MIPS: eBPF: Fix icache flush end address
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
bloba9d9555a973fed4e3562a57d1a2cdadfef40dae4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
121 icsk->icsk_clean_acked = cad;
122 static_branch_inc(&clean_acked_data_enabled);
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 static_branch_dec(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 unsigned int len)
137 static bool __once __read_mostly;
139 if (!__once) {
140 struct net_device *dev;
142 __once = true;
144 rcu_read_lock();
145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 if (!dev || len >= dev->mtu)
147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 dev ? dev->name : "Unknown driver");
149 rcu_read_unlock();
153 /* Adapt the MSS value used to make delayed ack decision to the
154 * real world.
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
158 struct inet_connection_sock *icsk = inet_csk(sk);
159 const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 unsigned int len;
162 icsk->icsk_ack.last_seg_size = 0;
164 /* skb->len may jitter because of SACKs, even if peer
165 * sends good full-sized frames.
167 len = skb_shinfo(skb)->gso_size ? : skb->len;
168 if (len >= icsk->icsk_ack.rcv_mss) {
169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 tcp_sk(sk)->advmss);
171 /* Account for possibly-removed options */
172 if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 MAX_TCP_OPTION_SPACE))
174 tcp_gro_dev_warn(sk, skb, len);
175 } else {
176 /* Otherwise, we make more careful check taking into account,
177 * that SACKs block is variable.
179 * "len" is invariant segment length, including TCP header.
181 len += skb->data - skb_transport_header(skb);
182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 /* If PSH is not set, packet should be
184 * full sized, provided peer TCP is not badly broken.
185 * This observation (if it is correct 8)) allows
186 * to handle super-low mtu links fairly.
188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 /* Subtract also invariant (if peer is RFC compliant),
191 * tcp header plus fixed timestamp option length.
192 * Resulting "len" is MSS free of SACK jitter.
194 len -= tcp_sk(sk)->tcp_header_len;
195 icsk->icsk_ack.last_seg_size = len;
196 if (len == lss) {
197 icsk->icsk_ack.rcv_mss = len;
198 return;
201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
209 struct inet_connection_sock *icsk = inet_csk(sk);
210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
212 if (quickacks == 0)
213 quickacks = 2;
214 quickacks = min(quickacks, max_quickacks);
215 if (quickacks > icsk->icsk_ack.quick)
216 icsk->icsk_ack.quick = quickacks;
219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
221 struct inet_connection_sock *icsk = inet_csk(sk);
223 tcp_incr_quickack(sk, max_quickacks);
224 icsk->icsk_ack.pingpong = 0;
225 icsk->icsk_ack.ato = TCP_ATO_MIN;
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
229 /* Send ACKs quickly, if "quick" count is not exhausted
230 * and the session is not interactive.
233 static bool tcp_in_quickack_mode(struct sock *sk)
235 const struct inet_connection_sock *icsk = inet_csk(sk);
236 const struct dst_entry *dst = __sk_dst_get(sk);
238 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
244 if (tp->ecn_flags & TCP_ECN_OK)
245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
250 if (tcp_hdr(skb)->cwr) {
251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
253 /* If the sender is telling us it has entered CWR, then its
254 * cwnd may be very low (even just 1 packet), so we should ACK
255 * immediately.
257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
263 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
268 struct tcp_sock *tp = tcp_sk(sk);
270 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
271 case INET_ECN_NOT_ECT:
272 /* Funny extension: if ECT is not set on a segment,
273 * and we already seen ECT on a previous segment,
274 * it is probably a retransmit.
276 if (tp->ecn_flags & TCP_ECN_SEEN)
277 tcp_enter_quickack_mode(sk, 2);
278 break;
279 case INET_ECN_CE:
280 if (tcp_ca_needs_ecn(sk))
281 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
283 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
284 /* Better not delay acks, sender can have a very low cwnd */
285 tcp_enter_quickack_mode(sk, 2);
286 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
288 tp->ecn_flags |= TCP_ECN_SEEN;
289 break;
290 default:
291 if (tcp_ca_needs_ecn(sk))
292 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
293 tp->ecn_flags |= TCP_ECN_SEEN;
294 break;
298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
300 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
301 __tcp_ecn_check_ce(sk, skb);
304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
306 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
307 tp->ecn_flags &= ~TCP_ECN_OK;
310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
313 tp->ecn_flags &= ~TCP_ECN_OK;
316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
318 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
319 return true;
320 return false;
323 /* Buffer size and advertised window tuning.
325 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
328 static void tcp_sndbuf_expand(struct sock *sk)
330 const struct tcp_sock *tp = tcp_sk(sk);
331 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
332 int sndmem, per_mss;
333 u32 nr_segs;
335 /* Worst case is non GSO/TSO : each frame consumes one skb
336 * and skb->head is kmalloced using power of two area of memory
338 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
339 MAX_TCP_HEADER +
340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
342 per_mss = roundup_pow_of_two(per_mss) +
343 SKB_DATA_ALIGN(sizeof(struct sk_buff));
345 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
346 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
348 /* Fast Recovery (RFC 5681 3.2) :
349 * Cubic needs 1.7 factor, rounded to 2 to include
350 * extra cushion (application might react slowly to EPOLLOUT)
352 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
353 sndmem *= nr_segs * per_mss;
355 if (sk->sk_sndbuf < sndmem)
356 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
361 * All tcp_full_space() is split to two parts: "network" buffer, allocated
362 * forward and advertised in receiver window (tp->rcv_wnd) and
363 * "application buffer", required to isolate scheduling/application
364 * latencies from network.
365 * window_clamp is maximal advertised window. It can be less than
366 * tcp_full_space(), in this case tcp_full_space() - window_clamp
367 * is reserved for "application" buffer. The less window_clamp is
368 * the smoother our behaviour from viewpoint of network, but the lower
369 * throughput and the higher sensitivity of the connection to losses. 8)
371 * rcv_ssthresh is more strict window_clamp used at "slow start"
372 * phase to predict further behaviour of this connection.
373 * It is used for two goals:
374 * - to enforce header prediction at sender, even when application
375 * requires some significant "application buffer". It is check #1.
376 * - to prevent pruning of receive queue because of misprediction
377 * of receiver window. Check #2.
379 * The scheme does not work when sender sends good segments opening
380 * window and then starts to feed us spaghetti. But it should work
381 * in common situations. Otherwise, we have to rely on queue collapsing.
384 /* Slow part of check#2. */
385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
387 struct tcp_sock *tp = tcp_sk(sk);
388 /* Optimize this! */
389 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
390 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
392 while (tp->rcv_ssthresh <= window) {
393 if (truesize <= skb->len)
394 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
396 truesize >>= 1;
397 window >>= 1;
399 return 0;
402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
404 struct tcp_sock *tp = tcp_sk(sk);
406 /* Check #1 */
407 if (tp->rcv_ssthresh < tp->window_clamp &&
408 (int)tp->rcv_ssthresh < tcp_space(sk) &&
409 !tcp_under_memory_pressure(sk)) {
410 int incr;
412 /* Check #2. Increase window, if skb with such overhead
413 * will fit to rcvbuf in future.
415 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
416 incr = 2 * tp->advmss;
417 else
418 incr = __tcp_grow_window(sk, skb);
420 if (incr) {
421 incr = max_t(int, incr, 2 * skb->len);
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
423 tp->window_clamp);
424 inet_csk(sk)->icsk_ack.quick |= 1;
429 /* 3. Try to fixup all. It is made immediately after connection enters
430 * established state.
432 void tcp_init_buffer_space(struct sock *sk)
434 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
439 tcp_sndbuf_expand(sk);
441 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
442 tcp_mstamp_refresh(tp);
443 tp->rcvq_space.time = tp->tcp_mstamp;
444 tp->rcvq_space.seq = tp->copied_seq;
446 maxwin = tcp_full_space(sk);
448 if (tp->window_clamp >= maxwin) {
449 tp->window_clamp = maxwin;
451 if (tcp_app_win && maxwin > 4 * tp->advmss)
452 tp->window_clamp = max(maxwin -
453 (maxwin >> tcp_app_win),
454 4 * tp->advmss);
457 /* Force reservation of one segment. */
458 if (tcp_app_win &&
459 tp->window_clamp > 2 * tp->advmss &&
460 tp->window_clamp + tp->advmss > maxwin)
461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
464 tp->snd_cwnd_stamp = tcp_jiffies32;
467 /* 4. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock *sk)
470 struct tcp_sock *tp = tcp_sk(sk);
471 struct inet_connection_sock *icsk = inet_csk(sk);
472 struct net *net = sock_net(sk);
474 icsk->icsk_ack.quick = 0;
476 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 !tcp_under_memory_pressure(sk) &&
479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 net->ipv4.sysctl_tcp_rmem[2]);
483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 void tcp_initialize_rcv_mss(struct sock *sk)
496 const struct tcp_sock *tp = tcp_sk(sk);
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 hint = min(hint, tp->rcv_wnd / 2);
500 hint = min(hint, TCP_MSS_DEFAULT);
501 hint = max(hint, TCP_MIN_MSS);
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 /* Receiver "autotuning" code.
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
516 * is pending.
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 long m = sample;
523 if (new_sample != 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
529 * Also, since we are only going for a minimum in the
530 * non-timestamp case, we do not smooth things out
531 * else with timestamps disabled convergence takes too
532 * long.
534 if (!win_dep) {
535 m -= (new_sample >> 3);
536 new_sample += m;
537 } else {
538 m <<= 3;
539 if (m < new_sample)
540 new_sample = m;
542 } else {
543 /* No previous measure. */
544 new_sample = m << 3;
547 tp->rcv_rtt_est.rtt_us = new_sample;
550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
552 u32 delta_us;
554 if (tp->rcv_rtt_est.time == 0)
555 goto new_measure;
556 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 return;
558 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
559 if (!delta_us)
560 delta_us = 1;
561 tcp_rcv_rtt_update(tp, delta_us, 1);
563 new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 tp->rcv_rtt_est.time = tp->tcp_mstamp;
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
571 struct tcp_sock *tp = tcp_sk(sk);
573 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
574 return;
575 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
577 if (TCP_SKB_CB(skb)->end_seq -
578 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
579 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
580 u32 delta_us;
582 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
583 if (!delta)
584 delta = 1;
585 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
586 tcp_rcv_rtt_update(tp, delta_us, 0);
592 * This function should be called every time data is copied to user space.
593 * It calculates the appropriate TCP receive buffer space.
595 void tcp_rcv_space_adjust(struct sock *sk)
597 struct tcp_sock *tp = tcp_sk(sk);
598 u32 copied;
599 int time;
601 trace_tcp_rcv_space_adjust(sk);
603 tcp_mstamp_refresh(tp);
604 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
605 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
606 return;
608 /* Number of bytes copied to user in last RTT */
609 copied = tp->copied_seq - tp->rcvq_space.seq;
610 if (copied <= tp->rcvq_space.space)
611 goto new_measure;
613 /* A bit of theory :
614 * copied = bytes received in previous RTT, our base window
615 * To cope with packet losses, we need a 2x factor
616 * To cope with slow start, and sender growing its cwin by 100 %
617 * every RTT, we need a 4x factor, because the ACK we are sending
618 * now is for the next RTT, not the current one :
619 * <prev RTT . ><current RTT .. ><next RTT .... >
622 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
623 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
624 int rcvmem, rcvbuf;
625 u64 rcvwin, grow;
627 /* minimal window to cope with packet losses, assuming
628 * steady state. Add some cushion because of small variations.
630 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
632 /* Accommodate for sender rate increase (eg. slow start) */
633 grow = rcvwin * (copied - tp->rcvq_space.space);
634 do_div(grow, tp->rcvq_space.space);
635 rcvwin += (grow << 1);
637 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
638 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
639 rcvmem += 128;
641 do_div(rcvwin, tp->advmss);
642 rcvbuf = min_t(u64, rcvwin * rcvmem,
643 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
644 if (rcvbuf > sk->sk_rcvbuf) {
645 sk->sk_rcvbuf = rcvbuf;
647 /* Make the window clamp follow along. */
648 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
651 tp->rcvq_space.space = copied;
653 new_measure:
654 tp->rcvq_space.seq = tp->copied_seq;
655 tp->rcvq_space.time = tp->tcp_mstamp;
658 /* There is something which you must keep in mind when you analyze the
659 * behavior of the tp->ato delayed ack timeout interval. When a
660 * connection starts up, we want to ack as quickly as possible. The
661 * problem is that "good" TCP's do slow start at the beginning of data
662 * transmission. The means that until we send the first few ACK's the
663 * sender will sit on his end and only queue most of his data, because
664 * he can only send snd_cwnd unacked packets at any given time. For
665 * each ACK we send, he increments snd_cwnd and transmits more of his
666 * queue. -DaveM
668 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
670 struct tcp_sock *tp = tcp_sk(sk);
671 struct inet_connection_sock *icsk = inet_csk(sk);
672 u32 now;
674 inet_csk_schedule_ack(sk);
676 tcp_measure_rcv_mss(sk, skb);
678 tcp_rcv_rtt_measure(tp);
680 now = tcp_jiffies32;
682 if (!icsk->icsk_ack.ato) {
683 /* The _first_ data packet received, initialize
684 * delayed ACK engine.
686 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
687 icsk->icsk_ack.ato = TCP_ATO_MIN;
688 } else {
689 int m = now - icsk->icsk_ack.lrcvtime;
691 if (m <= TCP_ATO_MIN / 2) {
692 /* The fastest case is the first. */
693 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
694 } else if (m < icsk->icsk_ack.ato) {
695 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
696 if (icsk->icsk_ack.ato > icsk->icsk_rto)
697 icsk->icsk_ack.ato = icsk->icsk_rto;
698 } else if (m > icsk->icsk_rto) {
699 /* Too long gap. Apparently sender failed to
700 * restart window, so that we send ACKs quickly.
702 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
703 sk_mem_reclaim(sk);
706 icsk->icsk_ack.lrcvtime = now;
708 tcp_ecn_check_ce(sk, skb);
710 if (skb->len >= 128)
711 tcp_grow_window(sk, skb);
714 /* Called to compute a smoothed rtt estimate. The data fed to this
715 * routine either comes from timestamps, or from segments that were
716 * known _not_ to have been retransmitted [see Karn/Partridge
717 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
718 * piece by Van Jacobson.
719 * NOTE: the next three routines used to be one big routine.
720 * To save cycles in the RFC 1323 implementation it was better to break
721 * it up into three procedures. -- erics
723 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
725 struct tcp_sock *tp = tcp_sk(sk);
726 long m = mrtt_us; /* RTT */
727 u32 srtt = tp->srtt_us;
729 /* The following amusing code comes from Jacobson's
730 * article in SIGCOMM '88. Note that rtt and mdev
731 * are scaled versions of rtt and mean deviation.
732 * This is designed to be as fast as possible
733 * m stands for "measurement".
735 * On a 1990 paper the rto value is changed to:
736 * RTO = rtt + 4 * mdev
738 * Funny. This algorithm seems to be very broken.
739 * These formulae increase RTO, when it should be decreased, increase
740 * too slowly, when it should be increased quickly, decrease too quickly
741 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
742 * does not matter how to _calculate_ it. Seems, it was trap
743 * that VJ failed to avoid. 8)
745 if (srtt != 0) {
746 m -= (srtt >> 3); /* m is now error in rtt est */
747 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
748 if (m < 0) {
749 m = -m; /* m is now abs(error) */
750 m -= (tp->mdev_us >> 2); /* similar update on mdev */
751 /* This is similar to one of Eifel findings.
752 * Eifel blocks mdev updates when rtt decreases.
753 * This solution is a bit different: we use finer gain
754 * for mdev in this case (alpha*beta).
755 * Like Eifel it also prevents growth of rto,
756 * but also it limits too fast rto decreases,
757 * happening in pure Eifel.
759 if (m > 0)
760 m >>= 3;
761 } else {
762 m -= (tp->mdev_us >> 2); /* similar update on mdev */
764 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
765 if (tp->mdev_us > tp->mdev_max_us) {
766 tp->mdev_max_us = tp->mdev_us;
767 if (tp->mdev_max_us > tp->rttvar_us)
768 tp->rttvar_us = tp->mdev_max_us;
770 if (after(tp->snd_una, tp->rtt_seq)) {
771 if (tp->mdev_max_us < tp->rttvar_us)
772 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
773 tp->rtt_seq = tp->snd_nxt;
774 tp->mdev_max_us = tcp_rto_min_us(sk);
776 } else {
777 /* no previous measure. */
778 srtt = m << 3; /* take the measured time to be rtt */
779 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
780 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
781 tp->mdev_max_us = tp->rttvar_us;
782 tp->rtt_seq = tp->snd_nxt;
784 tp->srtt_us = max(1U, srtt);
787 static void tcp_update_pacing_rate(struct sock *sk)
789 const struct tcp_sock *tp = tcp_sk(sk);
790 u64 rate;
792 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
793 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
795 /* current rate is (cwnd * mss) / srtt
796 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
797 * In Congestion Avoidance phase, set it to 120 % the current rate.
799 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
800 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
801 * end of slow start and should slow down.
803 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
804 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
805 else
806 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
808 rate *= max(tp->snd_cwnd, tp->packets_out);
810 if (likely(tp->srtt_us))
811 do_div(rate, tp->srtt_us);
813 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
814 * without any lock. We want to make sure compiler wont store
815 * intermediate values in this location.
817 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
818 sk->sk_max_pacing_rate));
821 /* Calculate rto without backoff. This is the second half of Van Jacobson's
822 * routine referred to above.
824 static void tcp_set_rto(struct sock *sk)
826 const struct tcp_sock *tp = tcp_sk(sk);
827 /* Old crap is replaced with new one. 8)
829 * More seriously:
830 * 1. If rtt variance happened to be less 50msec, it is hallucination.
831 * It cannot be less due to utterly erratic ACK generation made
832 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
833 * to do with delayed acks, because at cwnd>2 true delack timeout
834 * is invisible. Actually, Linux-2.4 also generates erratic
835 * ACKs in some circumstances.
837 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
839 /* 2. Fixups made earlier cannot be right.
840 * If we do not estimate RTO correctly without them,
841 * all the algo is pure shit and should be replaced
842 * with correct one. It is exactly, which we pretend to do.
845 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
846 * guarantees that rto is higher.
848 tcp_bound_rto(sk);
851 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
853 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
855 if (!cwnd)
856 cwnd = TCP_INIT_CWND;
857 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock *tp)
863 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
864 tp->rack.dsack_seen = 1;
865 tp->dsack_dups++;
868 /* It's reordering when higher sequence was delivered (i.e. sacked) before
869 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
870 * distance is approximated in full-mss packet distance ("reordering").
872 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
873 const int ts)
875 struct tcp_sock *tp = tcp_sk(sk);
876 const u32 mss = tp->mss_cache;
877 u32 fack, metric;
879 fack = tcp_highest_sack_seq(tp);
880 if (!before(low_seq, fack))
881 return;
883 metric = fack - low_seq;
884 if ((metric > tp->reordering * mss) && mss) {
885 #if FASTRETRANS_DEBUG > 1
886 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
887 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
888 tp->reordering,
890 tp->sacked_out,
891 tp->undo_marker ? tp->undo_retrans : 0);
892 #endif
893 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
894 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
897 /* This exciting event is worth to be remembered. 8) */
898 tp->reord_seen++;
899 NET_INC_STATS(sock_net(sk),
900 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
903 /* This must be called before lost_out is incremented */
904 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
906 if (!tp->retransmit_skb_hint ||
907 before(TCP_SKB_CB(skb)->seq,
908 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
909 tp->retransmit_skb_hint = skb;
912 /* Sum the number of packets on the wire we have marked as lost.
913 * There are two cases we care about here:
914 * a) Packet hasn't been marked lost (nor retransmitted),
915 * and this is the first loss.
916 * b) Packet has been marked both lost and retransmitted,
917 * and this means we think it was lost again.
919 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
921 __u8 sacked = TCP_SKB_CB(skb)->sacked;
923 if (!(sacked & TCPCB_LOST) ||
924 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
925 tp->lost += tcp_skb_pcount(skb);
928 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
930 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
931 tcp_verify_retransmit_hint(tp, skb);
933 tp->lost_out += tcp_skb_pcount(skb);
934 tcp_sum_lost(tp, skb);
935 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
941 tcp_verify_retransmit_hint(tp, skb);
943 tcp_sum_lost(tp, skb);
944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 tp->lost_out += tcp_skb_pcount(skb);
946 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 /* This procedure tags the retransmission queue when SACKs arrive.
952 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
953 * Packets in queue with these bits set are counted in variables
954 * sacked_out, retrans_out and lost_out, correspondingly.
956 * Valid combinations are:
957 * Tag InFlight Description
958 * 0 1 - orig segment is in flight.
959 * S 0 - nothing flies, orig reached receiver.
960 * L 0 - nothing flies, orig lost by net.
961 * R 2 - both orig and retransmit are in flight.
962 * L|R 1 - orig is lost, retransmit is in flight.
963 * S|R 1 - orig reached receiver, retrans is still in flight.
964 * (L|S|R is logically valid, it could occur when L|R is sacked,
965 * but it is equivalent to plain S and code short-curcuits it to S.
966 * L|S is logically invalid, it would mean -1 packet in flight 8))
968 * These 6 states form finite state machine, controlled by the following events:
969 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
970 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
971 * 3. Loss detection event of two flavors:
972 * A. Scoreboard estimator decided the packet is lost.
973 * A'. Reno "three dupacks" marks head of queue lost.
974 * B. SACK arrives sacking SND.NXT at the moment, when the
975 * segment was retransmitted.
976 * 4. D-SACK added new rule: D-SACK changes any tag to S.
978 * It is pleasant to note, that state diagram turns out to be commutative,
979 * so that we are allowed not to be bothered by order of our actions,
980 * when multiple events arrive simultaneously. (see the function below).
982 * Reordering detection.
983 * --------------------
984 * Reordering metric is maximal distance, which a packet can be displaced
985 * in packet stream. With SACKs we can estimate it:
987 * 1. SACK fills old hole and the corresponding segment was not
988 * ever retransmitted -> reordering. Alas, we cannot use it
989 * when segment was retransmitted.
990 * 2. The last flaw is solved with D-SACK. D-SACK arrives
991 * for retransmitted and already SACKed segment -> reordering..
992 * Both of these heuristics are not used in Loss state, when we cannot
993 * account for retransmits accurately.
995 * SACK block validation.
996 * ----------------------
998 * SACK block range validation checks that the received SACK block fits to
999 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000 * Note that SND.UNA is not included to the range though being valid because
1001 * it means that the receiver is rather inconsistent with itself reporting
1002 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003 * perfectly valid, however, in light of RFC2018 which explicitly states
1004 * that "SACK block MUST reflect the newest segment. Even if the newest
1005 * segment is going to be discarded ...", not that it looks very clever
1006 * in case of head skb. Due to potentional receiver driven attacks, we
1007 * choose to avoid immediate execution of a walk in write queue due to
1008 * reneging and defer head skb's loss recovery to standard loss recovery
1009 * procedure that will eventually trigger (nothing forbids us doing this).
1011 * Implements also blockage to start_seq wrap-around. Problem lies in the
1012 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013 * there's no guarantee that it will be before snd_nxt (n). The problem
1014 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1015 * wrap (s_w):
1017 * <- outs wnd -> <- wrapzone ->
1018 * u e n u_w e_w s n_w
1019 * | | | | | | |
1020 * |<------------+------+----- TCP seqno space --------------+---------->|
1021 * ...-- <2^31 ->| |<--------...
1022 * ...---- >2^31 ------>| |<--------...
1024 * Current code wouldn't be vulnerable but it's better still to discard such
1025 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028 * equal to the ideal case (infinite seqno space without wrap caused issues).
1030 * With D-SACK the lower bound is extended to cover sequence space below
1031 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1032 * again, D-SACK block must not to go across snd_una (for the same reason as
1033 * for the normal SACK blocks, explained above). But there all simplicity
1034 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035 * fully below undo_marker they do not affect behavior in anyway and can
1036 * therefore be safely ignored. In rare cases (which are more or less
1037 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038 * fragmentation and packet reordering past skb's retransmission. To consider
1039 * them correctly, the acceptable range must be extended even more though
1040 * the exact amount is rather hard to quantify. However, tp->max_window can
1041 * be used as an exaggerated estimate.
1043 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1044 u32 start_seq, u32 end_seq)
1046 /* Too far in future, or reversed (interpretation is ambiguous) */
1047 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1048 return false;
1050 /* Nasty start_seq wrap-around check (see comments above) */
1051 if (!before(start_seq, tp->snd_nxt))
1052 return false;
1054 /* In outstanding window? ...This is valid exit for D-SACKs too.
1055 * start_seq == snd_una is non-sensical (see comments above)
1057 if (after(start_seq, tp->snd_una))
1058 return true;
1060 if (!is_dsack || !tp->undo_marker)
1061 return false;
1063 /* ...Then it's D-SACK, and must reside below snd_una completely */
1064 if (after(end_seq, tp->snd_una))
1065 return false;
1067 if (!before(start_seq, tp->undo_marker))
1068 return true;
1070 /* Too old */
1071 if (!after(end_seq, tp->undo_marker))
1072 return false;
1074 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 * start_seq < undo_marker and end_seq >= undo_marker.
1077 return !before(start_seq, end_seq - tp->max_window);
1080 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1081 struct tcp_sack_block_wire *sp, int num_sacks,
1082 u32 prior_snd_una)
1084 struct tcp_sock *tp = tcp_sk(sk);
1085 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1086 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1087 bool dup_sack = false;
1089 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1090 dup_sack = true;
1091 tcp_dsack_seen(tp);
1092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1093 } else if (num_sacks > 1) {
1094 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1095 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1097 if (!after(end_seq_0, end_seq_1) &&
1098 !before(start_seq_0, start_seq_1)) {
1099 dup_sack = true;
1100 tcp_dsack_seen(tp);
1101 NET_INC_STATS(sock_net(sk),
1102 LINUX_MIB_TCPDSACKOFORECV);
1106 /* D-SACK for already forgotten data... Do dumb counting. */
1107 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1108 !after(end_seq_0, prior_snd_una) &&
1109 after(end_seq_0, tp->undo_marker))
1110 tp->undo_retrans--;
1112 return dup_sack;
1115 struct tcp_sacktag_state {
1116 u32 reord;
1117 /* Timestamps for earliest and latest never-retransmitted segment
1118 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1119 * but congestion control should still get an accurate delay signal.
1121 u64 first_sackt;
1122 u64 last_sackt;
1123 struct rate_sample *rate;
1124 int flag;
1125 unsigned int mss_now;
1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1129 * the incoming SACK may not exactly match but we can find smaller MSS
1130 * aligned portion of it that matches. Therefore we might need to fragment
1131 * which may fail and creates some hassle (caller must handle error case
1132 * returns).
1134 * FIXME: this could be merged to shift decision code
1136 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1137 u32 start_seq, u32 end_seq)
1139 int err;
1140 bool in_sack;
1141 unsigned int pkt_len;
1142 unsigned int mss;
1144 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1145 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1147 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1148 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1149 mss = tcp_skb_mss(skb);
1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1152 if (!in_sack) {
1153 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1154 if (pkt_len < mss)
1155 pkt_len = mss;
1156 } else {
1157 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1158 if (pkt_len < mss)
1159 return -EINVAL;
1162 /* Round if necessary so that SACKs cover only full MSSes
1163 * and/or the remaining small portion (if present)
1165 if (pkt_len > mss) {
1166 unsigned int new_len = (pkt_len / mss) * mss;
1167 if (!in_sack && new_len < pkt_len)
1168 new_len += mss;
1169 pkt_len = new_len;
1172 if (pkt_len >= skb->len && !in_sack)
1173 return 0;
1175 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1176 pkt_len, mss, GFP_ATOMIC);
1177 if (err < 0)
1178 return err;
1181 return in_sack;
1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1185 static u8 tcp_sacktag_one(struct sock *sk,
1186 struct tcp_sacktag_state *state, u8 sacked,
1187 u32 start_seq, u32 end_seq,
1188 int dup_sack, int pcount,
1189 u64 xmit_time)
1191 struct tcp_sock *tp = tcp_sk(sk);
1193 /* Account D-SACK for retransmitted packet. */
1194 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1195 if (tp->undo_marker && tp->undo_retrans > 0 &&
1196 after(end_seq, tp->undo_marker))
1197 tp->undo_retrans--;
1198 if ((sacked & TCPCB_SACKED_ACKED) &&
1199 before(start_seq, state->reord))
1200 state->reord = start_seq;
1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 if (!after(end_seq, tp->snd_una))
1205 return sacked;
1207 if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1210 if (sacked & TCPCB_SACKED_RETRANS) {
1211 /* If the segment is not tagged as lost,
1212 * we do not clear RETRANS, believing
1213 * that retransmission is still in flight.
1215 if (sacked & TCPCB_LOST) {
1216 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1217 tp->lost_out -= pcount;
1218 tp->retrans_out -= pcount;
1220 } else {
1221 if (!(sacked & TCPCB_RETRANS)) {
1222 /* New sack for not retransmitted frame,
1223 * which was in hole. It is reordering.
1225 if (before(start_seq,
1226 tcp_highest_sack_seq(tp)) &&
1227 before(start_seq, state->reord))
1228 state->reord = start_seq;
1230 if (!after(end_seq, tp->high_seq))
1231 state->flag |= FLAG_ORIG_SACK_ACKED;
1232 if (state->first_sackt == 0)
1233 state->first_sackt = xmit_time;
1234 state->last_sackt = xmit_time;
1237 if (sacked & TCPCB_LOST) {
1238 sacked &= ~TCPCB_LOST;
1239 tp->lost_out -= pcount;
1243 sacked |= TCPCB_SACKED_ACKED;
1244 state->flag |= FLAG_DATA_SACKED;
1245 tp->sacked_out += pcount;
1246 tp->delivered += pcount; /* Out-of-order packets delivered */
1248 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1249 if (tp->lost_skb_hint &&
1250 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1251 tp->lost_cnt_hint += pcount;
1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 * are accounted above as well.
1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 sacked &= ~TCPCB_SACKED_RETRANS;
1260 tp->retrans_out -= pcount;
1263 return sacked;
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1270 struct sk_buff *skb,
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
1275 struct tcp_sock *tp = tcp_sk(sk);
1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1279 BUG_ON(!pcount);
1281 /* Adjust counters and hints for the newly sacked sequence
1282 * range but discard the return value since prev is already
1283 * marked. We must tag the range first because the seq
1284 * advancement below implicitly advances
1285 * tcp_highest_sack_seq() when skb is highest_sack.
1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 start_seq, end_seq, dup_sack, pcount,
1289 tcp_skb_timestamp_us(skb));
1290 tcp_rate_skb_delivered(sk, skb, state->rate);
1292 if (skb == tp->lost_skb_hint)
1293 tp->lost_cnt_hint += pcount;
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1298 tcp_skb_pcount_add(prev, pcount);
1299 BUG_ON(tcp_skb_pcount(skb) < pcount);
1300 tcp_skb_pcount_add(skb, -pcount);
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1307 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1308 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 if (tcp_skb_pcount(skb) <= 1)
1312 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1314 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1315 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1317 if (skb->len > 0) {
1318 BUG_ON(!tcp_skb_pcount(skb));
1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1320 return false;
1323 /* Whole SKB was eaten :-) */
1325 if (skb == tp->retransmit_skb_hint)
1326 tp->retransmit_skb_hint = prev;
1327 if (skb == tp->lost_skb_hint) {
1328 tp->lost_skb_hint = prev;
1329 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1332 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1333 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1334 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1335 TCP_SKB_CB(prev)->end_seq++;
1337 if (skb == tcp_highest_sack(sk))
1338 tcp_advance_highest_sack(sk, skb);
1340 tcp_skb_collapse_tstamp(prev, skb);
1341 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1342 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1344 tcp_rtx_queue_unlink_and_free(skb, sk);
1346 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1348 return true;
1351 /* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 struct tcp_sacktag_state *state,
1370 u32 start_seq, u32 end_seq,
1371 bool dup_sack)
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 struct sk_buff *prev;
1375 int mss;
1376 int pcount = 0;
1377 int len;
1378 int in_sack;
1380 /* Normally R but no L won't result in plain S */
1381 if (!dup_sack &&
1382 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1383 goto fallback;
1384 if (!skb_can_shift(skb))
1385 goto fallback;
1386 /* This frame is about to be dropped (was ACKed). */
1387 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1388 goto fallback;
1390 /* Can only happen with delayed DSACK + discard craziness */
1391 prev = skb_rb_prev(skb);
1392 if (!prev)
1393 goto fallback;
1395 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1396 goto fallback;
1398 if (!tcp_skb_can_collapse_to(prev))
1399 goto fallback;
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
1407 mss = tcp_skb_seglen(skb);
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1412 if (mss != tcp_skb_seglen(prev))
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1437 goto fallback;
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1448 mss = tcp_skb_mss(skb);
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1453 if (mss != tcp_skb_seglen(prev))
1454 goto fallback;
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
1472 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1473 goto out;
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1478 skb = skb_rb_next(prev);
1479 if (!skb)
1480 goto out;
1482 if (!skb_can_shift(skb) ||
1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 (mss != tcp_skb_seglen(skb)))
1485 goto out;
1487 len = skb->len;
1488 if (skb_shift(prev, skb, len)) {
1489 pcount += tcp_skb_pcount(skb);
1490 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1491 len, mss, 0);
1494 out:
1495 return prev;
1497 noop:
1498 return skb;
1500 fallback:
1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 return NULL;
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 struct tcp_sack_block *next_dup,
1507 struct tcp_sacktag_state *state,
1508 u32 start_seq, u32 end_seq,
1509 bool dup_sack_in)
1511 struct tcp_sock *tp = tcp_sk(sk);
1512 struct sk_buff *tmp;
1514 skb_rbtree_walk_from(skb) {
1515 int in_sack = 0;
1516 bool dup_sack = dup_sack_in;
1518 /* queue is in-order => we can short-circuit the walk early */
1519 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1520 break;
1522 if (next_dup &&
1523 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1524 in_sack = tcp_match_skb_to_sack(sk, skb,
1525 next_dup->start_seq,
1526 next_dup->end_seq);
1527 if (in_sack > 0)
1528 dup_sack = true;
1531 /* skb reference here is a bit tricky to get right, since
1532 * shifting can eat and free both this skb and the next,
1533 * so not even _safe variant of the loop is enough.
1535 if (in_sack <= 0) {
1536 tmp = tcp_shift_skb_data(sk, skb, state,
1537 start_seq, end_seq, dup_sack);
1538 if (tmp) {
1539 if (tmp != skb) {
1540 skb = tmp;
1541 continue;
1544 in_sack = 0;
1545 } else {
1546 in_sack = tcp_match_skb_to_sack(sk, skb,
1547 start_seq,
1548 end_seq);
1552 if (unlikely(in_sack < 0))
1553 break;
1555 if (in_sack) {
1556 TCP_SKB_CB(skb)->sacked =
1557 tcp_sacktag_one(sk,
1558 state,
1559 TCP_SKB_CB(skb)->sacked,
1560 TCP_SKB_CB(skb)->seq,
1561 TCP_SKB_CB(skb)->end_seq,
1562 dup_sack,
1563 tcp_skb_pcount(skb),
1564 tcp_skb_timestamp_us(skb));
1565 tcp_rate_skb_delivered(sk, skb, state->rate);
1566 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1567 list_del_init(&skb->tcp_tsorted_anchor);
1569 if (!before(TCP_SKB_CB(skb)->seq,
1570 tcp_highest_sack_seq(tp)))
1571 tcp_advance_highest_sack(sk, skb);
1574 return skb;
1577 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1578 struct tcp_sacktag_state *state,
1579 u32 seq)
1581 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1582 struct sk_buff *skb;
1584 while (*p) {
1585 parent = *p;
1586 skb = rb_to_skb(parent);
1587 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1588 p = &parent->rb_left;
1589 continue;
1591 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1592 p = &parent->rb_right;
1593 continue;
1595 return skb;
1597 return NULL;
1600 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1601 struct tcp_sacktag_state *state,
1602 u32 skip_to_seq)
1604 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1605 return skb;
1607 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1610 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1611 struct sock *sk,
1612 struct tcp_sack_block *next_dup,
1613 struct tcp_sacktag_state *state,
1614 u32 skip_to_seq)
1616 if (!next_dup)
1617 return skb;
1619 if (before(next_dup->start_seq, skip_to_seq)) {
1620 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1621 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1622 next_dup->start_seq, next_dup->end_seq,
1626 return skb;
1629 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1631 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1634 static int
1635 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1636 u32 prior_snd_una, struct tcp_sacktag_state *state)
1638 struct tcp_sock *tp = tcp_sk(sk);
1639 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1640 TCP_SKB_CB(ack_skb)->sacked);
1641 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1642 struct tcp_sack_block sp[TCP_NUM_SACKS];
1643 struct tcp_sack_block *cache;
1644 struct sk_buff *skb;
1645 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1646 int used_sacks;
1647 bool found_dup_sack = false;
1648 int i, j;
1649 int first_sack_index;
1651 state->flag = 0;
1652 state->reord = tp->snd_nxt;
1654 if (!tp->sacked_out)
1655 tcp_highest_sack_reset(sk);
1657 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1658 num_sacks, prior_snd_una);
1659 if (found_dup_sack) {
1660 state->flag |= FLAG_DSACKING_ACK;
1661 tp->delivered++; /* A spurious retransmission is delivered */
1664 /* Eliminate too old ACKs, but take into
1665 * account more or less fresh ones, they can
1666 * contain valid SACK info.
1668 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1669 return 0;
1671 if (!tp->packets_out)
1672 goto out;
1674 used_sacks = 0;
1675 first_sack_index = 0;
1676 for (i = 0; i < num_sacks; i++) {
1677 bool dup_sack = !i && found_dup_sack;
1679 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1680 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1682 if (!tcp_is_sackblock_valid(tp, dup_sack,
1683 sp[used_sacks].start_seq,
1684 sp[used_sacks].end_seq)) {
1685 int mib_idx;
1687 if (dup_sack) {
1688 if (!tp->undo_marker)
1689 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1690 else
1691 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1692 } else {
1693 /* Don't count olds caused by ACK reordering */
1694 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1695 !after(sp[used_sacks].end_seq, tp->snd_una))
1696 continue;
1697 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1700 NET_INC_STATS(sock_net(sk), mib_idx);
1701 if (i == 0)
1702 first_sack_index = -1;
1703 continue;
1706 /* Ignore very old stuff early */
1707 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1708 continue;
1710 used_sacks++;
1713 /* order SACK blocks to allow in order walk of the retrans queue */
1714 for (i = used_sacks - 1; i > 0; i--) {
1715 for (j = 0; j < i; j++) {
1716 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1717 swap(sp[j], sp[j + 1]);
1719 /* Track where the first SACK block goes to */
1720 if (j == first_sack_index)
1721 first_sack_index = j + 1;
1726 state->mss_now = tcp_current_mss(sk);
1727 skb = NULL;
1728 i = 0;
1730 if (!tp->sacked_out) {
1731 /* It's already past, so skip checking against it */
1732 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1733 } else {
1734 cache = tp->recv_sack_cache;
1735 /* Skip empty blocks in at head of the cache */
1736 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1737 !cache->end_seq)
1738 cache++;
1741 while (i < used_sacks) {
1742 u32 start_seq = sp[i].start_seq;
1743 u32 end_seq = sp[i].end_seq;
1744 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1745 struct tcp_sack_block *next_dup = NULL;
1747 if (found_dup_sack && ((i + 1) == first_sack_index))
1748 next_dup = &sp[i + 1];
1750 /* Skip too early cached blocks */
1751 while (tcp_sack_cache_ok(tp, cache) &&
1752 !before(start_seq, cache->end_seq))
1753 cache++;
1755 /* Can skip some work by looking recv_sack_cache? */
1756 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1757 after(end_seq, cache->start_seq)) {
1759 /* Head todo? */
1760 if (before(start_seq, cache->start_seq)) {
1761 skb = tcp_sacktag_skip(skb, sk, state,
1762 start_seq);
1763 skb = tcp_sacktag_walk(skb, sk, next_dup,
1764 state,
1765 start_seq,
1766 cache->start_seq,
1767 dup_sack);
1770 /* Rest of the block already fully processed? */
1771 if (!after(end_seq, cache->end_seq))
1772 goto advance_sp;
1774 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1775 state,
1776 cache->end_seq);
1778 /* ...tail remains todo... */
1779 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1780 /* ...but better entrypoint exists! */
1781 skb = tcp_highest_sack(sk);
1782 if (!skb)
1783 break;
1784 cache++;
1785 goto walk;
1788 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1789 /* Check overlap against next cached too (past this one already) */
1790 cache++;
1791 continue;
1794 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1795 skb = tcp_highest_sack(sk);
1796 if (!skb)
1797 break;
1799 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1801 walk:
1802 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1803 start_seq, end_seq, dup_sack);
1805 advance_sp:
1806 i++;
1809 /* Clear the head of the cache sack blocks so we can skip it next time */
1810 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1811 tp->recv_sack_cache[i].start_seq = 0;
1812 tp->recv_sack_cache[i].end_seq = 0;
1814 for (j = 0; j < used_sacks; j++)
1815 tp->recv_sack_cache[i++] = sp[j];
1817 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1818 tcp_check_sack_reordering(sk, state->reord, 0);
1820 tcp_verify_left_out(tp);
1821 out:
1823 #if FASTRETRANS_DEBUG > 0
1824 WARN_ON((int)tp->sacked_out < 0);
1825 WARN_ON((int)tp->lost_out < 0);
1826 WARN_ON((int)tp->retrans_out < 0);
1827 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1828 #endif
1829 return state->flag;
1832 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1833 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1835 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1837 u32 holes;
1839 holes = max(tp->lost_out, 1U);
1840 holes = min(holes, tp->packets_out);
1842 if ((tp->sacked_out + holes) > tp->packets_out) {
1843 tp->sacked_out = tp->packets_out - holes;
1844 return true;
1846 return false;
1849 /* If we receive more dupacks than we expected counting segments
1850 * in assumption of absent reordering, interpret this as reordering.
1851 * The only another reason could be bug in receiver TCP.
1853 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1855 struct tcp_sock *tp = tcp_sk(sk);
1857 if (!tcp_limit_reno_sacked(tp))
1858 return;
1860 tp->reordering = min_t(u32, tp->packets_out + addend,
1861 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1862 tp->reord_seen++;
1863 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1866 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1868 static void tcp_add_reno_sack(struct sock *sk)
1870 struct tcp_sock *tp = tcp_sk(sk);
1871 u32 prior_sacked = tp->sacked_out;
1873 tp->sacked_out++;
1874 tcp_check_reno_reordering(sk, 0);
1875 if (tp->sacked_out > prior_sacked)
1876 tp->delivered++; /* Some out-of-order packet is delivered */
1877 tcp_verify_left_out(tp);
1880 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1882 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1884 struct tcp_sock *tp = tcp_sk(sk);
1886 if (acked > 0) {
1887 /* One ACK acked hole. The rest eat duplicate ACKs. */
1888 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1889 if (acked - 1 >= tp->sacked_out)
1890 tp->sacked_out = 0;
1891 else
1892 tp->sacked_out -= acked - 1;
1894 tcp_check_reno_reordering(sk, acked);
1895 tcp_verify_left_out(tp);
1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1900 tp->sacked_out = 0;
1903 void tcp_clear_retrans(struct tcp_sock *tp)
1905 tp->retrans_out = 0;
1906 tp->lost_out = 0;
1907 tp->undo_marker = 0;
1908 tp->undo_retrans = -1;
1909 tp->sacked_out = 0;
1912 static inline void tcp_init_undo(struct tcp_sock *tp)
1914 tp->undo_marker = tp->snd_una;
1915 /* Retransmission still in flight may cause DSACKs later. */
1916 tp->undo_retrans = tp->retrans_out ? : -1;
1919 static bool tcp_is_rack(const struct sock *sk)
1921 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1924 /* If we detect SACK reneging, forget all SACK information
1925 * and reset tags completely, otherwise preserve SACKs. If receiver
1926 * dropped its ofo queue, we will know this due to reneging detection.
1928 static void tcp_timeout_mark_lost(struct sock *sk)
1930 struct tcp_sock *tp = tcp_sk(sk);
1931 struct sk_buff *skb, *head;
1932 bool is_reneg; /* is receiver reneging on SACKs? */
1934 head = tcp_rtx_queue_head(sk);
1935 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1936 if (is_reneg) {
1937 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1938 tp->sacked_out = 0;
1939 /* Mark SACK reneging until we recover from this loss event. */
1940 tp->is_sack_reneg = 1;
1941 } else if (tcp_is_reno(tp)) {
1942 tcp_reset_reno_sack(tp);
1945 skb = head;
1946 skb_rbtree_walk_from(skb) {
1947 if (is_reneg)
1948 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1949 else if (tcp_is_rack(sk) && skb != head &&
1950 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1951 continue; /* Don't mark recently sent ones lost yet */
1952 tcp_mark_skb_lost(sk, skb);
1954 tcp_verify_left_out(tp);
1955 tcp_clear_all_retrans_hints(tp);
1958 /* Enter Loss state. */
1959 void tcp_enter_loss(struct sock *sk)
1961 const struct inet_connection_sock *icsk = inet_csk(sk);
1962 struct tcp_sock *tp = tcp_sk(sk);
1963 struct net *net = sock_net(sk);
1964 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1966 tcp_timeout_mark_lost(sk);
1968 /* Reduce ssthresh if it has not yet been made inside this window. */
1969 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1970 !after(tp->high_seq, tp->snd_una) ||
1971 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1972 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1973 tp->prior_cwnd = tp->snd_cwnd;
1974 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1975 tcp_ca_event(sk, CA_EVENT_LOSS);
1976 tcp_init_undo(tp);
1978 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
1979 tp->snd_cwnd_cnt = 0;
1980 tp->snd_cwnd_stamp = tcp_jiffies32;
1982 /* Timeout in disordered state after receiving substantial DUPACKs
1983 * suggests that the degree of reordering is over-estimated.
1985 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1986 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1987 tp->reordering = min_t(unsigned int, tp->reordering,
1988 net->ipv4.sysctl_tcp_reordering);
1989 tcp_set_ca_state(sk, TCP_CA_Loss);
1990 tp->high_seq = tp->snd_nxt;
1991 tcp_ecn_queue_cwr(tp);
1993 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1994 * loss recovery is underway except recurring timeout(s) on
1995 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1997 tp->frto = net->ipv4.sysctl_tcp_frto &&
1998 (new_recovery || icsk->icsk_retransmits) &&
1999 !inet_csk(sk)->icsk_mtup.probe_size;
2002 /* If ACK arrived pointing to a remembered SACK, it means that our
2003 * remembered SACKs do not reflect real state of receiver i.e.
2004 * receiver _host_ is heavily congested (or buggy).
2006 * To avoid big spurious retransmission bursts due to transient SACK
2007 * scoreboard oddities that look like reneging, we give the receiver a
2008 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2009 * restore sanity to the SACK scoreboard. If the apparent reneging
2010 * persists until this RTO then we'll clear the SACK scoreboard.
2012 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2014 if (flag & FLAG_SACK_RENEGING) {
2015 struct tcp_sock *tp = tcp_sk(sk);
2016 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2017 msecs_to_jiffies(10));
2019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2020 delay, TCP_RTO_MAX);
2021 return true;
2023 return false;
2026 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2027 * counter when SACK is enabled (without SACK, sacked_out is used for
2028 * that purpose).
2030 * With reordering, holes may still be in flight, so RFC3517 recovery
2031 * uses pure sacked_out (total number of SACKed segments) even though
2032 * it violates the RFC that uses duplicate ACKs, often these are equal
2033 * but when e.g. out-of-window ACKs or packet duplication occurs,
2034 * they differ. Since neither occurs due to loss, TCP should really
2035 * ignore them.
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2039 return tp->sacked_out + 1;
2042 /* Linux NewReno/SACK/ECN state machine.
2043 * --------------------------------------
2045 * "Open" Normal state, no dubious events, fast path.
2046 * "Disorder" In all the respects it is "Open",
2047 * but requires a bit more attention. It is entered when
2048 * we see some SACKs or dupacks. It is split of "Open"
2049 * mainly to move some processing from fast path to slow one.
2050 * "CWR" CWND was reduced due to some Congestion Notification event.
2051 * It can be ECN, ICMP source quench, local device congestion.
2052 * "Recovery" CWND was reduced, we are fast-retransmitting.
2053 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2055 * tcp_fastretrans_alert() is entered:
2056 * - each incoming ACK, if state is not "Open"
2057 * - when arrived ACK is unusual, namely:
2058 * * SACK
2059 * * Duplicate ACK.
2060 * * ECN ECE.
2062 * Counting packets in flight is pretty simple.
2064 * in_flight = packets_out - left_out + retrans_out
2066 * packets_out is SND.NXT-SND.UNA counted in packets.
2068 * retrans_out is number of retransmitted segments.
2070 * left_out is number of segments left network, but not ACKed yet.
2072 * left_out = sacked_out + lost_out
2074 * sacked_out: Packets, which arrived to receiver out of order
2075 * and hence not ACKed. With SACKs this number is simply
2076 * amount of SACKed data. Even without SACKs
2077 * it is easy to give pretty reliable estimate of this number,
2078 * counting duplicate ACKs.
2080 * lost_out: Packets lost by network. TCP has no explicit
2081 * "loss notification" feedback from network (for now).
2082 * It means that this number can be only _guessed_.
2083 * Actually, it is the heuristics to predict lossage that
2084 * distinguishes different algorithms.
2086 * F.e. after RTO, when all the queue is considered as lost,
2087 * lost_out = packets_out and in_flight = retrans_out.
2089 * Essentially, we have now a few algorithms detecting
2090 * lost packets.
2092 * If the receiver supports SACK:
2094 * RFC6675/3517: It is the conventional algorithm. A packet is
2095 * considered lost if the number of higher sequence packets
2096 * SACKed is greater than or equal the DUPACK thoreshold
2097 * (reordering). This is implemented in tcp_mark_head_lost and
2098 * tcp_update_scoreboard.
2100 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2101 * (2017-) that checks timing instead of counting DUPACKs.
2102 * Essentially a packet is considered lost if it's not S/ACKed
2103 * after RTT + reordering_window, where both metrics are
2104 * dynamically measured and adjusted. This is implemented in
2105 * tcp_rack_mark_lost.
2107 * If the receiver does not support SACK:
2109 * NewReno (RFC6582): in Recovery we assume that one segment
2110 * is lost (classic Reno). While we are in Recovery and
2111 * a partial ACK arrives, we assume that one more packet
2112 * is lost (NewReno). This heuristics are the same in NewReno
2113 * and SACK.
2115 * Really tricky (and requiring careful tuning) part of algorithm
2116 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2117 * The first determines the moment _when_ we should reduce CWND and,
2118 * hence, slow down forward transmission. In fact, it determines the moment
2119 * when we decide that hole is caused by loss, rather than by a reorder.
2121 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2122 * holes, caused by lost packets.
2124 * And the most logically complicated part of algorithm is undo
2125 * heuristics. We detect false retransmits due to both too early
2126 * fast retransmit (reordering) and underestimated RTO, analyzing
2127 * timestamps and D-SACKs. When we detect that some segments were
2128 * retransmitted by mistake and CWND reduction was wrong, we undo
2129 * window reduction and abort recovery phase. This logic is hidden
2130 * inside several functions named tcp_try_undo_<something>.
2133 /* This function decides, when we should leave Disordered state
2134 * and enter Recovery phase, reducing congestion window.
2136 * Main question: may we further continue forward transmission
2137 * with the same cwnd?
2139 static bool tcp_time_to_recover(struct sock *sk, int flag)
2141 struct tcp_sock *tp = tcp_sk(sk);
2143 /* Trick#1: The loss is proven. */
2144 if (tp->lost_out)
2145 return true;
2147 /* Not-A-Trick#2 : Classic rule... */
2148 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2149 return true;
2151 return false;
2154 /* Detect loss in event "A" above by marking head of queue up as lost.
2155 * For non-SACK(Reno) senders, the first "packets" number of segments
2156 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2157 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2158 * the maximum SACKed segments to pass before reaching this limit.
2160 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2162 struct tcp_sock *tp = tcp_sk(sk);
2163 struct sk_buff *skb;
2164 int cnt, oldcnt, lost;
2165 unsigned int mss;
2166 /* Use SACK to deduce losses of new sequences sent during recovery */
2167 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2169 WARN_ON(packets > tp->packets_out);
2170 skb = tp->lost_skb_hint;
2171 if (skb) {
2172 /* Head already handled? */
2173 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2174 return;
2175 cnt = tp->lost_cnt_hint;
2176 } else {
2177 skb = tcp_rtx_queue_head(sk);
2178 cnt = 0;
2181 skb_rbtree_walk_from(skb) {
2182 /* TODO: do this better */
2183 /* this is not the most efficient way to do this... */
2184 tp->lost_skb_hint = skb;
2185 tp->lost_cnt_hint = cnt;
2187 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2188 break;
2190 oldcnt = cnt;
2191 if (tcp_is_reno(tp) ||
2192 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2193 cnt += tcp_skb_pcount(skb);
2195 if (cnt > packets) {
2196 if (tcp_is_sack(tp) ||
2197 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2198 (oldcnt >= packets))
2199 break;
2201 mss = tcp_skb_mss(skb);
2202 /* If needed, chop off the prefix to mark as lost. */
2203 lost = (packets - oldcnt) * mss;
2204 if (lost < skb->len &&
2205 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2206 lost, mss, GFP_ATOMIC) < 0)
2207 break;
2208 cnt = packets;
2211 tcp_skb_mark_lost(tp, skb);
2213 if (mark_head)
2214 break;
2216 tcp_verify_left_out(tp);
2219 /* Account newly detected lost packet(s) */
2221 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2223 struct tcp_sock *tp = tcp_sk(sk);
2225 if (tcp_is_sack(tp)) {
2226 int sacked_upto = tp->sacked_out - tp->reordering;
2227 if (sacked_upto >= 0)
2228 tcp_mark_head_lost(sk, sacked_upto, 0);
2229 else if (fast_rexmit)
2230 tcp_mark_head_lost(sk, 1, 1);
2234 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2236 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2237 before(tp->rx_opt.rcv_tsecr, when);
2240 /* skb is spurious retransmitted if the returned timestamp echo
2241 * reply is prior to the skb transmission time
2243 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2244 const struct sk_buff *skb)
2246 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2247 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2250 /* Nothing was retransmitted or returned timestamp is less
2251 * than timestamp of the first retransmission.
2253 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2255 return !tp->retrans_stamp ||
2256 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2259 /* Undo procedures. */
2261 /* We can clear retrans_stamp when there are no retransmissions in the
2262 * window. It would seem that it is trivially available for us in
2263 * tp->retrans_out, however, that kind of assumptions doesn't consider
2264 * what will happen if errors occur when sending retransmission for the
2265 * second time. ...It could the that such segment has only
2266 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2267 * the head skb is enough except for some reneging corner cases that
2268 * are not worth the effort.
2270 * Main reason for all this complexity is the fact that connection dying
2271 * time now depends on the validity of the retrans_stamp, in particular,
2272 * that successive retransmissions of a segment must not advance
2273 * retrans_stamp under any conditions.
2275 static bool tcp_any_retrans_done(const struct sock *sk)
2277 const struct tcp_sock *tp = tcp_sk(sk);
2278 struct sk_buff *skb;
2280 if (tp->retrans_out)
2281 return true;
2283 skb = tcp_rtx_queue_head(sk);
2284 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2285 return true;
2287 return false;
2290 static void DBGUNDO(struct sock *sk, const char *msg)
2292 #if FASTRETRANS_DEBUG > 1
2293 struct tcp_sock *tp = tcp_sk(sk);
2294 struct inet_sock *inet = inet_sk(sk);
2296 if (sk->sk_family == AF_INET) {
2297 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2298 msg,
2299 &inet->inet_daddr, ntohs(inet->inet_dport),
2300 tp->snd_cwnd, tcp_left_out(tp),
2301 tp->snd_ssthresh, tp->prior_ssthresh,
2302 tp->packets_out);
2304 #if IS_ENABLED(CONFIG_IPV6)
2305 else if (sk->sk_family == AF_INET6) {
2306 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2307 msg,
2308 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2309 tp->snd_cwnd, tcp_left_out(tp),
2310 tp->snd_ssthresh, tp->prior_ssthresh,
2311 tp->packets_out);
2313 #endif
2314 #endif
2317 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2319 struct tcp_sock *tp = tcp_sk(sk);
2321 if (unmark_loss) {
2322 struct sk_buff *skb;
2324 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2325 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2327 tp->lost_out = 0;
2328 tcp_clear_all_retrans_hints(tp);
2331 if (tp->prior_ssthresh) {
2332 const struct inet_connection_sock *icsk = inet_csk(sk);
2334 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2336 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2337 tp->snd_ssthresh = tp->prior_ssthresh;
2338 tcp_ecn_withdraw_cwr(tp);
2341 tp->snd_cwnd_stamp = tcp_jiffies32;
2342 tp->undo_marker = 0;
2343 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2346 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2348 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2351 /* People celebrate: "We love our President!" */
2352 static bool tcp_try_undo_recovery(struct sock *sk)
2354 struct tcp_sock *tp = tcp_sk(sk);
2356 if (tcp_may_undo(tp)) {
2357 int mib_idx;
2359 /* Happy end! We did not retransmit anything
2360 * or our original transmission succeeded.
2362 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2363 tcp_undo_cwnd_reduction(sk, false);
2364 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2365 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2366 else
2367 mib_idx = LINUX_MIB_TCPFULLUNDO;
2369 NET_INC_STATS(sock_net(sk), mib_idx);
2370 } else if (tp->rack.reo_wnd_persist) {
2371 tp->rack.reo_wnd_persist--;
2373 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2374 /* Hold old state until something *above* high_seq
2375 * is ACKed. For Reno it is MUST to prevent false
2376 * fast retransmits (RFC2582). SACK TCP is safe. */
2377 if (!tcp_any_retrans_done(sk))
2378 tp->retrans_stamp = 0;
2379 return true;
2381 tcp_set_ca_state(sk, TCP_CA_Open);
2382 tp->is_sack_reneg = 0;
2383 return false;
2386 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2387 static bool tcp_try_undo_dsack(struct sock *sk)
2389 struct tcp_sock *tp = tcp_sk(sk);
2391 if (tp->undo_marker && !tp->undo_retrans) {
2392 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2393 tp->rack.reo_wnd_persist + 1);
2394 DBGUNDO(sk, "D-SACK");
2395 tcp_undo_cwnd_reduction(sk, false);
2396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2397 return true;
2399 return false;
2402 /* Undo during loss recovery after partial ACK or using F-RTO. */
2403 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2405 struct tcp_sock *tp = tcp_sk(sk);
2407 if (frto_undo || tcp_may_undo(tp)) {
2408 tcp_undo_cwnd_reduction(sk, true);
2410 DBGUNDO(sk, "partial loss");
2411 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2412 if (frto_undo)
2413 NET_INC_STATS(sock_net(sk),
2414 LINUX_MIB_TCPSPURIOUSRTOS);
2415 inet_csk(sk)->icsk_retransmits = 0;
2416 if (frto_undo || tcp_is_sack(tp)) {
2417 tcp_set_ca_state(sk, TCP_CA_Open);
2418 tp->is_sack_reneg = 0;
2420 return true;
2422 return false;
2425 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2426 * It computes the number of packets to send (sndcnt) based on packets newly
2427 * delivered:
2428 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2429 * cwnd reductions across a full RTT.
2430 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2431 * But when the retransmits are acked without further losses, PRR
2432 * slow starts cwnd up to ssthresh to speed up the recovery.
2434 static void tcp_init_cwnd_reduction(struct sock *sk)
2436 struct tcp_sock *tp = tcp_sk(sk);
2438 tp->high_seq = tp->snd_nxt;
2439 tp->tlp_high_seq = 0;
2440 tp->snd_cwnd_cnt = 0;
2441 tp->prior_cwnd = tp->snd_cwnd;
2442 tp->prr_delivered = 0;
2443 tp->prr_out = 0;
2444 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2445 tcp_ecn_queue_cwr(tp);
2448 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2450 struct tcp_sock *tp = tcp_sk(sk);
2451 int sndcnt = 0;
2452 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2454 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2455 return;
2457 tp->prr_delivered += newly_acked_sacked;
2458 if (delta < 0) {
2459 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2460 tp->prior_cwnd - 1;
2461 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2462 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2463 !(flag & FLAG_LOST_RETRANS)) {
2464 sndcnt = min_t(int, delta,
2465 max_t(int, tp->prr_delivered - tp->prr_out,
2466 newly_acked_sacked) + 1);
2467 } else {
2468 sndcnt = min(delta, newly_acked_sacked);
2470 /* Force a fast retransmit upon entering fast recovery */
2471 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2472 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2475 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2477 struct tcp_sock *tp = tcp_sk(sk);
2479 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2480 return;
2482 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2483 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2484 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2485 tp->snd_cwnd = tp->snd_ssthresh;
2486 tp->snd_cwnd_stamp = tcp_jiffies32;
2488 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2491 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2492 void tcp_enter_cwr(struct sock *sk)
2494 struct tcp_sock *tp = tcp_sk(sk);
2496 tp->prior_ssthresh = 0;
2497 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2498 tp->undo_marker = 0;
2499 tcp_init_cwnd_reduction(sk);
2500 tcp_set_ca_state(sk, TCP_CA_CWR);
2503 EXPORT_SYMBOL(tcp_enter_cwr);
2505 static void tcp_try_keep_open(struct sock *sk)
2507 struct tcp_sock *tp = tcp_sk(sk);
2508 int state = TCP_CA_Open;
2510 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2511 state = TCP_CA_Disorder;
2513 if (inet_csk(sk)->icsk_ca_state != state) {
2514 tcp_set_ca_state(sk, state);
2515 tp->high_seq = tp->snd_nxt;
2519 static void tcp_try_to_open(struct sock *sk, int flag)
2521 struct tcp_sock *tp = tcp_sk(sk);
2523 tcp_verify_left_out(tp);
2525 if (!tcp_any_retrans_done(sk))
2526 tp->retrans_stamp = 0;
2528 if (flag & FLAG_ECE)
2529 tcp_enter_cwr(sk);
2531 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2532 tcp_try_keep_open(sk);
2536 static void tcp_mtup_probe_failed(struct sock *sk)
2538 struct inet_connection_sock *icsk = inet_csk(sk);
2540 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2541 icsk->icsk_mtup.probe_size = 0;
2542 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2545 static void tcp_mtup_probe_success(struct sock *sk)
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 struct inet_connection_sock *icsk = inet_csk(sk);
2550 /* FIXME: breaks with very large cwnd */
2551 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2552 tp->snd_cwnd = tp->snd_cwnd *
2553 tcp_mss_to_mtu(sk, tp->mss_cache) /
2554 icsk->icsk_mtup.probe_size;
2555 tp->snd_cwnd_cnt = 0;
2556 tp->snd_cwnd_stamp = tcp_jiffies32;
2557 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2559 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2560 icsk->icsk_mtup.probe_size = 0;
2561 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2565 /* Do a simple retransmit without using the backoff mechanisms in
2566 * tcp_timer. This is used for path mtu discovery.
2567 * The socket is already locked here.
2569 void tcp_simple_retransmit(struct sock *sk)
2571 const struct inet_connection_sock *icsk = inet_csk(sk);
2572 struct tcp_sock *tp = tcp_sk(sk);
2573 struct sk_buff *skb;
2574 unsigned int mss = tcp_current_mss(sk);
2576 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2577 if (tcp_skb_seglen(skb) > mss &&
2578 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2579 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2580 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2581 tp->retrans_out -= tcp_skb_pcount(skb);
2583 tcp_skb_mark_lost_uncond_verify(tp, skb);
2587 tcp_clear_retrans_hints_partial(tp);
2589 if (!tp->lost_out)
2590 return;
2592 if (tcp_is_reno(tp))
2593 tcp_limit_reno_sacked(tp);
2595 tcp_verify_left_out(tp);
2597 /* Don't muck with the congestion window here.
2598 * Reason is that we do not increase amount of _data_
2599 * in network, but units changed and effective
2600 * cwnd/ssthresh really reduced now.
2602 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2603 tp->high_seq = tp->snd_nxt;
2604 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2605 tp->prior_ssthresh = 0;
2606 tp->undo_marker = 0;
2607 tcp_set_ca_state(sk, TCP_CA_Loss);
2609 tcp_xmit_retransmit_queue(sk);
2611 EXPORT_SYMBOL(tcp_simple_retransmit);
2613 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 int mib_idx;
2618 if (tcp_is_reno(tp))
2619 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2620 else
2621 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2623 NET_INC_STATS(sock_net(sk), mib_idx);
2625 tp->prior_ssthresh = 0;
2626 tcp_init_undo(tp);
2628 if (!tcp_in_cwnd_reduction(sk)) {
2629 if (!ece_ack)
2630 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2631 tcp_init_cwnd_reduction(sk);
2633 tcp_set_ca_state(sk, TCP_CA_Recovery);
2636 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2637 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2639 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2640 int *rexmit)
2642 struct tcp_sock *tp = tcp_sk(sk);
2643 bool recovered = !before(tp->snd_una, tp->high_seq);
2645 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2646 tcp_try_undo_loss(sk, false))
2647 return;
2649 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2650 /* Step 3.b. A timeout is spurious if not all data are
2651 * lost, i.e., never-retransmitted data are (s)acked.
2653 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2654 tcp_try_undo_loss(sk, true))
2655 return;
2657 if (after(tp->snd_nxt, tp->high_seq)) {
2658 if (flag & FLAG_DATA_SACKED || is_dupack)
2659 tp->frto = 0; /* Step 3.a. loss was real */
2660 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2661 tp->high_seq = tp->snd_nxt;
2662 /* Step 2.b. Try send new data (but deferred until cwnd
2663 * is updated in tcp_ack()). Otherwise fall back to
2664 * the conventional recovery.
2666 if (!tcp_write_queue_empty(sk) &&
2667 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2668 *rexmit = REXMIT_NEW;
2669 return;
2671 tp->frto = 0;
2675 if (recovered) {
2676 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2677 tcp_try_undo_recovery(sk);
2678 return;
2680 if (tcp_is_reno(tp)) {
2681 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2682 * delivered. Lower inflight to clock out (re)tranmissions.
2684 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2685 tcp_add_reno_sack(sk);
2686 else if (flag & FLAG_SND_UNA_ADVANCED)
2687 tcp_reset_reno_sack(tp);
2689 *rexmit = REXMIT_LOST;
2692 /* Undo during fast recovery after partial ACK. */
2693 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2695 struct tcp_sock *tp = tcp_sk(sk);
2697 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2698 /* Plain luck! Hole if filled with delayed
2699 * packet, rather than with a retransmit. Check reordering.
2701 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2703 /* We are getting evidence that the reordering degree is higher
2704 * than we realized. If there are no retransmits out then we
2705 * can undo. Otherwise we clock out new packets but do not
2706 * mark more packets lost or retransmit more.
2708 if (tp->retrans_out)
2709 return true;
2711 if (!tcp_any_retrans_done(sk))
2712 tp->retrans_stamp = 0;
2714 DBGUNDO(sk, "partial recovery");
2715 tcp_undo_cwnd_reduction(sk, true);
2716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2717 tcp_try_keep_open(sk);
2718 return true;
2720 return false;
2723 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2725 struct tcp_sock *tp = tcp_sk(sk);
2727 if (tcp_rtx_queue_empty(sk))
2728 return;
2730 if (unlikely(tcp_is_reno(tp))) {
2731 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2732 } else if (tcp_is_rack(sk)) {
2733 u32 prior_retrans = tp->retrans_out;
2735 tcp_rack_mark_lost(sk);
2736 if (prior_retrans > tp->retrans_out)
2737 *ack_flag |= FLAG_LOST_RETRANS;
2741 static bool tcp_force_fast_retransmit(struct sock *sk)
2743 struct tcp_sock *tp = tcp_sk(sk);
2745 return after(tcp_highest_sack_seq(tp),
2746 tp->snd_una + tp->reordering * tp->mss_cache);
2749 /* Process an event, which can update packets-in-flight not trivially.
2750 * Main goal of this function is to calculate new estimate for left_out,
2751 * taking into account both packets sitting in receiver's buffer and
2752 * packets lost by network.
2754 * Besides that it updates the congestion state when packet loss or ECN
2755 * is detected. But it does not reduce the cwnd, it is done by the
2756 * congestion control later.
2758 * It does _not_ decide what to send, it is made in function
2759 * tcp_xmit_retransmit_queue().
2761 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2762 bool is_dupack, int *ack_flag, int *rexmit)
2764 struct inet_connection_sock *icsk = inet_csk(sk);
2765 struct tcp_sock *tp = tcp_sk(sk);
2766 int fast_rexmit = 0, flag = *ack_flag;
2767 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2768 tcp_force_fast_retransmit(sk));
2770 if (!tp->packets_out && tp->sacked_out)
2771 tp->sacked_out = 0;
2773 /* Now state machine starts.
2774 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2775 if (flag & FLAG_ECE)
2776 tp->prior_ssthresh = 0;
2778 /* B. In all the states check for reneging SACKs. */
2779 if (tcp_check_sack_reneging(sk, flag))
2780 return;
2782 /* C. Check consistency of the current state. */
2783 tcp_verify_left_out(tp);
2785 /* D. Check state exit conditions. State can be terminated
2786 * when high_seq is ACKed. */
2787 if (icsk->icsk_ca_state == TCP_CA_Open) {
2788 WARN_ON(tp->retrans_out != 0);
2789 tp->retrans_stamp = 0;
2790 } else if (!before(tp->snd_una, tp->high_seq)) {
2791 switch (icsk->icsk_ca_state) {
2792 case TCP_CA_CWR:
2793 /* CWR is to be held something *above* high_seq
2794 * is ACKed for CWR bit to reach receiver. */
2795 if (tp->snd_una != tp->high_seq) {
2796 tcp_end_cwnd_reduction(sk);
2797 tcp_set_ca_state(sk, TCP_CA_Open);
2799 break;
2801 case TCP_CA_Recovery:
2802 if (tcp_is_reno(tp))
2803 tcp_reset_reno_sack(tp);
2804 if (tcp_try_undo_recovery(sk))
2805 return;
2806 tcp_end_cwnd_reduction(sk);
2807 break;
2811 /* E. Process state. */
2812 switch (icsk->icsk_ca_state) {
2813 case TCP_CA_Recovery:
2814 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2815 if (tcp_is_reno(tp) && is_dupack)
2816 tcp_add_reno_sack(sk);
2817 } else {
2818 if (tcp_try_undo_partial(sk, prior_snd_una))
2819 return;
2820 /* Partial ACK arrived. Force fast retransmit. */
2821 do_lost = tcp_is_reno(tp) ||
2822 tcp_force_fast_retransmit(sk);
2824 if (tcp_try_undo_dsack(sk)) {
2825 tcp_try_keep_open(sk);
2826 return;
2828 tcp_identify_packet_loss(sk, ack_flag);
2829 break;
2830 case TCP_CA_Loss:
2831 tcp_process_loss(sk, flag, is_dupack, rexmit);
2832 tcp_identify_packet_loss(sk, ack_flag);
2833 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2834 (*ack_flag & FLAG_LOST_RETRANS)))
2835 return;
2836 /* Change state if cwnd is undone or retransmits are lost */
2837 /* fall through */
2838 default:
2839 if (tcp_is_reno(tp)) {
2840 if (flag & FLAG_SND_UNA_ADVANCED)
2841 tcp_reset_reno_sack(tp);
2842 if (is_dupack)
2843 tcp_add_reno_sack(sk);
2846 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2847 tcp_try_undo_dsack(sk);
2849 tcp_identify_packet_loss(sk, ack_flag);
2850 if (!tcp_time_to_recover(sk, flag)) {
2851 tcp_try_to_open(sk, flag);
2852 return;
2855 /* MTU probe failure: don't reduce cwnd */
2856 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2857 icsk->icsk_mtup.probe_size &&
2858 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2859 tcp_mtup_probe_failed(sk);
2860 /* Restores the reduction we did in tcp_mtup_probe() */
2861 tp->snd_cwnd++;
2862 tcp_simple_retransmit(sk);
2863 return;
2866 /* Otherwise enter Recovery state */
2867 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2868 fast_rexmit = 1;
2871 if (!tcp_is_rack(sk) && do_lost)
2872 tcp_update_scoreboard(sk, fast_rexmit);
2873 *rexmit = REXMIT_LOST;
2876 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2878 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2879 struct tcp_sock *tp = tcp_sk(sk);
2881 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2882 /* If the remote keeps returning delayed ACKs, eventually
2883 * the min filter would pick it up and overestimate the
2884 * prop. delay when it expires. Skip suspected delayed ACKs.
2886 return;
2888 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2889 rtt_us ? : jiffies_to_usecs(1));
2892 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2893 long seq_rtt_us, long sack_rtt_us,
2894 long ca_rtt_us, struct rate_sample *rs)
2896 const struct tcp_sock *tp = tcp_sk(sk);
2898 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2899 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2900 * Karn's algorithm forbids taking RTT if some retransmitted data
2901 * is acked (RFC6298).
2903 if (seq_rtt_us < 0)
2904 seq_rtt_us = sack_rtt_us;
2906 /* RTTM Rule: A TSecr value received in a segment is used to
2907 * update the averaged RTT measurement only if the segment
2908 * acknowledges some new data, i.e., only if it advances the
2909 * left edge of the send window.
2910 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2912 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2913 flag & FLAG_ACKED) {
2914 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2916 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2917 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2918 ca_rtt_us = seq_rtt_us;
2921 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2922 if (seq_rtt_us < 0)
2923 return false;
2925 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2926 * always taken together with ACK, SACK, or TS-opts. Any negative
2927 * values will be skipped with the seq_rtt_us < 0 check above.
2929 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2930 tcp_rtt_estimator(sk, seq_rtt_us);
2931 tcp_set_rto(sk);
2933 /* RFC6298: only reset backoff on valid RTT measurement. */
2934 inet_csk(sk)->icsk_backoff = 0;
2935 return true;
2938 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2939 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2941 struct rate_sample rs;
2942 long rtt_us = -1L;
2944 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2945 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2947 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2951 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2953 const struct inet_connection_sock *icsk = inet_csk(sk);
2955 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2956 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2959 /* Restart timer after forward progress on connection.
2960 * RFC2988 recommends to restart timer to now+rto.
2962 void tcp_rearm_rto(struct sock *sk)
2964 const struct inet_connection_sock *icsk = inet_csk(sk);
2965 struct tcp_sock *tp = tcp_sk(sk);
2967 /* If the retrans timer is currently being used by Fast Open
2968 * for SYN-ACK retrans purpose, stay put.
2970 if (tp->fastopen_rsk)
2971 return;
2973 if (!tp->packets_out) {
2974 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2975 } else {
2976 u32 rto = inet_csk(sk)->icsk_rto;
2977 /* Offset the time elapsed after installing regular RTO */
2978 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2979 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2980 s64 delta_us = tcp_rto_delta_us(sk);
2981 /* delta_us may not be positive if the socket is locked
2982 * when the retrans timer fires and is rescheduled.
2984 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2986 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2987 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
2991 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2992 static void tcp_set_xmit_timer(struct sock *sk)
2994 if (!tcp_schedule_loss_probe(sk, true))
2995 tcp_rearm_rto(sk);
2998 /* If we get here, the whole TSO packet has not been acked. */
2999 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3001 struct tcp_sock *tp = tcp_sk(sk);
3002 u32 packets_acked;
3004 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3006 packets_acked = tcp_skb_pcount(skb);
3007 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3008 return 0;
3009 packets_acked -= tcp_skb_pcount(skb);
3011 if (packets_acked) {
3012 BUG_ON(tcp_skb_pcount(skb) == 0);
3013 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3016 return packets_acked;
3019 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3020 u32 prior_snd_una)
3022 const struct skb_shared_info *shinfo;
3024 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3025 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3026 return;
3028 shinfo = skb_shinfo(skb);
3029 if (!before(shinfo->tskey, prior_snd_una) &&
3030 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3031 tcp_skb_tsorted_save(skb) {
3032 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3033 } tcp_skb_tsorted_restore(skb);
3037 /* Remove acknowledged frames from the retransmission queue. If our packet
3038 * is before the ack sequence we can discard it as it's confirmed to have
3039 * arrived at the other end.
3041 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3042 u32 prior_snd_una,
3043 struct tcp_sacktag_state *sack)
3045 const struct inet_connection_sock *icsk = inet_csk(sk);
3046 u64 first_ackt, last_ackt;
3047 struct tcp_sock *tp = tcp_sk(sk);
3048 u32 prior_sacked = tp->sacked_out;
3049 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3050 struct sk_buff *skb, *next;
3051 bool fully_acked = true;
3052 long sack_rtt_us = -1L;
3053 long seq_rtt_us = -1L;
3054 long ca_rtt_us = -1L;
3055 u32 pkts_acked = 0;
3056 u32 last_in_flight = 0;
3057 bool rtt_update;
3058 int flag = 0;
3060 first_ackt = 0;
3062 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3063 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3064 const u32 start_seq = scb->seq;
3065 u8 sacked = scb->sacked;
3066 u32 acked_pcount;
3068 tcp_ack_tstamp(sk, skb, prior_snd_una);
3070 /* Determine how many packets and what bytes were acked, tso and else */
3071 if (after(scb->end_seq, tp->snd_una)) {
3072 if (tcp_skb_pcount(skb) == 1 ||
3073 !after(tp->snd_una, scb->seq))
3074 break;
3076 acked_pcount = tcp_tso_acked(sk, skb);
3077 if (!acked_pcount)
3078 break;
3079 fully_acked = false;
3080 } else {
3081 acked_pcount = tcp_skb_pcount(skb);
3084 if (unlikely(sacked & TCPCB_RETRANS)) {
3085 if (sacked & TCPCB_SACKED_RETRANS)
3086 tp->retrans_out -= acked_pcount;
3087 flag |= FLAG_RETRANS_DATA_ACKED;
3088 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3089 last_ackt = tcp_skb_timestamp_us(skb);
3090 WARN_ON_ONCE(last_ackt == 0);
3091 if (!first_ackt)
3092 first_ackt = last_ackt;
3094 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3095 if (before(start_seq, reord))
3096 reord = start_seq;
3097 if (!after(scb->end_seq, tp->high_seq))
3098 flag |= FLAG_ORIG_SACK_ACKED;
3101 if (sacked & TCPCB_SACKED_ACKED) {
3102 tp->sacked_out -= acked_pcount;
3103 } else if (tcp_is_sack(tp)) {
3104 tp->delivered += acked_pcount;
3105 if (!tcp_skb_spurious_retrans(tp, skb))
3106 tcp_rack_advance(tp, sacked, scb->end_seq,
3107 tcp_skb_timestamp_us(skb));
3109 if (sacked & TCPCB_LOST)
3110 tp->lost_out -= acked_pcount;
3112 tp->packets_out -= acked_pcount;
3113 pkts_acked += acked_pcount;
3114 tcp_rate_skb_delivered(sk, skb, sack->rate);
3116 /* Initial outgoing SYN's get put onto the write_queue
3117 * just like anything else we transmit. It is not
3118 * true data, and if we misinform our callers that
3119 * this ACK acks real data, we will erroneously exit
3120 * connection startup slow start one packet too
3121 * quickly. This is severely frowned upon behavior.
3123 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3124 flag |= FLAG_DATA_ACKED;
3125 } else {
3126 flag |= FLAG_SYN_ACKED;
3127 tp->retrans_stamp = 0;
3130 if (!fully_acked)
3131 break;
3133 next = skb_rb_next(skb);
3134 if (unlikely(skb == tp->retransmit_skb_hint))
3135 tp->retransmit_skb_hint = NULL;
3136 if (unlikely(skb == tp->lost_skb_hint))
3137 tp->lost_skb_hint = NULL;
3138 tcp_rtx_queue_unlink_and_free(skb, sk);
3141 if (!skb)
3142 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3144 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3145 tp->snd_up = tp->snd_una;
3147 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3148 flag |= FLAG_SACK_RENEGING;
3150 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3151 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3152 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3154 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3155 last_in_flight && !prior_sacked && fully_acked &&
3156 sack->rate->prior_delivered + 1 == tp->delivered &&
3157 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3158 /* Conservatively mark a delayed ACK. It's typically
3159 * from a lone runt packet over the round trip to
3160 * a receiver w/o out-of-order or CE events.
3162 flag |= FLAG_ACK_MAYBE_DELAYED;
3165 if (sack->first_sackt) {
3166 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3167 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3169 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3170 ca_rtt_us, sack->rate);
3172 if (flag & FLAG_ACKED) {
3173 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3174 if (unlikely(icsk->icsk_mtup.probe_size &&
3175 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3176 tcp_mtup_probe_success(sk);
3179 if (tcp_is_reno(tp)) {
3180 tcp_remove_reno_sacks(sk, pkts_acked);
3182 /* If any of the cumulatively ACKed segments was
3183 * retransmitted, non-SACK case cannot confirm that
3184 * progress was due to original transmission due to
3185 * lack of TCPCB_SACKED_ACKED bits even if some of
3186 * the packets may have been never retransmitted.
3188 if (flag & FLAG_RETRANS_DATA_ACKED)
3189 flag &= ~FLAG_ORIG_SACK_ACKED;
3190 } else {
3191 int delta;
3193 /* Non-retransmitted hole got filled? That's reordering */
3194 if (before(reord, prior_fack))
3195 tcp_check_sack_reordering(sk, reord, 0);
3197 delta = prior_sacked - tp->sacked_out;
3198 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3200 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3201 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3202 tcp_skb_timestamp_us(skb))) {
3203 /* Do not re-arm RTO if the sack RTT is measured from data sent
3204 * after when the head was last (re)transmitted. Otherwise the
3205 * timeout may continue to extend in loss recovery.
3207 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3210 if (icsk->icsk_ca_ops->pkts_acked) {
3211 struct ack_sample sample = { .pkts_acked = pkts_acked,
3212 .rtt_us = sack->rate->rtt_us,
3213 .in_flight = last_in_flight };
3215 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3218 #if FASTRETRANS_DEBUG > 0
3219 WARN_ON((int)tp->sacked_out < 0);
3220 WARN_ON((int)tp->lost_out < 0);
3221 WARN_ON((int)tp->retrans_out < 0);
3222 if (!tp->packets_out && tcp_is_sack(tp)) {
3223 icsk = inet_csk(sk);
3224 if (tp->lost_out) {
3225 pr_debug("Leak l=%u %d\n",
3226 tp->lost_out, icsk->icsk_ca_state);
3227 tp->lost_out = 0;
3229 if (tp->sacked_out) {
3230 pr_debug("Leak s=%u %d\n",
3231 tp->sacked_out, icsk->icsk_ca_state);
3232 tp->sacked_out = 0;
3234 if (tp->retrans_out) {
3235 pr_debug("Leak r=%u %d\n",
3236 tp->retrans_out, icsk->icsk_ca_state);
3237 tp->retrans_out = 0;
3240 #endif
3241 return flag;
3244 static void tcp_ack_probe(struct sock *sk)
3246 struct inet_connection_sock *icsk = inet_csk(sk);
3247 struct sk_buff *head = tcp_send_head(sk);
3248 const struct tcp_sock *tp = tcp_sk(sk);
3250 /* Was it a usable window open? */
3251 if (!head)
3252 return;
3253 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3254 icsk->icsk_backoff = 0;
3255 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3256 /* Socket must be waked up by subsequent tcp_data_snd_check().
3257 * This function is not for random using!
3259 } else {
3260 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3262 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3263 when, TCP_RTO_MAX, NULL);
3267 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3269 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3270 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3273 /* Decide wheather to run the increase function of congestion control. */
3274 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3276 /* If reordering is high then always grow cwnd whenever data is
3277 * delivered regardless of its ordering. Otherwise stay conservative
3278 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3279 * new SACK or ECE mark may first advance cwnd here and later reduce
3280 * cwnd in tcp_fastretrans_alert() based on more states.
3282 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3283 return flag & FLAG_FORWARD_PROGRESS;
3285 return flag & FLAG_DATA_ACKED;
3288 /* The "ultimate" congestion control function that aims to replace the rigid
3289 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3290 * It's called toward the end of processing an ACK with precise rate
3291 * information. All transmission or retransmission are delayed afterwards.
3293 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3294 int flag, const struct rate_sample *rs)
3296 const struct inet_connection_sock *icsk = inet_csk(sk);
3298 if (icsk->icsk_ca_ops->cong_control) {
3299 icsk->icsk_ca_ops->cong_control(sk, rs);
3300 return;
3303 if (tcp_in_cwnd_reduction(sk)) {
3304 /* Reduce cwnd if state mandates */
3305 tcp_cwnd_reduction(sk, acked_sacked, flag);
3306 } else if (tcp_may_raise_cwnd(sk, flag)) {
3307 /* Advance cwnd if state allows */
3308 tcp_cong_avoid(sk, ack, acked_sacked);
3310 tcp_update_pacing_rate(sk);
3313 /* Check that window update is acceptable.
3314 * The function assumes that snd_una<=ack<=snd_next.
3316 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3317 const u32 ack, const u32 ack_seq,
3318 const u32 nwin)
3320 return after(ack, tp->snd_una) ||
3321 after(ack_seq, tp->snd_wl1) ||
3322 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3325 /* If we update tp->snd_una, also update tp->bytes_acked */
3326 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3328 u32 delta = ack - tp->snd_una;
3330 sock_owned_by_me((struct sock *)tp);
3331 tp->bytes_acked += delta;
3332 tp->snd_una = ack;
3335 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3336 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3338 u32 delta = seq - tp->rcv_nxt;
3340 sock_owned_by_me((struct sock *)tp);
3341 tp->bytes_received += delta;
3342 tp->rcv_nxt = seq;
3345 /* Update our send window.
3347 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3348 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3350 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3351 u32 ack_seq)
3353 struct tcp_sock *tp = tcp_sk(sk);
3354 int flag = 0;
3355 u32 nwin = ntohs(tcp_hdr(skb)->window);
3357 if (likely(!tcp_hdr(skb)->syn))
3358 nwin <<= tp->rx_opt.snd_wscale;
3360 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3361 flag |= FLAG_WIN_UPDATE;
3362 tcp_update_wl(tp, ack_seq);
3364 if (tp->snd_wnd != nwin) {
3365 tp->snd_wnd = nwin;
3367 /* Note, it is the only place, where
3368 * fast path is recovered for sending TCP.
3370 tp->pred_flags = 0;
3371 tcp_fast_path_check(sk);
3373 if (!tcp_write_queue_empty(sk))
3374 tcp_slow_start_after_idle_check(sk);
3376 if (nwin > tp->max_window) {
3377 tp->max_window = nwin;
3378 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3383 tcp_snd_una_update(tp, ack);
3385 return flag;
3388 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3389 u32 *last_oow_ack_time)
3391 if (*last_oow_ack_time) {
3392 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3394 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3395 NET_INC_STATS(net, mib_idx);
3396 return true; /* rate-limited: don't send yet! */
3400 *last_oow_ack_time = tcp_jiffies32;
3402 return false; /* not rate-limited: go ahead, send dupack now! */
3405 /* Return true if we're currently rate-limiting out-of-window ACKs and
3406 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3407 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3408 * attacks that send repeated SYNs or ACKs for the same connection. To
3409 * do this, we do not send a duplicate SYNACK or ACK if the remote
3410 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3412 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3413 int mib_idx, u32 *last_oow_ack_time)
3415 /* Data packets without SYNs are not likely part of an ACK loop. */
3416 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3417 !tcp_hdr(skb)->syn)
3418 return false;
3420 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3423 /* RFC 5961 7 [ACK Throttling] */
3424 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3426 /* unprotected vars, we dont care of overwrites */
3427 static u32 challenge_timestamp;
3428 static unsigned int challenge_count;
3429 struct tcp_sock *tp = tcp_sk(sk);
3430 struct net *net = sock_net(sk);
3431 u32 count, now;
3433 /* First check our per-socket dupack rate limit. */
3434 if (__tcp_oow_rate_limited(net,
3435 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3436 &tp->last_oow_ack_time))
3437 return;
3439 /* Then check host-wide RFC 5961 rate limit. */
3440 now = jiffies / HZ;
3441 if (now != challenge_timestamp) {
3442 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3443 u32 half = (ack_limit + 1) >> 1;
3445 challenge_timestamp = now;
3446 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3448 count = READ_ONCE(challenge_count);
3449 if (count > 0) {
3450 WRITE_ONCE(challenge_count, count - 1);
3451 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3452 tcp_send_ack(sk);
3456 static void tcp_store_ts_recent(struct tcp_sock *tp)
3458 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3459 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3462 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3464 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3465 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3466 * extra check below makes sure this can only happen
3467 * for pure ACK frames. -DaveM
3469 * Not only, also it occurs for expired timestamps.
3472 if (tcp_paws_check(&tp->rx_opt, 0))
3473 tcp_store_ts_recent(tp);
3477 /* This routine deals with acks during a TLP episode.
3478 * We mark the end of a TLP episode on receiving TLP dupack or when
3479 * ack is after tlp_high_seq.
3480 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3482 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3484 struct tcp_sock *tp = tcp_sk(sk);
3486 if (before(ack, tp->tlp_high_seq))
3487 return;
3489 if (flag & FLAG_DSACKING_ACK) {
3490 /* This DSACK means original and TLP probe arrived; no loss */
3491 tp->tlp_high_seq = 0;
3492 } else if (after(ack, tp->tlp_high_seq)) {
3493 /* ACK advances: there was a loss, so reduce cwnd. Reset
3494 * tlp_high_seq in tcp_init_cwnd_reduction()
3496 tcp_init_cwnd_reduction(sk);
3497 tcp_set_ca_state(sk, TCP_CA_CWR);
3498 tcp_end_cwnd_reduction(sk);
3499 tcp_try_keep_open(sk);
3500 NET_INC_STATS(sock_net(sk),
3501 LINUX_MIB_TCPLOSSPROBERECOVERY);
3502 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3503 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3504 /* Pure dupack: original and TLP probe arrived; no loss */
3505 tp->tlp_high_seq = 0;
3509 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3511 const struct inet_connection_sock *icsk = inet_csk(sk);
3513 if (icsk->icsk_ca_ops->in_ack_event)
3514 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3517 /* Congestion control has updated the cwnd already. So if we're in
3518 * loss recovery then now we do any new sends (for FRTO) or
3519 * retransmits (for CA_Loss or CA_recovery) that make sense.
3521 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3523 struct tcp_sock *tp = tcp_sk(sk);
3525 if (rexmit == REXMIT_NONE)
3526 return;
3528 if (unlikely(rexmit == 2)) {
3529 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3530 TCP_NAGLE_OFF);
3531 if (after(tp->snd_nxt, tp->high_seq))
3532 return;
3533 tp->frto = 0;
3535 tcp_xmit_retransmit_queue(sk);
3538 /* Returns the number of packets newly acked or sacked by the current ACK */
3539 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3541 const struct net *net = sock_net(sk);
3542 struct tcp_sock *tp = tcp_sk(sk);
3543 u32 delivered;
3545 delivered = tp->delivered - prior_delivered;
3546 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3547 if (flag & FLAG_ECE) {
3548 tp->delivered_ce += delivered;
3549 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3551 return delivered;
3554 /* This routine deals with incoming acks, but not outgoing ones. */
3555 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3557 struct inet_connection_sock *icsk = inet_csk(sk);
3558 struct tcp_sock *tp = tcp_sk(sk);
3559 struct tcp_sacktag_state sack_state;
3560 struct rate_sample rs = { .prior_delivered = 0 };
3561 u32 prior_snd_una = tp->snd_una;
3562 bool is_sack_reneg = tp->is_sack_reneg;
3563 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3564 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3565 bool is_dupack = false;
3566 int prior_packets = tp->packets_out;
3567 u32 delivered = tp->delivered;
3568 u32 lost = tp->lost;
3569 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3570 u32 prior_fack;
3572 sack_state.first_sackt = 0;
3573 sack_state.rate = &rs;
3575 /* We very likely will need to access rtx queue. */
3576 prefetch(sk->tcp_rtx_queue.rb_node);
3578 /* If the ack is older than previous acks
3579 * then we can probably ignore it.
3581 if (before(ack, prior_snd_una)) {
3582 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3583 if (before(ack, prior_snd_una - tp->max_window)) {
3584 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3585 tcp_send_challenge_ack(sk, skb);
3586 return -1;
3588 goto old_ack;
3591 /* If the ack includes data we haven't sent yet, discard
3592 * this segment (RFC793 Section 3.9).
3594 if (after(ack, tp->snd_nxt))
3595 goto invalid_ack;
3597 if (after(ack, prior_snd_una)) {
3598 flag |= FLAG_SND_UNA_ADVANCED;
3599 icsk->icsk_retransmits = 0;
3601 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3602 if (static_branch_unlikely(&clean_acked_data_enabled))
3603 if (icsk->icsk_clean_acked)
3604 icsk->icsk_clean_acked(sk, ack);
3605 #endif
3608 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3609 rs.prior_in_flight = tcp_packets_in_flight(tp);
3611 /* ts_recent update must be made after we are sure that the packet
3612 * is in window.
3614 if (flag & FLAG_UPDATE_TS_RECENT)
3615 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3617 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3618 /* Window is constant, pure forward advance.
3619 * No more checks are required.
3620 * Note, we use the fact that SND.UNA>=SND.WL2.
3622 tcp_update_wl(tp, ack_seq);
3623 tcp_snd_una_update(tp, ack);
3624 flag |= FLAG_WIN_UPDATE;
3626 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3628 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3629 } else {
3630 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3632 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3633 flag |= FLAG_DATA;
3634 else
3635 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3637 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3639 if (TCP_SKB_CB(skb)->sacked)
3640 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3641 &sack_state);
3643 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3644 flag |= FLAG_ECE;
3645 ack_ev_flags |= CA_ACK_ECE;
3648 if (flag & FLAG_WIN_UPDATE)
3649 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3651 tcp_in_ack_event(sk, ack_ev_flags);
3654 /* We passed data and got it acked, remove any soft error
3655 * log. Something worked...
3657 sk->sk_err_soft = 0;
3658 icsk->icsk_probes_out = 0;
3659 tp->rcv_tstamp = tcp_jiffies32;
3660 if (!prior_packets)
3661 goto no_queue;
3663 /* See if we can take anything off of the retransmit queue. */
3664 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3666 tcp_rack_update_reo_wnd(sk, &rs);
3668 if (tp->tlp_high_seq)
3669 tcp_process_tlp_ack(sk, ack, flag);
3670 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3671 if (flag & FLAG_SET_XMIT_TIMER)
3672 tcp_set_xmit_timer(sk);
3674 if (tcp_ack_is_dubious(sk, flag)) {
3675 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3676 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3677 &rexmit);
3680 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3681 sk_dst_confirm(sk);
3683 delivered = tcp_newly_delivered(sk, delivered, flag);
3684 lost = tp->lost - lost; /* freshly marked lost */
3685 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3686 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3687 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3688 tcp_xmit_recovery(sk, rexmit);
3689 return 1;
3691 no_queue:
3692 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3693 if (flag & FLAG_DSACKING_ACK) {
3694 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3695 &rexmit);
3696 tcp_newly_delivered(sk, delivered, flag);
3698 /* If this ack opens up a zero window, clear backoff. It was
3699 * being used to time the probes, and is probably far higher than
3700 * it needs to be for normal retransmission.
3702 tcp_ack_probe(sk);
3704 if (tp->tlp_high_seq)
3705 tcp_process_tlp_ack(sk, ack, flag);
3706 return 1;
3708 invalid_ack:
3709 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3710 return -1;
3712 old_ack:
3713 /* If data was SACKed, tag it and see if we should send more data.
3714 * If data was DSACKed, see if we can undo a cwnd reduction.
3716 if (TCP_SKB_CB(skb)->sacked) {
3717 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3718 &sack_state);
3719 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3720 &rexmit);
3721 tcp_newly_delivered(sk, delivered, flag);
3722 tcp_xmit_recovery(sk, rexmit);
3725 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3726 return 0;
3729 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3730 bool syn, struct tcp_fastopen_cookie *foc,
3731 bool exp_opt)
3733 /* Valid only in SYN or SYN-ACK with an even length. */
3734 if (!foc || !syn || len < 0 || (len & 1))
3735 return;
3737 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3738 len <= TCP_FASTOPEN_COOKIE_MAX)
3739 memcpy(foc->val, cookie, len);
3740 else if (len != 0)
3741 len = -1;
3742 foc->len = len;
3743 foc->exp = exp_opt;
3746 static void smc_parse_options(const struct tcphdr *th,
3747 struct tcp_options_received *opt_rx,
3748 const unsigned char *ptr,
3749 int opsize)
3751 #if IS_ENABLED(CONFIG_SMC)
3752 if (static_branch_unlikely(&tcp_have_smc)) {
3753 if (th->syn && !(opsize & 1) &&
3754 opsize >= TCPOLEN_EXP_SMC_BASE &&
3755 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3756 opt_rx->smc_ok = 1;
3758 #endif
3761 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3762 * But, this can also be called on packets in the established flow when
3763 * the fast version below fails.
3765 void tcp_parse_options(const struct net *net,
3766 const struct sk_buff *skb,
3767 struct tcp_options_received *opt_rx, int estab,
3768 struct tcp_fastopen_cookie *foc)
3770 const unsigned char *ptr;
3771 const struct tcphdr *th = tcp_hdr(skb);
3772 int length = (th->doff * 4) - sizeof(struct tcphdr);
3774 ptr = (const unsigned char *)(th + 1);
3775 opt_rx->saw_tstamp = 0;
3777 while (length > 0) {
3778 int opcode = *ptr++;
3779 int opsize;
3781 switch (opcode) {
3782 case TCPOPT_EOL:
3783 return;
3784 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3785 length--;
3786 continue;
3787 default:
3788 opsize = *ptr++;
3789 if (opsize < 2) /* "silly options" */
3790 return;
3791 if (opsize > length)
3792 return; /* don't parse partial options */
3793 switch (opcode) {
3794 case TCPOPT_MSS:
3795 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3796 u16 in_mss = get_unaligned_be16(ptr);
3797 if (in_mss) {
3798 if (opt_rx->user_mss &&
3799 opt_rx->user_mss < in_mss)
3800 in_mss = opt_rx->user_mss;
3801 opt_rx->mss_clamp = in_mss;
3804 break;
3805 case TCPOPT_WINDOW:
3806 if (opsize == TCPOLEN_WINDOW && th->syn &&
3807 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3808 __u8 snd_wscale = *(__u8 *)ptr;
3809 opt_rx->wscale_ok = 1;
3810 if (snd_wscale > TCP_MAX_WSCALE) {
3811 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3812 __func__,
3813 snd_wscale,
3814 TCP_MAX_WSCALE);
3815 snd_wscale = TCP_MAX_WSCALE;
3817 opt_rx->snd_wscale = snd_wscale;
3819 break;
3820 case TCPOPT_TIMESTAMP:
3821 if ((opsize == TCPOLEN_TIMESTAMP) &&
3822 ((estab && opt_rx->tstamp_ok) ||
3823 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3824 opt_rx->saw_tstamp = 1;
3825 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3826 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3828 break;
3829 case TCPOPT_SACK_PERM:
3830 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3831 !estab && net->ipv4.sysctl_tcp_sack) {
3832 opt_rx->sack_ok = TCP_SACK_SEEN;
3833 tcp_sack_reset(opt_rx);
3835 break;
3837 case TCPOPT_SACK:
3838 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3839 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3840 opt_rx->sack_ok) {
3841 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3843 break;
3844 #ifdef CONFIG_TCP_MD5SIG
3845 case TCPOPT_MD5SIG:
3847 * The MD5 Hash has already been
3848 * checked (see tcp_v{4,6}_do_rcv()).
3850 break;
3851 #endif
3852 case TCPOPT_FASTOPEN:
3853 tcp_parse_fastopen_option(
3854 opsize - TCPOLEN_FASTOPEN_BASE,
3855 ptr, th->syn, foc, false);
3856 break;
3858 case TCPOPT_EXP:
3859 /* Fast Open option shares code 254 using a
3860 * 16 bits magic number.
3862 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3863 get_unaligned_be16(ptr) ==
3864 TCPOPT_FASTOPEN_MAGIC)
3865 tcp_parse_fastopen_option(opsize -
3866 TCPOLEN_EXP_FASTOPEN_BASE,
3867 ptr + 2, th->syn, foc, true);
3868 else
3869 smc_parse_options(th, opt_rx, ptr,
3870 opsize);
3871 break;
3874 ptr += opsize-2;
3875 length -= opsize;
3879 EXPORT_SYMBOL(tcp_parse_options);
3881 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3883 const __be32 *ptr = (const __be32 *)(th + 1);
3885 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3886 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3887 tp->rx_opt.saw_tstamp = 1;
3888 ++ptr;
3889 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3890 ++ptr;
3891 if (*ptr)
3892 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3893 else
3894 tp->rx_opt.rcv_tsecr = 0;
3895 return true;
3897 return false;
3900 /* Fast parse options. This hopes to only see timestamps.
3901 * If it is wrong it falls back on tcp_parse_options().
3903 static bool tcp_fast_parse_options(const struct net *net,
3904 const struct sk_buff *skb,
3905 const struct tcphdr *th, struct tcp_sock *tp)
3907 /* In the spirit of fast parsing, compare doff directly to constant
3908 * values. Because equality is used, short doff can be ignored here.
3910 if (th->doff == (sizeof(*th) / 4)) {
3911 tp->rx_opt.saw_tstamp = 0;
3912 return false;
3913 } else if (tp->rx_opt.tstamp_ok &&
3914 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3915 if (tcp_parse_aligned_timestamp(tp, th))
3916 return true;
3919 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3920 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3921 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3923 return true;
3926 #ifdef CONFIG_TCP_MD5SIG
3928 * Parse MD5 Signature option
3930 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3932 int length = (th->doff << 2) - sizeof(*th);
3933 const u8 *ptr = (const u8 *)(th + 1);
3935 /* If not enough data remaining, we can short cut */
3936 while (length >= TCPOLEN_MD5SIG) {
3937 int opcode = *ptr++;
3938 int opsize;
3940 switch (opcode) {
3941 case TCPOPT_EOL:
3942 return NULL;
3943 case TCPOPT_NOP:
3944 length--;
3945 continue;
3946 default:
3947 opsize = *ptr++;
3948 if (opsize < 2 || opsize > length)
3949 return NULL;
3950 if (opcode == TCPOPT_MD5SIG)
3951 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3953 ptr += opsize - 2;
3954 length -= opsize;
3956 return NULL;
3958 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3959 #endif
3961 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3963 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3964 * it can pass through stack. So, the following predicate verifies that
3965 * this segment is not used for anything but congestion avoidance or
3966 * fast retransmit. Moreover, we even are able to eliminate most of such
3967 * second order effects, if we apply some small "replay" window (~RTO)
3968 * to timestamp space.
3970 * All these measures still do not guarantee that we reject wrapped ACKs
3971 * on networks with high bandwidth, when sequence space is recycled fastly,
3972 * but it guarantees that such events will be very rare and do not affect
3973 * connection seriously. This doesn't look nice, but alas, PAWS is really
3974 * buggy extension.
3976 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3977 * states that events when retransmit arrives after original data are rare.
3978 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3979 * the biggest problem on large power networks even with minor reordering.
3980 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3981 * up to bandwidth of 18Gigabit/sec. 8) ]
3984 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3986 const struct tcp_sock *tp = tcp_sk(sk);
3987 const struct tcphdr *th = tcp_hdr(skb);
3988 u32 seq = TCP_SKB_CB(skb)->seq;
3989 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3991 return (/* 1. Pure ACK with correct sequence number. */
3992 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3994 /* 2. ... and duplicate ACK. */
3995 ack == tp->snd_una &&
3997 /* 3. ... and does not update window. */
3998 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4000 /* 4. ... and sits in replay window. */
4001 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4004 static inline bool tcp_paws_discard(const struct sock *sk,
4005 const struct sk_buff *skb)
4007 const struct tcp_sock *tp = tcp_sk(sk);
4009 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4010 !tcp_disordered_ack(sk, skb);
4013 /* Check segment sequence number for validity.
4015 * Segment controls are considered valid, if the segment
4016 * fits to the window after truncation to the window. Acceptability
4017 * of data (and SYN, FIN, of course) is checked separately.
4018 * See tcp_data_queue(), for example.
4020 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4021 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4022 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4023 * (borrowed from freebsd)
4026 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4028 return !before(end_seq, tp->rcv_wup) &&
4029 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4032 /* When we get a reset we do this. */
4033 void tcp_reset(struct sock *sk)
4035 trace_tcp_receive_reset(sk);
4037 /* We want the right error as BSD sees it (and indeed as we do). */
4038 switch (sk->sk_state) {
4039 case TCP_SYN_SENT:
4040 sk->sk_err = ECONNREFUSED;
4041 break;
4042 case TCP_CLOSE_WAIT:
4043 sk->sk_err = EPIPE;
4044 break;
4045 case TCP_CLOSE:
4046 return;
4047 default:
4048 sk->sk_err = ECONNRESET;
4050 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4051 smp_wmb();
4053 tcp_write_queue_purge(sk);
4054 tcp_done(sk);
4056 if (!sock_flag(sk, SOCK_DEAD))
4057 sk->sk_error_report(sk);
4061 * Process the FIN bit. This now behaves as it is supposed to work
4062 * and the FIN takes effect when it is validly part of sequence
4063 * space. Not before when we get holes.
4065 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4066 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4067 * TIME-WAIT)
4069 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4070 * close and we go into CLOSING (and later onto TIME-WAIT)
4072 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4074 void tcp_fin(struct sock *sk)
4076 struct tcp_sock *tp = tcp_sk(sk);
4078 inet_csk_schedule_ack(sk);
4080 sk->sk_shutdown |= RCV_SHUTDOWN;
4081 sock_set_flag(sk, SOCK_DONE);
4083 switch (sk->sk_state) {
4084 case TCP_SYN_RECV:
4085 case TCP_ESTABLISHED:
4086 /* Move to CLOSE_WAIT */
4087 tcp_set_state(sk, TCP_CLOSE_WAIT);
4088 inet_csk(sk)->icsk_ack.pingpong = 1;
4089 break;
4091 case TCP_CLOSE_WAIT:
4092 case TCP_CLOSING:
4093 /* Received a retransmission of the FIN, do
4094 * nothing.
4096 break;
4097 case TCP_LAST_ACK:
4098 /* RFC793: Remain in the LAST-ACK state. */
4099 break;
4101 case TCP_FIN_WAIT1:
4102 /* This case occurs when a simultaneous close
4103 * happens, we must ack the received FIN and
4104 * enter the CLOSING state.
4106 tcp_send_ack(sk);
4107 tcp_set_state(sk, TCP_CLOSING);
4108 break;
4109 case TCP_FIN_WAIT2:
4110 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4111 tcp_send_ack(sk);
4112 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4113 break;
4114 default:
4115 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4116 * cases we should never reach this piece of code.
4118 pr_err("%s: Impossible, sk->sk_state=%d\n",
4119 __func__, sk->sk_state);
4120 break;
4123 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4124 * Probably, we should reset in this case. For now drop them.
4126 skb_rbtree_purge(&tp->out_of_order_queue);
4127 if (tcp_is_sack(tp))
4128 tcp_sack_reset(&tp->rx_opt);
4129 sk_mem_reclaim(sk);
4131 if (!sock_flag(sk, SOCK_DEAD)) {
4132 sk->sk_state_change(sk);
4134 /* Do not send POLL_HUP for half duplex close. */
4135 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4136 sk->sk_state == TCP_CLOSE)
4137 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4138 else
4139 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4143 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4144 u32 end_seq)
4146 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4147 if (before(seq, sp->start_seq))
4148 sp->start_seq = seq;
4149 if (after(end_seq, sp->end_seq))
4150 sp->end_seq = end_seq;
4151 return true;
4153 return false;
4156 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4158 struct tcp_sock *tp = tcp_sk(sk);
4160 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4161 int mib_idx;
4163 if (before(seq, tp->rcv_nxt))
4164 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4165 else
4166 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4168 NET_INC_STATS(sock_net(sk), mib_idx);
4170 tp->rx_opt.dsack = 1;
4171 tp->duplicate_sack[0].start_seq = seq;
4172 tp->duplicate_sack[0].end_seq = end_seq;
4176 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4178 struct tcp_sock *tp = tcp_sk(sk);
4180 if (!tp->rx_opt.dsack)
4181 tcp_dsack_set(sk, seq, end_seq);
4182 else
4183 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4186 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4188 /* When the ACK path fails or drops most ACKs, the sender would
4189 * timeout and spuriously retransmit the same segment repeatedly.
4190 * The receiver remembers and reflects via DSACKs. Leverage the
4191 * DSACK state and change the txhash to re-route speculatively.
4193 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4194 sk_rethink_txhash(sk);
4197 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4199 struct tcp_sock *tp = tcp_sk(sk);
4201 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4202 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4203 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4204 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4206 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4207 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4209 tcp_rcv_spurious_retrans(sk, skb);
4210 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4211 end_seq = tp->rcv_nxt;
4212 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4216 tcp_send_ack(sk);
4219 /* These routines update the SACK block as out-of-order packets arrive or
4220 * in-order packets close up the sequence space.
4222 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4224 int this_sack;
4225 struct tcp_sack_block *sp = &tp->selective_acks[0];
4226 struct tcp_sack_block *swalk = sp + 1;
4228 /* See if the recent change to the first SACK eats into
4229 * or hits the sequence space of other SACK blocks, if so coalesce.
4231 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4232 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4233 int i;
4235 /* Zap SWALK, by moving every further SACK up by one slot.
4236 * Decrease num_sacks.
4238 tp->rx_opt.num_sacks--;
4239 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4240 sp[i] = sp[i + 1];
4241 continue;
4243 this_sack++, swalk++;
4247 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4249 struct tcp_sock *tp = tcp_sk(sk);
4250 struct tcp_sack_block *sp = &tp->selective_acks[0];
4251 int cur_sacks = tp->rx_opt.num_sacks;
4252 int this_sack;
4254 if (!cur_sacks)
4255 goto new_sack;
4257 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4258 if (tcp_sack_extend(sp, seq, end_seq)) {
4259 /* Rotate this_sack to the first one. */
4260 for (; this_sack > 0; this_sack--, sp--)
4261 swap(*sp, *(sp - 1));
4262 if (cur_sacks > 1)
4263 tcp_sack_maybe_coalesce(tp);
4264 return;
4268 /* Could not find an adjacent existing SACK, build a new one,
4269 * put it at the front, and shift everyone else down. We
4270 * always know there is at least one SACK present already here.
4272 * If the sack array is full, forget about the last one.
4274 if (this_sack >= TCP_NUM_SACKS) {
4275 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4276 tcp_send_ack(sk);
4277 this_sack--;
4278 tp->rx_opt.num_sacks--;
4279 sp--;
4281 for (; this_sack > 0; this_sack--, sp--)
4282 *sp = *(sp - 1);
4284 new_sack:
4285 /* Build the new head SACK, and we're done. */
4286 sp->start_seq = seq;
4287 sp->end_seq = end_seq;
4288 tp->rx_opt.num_sacks++;
4291 /* RCV.NXT advances, some SACKs should be eaten. */
4293 static void tcp_sack_remove(struct tcp_sock *tp)
4295 struct tcp_sack_block *sp = &tp->selective_acks[0];
4296 int num_sacks = tp->rx_opt.num_sacks;
4297 int this_sack;
4299 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4300 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4301 tp->rx_opt.num_sacks = 0;
4302 return;
4305 for (this_sack = 0; this_sack < num_sacks;) {
4306 /* Check if the start of the sack is covered by RCV.NXT. */
4307 if (!before(tp->rcv_nxt, sp->start_seq)) {
4308 int i;
4310 /* RCV.NXT must cover all the block! */
4311 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4313 /* Zap this SACK, by moving forward any other SACKS. */
4314 for (i = this_sack+1; i < num_sacks; i++)
4315 tp->selective_acks[i-1] = tp->selective_acks[i];
4316 num_sacks--;
4317 continue;
4319 this_sack++;
4320 sp++;
4322 tp->rx_opt.num_sacks = num_sacks;
4326 * tcp_try_coalesce - try to merge skb to prior one
4327 * @sk: socket
4328 * @dest: destination queue
4329 * @to: prior buffer
4330 * @from: buffer to add in queue
4331 * @fragstolen: pointer to boolean
4333 * Before queueing skb @from after @to, try to merge them
4334 * to reduce overall memory use and queue lengths, if cost is small.
4335 * Packets in ofo or receive queues can stay a long time.
4336 * Better try to coalesce them right now to avoid future collapses.
4337 * Returns true if caller should free @from instead of queueing it
4339 static bool tcp_try_coalesce(struct sock *sk,
4340 struct sk_buff *to,
4341 struct sk_buff *from,
4342 bool *fragstolen)
4344 int delta;
4346 *fragstolen = false;
4348 /* Its possible this segment overlaps with prior segment in queue */
4349 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4350 return false;
4352 #ifdef CONFIG_TLS_DEVICE
4353 if (from->decrypted != to->decrypted)
4354 return false;
4355 #endif
4357 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4358 return false;
4360 atomic_add(delta, &sk->sk_rmem_alloc);
4361 sk_mem_charge(sk, delta);
4362 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4363 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4364 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4365 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4367 if (TCP_SKB_CB(from)->has_rxtstamp) {
4368 TCP_SKB_CB(to)->has_rxtstamp = true;
4369 to->tstamp = from->tstamp;
4370 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4373 return true;
4376 static bool tcp_ooo_try_coalesce(struct sock *sk,
4377 struct sk_buff *to,
4378 struct sk_buff *from,
4379 bool *fragstolen)
4381 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4383 /* In case tcp_drop() is called later, update to->gso_segs */
4384 if (res) {
4385 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4386 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4388 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4390 return res;
4393 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4395 sk_drops_add(sk, skb);
4396 __kfree_skb(skb);
4399 /* This one checks to see if we can put data from the
4400 * out_of_order queue into the receive_queue.
4402 static void tcp_ofo_queue(struct sock *sk)
4404 struct tcp_sock *tp = tcp_sk(sk);
4405 __u32 dsack_high = tp->rcv_nxt;
4406 bool fin, fragstolen, eaten;
4407 struct sk_buff *skb, *tail;
4408 struct rb_node *p;
4410 p = rb_first(&tp->out_of_order_queue);
4411 while (p) {
4412 skb = rb_to_skb(p);
4413 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4414 break;
4416 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4417 __u32 dsack = dsack_high;
4418 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4419 dsack_high = TCP_SKB_CB(skb)->end_seq;
4420 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4422 p = rb_next(p);
4423 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4425 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4426 SOCK_DEBUG(sk, "ofo packet was already received\n");
4427 tcp_drop(sk, skb);
4428 continue;
4430 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4431 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4432 TCP_SKB_CB(skb)->end_seq);
4434 tail = skb_peek_tail(&sk->sk_receive_queue);
4435 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4436 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4437 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4438 if (!eaten)
4439 __skb_queue_tail(&sk->sk_receive_queue, skb);
4440 else
4441 kfree_skb_partial(skb, fragstolen);
4443 if (unlikely(fin)) {
4444 tcp_fin(sk);
4445 /* tcp_fin() purges tp->out_of_order_queue,
4446 * so we must end this loop right now.
4448 break;
4453 static bool tcp_prune_ofo_queue(struct sock *sk);
4454 static int tcp_prune_queue(struct sock *sk);
4456 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4457 unsigned int size)
4459 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4460 !sk_rmem_schedule(sk, skb, size)) {
4462 if (tcp_prune_queue(sk) < 0)
4463 return -1;
4465 while (!sk_rmem_schedule(sk, skb, size)) {
4466 if (!tcp_prune_ofo_queue(sk))
4467 return -1;
4470 return 0;
4473 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4475 struct tcp_sock *tp = tcp_sk(sk);
4476 struct rb_node **p, *parent;
4477 struct sk_buff *skb1;
4478 u32 seq, end_seq;
4479 bool fragstolen;
4481 tcp_ecn_check_ce(sk, skb);
4483 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4484 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4485 tcp_drop(sk, skb);
4486 return;
4489 /* Disable header prediction. */
4490 tp->pred_flags = 0;
4491 inet_csk_schedule_ack(sk);
4493 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4494 seq = TCP_SKB_CB(skb)->seq;
4495 end_seq = TCP_SKB_CB(skb)->end_seq;
4496 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4497 tp->rcv_nxt, seq, end_seq);
4499 p = &tp->out_of_order_queue.rb_node;
4500 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4501 /* Initial out of order segment, build 1 SACK. */
4502 if (tcp_is_sack(tp)) {
4503 tp->rx_opt.num_sacks = 1;
4504 tp->selective_acks[0].start_seq = seq;
4505 tp->selective_acks[0].end_seq = end_seq;
4507 rb_link_node(&skb->rbnode, NULL, p);
4508 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4509 tp->ooo_last_skb = skb;
4510 goto end;
4513 /* In the typical case, we are adding an skb to the end of the list.
4514 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4516 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4517 skb, &fragstolen)) {
4518 coalesce_done:
4519 tcp_grow_window(sk, skb);
4520 kfree_skb_partial(skb, fragstolen);
4521 skb = NULL;
4522 goto add_sack;
4524 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4525 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4526 parent = &tp->ooo_last_skb->rbnode;
4527 p = &parent->rb_right;
4528 goto insert;
4531 /* Find place to insert this segment. Handle overlaps on the way. */
4532 parent = NULL;
4533 while (*p) {
4534 parent = *p;
4535 skb1 = rb_to_skb(parent);
4536 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4537 p = &parent->rb_left;
4538 continue;
4540 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4541 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4542 /* All the bits are present. Drop. */
4543 NET_INC_STATS(sock_net(sk),
4544 LINUX_MIB_TCPOFOMERGE);
4545 tcp_drop(sk, skb);
4546 skb = NULL;
4547 tcp_dsack_set(sk, seq, end_seq);
4548 goto add_sack;
4550 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4551 /* Partial overlap. */
4552 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4553 } else {
4554 /* skb's seq == skb1's seq and skb covers skb1.
4555 * Replace skb1 with skb.
4557 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4558 &tp->out_of_order_queue);
4559 tcp_dsack_extend(sk,
4560 TCP_SKB_CB(skb1)->seq,
4561 TCP_SKB_CB(skb1)->end_seq);
4562 NET_INC_STATS(sock_net(sk),
4563 LINUX_MIB_TCPOFOMERGE);
4564 tcp_drop(sk, skb1);
4565 goto merge_right;
4567 } else if (tcp_ooo_try_coalesce(sk, skb1,
4568 skb, &fragstolen)) {
4569 goto coalesce_done;
4571 p = &parent->rb_right;
4573 insert:
4574 /* Insert segment into RB tree. */
4575 rb_link_node(&skb->rbnode, parent, p);
4576 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4578 merge_right:
4579 /* Remove other segments covered by skb. */
4580 while ((skb1 = skb_rb_next(skb)) != NULL) {
4581 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4582 break;
4583 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4584 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4585 end_seq);
4586 break;
4588 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4589 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4590 TCP_SKB_CB(skb1)->end_seq);
4591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4592 tcp_drop(sk, skb1);
4594 /* If there is no skb after us, we are the last_skb ! */
4595 if (!skb1)
4596 tp->ooo_last_skb = skb;
4598 add_sack:
4599 if (tcp_is_sack(tp))
4600 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4601 end:
4602 if (skb) {
4603 tcp_grow_window(sk, skb);
4604 skb_condense(skb);
4605 skb_set_owner_r(skb, sk);
4609 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4610 bool *fragstolen)
4612 int eaten;
4613 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4615 __skb_pull(skb, hdrlen);
4616 eaten = (tail &&
4617 tcp_try_coalesce(sk, tail,
4618 skb, fragstolen)) ? 1 : 0;
4619 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4620 if (!eaten) {
4621 __skb_queue_tail(&sk->sk_receive_queue, skb);
4622 skb_set_owner_r(skb, sk);
4624 return eaten;
4627 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4629 struct sk_buff *skb;
4630 int err = -ENOMEM;
4631 int data_len = 0;
4632 bool fragstolen;
4634 if (size == 0)
4635 return 0;
4637 if (size > PAGE_SIZE) {
4638 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4640 data_len = npages << PAGE_SHIFT;
4641 size = data_len + (size & ~PAGE_MASK);
4643 skb = alloc_skb_with_frags(size - data_len, data_len,
4644 PAGE_ALLOC_COSTLY_ORDER,
4645 &err, sk->sk_allocation);
4646 if (!skb)
4647 goto err;
4649 skb_put(skb, size - data_len);
4650 skb->data_len = data_len;
4651 skb->len = size;
4653 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4654 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4655 goto err_free;
4658 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4659 if (err)
4660 goto err_free;
4662 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4663 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4664 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4666 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4667 WARN_ON_ONCE(fragstolen); /* should not happen */
4668 __kfree_skb(skb);
4670 return size;
4672 err_free:
4673 kfree_skb(skb);
4674 err:
4675 return err;
4679 void tcp_data_ready(struct sock *sk)
4681 const struct tcp_sock *tp = tcp_sk(sk);
4682 int avail = tp->rcv_nxt - tp->copied_seq;
4684 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4685 return;
4687 sk->sk_data_ready(sk);
4690 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4692 struct tcp_sock *tp = tcp_sk(sk);
4693 bool fragstolen;
4694 int eaten;
4696 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4697 __kfree_skb(skb);
4698 return;
4700 skb_dst_drop(skb);
4701 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4703 tcp_ecn_accept_cwr(sk, skb);
4705 tp->rx_opt.dsack = 0;
4707 /* Queue data for delivery to the user.
4708 * Packets in sequence go to the receive queue.
4709 * Out of sequence packets to the out_of_order_queue.
4711 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4712 if (tcp_receive_window(tp) == 0) {
4713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4714 goto out_of_window;
4717 /* Ok. In sequence. In window. */
4718 queue_and_out:
4719 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4720 sk_forced_mem_schedule(sk, skb->truesize);
4721 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4723 goto drop;
4726 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4727 if (skb->len)
4728 tcp_event_data_recv(sk, skb);
4729 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4730 tcp_fin(sk);
4732 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4733 tcp_ofo_queue(sk);
4735 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4736 * gap in queue is filled.
4738 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4739 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4742 if (tp->rx_opt.num_sacks)
4743 tcp_sack_remove(tp);
4745 tcp_fast_path_check(sk);
4747 if (eaten > 0)
4748 kfree_skb_partial(skb, fragstolen);
4749 if (!sock_flag(sk, SOCK_DEAD))
4750 tcp_data_ready(sk);
4751 return;
4754 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4755 tcp_rcv_spurious_retrans(sk, skb);
4756 /* A retransmit, 2nd most common case. Force an immediate ack. */
4757 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4758 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4760 out_of_window:
4761 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4762 inet_csk_schedule_ack(sk);
4763 drop:
4764 tcp_drop(sk, skb);
4765 return;
4768 /* Out of window. F.e. zero window probe. */
4769 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4770 goto out_of_window;
4772 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4773 /* Partial packet, seq < rcv_next < end_seq */
4774 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4775 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4776 TCP_SKB_CB(skb)->end_seq);
4778 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4780 /* If window is closed, drop tail of packet. But after
4781 * remembering D-SACK for its head made in previous line.
4783 if (!tcp_receive_window(tp)) {
4784 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4785 goto out_of_window;
4787 goto queue_and_out;
4790 tcp_data_queue_ofo(sk, skb);
4793 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4795 if (list)
4796 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4798 return skb_rb_next(skb);
4801 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4802 struct sk_buff_head *list,
4803 struct rb_root *root)
4805 struct sk_buff *next = tcp_skb_next(skb, list);
4807 if (list)
4808 __skb_unlink(skb, list);
4809 else
4810 rb_erase(&skb->rbnode, root);
4812 __kfree_skb(skb);
4813 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4815 return next;
4818 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4819 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4821 struct rb_node **p = &root->rb_node;
4822 struct rb_node *parent = NULL;
4823 struct sk_buff *skb1;
4825 while (*p) {
4826 parent = *p;
4827 skb1 = rb_to_skb(parent);
4828 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4829 p = &parent->rb_left;
4830 else
4831 p = &parent->rb_right;
4833 rb_link_node(&skb->rbnode, parent, p);
4834 rb_insert_color(&skb->rbnode, root);
4837 /* Collapse contiguous sequence of skbs head..tail with
4838 * sequence numbers start..end.
4840 * If tail is NULL, this means until the end of the queue.
4842 * Segments with FIN/SYN are not collapsed (only because this
4843 * simplifies code)
4845 static void
4846 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4847 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4849 struct sk_buff *skb = head, *n;
4850 struct sk_buff_head tmp;
4851 bool end_of_skbs;
4853 /* First, check that queue is collapsible and find
4854 * the point where collapsing can be useful.
4856 restart:
4857 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4858 n = tcp_skb_next(skb, list);
4860 /* No new bits? It is possible on ofo queue. */
4861 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4862 skb = tcp_collapse_one(sk, skb, list, root);
4863 if (!skb)
4864 break;
4865 goto restart;
4868 /* The first skb to collapse is:
4869 * - not SYN/FIN and
4870 * - bloated or contains data before "start" or
4871 * overlaps to the next one.
4873 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4874 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4875 before(TCP_SKB_CB(skb)->seq, start))) {
4876 end_of_skbs = false;
4877 break;
4880 if (n && n != tail &&
4881 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4882 end_of_skbs = false;
4883 break;
4886 /* Decided to skip this, advance start seq. */
4887 start = TCP_SKB_CB(skb)->end_seq;
4889 if (end_of_skbs ||
4890 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4891 return;
4893 __skb_queue_head_init(&tmp);
4895 while (before(start, end)) {
4896 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4897 struct sk_buff *nskb;
4899 nskb = alloc_skb(copy, GFP_ATOMIC);
4900 if (!nskb)
4901 break;
4903 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4904 #ifdef CONFIG_TLS_DEVICE
4905 nskb->decrypted = skb->decrypted;
4906 #endif
4907 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4908 if (list)
4909 __skb_queue_before(list, skb, nskb);
4910 else
4911 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4912 skb_set_owner_r(nskb, sk);
4914 /* Copy data, releasing collapsed skbs. */
4915 while (copy > 0) {
4916 int offset = start - TCP_SKB_CB(skb)->seq;
4917 int size = TCP_SKB_CB(skb)->end_seq - start;
4919 BUG_ON(offset < 0);
4920 if (size > 0) {
4921 size = min(copy, size);
4922 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4923 BUG();
4924 TCP_SKB_CB(nskb)->end_seq += size;
4925 copy -= size;
4926 start += size;
4928 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4929 skb = tcp_collapse_one(sk, skb, list, root);
4930 if (!skb ||
4931 skb == tail ||
4932 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4933 goto end;
4934 #ifdef CONFIG_TLS_DEVICE
4935 if (skb->decrypted != nskb->decrypted)
4936 goto end;
4937 #endif
4941 end:
4942 skb_queue_walk_safe(&tmp, skb, n)
4943 tcp_rbtree_insert(root, skb);
4946 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4947 * and tcp_collapse() them until all the queue is collapsed.
4949 static void tcp_collapse_ofo_queue(struct sock *sk)
4951 struct tcp_sock *tp = tcp_sk(sk);
4952 u32 range_truesize, sum_tiny = 0;
4953 struct sk_buff *skb, *head;
4954 u32 start, end;
4956 skb = skb_rb_first(&tp->out_of_order_queue);
4957 new_range:
4958 if (!skb) {
4959 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4960 return;
4962 start = TCP_SKB_CB(skb)->seq;
4963 end = TCP_SKB_CB(skb)->end_seq;
4964 range_truesize = skb->truesize;
4966 for (head = skb;;) {
4967 skb = skb_rb_next(skb);
4969 /* Range is terminated when we see a gap or when
4970 * we are at the queue end.
4972 if (!skb ||
4973 after(TCP_SKB_CB(skb)->seq, end) ||
4974 before(TCP_SKB_CB(skb)->end_seq, start)) {
4975 /* Do not attempt collapsing tiny skbs */
4976 if (range_truesize != head->truesize ||
4977 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4978 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4979 head, skb, start, end);
4980 } else {
4981 sum_tiny += range_truesize;
4982 if (sum_tiny > sk->sk_rcvbuf >> 3)
4983 return;
4985 goto new_range;
4988 range_truesize += skb->truesize;
4989 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4990 start = TCP_SKB_CB(skb)->seq;
4991 if (after(TCP_SKB_CB(skb)->end_seq, end))
4992 end = TCP_SKB_CB(skb)->end_seq;
4997 * Clean the out-of-order queue to make room.
4998 * We drop high sequences packets to :
4999 * 1) Let a chance for holes to be filled.
5000 * 2) not add too big latencies if thousands of packets sit there.
5001 * (But if application shrinks SO_RCVBUF, we could still end up
5002 * freeing whole queue here)
5003 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5005 * Return true if queue has shrunk.
5007 static bool tcp_prune_ofo_queue(struct sock *sk)
5009 struct tcp_sock *tp = tcp_sk(sk);
5010 struct rb_node *node, *prev;
5011 int goal;
5013 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5014 return false;
5016 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5017 goal = sk->sk_rcvbuf >> 3;
5018 node = &tp->ooo_last_skb->rbnode;
5019 do {
5020 prev = rb_prev(node);
5021 rb_erase(node, &tp->out_of_order_queue);
5022 goal -= rb_to_skb(node)->truesize;
5023 tcp_drop(sk, rb_to_skb(node));
5024 if (!prev || goal <= 0) {
5025 sk_mem_reclaim(sk);
5026 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5027 !tcp_under_memory_pressure(sk))
5028 break;
5029 goal = sk->sk_rcvbuf >> 3;
5031 node = prev;
5032 } while (node);
5033 tp->ooo_last_skb = rb_to_skb(prev);
5035 /* Reset SACK state. A conforming SACK implementation will
5036 * do the same at a timeout based retransmit. When a connection
5037 * is in a sad state like this, we care only about integrity
5038 * of the connection not performance.
5040 if (tp->rx_opt.sack_ok)
5041 tcp_sack_reset(&tp->rx_opt);
5042 return true;
5045 /* Reduce allocated memory if we can, trying to get
5046 * the socket within its memory limits again.
5048 * Return less than zero if we should start dropping frames
5049 * until the socket owning process reads some of the data
5050 * to stabilize the situation.
5052 static int tcp_prune_queue(struct sock *sk)
5054 struct tcp_sock *tp = tcp_sk(sk);
5056 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5058 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5060 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5061 tcp_clamp_window(sk);
5062 else if (tcp_under_memory_pressure(sk))
5063 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5065 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5066 return 0;
5068 tcp_collapse_ofo_queue(sk);
5069 if (!skb_queue_empty(&sk->sk_receive_queue))
5070 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5071 skb_peek(&sk->sk_receive_queue),
5072 NULL,
5073 tp->copied_seq, tp->rcv_nxt);
5074 sk_mem_reclaim(sk);
5076 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5077 return 0;
5079 /* Collapsing did not help, destructive actions follow.
5080 * This must not ever occur. */
5082 tcp_prune_ofo_queue(sk);
5084 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5085 return 0;
5087 /* If we are really being abused, tell the caller to silently
5088 * drop receive data on the floor. It will get retransmitted
5089 * and hopefully then we'll have sufficient space.
5091 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5093 /* Massive buffer overcommit. */
5094 tp->pred_flags = 0;
5095 return -1;
5098 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5100 const struct tcp_sock *tp = tcp_sk(sk);
5102 /* If the user specified a specific send buffer setting, do
5103 * not modify it.
5105 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5106 return false;
5108 /* If we are under global TCP memory pressure, do not expand. */
5109 if (tcp_under_memory_pressure(sk))
5110 return false;
5112 /* If we are under soft global TCP memory pressure, do not expand. */
5113 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5114 return false;
5116 /* If we filled the congestion window, do not expand. */
5117 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5118 return false;
5120 return true;
5123 /* When incoming ACK allowed to free some skb from write_queue,
5124 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5125 * on the exit from tcp input handler.
5127 * PROBLEM: sndbuf expansion does not work well with largesend.
5129 static void tcp_new_space(struct sock *sk)
5131 struct tcp_sock *tp = tcp_sk(sk);
5133 if (tcp_should_expand_sndbuf(sk)) {
5134 tcp_sndbuf_expand(sk);
5135 tp->snd_cwnd_stamp = tcp_jiffies32;
5138 sk->sk_write_space(sk);
5141 static void tcp_check_space(struct sock *sk)
5143 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5144 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5145 /* pairs with tcp_poll() */
5146 smp_mb();
5147 if (sk->sk_socket &&
5148 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5149 tcp_new_space(sk);
5150 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5151 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5156 static inline void tcp_data_snd_check(struct sock *sk)
5158 tcp_push_pending_frames(sk);
5159 tcp_check_space(sk);
5163 * Check if sending an ack is needed.
5165 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5167 struct tcp_sock *tp = tcp_sk(sk);
5168 unsigned long rtt, delay;
5170 /* More than one full frame received... */
5171 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5172 /* ... and right edge of window advances far enough.
5173 * (tcp_recvmsg() will send ACK otherwise).
5174 * If application uses SO_RCVLOWAT, we want send ack now if
5175 * we have not received enough bytes to satisfy the condition.
5177 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5178 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5179 /* We ACK each frame or... */
5180 tcp_in_quickack_mode(sk) ||
5181 /* Protocol state mandates a one-time immediate ACK */
5182 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5183 send_now:
5184 tcp_send_ack(sk);
5185 return;
5188 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5189 tcp_send_delayed_ack(sk);
5190 return;
5193 if (!tcp_is_sack(tp) ||
5194 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5195 goto send_now;
5197 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5198 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5199 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5200 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5201 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5202 tp->compressed_ack = 0;
5205 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5206 goto send_now;
5208 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5209 return;
5211 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5213 rtt = tp->rcv_rtt_est.rtt_us;
5214 if (tp->srtt_us && tp->srtt_us < rtt)
5215 rtt = tp->srtt_us;
5217 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5218 rtt * (NSEC_PER_USEC >> 3)/20);
5219 sock_hold(sk);
5220 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5221 HRTIMER_MODE_REL_PINNED_SOFT);
5224 static inline void tcp_ack_snd_check(struct sock *sk)
5226 if (!inet_csk_ack_scheduled(sk)) {
5227 /* We sent a data segment already. */
5228 return;
5230 __tcp_ack_snd_check(sk, 1);
5234 * This routine is only called when we have urgent data
5235 * signaled. Its the 'slow' part of tcp_urg. It could be
5236 * moved inline now as tcp_urg is only called from one
5237 * place. We handle URGent data wrong. We have to - as
5238 * BSD still doesn't use the correction from RFC961.
5239 * For 1003.1g we should support a new option TCP_STDURG to permit
5240 * either form (or just set the sysctl tcp_stdurg).
5243 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5245 struct tcp_sock *tp = tcp_sk(sk);
5246 u32 ptr = ntohs(th->urg_ptr);
5248 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5249 ptr--;
5250 ptr += ntohl(th->seq);
5252 /* Ignore urgent data that we've already seen and read. */
5253 if (after(tp->copied_seq, ptr))
5254 return;
5256 /* Do not replay urg ptr.
5258 * NOTE: interesting situation not covered by specs.
5259 * Misbehaving sender may send urg ptr, pointing to segment,
5260 * which we already have in ofo queue. We are not able to fetch
5261 * such data and will stay in TCP_URG_NOTYET until will be eaten
5262 * by recvmsg(). Seems, we are not obliged to handle such wicked
5263 * situations. But it is worth to think about possibility of some
5264 * DoSes using some hypothetical application level deadlock.
5266 if (before(ptr, tp->rcv_nxt))
5267 return;
5269 /* Do we already have a newer (or duplicate) urgent pointer? */
5270 if (tp->urg_data && !after(ptr, tp->urg_seq))
5271 return;
5273 /* Tell the world about our new urgent pointer. */
5274 sk_send_sigurg(sk);
5276 /* We may be adding urgent data when the last byte read was
5277 * urgent. To do this requires some care. We cannot just ignore
5278 * tp->copied_seq since we would read the last urgent byte again
5279 * as data, nor can we alter copied_seq until this data arrives
5280 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5282 * NOTE. Double Dutch. Rendering to plain English: author of comment
5283 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5284 * and expect that both A and B disappear from stream. This is _wrong_.
5285 * Though this happens in BSD with high probability, this is occasional.
5286 * Any application relying on this is buggy. Note also, that fix "works"
5287 * only in this artificial test. Insert some normal data between A and B and we will
5288 * decline of BSD again. Verdict: it is better to remove to trap
5289 * buggy users.
5291 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5292 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5293 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5294 tp->copied_seq++;
5295 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5296 __skb_unlink(skb, &sk->sk_receive_queue);
5297 __kfree_skb(skb);
5301 tp->urg_data = TCP_URG_NOTYET;
5302 tp->urg_seq = ptr;
5304 /* Disable header prediction. */
5305 tp->pred_flags = 0;
5308 /* This is the 'fast' part of urgent handling. */
5309 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5311 struct tcp_sock *tp = tcp_sk(sk);
5313 /* Check if we get a new urgent pointer - normally not. */
5314 if (th->urg)
5315 tcp_check_urg(sk, th);
5317 /* Do we wait for any urgent data? - normally not... */
5318 if (tp->urg_data == TCP_URG_NOTYET) {
5319 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5320 th->syn;
5322 /* Is the urgent pointer pointing into this packet? */
5323 if (ptr < skb->len) {
5324 u8 tmp;
5325 if (skb_copy_bits(skb, ptr, &tmp, 1))
5326 BUG();
5327 tp->urg_data = TCP_URG_VALID | tmp;
5328 if (!sock_flag(sk, SOCK_DEAD))
5329 sk->sk_data_ready(sk);
5334 /* Accept RST for rcv_nxt - 1 after a FIN.
5335 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5336 * FIN is sent followed by a RST packet. The RST is sent with the same
5337 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5338 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5339 * ACKs on the closed socket. In addition middleboxes can drop either the
5340 * challenge ACK or a subsequent RST.
5342 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5344 struct tcp_sock *tp = tcp_sk(sk);
5346 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5347 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5348 TCPF_CLOSING));
5351 /* Does PAWS and seqno based validation of an incoming segment, flags will
5352 * play significant role here.
5354 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5355 const struct tcphdr *th, int syn_inerr)
5357 struct tcp_sock *tp = tcp_sk(sk);
5358 bool rst_seq_match = false;
5360 /* RFC1323: H1. Apply PAWS check first. */
5361 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5362 tp->rx_opt.saw_tstamp &&
5363 tcp_paws_discard(sk, skb)) {
5364 if (!th->rst) {
5365 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5366 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5367 LINUX_MIB_TCPACKSKIPPEDPAWS,
5368 &tp->last_oow_ack_time))
5369 tcp_send_dupack(sk, skb);
5370 goto discard;
5372 /* Reset is accepted even if it did not pass PAWS. */
5375 /* Step 1: check sequence number */
5376 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5377 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5378 * (RST) segments are validated by checking their SEQ-fields."
5379 * And page 69: "If an incoming segment is not acceptable,
5380 * an acknowledgment should be sent in reply (unless the RST
5381 * bit is set, if so drop the segment and return)".
5383 if (!th->rst) {
5384 if (th->syn)
5385 goto syn_challenge;
5386 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5387 LINUX_MIB_TCPACKSKIPPEDSEQ,
5388 &tp->last_oow_ack_time))
5389 tcp_send_dupack(sk, skb);
5390 } else if (tcp_reset_check(sk, skb)) {
5391 tcp_reset(sk);
5393 goto discard;
5396 /* Step 2: check RST bit */
5397 if (th->rst) {
5398 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5399 * FIN and SACK too if available):
5400 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5401 * the right-most SACK block,
5402 * then
5403 * RESET the connection
5404 * else
5405 * Send a challenge ACK
5407 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5408 tcp_reset_check(sk, skb)) {
5409 rst_seq_match = true;
5410 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5411 struct tcp_sack_block *sp = &tp->selective_acks[0];
5412 int max_sack = sp[0].end_seq;
5413 int this_sack;
5415 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5416 ++this_sack) {
5417 max_sack = after(sp[this_sack].end_seq,
5418 max_sack) ?
5419 sp[this_sack].end_seq : max_sack;
5422 if (TCP_SKB_CB(skb)->seq == max_sack)
5423 rst_seq_match = true;
5426 if (rst_seq_match)
5427 tcp_reset(sk);
5428 else {
5429 /* Disable TFO if RST is out-of-order
5430 * and no data has been received
5431 * for current active TFO socket
5433 if (tp->syn_fastopen && !tp->data_segs_in &&
5434 sk->sk_state == TCP_ESTABLISHED)
5435 tcp_fastopen_active_disable(sk);
5436 tcp_send_challenge_ack(sk, skb);
5438 goto discard;
5441 /* step 3: check security and precedence [ignored] */
5443 /* step 4: Check for a SYN
5444 * RFC 5961 4.2 : Send a challenge ack
5446 if (th->syn) {
5447 syn_challenge:
5448 if (syn_inerr)
5449 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5451 tcp_send_challenge_ack(sk, skb);
5452 goto discard;
5455 return true;
5457 discard:
5458 tcp_drop(sk, skb);
5459 return false;
5463 * TCP receive function for the ESTABLISHED state.
5465 * It is split into a fast path and a slow path. The fast path is
5466 * disabled when:
5467 * - A zero window was announced from us - zero window probing
5468 * is only handled properly in the slow path.
5469 * - Out of order segments arrived.
5470 * - Urgent data is expected.
5471 * - There is no buffer space left
5472 * - Unexpected TCP flags/window values/header lengths are received
5473 * (detected by checking the TCP header against pred_flags)
5474 * - Data is sent in both directions. Fast path only supports pure senders
5475 * or pure receivers (this means either the sequence number or the ack
5476 * value must stay constant)
5477 * - Unexpected TCP option.
5479 * When these conditions are not satisfied it drops into a standard
5480 * receive procedure patterned after RFC793 to handle all cases.
5481 * The first three cases are guaranteed by proper pred_flags setting,
5482 * the rest is checked inline. Fast processing is turned on in
5483 * tcp_data_queue when everything is OK.
5485 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5487 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5488 struct tcp_sock *tp = tcp_sk(sk);
5489 unsigned int len = skb->len;
5491 /* TCP congestion window tracking */
5492 trace_tcp_probe(sk, skb);
5494 tcp_mstamp_refresh(tp);
5495 if (unlikely(!sk->sk_rx_dst))
5496 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5498 * Header prediction.
5499 * The code loosely follows the one in the famous
5500 * "30 instruction TCP receive" Van Jacobson mail.
5502 * Van's trick is to deposit buffers into socket queue
5503 * on a device interrupt, to call tcp_recv function
5504 * on the receive process context and checksum and copy
5505 * the buffer to user space. smart...
5507 * Our current scheme is not silly either but we take the
5508 * extra cost of the net_bh soft interrupt processing...
5509 * We do checksum and copy also but from device to kernel.
5512 tp->rx_opt.saw_tstamp = 0;
5514 /* pred_flags is 0xS?10 << 16 + snd_wnd
5515 * if header_prediction is to be made
5516 * 'S' will always be tp->tcp_header_len >> 2
5517 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5518 * turn it off (when there are holes in the receive
5519 * space for instance)
5520 * PSH flag is ignored.
5523 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5524 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5525 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5526 int tcp_header_len = tp->tcp_header_len;
5528 /* Timestamp header prediction: tcp_header_len
5529 * is automatically equal to th->doff*4 due to pred_flags
5530 * match.
5533 /* Check timestamp */
5534 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5535 /* No? Slow path! */
5536 if (!tcp_parse_aligned_timestamp(tp, th))
5537 goto slow_path;
5539 /* If PAWS failed, check it more carefully in slow path */
5540 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5541 goto slow_path;
5543 /* DO NOT update ts_recent here, if checksum fails
5544 * and timestamp was corrupted part, it will result
5545 * in a hung connection since we will drop all
5546 * future packets due to the PAWS test.
5550 if (len <= tcp_header_len) {
5551 /* Bulk data transfer: sender */
5552 if (len == tcp_header_len) {
5553 /* Predicted packet is in window by definition.
5554 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5555 * Hence, check seq<=rcv_wup reduces to:
5557 if (tcp_header_len ==
5558 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5559 tp->rcv_nxt == tp->rcv_wup)
5560 tcp_store_ts_recent(tp);
5562 /* We know that such packets are checksummed
5563 * on entry.
5565 tcp_ack(sk, skb, 0);
5566 __kfree_skb(skb);
5567 tcp_data_snd_check(sk);
5568 /* When receiving pure ack in fast path, update
5569 * last ts ecr directly instead of calling
5570 * tcp_rcv_rtt_measure_ts()
5572 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5573 return;
5574 } else { /* Header too small */
5575 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5576 goto discard;
5578 } else {
5579 int eaten = 0;
5580 bool fragstolen = false;
5582 if (tcp_checksum_complete(skb))
5583 goto csum_error;
5585 if ((int)skb->truesize > sk->sk_forward_alloc)
5586 goto step5;
5588 /* Predicted packet is in window by definition.
5589 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5590 * Hence, check seq<=rcv_wup reduces to:
5592 if (tcp_header_len ==
5593 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5594 tp->rcv_nxt == tp->rcv_wup)
5595 tcp_store_ts_recent(tp);
5597 tcp_rcv_rtt_measure_ts(sk, skb);
5599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5601 /* Bulk data transfer: receiver */
5602 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5603 &fragstolen);
5605 tcp_event_data_recv(sk, skb);
5607 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5608 /* Well, only one small jumplet in fast path... */
5609 tcp_ack(sk, skb, FLAG_DATA);
5610 tcp_data_snd_check(sk);
5611 if (!inet_csk_ack_scheduled(sk))
5612 goto no_ack;
5615 __tcp_ack_snd_check(sk, 0);
5616 no_ack:
5617 if (eaten)
5618 kfree_skb_partial(skb, fragstolen);
5619 tcp_data_ready(sk);
5620 return;
5624 slow_path:
5625 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5626 goto csum_error;
5628 if (!th->ack && !th->rst && !th->syn)
5629 goto discard;
5632 * Standard slow path.
5635 if (!tcp_validate_incoming(sk, skb, th, 1))
5636 return;
5638 step5:
5639 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5640 goto discard;
5642 tcp_rcv_rtt_measure_ts(sk, skb);
5644 /* Process urgent data. */
5645 tcp_urg(sk, skb, th);
5647 /* step 7: process the segment text */
5648 tcp_data_queue(sk, skb);
5650 tcp_data_snd_check(sk);
5651 tcp_ack_snd_check(sk);
5652 return;
5654 csum_error:
5655 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5656 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5658 discard:
5659 tcp_drop(sk, skb);
5661 EXPORT_SYMBOL(tcp_rcv_established);
5663 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5665 struct tcp_sock *tp = tcp_sk(sk);
5666 struct inet_connection_sock *icsk = inet_csk(sk);
5668 tcp_set_state(sk, TCP_ESTABLISHED);
5669 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5671 if (skb) {
5672 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5673 security_inet_conn_established(sk, skb);
5674 sk_mark_napi_id(sk, skb);
5677 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5679 /* Prevent spurious tcp_cwnd_restart() on first data
5680 * packet.
5682 tp->lsndtime = tcp_jiffies32;
5684 if (sock_flag(sk, SOCK_KEEPOPEN))
5685 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5687 if (!tp->rx_opt.snd_wscale)
5688 __tcp_fast_path_on(tp, tp->snd_wnd);
5689 else
5690 tp->pred_flags = 0;
5693 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5694 struct tcp_fastopen_cookie *cookie)
5696 struct tcp_sock *tp = tcp_sk(sk);
5697 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5698 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5699 bool syn_drop = false;
5701 if (mss == tp->rx_opt.user_mss) {
5702 struct tcp_options_received opt;
5704 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5705 tcp_clear_options(&opt);
5706 opt.user_mss = opt.mss_clamp = 0;
5707 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5708 mss = opt.mss_clamp;
5711 if (!tp->syn_fastopen) {
5712 /* Ignore an unsolicited cookie */
5713 cookie->len = -1;
5714 } else if (tp->total_retrans) {
5715 /* SYN timed out and the SYN-ACK neither has a cookie nor
5716 * acknowledges data. Presumably the remote received only
5717 * the retransmitted (regular) SYNs: either the original
5718 * SYN-data or the corresponding SYN-ACK was dropped.
5720 syn_drop = (cookie->len < 0 && data);
5721 } else if (cookie->len < 0 && !tp->syn_data) {
5722 /* We requested a cookie but didn't get it. If we did not use
5723 * the (old) exp opt format then try so next time (try_exp=1).
5724 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5726 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5729 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5731 if (data) { /* Retransmit unacked data in SYN */
5732 skb_rbtree_walk_from(data) {
5733 if (__tcp_retransmit_skb(sk, data, 1))
5734 break;
5736 tcp_rearm_rto(sk);
5737 NET_INC_STATS(sock_net(sk),
5738 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5739 return true;
5741 tp->syn_data_acked = tp->syn_data;
5742 if (tp->syn_data_acked) {
5743 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5744 /* SYN-data is counted as two separate packets in tcp_ack() */
5745 if (tp->delivered > 1)
5746 --tp->delivered;
5749 tcp_fastopen_add_skb(sk, synack);
5751 return false;
5754 static void smc_check_reset_syn(struct tcp_sock *tp)
5756 #if IS_ENABLED(CONFIG_SMC)
5757 if (static_branch_unlikely(&tcp_have_smc)) {
5758 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5759 tp->syn_smc = 0;
5761 #endif
5764 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5765 const struct tcphdr *th)
5767 struct inet_connection_sock *icsk = inet_csk(sk);
5768 struct tcp_sock *tp = tcp_sk(sk);
5769 struct tcp_fastopen_cookie foc = { .len = -1 };
5770 int saved_clamp = tp->rx_opt.mss_clamp;
5771 bool fastopen_fail;
5773 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5774 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5775 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5777 if (th->ack) {
5778 /* rfc793:
5779 * "If the state is SYN-SENT then
5780 * first check the ACK bit
5781 * If the ACK bit is set
5782 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5783 * a reset (unless the RST bit is set, if so drop
5784 * the segment and return)"
5786 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5787 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5788 goto reset_and_undo;
5790 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5791 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5792 tcp_time_stamp(tp))) {
5793 NET_INC_STATS(sock_net(sk),
5794 LINUX_MIB_PAWSACTIVEREJECTED);
5795 goto reset_and_undo;
5798 /* Now ACK is acceptable.
5800 * "If the RST bit is set
5801 * If the ACK was acceptable then signal the user "error:
5802 * connection reset", drop the segment, enter CLOSED state,
5803 * delete TCB, and return."
5806 if (th->rst) {
5807 tcp_reset(sk);
5808 goto discard;
5811 /* rfc793:
5812 * "fifth, if neither of the SYN or RST bits is set then
5813 * drop the segment and return."
5815 * See note below!
5816 * --ANK(990513)
5818 if (!th->syn)
5819 goto discard_and_undo;
5821 /* rfc793:
5822 * "If the SYN bit is on ...
5823 * are acceptable then ...
5824 * (our SYN has been ACKed), change the connection
5825 * state to ESTABLISHED..."
5828 tcp_ecn_rcv_synack(tp, th);
5830 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5831 tcp_ack(sk, skb, FLAG_SLOWPATH);
5833 /* Ok.. it's good. Set up sequence numbers and
5834 * move to established.
5836 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5837 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5839 /* RFC1323: The window in SYN & SYN/ACK segments is
5840 * never scaled.
5842 tp->snd_wnd = ntohs(th->window);
5844 if (!tp->rx_opt.wscale_ok) {
5845 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5846 tp->window_clamp = min(tp->window_clamp, 65535U);
5849 if (tp->rx_opt.saw_tstamp) {
5850 tp->rx_opt.tstamp_ok = 1;
5851 tp->tcp_header_len =
5852 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5853 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5854 tcp_store_ts_recent(tp);
5855 } else {
5856 tp->tcp_header_len = sizeof(struct tcphdr);
5859 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5860 tcp_initialize_rcv_mss(sk);
5862 /* Remember, tcp_poll() does not lock socket!
5863 * Change state from SYN-SENT only after copied_seq
5864 * is initialized. */
5865 tp->copied_seq = tp->rcv_nxt;
5867 smc_check_reset_syn(tp);
5869 smp_mb();
5871 tcp_finish_connect(sk, skb);
5873 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5874 tcp_rcv_fastopen_synack(sk, skb, &foc);
5876 if (!sock_flag(sk, SOCK_DEAD)) {
5877 sk->sk_state_change(sk);
5878 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5880 if (fastopen_fail)
5881 return -1;
5882 if (sk->sk_write_pending ||
5883 icsk->icsk_accept_queue.rskq_defer_accept ||
5884 icsk->icsk_ack.pingpong) {
5885 /* Save one ACK. Data will be ready after
5886 * several ticks, if write_pending is set.
5888 * It may be deleted, but with this feature tcpdumps
5889 * look so _wonderfully_ clever, that I was not able
5890 * to stand against the temptation 8) --ANK
5892 inet_csk_schedule_ack(sk);
5893 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5894 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5895 TCP_DELACK_MAX, TCP_RTO_MAX);
5897 discard:
5898 tcp_drop(sk, skb);
5899 return 0;
5900 } else {
5901 tcp_send_ack(sk);
5903 return -1;
5906 /* No ACK in the segment */
5908 if (th->rst) {
5909 /* rfc793:
5910 * "If the RST bit is set
5912 * Otherwise (no ACK) drop the segment and return."
5915 goto discard_and_undo;
5918 /* PAWS check. */
5919 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5920 tcp_paws_reject(&tp->rx_opt, 0))
5921 goto discard_and_undo;
5923 if (th->syn) {
5924 /* We see SYN without ACK. It is attempt of
5925 * simultaneous connect with crossed SYNs.
5926 * Particularly, it can be connect to self.
5928 tcp_set_state(sk, TCP_SYN_RECV);
5930 if (tp->rx_opt.saw_tstamp) {
5931 tp->rx_opt.tstamp_ok = 1;
5932 tcp_store_ts_recent(tp);
5933 tp->tcp_header_len =
5934 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5935 } else {
5936 tp->tcp_header_len = sizeof(struct tcphdr);
5939 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5940 tp->copied_seq = tp->rcv_nxt;
5941 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5943 /* RFC1323: The window in SYN & SYN/ACK segments is
5944 * never scaled.
5946 tp->snd_wnd = ntohs(th->window);
5947 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5948 tp->max_window = tp->snd_wnd;
5950 tcp_ecn_rcv_syn(tp, th);
5952 tcp_mtup_init(sk);
5953 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5954 tcp_initialize_rcv_mss(sk);
5956 tcp_send_synack(sk);
5957 #if 0
5958 /* Note, we could accept data and URG from this segment.
5959 * There are no obstacles to make this (except that we must
5960 * either change tcp_recvmsg() to prevent it from returning data
5961 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5963 * However, if we ignore data in ACKless segments sometimes,
5964 * we have no reasons to accept it sometimes.
5965 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5966 * is not flawless. So, discard packet for sanity.
5967 * Uncomment this return to process the data.
5969 return -1;
5970 #else
5971 goto discard;
5972 #endif
5974 /* "fifth, if neither of the SYN or RST bits is set then
5975 * drop the segment and return."
5978 discard_and_undo:
5979 tcp_clear_options(&tp->rx_opt);
5980 tp->rx_opt.mss_clamp = saved_clamp;
5981 goto discard;
5983 reset_and_undo:
5984 tcp_clear_options(&tp->rx_opt);
5985 tp->rx_opt.mss_clamp = saved_clamp;
5986 return 1;
5990 * This function implements the receiving procedure of RFC 793 for
5991 * all states except ESTABLISHED and TIME_WAIT.
5992 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5993 * address independent.
5996 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5998 struct tcp_sock *tp = tcp_sk(sk);
5999 struct inet_connection_sock *icsk = inet_csk(sk);
6000 const struct tcphdr *th = tcp_hdr(skb);
6001 struct request_sock *req;
6002 int queued = 0;
6003 bool acceptable;
6005 switch (sk->sk_state) {
6006 case TCP_CLOSE:
6007 goto discard;
6009 case TCP_LISTEN:
6010 if (th->ack)
6011 return 1;
6013 if (th->rst)
6014 goto discard;
6016 if (th->syn) {
6017 if (th->fin)
6018 goto discard;
6019 /* It is possible that we process SYN packets from backlog,
6020 * so we need to make sure to disable BH and RCU right there.
6022 rcu_read_lock();
6023 local_bh_disable();
6024 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6025 local_bh_enable();
6026 rcu_read_unlock();
6028 if (!acceptable)
6029 return 1;
6030 consume_skb(skb);
6031 return 0;
6033 goto discard;
6035 case TCP_SYN_SENT:
6036 tp->rx_opt.saw_tstamp = 0;
6037 tcp_mstamp_refresh(tp);
6038 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6039 if (queued >= 0)
6040 return queued;
6042 /* Do step6 onward by hand. */
6043 tcp_urg(sk, skb, th);
6044 __kfree_skb(skb);
6045 tcp_data_snd_check(sk);
6046 return 0;
6049 tcp_mstamp_refresh(tp);
6050 tp->rx_opt.saw_tstamp = 0;
6051 req = tp->fastopen_rsk;
6052 if (req) {
6053 bool req_stolen;
6055 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6056 sk->sk_state != TCP_FIN_WAIT1);
6058 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6059 goto discard;
6062 if (!th->ack && !th->rst && !th->syn)
6063 goto discard;
6065 if (!tcp_validate_incoming(sk, skb, th, 0))
6066 return 0;
6068 /* step 5: check the ACK field */
6069 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6070 FLAG_UPDATE_TS_RECENT |
6071 FLAG_NO_CHALLENGE_ACK) > 0;
6073 if (!acceptable) {
6074 if (sk->sk_state == TCP_SYN_RECV)
6075 return 1; /* send one RST */
6076 tcp_send_challenge_ack(sk, skb);
6077 goto discard;
6079 switch (sk->sk_state) {
6080 case TCP_SYN_RECV:
6081 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6082 if (!tp->srtt_us)
6083 tcp_synack_rtt_meas(sk, req);
6085 /* Once we leave TCP_SYN_RECV, we no longer need req
6086 * so release it.
6088 if (req) {
6089 inet_csk(sk)->icsk_retransmits = 0;
6090 reqsk_fastopen_remove(sk, req, false);
6091 /* Re-arm the timer because data may have been sent out.
6092 * This is similar to the regular data transmission case
6093 * when new data has just been ack'ed.
6095 * (TFO) - we could try to be more aggressive and
6096 * retransmitting any data sooner based on when they
6097 * are sent out.
6099 tcp_rearm_rto(sk);
6100 } else {
6101 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6102 tp->copied_seq = tp->rcv_nxt;
6104 smp_mb();
6105 tcp_set_state(sk, TCP_ESTABLISHED);
6106 sk->sk_state_change(sk);
6108 /* Note, that this wakeup is only for marginal crossed SYN case.
6109 * Passively open sockets are not waked up, because
6110 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6112 if (sk->sk_socket)
6113 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6115 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6116 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6117 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6119 if (tp->rx_opt.tstamp_ok)
6120 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6122 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6123 tcp_update_pacing_rate(sk);
6125 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6126 tp->lsndtime = tcp_jiffies32;
6128 tcp_initialize_rcv_mss(sk);
6129 tcp_fast_path_on(tp);
6130 break;
6132 case TCP_FIN_WAIT1: {
6133 int tmo;
6135 /* If we enter the TCP_FIN_WAIT1 state and we are a
6136 * Fast Open socket and this is the first acceptable
6137 * ACK we have received, this would have acknowledged
6138 * our SYNACK so stop the SYNACK timer.
6140 if (req) {
6141 /* We no longer need the request sock. */
6142 reqsk_fastopen_remove(sk, req, false);
6143 tcp_rearm_rto(sk);
6145 if (tp->snd_una != tp->write_seq)
6146 break;
6148 tcp_set_state(sk, TCP_FIN_WAIT2);
6149 sk->sk_shutdown |= SEND_SHUTDOWN;
6151 sk_dst_confirm(sk);
6153 if (!sock_flag(sk, SOCK_DEAD)) {
6154 /* Wake up lingering close() */
6155 sk->sk_state_change(sk);
6156 break;
6159 if (tp->linger2 < 0) {
6160 tcp_done(sk);
6161 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6162 return 1;
6164 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6165 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6166 /* Receive out of order FIN after close() */
6167 if (tp->syn_fastopen && th->fin)
6168 tcp_fastopen_active_disable(sk);
6169 tcp_done(sk);
6170 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6171 return 1;
6174 tmo = tcp_fin_time(sk);
6175 if (tmo > TCP_TIMEWAIT_LEN) {
6176 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6177 } else if (th->fin || sock_owned_by_user(sk)) {
6178 /* Bad case. We could lose such FIN otherwise.
6179 * It is not a big problem, but it looks confusing
6180 * and not so rare event. We still can lose it now,
6181 * if it spins in bh_lock_sock(), but it is really
6182 * marginal case.
6184 inet_csk_reset_keepalive_timer(sk, tmo);
6185 } else {
6186 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6187 goto discard;
6189 break;
6192 case TCP_CLOSING:
6193 if (tp->snd_una == tp->write_seq) {
6194 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6195 goto discard;
6197 break;
6199 case TCP_LAST_ACK:
6200 if (tp->snd_una == tp->write_seq) {
6201 tcp_update_metrics(sk);
6202 tcp_done(sk);
6203 goto discard;
6205 break;
6208 /* step 6: check the URG bit */
6209 tcp_urg(sk, skb, th);
6211 /* step 7: process the segment text */
6212 switch (sk->sk_state) {
6213 case TCP_CLOSE_WAIT:
6214 case TCP_CLOSING:
6215 case TCP_LAST_ACK:
6216 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6217 break;
6218 /* fall through */
6219 case TCP_FIN_WAIT1:
6220 case TCP_FIN_WAIT2:
6221 /* RFC 793 says to queue data in these states,
6222 * RFC 1122 says we MUST send a reset.
6223 * BSD 4.4 also does reset.
6225 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6226 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6227 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6228 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6229 tcp_reset(sk);
6230 return 1;
6233 /* Fall through */
6234 case TCP_ESTABLISHED:
6235 tcp_data_queue(sk, skb);
6236 queued = 1;
6237 break;
6240 /* tcp_data could move socket to TIME-WAIT */
6241 if (sk->sk_state != TCP_CLOSE) {
6242 tcp_data_snd_check(sk);
6243 tcp_ack_snd_check(sk);
6246 if (!queued) {
6247 discard:
6248 tcp_drop(sk, skb);
6250 return 0;
6252 EXPORT_SYMBOL(tcp_rcv_state_process);
6254 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6256 struct inet_request_sock *ireq = inet_rsk(req);
6258 if (family == AF_INET)
6259 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6260 &ireq->ir_rmt_addr, port);
6261 #if IS_ENABLED(CONFIG_IPV6)
6262 else if (family == AF_INET6)
6263 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6264 &ireq->ir_v6_rmt_addr, port);
6265 #endif
6268 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6270 * If we receive a SYN packet with these bits set, it means a
6271 * network is playing bad games with TOS bits. In order to
6272 * avoid possible false congestion notifications, we disable
6273 * TCP ECN negotiation.
6275 * Exception: tcp_ca wants ECN. This is required for DCTCP
6276 * congestion control: Linux DCTCP asserts ECT on all packets,
6277 * including SYN, which is most optimal solution; however,
6278 * others, such as FreeBSD do not.
6280 static void tcp_ecn_create_request(struct request_sock *req,
6281 const struct sk_buff *skb,
6282 const struct sock *listen_sk,
6283 const struct dst_entry *dst)
6285 const struct tcphdr *th = tcp_hdr(skb);
6286 const struct net *net = sock_net(listen_sk);
6287 bool th_ecn = th->ece && th->cwr;
6288 bool ect, ecn_ok;
6289 u32 ecn_ok_dst;
6291 if (!th_ecn)
6292 return;
6294 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6295 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6296 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6298 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6299 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6300 tcp_bpf_ca_needs_ecn((struct sock *)req))
6301 inet_rsk(req)->ecn_ok = 1;
6304 static void tcp_openreq_init(struct request_sock *req,
6305 const struct tcp_options_received *rx_opt,
6306 struct sk_buff *skb, const struct sock *sk)
6308 struct inet_request_sock *ireq = inet_rsk(req);
6310 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6311 req->cookie_ts = 0;
6312 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6313 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6314 tcp_rsk(req)->snt_synack = tcp_clock_us();
6315 tcp_rsk(req)->last_oow_ack_time = 0;
6316 req->mss = rx_opt->mss_clamp;
6317 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6318 ireq->tstamp_ok = rx_opt->tstamp_ok;
6319 ireq->sack_ok = rx_opt->sack_ok;
6320 ireq->snd_wscale = rx_opt->snd_wscale;
6321 ireq->wscale_ok = rx_opt->wscale_ok;
6322 ireq->acked = 0;
6323 ireq->ecn_ok = 0;
6324 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6325 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6326 ireq->ir_mark = inet_request_mark(sk, skb);
6327 #if IS_ENABLED(CONFIG_SMC)
6328 ireq->smc_ok = rx_opt->smc_ok;
6329 #endif
6332 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6333 struct sock *sk_listener,
6334 bool attach_listener)
6336 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6337 attach_listener);
6339 if (req) {
6340 struct inet_request_sock *ireq = inet_rsk(req);
6342 ireq->ireq_opt = NULL;
6343 #if IS_ENABLED(CONFIG_IPV6)
6344 ireq->pktopts = NULL;
6345 #endif
6346 atomic64_set(&ireq->ir_cookie, 0);
6347 ireq->ireq_state = TCP_NEW_SYN_RECV;
6348 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6349 ireq->ireq_family = sk_listener->sk_family;
6352 return req;
6354 EXPORT_SYMBOL(inet_reqsk_alloc);
6357 * Return true if a syncookie should be sent
6359 static bool tcp_syn_flood_action(const struct sock *sk,
6360 const struct sk_buff *skb,
6361 const char *proto)
6363 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6364 const char *msg = "Dropping request";
6365 bool want_cookie = false;
6366 struct net *net = sock_net(sk);
6368 #ifdef CONFIG_SYN_COOKIES
6369 if (net->ipv4.sysctl_tcp_syncookies) {
6370 msg = "Sending cookies";
6371 want_cookie = true;
6372 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6373 } else
6374 #endif
6375 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6377 if (!queue->synflood_warned &&
6378 net->ipv4.sysctl_tcp_syncookies != 2 &&
6379 xchg(&queue->synflood_warned, 1) == 0)
6380 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6381 proto, ntohs(tcp_hdr(skb)->dest), msg);
6383 return want_cookie;
6386 static void tcp_reqsk_record_syn(const struct sock *sk,
6387 struct request_sock *req,
6388 const struct sk_buff *skb)
6390 if (tcp_sk(sk)->save_syn) {
6391 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6392 u32 *copy;
6394 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6395 if (copy) {
6396 copy[0] = len;
6397 memcpy(&copy[1], skb_network_header(skb), len);
6398 req->saved_syn = copy;
6403 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6404 const struct tcp_request_sock_ops *af_ops,
6405 struct sock *sk, struct sk_buff *skb)
6407 struct tcp_fastopen_cookie foc = { .len = -1 };
6408 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6409 struct tcp_options_received tmp_opt;
6410 struct tcp_sock *tp = tcp_sk(sk);
6411 struct net *net = sock_net(sk);
6412 struct sock *fastopen_sk = NULL;
6413 struct request_sock *req;
6414 bool want_cookie = false;
6415 struct dst_entry *dst;
6416 struct flowi fl;
6418 /* TW buckets are converted to open requests without
6419 * limitations, they conserve resources and peer is
6420 * evidently real one.
6422 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6423 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6424 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6425 if (!want_cookie)
6426 goto drop;
6429 if (sk_acceptq_is_full(sk)) {
6430 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6431 goto drop;
6434 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6435 if (!req)
6436 goto drop;
6438 tcp_rsk(req)->af_specific = af_ops;
6439 tcp_rsk(req)->ts_off = 0;
6441 tcp_clear_options(&tmp_opt);
6442 tmp_opt.mss_clamp = af_ops->mss_clamp;
6443 tmp_opt.user_mss = tp->rx_opt.user_mss;
6444 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6445 want_cookie ? NULL : &foc);
6447 if (want_cookie && !tmp_opt.saw_tstamp)
6448 tcp_clear_options(&tmp_opt);
6450 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6451 tmp_opt.smc_ok = 0;
6453 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6454 tcp_openreq_init(req, &tmp_opt, skb, sk);
6455 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6457 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6458 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6460 af_ops->init_req(req, sk, skb);
6462 if (security_inet_conn_request(sk, skb, req))
6463 goto drop_and_free;
6465 if (tmp_opt.tstamp_ok)
6466 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6468 dst = af_ops->route_req(sk, &fl, req);
6469 if (!dst)
6470 goto drop_and_free;
6472 if (!want_cookie && !isn) {
6473 /* Kill the following clause, if you dislike this way. */
6474 if (!net->ipv4.sysctl_tcp_syncookies &&
6475 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6476 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6477 !tcp_peer_is_proven(req, dst)) {
6478 /* Without syncookies last quarter of
6479 * backlog is filled with destinations,
6480 * proven to be alive.
6481 * It means that we continue to communicate
6482 * to destinations, already remembered
6483 * to the moment of synflood.
6485 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6486 rsk_ops->family);
6487 goto drop_and_release;
6490 isn = af_ops->init_seq(skb);
6493 tcp_ecn_create_request(req, skb, sk, dst);
6495 if (want_cookie) {
6496 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6497 req->cookie_ts = tmp_opt.tstamp_ok;
6498 if (!tmp_opt.tstamp_ok)
6499 inet_rsk(req)->ecn_ok = 0;
6502 tcp_rsk(req)->snt_isn = isn;
6503 tcp_rsk(req)->txhash = net_tx_rndhash();
6504 tcp_openreq_init_rwin(req, sk, dst);
6505 sk_rx_queue_set(req_to_sk(req), skb);
6506 if (!want_cookie) {
6507 tcp_reqsk_record_syn(sk, req, skb);
6508 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6510 if (fastopen_sk) {
6511 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6512 &foc, TCP_SYNACK_FASTOPEN);
6513 /* Add the child socket directly into the accept queue */
6514 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6515 sk->sk_data_ready(sk);
6516 bh_unlock_sock(fastopen_sk);
6517 sock_put(fastopen_sk);
6518 } else {
6519 tcp_rsk(req)->tfo_listener = false;
6520 if (!want_cookie)
6521 inet_csk_reqsk_queue_hash_add(sk, req,
6522 tcp_timeout_init((struct sock *)req));
6523 af_ops->send_synack(sk, dst, &fl, req, &foc,
6524 !want_cookie ? TCP_SYNACK_NORMAL :
6525 TCP_SYNACK_COOKIE);
6526 if (want_cookie) {
6527 reqsk_free(req);
6528 return 0;
6531 reqsk_put(req);
6532 return 0;
6534 drop_and_release:
6535 dst_release(dst);
6536 drop_and_free:
6537 reqsk_free(req);
6538 drop:
6539 tcp_listendrop(sk);
6540 return 0;
6542 EXPORT_SYMBOL(tcp_conn_request);