MIPS: eBPF: Fix icache flush end address
[linux/fpc-iii.git] / net / socket.c
blob93a45f15ee40d756f1f15a9af54ff53a31c4ffa9
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 return -EINVAL;
186 if (ulen == 0)
187 return 0;
188 if (copy_from_user(kaddr, uaddr, ulen))
189 return -EFAULT;
190 return audit_sockaddr(ulen, kaddr);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
204 * accessible.
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
213 int err;
214 int len;
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0)
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
234 return __put_user(klen, ulen);
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
239 static struct inode *sock_alloc_inode(struct super_block *sb)
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 if (!wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
254 wq->flags = 0;
255 ei->socket.wq = wq;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 kfree_rcu(ei->socket.wq, rcu);
272 kmem_cache_free(sock_inode_cachep, ei);
275 static void init_once(void *foo)
277 struct socket_alloc *ei = (struct socket_alloc *)foo;
279 inode_init_once(&ei->vfs_inode);
282 static void init_inodecache(void)
284 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc),
287 (SLAB_HWCACHE_ALIGN |
288 SLAB_RECLAIM_ACCOUNT |
289 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 init_once);
291 BUG_ON(sock_inode_cachep == NULL);
294 static const struct super_operations sockfs_ops = {
295 .alloc_inode = sock_alloc_inode,
296 .destroy_inode = sock_destroy_inode,
297 .statfs = simple_statfs,
301 * sockfs_dname() is called from d_path().
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 d_inode(dentry)->i_ino);
309 static const struct dentry_operations sockfs_dentry_operations = {
310 .d_dname = sockfs_dname,
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 struct dentry *dentry, struct inode *inode,
315 const char *suffix, void *value, size_t size)
317 if (value) {
318 if (dentry->d_name.len + 1 > size)
319 return -ERANGE;
320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 return dentry->d_name.len + 1;
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 static const struct xattr_handler sockfs_xattr_handler = {
330 .name = XATTR_NAME_SOCKPROTONAME,
331 .get = sockfs_xattr_get,
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 struct dentry *dentry, struct inode *inode,
336 const char *suffix, const void *value,
337 size_t size, int flags)
339 /* Handled by LSM. */
340 return -EAGAIN;
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 .prefix = XATTR_SECURITY_PREFIX,
345 .set = sockfs_security_xattr_set,
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 &sockfs_xattr_handler,
350 &sockfs_security_xattr_handler,
351 NULL
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 int flags, const char *dev_name, void *data)
357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 sockfs_xattr_handlers,
359 &sockfs_dentry_operations, SOCKFS_MAGIC);
362 static struct vfsmount *sock_mnt __read_mostly;
364 static struct file_system_type sock_fs_type = {
365 .name = "sockfs",
366 .mount = sockfs_mount,
367 .kill_sb = kill_anon_super,
371 * Obtains the first available file descriptor and sets it up for use.
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
389 struct file *file;
391 if (!dname)
392 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 O_RDWR | (flags & O_NONBLOCK),
396 &socket_file_ops);
397 if (IS_ERR(file)) {
398 sock_release(sock);
399 return file;
402 sock->file = file;
403 file->private_data = sock;
404 return file;
406 EXPORT_SYMBOL(sock_alloc_file);
408 static int sock_map_fd(struct socket *sock, int flags)
410 struct file *newfile;
411 int fd = get_unused_fd_flags(flags);
412 if (unlikely(fd < 0)) {
413 sock_release(sock);
414 return fd;
417 newfile = sock_alloc_file(sock, flags, NULL);
418 if (likely(!IS_ERR(newfile))) {
419 fd_install(fd, newfile);
420 return fd;
423 put_unused_fd(fd);
424 return PTR_ERR(newfile);
427 struct socket *sock_from_file(struct file *file, int *err)
429 if (file->f_op == &socket_file_ops)
430 return file->private_data; /* set in sock_map_fd */
432 *err = -ENOTSOCK;
433 return NULL;
435 EXPORT_SYMBOL(sock_from_file);
438 * sockfd_lookup - Go from a file number to its socket slot
439 * @fd: file handle
440 * @err: pointer to an error code return
442 * The file handle passed in is locked and the socket it is bound
443 * to is returned. If an error occurs the err pointer is overwritten
444 * with a negative errno code and NULL is returned. The function checks
445 * for both invalid handles and passing a handle which is not a socket.
447 * On a success the socket object pointer is returned.
450 struct socket *sockfd_lookup(int fd, int *err)
452 struct file *file;
453 struct socket *sock;
455 file = fget(fd);
456 if (!file) {
457 *err = -EBADF;
458 return NULL;
461 sock = sock_from_file(file, err);
462 if (!sock)
463 fput(file);
464 return sock;
466 EXPORT_SYMBOL(sockfd_lookup);
468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
470 struct fd f = fdget(fd);
471 struct socket *sock;
473 *err = -EBADF;
474 if (f.file) {
475 sock = sock_from_file(f.file, err);
476 if (likely(sock)) {
477 *fput_needed = f.flags;
478 return sock;
480 fdput(f);
482 return NULL;
485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 size_t size)
488 ssize_t len;
489 ssize_t used = 0;
491 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 if (len < 0)
493 return len;
494 used += len;
495 if (buffer) {
496 if (size < used)
497 return -ERANGE;
498 buffer += len;
501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 used += len;
503 if (buffer) {
504 if (size < used)
505 return -ERANGE;
506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 buffer += len;
510 return used;
513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
515 int err = simple_setattr(dentry, iattr);
517 if (!err && (iattr->ia_valid & ATTR_UID)) {
518 struct socket *sock = SOCKET_I(d_inode(dentry));
520 if (sock->sk)
521 sock->sk->sk_uid = iattr->ia_uid;
522 else
523 err = -ENOENT;
526 return err;
529 static const struct inode_operations sockfs_inode_ops = {
530 .listxattr = sockfs_listxattr,
531 .setattr = sockfs_setattr,
535 * sock_alloc - allocate a socket
537 * Allocate a new inode and socket object. The two are bound together
538 * and initialised. The socket is then returned. If we are out of inodes
539 * NULL is returned.
542 struct socket *sock_alloc(void)
544 struct inode *inode;
545 struct socket *sock;
547 inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 if (!inode)
549 return NULL;
551 sock = SOCKET_I(inode);
553 inode->i_ino = get_next_ino();
554 inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 inode->i_uid = current_fsuid();
556 inode->i_gid = current_fsgid();
557 inode->i_op = &sockfs_inode_ops;
559 return sock;
561 EXPORT_SYMBOL(sock_alloc);
564 * sock_release - close a socket
565 * @sock: socket to close
567 * The socket is released from the protocol stack if it has a release
568 * callback, and the inode is then released if the socket is bound to
569 * an inode not a file.
572 static void __sock_release(struct socket *sock, struct inode *inode)
574 if (sock->ops) {
575 struct module *owner = sock->ops->owner;
577 if (inode)
578 inode_lock(inode);
579 sock->ops->release(sock);
580 if (inode)
581 inode_unlock(inode);
582 sock->ops = NULL;
583 module_put(owner);
586 if (sock->wq->fasync_list)
587 pr_err("%s: fasync list not empty!\n", __func__);
589 if (!sock->file) {
590 iput(SOCK_INODE(sock));
591 return;
593 sock->file = NULL;
596 void sock_release(struct socket *sock)
598 __sock_release(sock, NULL);
600 EXPORT_SYMBOL(sock_release);
602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
604 u8 flags = *tx_flags;
606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 flags |= SKBTX_HW_TSTAMP;
609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 flags |= SKBTX_SW_TSTAMP;
612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 flags |= SKBTX_SCHED_TSTAMP;
615 *tx_flags = flags;
617 EXPORT_SYMBOL(__sock_tx_timestamp);
619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 BUG_ON(ret == -EIOCBQUEUED);
623 return ret;
626 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
628 int err = security_socket_sendmsg(sock, msg,
629 msg_data_left(msg));
631 return err ?: sock_sendmsg_nosec(sock, msg);
633 EXPORT_SYMBOL(sock_sendmsg);
635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 struct kvec *vec, size_t num, size_t size)
638 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
639 return sock_sendmsg(sock, msg);
641 EXPORT_SYMBOL(kernel_sendmsg);
643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
644 struct kvec *vec, size_t num, size_t size)
646 struct socket *sock = sk->sk_socket;
648 if (!sock->ops->sendmsg_locked)
649 return sock_no_sendmsg_locked(sk, msg, size);
651 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
653 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
655 EXPORT_SYMBOL(kernel_sendmsg_locked);
657 static bool skb_is_err_queue(const struct sk_buff *skb)
659 /* pkt_type of skbs enqueued on the error queue are set to
660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 * in recvmsg, since skbs received on a local socket will never
662 * have a pkt_type of PACKET_OUTGOING.
664 return skb->pkt_type == PACKET_OUTGOING;
667 /* On transmit, software and hardware timestamps are returned independently.
668 * As the two skb clones share the hardware timestamp, which may be updated
669 * before the software timestamp is received, a hardware TX timestamp may be
670 * returned only if there is no software TX timestamp. Ignore false software
671 * timestamps, which may be made in the __sock_recv_timestamp() call when the
672 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
673 * hardware timestamp.
675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
677 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
682 struct scm_ts_pktinfo ts_pktinfo;
683 struct net_device *orig_dev;
685 if (!skb_mac_header_was_set(skb))
686 return;
688 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
690 rcu_read_lock();
691 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
692 if (orig_dev)
693 ts_pktinfo.if_index = orig_dev->ifindex;
694 rcu_read_unlock();
696 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
697 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
698 sizeof(ts_pktinfo), &ts_pktinfo);
702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
705 struct sk_buff *skb)
707 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
708 struct scm_timestamping tss;
709 int empty = 1, false_tstamp = 0;
710 struct skb_shared_hwtstamps *shhwtstamps =
711 skb_hwtstamps(skb);
713 /* Race occurred between timestamp enabling and packet
714 receiving. Fill in the current time for now. */
715 if (need_software_tstamp && skb->tstamp == 0) {
716 __net_timestamp(skb);
717 false_tstamp = 1;
720 if (need_software_tstamp) {
721 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
722 struct timeval tv;
723 skb_get_timestamp(skb, &tv);
724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
725 sizeof(tv), &tv);
726 } else {
727 struct timespec ts;
728 skb_get_timestampns(skb, &ts);
729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
730 sizeof(ts), &ts);
734 memset(&tss, 0, sizeof(tss));
735 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
736 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
737 empty = 0;
738 if (shhwtstamps &&
739 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
740 !skb_is_swtx_tstamp(skb, false_tstamp) &&
741 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
742 empty = 0;
743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
744 !skb_is_err_queue(skb))
745 put_ts_pktinfo(msg, skb);
747 if (!empty) {
748 put_cmsg(msg, SOL_SOCKET,
749 SCM_TIMESTAMPING, sizeof(tss), &tss);
751 if (skb_is_err_queue(skb) && skb->len &&
752 SKB_EXT_ERR(skb)->opt_stats)
753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
754 skb->len, skb->data);
757 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
759 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
760 struct sk_buff *skb)
762 int ack;
764 if (!sock_flag(sk, SOCK_WIFI_STATUS))
765 return;
766 if (!skb->wifi_acked_valid)
767 return;
769 ack = skb->wifi_acked;
771 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
773 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
775 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
776 struct sk_buff *skb)
778 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
779 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
780 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
783 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
784 struct sk_buff *skb)
786 sock_recv_timestamp(msg, sk, skb);
787 sock_recv_drops(msg, sk, skb);
789 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
791 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
792 int flags)
794 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
797 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
799 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
801 return err ?: sock_recvmsg_nosec(sock, msg, flags);
803 EXPORT_SYMBOL(sock_recvmsg);
806 * kernel_recvmsg - Receive a message from a socket (kernel space)
807 * @sock: The socket to receive the message from
808 * @msg: Received message
809 * @vec: Input s/g array for message data
810 * @num: Size of input s/g array
811 * @size: Number of bytes to read
812 * @flags: Message flags (MSG_DONTWAIT, etc...)
814 * On return the msg structure contains the scatter/gather array passed in the
815 * vec argument. The array is modified so that it consists of the unfilled
816 * portion of the original array.
818 * The returned value is the total number of bytes received, or an error.
820 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
821 struct kvec *vec, size_t num, size_t size, int flags)
823 mm_segment_t oldfs = get_fs();
824 int result;
826 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
827 set_fs(KERNEL_DS);
828 result = sock_recvmsg(sock, msg, flags);
829 set_fs(oldfs);
830 return result;
832 EXPORT_SYMBOL(kernel_recvmsg);
834 static ssize_t sock_sendpage(struct file *file, struct page *page,
835 int offset, size_t size, loff_t *ppos, int more)
837 struct socket *sock;
838 int flags;
840 sock = file->private_data;
842 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
843 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
844 flags |= more;
846 return kernel_sendpage(sock, page, offset, size, flags);
849 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
850 struct pipe_inode_info *pipe, size_t len,
851 unsigned int flags)
853 struct socket *sock = file->private_data;
855 if (unlikely(!sock->ops->splice_read))
856 return generic_file_splice_read(file, ppos, pipe, len, flags);
858 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
861 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
863 struct file *file = iocb->ki_filp;
864 struct socket *sock = file->private_data;
865 struct msghdr msg = {.msg_iter = *to,
866 .msg_iocb = iocb};
867 ssize_t res;
869 if (file->f_flags & O_NONBLOCK)
870 msg.msg_flags = MSG_DONTWAIT;
872 if (iocb->ki_pos != 0)
873 return -ESPIPE;
875 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
876 return 0;
878 res = sock_recvmsg(sock, &msg, msg.msg_flags);
879 *to = msg.msg_iter;
880 return res;
883 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
885 struct file *file = iocb->ki_filp;
886 struct socket *sock = file->private_data;
887 struct msghdr msg = {.msg_iter = *from,
888 .msg_iocb = iocb};
889 ssize_t res;
891 if (iocb->ki_pos != 0)
892 return -ESPIPE;
894 if (file->f_flags & O_NONBLOCK)
895 msg.msg_flags = MSG_DONTWAIT;
897 if (sock->type == SOCK_SEQPACKET)
898 msg.msg_flags |= MSG_EOR;
900 res = sock_sendmsg(sock, &msg);
901 *from = msg.msg_iter;
902 return res;
906 * Atomic setting of ioctl hooks to avoid race
907 * with module unload.
910 static DEFINE_MUTEX(br_ioctl_mutex);
911 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
913 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
915 mutex_lock(&br_ioctl_mutex);
916 br_ioctl_hook = hook;
917 mutex_unlock(&br_ioctl_mutex);
919 EXPORT_SYMBOL(brioctl_set);
921 static DEFINE_MUTEX(vlan_ioctl_mutex);
922 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
924 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
926 mutex_lock(&vlan_ioctl_mutex);
927 vlan_ioctl_hook = hook;
928 mutex_unlock(&vlan_ioctl_mutex);
930 EXPORT_SYMBOL(vlan_ioctl_set);
932 static DEFINE_MUTEX(dlci_ioctl_mutex);
933 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
935 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
937 mutex_lock(&dlci_ioctl_mutex);
938 dlci_ioctl_hook = hook;
939 mutex_unlock(&dlci_ioctl_mutex);
941 EXPORT_SYMBOL(dlci_ioctl_set);
943 static long sock_do_ioctl(struct net *net, struct socket *sock,
944 unsigned int cmd, unsigned long arg)
946 int err;
947 void __user *argp = (void __user *)arg;
949 err = sock->ops->ioctl(sock, cmd, arg);
952 * If this ioctl is unknown try to hand it down
953 * to the NIC driver.
955 if (err != -ENOIOCTLCMD)
956 return err;
958 if (cmd == SIOCGIFCONF) {
959 struct ifconf ifc;
960 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
961 return -EFAULT;
962 rtnl_lock();
963 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
964 rtnl_unlock();
965 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
966 err = -EFAULT;
967 } else {
968 struct ifreq ifr;
969 bool need_copyout;
970 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
971 return -EFAULT;
972 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
973 if (!err && need_copyout)
974 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
975 return -EFAULT;
977 return err;
981 * With an ioctl, arg may well be a user mode pointer, but we don't know
982 * what to do with it - that's up to the protocol still.
985 struct ns_common *get_net_ns(struct ns_common *ns)
987 return &get_net(container_of(ns, struct net, ns))->ns;
989 EXPORT_SYMBOL_GPL(get_net_ns);
991 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
993 struct socket *sock;
994 struct sock *sk;
995 void __user *argp = (void __user *)arg;
996 int pid, err;
997 struct net *net;
999 sock = file->private_data;
1000 sk = sock->sk;
1001 net = sock_net(sk);
1002 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1003 struct ifreq ifr;
1004 bool need_copyout;
1005 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1006 return -EFAULT;
1007 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1008 if (!err && need_copyout)
1009 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1010 return -EFAULT;
1011 } else
1012 #ifdef CONFIG_WEXT_CORE
1013 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1014 err = wext_handle_ioctl(net, cmd, argp);
1015 } else
1016 #endif
1017 switch (cmd) {
1018 case FIOSETOWN:
1019 case SIOCSPGRP:
1020 err = -EFAULT;
1021 if (get_user(pid, (int __user *)argp))
1022 break;
1023 err = f_setown(sock->file, pid, 1);
1024 break;
1025 case FIOGETOWN:
1026 case SIOCGPGRP:
1027 err = put_user(f_getown(sock->file),
1028 (int __user *)argp);
1029 break;
1030 case SIOCGIFBR:
1031 case SIOCSIFBR:
1032 case SIOCBRADDBR:
1033 case SIOCBRDELBR:
1034 err = -ENOPKG;
1035 if (!br_ioctl_hook)
1036 request_module("bridge");
1038 mutex_lock(&br_ioctl_mutex);
1039 if (br_ioctl_hook)
1040 err = br_ioctl_hook(net, cmd, argp);
1041 mutex_unlock(&br_ioctl_mutex);
1042 break;
1043 case SIOCGIFVLAN:
1044 case SIOCSIFVLAN:
1045 err = -ENOPKG;
1046 if (!vlan_ioctl_hook)
1047 request_module("8021q");
1049 mutex_lock(&vlan_ioctl_mutex);
1050 if (vlan_ioctl_hook)
1051 err = vlan_ioctl_hook(net, argp);
1052 mutex_unlock(&vlan_ioctl_mutex);
1053 break;
1054 case SIOCADDDLCI:
1055 case SIOCDELDLCI:
1056 err = -ENOPKG;
1057 if (!dlci_ioctl_hook)
1058 request_module("dlci");
1060 mutex_lock(&dlci_ioctl_mutex);
1061 if (dlci_ioctl_hook)
1062 err = dlci_ioctl_hook(cmd, argp);
1063 mutex_unlock(&dlci_ioctl_mutex);
1064 break;
1065 case SIOCGSKNS:
1066 err = -EPERM;
1067 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1068 break;
1070 err = open_related_ns(&net->ns, get_net_ns);
1071 break;
1072 default:
1073 err = sock_do_ioctl(net, sock, cmd, arg);
1074 break;
1076 return err;
1079 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1081 int err;
1082 struct socket *sock = NULL;
1084 err = security_socket_create(family, type, protocol, 1);
1085 if (err)
1086 goto out;
1088 sock = sock_alloc();
1089 if (!sock) {
1090 err = -ENOMEM;
1091 goto out;
1094 sock->type = type;
1095 err = security_socket_post_create(sock, family, type, protocol, 1);
1096 if (err)
1097 goto out_release;
1099 out:
1100 *res = sock;
1101 return err;
1102 out_release:
1103 sock_release(sock);
1104 sock = NULL;
1105 goto out;
1107 EXPORT_SYMBOL(sock_create_lite);
1109 /* No kernel lock held - perfect */
1110 static __poll_t sock_poll(struct file *file, poll_table *wait)
1112 struct socket *sock = file->private_data;
1113 __poll_t events = poll_requested_events(wait), flag = 0;
1115 if (!sock->ops->poll)
1116 return 0;
1118 if (sk_can_busy_loop(sock->sk)) {
1119 /* poll once if requested by the syscall */
1120 if (events & POLL_BUSY_LOOP)
1121 sk_busy_loop(sock->sk, 1);
1123 /* if this socket can poll_ll, tell the system call */
1124 flag = POLL_BUSY_LOOP;
1127 return sock->ops->poll(file, sock, wait) | flag;
1130 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1132 struct socket *sock = file->private_data;
1134 return sock->ops->mmap(file, sock, vma);
1137 static int sock_close(struct inode *inode, struct file *filp)
1139 __sock_release(SOCKET_I(inode), inode);
1140 return 0;
1144 * Update the socket async list
1146 * Fasync_list locking strategy.
1148 * 1. fasync_list is modified only under process context socket lock
1149 * i.e. under semaphore.
1150 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1151 * or under socket lock
1154 static int sock_fasync(int fd, struct file *filp, int on)
1156 struct socket *sock = filp->private_data;
1157 struct sock *sk = sock->sk;
1158 struct socket_wq *wq;
1160 if (sk == NULL)
1161 return -EINVAL;
1163 lock_sock(sk);
1164 wq = sock->wq;
1165 fasync_helper(fd, filp, on, &wq->fasync_list);
1167 if (!wq->fasync_list)
1168 sock_reset_flag(sk, SOCK_FASYNC);
1169 else
1170 sock_set_flag(sk, SOCK_FASYNC);
1172 release_sock(sk);
1173 return 0;
1176 /* This function may be called only under rcu_lock */
1178 int sock_wake_async(struct socket_wq *wq, int how, int band)
1180 if (!wq || !wq->fasync_list)
1181 return -1;
1183 switch (how) {
1184 case SOCK_WAKE_WAITD:
1185 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1186 break;
1187 goto call_kill;
1188 case SOCK_WAKE_SPACE:
1189 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1190 break;
1191 /* fall through */
1192 case SOCK_WAKE_IO:
1193 call_kill:
1194 kill_fasync(&wq->fasync_list, SIGIO, band);
1195 break;
1196 case SOCK_WAKE_URG:
1197 kill_fasync(&wq->fasync_list, SIGURG, band);
1200 return 0;
1202 EXPORT_SYMBOL(sock_wake_async);
1204 int __sock_create(struct net *net, int family, int type, int protocol,
1205 struct socket **res, int kern)
1207 int err;
1208 struct socket *sock;
1209 const struct net_proto_family *pf;
1212 * Check protocol is in range
1214 if (family < 0 || family >= NPROTO)
1215 return -EAFNOSUPPORT;
1216 if (type < 0 || type >= SOCK_MAX)
1217 return -EINVAL;
1219 /* Compatibility.
1221 This uglymoron is moved from INET layer to here to avoid
1222 deadlock in module load.
1224 if (family == PF_INET && type == SOCK_PACKET) {
1225 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1226 current->comm);
1227 family = PF_PACKET;
1230 err = security_socket_create(family, type, protocol, kern);
1231 if (err)
1232 return err;
1235 * Allocate the socket and allow the family to set things up. if
1236 * the protocol is 0, the family is instructed to select an appropriate
1237 * default.
1239 sock = sock_alloc();
1240 if (!sock) {
1241 net_warn_ratelimited("socket: no more sockets\n");
1242 return -ENFILE; /* Not exactly a match, but its the
1243 closest posix thing */
1246 sock->type = type;
1248 #ifdef CONFIG_MODULES
1249 /* Attempt to load a protocol module if the find failed.
1251 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1252 * requested real, full-featured networking support upon configuration.
1253 * Otherwise module support will break!
1255 if (rcu_access_pointer(net_families[family]) == NULL)
1256 request_module("net-pf-%d", family);
1257 #endif
1259 rcu_read_lock();
1260 pf = rcu_dereference(net_families[family]);
1261 err = -EAFNOSUPPORT;
1262 if (!pf)
1263 goto out_release;
1266 * We will call the ->create function, that possibly is in a loadable
1267 * module, so we have to bump that loadable module refcnt first.
1269 if (!try_module_get(pf->owner))
1270 goto out_release;
1272 /* Now protected by module ref count */
1273 rcu_read_unlock();
1275 err = pf->create(net, sock, protocol, kern);
1276 if (err < 0)
1277 goto out_module_put;
1280 * Now to bump the refcnt of the [loadable] module that owns this
1281 * socket at sock_release time we decrement its refcnt.
1283 if (!try_module_get(sock->ops->owner))
1284 goto out_module_busy;
1287 * Now that we're done with the ->create function, the [loadable]
1288 * module can have its refcnt decremented
1290 module_put(pf->owner);
1291 err = security_socket_post_create(sock, family, type, protocol, kern);
1292 if (err)
1293 goto out_sock_release;
1294 *res = sock;
1296 return 0;
1298 out_module_busy:
1299 err = -EAFNOSUPPORT;
1300 out_module_put:
1301 sock->ops = NULL;
1302 module_put(pf->owner);
1303 out_sock_release:
1304 sock_release(sock);
1305 return err;
1307 out_release:
1308 rcu_read_unlock();
1309 goto out_sock_release;
1311 EXPORT_SYMBOL(__sock_create);
1313 int sock_create(int family, int type, int protocol, struct socket **res)
1315 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1317 EXPORT_SYMBOL(sock_create);
1319 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1321 return __sock_create(net, family, type, protocol, res, 1);
1323 EXPORT_SYMBOL(sock_create_kern);
1325 int __sys_socket(int family, int type, int protocol)
1327 int retval;
1328 struct socket *sock;
1329 int flags;
1331 /* Check the SOCK_* constants for consistency. */
1332 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1333 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1334 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1335 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1337 flags = type & ~SOCK_TYPE_MASK;
1338 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1339 return -EINVAL;
1340 type &= SOCK_TYPE_MASK;
1342 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1343 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1345 retval = sock_create(family, type, protocol, &sock);
1346 if (retval < 0)
1347 return retval;
1349 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1352 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1354 return __sys_socket(family, type, protocol);
1358 * Create a pair of connected sockets.
1361 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1363 struct socket *sock1, *sock2;
1364 int fd1, fd2, err;
1365 struct file *newfile1, *newfile2;
1366 int flags;
1368 flags = type & ~SOCK_TYPE_MASK;
1369 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1370 return -EINVAL;
1371 type &= SOCK_TYPE_MASK;
1373 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1374 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1377 * reserve descriptors and make sure we won't fail
1378 * to return them to userland.
1380 fd1 = get_unused_fd_flags(flags);
1381 if (unlikely(fd1 < 0))
1382 return fd1;
1384 fd2 = get_unused_fd_flags(flags);
1385 if (unlikely(fd2 < 0)) {
1386 put_unused_fd(fd1);
1387 return fd2;
1390 err = put_user(fd1, &usockvec[0]);
1391 if (err)
1392 goto out;
1394 err = put_user(fd2, &usockvec[1]);
1395 if (err)
1396 goto out;
1399 * Obtain the first socket and check if the underlying protocol
1400 * supports the socketpair call.
1403 err = sock_create(family, type, protocol, &sock1);
1404 if (unlikely(err < 0))
1405 goto out;
1407 err = sock_create(family, type, protocol, &sock2);
1408 if (unlikely(err < 0)) {
1409 sock_release(sock1);
1410 goto out;
1413 err = security_socket_socketpair(sock1, sock2);
1414 if (unlikely(err)) {
1415 sock_release(sock2);
1416 sock_release(sock1);
1417 goto out;
1420 err = sock1->ops->socketpair(sock1, sock2);
1421 if (unlikely(err < 0)) {
1422 sock_release(sock2);
1423 sock_release(sock1);
1424 goto out;
1427 newfile1 = sock_alloc_file(sock1, flags, NULL);
1428 if (IS_ERR(newfile1)) {
1429 err = PTR_ERR(newfile1);
1430 sock_release(sock2);
1431 goto out;
1434 newfile2 = sock_alloc_file(sock2, flags, NULL);
1435 if (IS_ERR(newfile2)) {
1436 err = PTR_ERR(newfile2);
1437 fput(newfile1);
1438 goto out;
1441 audit_fd_pair(fd1, fd2);
1443 fd_install(fd1, newfile1);
1444 fd_install(fd2, newfile2);
1445 return 0;
1447 out:
1448 put_unused_fd(fd2);
1449 put_unused_fd(fd1);
1450 return err;
1453 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1454 int __user *, usockvec)
1456 return __sys_socketpair(family, type, protocol, usockvec);
1460 * Bind a name to a socket. Nothing much to do here since it's
1461 * the protocol's responsibility to handle the local address.
1463 * We move the socket address to kernel space before we call
1464 * the protocol layer (having also checked the address is ok).
1467 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1469 struct socket *sock;
1470 struct sockaddr_storage address;
1471 int err, fput_needed;
1473 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1474 if (sock) {
1475 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1476 if (!err) {
1477 err = security_socket_bind(sock,
1478 (struct sockaddr *)&address,
1479 addrlen);
1480 if (!err)
1481 err = sock->ops->bind(sock,
1482 (struct sockaddr *)
1483 &address, addrlen);
1485 fput_light(sock->file, fput_needed);
1487 return err;
1490 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1492 return __sys_bind(fd, umyaddr, addrlen);
1496 * Perform a listen. Basically, we allow the protocol to do anything
1497 * necessary for a listen, and if that works, we mark the socket as
1498 * ready for listening.
1501 int __sys_listen(int fd, int backlog)
1503 struct socket *sock;
1504 int err, fput_needed;
1505 int somaxconn;
1507 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1508 if (sock) {
1509 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1510 if ((unsigned int)backlog > somaxconn)
1511 backlog = somaxconn;
1513 err = security_socket_listen(sock, backlog);
1514 if (!err)
1515 err = sock->ops->listen(sock, backlog);
1517 fput_light(sock->file, fput_needed);
1519 return err;
1522 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1524 return __sys_listen(fd, backlog);
1528 * For accept, we attempt to create a new socket, set up the link
1529 * with the client, wake up the client, then return the new
1530 * connected fd. We collect the address of the connector in kernel
1531 * space and move it to user at the very end. This is unclean because
1532 * we open the socket then return an error.
1534 * 1003.1g adds the ability to recvmsg() to query connection pending
1535 * status to recvmsg. We need to add that support in a way thats
1536 * clean when we restructure accept also.
1539 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1540 int __user *upeer_addrlen, int flags)
1542 struct socket *sock, *newsock;
1543 struct file *newfile;
1544 int err, len, newfd, fput_needed;
1545 struct sockaddr_storage address;
1547 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1548 return -EINVAL;
1550 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1551 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1553 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1554 if (!sock)
1555 goto out;
1557 err = -ENFILE;
1558 newsock = sock_alloc();
1559 if (!newsock)
1560 goto out_put;
1562 newsock->type = sock->type;
1563 newsock->ops = sock->ops;
1566 * We don't need try_module_get here, as the listening socket (sock)
1567 * has the protocol module (sock->ops->owner) held.
1569 __module_get(newsock->ops->owner);
1571 newfd = get_unused_fd_flags(flags);
1572 if (unlikely(newfd < 0)) {
1573 err = newfd;
1574 sock_release(newsock);
1575 goto out_put;
1577 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1578 if (IS_ERR(newfile)) {
1579 err = PTR_ERR(newfile);
1580 put_unused_fd(newfd);
1581 goto out_put;
1584 err = security_socket_accept(sock, newsock);
1585 if (err)
1586 goto out_fd;
1588 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1589 if (err < 0)
1590 goto out_fd;
1592 if (upeer_sockaddr) {
1593 len = newsock->ops->getname(newsock,
1594 (struct sockaddr *)&address, 2);
1595 if (len < 0) {
1596 err = -ECONNABORTED;
1597 goto out_fd;
1599 err = move_addr_to_user(&address,
1600 len, upeer_sockaddr, upeer_addrlen);
1601 if (err < 0)
1602 goto out_fd;
1605 /* File flags are not inherited via accept() unlike another OSes. */
1607 fd_install(newfd, newfile);
1608 err = newfd;
1610 out_put:
1611 fput_light(sock->file, fput_needed);
1612 out:
1613 return err;
1614 out_fd:
1615 fput(newfile);
1616 put_unused_fd(newfd);
1617 goto out_put;
1620 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1621 int __user *, upeer_addrlen, int, flags)
1623 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1626 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1627 int __user *, upeer_addrlen)
1629 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1633 * Attempt to connect to a socket with the server address. The address
1634 * is in user space so we verify it is OK and move it to kernel space.
1636 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1637 * break bindings
1639 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1640 * other SEQPACKET protocols that take time to connect() as it doesn't
1641 * include the -EINPROGRESS status for such sockets.
1644 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1646 struct socket *sock;
1647 struct sockaddr_storage address;
1648 int err, fput_needed;
1650 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1651 if (!sock)
1652 goto out;
1653 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1654 if (err < 0)
1655 goto out_put;
1657 err =
1658 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1659 if (err)
1660 goto out_put;
1662 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1663 sock->file->f_flags);
1664 out_put:
1665 fput_light(sock->file, fput_needed);
1666 out:
1667 return err;
1670 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1671 int, addrlen)
1673 return __sys_connect(fd, uservaddr, addrlen);
1677 * Get the local address ('name') of a socket object. Move the obtained
1678 * name to user space.
1681 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1682 int __user *usockaddr_len)
1684 struct socket *sock;
1685 struct sockaddr_storage address;
1686 int err, fput_needed;
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (!sock)
1690 goto out;
1692 err = security_socket_getsockname(sock);
1693 if (err)
1694 goto out_put;
1696 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1697 if (err < 0)
1698 goto out_put;
1699 /* "err" is actually length in this case */
1700 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1702 out_put:
1703 fput_light(sock->file, fput_needed);
1704 out:
1705 return err;
1708 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1709 int __user *, usockaddr_len)
1711 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1715 * Get the remote address ('name') of a socket object. Move the obtained
1716 * name to user space.
1719 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1720 int __user *usockaddr_len)
1722 struct socket *sock;
1723 struct sockaddr_storage address;
1724 int err, fput_needed;
1726 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1727 if (sock != NULL) {
1728 err = security_socket_getpeername(sock);
1729 if (err) {
1730 fput_light(sock->file, fput_needed);
1731 return err;
1734 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1735 if (err >= 0)
1736 /* "err" is actually length in this case */
1737 err = move_addr_to_user(&address, err, usockaddr,
1738 usockaddr_len);
1739 fput_light(sock->file, fput_needed);
1741 return err;
1744 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1745 int __user *, usockaddr_len)
1747 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1751 * Send a datagram to a given address. We move the address into kernel
1752 * space and check the user space data area is readable before invoking
1753 * the protocol.
1755 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1756 struct sockaddr __user *addr, int addr_len)
1758 struct socket *sock;
1759 struct sockaddr_storage address;
1760 int err;
1761 struct msghdr msg;
1762 struct iovec iov;
1763 int fput_needed;
1765 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1766 if (unlikely(err))
1767 return err;
1768 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 if (!sock)
1770 goto out;
1772 msg.msg_name = NULL;
1773 msg.msg_control = NULL;
1774 msg.msg_controllen = 0;
1775 msg.msg_namelen = 0;
1776 if (addr) {
1777 err = move_addr_to_kernel(addr, addr_len, &address);
1778 if (err < 0)
1779 goto out_put;
1780 msg.msg_name = (struct sockaddr *)&address;
1781 msg.msg_namelen = addr_len;
1783 if (sock->file->f_flags & O_NONBLOCK)
1784 flags |= MSG_DONTWAIT;
1785 msg.msg_flags = flags;
1786 err = sock_sendmsg(sock, &msg);
1788 out_put:
1789 fput_light(sock->file, fput_needed);
1790 out:
1791 return err;
1794 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1795 unsigned int, flags, struct sockaddr __user *, addr,
1796 int, addr_len)
1798 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1802 * Send a datagram down a socket.
1805 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1806 unsigned int, flags)
1808 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1812 * Receive a frame from the socket and optionally record the address of the
1813 * sender. We verify the buffers are writable and if needed move the
1814 * sender address from kernel to user space.
1816 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1817 struct sockaddr __user *addr, int __user *addr_len)
1819 struct socket *sock;
1820 struct iovec iov;
1821 struct msghdr msg;
1822 struct sockaddr_storage address;
1823 int err, err2;
1824 int fput_needed;
1826 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1827 if (unlikely(err))
1828 return err;
1829 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1830 if (!sock)
1831 goto out;
1833 msg.msg_control = NULL;
1834 msg.msg_controllen = 0;
1835 /* Save some cycles and don't copy the address if not needed */
1836 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1837 /* We assume all kernel code knows the size of sockaddr_storage */
1838 msg.msg_namelen = 0;
1839 msg.msg_iocb = NULL;
1840 msg.msg_flags = 0;
1841 if (sock->file->f_flags & O_NONBLOCK)
1842 flags |= MSG_DONTWAIT;
1843 err = sock_recvmsg(sock, &msg, flags);
1845 if (err >= 0 && addr != NULL) {
1846 err2 = move_addr_to_user(&address,
1847 msg.msg_namelen, addr, addr_len);
1848 if (err2 < 0)
1849 err = err2;
1852 fput_light(sock->file, fput_needed);
1853 out:
1854 return err;
1857 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1858 unsigned int, flags, struct sockaddr __user *, addr,
1859 int __user *, addr_len)
1861 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1865 * Receive a datagram from a socket.
1868 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1869 unsigned int, flags)
1871 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1875 * Set a socket option. Because we don't know the option lengths we have
1876 * to pass the user mode parameter for the protocols to sort out.
1879 static int __sys_setsockopt(int fd, int level, int optname,
1880 char __user *optval, int optlen)
1882 int err, fput_needed;
1883 struct socket *sock;
1885 if (optlen < 0)
1886 return -EINVAL;
1888 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1889 if (sock != NULL) {
1890 err = security_socket_setsockopt(sock, level, optname);
1891 if (err)
1892 goto out_put;
1894 if (level == SOL_SOCKET)
1895 err =
1896 sock_setsockopt(sock, level, optname, optval,
1897 optlen);
1898 else
1899 err =
1900 sock->ops->setsockopt(sock, level, optname, optval,
1901 optlen);
1902 out_put:
1903 fput_light(sock->file, fput_needed);
1905 return err;
1908 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1909 char __user *, optval, int, optlen)
1911 return __sys_setsockopt(fd, level, optname, optval, optlen);
1915 * Get a socket option. Because we don't know the option lengths we have
1916 * to pass a user mode parameter for the protocols to sort out.
1919 static int __sys_getsockopt(int fd, int level, int optname,
1920 char __user *optval, int __user *optlen)
1922 int err, fput_needed;
1923 struct socket *sock;
1925 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1926 if (sock != NULL) {
1927 err = security_socket_getsockopt(sock, level, optname);
1928 if (err)
1929 goto out_put;
1931 if (level == SOL_SOCKET)
1932 err =
1933 sock_getsockopt(sock, level, optname, optval,
1934 optlen);
1935 else
1936 err =
1937 sock->ops->getsockopt(sock, level, optname, optval,
1938 optlen);
1939 out_put:
1940 fput_light(sock->file, fput_needed);
1942 return err;
1945 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1946 char __user *, optval, int __user *, optlen)
1948 return __sys_getsockopt(fd, level, optname, optval, optlen);
1952 * Shutdown a socket.
1955 int __sys_shutdown(int fd, int how)
1957 int err, fput_needed;
1958 struct socket *sock;
1960 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1961 if (sock != NULL) {
1962 err = security_socket_shutdown(sock, how);
1963 if (!err)
1964 err = sock->ops->shutdown(sock, how);
1965 fput_light(sock->file, fput_needed);
1967 return err;
1970 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1972 return __sys_shutdown(fd, how);
1975 /* A couple of helpful macros for getting the address of the 32/64 bit
1976 * fields which are the same type (int / unsigned) on our platforms.
1978 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1979 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1980 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1982 struct used_address {
1983 struct sockaddr_storage name;
1984 unsigned int name_len;
1987 static int copy_msghdr_from_user(struct msghdr *kmsg,
1988 struct user_msghdr __user *umsg,
1989 struct sockaddr __user **save_addr,
1990 struct iovec **iov)
1992 struct user_msghdr msg;
1993 ssize_t err;
1995 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1996 return -EFAULT;
1998 kmsg->msg_control = (void __force *)msg.msg_control;
1999 kmsg->msg_controllen = msg.msg_controllen;
2000 kmsg->msg_flags = msg.msg_flags;
2002 kmsg->msg_namelen = msg.msg_namelen;
2003 if (!msg.msg_name)
2004 kmsg->msg_namelen = 0;
2006 if (kmsg->msg_namelen < 0)
2007 return -EINVAL;
2009 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2010 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2012 if (save_addr)
2013 *save_addr = msg.msg_name;
2015 if (msg.msg_name && kmsg->msg_namelen) {
2016 if (!save_addr) {
2017 err = move_addr_to_kernel(msg.msg_name,
2018 kmsg->msg_namelen,
2019 kmsg->msg_name);
2020 if (err < 0)
2021 return err;
2023 } else {
2024 kmsg->msg_name = NULL;
2025 kmsg->msg_namelen = 0;
2028 if (msg.msg_iovlen > UIO_MAXIOV)
2029 return -EMSGSIZE;
2031 kmsg->msg_iocb = NULL;
2033 return import_iovec(save_addr ? READ : WRITE,
2034 msg.msg_iov, msg.msg_iovlen,
2035 UIO_FASTIOV, iov, &kmsg->msg_iter);
2038 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2039 struct msghdr *msg_sys, unsigned int flags,
2040 struct used_address *used_address,
2041 unsigned int allowed_msghdr_flags)
2043 struct compat_msghdr __user *msg_compat =
2044 (struct compat_msghdr __user *)msg;
2045 struct sockaddr_storage address;
2046 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2047 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2048 __aligned(sizeof(__kernel_size_t));
2049 /* 20 is size of ipv6_pktinfo */
2050 unsigned char *ctl_buf = ctl;
2051 int ctl_len;
2052 ssize_t err;
2054 msg_sys->msg_name = &address;
2056 if (MSG_CMSG_COMPAT & flags)
2057 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2058 else
2059 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2060 if (err < 0)
2061 return err;
2063 err = -ENOBUFS;
2065 if (msg_sys->msg_controllen > INT_MAX)
2066 goto out_freeiov;
2067 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2068 ctl_len = msg_sys->msg_controllen;
2069 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2070 err =
2071 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2072 sizeof(ctl));
2073 if (err)
2074 goto out_freeiov;
2075 ctl_buf = msg_sys->msg_control;
2076 ctl_len = msg_sys->msg_controllen;
2077 } else if (ctl_len) {
2078 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2079 CMSG_ALIGN(sizeof(struct cmsghdr)));
2080 if (ctl_len > sizeof(ctl)) {
2081 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2082 if (ctl_buf == NULL)
2083 goto out_freeiov;
2085 err = -EFAULT;
2087 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2088 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2089 * checking falls down on this.
2091 if (copy_from_user(ctl_buf,
2092 (void __user __force *)msg_sys->msg_control,
2093 ctl_len))
2094 goto out_freectl;
2095 msg_sys->msg_control = ctl_buf;
2097 msg_sys->msg_flags = flags;
2099 if (sock->file->f_flags & O_NONBLOCK)
2100 msg_sys->msg_flags |= MSG_DONTWAIT;
2102 * If this is sendmmsg() and current destination address is same as
2103 * previously succeeded address, omit asking LSM's decision.
2104 * used_address->name_len is initialized to UINT_MAX so that the first
2105 * destination address never matches.
2107 if (used_address && msg_sys->msg_name &&
2108 used_address->name_len == msg_sys->msg_namelen &&
2109 !memcmp(&used_address->name, msg_sys->msg_name,
2110 used_address->name_len)) {
2111 err = sock_sendmsg_nosec(sock, msg_sys);
2112 goto out_freectl;
2114 err = sock_sendmsg(sock, msg_sys);
2116 * If this is sendmmsg() and sending to current destination address was
2117 * successful, remember it.
2119 if (used_address && err >= 0) {
2120 used_address->name_len = msg_sys->msg_namelen;
2121 if (msg_sys->msg_name)
2122 memcpy(&used_address->name, msg_sys->msg_name,
2123 used_address->name_len);
2126 out_freectl:
2127 if (ctl_buf != ctl)
2128 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2129 out_freeiov:
2130 kfree(iov);
2131 return err;
2135 * BSD sendmsg interface
2138 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2139 bool forbid_cmsg_compat)
2141 int fput_needed, err;
2142 struct msghdr msg_sys;
2143 struct socket *sock;
2145 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2146 return -EINVAL;
2148 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2149 if (!sock)
2150 goto out;
2152 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2154 fput_light(sock->file, fput_needed);
2155 out:
2156 return err;
2159 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2161 return __sys_sendmsg(fd, msg, flags, true);
2165 * Linux sendmmsg interface
2168 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2169 unsigned int flags, bool forbid_cmsg_compat)
2171 int fput_needed, err, datagrams;
2172 struct socket *sock;
2173 struct mmsghdr __user *entry;
2174 struct compat_mmsghdr __user *compat_entry;
2175 struct msghdr msg_sys;
2176 struct used_address used_address;
2177 unsigned int oflags = flags;
2179 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2180 return -EINVAL;
2182 if (vlen > UIO_MAXIOV)
2183 vlen = UIO_MAXIOV;
2185 datagrams = 0;
2187 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2188 if (!sock)
2189 return err;
2191 used_address.name_len = UINT_MAX;
2192 entry = mmsg;
2193 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2194 err = 0;
2195 flags |= MSG_BATCH;
2197 while (datagrams < vlen) {
2198 if (datagrams == vlen - 1)
2199 flags = oflags;
2201 if (MSG_CMSG_COMPAT & flags) {
2202 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2203 &msg_sys, flags, &used_address, MSG_EOR);
2204 if (err < 0)
2205 break;
2206 err = __put_user(err, &compat_entry->msg_len);
2207 ++compat_entry;
2208 } else {
2209 err = ___sys_sendmsg(sock,
2210 (struct user_msghdr __user *)entry,
2211 &msg_sys, flags, &used_address, MSG_EOR);
2212 if (err < 0)
2213 break;
2214 err = put_user(err, &entry->msg_len);
2215 ++entry;
2218 if (err)
2219 break;
2220 ++datagrams;
2221 if (msg_data_left(&msg_sys))
2222 break;
2223 cond_resched();
2226 fput_light(sock->file, fput_needed);
2228 /* We only return an error if no datagrams were able to be sent */
2229 if (datagrams != 0)
2230 return datagrams;
2232 return err;
2235 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2236 unsigned int, vlen, unsigned int, flags)
2238 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2241 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2242 struct msghdr *msg_sys, unsigned int flags, int nosec)
2244 struct compat_msghdr __user *msg_compat =
2245 (struct compat_msghdr __user *)msg;
2246 struct iovec iovstack[UIO_FASTIOV];
2247 struct iovec *iov = iovstack;
2248 unsigned long cmsg_ptr;
2249 int len;
2250 ssize_t err;
2252 /* kernel mode address */
2253 struct sockaddr_storage addr;
2255 /* user mode address pointers */
2256 struct sockaddr __user *uaddr;
2257 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2259 msg_sys->msg_name = &addr;
2261 if (MSG_CMSG_COMPAT & flags)
2262 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2263 else
2264 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2265 if (err < 0)
2266 return err;
2268 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2269 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2271 /* We assume all kernel code knows the size of sockaddr_storage */
2272 msg_sys->msg_namelen = 0;
2274 if (sock->file->f_flags & O_NONBLOCK)
2275 flags |= MSG_DONTWAIT;
2276 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2277 if (err < 0)
2278 goto out_freeiov;
2279 len = err;
2281 if (uaddr != NULL) {
2282 err = move_addr_to_user(&addr,
2283 msg_sys->msg_namelen, uaddr,
2284 uaddr_len);
2285 if (err < 0)
2286 goto out_freeiov;
2288 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2289 COMPAT_FLAGS(msg));
2290 if (err)
2291 goto out_freeiov;
2292 if (MSG_CMSG_COMPAT & flags)
2293 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2294 &msg_compat->msg_controllen);
2295 else
2296 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297 &msg->msg_controllen);
2298 if (err)
2299 goto out_freeiov;
2300 err = len;
2302 out_freeiov:
2303 kfree(iov);
2304 return err;
2308 * BSD recvmsg interface
2311 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2312 bool forbid_cmsg_compat)
2314 int fput_needed, err;
2315 struct msghdr msg_sys;
2316 struct socket *sock;
2318 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2319 return -EINVAL;
2321 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2322 if (!sock)
2323 goto out;
2325 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2327 fput_light(sock->file, fput_needed);
2328 out:
2329 return err;
2332 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2333 unsigned int, flags)
2335 return __sys_recvmsg(fd, msg, flags, true);
2339 * Linux recvmmsg interface
2342 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2343 unsigned int flags, struct timespec64 *timeout)
2345 int fput_needed, err, datagrams;
2346 struct socket *sock;
2347 struct mmsghdr __user *entry;
2348 struct compat_mmsghdr __user *compat_entry;
2349 struct msghdr msg_sys;
2350 struct timespec64 end_time;
2351 struct timespec64 timeout64;
2353 if (timeout &&
2354 poll_select_set_timeout(&end_time, timeout->tv_sec,
2355 timeout->tv_nsec))
2356 return -EINVAL;
2358 datagrams = 0;
2360 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2361 if (!sock)
2362 return err;
2364 if (likely(!(flags & MSG_ERRQUEUE))) {
2365 err = sock_error(sock->sk);
2366 if (err) {
2367 datagrams = err;
2368 goto out_put;
2372 entry = mmsg;
2373 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2375 while (datagrams < vlen) {
2377 * No need to ask LSM for more than the first datagram.
2379 if (MSG_CMSG_COMPAT & flags) {
2380 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2381 &msg_sys, flags & ~MSG_WAITFORONE,
2382 datagrams);
2383 if (err < 0)
2384 break;
2385 err = __put_user(err, &compat_entry->msg_len);
2386 ++compat_entry;
2387 } else {
2388 err = ___sys_recvmsg(sock,
2389 (struct user_msghdr __user *)entry,
2390 &msg_sys, flags & ~MSG_WAITFORONE,
2391 datagrams);
2392 if (err < 0)
2393 break;
2394 err = put_user(err, &entry->msg_len);
2395 ++entry;
2398 if (err)
2399 break;
2400 ++datagrams;
2402 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2403 if (flags & MSG_WAITFORONE)
2404 flags |= MSG_DONTWAIT;
2406 if (timeout) {
2407 ktime_get_ts64(&timeout64);
2408 *timeout = timespec64_sub(end_time, timeout64);
2409 if (timeout->tv_sec < 0) {
2410 timeout->tv_sec = timeout->tv_nsec = 0;
2411 break;
2414 /* Timeout, return less than vlen datagrams */
2415 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2416 break;
2419 /* Out of band data, return right away */
2420 if (msg_sys.msg_flags & MSG_OOB)
2421 break;
2422 cond_resched();
2425 if (err == 0)
2426 goto out_put;
2428 if (datagrams == 0) {
2429 datagrams = err;
2430 goto out_put;
2434 * We may return less entries than requested (vlen) if the
2435 * sock is non block and there aren't enough datagrams...
2437 if (err != -EAGAIN) {
2439 * ... or if recvmsg returns an error after we
2440 * received some datagrams, where we record the
2441 * error to return on the next call or if the
2442 * app asks about it using getsockopt(SO_ERROR).
2444 sock->sk->sk_err = -err;
2446 out_put:
2447 fput_light(sock->file, fput_needed);
2449 return datagrams;
2452 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2453 unsigned int vlen, unsigned int flags,
2454 struct __kernel_timespec __user *timeout)
2456 int datagrams;
2457 struct timespec64 timeout_sys;
2459 if (flags & MSG_CMSG_COMPAT)
2460 return -EINVAL;
2462 if (!timeout)
2463 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2465 if (get_timespec64(&timeout_sys, timeout))
2466 return -EFAULT;
2468 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2470 if (datagrams > 0 && put_timespec64(&timeout_sys, timeout))
2471 datagrams = -EFAULT;
2473 return datagrams;
2476 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2477 unsigned int, vlen, unsigned int, flags,
2478 struct __kernel_timespec __user *, timeout)
2480 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2483 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2484 /* Argument list sizes for sys_socketcall */
2485 #define AL(x) ((x) * sizeof(unsigned long))
2486 static const unsigned char nargs[21] = {
2487 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2488 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2489 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2490 AL(4), AL(5), AL(4)
2493 #undef AL
2496 * System call vectors.
2498 * Argument checking cleaned up. Saved 20% in size.
2499 * This function doesn't need to set the kernel lock because
2500 * it is set by the callees.
2503 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2505 unsigned long a[AUDITSC_ARGS];
2506 unsigned long a0, a1;
2507 int err;
2508 unsigned int len;
2510 if (call < 1 || call > SYS_SENDMMSG)
2511 return -EINVAL;
2512 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2514 len = nargs[call];
2515 if (len > sizeof(a))
2516 return -EINVAL;
2518 /* copy_from_user should be SMP safe. */
2519 if (copy_from_user(a, args, len))
2520 return -EFAULT;
2522 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2523 if (err)
2524 return err;
2526 a0 = a[0];
2527 a1 = a[1];
2529 switch (call) {
2530 case SYS_SOCKET:
2531 err = __sys_socket(a0, a1, a[2]);
2532 break;
2533 case SYS_BIND:
2534 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2535 break;
2536 case SYS_CONNECT:
2537 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2538 break;
2539 case SYS_LISTEN:
2540 err = __sys_listen(a0, a1);
2541 break;
2542 case SYS_ACCEPT:
2543 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2544 (int __user *)a[2], 0);
2545 break;
2546 case SYS_GETSOCKNAME:
2547 err =
2548 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2549 (int __user *)a[2]);
2550 break;
2551 case SYS_GETPEERNAME:
2552 err =
2553 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2554 (int __user *)a[2]);
2555 break;
2556 case SYS_SOCKETPAIR:
2557 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2558 break;
2559 case SYS_SEND:
2560 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2561 NULL, 0);
2562 break;
2563 case SYS_SENDTO:
2564 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2565 (struct sockaddr __user *)a[4], a[5]);
2566 break;
2567 case SYS_RECV:
2568 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2569 NULL, NULL);
2570 break;
2571 case SYS_RECVFROM:
2572 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2573 (struct sockaddr __user *)a[4],
2574 (int __user *)a[5]);
2575 break;
2576 case SYS_SHUTDOWN:
2577 err = __sys_shutdown(a0, a1);
2578 break;
2579 case SYS_SETSOCKOPT:
2580 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2581 a[4]);
2582 break;
2583 case SYS_GETSOCKOPT:
2584 err =
2585 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2586 (int __user *)a[4]);
2587 break;
2588 case SYS_SENDMSG:
2589 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2590 a[2], true);
2591 break;
2592 case SYS_SENDMMSG:
2593 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2594 a[3], true);
2595 break;
2596 case SYS_RECVMSG:
2597 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2598 a[2], true);
2599 break;
2600 case SYS_RECVMMSG:
2601 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2602 a[3], (struct __kernel_timespec __user *)a[4]);
2603 break;
2604 case SYS_ACCEPT4:
2605 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2606 (int __user *)a[2], a[3]);
2607 break;
2608 default:
2609 err = -EINVAL;
2610 break;
2612 return err;
2615 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2618 * sock_register - add a socket protocol handler
2619 * @ops: description of protocol
2621 * This function is called by a protocol handler that wants to
2622 * advertise its address family, and have it linked into the
2623 * socket interface. The value ops->family corresponds to the
2624 * socket system call protocol family.
2626 int sock_register(const struct net_proto_family *ops)
2628 int err;
2630 if (ops->family >= NPROTO) {
2631 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2632 return -ENOBUFS;
2635 spin_lock(&net_family_lock);
2636 if (rcu_dereference_protected(net_families[ops->family],
2637 lockdep_is_held(&net_family_lock)))
2638 err = -EEXIST;
2639 else {
2640 rcu_assign_pointer(net_families[ops->family], ops);
2641 err = 0;
2643 spin_unlock(&net_family_lock);
2645 pr_info("NET: Registered protocol family %d\n", ops->family);
2646 return err;
2648 EXPORT_SYMBOL(sock_register);
2651 * sock_unregister - remove a protocol handler
2652 * @family: protocol family to remove
2654 * This function is called by a protocol handler that wants to
2655 * remove its address family, and have it unlinked from the
2656 * new socket creation.
2658 * If protocol handler is a module, then it can use module reference
2659 * counts to protect against new references. If protocol handler is not
2660 * a module then it needs to provide its own protection in
2661 * the ops->create routine.
2663 void sock_unregister(int family)
2665 BUG_ON(family < 0 || family >= NPROTO);
2667 spin_lock(&net_family_lock);
2668 RCU_INIT_POINTER(net_families[family], NULL);
2669 spin_unlock(&net_family_lock);
2671 synchronize_rcu();
2673 pr_info("NET: Unregistered protocol family %d\n", family);
2675 EXPORT_SYMBOL(sock_unregister);
2677 bool sock_is_registered(int family)
2679 return family < NPROTO && rcu_access_pointer(net_families[family]);
2682 static int __init sock_init(void)
2684 int err;
2686 * Initialize the network sysctl infrastructure.
2688 err = net_sysctl_init();
2689 if (err)
2690 goto out;
2693 * Initialize skbuff SLAB cache
2695 skb_init();
2698 * Initialize the protocols module.
2701 init_inodecache();
2703 err = register_filesystem(&sock_fs_type);
2704 if (err)
2705 goto out_fs;
2706 sock_mnt = kern_mount(&sock_fs_type);
2707 if (IS_ERR(sock_mnt)) {
2708 err = PTR_ERR(sock_mnt);
2709 goto out_mount;
2712 /* The real protocol initialization is performed in later initcalls.
2715 #ifdef CONFIG_NETFILTER
2716 err = netfilter_init();
2717 if (err)
2718 goto out;
2719 #endif
2721 ptp_classifier_init();
2723 out:
2724 return err;
2726 out_mount:
2727 unregister_filesystem(&sock_fs_type);
2728 out_fs:
2729 goto out;
2732 core_initcall(sock_init); /* early initcall */
2734 #ifdef CONFIG_PROC_FS
2735 void socket_seq_show(struct seq_file *seq)
2737 seq_printf(seq, "sockets: used %d\n",
2738 sock_inuse_get(seq->private));
2740 #endif /* CONFIG_PROC_FS */
2742 #ifdef CONFIG_COMPAT
2743 static int do_siocgstamp(struct net *net, struct socket *sock,
2744 unsigned int cmd, void __user *up)
2746 mm_segment_t old_fs = get_fs();
2747 struct timeval ktv;
2748 int err;
2750 set_fs(KERNEL_DS);
2751 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2752 set_fs(old_fs);
2753 if (!err)
2754 err = compat_put_timeval(&ktv, up);
2756 return err;
2759 static int do_siocgstampns(struct net *net, struct socket *sock,
2760 unsigned int cmd, void __user *up)
2762 mm_segment_t old_fs = get_fs();
2763 struct timespec kts;
2764 int err;
2766 set_fs(KERNEL_DS);
2767 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2768 set_fs(old_fs);
2769 if (!err)
2770 err = compat_put_timespec(&kts, up);
2772 return err;
2775 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2777 struct compat_ifconf ifc32;
2778 struct ifconf ifc;
2779 int err;
2781 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782 return -EFAULT;
2784 ifc.ifc_len = ifc32.ifc_len;
2785 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2787 rtnl_lock();
2788 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2789 rtnl_unlock();
2790 if (err)
2791 return err;
2793 ifc32.ifc_len = ifc.ifc_len;
2794 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2795 return -EFAULT;
2797 return 0;
2800 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2802 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2803 bool convert_in = false, convert_out = false;
2804 size_t buf_size = 0;
2805 struct ethtool_rxnfc __user *rxnfc = NULL;
2806 struct ifreq ifr;
2807 u32 rule_cnt = 0, actual_rule_cnt;
2808 u32 ethcmd;
2809 u32 data;
2810 int ret;
2812 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2813 return -EFAULT;
2815 compat_rxnfc = compat_ptr(data);
2817 if (get_user(ethcmd, &compat_rxnfc->cmd))
2818 return -EFAULT;
2820 /* Most ethtool structures are defined without padding.
2821 * Unfortunately struct ethtool_rxnfc is an exception.
2823 switch (ethcmd) {
2824 default:
2825 break;
2826 case ETHTOOL_GRXCLSRLALL:
2827 /* Buffer size is variable */
2828 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2829 return -EFAULT;
2830 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2831 return -ENOMEM;
2832 buf_size += rule_cnt * sizeof(u32);
2833 /* fall through */
2834 case ETHTOOL_GRXRINGS:
2835 case ETHTOOL_GRXCLSRLCNT:
2836 case ETHTOOL_GRXCLSRULE:
2837 case ETHTOOL_SRXCLSRLINS:
2838 convert_out = true;
2839 /* fall through */
2840 case ETHTOOL_SRXCLSRLDEL:
2841 buf_size += sizeof(struct ethtool_rxnfc);
2842 convert_in = true;
2843 rxnfc = compat_alloc_user_space(buf_size);
2844 break;
2847 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2848 return -EFAULT;
2850 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2852 if (convert_in) {
2853 /* We expect there to be holes between fs.m_ext and
2854 * fs.ring_cookie and at the end of fs, but nowhere else.
2856 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2857 sizeof(compat_rxnfc->fs.m_ext) !=
2858 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2859 sizeof(rxnfc->fs.m_ext));
2860 BUILD_BUG_ON(
2861 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2862 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2863 offsetof(struct ethtool_rxnfc, fs.location) -
2864 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2866 if (copy_in_user(rxnfc, compat_rxnfc,
2867 (void __user *)(&rxnfc->fs.m_ext + 1) -
2868 (void __user *)rxnfc) ||
2869 copy_in_user(&rxnfc->fs.ring_cookie,
2870 &compat_rxnfc->fs.ring_cookie,
2871 (void __user *)(&rxnfc->fs.location + 1) -
2872 (void __user *)&rxnfc->fs.ring_cookie))
2873 return -EFAULT;
2874 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2875 if (put_user(rule_cnt, &rxnfc->rule_cnt))
2876 return -EFAULT;
2877 } else if (copy_in_user(&rxnfc->rule_cnt,
2878 &compat_rxnfc->rule_cnt,
2879 sizeof(rxnfc->rule_cnt)))
2880 return -EFAULT;
2883 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2884 if (ret)
2885 return ret;
2887 if (convert_out) {
2888 if (copy_in_user(compat_rxnfc, rxnfc,
2889 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2890 (const void __user *)rxnfc) ||
2891 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2892 &rxnfc->fs.ring_cookie,
2893 (const void __user *)(&rxnfc->fs.location + 1) -
2894 (const void __user *)&rxnfc->fs.ring_cookie) ||
2895 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2896 sizeof(rxnfc->rule_cnt)))
2897 return -EFAULT;
2899 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2900 /* As an optimisation, we only copy the actual
2901 * number of rules that the underlying
2902 * function returned. Since Mallory might
2903 * change the rule count in user memory, we
2904 * check that it is less than the rule count
2905 * originally given (as the user buffer size),
2906 * which has been range-checked.
2908 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2909 return -EFAULT;
2910 if (actual_rule_cnt < rule_cnt)
2911 rule_cnt = actual_rule_cnt;
2912 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2913 &rxnfc->rule_locs[0],
2914 rule_cnt * sizeof(u32)))
2915 return -EFAULT;
2919 return 0;
2922 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2924 compat_uptr_t uptr32;
2925 struct ifreq ifr;
2926 void __user *saved;
2927 int err;
2929 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2930 return -EFAULT;
2932 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2933 return -EFAULT;
2935 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2936 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2938 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2939 if (!err) {
2940 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2941 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2942 err = -EFAULT;
2944 return err;
2947 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2948 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2949 struct compat_ifreq __user *u_ifreq32)
2951 struct ifreq ifreq;
2952 u32 data32;
2954 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2955 return -EFAULT;
2956 if (get_user(data32, &u_ifreq32->ifr_data))
2957 return -EFAULT;
2958 ifreq.ifr_data = compat_ptr(data32);
2960 return dev_ioctl(net, cmd, &ifreq, NULL);
2963 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
2964 unsigned int cmd,
2965 struct compat_ifreq __user *uifr32)
2967 struct ifreq __user *uifr;
2968 int err;
2970 /* Handle the fact that while struct ifreq has the same *layout* on
2971 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
2972 * which are handled elsewhere, it still has different *size* due to
2973 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
2974 * resulting in struct ifreq being 32 and 40 bytes respectively).
2975 * As a result, if the struct happens to be at the end of a page and
2976 * the next page isn't readable/writable, we get a fault. To prevent
2977 * that, copy back and forth to the full size.
2980 uifr = compat_alloc_user_space(sizeof(*uifr));
2981 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2982 return -EFAULT;
2984 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2986 if (!err) {
2987 switch (cmd) {
2988 case SIOCGIFFLAGS:
2989 case SIOCGIFMETRIC:
2990 case SIOCGIFMTU:
2991 case SIOCGIFMEM:
2992 case SIOCGIFHWADDR:
2993 case SIOCGIFINDEX:
2994 case SIOCGIFADDR:
2995 case SIOCGIFBRDADDR:
2996 case SIOCGIFDSTADDR:
2997 case SIOCGIFNETMASK:
2998 case SIOCGIFPFLAGS:
2999 case SIOCGIFTXQLEN:
3000 case SIOCGMIIPHY:
3001 case SIOCGMIIREG:
3002 case SIOCGIFNAME:
3003 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3004 err = -EFAULT;
3005 break;
3008 return err;
3011 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3012 struct compat_ifreq __user *uifr32)
3014 struct ifreq ifr;
3015 struct compat_ifmap __user *uifmap32;
3016 int err;
3018 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3019 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3020 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3021 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3022 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3023 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3024 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3025 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3026 if (err)
3027 return -EFAULT;
3029 err = dev_ioctl(net, cmd, &ifr, NULL);
3031 if (cmd == SIOCGIFMAP && !err) {
3032 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3033 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3034 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3035 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3036 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3037 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3038 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3039 if (err)
3040 err = -EFAULT;
3042 return err;
3045 struct rtentry32 {
3046 u32 rt_pad1;
3047 struct sockaddr rt_dst; /* target address */
3048 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3049 struct sockaddr rt_genmask; /* target network mask (IP) */
3050 unsigned short rt_flags;
3051 short rt_pad2;
3052 u32 rt_pad3;
3053 unsigned char rt_tos;
3054 unsigned char rt_class;
3055 short rt_pad4;
3056 short rt_metric; /* +1 for binary compatibility! */
3057 /* char * */ u32 rt_dev; /* forcing the device at add */
3058 u32 rt_mtu; /* per route MTU/Window */
3059 u32 rt_window; /* Window clamping */
3060 unsigned short rt_irtt; /* Initial RTT */
3063 struct in6_rtmsg32 {
3064 struct in6_addr rtmsg_dst;
3065 struct in6_addr rtmsg_src;
3066 struct in6_addr rtmsg_gateway;
3067 u32 rtmsg_type;
3068 u16 rtmsg_dst_len;
3069 u16 rtmsg_src_len;
3070 u32 rtmsg_metric;
3071 u32 rtmsg_info;
3072 u32 rtmsg_flags;
3073 s32 rtmsg_ifindex;
3076 static int routing_ioctl(struct net *net, struct socket *sock,
3077 unsigned int cmd, void __user *argp)
3079 int ret;
3080 void *r = NULL;
3081 struct in6_rtmsg r6;
3082 struct rtentry r4;
3083 char devname[16];
3084 u32 rtdev;
3085 mm_segment_t old_fs = get_fs();
3087 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3088 struct in6_rtmsg32 __user *ur6 = argp;
3089 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3090 3 * sizeof(struct in6_addr));
3091 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3092 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3093 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3094 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3095 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3096 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3097 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3099 r = (void *) &r6;
3100 } else { /* ipv4 */
3101 struct rtentry32 __user *ur4 = argp;
3102 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3103 3 * sizeof(struct sockaddr));
3104 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3105 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3106 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3107 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3108 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3109 ret |= get_user(rtdev, &(ur4->rt_dev));
3110 if (rtdev) {
3111 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3112 r4.rt_dev = (char __user __force *)devname;
3113 devname[15] = 0;
3114 } else
3115 r4.rt_dev = NULL;
3117 r = (void *) &r4;
3120 if (ret) {
3121 ret = -EFAULT;
3122 goto out;
3125 set_fs(KERNEL_DS);
3126 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3127 set_fs(old_fs);
3129 out:
3130 return ret;
3133 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3134 * for some operations; this forces use of the newer bridge-utils that
3135 * use compatible ioctls
3137 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3139 compat_ulong_t tmp;
3141 if (get_user(tmp, argp))
3142 return -EFAULT;
3143 if (tmp == BRCTL_GET_VERSION)
3144 return BRCTL_VERSION + 1;
3145 return -EINVAL;
3148 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3149 unsigned int cmd, unsigned long arg)
3151 void __user *argp = compat_ptr(arg);
3152 struct sock *sk = sock->sk;
3153 struct net *net = sock_net(sk);
3155 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3156 return compat_ifr_data_ioctl(net, cmd, argp);
3158 switch (cmd) {
3159 case SIOCSIFBR:
3160 case SIOCGIFBR:
3161 return old_bridge_ioctl(argp);
3162 case SIOCGIFCONF:
3163 return compat_dev_ifconf(net, argp);
3164 case SIOCETHTOOL:
3165 return ethtool_ioctl(net, argp);
3166 case SIOCWANDEV:
3167 return compat_siocwandev(net, argp);
3168 case SIOCGIFMAP:
3169 case SIOCSIFMAP:
3170 return compat_sioc_ifmap(net, cmd, argp);
3171 case SIOCADDRT:
3172 case SIOCDELRT:
3173 return routing_ioctl(net, sock, cmd, argp);
3174 case SIOCGSTAMP:
3175 return do_siocgstamp(net, sock, cmd, argp);
3176 case SIOCGSTAMPNS:
3177 return do_siocgstampns(net, sock, cmd, argp);
3178 case SIOCBONDSLAVEINFOQUERY:
3179 case SIOCBONDINFOQUERY:
3180 case SIOCSHWTSTAMP:
3181 case SIOCGHWTSTAMP:
3182 return compat_ifr_data_ioctl(net, cmd, argp);
3184 case FIOSETOWN:
3185 case SIOCSPGRP:
3186 case FIOGETOWN:
3187 case SIOCGPGRP:
3188 case SIOCBRADDBR:
3189 case SIOCBRDELBR:
3190 case SIOCGIFVLAN:
3191 case SIOCSIFVLAN:
3192 case SIOCADDDLCI:
3193 case SIOCDELDLCI:
3194 case SIOCGSKNS:
3195 return sock_ioctl(file, cmd, arg);
3197 case SIOCGIFFLAGS:
3198 case SIOCSIFFLAGS:
3199 case SIOCGIFMETRIC:
3200 case SIOCSIFMETRIC:
3201 case SIOCGIFMTU:
3202 case SIOCSIFMTU:
3203 case SIOCGIFMEM:
3204 case SIOCSIFMEM:
3205 case SIOCGIFHWADDR:
3206 case SIOCSIFHWADDR:
3207 case SIOCADDMULTI:
3208 case SIOCDELMULTI:
3209 case SIOCGIFINDEX:
3210 case SIOCGIFADDR:
3211 case SIOCSIFADDR:
3212 case SIOCSIFHWBROADCAST:
3213 case SIOCDIFADDR:
3214 case SIOCGIFBRDADDR:
3215 case SIOCSIFBRDADDR:
3216 case SIOCGIFDSTADDR:
3217 case SIOCSIFDSTADDR:
3218 case SIOCGIFNETMASK:
3219 case SIOCSIFNETMASK:
3220 case SIOCSIFPFLAGS:
3221 case SIOCGIFPFLAGS:
3222 case SIOCGIFTXQLEN:
3223 case SIOCSIFTXQLEN:
3224 case SIOCBRADDIF:
3225 case SIOCBRDELIF:
3226 case SIOCGIFNAME:
3227 case SIOCSIFNAME:
3228 case SIOCGMIIPHY:
3229 case SIOCGMIIREG:
3230 case SIOCSMIIREG:
3231 case SIOCBONDENSLAVE:
3232 case SIOCBONDRELEASE:
3233 case SIOCBONDSETHWADDR:
3234 case SIOCBONDCHANGEACTIVE:
3235 return compat_ifreq_ioctl(net, sock, cmd, argp);
3237 case SIOCSARP:
3238 case SIOCGARP:
3239 case SIOCDARP:
3240 case SIOCATMARK:
3241 return sock_do_ioctl(net, sock, cmd, arg);
3244 return -ENOIOCTLCMD;
3247 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3248 unsigned long arg)
3250 struct socket *sock = file->private_data;
3251 int ret = -ENOIOCTLCMD;
3252 struct sock *sk;
3253 struct net *net;
3255 sk = sock->sk;
3256 net = sock_net(sk);
3258 if (sock->ops->compat_ioctl)
3259 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3261 if (ret == -ENOIOCTLCMD &&
3262 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3263 ret = compat_wext_handle_ioctl(net, cmd, arg);
3265 if (ret == -ENOIOCTLCMD)
3266 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3268 return ret;
3270 #endif
3272 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3274 return sock->ops->bind(sock, addr, addrlen);
3276 EXPORT_SYMBOL(kernel_bind);
3278 int kernel_listen(struct socket *sock, int backlog)
3280 return sock->ops->listen(sock, backlog);
3282 EXPORT_SYMBOL(kernel_listen);
3284 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3286 struct sock *sk = sock->sk;
3287 int err;
3289 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3290 newsock);
3291 if (err < 0)
3292 goto done;
3294 err = sock->ops->accept(sock, *newsock, flags, true);
3295 if (err < 0) {
3296 sock_release(*newsock);
3297 *newsock = NULL;
3298 goto done;
3301 (*newsock)->ops = sock->ops;
3302 __module_get((*newsock)->ops->owner);
3304 done:
3305 return err;
3307 EXPORT_SYMBOL(kernel_accept);
3309 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3310 int flags)
3312 return sock->ops->connect(sock, addr, addrlen, flags);
3314 EXPORT_SYMBOL(kernel_connect);
3316 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3318 return sock->ops->getname(sock, addr, 0);
3320 EXPORT_SYMBOL(kernel_getsockname);
3322 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3324 return sock->ops->getname(sock, addr, 1);
3326 EXPORT_SYMBOL(kernel_getpeername);
3328 int kernel_getsockopt(struct socket *sock, int level, int optname,
3329 char *optval, int *optlen)
3331 mm_segment_t oldfs = get_fs();
3332 char __user *uoptval;
3333 int __user *uoptlen;
3334 int err;
3336 uoptval = (char __user __force *) optval;
3337 uoptlen = (int __user __force *) optlen;
3339 set_fs(KERNEL_DS);
3340 if (level == SOL_SOCKET)
3341 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3342 else
3343 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3344 uoptlen);
3345 set_fs(oldfs);
3346 return err;
3348 EXPORT_SYMBOL(kernel_getsockopt);
3350 int kernel_setsockopt(struct socket *sock, int level, int optname,
3351 char *optval, unsigned int optlen)
3353 mm_segment_t oldfs = get_fs();
3354 char __user *uoptval;
3355 int err;
3357 uoptval = (char __user __force *) optval;
3359 set_fs(KERNEL_DS);
3360 if (level == SOL_SOCKET)
3361 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3362 else
3363 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3364 optlen);
3365 set_fs(oldfs);
3366 return err;
3368 EXPORT_SYMBOL(kernel_setsockopt);
3370 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3371 size_t size, int flags)
3373 if (sock->ops->sendpage)
3374 return sock->ops->sendpage(sock, page, offset, size, flags);
3376 return sock_no_sendpage(sock, page, offset, size, flags);
3378 EXPORT_SYMBOL(kernel_sendpage);
3380 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3381 size_t size, int flags)
3383 struct socket *sock = sk->sk_socket;
3385 if (sock->ops->sendpage_locked)
3386 return sock->ops->sendpage_locked(sk, page, offset, size,
3387 flags);
3389 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3391 EXPORT_SYMBOL(kernel_sendpage_locked);
3393 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3395 return sock->ops->shutdown(sock, how);
3397 EXPORT_SYMBOL(kernel_sock_shutdown);
3399 /* This routine returns the IP overhead imposed by a socket i.e.
3400 * the length of the underlying IP header, depending on whether
3401 * this is an IPv4 or IPv6 socket and the length from IP options turned
3402 * on at the socket. Assumes that the caller has a lock on the socket.
3404 u32 kernel_sock_ip_overhead(struct sock *sk)
3406 struct inet_sock *inet;
3407 struct ip_options_rcu *opt;
3408 u32 overhead = 0;
3409 #if IS_ENABLED(CONFIG_IPV6)
3410 struct ipv6_pinfo *np;
3411 struct ipv6_txoptions *optv6 = NULL;
3412 #endif /* IS_ENABLED(CONFIG_IPV6) */
3414 if (!sk)
3415 return overhead;
3417 switch (sk->sk_family) {
3418 case AF_INET:
3419 inet = inet_sk(sk);
3420 overhead += sizeof(struct iphdr);
3421 opt = rcu_dereference_protected(inet->inet_opt,
3422 sock_owned_by_user(sk));
3423 if (opt)
3424 overhead += opt->opt.optlen;
3425 return overhead;
3426 #if IS_ENABLED(CONFIG_IPV6)
3427 case AF_INET6:
3428 np = inet6_sk(sk);
3429 overhead += sizeof(struct ipv6hdr);
3430 if (np)
3431 optv6 = rcu_dereference_protected(np->opt,
3432 sock_owned_by_user(sk));
3433 if (optv6)
3434 overhead += (optv6->opt_flen + optv6->opt_nflen);
3435 return overhead;
3436 #endif /* IS_ENABLED(CONFIG_IPV6) */
3437 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3438 return overhead;
3441 EXPORT_SYMBOL(kernel_sock_ip_overhead);