timer to now+rto.
2962 void tcp_rearm_rto(struct sock
*sk
)
2964 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2965 struct tcp_sock
*tp
= tcp_sk(sk
);
2967 /* If the retrans timer is currently being used by Fast Open
2968 * for SYN-ACK retrans purpose, stay put.
2970 if (tp
->fastopen_rsk
)
2973 if (!tp
->packets_out
) {
2974 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2976 u32 rto
= inet_csk(sk
)->icsk_rto
;
2977 /* Offset the time elapsed after installing regular RTO */
2978 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
2979 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
2980 s64 delta_us
= tcp_rto_delta_us(sk
);
2981 /* delta_us may not be positive if the socket is locked
2982 * when the retrans timer fires and is rescheduled.
2984 rto
= usecs_to_jiffies(max_t(int, delta_us
, 1));
2986 tcp_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
2987 TCP_RTO_MAX
, tcp_rtx_queue_head(sk
));
2991 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2992 static void tcp_set_xmit_timer(struct sock
*sk
)
2994 if (!tcp_schedule_loss_probe(sk
, true))
2998 /* If we get here, the whole TSO packet has not been acked. */
2999 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3001 struct tcp_sock
*tp
= tcp_sk(sk
);
3004 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3006 packets_acked
= tcp_skb_pcount(skb
);
3007 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3009 packets_acked
-= tcp_skb_pcount(skb
);
3011 if (packets_acked
) {
3012 BUG_ON(tcp_skb_pcount(skb
) == 0);
3013 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3016 return packets_acked
;
3019 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3022 const struct skb_shared_info
*shinfo
;
3024 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3025 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3028 shinfo
= skb_shinfo(skb
);
3029 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3030 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
)) {
3031 tcp_skb_tsorted_save(skb
) {
3032 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3033 } tcp_skb_tsorted_restore(skb
);
3037 /* Remove acknowledged frames from the retransmission queue. If our packet
3038 * is before the ack sequence we can discard it as it's confirmed to have
3039 * arrived at the other end.
3041 static int tcp_clean_rtx_queue(struct sock
*sk
, u32 prior_fack
,
3043 struct tcp_sacktag_state
*sack
)
3045 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3046 u64 first_ackt
, last_ackt
;
3047 struct tcp_sock
*tp
= tcp_sk(sk
);
3048 u32 prior_sacked
= tp
->sacked_out
;
3049 u32 reord
= tp
->snd_nxt
; /* lowest acked un-retx un-sacked seq */
3050 struct sk_buff
*skb
, *next
;
3051 bool fully_acked
= true;
3052 long sack_rtt_us
= -1L;
3053 long seq_rtt_us
= -1L;
3054 long ca_rtt_us
= -1L;
3056 u32 last_in_flight
= 0;
3062 for (skb
= skb_rb_first(&sk
->tcp_rtx_queue
); skb
; skb
= next
) {
3063 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3064 const u32 start_seq
= scb
->seq
;
3065 u8 sacked
= scb
->sacked
;
3068 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3070 /* Determine how many packets and what bytes were acked, tso and else */
3071 if (after(scb
->end_seq
, tp
->snd_una
)) {
3072 if (tcp_skb_pcount(skb
) == 1 ||
3073 !after(tp
->snd_una
, scb
->seq
))
3076 acked_pcount
= tcp_tso_acked(sk
, skb
);
3079 fully_acked
= false;
3081 acked_pcount
= tcp_skb_pcount(skb
);
3084 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3085 if (sacked
& TCPCB_SACKED_RETRANS
)
3086 tp
->retrans_out
-= acked_pcount
;
3087 flag
|= FLAG_RETRANS_DATA_ACKED
;
3088 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3089 last_ackt
= tcp_skb_timestamp_us(skb
);
3090 WARN_ON_ONCE(last_ackt
== 0);
3092 first_ackt
= last_ackt
;
3094 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3095 if (before(start_seq
, reord
))
3097 if (!after(scb
->end_seq
, tp
->high_seq
))
3098 flag
|= FLAG_ORIG_SACK_ACKED
;
3101 if (sacked
& TCPCB_SACKED_ACKED
) {
3102 tp
->sacked_out
-= acked_pcount
;
3103 } else if (tcp_is_sack(tp
)) {
3104 tp
->delivered
+= acked_pcount
;
3105 if (!tcp_skb_spurious_retrans(tp
, skb
))
3106 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3107 tcp_skb_timestamp_us(skb
));
3109 if (sacked
& TCPCB_LOST
)
3110 tp
->lost_out
-= acked_pcount
;
3112 tp
->packets_out
-= acked_pcount
;
3113 pkts_acked
+= acked_pcount
;
3114 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3116 /* Initial outgoing SYN's get put onto the write_queue
3117 * just like anything else we transmit. It is not
3118 * true data, and if we misinform our callers that
3119 * this ACK acks real data, we will erroneously exit
3120 * connection startup slow start one packet too
3121 * quickly. This is severely frowned upon behavior.
3123 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3124 flag
|= FLAG_DATA_ACKED
;
3126 flag
|= FLAG_SYN_ACKED
;
3127 tp
->retrans_stamp
= 0;
3133 next
= skb_rb_next(skb
);
3134 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3135 tp
->retransmit_skb_hint
= NULL
;
3136 if (unlikely(skb
== tp
->lost_skb_hint
))
3137 tp
->lost_skb_hint
= NULL
;
3138 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3142 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3144 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3145 tp
->snd_up
= tp
->snd_una
;
3147 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3148 flag
|= FLAG_SACK_RENEGING
;
3150 if (likely(first_ackt
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3151 seq_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, first_ackt
);
3152 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, last_ackt
);
3154 if (pkts_acked
== 1 && last_in_flight
< tp
->mss_cache
&&
3155 last_in_flight
&& !prior_sacked
&& fully_acked
&&
3156 sack
->rate
->prior_delivered
+ 1 == tp
->delivered
&&
3157 !(flag
& (FLAG_CA_ALERT
| FLAG_SYN_ACKED
))) {
3158 /* Conservatively mark a delayed ACK. It's typically
3159 * from a lone runt packet over the round trip to
3160 * a receiver w/o out-of-order or CE events.
3162 flag
|= FLAG_ACK_MAYBE_DELAYED
;
3165 if (sack
->first_sackt
) {
3166 sack_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->first_sackt
);
3167 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->last_sackt
);
3169 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3170 ca_rtt_us
, sack
->rate
);
3172 if (flag
& FLAG_ACKED
) {
3173 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3174 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3175 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3176 tcp_mtup_probe_success(sk
);
3179 if (tcp_is_reno(tp
)) {
3180 tcp_remove_reno_sacks(sk
, pkts_acked
);
3182 /* If any of the cumulatively ACKed segments was
3183 * retransmitted, non-SACK case cannot confirm that
3184 * progress was due to original transmission due to
3185 * lack of TCPCB_SACKED_ACKED bits even if some of
3186 * the packets may have been never retransmitted.
3188 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3189 flag
&= ~FLAG_ORIG_SACK_ACKED
;
3193 /* Non-retransmitted hole got filled? That's reordering */
3194 if (before(reord
, prior_fack
))
3195 tcp_check_sack_reordering(sk
, reord
, 0);
3197 delta
= prior_sacked
- tp
->sacked_out
;
3198 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3200 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3201 sack_rtt_us
> tcp_stamp_us_delta(tp
->tcp_mstamp
,
3202 tcp_skb_timestamp_us(skb
))) {
3203 /* Do not re-arm RTO if the sack RTT is measured from data sent
3204 * after when the head was last (re)transmitted. Otherwise the
3205 * timeout may continue to extend in loss recovery.
3207 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3210 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3211 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3212 .rtt_us
= sack
->rate
->rtt_us
,
3213 .in_flight
= last_in_flight
};
3215 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3218 #if FASTRETRANS_DEBUG > 0
3219 WARN_ON((int)tp
->sacked_out
< 0);
3220 WARN_ON((int)tp
->lost_out
< 0);
3221 WARN_ON((int)tp
->retrans_out
< 0);
3222 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3223 icsk
= inet_csk(sk
);
3225 pr_debug("Leak l=%u %d\n",
3226 tp
->lost_out
, icsk
->icsk_ca_state
);
3229 if (tp
->sacked_out
) {
3230 pr_debug("Leak s=%u %d\n",
3231 tp
->sacked_out
, icsk
->icsk_ca_state
);
3234 if (tp
->retrans_out
) {
3235 pr_debug("Leak r=%u %d\n",
3236 tp
->retrans_out
, icsk
->icsk_ca_state
);
3237 tp
->retrans_out
= 0;
3244 static void tcp_ack_probe(struct sock
*sk
)
3246 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3247 struct sk_buff
*head
= tcp_send_head(sk
);
3248 const struct tcp_sock
*tp
= tcp_sk(sk
);
3250 /* Was it a usable window open? */
3253 if (!after(TCP_SKB_CB(head
)->end_seq
, tcp_wnd_end(tp
))) {
3254 icsk
->icsk_backoff
= 0;
3255 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3256 /* Socket must be waked up by subsequent tcp_data_snd_check().
3257 * This function is not for random using!
3260 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3262 tcp_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3263 when
, TCP_RTO_MAX
, NULL
);
3267 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3269 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3270 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3273 /* Decide wheather to run the increase function of congestion control. */
3274 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3276 /* If reordering is high then always grow cwnd whenever data is
3277 * delivered regardless of its ordering. Otherwise stay conservative
3278 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3279 * new SACK or ECE mark may first advance cwnd here and later reduce
3280 * cwnd in tcp_fastretrans_alert() based on more states.
3282 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3283 return flag
& FLAG_FORWARD_PROGRESS
;
3285 return flag
& FLAG_DATA_ACKED
;
3288 /* The "ultimate" congestion control function that aims to replace the rigid
3289 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3290 * It's called toward the end of processing an ACK with precise rate
3291 * information. All transmission or retransmission are delayed afterwards.
3293 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3294 int flag
, const struct rate_sample
*rs
)
3296 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3298 if (icsk
->icsk_ca_ops
->cong_control
) {
3299 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3303 if (tcp_in_cwnd_reduction(sk
)) {
3304 /* Reduce cwnd if state mandates */
3305 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3306 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3307 /* Advance cwnd if state allows */
3308 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3310 tcp_update_pacing_rate(sk
);
3313 /* Check that window update is acceptable.
3314 * The function assumes that snd_una<=ack<=snd_next.
3316 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3317 const u32 ack
, const u32 ack_seq
,
3320 return after(ack
, tp
->snd_una
) ||
3321 after(ack_seq
, tp
->snd_wl1
) ||
3322 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3325 /* If we update tp->snd_una, also update tp->bytes_acked */
3326 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3328 u32 delta
= ack
- tp
->snd_una
;
3330 sock_owned_by_me((struct sock
*)tp
);
3331 tp
->bytes_acked
+= delta
;
3335 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3336 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3338 u32 delta
= seq
- tp
->rcv_nxt
;
3340 sock_owned_by_me((struct sock
*)tp
);
3341 tp
->bytes_received
+= delta
;
3345 /* Update our send window.
3347 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3348 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3350 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3353 struct tcp_sock
*tp
= tcp_sk(sk
);
3355 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3357 if (likely(!tcp_hdr(skb
)->syn
))
3358 nwin
<<= tp
->rx_opt
.snd_wscale
;
3360 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3361 flag
|= FLAG_WIN_UPDATE
;
3362 tcp_update_wl(tp
, ack_seq
);
3364 if (tp
->snd_wnd
!= nwin
) {
3367 /* Note, it is the only place, where
3368 * fast path is recovered for sending TCP.
3371 tcp_fast_path_check(sk
);
3373 if (!tcp_write_queue_empty(sk
))
3374 tcp_slow_start_after_idle_check(sk
);
3376 if (nwin
> tp
->max_window
) {
3377 tp
->max_window
= nwin
;
3378 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3383 tcp_snd_una_update(tp
, ack
);
3388 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3389 u32
*last_oow_ack_time
)
3391 if (*last_oow_ack_time
) {
3392 s32 elapsed
= (s32
)(tcp_jiffies32
- *last_oow_ack_time
);
3394 if (0 <= elapsed
&& elapsed
< net
->ipv4
.sysctl_tcp_invalid_ratelimit
) {
3395 NET_INC_STATS(net
, mib_idx
);
3396 return true; /* rate-limited: don't send yet! */
3400 *last_oow_ack_time
= tcp_jiffies32
;
3402 return false; /* not rate-limited: go ahead, send dupack now! */
3405 /* Return true if we're currently rate-limiting out-of-window ACKs and
3406 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3407 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3408 * attacks that send repeated SYNs or ACKs for the same connection. To
3409 * do this, we do not send a duplicate SYNACK or ACK if the remote
3410 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3412 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3413 int mib_idx
, u32
*last_oow_ack_time
)
3415 /* Data packets without SYNs are not likely part of an ACK loop. */
3416 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3420 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3423 /* RFC 5961 7 [ACK Throttling] */
3424 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3426 /* unprotected vars, we dont care of overwrites */
3427 static u32 challenge_timestamp
;
3428 static unsigned int challenge_count
;
3429 struct tcp_sock
*tp
= tcp_sk(sk
);
3430 struct net
*net
= sock_net(sk
);
3433 /* First check our per-socket dupack rate limit. */
3434 if (__tcp_oow_rate_limited(net
,
3435 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3436 &tp
->last_oow_ack_time
))
3439 /* Then check host-wide RFC 5961 rate limit. */
3441 if (now
!= challenge_timestamp
) {
3442 u32 ack_limit
= net
->ipv4
.sysctl_tcp_challenge_ack_limit
;
3443 u32 half
= (ack_limit
+ 1) >> 1;
3445 challenge_timestamp
= now
;
3446 WRITE_ONCE(challenge_count
, half
+ prandom_u32_max(ack_limit
));
3448 count
= READ_ONCE(challenge_count
);
3450 WRITE_ONCE(challenge_count
, count
- 1);
3451 NET_INC_STATS(net
, LINUX_MIB_TCPCHALLENGEACK
);
3456 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3458 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3459 tp
->rx_opt
.ts_recent_stamp
= ktime_get_seconds();
3462 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3464 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3465 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3466 * extra check below makes sure this can only happen
3467 * for pure ACK frames. -DaveM
3469 * Not only, also it occurs for expired timestamps.
3472 if (tcp_paws_check(&tp
->rx_opt
, 0))
3473 tcp_store_ts_recent(tp
);
3477 /* This routine deals with acks during a TLP episode.
3478 * We mark the end of a TLP episode on receiving TLP dupack or when
3479 * ack is after tlp_high_seq.
3480 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3482 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3484 struct tcp_sock
*tp
= tcp_sk(sk
);
3486 if (before(ack
, tp
->tlp_high_seq
))
3489 if (flag
& FLAG_DSACKING_ACK
) {
3490 /* This DSACK means original and TLP probe arrived; no loss */
3491 tp
->tlp_high_seq
= 0;
3492 } else if (after(ack
, tp
->tlp_high_seq
)) {
3493 /* ACK advances: there was a loss, so reduce cwnd. Reset
3494 * tlp_high_seq in tcp_init_cwnd_reduction()
3496 tcp_init_cwnd_reduction(sk
);
3497 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3498 tcp_end_cwnd_reduction(sk
);
3499 tcp_try_keep_open(sk
);
3500 NET_INC_STATS(sock_net(sk
),
3501 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3502 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3503 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3504 /* Pure dupack: original and TLP probe arrived; no loss */
3505 tp
->tlp_high_seq
= 0;
3509 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3511 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3513 if (icsk
->icsk_ca_ops
->in_ack_event
)
3514 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3517 /* Congestion control has updated the cwnd already. So if we're in
3518 * loss recovery then now we do any new sends (for FRTO) or
3519 * retransmits (for CA_Loss or CA_recovery) that make sense.
3521 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3523 struct tcp_sock
*tp
= tcp_sk(sk
);
3525 if (rexmit
== REXMIT_NONE
)
3528 if (unlikely(rexmit
== 2)) {
3529 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3531 if (after(tp
->snd_nxt
, tp
->high_seq
))
3535 tcp_xmit_retransmit_queue(sk
);
3538 /* Returns the number of packets newly acked or sacked by the current ACK */
3539 static u32
tcp_newly_delivered(struct sock
*sk
, u32 prior_delivered
, int flag
)
3541 const struct net
*net
= sock_net(sk
);
3542 struct tcp_sock
*tp
= tcp_sk(sk
);
3545 delivered
= tp
->delivered
- prior_delivered
;
3546 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVERED
, delivered
);
3547 if (flag
& FLAG_ECE
) {
3548 tp
->delivered_ce
+= delivered
;
3549 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVEREDCE
, delivered
);
3554 /* This routine deals with incoming acks, but not outgoing ones. */
3555 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3557 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3558 struct tcp_sock
*tp
= tcp_sk(sk
);
3559 struct tcp_sacktag_state sack_state
;
3560 struct rate_sample rs
= { .prior_delivered
= 0 };
3561 u32 prior_snd_una
= tp
->snd_una
;
3562 bool is_sack_reneg
= tp
->is_sack_reneg
;
3563 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3564 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3565 bool is_dupack
= false;
3566 int prior_packets
= tp
->packets_out
;
3567 u32 delivered
= tp
->delivered
;
3568 u32 lost
= tp
->lost
;
3569 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3572 sack_state
.first_sackt
= 0;
3573 sack_state
.rate
= &rs
;
3575 /* We very likely will need to access rtx queue. */
3576 prefetch(sk
->tcp_rtx_queue
.rb_node
);
3578 /* If the ack is older than previous acks
3579 * then we can probably ignore it.
3581 if (before(ack
, prior_snd_una
)) {
3582 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3583 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3584 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3585 tcp_send_challenge_ack(sk
, skb
);
3591 /* If the ack includes data we haven't sent yet, discard
3592 * this segment (RFC793 Section 3.9).
3594 if (after(ack
, tp
->snd_nxt
))
3597 if (after(ack
, prior_snd_una
)) {
3598 flag
|= FLAG_SND_UNA_ADVANCED
;
3599 icsk
->icsk_retransmits
= 0;
3601 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3602 if (static_branch_unlikely(&clean_acked_data_enabled
))
3603 if (icsk
->icsk_clean_acked
)
3604 icsk
->icsk_clean_acked(sk
, ack
);
3608 prior_fack
= tcp_is_sack(tp
) ? tcp_highest_sack_seq(tp
) : tp
->snd_una
;
3609 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3611 /* ts_recent update must be made after we are sure that the packet
3614 if (flag
& FLAG_UPDATE_TS_RECENT
)
3615 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3617 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3618 /* Window is constant, pure forward advance.
3619 * No more checks are required.
3620 * Note, we use the fact that SND.UNA>=SND.WL2.
3622 tcp_update_wl(tp
, ack_seq
);
3623 tcp_snd_una_update(tp
, ack
);
3624 flag
|= FLAG_WIN_UPDATE
;
3626 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3628 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3630 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3632 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3635 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3637 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3639 if (TCP_SKB_CB(skb
)->sacked
)
3640 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3643 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3645 ack_ev_flags
|= CA_ACK_ECE
;
3648 if (flag
& FLAG_WIN_UPDATE
)
3649 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3651 tcp_in_ack_event(sk
, ack_ev_flags
);
3654 /* We passed data and got it acked, remove any soft error
3655 * log. Something worked...
3657 sk
->sk_err_soft
= 0;
3658 icsk
->icsk_probes_out
= 0;
3659 tp
->rcv_tstamp
= tcp_jiffies32
;
3663 /* See if we can take anything off of the retransmit queue. */
3664 flag
|= tcp_clean_rtx_queue(sk
, prior_fack
, prior_snd_una
, &sack_state
);
3666 tcp_rack_update_reo_wnd(sk
, &rs
);
3668 if (tp
->tlp_high_seq
)
3669 tcp_process_tlp_ack(sk
, ack
, flag
);
3670 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3671 if (flag
& FLAG_SET_XMIT_TIMER
)
3672 tcp_set_xmit_timer(sk
);
3674 if (tcp_ack_is_dubious(sk
, flag
)) {
3675 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3676 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3680 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3683 delivered
= tcp_newly_delivered(sk
, delivered
, flag
);
3684 lost
= tp
->lost
- lost
; /* freshly marked lost */
3685 rs
.is_ack_delayed
= !!(flag
& FLAG_ACK_MAYBE_DELAYED
);
3686 tcp_rate_gen(sk
, delivered
, lost
, is_sack_reneg
, sack_state
.rate
);
3687 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3688 tcp_xmit_recovery(sk
, rexmit
);
3692 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3693 if (flag
& FLAG_DSACKING_ACK
) {
3694 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3696 tcp_newly_delivered(sk
, delivered
, flag
);
3698 /* If this ack opens up a zero window, clear backoff. It was
3699 * being used to time the probes, and is probably far higher than
3700 * it needs to be for normal retransmission.
3704 if (tp
->tlp_high_seq
)
3705 tcp_process_tlp_ack(sk
, ack
, flag
);
3709 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3713 /* If data was SACKed, tag it and see if we should send more data.
3714 * If data was DSACKed, see if we can undo a cwnd reduction.
3716 if (TCP_SKB_CB(skb
)->sacked
) {
3717 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3719 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3721 tcp_newly_delivered(sk
, delivered
, flag
);
3722 tcp_xmit_recovery(sk
, rexmit
);
3725 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3729 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3730 bool syn
, struct tcp_fastopen_cookie
*foc
,
3733 /* Valid only in SYN or SYN-ACK with an even length. */
3734 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3737 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3738 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3739 memcpy(foc
->val
, cookie
, len
);
3746 static void smc_parse_options(const struct tcphdr
*th
,
3747 struct tcp_options_received
*opt_rx
,
3748 const unsigned char *ptr
,
3751 #if IS_ENABLED(CONFIG_SMC)
3752 if (static_branch_unlikely(&tcp_have_smc
)) {
3753 if (th
->syn
&& !(opsize
& 1) &&
3754 opsize
>= TCPOLEN_EXP_SMC_BASE
&&
3755 get_unaligned_be32(ptr
) == TCPOPT_SMC_MAGIC
)
3761 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3762 * But, this can also be called on packets in the established flow when
3763 * the fast version below fails.
3765 void tcp_parse_options(const struct net
*net
,
3766 const struct sk_buff
*skb
,
3767 struct tcp_options_received
*opt_rx
, int estab
,
3768 struct tcp_fastopen_cookie
*foc
)
3770 const unsigned char *ptr
;
3771 const struct tcphdr
*th
= tcp_hdr(skb
);
3772 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3774 ptr
= (const unsigned char *)(th
+ 1);
3775 opt_rx
->saw_tstamp
= 0;
3777 while (length
> 0) {
3778 int opcode
= *ptr
++;
3784 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3789 if (opsize
< 2) /* "silly options" */
3791 if (opsize
> length
)
3792 return; /* don't parse partial options */
3795 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3796 u16 in_mss
= get_unaligned_be16(ptr
);
3798 if (opt_rx
->user_mss
&&
3799 opt_rx
->user_mss
< in_mss
)
3800 in_mss
= opt_rx
->user_mss
;
3801 opt_rx
->mss_clamp
= in_mss
;
3806 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3807 !estab
&& net
->ipv4
.sysctl_tcp_window_scaling
) {
3808 __u8 snd_wscale
= *(__u8
*)ptr
;
3809 opt_rx
->wscale_ok
= 1;
3810 if (snd_wscale
> TCP_MAX_WSCALE
) {
3811 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3815 snd_wscale
= TCP_MAX_WSCALE
;
3817 opt_rx
->snd_wscale
= snd_wscale
;
3820 case TCPOPT_TIMESTAMP
:
3821 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3822 ((estab
&& opt_rx
->tstamp_ok
) ||
3823 (!estab
&& net
->ipv4
.sysctl_tcp_timestamps
))) {
3824 opt_rx
->saw_tstamp
= 1;
3825 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3826 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3829 case TCPOPT_SACK_PERM
:
3830 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3831 !estab
&& net
->ipv4
.sysctl_tcp_sack
) {
3832 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3833 tcp_sack_reset(opt_rx
);
3838 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3839 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3841 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3844 #ifdef CONFIG_TCP_MD5SIG
3847 * The MD5 Hash has already been
3848 * checked (see tcp_v{4,6}_do_rcv()).
3852 case TCPOPT_FASTOPEN
:
3853 tcp_parse_fastopen_option(
3854 opsize
- TCPOLEN_FASTOPEN_BASE
,
3855 ptr
, th
->syn
, foc
, false);
3859 /* Fast Open option shares code 254 using a
3860 * 16 bits magic number.
3862 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3863 get_unaligned_be16(ptr
) ==
3864 TCPOPT_FASTOPEN_MAGIC
)
3865 tcp_parse_fastopen_option(opsize
-
3866 TCPOLEN_EXP_FASTOPEN_BASE
,
3867 ptr
+ 2, th
->syn
, foc
, true);
3869 smc_parse_options(th
, opt_rx
, ptr
,
3879 EXPORT_SYMBOL(tcp_parse_options
);
3881 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3883 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3885 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3886 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3887 tp
->rx_opt
.saw_tstamp
= 1;
3889 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3892 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3894 tp
->rx_opt
.rcv_tsecr
= 0;
3900 /* Fast parse options. This hopes to only see timestamps.
3901 * If it is wrong it falls back on tcp_parse_options().
3903 static bool tcp_fast_parse_options(const struct net
*net
,
3904 const struct sk_buff
*skb
,
3905 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3907 /* In the spirit of fast parsing, compare doff directly to constant
3908 * values. Because equality is used, short doff can be ignored here.
3910 if (th
->doff
== (sizeof(*th
) / 4)) {
3911 tp
->rx_opt
.saw_tstamp
= 0;
3913 } else if (tp
->rx_opt
.tstamp_ok
&&
3914 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3915 if (tcp_parse_aligned_timestamp(tp
, th
))
3919 tcp_parse_options(net
, skb
, &tp
->rx_opt
, 1, NULL
);
3920 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3921 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3926 #ifdef CONFIG_TCP_MD5SIG
3928 * Parse MD5 Signature option
3930 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3932 int length
= (th
->doff
<< 2) - sizeof(*th
);
3933 const u8
*ptr
= (const u8
*)(th
+ 1);
3935 /* If not enough data remaining, we can short cut */
3936 while (length
>= TCPOLEN_MD5SIG
) {
3937 int opcode
= *ptr
++;
3948 if (opsize
< 2 || opsize
> length
)
3950 if (opcode
== TCPOPT_MD5SIG
)
3951 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3958 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3961 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3963 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3964 * it can pass through stack. So, the following predicate verifies that
3965 * this segment is not used for anything but congestion avoidance or
3966 * fast retransmit. Moreover, we even are able to eliminate most of such
3967 * second order effects, if we apply some small "replay" window (~RTO)
3968 * to timestamp space.
3970 * All these measures still do not guarantee that we reject wrapped ACKs
3971 * on networks with high bandwidth, when sequence space is recycled fastly,
3972 * but it guarantees that such events will be very rare and do not affect
3973 * connection seriously. This doesn't look nice, but alas, PAWS is really
3976 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3977 * states that events when retransmit arrives after original data are rare.
3978 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3979 * the biggest problem on large power networks even with minor reordering.
3980 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3981 * up to bandwidth of 18Gigabit/sec. 8) ]
3984 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3986 const struct tcp_sock
*tp
= tcp_sk(sk
);
3987 const struct tcphdr
*th
= tcp_hdr(skb
);
3988 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3989 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3991 return (/* 1. Pure ACK with correct sequence number. */
3992 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3994 /* 2. ... and duplicate ACK. */
3995 ack
== tp
->snd_una
&&
3997 /* 3. ... and does not update window. */
3998 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4000 /* 4. ... and sits in replay window. */
4001 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4004 static inline bool tcp_paws_discard(const struct sock
*sk
,
4005 const struct sk_buff
*skb
)
4007 const struct tcp_sock
*tp
= tcp_sk(sk
);
4009 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4010 !tcp_disordered_ack(sk
, skb
);
4013 /* Check segment sequence number for validity.
4015 * Segment controls are considered valid, if the segment
4016 * fits to the window after truncation to the window. Acceptability
4017 * of data (and SYN, FIN, of course) is checked separately.
4018 * See tcp_data_queue(), for example.
4020 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4021 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4022 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4023 * (borrowed from freebsd)
4026 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4028 return !before(end_seq
, tp
->rcv_wup
) &&
4029 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4032 /* When we get a reset we do this. */
4033 void tcp_reset(struct sock
*sk
)
4035 trace_tcp_receive_reset(sk
);
4037 /* We want the right error as BSD sees it (and indeed as we do). */
4038 switch (sk
->sk_state
) {
4040 sk
->sk_err
= ECONNREFUSED
;
4042 case TCP_CLOSE_WAIT
:
4048 sk
->sk_err
= ECONNRESET
;
4050 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4053 tcp_write_queue_purge(sk
);
4056 if (!sock_flag(sk
, SOCK_DEAD
))
4057 sk
->sk_error_report(sk
);
4061 * Process the FIN bit. This now behaves as it is supposed to work
4062 * and the FIN takes effect when it is validly part of sequence
4063 * space. Not before when we get holes.
4065 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4066 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4069 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4070 * close and we go into CLOSING (and later onto TIME-WAIT)
4072 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4074 void tcp_fin(struct sock
*sk
)
4076 struct tcp_sock
*tp
= tcp_sk(sk
);
4078 inet_csk_schedule_ack(sk
);
4080 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4081 sock_set_flag(sk
, SOCK_DONE
);
4083 switch (sk
->sk_state
) {
4085 case TCP_ESTABLISHED
:
4086 /* Move to CLOSE_WAIT */
4087 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4088 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4091 case TCP_CLOSE_WAIT
:
4093 /* Received a retransmission of the FIN, do
4098 /* RFC793: Remain in the LAST-ACK state. */
4102 /* This case occurs when a simultaneous close
4103 * happens, we must ack the received FIN and
4104 * enter the CLOSING state.
4107 tcp_set_state(sk
, TCP_CLOSING
);
4110 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4112 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4115 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4116 * cases we should never reach this piece of code.
4118 pr_err("%s: Impossible, sk->sk_state=%d\n",
4119 __func__
, sk
->sk_state
);
4123 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4124 * Probably, we should reset in this case. For now drop them.
4126 skb_rbtree_purge(&tp
->out_of_order_queue
);
4127 if (tcp_is_sack(tp
))
4128 tcp_sack_reset(&tp
->rx_opt
);
4131 if (!sock_flag(sk
, SOCK_DEAD
)) {
4132 sk
->sk_state_change(sk
);
4134 /* Do not send POLL_HUP for half duplex close. */
4135 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4136 sk
->sk_state
== TCP_CLOSE
)
4137 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4139 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4143 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4146 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4147 if (before(seq
, sp
->start_seq
))
4148 sp
->start_seq
= seq
;
4149 if (after(end_seq
, sp
->end_seq
))
4150 sp
->end_seq
= end_seq
;
4156 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4158 struct tcp_sock
*tp
= tcp_sk(sk
);
4160 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4163 if (before(seq
, tp
->rcv_nxt
))
4164 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4166 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4168 NET_INC_STATS(sock_net(sk
), mib_idx
);
4170 tp
->rx_opt
.dsack
= 1;
4171 tp
->duplicate_sack
[0].start_seq
= seq
;
4172 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4176 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4178 struct tcp_sock
*tp
= tcp_sk(sk
);
4180 if (!tp
->rx_opt
.dsack
)
4181 tcp_dsack_set(sk
, seq
, end_seq
);
4183 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4186 static void tcp_rcv_spurious_retrans(struct sock
*sk
, const struct sk_buff
*skb
)
4188 /* When the ACK path fails or drops most ACKs, the sender would
4189 * timeout and spuriously retransmit the same segment repeatedly.
4190 * The receiver remembers and reflects via DSACKs. Leverage the
4191 * DSACK state and change the txhash to re-route speculatively.
4193 if (TCP_SKB_CB(skb
)->seq
== tcp_sk(sk
)->duplicate_sack
[0].start_seq
)
4194 sk_rethink_txhash(sk
);
4197 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4199 struct tcp_sock
*tp
= tcp_sk(sk
);
4201 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4202 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4203 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4204 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4206 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4207 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4209 tcp_rcv_spurious_retrans(sk
, skb
);
4210 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4211 end_seq
= tp
->rcv_nxt
;
4212 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4219 /* These routines update the SACK block as out-of-order packets arrive or
4220 * in-order packets close up the sequence space.
4222 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4225 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4226 struct tcp_sack_block
*swalk
= sp
+ 1;
4228 /* See if the recent change to the first SACK eats into
4229 * or hits the sequence space of other SACK blocks, if so coalesce.
4231 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4232 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4235 /* Zap SWALK, by moving every further SACK up by one slot.
4236 * Decrease num_sacks.
4238 tp
->rx_opt
.num_sacks
--;
4239 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4243 this_sack
++, swalk
++;
4247 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4249 struct tcp_sock
*tp
= tcp_sk(sk
);
4250 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4251 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4257 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4258 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4259 /* Rotate this_sack to the first one. */
4260 for (; this_sack
> 0; this_sack
--, sp
--)
4261 swap(*sp
, *(sp
- 1));
4263 tcp_sack_maybe_coalesce(tp
);
4268 /* Could not find an adjacent existing SACK, build a new one,
4269 * put it at the front, and shift everyone else down. We
4270 * always know there is at least one SACK present already here.
4272 * If the sack array is full, forget about the last one.
4274 if (this_sack
>= TCP_NUM_SACKS
) {
4275 if (tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)
4278 tp
->rx_opt
.num_sacks
--;
4281 for (; this_sack
> 0; this_sack
--, sp
--)
4285 /* Build the new head SACK, and we're done. */
4286 sp
->start_seq
= seq
;
4287 sp
->end_seq
= end_seq
;
4288 tp
->rx_opt
.num_sacks
++;
4291 /* RCV.NXT advances, some SACKs should be eaten. */
4293 static void tcp_sack_remove(struct tcp_sock
*tp
)
4295 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4296 int num_sacks
= tp
->rx_opt
.num_sacks
;
4299 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4300 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4301 tp
->rx_opt
.num_sacks
= 0;
4305 for (this_sack
= 0; this_sack
< num_sacks
;) {
4306 /* Check if the start of the sack is covered by RCV.NXT. */
4307 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4310 /* RCV.NXT must cover all the block! */
4311 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4313 /* Zap this SACK, by moving forward any other SACKS. */
4314 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4315 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4322 tp
->rx_opt
.num_sacks
= num_sacks
;
4326 * tcp_try_coalesce - try to merge skb to prior one
4328 * @dest: destination queue
4330 * @from: buffer to add in queue
4331 * @fragstolen: pointer to boolean
4333 * Before queueing skb @from after @to, try to merge them
4334 * to reduce overall memory use and queue lengths, if cost is small.
4335 * Packets in ofo or receive queues can stay a long time.
4336 * Better try to coalesce them right now to avoid future collapses.
4337 * Returns true if caller should free @from instead of queueing it
4339 static bool tcp_try_coalesce(struct sock
*sk
,
4341 struct sk_buff
*from
,
4346 *fragstolen
= false;
4348 /* Its possible this segment overlaps with prior segment in queue */
4349 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4352 #ifdef CONFIG_TLS_DEVICE
4353 if (from
->decrypted
!= to
->decrypted
)
4357 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4360 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4361 sk_mem_charge(sk
, delta
);
4362 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4363 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4364 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4365 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4367 if (TCP_SKB_CB(from
)->has_rxtstamp
) {
4368 TCP_SKB_CB(to
)->has_rxtstamp
= true;
4369 to
->tstamp
= from
->tstamp
;
4370 skb_hwtstamps(to
)->hwtstamp
= skb_hwtstamps(from
)->hwtstamp
;
4376 static bool tcp_ooo_try_coalesce(struct sock
*sk
,
4378 struct sk_buff
*from
,
4381 bool res
= tcp_try_coalesce(sk
, to
, from
, fragstolen
);
4383 /* In case tcp_drop() is called later, update to->gso_segs */
4385 u32 gso_segs
= max_t(u16
, 1, skb_shinfo(to
)->gso_segs
) +
4386 max_t(u16
, 1, skb_shinfo(from
)->gso_segs
);
4388 skb_shinfo(to
)->gso_segs
= min_t(u32
, gso_segs
, 0xFFFF);
4393 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4395 sk_drops_add(sk
, skb
);
4399 /* This one checks to see if we can put data from the
4400 * out_of_order queue into the receive_queue.
4402 static void tcp_ofo_queue(struct sock
*sk
)
4404 struct tcp_sock
*tp
= tcp_sk(sk
);
4405 __u32 dsack_high
= tp
->rcv_nxt
;
4406 bool fin
, fragstolen
, eaten
;
4407 struct sk_buff
*skb
, *tail
;
4410 p
= rb_first(&tp
->out_of_order_queue
);
4413 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4416 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4417 __u32 dsack
= dsack_high
;
4418 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4419 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4420 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4423 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4425 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4426 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4430 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4431 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4432 TCP_SKB_CB(skb
)->end_seq
);
4434 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4435 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4436 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4437 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4439 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4441 kfree_skb_partial(skb
, fragstolen
);
4443 if (unlikely(fin
)) {
4445 /* tcp_fin() purges tp->out_of_order_queue,
4446 * so we must end this loop right now.
4453 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4454 static int tcp_prune_queue(struct sock
*sk
);
4456 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4459 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4460 !sk_rmem_schedule(sk
, skb
, size
)) {
4462 if (tcp_prune_queue(sk
) < 0)
4465 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4466 if (!tcp_prune_ofo_queue(sk
))
4473 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4475 struct tcp_sock
*tp
= tcp_sk(sk
);
4476 struct rb_node
**p
, *parent
;
4477 struct sk_buff
*skb1
;
4481 tcp_ecn_check_ce(sk
, skb
);
4483 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4484 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4489 /* Disable header prediction. */
4491 inet_csk_schedule_ack(sk
);
4493 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4494 seq
= TCP_SKB_CB(skb
)->seq
;
4495 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4496 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4497 tp
->rcv_nxt
, seq
, end_seq
);
4499 p
= &tp
->out_of_order_queue
.rb_node
;
4500 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4501 /* Initial out of order segment, build 1 SACK. */
4502 if (tcp_is_sack(tp
)) {
4503 tp
->rx_opt
.num_sacks
= 1;
4504 tp
->selective_acks
[0].start_seq
= seq
;
4505 tp
->selective_acks
[0].end_seq
= end_seq
;
4507 rb_link_node(&skb
->rbnode
, NULL
, p
);
4508 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4509 tp
->ooo_last_skb
= skb
;
4513 /* In the typical case, we are adding an skb to the end of the list.
4514 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4516 if (tcp_ooo_try_coalesce(sk
, tp
->ooo_last_skb
,
4517 skb
, &fragstolen
)) {
4519 tcp_grow_window(sk
, skb
);
4520 kfree_skb_partial(skb
, fragstolen
);
4524 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4525 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4526 parent
= &tp
->ooo_last_skb
->rbnode
;
4527 p
= &parent
->rb_right
;
4531 /* Find place to insert this segment. Handle overlaps on the way. */
4535 skb1
= rb_to_skb(parent
);
4536 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4537 p
= &parent
->rb_left
;
4540 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4541 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4542 /* All the bits are present. Drop. */
4543 NET_INC_STATS(sock_net(sk
),
4544 LINUX_MIB_TCPOFOMERGE
);
4547 tcp_dsack_set(sk
, seq
, end_seq
);
4550 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4551 /* Partial overlap. */
4552 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4554 /* skb's seq == skb1's seq and skb covers skb1.
4555 * Replace skb1 with skb.
4557 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4558 &tp
->out_of_order_queue
);
4559 tcp_dsack_extend(sk
,
4560 TCP_SKB_CB(skb1
)->seq
,
4561 TCP_SKB_CB(skb1
)->end_seq
);
4562 NET_INC_STATS(sock_net(sk
),
4563 LINUX_MIB_TCPOFOMERGE
);
4567 } else if (tcp_ooo_try_coalesce(sk
, skb1
,
4568 skb
, &fragstolen
)) {
4571 p
= &parent
->rb_right
;
4574 /* Insert segment into RB tree. */
4575 rb_link_node(&skb
->rbnode
, parent
, p
);
4576 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4579 /* Remove other segments covered by skb. */
4580 while ((skb1
= skb_rb_next(skb
)) != NULL
) {
4581 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4583 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4584 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4588 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4589 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4590 TCP_SKB_CB(skb1
)->end_seq
);
4591 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4594 /* If there is no skb after us, we are the last_skb ! */
4596 tp
->ooo_last_skb
= skb
;
4599 if (tcp_is_sack(tp
))
4600 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4603 tcp_grow_window(sk
, skb
);
4605 skb_set_owner_r(skb
, sk
);
4609 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4613 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4615 __skb_pull(skb
, hdrlen
);
4617 tcp_try_coalesce(sk
, tail
,
4618 skb
, fragstolen
)) ? 1 : 0;
4619 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4621 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4622 skb_set_owner_r(skb
, sk
);
4627 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4629 struct sk_buff
*skb
;
4637 if (size
> PAGE_SIZE
) {
4638 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4640 data_len
= npages
<< PAGE_SHIFT
;
4641 size
= data_len
+ (size
& ~PAGE_MASK
);
4643 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4644 PAGE_ALLOC_COSTLY_ORDER
,
4645 &err
, sk
->sk_allocation
);
4649 skb_put(skb
, size
- data_len
);
4650 skb
->data_len
= data_len
;
4653 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
4654 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
4658 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4662 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4663 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4664 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4666 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4667 WARN_ON_ONCE(fragstolen
); /* should not happen */
4679 void tcp_data_ready(struct sock
*sk
)
4681 const struct tcp_sock
*tp
= tcp_sk(sk
);
4682 int avail
= tp
->rcv_nxt
- tp
->copied_seq
;
4684 if (avail
< sk
->sk_rcvlowat
&& !sock_flag(sk
, SOCK_DONE
))
4687 sk
->sk_data_ready(sk
);
4690 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4692 struct tcp_sock
*tp
= tcp_sk(sk
);
4696 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4701 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4703 tcp_ecn_accept_cwr(sk
, skb
);
4705 tp
->rx_opt
.dsack
= 0;
4707 /* Queue data for delivery to the user.
4708 * Packets in sequence go to the receive queue.
4709 * Out of sequence packets to the out_of_order_queue.
4711 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4712 if (tcp_receive_window(tp
) == 0) {
4713 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
4717 /* Ok. In sequence. In window. */
4719 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4720 sk_forced_mem_schedule(sk
, skb
->truesize
);
4721 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
4722 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
4726 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4728 tcp_event_data_recv(sk
, skb
);
4729 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4732 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4735 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4736 * gap in queue is filled.
4738 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4739 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
4742 if (tp
->rx_opt
.num_sacks
)
4743 tcp_sack_remove(tp
);
4745 tcp_fast_path_check(sk
);
4748 kfree_skb_partial(skb
, fragstolen
);
4749 if (!sock_flag(sk
, SOCK_DEAD
))
4754 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4755 tcp_rcv_spurious_retrans(sk
, skb
);
4756 /* A retransmit, 2nd most common case. Force an immediate ack. */
4757 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4758 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4761 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4762 inet_csk_schedule_ack(sk
);
4768 /* Out of window. F.e. zero window probe. */
4769 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4772 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4773 /* Partial packet, seq < rcv_next < end_seq */
4774 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4775 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4776 TCP_SKB_CB(skb
)->end_seq
);
4778 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4780 /* If window is closed, drop tail of packet. But after
4781 * remembering D-SACK for its head made in previous line.
4783 if (!tcp_receive_window(tp
)) {
4784 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
4790 tcp_data_queue_ofo(sk
, skb
);
4793 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4796 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4798 return skb_rb_next(skb
);
4801 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4802 struct sk_buff_head
*list
,
4803 struct rb_root
*root
)
4805 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4808 __skb_unlink(skb
, list
);
4810 rb_erase(&skb
->rbnode
, root
);
4813 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4818 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4819 void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4821 struct rb_node
**p
= &root
->rb_node
;
4822 struct rb_node
*parent
= NULL
;
4823 struct sk_buff
*skb1
;
4827 skb1
= rb_to_skb(parent
);
4828 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4829 p
= &parent
->rb_left
;
4831 p
= &parent
->rb_right
;
4833 rb_link_node(&skb
->rbnode
, parent
, p
);
4834 rb_insert_color(&skb
->rbnode
, root
);
4837 /* Collapse contiguous sequence of skbs head..tail with
4838 * sequence numbers start..end.
4840 * If tail is NULL, this means until the end of the queue.
4842 * Segments with FIN/SYN are not collapsed (only because this
4846 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4847 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4849 struct sk_buff
*skb
= head
, *n
;
4850 struct sk_buff_head tmp
;
4853 /* First, check that queue is collapsible and find
4854 * the point where collapsing can be useful.
4857 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4858 n
= tcp_skb_next(skb
, list
);
4860 /* No new bits? It is possible on ofo queue. */
4861 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4862 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4868 /* The first skb to collapse is:
4870 * - bloated or contains data before "start" or
4871 * overlaps to the next one.
4873 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4874 (tcp_win_from_space(sk
, skb
->truesize
) > skb
->len
||
4875 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4876 end_of_skbs
= false;
4880 if (n
&& n
!= tail
&&
4881 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4882 end_of_skbs
= false;
4886 /* Decided to skip this, advance start seq. */
4887 start
= TCP_SKB_CB(skb
)->end_seq
;
4890 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4893 __skb_queue_head_init(&tmp
);
4895 while (before(start
, end
)) {
4896 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4897 struct sk_buff
*nskb
;
4899 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4903 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4904 #ifdef CONFIG_TLS_DEVICE
4905 nskb
->decrypted
= skb
->decrypted
;
4907 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4909 __skb_queue_before(list
, skb
, nskb
);
4911 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4912 skb_set_owner_r(nskb
, sk
);
4914 /* Copy data, releasing collapsed skbs. */
4916 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4917 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4921 size
= min(copy
, size
);
4922 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4924 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4928 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4929 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4932 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4934 #ifdef CONFIG_TLS_DEVICE
4935 if (skb
->decrypted
!= nskb
->decrypted
)
4942 skb_queue_walk_safe(&tmp
, skb
, n
)
4943 tcp_rbtree_insert(root
, skb
);
4946 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4947 * and tcp_collapse() them until all the queue is collapsed.
4949 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4951 struct tcp_sock
*tp
= tcp_sk(sk
);
4952 u32 range_truesize
, sum_tiny
= 0;
4953 struct sk_buff
*skb
, *head
;
4956 skb
= skb_rb_first(&tp
->out_of_order_queue
);
4959 tp
->ooo_last_skb
= skb_rb_last(&tp
->out_of_order_queue
);
4962 start
= TCP_SKB_CB(skb
)->seq
;
4963 end
= TCP_SKB_CB(skb
)->end_seq
;
4964 range_truesize
= skb
->truesize
;
4966 for (head
= skb
;;) {
4967 skb
= skb_rb_next(skb
);
4969 /* Range is terminated when we see a gap or when
4970 * we are at the queue end.
4973 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4974 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4975 /* Do not attempt collapsing tiny skbs */
4976 if (range_truesize
!= head
->truesize
||
4977 end
- start
>= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM
)) {
4978 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4979 head
, skb
, start
, end
);
4981 sum_tiny
+= range_truesize
;
4982 if (sum_tiny
> sk
->sk_rcvbuf
>> 3)
4988 range_truesize
+= skb
->truesize
;
4989 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4990 start
= TCP_SKB_CB(skb
)->seq
;
4991 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4992 end
= TCP_SKB_CB(skb
)->end_seq
;
4997 * Clean the out-of-order queue to make room.
4998 * We drop high sequences packets to :
4999 * 1) Let a chance for holes to be filled.
5000 * 2) not add too big latencies if thousands of packets sit there.
5001 * (But if application shrinks SO_RCVBUF, we could still end up
5002 * freeing whole queue here)
5003 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5005 * Return true if queue has shrunk.
5007 static bool tcp_prune_ofo_queue(struct sock
*sk
)
5009 struct tcp_sock
*tp
= tcp_sk(sk
);
5010 struct rb_node
*node
, *prev
;
5013 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
5016 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
5017 goal
= sk
->sk_rcvbuf
>> 3;
5018 node
= &tp
->ooo_last_skb
->rbnode
;
5020 prev
= rb_prev(node
);
5021 rb_erase(node
, &tp
->out_of_order_queue
);
5022 goal
-= rb_to_skb(node
)->truesize
;
5023 tcp_drop(sk
, rb_to_skb(node
));
5024 if (!prev
|| goal
<= 0) {
5026 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
5027 !tcp_under_memory_pressure(sk
))
5029 goal
= sk
->sk_rcvbuf
>> 3;
5033 tp
->ooo_last_skb
= rb_to_skb(prev
);
5035 /* Reset SACK state. A conforming SACK implementation will
5036 * do the same at a timeout based retransmit. When a connection
5037 * is in a sad state like this, we care only about integrity
5038 * of the connection not performance.
5040 if (tp
->rx_opt
.sack_ok
)
5041 tcp_sack_reset(&tp
->rx_opt
);
5045 /* Reduce allocated memory if we can, trying to get
5046 * the socket within its memory limits again.
5048 * Return less than zero if we should start dropping frames
5049 * until the socket owning process reads some of the data
5050 * to stabilize the situation.
5052 static int tcp_prune_queue(struct sock
*sk
)
5054 struct tcp_sock
*tp
= tcp_sk(sk
);
5056 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
5058 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
5060 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
5061 tcp_clamp_window(sk
);
5062 else if (tcp_under_memory_pressure(sk
))
5063 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
5065 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5068 tcp_collapse_ofo_queue(sk
);
5069 if (!skb_queue_empty(&sk
->sk_receive_queue
))
5070 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
5071 skb_peek(&sk
->sk_receive_queue
),
5073 tp
->copied_seq
, tp
->rcv_nxt
);
5076 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5079 /* Collapsing did not help, destructive actions follow.
5080 * This must not ever occur. */
5082 tcp_prune_ofo_queue(sk
);
5084 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5087 /* If we are really being abused, tell the caller to silently
5088 * drop receive data on the floor. It will get retransmitted
5089 * and hopefully then we'll have sufficient space.
5091 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
5093 /* Massive buffer overcommit. */
5098 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
5100 const struct tcp_sock
*tp
= tcp_sk(sk
);
5102 /* If the user specified a specific send buffer setting, do
5105 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5108 /* If we are under global TCP memory pressure, do not expand. */
5109 if (tcp_under_memory_pressure(sk
))
5112 /* If we are under soft global TCP memory pressure, do not expand. */
5113 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5116 /* If we filled the congestion window, do not expand. */
5117 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5123 /* When incoming ACK allowed to free some skb from write_queue,
5124 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5125 * on the exit from tcp input handler.
5127 * PROBLEM: sndbuf expansion does not work well with largesend.
5129 static void tcp_new_space(struct sock
*sk
)
5131 struct tcp_sock
*tp
= tcp_sk(sk
);
5133 if (tcp_should_expand_sndbuf(sk
)) {
5134 tcp_sndbuf_expand(sk
);
5135 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5138 sk
->sk_write_space(sk
);
5141 static void tcp_check_space(struct sock
*sk
)
5143 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5144 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5145 /* pairs with tcp_poll() */
5147 if (sk
->sk_socket
&&
5148 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5150 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5151 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5156 static inline void tcp_data_snd_check(struct sock
*sk
)
5158 tcp_push_pending_frames(sk
);
5159 tcp_check_space(sk
);
5163 * Check if sending an ack is needed.
5165 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5167 struct tcp_sock
*tp
= tcp_sk(sk
);
5168 unsigned long rtt
, delay
;
5170 /* More than one full frame received... */
5171 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5172 /* ... and right edge of window advances far enough.
5173 * (tcp_recvmsg() will send ACK otherwise).
5174 * If application uses SO_RCVLOWAT, we want send ack now if
5175 * we have not received enough bytes to satisfy the condition.
5177 (tp
->rcv_nxt
- tp
->copied_seq
< sk
->sk_rcvlowat
||
5178 __tcp_select_window(sk
) >= tp
->rcv_wnd
)) ||
5179 /* We ACK each frame or... */
5180 tcp_in_quickack_mode(sk
) ||
5181 /* Protocol state mandates a one-time immediate ACK */
5182 inet_csk(sk
)->icsk_ack
.pending
& ICSK_ACK_NOW
) {
5188 if (!ofo_possible
|| RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
5189 tcp_send_delayed_ack(sk
);
5193 if (!tcp_is_sack(tp
) ||
5194 tp
->compressed_ack
>= sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_nr
)
5197 if (tp
->compressed_ack_rcv_nxt
!= tp
->rcv_nxt
) {
5198 tp
->compressed_ack_rcv_nxt
= tp
->rcv_nxt
;
5199 if (tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)
5200 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPACKCOMPRESSED
,
5201 tp
->compressed_ack
- TCP_FASTRETRANS_THRESH
);
5202 tp
->compressed_ack
= 0;
5205 if (++tp
->compressed_ack
<= TCP_FASTRETRANS_THRESH
)
5208 if (hrtimer_is_queued(&tp
->compressed_ack_timer
))
5211 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5213 rtt
= tp
->rcv_rtt_est
.rtt_us
;
5214 if (tp
->srtt_us
&& tp
->srtt_us
< rtt
)
5217 delay
= min_t(unsigned long, sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_delay_ns
,
5218 rtt
* (NSEC_PER_USEC
>> 3)/20);
5220 hrtimer_start(&tp
->compressed_ack_timer
, ns_to_ktime(delay
),
5221 HRTIMER_MODE_REL_PINNED_SOFT
);
5224 static inline void tcp_ack_snd_check(struct sock
*sk
)
5226 if (!inet_csk_ack_scheduled(sk
)) {
5227 /* We sent a data segment already. */
5230 __tcp_ack_snd_check(sk
, 1);
5234 * This routine is only called when we have urgent data
5235 * signaled. Its the 'slow' part of tcp_urg. It could be
5236 * moved inline now as tcp_urg is only called from one
5237 * place. We handle URGent data wrong. We have to - as
5238 * BSD still doesn't use the correction from RFC961.
5239 * For 1003.1g we should support a new option TCP_STDURG to permit
5240 * either form (or just set the sysctl tcp_stdurg).
5243 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5245 struct tcp_sock
*tp
= tcp_sk(sk
);
5246 u32 ptr
= ntohs(th
->urg_ptr
);
5248 if (ptr
&& !sock_net(sk
)->ipv4
.sysctl_tcp_stdurg
)
5250 ptr
+= ntohl(th
->seq
);
5252 /* Ignore urgent data that we've already seen and read. */
5253 if (after(tp
->copied_seq
, ptr
))
5256 /* Do not replay urg ptr.
5258 * NOTE: interesting situation not covered by specs.
5259 * Misbehaving sender may send urg ptr, pointing to segment,
5260 * which we already have in ofo queue. We are not able to fetch
5261 * such data and will stay in TCP_URG_NOTYET until will be eaten
5262 * by recvmsg(). Seems, we are not obliged to handle such wicked
5263 * situations. But it is worth to think about possibility of some
5264 * DoSes using some hypothetical application level deadlock.
5266 if (before(ptr
, tp
->rcv_nxt
))
5269 /* Do we already have a newer (or duplicate) urgent pointer? */
5270 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5273 /* Tell the world about our new urgent pointer. */
5276 /* We may be adding urgent data when the last byte read was
5277 * urgent. To do this requires some care. We cannot just ignore
5278 * tp->copied_seq since we would read the last urgent byte again
5279 * as data, nor can we alter copied_seq until this data arrives
5280 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5282 * NOTE. Double Dutch. Rendering to plain English: author of comment
5283 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5284 * and expect that both A and B disappear from stream. This is _wrong_.
5285 * Though this happens in BSD with high probability, this is occasional.
5286 * Any application relying on this is buggy. Note also, that fix "works"
5287 * only in this artificial test. Insert some normal data between A and B and we will
5288 * decline of BSD again. Verdict: it is better to remove to trap
5291 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5292 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5293 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5295 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5296 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5301 tp
->urg_data
= TCP_URG_NOTYET
;
5304 /* Disable header prediction. */
5308 /* This is the 'fast' part of urgent handling. */
5309 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5311 struct tcp_sock
*tp
= tcp_sk(sk
);
5313 /* Check if we get a new urgent pointer - normally not. */
5315 tcp_check_urg(sk
, th
);
5317 /* Do we wait for any urgent data? - normally not... */
5318 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5319 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5322 /* Is the urgent pointer pointing into this packet? */
5323 if (ptr
< skb
->len
) {
5325 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5327 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5328 if (!sock_flag(sk
, SOCK_DEAD
))
5329 sk
->sk_data_ready(sk
);
5334 /* Accept RST for rcv_nxt - 1 after a FIN.
5335 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5336 * FIN is sent followed by a RST packet. The RST is sent with the same
5337 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5338 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5339 * ACKs on the closed socket. In addition middleboxes can drop either the
5340 * challenge ACK or a subsequent RST.
5342 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5344 struct tcp_sock
*tp
= tcp_sk(sk
);
5346 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5347 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5351 /* Does PAWS and seqno based validation of an incoming segment, flags will
5352 * play significant role here.
5354 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5355 const struct tcphdr
*th
, int syn_inerr
)
5357 struct tcp_sock
*tp
= tcp_sk(sk
);
5358 bool rst_seq_match
= false;
5360 /* RFC1323: H1. Apply PAWS check first. */
5361 if (tcp_fast_parse_options(sock_net(sk
), skb
, th
, tp
) &&
5362 tp
->rx_opt
.saw_tstamp
&&
5363 tcp_paws_discard(sk
, skb
)) {
5365 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5366 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5367 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5368 &tp
->last_oow_ack_time
))
5369 tcp_send_dupack(sk
, skb
);
5372 /* Reset is accepted even if it did not pass PAWS. */
5375 /* Step 1: check sequence number */
5376 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5377 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5378 * (RST) segments are validated by checking their SEQ-fields."
5379 * And page 69: "If an incoming segment is not acceptable,
5380 * an acknowledgment should be sent in reply (unless the RST
5381 * bit is set, if so drop the segment and return)".
5386 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5387 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5388 &tp
->last_oow_ack_time
))
5389 tcp_send_dupack(sk
, skb
);
5390 } else if (tcp_reset_check(sk
, skb
)) {
5396 /* Step 2: check RST bit */
5398 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5399 * FIN and SACK too if available):
5400 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5401 * the right-most SACK block,
5403 * RESET the connection
5405 * Send a challenge ACK
5407 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5408 tcp_reset_check(sk
, skb
)) {
5409 rst_seq_match
= true;
5410 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5411 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5412 int max_sack
= sp
[0].end_seq
;
5415 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5417 max_sack
= after(sp
[this_sack
].end_seq
,
5419 sp
[this_sack
].end_seq
: max_sack
;
5422 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5423 rst_seq_match
= true;
5429 /* Disable TFO if RST is out-of-order
5430 * and no data has been received
5431 * for current active TFO socket
5433 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
5434 sk
->sk_state
== TCP_ESTABLISHED
)
5435 tcp_fastopen_active_disable(sk
);
5436 tcp_send_challenge_ack(sk
, skb
);
5441 /* step 3: check security and precedence [ignored] */
5443 /* step 4: Check for a SYN
5444 * RFC 5961 4.2 : Send a challenge ack
5449 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5450 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5451 tcp_send_challenge_ack(sk
, skb
);
5463 * TCP receive function for the ESTABLISHED state.
5465 * It is split into a fast path and a slow path. The fast path is
5467 * - A zero window was announced from us - zero window probing
5468 * is only handled properly in the slow path.
5469 * - Out of order segments arrived.
5470 * - Urgent data is expected.
5471 * - There is no buffer space left
5472 * - Unexpected TCP flags/window values/header lengths are received
5473 * (detected by checking the TCP header against pred_flags)
5474 * - Data is sent in both directions. Fast path only supports pure senders
5475 * or pure receivers (this means either the sequence number or the ack
5476 * value must stay constant)
5477 * - Unexpected TCP option.
5479 * When these conditions are not satisfied it drops into a standard
5480 * receive procedure patterned after RFC793 to handle all cases.
5481 * The first three cases are guaranteed by proper pred_flags setting,
5482 * the rest is checked inline. Fast processing is turned on in
5483 * tcp_data_queue when everything is OK.
5485 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
)
5487 const struct tcphdr
*th
= (const struct tcphdr
*)skb
->data
;
5488 struct tcp_sock
*tp
= tcp_sk(sk
);
5489 unsigned int len
= skb
->len
;
5491 /* TCP congestion window tracking */
5492 trace_tcp_probe(sk
, skb
);
5494 tcp_mstamp_refresh(tp
);
5495 if (unlikely(!sk
->sk_rx_dst
))
5496 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5498 * Header prediction.
5499 * The code loosely follows the one in the famous
5500 * "30 instruction TCP receive" Van Jacobson mail.
5502 * Van's trick is to deposit buffers into socket queue
5503 * on a device interrupt, to call tcp_recv function
5504 * on the receive process context and checksum and copy
5505 * the buffer to user space. smart...
5507 * Our current scheme is not silly either but we take the
5508 * extra cost of the net_bh soft interrupt processing...
5509 * We do checksum and copy also but from device to kernel.
5512 tp
->rx_opt
.saw_tstamp
= 0;
5514 /* pred_flags is 0xS?10 << 16 + snd_wnd
5515 * if header_prediction is to be made
5516 * 'S' will always be tp->tcp_header_len >> 2
5517 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5518 * turn it off (when there are holes in the receive
5519 * space for instance)
5520 * PSH flag is ignored.
5523 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5524 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5525 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5526 int tcp_header_len
= tp
->tcp_header_len
;
5528 /* Timestamp header prediction: tcp_header_len
5529 * is automatically equal to th->doff*4 due to pred_flags
5533 /* Check timestamp */
5534 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5535 /* No? Slow path! */
5536 if (!tcp_parse_aligned_timestamp(tp
, th
))
5539 /* If PAWS failed, check it more carefully in slow path */
5540 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5543 /* DO NOT update ts_recent here, if checksum fails
5544 * and timestamp was corrupted part, it will result
5545 * in a hung connection since we will drop all
5546 * future packets due to the PAWS test.
5550 if (len
<= tcp_header_len
) {
5551 /* Bulk data transfer: sender */
5552 if (len
== tcp_header_len
) {
5553 /* Predicted packet is in window by definition.
5554 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5555 * Hence, check seq<=rcv_wup reduces to:
5557 if (tcp_header_len
==
5558 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5559 tp
->rcv_nxt
== tp
->rcv_wup
)
5560 tcp_store_ts_recent(tp
);
5562 /* We know that such packets are checksummed
5565 tcp_ack(sk
, skb
, 0);
5567 tcp_data_snd_check(sk
);
5568 /* When receiving pure ack in fast path, update
5569 * last ts ecr directly instead of calling
5570 * tcp_rcv_rtt_measure_ts()
5572 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
5574 } else { /* Header too small */
5575 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5580 bool fragstolen
= false;
5582 if (tcp_checksum_complete(skb
))
5585 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5588 /* Predicted packet is in window by definition.
5589 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5590 * Hence, check seq<=rcv_wup reduces to:
5592 if (tcp_header_len
==
5593 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5594 tp
->rcv_nxt
== tp
->rcv_wup
)
5595 tcp_store_ts_recent(tp
);
5597 tcp_rcv_rtt_measure_ts(sk
, skb
);
5599 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5601 /* Bulk data transfer: receiver */
5602 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5605 tcp_event_data_recv(sk
, skb
);
5607 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5608 /* Well, only one small jumplet in fast path... */
5609 tcp_ack(sk
, skb
, FLAG_DATA
);
5610 tcp_data_snd_check(sk
);
5611 if (!inet_csk_ack_scheduled(sk
))
5615 __tcp_ack_snd_check(sk
, 0);
5618 kfree_skb_partial(skb
, fragstolen
);
5625 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5628 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5632 * Standard slow path.
5635 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5639 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5642 tcp_rcv_rtt_measure_ts(sk
, skb
);
5644 /* Process urgent data. */
5645 tcp_urg(sk
, skb
, th
);
5647 /* step 7: process the segment text */
5648 tcp_data_queue(sk
, skb
);
5650 tcp_data_snd_check(sk
);
5651 tcp_ack_snd_check(sk
);
5655 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5656 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5661 EXPORT_SYMBOL(tcp_rcv_established
);
5663 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5665 struct tcp_sock
*tp
= tcp_sk(sk
);
5666 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5668 tcp_set_state(sk
, TCP_ESTABLISHED
);
5669 icsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
5672 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5673 security_inet_conn_established(sk
, skb
);
5674 sk_mark_napi_id(sk
, skb
);
5677 tcp_init_transfer(sk
, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
);
5679 /* Prevent spurious tcp_cwnd_restart() on first data
5682 tp
->lsndtime
= tcp_jiffies32
;
5684 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5685 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5687 if (!tp
->rx_opt
.snd_wscale
)
5688 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5693 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5694 struct tcp_fastopen_cookie
*cookie
)
5696 struct tcp_sock
*tp
= tcp_sk(sk
);
5697 struct sk_buff
*data
= tp
->syn_data
? tcp_rtx_queue_head(sk
) : NULL
;
5698 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5699 bool syn_drop
= false;
5701 if (mss
== tp
->rx_opt
.user_mss
) {
5702 struct tcp_options_received opt
;
5704 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5705 tcp_clear_options(&opt
);
5706 opt
.user_mss
= opt
.mss_clamp
= 0;
5707 tcp_parse_options(sock_net(sk
), synack
, &opt
, 0, NULL
);
5708 mss
= opt
.mss_clamp
;
5711 if (!tp
->syn_fastopen
) {
5712 /* Ignore an unsolicited cookie */
5714 } else if (tp
->total_retrans
) {
5715 /* SYN timed out and the SYN-ACK neither has a cookie nor
5716 * acknowledges data. Presumably the remote received only
5717 * the retransmitted (regular) SYNs: either the original
5718 * SYN-data or the corresponding SYN-ACK was dropped.
5720 syn_drop
= (cookie
->len
< 0 && data
);
5721 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5722 /* We requested a cookie but didn't get it. If we did not use
5723 * the (old) exp opt format then try so next time (try_exp=1).
5724 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5726 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5729 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5731 if (data
) { /* Retransmit unacked data in SYN */
5732 skb_rbtree_walk_from(data
) {
5733 if (__tcp_retransmit_skb(sk
, data
, 1))
5737 NET_INC_STATS(sock_net(sk
),
5738 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5741 tp
->syn_data_acked
= tp
->syn_data
;
5742 if (tp
->syn_data_acked
) {
5743 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
5744 /* SYN-data is counted as two separate packets in tcp_ack() */
5745 if (tp
->delivered
> 1)
5749 tcp_fastopen_add_skb(sk
, synack
);
5754 static void smc_check_reset_syn(struct tcp_sock
*tp
)
5756 #if IS_ENABLED(CONFIG_SMC)
5757 if (static_branch_unlikely(&tcp_have_smc
)) {
5758 if (tp
->syn_smc
&& !tp
->rx_opt
.smc_ok
)
5764 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5765 const struct tcphdr
*th
)
5767 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5768 struct tcp_sock
*tp
= tcp_sk(sk
);
5769 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5770 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5773 tcp_parse_options(sock_net(sk
), skb
, &tp
->rx_opt
, 0, &foc
);
5774 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5775 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5779 * "If the state is SYN-SENT then
5780 * first check the ACK bit
5781 * If the ACK bit is set
5782 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5783 * a reset (unless the RST bit is set, if so drop
5784 * the segment and return)"
5786 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5787 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5788 goto reset_and_undo
;
5790 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5791 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5792 tcp_time_stamp(tp
))) {
5793 NET_INC_STATS(sock_net(sk
),
5794 LINUX_MIB_PAWSACTIVEREJECTED
);
5795 goto reset_and_undo
;
5798 /* Now ACK is acceptable.
5800 * "If the RST bit is set
5801 * If the ACK was acceptable then signal the user "error:
5802 * connection reset", drop the segment, enter CLOSED state,
5803 * delete TCB, and return."
5812 * "fifth, if neither of the SYN or RST bits is set then
5813 * drop the segment and return."
5819 goto discard_and_undo
;
5822 * "If the SYN bit is on ...
5823 * are acceptable then ...
5824 * (our SYN has been ACKed), change the connection
5825 * state to ESTABLISHED..."
5828 tcp_ecn_rcv_synack(tp
, th
);
5830 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5831 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5833 /* Ok.. it's good. Set up sequence numbers and
5834 * move to established.
5836 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5837 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5839 /* RFC1323: The window in SYN & SYN/ACK segments is
5842 tp
->snd_wnd
= ntohs(th
->window
);
5844 if (!tp
->rx_opt
.wscale_ok
) {
5845 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5846 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5849 if (tp
->rx_opt
.saw_tstamp
) {
5850 tp
->rx_opt
.tstamp_ok
= 1;
5851 tp
->tcp_header_len
=
5852 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5853 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5854 tcp_store_ts_recent(tp
);
5856 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5859 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5860 tcp_initialize_rcv_mss(sk
);
5862 /* Remember, tcp_poll() does not lock socket!
5863 * Change state from SYN-SENT only after copied_seq
5864 * is initialized. */
5865 tp
->copied_seq
= tp
->rcv_nxt
;
5867 smc_check_reset_syn(tp
);
5871 tcp_finish_connect(sk
, skb
);
5873 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
5874 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
5876 if (!sock_flag(sk
, SOCK_DEAD
)) {
5877 sk
->sk_state_change(sk
);
5878 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5882 if (sk
->sk_write_pending
||
5883 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5884 icsk
->icsk_ack
.pingpong
) {
5885 /* Save one ACK. Data will be ready after
5886 * several ticks, if write_pending is set.
5888 * It may be deleted, but with this feature tcpdumps
5889 * look so _wonderfully_ clever, that I was not able
5890 * to stand against the temptation 8) --ANK
5892 inet_csk_schedule_ack(sk
);
5893 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
5894 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5895 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5906 /* No ACK in the segment */
5910 * "If the RST bit is set
5912 * Otherwise (no ACK) drop the segment and return."
5915 goto discard_and_undo
;
5919 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5920 tcp_paws_reject(&tp
->rx_opt
, 0))
5921 goto discard_and_undo
;
5924 /* We see SYN without ACK. It is attempt of
5925 * simultaneous connect with crossed SYNs.
5926 * Particularly, it can be connect to self.
5928 tcp_set_state(sk
, TCP_SYN_RECV
);
5930 if (tp
->rx_opt
.saw_tstamp
) {
5931 tp
->rx_opt
.tstamp_ok
= 1;
5932 tcp_store_ts_recent(tp
);
5933 tp
->tcp_header_len
=
5934 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5936 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5939 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5940 tp
->copied_seq
= tp
->rcv_nxt
;
5941 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5943 /* RFC1323: The window in SYN & SYN/ACK segments is
5946 tp
->snd_wnd
= ntohs(th
->window
);
5947 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5948 tp
->max_window
= tp
->snd_wnd
;
5950 tcp_ecn_rcv_syn(tp
, th
);
5953 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5954 tcp_initialize_rcv_mss(sk
);
5956 tcp_send_synack(sk
);
5958 /* Note, we could accept data and URG from this segment.
5959 * There are no obstacles to make this (except that we must
5960 * either change tcp_recvmsg() to prevent it from returning data
5961 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5963 * However, if we ignore data in ACKless segments sometimes,
5964 * we have no reasons to accept it sometimes.
5965 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5966 * is not flawless. So, discard packet for sanity.
5967 * Uncomment this return to process the data.
5974 /* "fifth, if neither of the SYN or RST bits is set then
5975 * drop the segment and return."
5979 tcp_clear_options(&tp
->rx_opt
);
5980 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5984 tcp_clear_options(&tp
->rx_opt
);
5985 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5990 * This function implements the receiving procedure of RFC 793 for
5991 * all states except ESTABLISHED and TIME_WAIT.
5992 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5993 * address independent.
5996 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5998 struct tcp_sock
*tp
= tcp_sk(sk
);
5999 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6000 const struct tcphdr
*th
= tcp_hdr(skb
);
6001 struct request_sock
*req
;
6005 switch (sk
->sk_state
) {
6019 /* It is possible that we process SYN packets from backlog,
6020 * so we need to make sure to disable BH and RCU right there.
6024 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
6036 tp
->rx_opt
.saw_tstamp
= 0;
6037 tcp_mstamp_refresh(tp
);
6038 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
6042 /* Do step6 onward by hand. */
6043 tcp_urg(sk
, skb
, th
);
6045 tcp_data_snd_check(sk
);
6049 tcp_mstamp_refresh(tp
);
6050 tp
->rx_opt
.saw_tstamp
= 0;
6051 req
= tp
->fastopen_rsk
;
6055 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
6056 sk
->sk_state
!= TCP_FIN_WAIT1
);
6058 if (!tcp_check_req(sk
, skb
, req
, true, &req_stolen
))
6062 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
6065 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
6068 /* step 5: check the ACK field */
6069 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
6070 FLAG_UPDATE_TS_RECENT
|
6071 FLAG_NO_CHALLENGE_ACK
) > 0;
6074 if (sk
->sk_state
== TCP_SYN_RECV
)
6075 return 1; /* send one RST */
6076 tcp_send_challenge_ack(sk
, skb
);
6079 switch (sk
->sk_state
) {
6081 tp
->delivered
++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6083 tcp_synack_rtt_meas(sk
, req
);
6085 /* Once we leave TCP_SYN_RECV, we no longer need req
6089 inet_csk(sk
)->icsk_retransmits
= 0;
6090 reqsk_fastopen_remove(sk
, req
, false);
6091 /* Re-arm the timer because data may have been sent out.
6092 * This is similar to the regular data transmission case
6093 * when new data has just been ack'ed.
6095 * (TFO) - we could try to be more aggressive and
6096 * retransmitting any data sooner based on when they
6101 tcp_init_transfer(sk
, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
);
6102 tp
->copied_seq
= tp
->rcv_nxt
;
6105 tcp_set_state(sk
, TCP_ESTABLISHED
);
6106 sk
->sk_state_change(sk
);
6108 /* Note, that this wakeup is only for marginal crossed SYN case.
6109 * Passively open sockets are not waked up, because
6110 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6113 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6115 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6116 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
6117 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6119 if (tp
->rx_opt
.tstamp_ok
)
6120 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6122 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6123 tcp_update_pacing_rate(sk
);
6125 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6126 tp
->lsndtime
= tcp_jiffies32
;
6128 tcp_initialize_rcv_mss(sk
);
6129 tcp_fast_path_on(tp
);
6132 case TCP_FIN_WAIT1
: {
6135 /* If we enter the TCP_FIN_WAIT1 state and we are a
6136 * Fast Open socket and this is the first acceptable
6137 * ACK we have received, this would have acknowledged
6138 * our SYNACK so stop the SYNACK timer.
6141 /* We no longer need the request sock. */
6142 reqsk_fastopen_remove(sk
, req
, false);
6145 if (tp
->snd_una
!= tp
->write_seq
)
6148 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6149 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6153 if (!sock_flag(sk
, SOCK_DEAD
)) {
6154 /* Wake up lingering close() */
6155 sk
->sk_state_change(sk
);
6159 if (tp
->linger2
< 0) {
6161 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6164 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6165 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6166 /* Receive out of order FIN after close() */
6167 if (tp
->syn_fastopen
&& th
->fin
)
6168 tcp_fastopen_active_disable(sk
);
6170 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6174 tmo
= tcp_fin_time(sk
);
6175 if (tmo
> TCP_TIMEWAIT_LEN
) {
6176 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6177 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6178 /* Bad case. We could lose such FIN otherwise.
6179 * It is not a big problem, but it looks confusing
6180 * and not so rare event. We still can lose it now,
6181 * if it spins in bh_lock_sock(), but it is really
6184 inet_csk_reset_keepalive_timer(sk
, tmo
);
6186 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6193 if (tp
->snd_una
== tp
->write_seq
) {
6194 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6200 if (tp
->snd_una
== tp
->write_seq
) {
6201 tcp_update_metrics(sk
);
6208 /* step 6: check the URG bit */
6209 tcp_urg(sk
, skb
, th
);
6211 /* step 7: process the segment text */
6212 switch (sk
->sk_state
) {
6213 case TCP_CLOSE_WAIT
:
6216 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6221 /* RFC 793 says to queue data in these states,
6222 * RFC 1122 says we MUST send a reset.
6223 * BSD 4.4 also does reset.
6225 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6226 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6227 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6228 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6234 case TCP_ESTABLISHED
:
6235 tcp_data_queue(sk
, skb
);
6240 /* tcp_data could move socket to TIME-WAIT */
6241 if (sk
->sk_state
!= TCP_CLOSE
) {
6242 tcp_data_snd_check(sk
);
6243 tcp_ack_snd_check(sk
);
6252 EXPORT_SYMBOL(tcp_rcv_state_process
);
6254 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6256 struct inet_request_sock
*ireq
= inet_rsk(req
);
6258 if (family
== AF_INET
)
6259 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6260 &ireq
->ir_rmt_addr
, port
);
6261 #if IS_ENABLED(CONFIG_IPV6)
6262 else if (family
== AF_INET6
)
6263 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6264 &ireq
->ir_v6_rmt_addr
, port
);
6268 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6270 * If we receive a SYN packet with these bits set, it means a
6271 * network is playing bad games with TOS bits. In order to
6272 * avoid possible false congestion notifications, we disable
6273 * TCP ECN negotiation.
6275 * Exception: tcp_ca wants ECN. This is required for DCTCP
6276 * congestion control: Linux DCTCP asserts ECT on all packets,
6277 * including SYN, which is most optimal solution; however,
6278 * others, such as FreeBSD do not.
6280 static void tcp_ecn_create_request(struct request_sock
*req
,
6281 const struct sk_buff
*skb
,
6282 const struct sock
*listen_sk
,
6283 const struct dst_entry
*dst
)
6285 const struct tcphdr
*th
= tcp_hdr(skb
);
6286 const struct net
*net
= sock_net(listen_sk
);
6287 bool th_ecn
= th
->ece
&& th
->cwr
;
6294 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6295 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6296 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6298 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6299 (ecn_ok_dst
& DST_FEATURE_ECN_CA
) ||
6300 tcp_bpf_ca_needs_ecn((struct sock
*)req
))
6301 inet_rsk(req
)->ecn_ok
= 1;
6304 static void tcp_openreq_init(struct request_sock
*req
,
6305 const struct tcp_options_received
*rx_opt
,
6306 struct sk_buff
*skb
, const struct sock
*sk
)
6308 struct inet_request_sock
*ireq
= inet_rsk(req
);
6310 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6312 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6313 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6314 tcp_rsk(req
)->snt_synack
= tcp_clock_us();
6315 tcp_rsk(req
)->last_oow_ack_time
= 0;
6316 req
->mss
= rx_opt
->mss_clamp
;
6317 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6318 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6319 ireq
->sack_ok
= rx_opt
->sack_ok
;
6320 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6321 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6324 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6325 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6326 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6327 #if IS_ENABLED(CONFIG_SMC)
6328 ireq
->smc_ok
= rx_opt
->smc_ok
;
6332 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6333 struct sock
*sk_listener
,
6334 bool attach_listener
)
6336 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6340 struct inet_request_sock
*ireq
= inet_rsk(req
);
6342 ireq
->ireq_opt
= NULL
;
6343 #if IS_ENABLED(CONFIG_IPV6)
6344 ireq
->pktopts
= NULL
;
6346 atomic64_set(&ireq
->ir_cookie
, 0);
6347 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6348 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6349 ireq
->ireq_family
= sk_listener
->sk_family
;
6354 EXPORT_SYMBOL(inet_reqsk_alloc
);
6357 * Return true if a syncookie should be sent
6359 static bool tcp_syn_flood_action(const struct sock
*sk
,
6360 const struct sk_buff
*skb
,
6363 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6364 const char *msg
= "Dropping request";
6365 bool want_cookie
= false;
6366 struct net
*net
= sock_net(sk
);
6368 #ifdef CONFIG_SYN_COOKIES
6369 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6370 msg
= "Sending cookies";
6372 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6375 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6377 if (!queue
->synflood_warned
&&
6378 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6379 xchg(&queue
->synflood_warned
, 1) == 0)
6380 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6381 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6386 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6387 struct request_sock
*req
,
6388 const struct sk_buff
*skb
)
6390 if (tcp_sk(sk
)->save_syn
) {
6391 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6394 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6397 memcpy(©
[1], skb_network_header(skb
), len
);
6398 req
->saved_syn
= copy
;
6403 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6404 const struct tcp_request_sock_ops
*af_ops
,
6405 struct sock
*sk
, struct sk_buff
*skb
)
6407 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6408 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6409 struct tcp_options_received tmp_opt
;
6410 struct tcp_sock
*tp
= tcp_sk(sk
);
6411 struct net
*net
= sock_net(sk
);
6412 struct sock
*fastopen_sk
= NULL
;
6413 struct request_sock
*req
;
6414 bool want_cookie
= false;
6415 struct dst_entry
*dst
;
6418 /* TW buckets are converted to open requests without
6419 * limitations, they conserve resources and peer is
6420 * evidently real one.
6422 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6423 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6424 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6429 if (sk_acceptq_is_full(sk
)) {
6430 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6434 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6438 tcp_rsk(req
)->af_specific
= af_ops
;
6439 tcp_rsk(req
)->ts_off
= 0;
6441 tcp_clear_options(&tmp_opt
);
6442 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6443 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6444 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0,
6445 want_cookie
? NULL
: &foc
);
6447 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6448 tcp_clear_options(&tmp_opt
);
6450 if (IS_ENABLED(CONFIG_SMC
) && want_cookie
)
6453 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6454 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6455 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6457 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6458 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6460 af_ops
->init_req(req
, sk
, skb
);
6462 if (security_inet_conn_request(sk
, skb
, req
))
6465 if (tmp_opt
.tstamp_ok
)
6466 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(net
, skb
);
6468 dst
= af_ops
->route_req(sk
, &fl
, req
);
6472 if (!want_cookie
&& !isn
) {
6473 /* Kill the following clause, if you dislike this way. */
6474 if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6475 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6476 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6477 !tcp_peer_is_proven(req
, dst
)) {
6478 /* Without syncookies last quarter of
6479 * backlog is filled with destinations,
6480 * proven to be alive.
6481 * It means that we continue to communicate
6482 * to destinations, already remembered
6483 * to the moment of synflood.
6485 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6487 goto drop_and_release
;
6490 isn
= af_ops
->init_seq(skb
);
6493 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6496 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6497 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6498 if (!tmp_opt
.tstamp_ok
)
6499 inet_rsk(req
)->ecn_ok
= 0;
6502 tcp_rsk(req
)->snt_isn
= isn
;
6503 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6504 tcp_openreq_init_rwin(req
, sk
, dst
);
6505 sk_rx_queue_set(req_to_sk(req
), skb
);
6507 tcp_reqsk_record_syn(sk
, req
, skb
);
6508 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6511 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6512 &foc
, TCP_SYNACK_FASTOPEN
);
6513 /* Add the child socket directly into the accept queue */
6514 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6515 sk
->sk_data_ready(sk
);
6516 bh_unlock_sock(fastopen_sk
);
6517 sock_put(fastopen_sk
);
6519 tcp_rsk(req
)->tfo_listener
= false;
6521 inet_csk_reqsk_queue_hash_add(sk
, req
,
6522 tcp_timeout_init((struct sock
*)req
));
6523 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6524 !want_cookie
? TCP_SYNACK_NORMAL
:
6542 EXPORT_SYMBOL(tcp_conn_request
);