2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static __poll_t
sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
184 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
188 if (copy_from_user(kaddr
, uaddr
, ulen
))
190 return audit_sockaddr(ulen
, kaddr
);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
211 void __user
*uaddr
, int __user
*ulen
)
216 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
217 err
= get_user(len
, ulen
);
225 if (audit_sockaddr(klen
, kaddr
))
227 if (copy_to_user(uaddr
, kaddr
, len
))
231 * "fromlen shall refer to the value before truncation.."
234 return __put_user(klen
, ulen
);
237 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
239 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
241 struct socket_alloc
*ei
;
242 struct socket_wq
*wq
;
244 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
247 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
249 kmem_cache_free(sock_inode_cachep
, ei
);
252 init_waitqueue_head(&wq
->wait
);
253 wq
->fasync_list
= NULL
;
257 ei
->socket
.state
= SS_UNCONNECTED
;
258 ei
->socket
.flags
= 0;
259 ei
->socket
.ops
= NULL
;
260 ei
->socket
.sk
= NULL
;
261 ei
->socket
.file
= NULL
;
263 return &ei
->vfs_inode
;
266 static void sock_destroy_inode(struct inode
*inode
)
268 struct socket_alloc
*ei
;
270 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
271 kfree_rcu(ei
->socket
.wq
, rcu
);
272 kmem_cache_free(sock_inode_cachep
, ei
);
275 static void init_once(void *foo
)
277 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
279 inode_init_once(&ei
->vfs_inode
);
282 static void init_inodecache(void)
284 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc
),
287 (SLAB_HWCACHE_ALIGN
|
288 SLAB_RECLAIM_ACCOUNT
|
289 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
291 BUG_ON(sock_inode_cachep
== NULL
);
294 static const struct super_operations sockfs_ops
= {
295 .alloc_inode
= sock_alloc_inode
,
296 .destroy_inode
= sock_destroy_inode
,
297 .statfs
= simple_statfs
,
301 * sockfs_dname() is called from d_path().
303 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
305 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
306 d_inode(dentry
)->i_ino
);
309 static const struct dentry_operations sockfs_dentry_operations
= {
310 .d_dname
= sockfs_dname
,
313 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
314 struct dentry
*dentry
, struct inode
*inode
,
315 const char *suffix
, void *value
, size_t size
)
318 if (dentry
->d_name
.len
+ 1 > size
)
320 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
322 return dentry
->d_name
.len
+ 1;
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 static const struct xattr_handler sockfs_xattr_handler
= {
330 .name
= XATTR_NAME_SOCKPROTONAME
,
331 .get
= sockfs_xattr_get
,
334 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
335 struct dentry
*dentry
, struct inode
*inode
,
336 const char *suffix
, const void *value
,
337 size_t size
, int flags
)
339 /* Handled by LSM. */
343 static const struct xattr_handler sockfs_security_xattr_handler
= {
344 .prefix
= XATTR_SECURITY_PREFIX
,
345 .set
= sockfs_security_xattr_set
,
348 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
349 &sockfs_xattr_handler
,
350 &sockfs_security_xattr_handler
,
354 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
355 int flags
, const char *dev_name
, void *data
)
357 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
358 sockfs_xattr_handlers
,
359 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
362 static struct vfsmount
*sock_mnt __read_mostly
;
364 static struct file_system_type sock_fs_type
= {
366 .mount
= sockfs_mount
,
367 .kill_sb
= kill_anon_super
,
371 * Obtains the first available file descriptor and sets it up for use.
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
387 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
392 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
394 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
395 O_RDWR
| (flags
& O_NONBLOCK
),
403 file
->private_data
= sock
;
406 EXPORT_SYMBOL(sock_alloc_file
);
408 static int sock_map_fd(struct socket
*sock
, int flags
)
410 struct file
*newfile
;
411 int fd
= get_unused_fd_flags(flags
);
412 if (unlikely(fd
< 0)) {
417 newfile
= sock_alloc_file(sock
, flags
, NULL
);
418 if (likely(!IS_ERR(newfile
))) {
419 fd_install(fd
, newfile
);
424 return PTR_ERR(newfile
);
427 struct socket
*sock_from_file(struct file
*file
, int *err
)
429 if (file
->f_op
== &socket_file_ops
)
430 return file
->private_data
; /* set in sock_map_fd */
435 EXPORT_SYMBOL(sock_from_file
);
438 * sockfd_lookup - Go from a file number to its socket slot
440 * @err: pointer to an error code return
442 * The file handle passed in is locked and the socket it is bound
443 * to is returned. If an error occurs the err pointer is overwritten
444 * with a negative errno code and NULL is returned. The function checks
445 * for both invalid handles and passing a handle which is not a socket.
447 * On a success the socket object pointer is returned.
450 struct socket
*sockfd_lookup(int fd
, int *err
)
461 sock
= sock_from_file(file
, err
);
466 EXPORT_SYMBOL(sockfd_lookup
);
468 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
470 struct fd f
= fdget(fd
);
475 sock
= sock_from_file(f
.file
, err
);
477 *fput_needed
= f
.flags
;
485 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
491 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
501 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
506 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
513 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
515 int err
= simple_setattr(dentry
, iattr
);
517 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
518 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
521 sock
->sk
->sk_uid
= iattr
->ia_uid
;
529 static const struct inode_operations sockfs_inode_ops
= {
530 .listxattr
= sockfs_listxattr
,
531 .setattr
= sockfs_setattr
,
535 * sock_alloc - allocate a socket
537 * Allocate a new inode and socket object. The two are bound together
538 * and initialised. The socket is then returned. If we are out of inodes
542 struct socket
*sock_alloc(void)
547 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
551 sock
= SOCKET_I(inode
);
553 inode
->i_ino
= get_next_ino();
554 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
555 inode
->i_uid
= current_fsuid();
556 inode
->i_gid
= current_fsgid();
557 inode
->i_op
= &sockfs_inode_ops
;
561 EXPORT_SYMBOL(sock_alloc
);
564 * sock_release - close a socket
565 * @sock: socket to close
567 * The socket is released from the protocol stack if it has a release
568 * callback, and the inode is then released if the socket is bound to
569 * an inode not a file.
572 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
575 struct module
*owner
= sock
->ops
->owner
;
579 sock
->ops
->release(sock
);
586 if (sock
->wq
->fasync_list
)
587 pr_err("%s: fasync list not empty!\n", __func__
);
590 iput(SOCK_INODE(sock
));
596 void sock_release(struct socket
*sock
)
598 __sock_release(sock
, NULL
);
600 EXPORT_SYMBOL(sock_release
);
602 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
604 u8 flags
= *tx_flags
;
606 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
607 flags
|= SKBTX_HW_TSTAMP
;
609 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
610 flags
|= SKBTX_SW_TSTAMP
;
612 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
613 flags
|= SKBTX_SCHED_TSTAMP
;
617 EXPORT_SYMBOL(__sock_tx_timestamp
);
619 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
621 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
622 BUG_ON(ret
== -EIOCBQUEUED
);
626 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
628 int err
= security_socket_sendmsg(sock
, msg
,
631 return err
?: sock_sendmsg_nosec(sock
, msg
);
633 EXPORT_SYMBOL(sock_sendmsg
);
635 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
636 struct kvec
*vec
, size_t num
, size_t size
)
638 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
639 return sock_sendmsg(sock
, msg
);
641 EXPORT_SYMBOL(kernel_sendmsg
);
643 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
644 struct kvec
*vec
, size_t num
, size_t size
)
646 struct socket
*sock
= sk
->sk_socket
;
648 if (!sock
->ops
->sendmsg_locked
)
649 return sock_no_sendmsg_locked(sk
, msg
, size
);
651 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
653 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
655 EXPORT_SYMBOL(kernel_sendmsg_locked
);
657 static bool skb_is_err_queue(const struct sk_buff
*skb
)
659 /* pkt_type of skbs enqueued on the error queue are set to
660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 * in recvmsg, since skbs received on a local socket will never
662 * have a pkt_type of PACKET_OUTGOING.
664 return skb
->pkt_type
== PACKET_OUTGOING
;
667 /* On transmit, software and hardware timestamps are returned independently.
668 * As the two skb clones share the hardware timestamp, which may be updated
669 * before the software timestamp is received, a hardware TX timestamp may be
670 * returned only if there is no software TX timestamp. Ignore false software
671 * timestamps, which may be made in the __sock_recv_timestamp() call when the
672 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
673 * hardware timestamp.
675 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
677 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
680 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
682 struct scm_ts_pktinfo ts_pktinfo
;
683 struct net_device
*orig_dev
;
685 if (!skb_mac_header_was_set(skb
))
688 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
691 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
693 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
696 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
697 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
698 sizeof(ts_pktinfo
), &ts_pktinfo
);
702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
707 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
708 struct scm_timestamping tss
;
709 int empty
= 1, false_tstamp
= 0;
710 struct skb_shared_hwtstamps
*shhwtstamps
=
713 /* Race occurred between timestamp enabling and packet
714 receiving. Fill in the current time for now. */
715 if (need_software_tstamp
&& skb
->tstamp
== 0) {
716 __net_timestamp(skb
);
720 if (need_software_tstamp
) {
721 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
723 skb_get_timestamp(skb
, &tv
);
724 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
728 skb_get_timestampns(skb
, &ts
);
729 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
734 memset(&tss
, 0, sizeof(tss
));
735 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
736 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
739 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
740 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
741 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
743 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
744 !skb_is_err_queue(skb
))
745 put_ts_pktinfo(msg
, skb
);
748 put_cmsg(msg
, SOL_SOCKET
,
749 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
751 if (skb_is_err_queue(skb
) && skb
->len
&&
752 SKB_EXT_ERR(skb
)->opt_stats
)
753 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
754 skb
->len
, skb
->data
);
757 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
759 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
764 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
766 if (!skb
->wifi_acked_valid
)
769 ack
= skb
->wifi_acked
;
771 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
773 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
775 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
778 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
779 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
780 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
783 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
786 sock_recv_timestamp(msg
, sk
, skb
);
787 sock_recv_drops(msg
, sk
, skb
);
789 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
791 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
794 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
797 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
799 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
801 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
803 EXPORT_SYMBOL(sock_recvmsg
);
806 * kernel_recvmsg - Receive a message from a socket (kernel space)
807 * @sock: The socket to receive the message from
808 * @msg: Received message
809 * @vec: Input s/g array for message data
810 * @num: Size of input s/g array
811 * @size: Number of bytes to read
812 * @flags: Message flags (MSG_DONTWAIT, etc...)
814 * On return the msg structure contains the scatter/gather array passed in the
815 * vec argument. The array is modified so that it consists of the unfilled
816 * portion of the original array.
818 * The returned value is the total number of bytes received, or an error.
820 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
821 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
823 mm_segment_t oldfs
= get_fs();
826 iov_iter_kvec(&msg
->msg_iter
, READ
, vec
, num
, size
);
828 result
= sock_recvmsg(sock
, msg
, flags
);
832 EXPORT_SYMBOL(kernel_recvmsg
);
834 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
835 int offset
, size_t size
, loff_t
*ppos
, int more
)
840 sock
= file
->private_data
;
842 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
843 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
846 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
849 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
850 struct pipe_inode_info
*pipe
, size_t len
,
853 struct socket
*sock
= file
->private_data
;
855 if (unlikely(!sock
->ops
->splice_read
))
856 return generic_file_splice_read(file
, ppos
, pipe
, len
, flags
);
858 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
861 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
863 struct file
*file
= iocb
->ki_filp
;
864 struct socket
*sock
= file
->private_data
;
865 struct msghdr msg
= {.msg_iter
= *to
,
869 if (file
->f_flags
& O_NONBLOCK
)
870 msg
.msg_flags
= MSG_DONTWAIT
;
872 if (iocb
->ki_pos
!= 0)
875 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
878 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
883 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
885 struct file
*file
= iocb
->ki_filp
;
886 struct socket
*sock
= file
->private_data
;
887 struct msghdr msg
= {.msg_iter
= *from
,
891 if (iocb
->ki_pos
!= 0)
894 if (file
->f_flags
& O_NONBLOCK
)
895 msg
.msg_flags
= MSG_DONTWAIT
;
897 if (sock
->type
== SOCK_SEQPACKET
)
898 msg
.msg_flags
|= MSG_EOR
;
900 res
= sock_sendmsg(sock
, &msg
);
901 *from
= msg
.msg_iter
;
906 * Atomic setting of ioctl hooks to avoid race
907 * with module unload.
910 static DEFINE_MUTEX(br_ioctl_mutex
);
911 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
913 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
915 mutex_lock(&br_ioctl_mutex
);
916 br_ioctl_hook
= hook
;
917 mutex_unlock(&br_ioctl_mutex
);
919 EXPORT_SYMBOL(brioctl_set
);
921 static DEFINE_MUTEX(vlan_ioctl_mutex
);
922 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
924 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
926 mutex_lock(&vlan_ioctl_mutex
);
927 vlan_ioctl_hook
= hook
;
928 mutex_unlock(&vlan_ioctl_mutex
);
930 EXPORT_SYMBOL(vlan_ioctl_set
);
932 static DEFINE_MUTEX(dlci_ioctl_mutex
);
933 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
935 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
937 mutex_lock(&dlci_ioctl_mutex
);
938 dlci_ioctl_hook
= hook
;
939 mutex_unlock(&dlci_ioctl_mutex
);
941 EXPORT_SYMBOL(dlci_ioctl_set
);
943 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
944 unsigned int cmd
, unsigned long arg
)
947 void __user
*argp
= (void __user
*)arg
;
949 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
952 * If this ioctl is unknown try to hand it down
955 if (err
!= -ENOIOCTLCMD
)
958 if (cmd
== SIOCGIFCONF
) {
960 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
963 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
965 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
970 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
972 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
973 if (!err
&& need_copyout
)
974 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
981 * With an ioctl, arg may well be a user mode pointer, but we don't know
982 * what to do with it - that's up to the protocol still.
985 struct ns_common
*get_net_ns(struct ns_common
*ns
)
987 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
989 EXPORT_SYMBOL_GPL(get_net_ns
);
991 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
995 void __user
*argp
= (void __user
*)arg
;
999 sock
= file
->private_data
;
1002 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1005 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1007 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1008 if (!err
&& need_copyout
)
1009 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1012 #ifdef CONFIG_WEXT_CORE
1013 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1014 err
= wext_handle_ioctl(net
, cmd
, argp
);
1021 if (get_user(pid
, (int __user
*)argp
))
1023 err
= f_setown(sock
->file
, pid
, 1);
1027 err
= put_user(f_getown(sock
->file
),
1028 (int __user
*)argp
);
1036 request_module("bridge");
1038 mutex_lock(&br_ioctl_mutex
);
1040 err
= br_ioctl_hook(net
, cmd
, argp
);
1041 mutex_unlock(&br_ioctl_mutex
);
1046 if (!vlan_ioctl_hook
)
1047 request_module("8021q");
1049 mutex_lock(&vlan_ioctl_mutex
);
1050 if (vlan_ioctl_hook
)
1051 err
= vlan_ioctl_hook(net
, argp
);
1052 mutex_unlock(&vlan_ioctl_mutex
);
1057 if (!dlci_ioctl_hook
)
1058 request_module("dlci");
1060 mutex_lock(&dlci_ioctl_mutex
);
1061 if (dlci_ioctl_hook
)
1062 err
= dlci_ioctl_hook(cmd
, argp
);
1063 mutex_unlock(&dlci_ioctl_mutex
);
1067 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1070 err
= open_related_ns(&net
->ns
, get_net_ns
);
1073 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1079 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1082 struct socket
*sock
= NULL
;
1084 err
= security_socket_create(family
, type
, protocol
, 1);
1088 sock
= sock_alloc();
1095 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1107 EXPORT_SYMBOL(sock_create_lite
);
1109 /* No kernel lock held - perfect */
1110 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1112 struct socket
*sock
= file
->private_data
;
1113 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1115 if (!sock
->ops
->poll
)
1118 if (sk_can_busy_loop(sock
->sk
)) {
1119 /* poll once if requested by the syscall */
1120 if (events
& POLL_BUSY_LOOP
)
1121 sk_busy_loop(sock
->sk
, 1);
1123 /* if this socket can poll_ll, tell the system call */
1124 flag
= POLL_BUSY_LOOP
;
1127 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1130 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1132 struct socket
*sock
= file
->private_data
;
1134 return sock
->ops
->mmap(file
, sock
, vma
);
1137 static int sock_close(struct inode
*inode
, struct file
*filp
)
1139 __sock_release(SOCKET_I(inode
), inode
);
1144 * Update the socket async list
1146 * Fasync_list locking strategy.
1148 * 1. fasync_list is modified only under process context socket lock
1149 * i.e. under semaphore.
1150 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1151 * or under socket lock
1154 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1156 struct socket
*sock
= filp
->private_data
;
1157 struct sock
*sk
= sock
->sk
;
1158 struct socket_wq
*wq
;
1165 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1167 if (!wq
->fasync_list
)
1168 sock_reset_flag(sk
, SOCK_FASYNC
);
1170 sock_set_flag(sk
, SOCK_FASYNC
);
1176 /* This function may be called only under rcu_lock */
1178 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1180 if (!wq
|| !wq
->fasync_list
)
1184 case SOCK_WAKE_WAITD
:
1185 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1188 case SOCK_WAKE_SPACE
:
1189 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1194 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1197 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1202 EXPORT_SYMBOL(sock_wake_async
);
1204 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1205 struct socket
**res
, int kern
)
1208 struct socket
*sock
;
1209 const struct net_proto_family
*pf
;
1212 * Check protocol is in range
1214 if (family
< 0 || family
>= NPROTO
)
1215 return -EAFNOSUPPORT
;
1216 if (type
< 0 || type
>= SOCK_MAX
)
1221 This uglymoron is moved from INET layer to here to avoid
1222 deadlock in module load.
1224 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1225 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1230 err
= security_socket_create(family
, type
, protocol
, kern
);
1235 * Allocate the socket and allow the family to set things up. if
1236 * the protocol is 0, the family is instructed to select an appropriate
1239 sock
= sock_alloc();
1241 net_warn_ratelimited("socket: no more sockets\n");
1242 return -ENFILE
; /* Not exactly a match, but its the
1243 closest posix thing */
1248 #ifdef CONFIG_MODULES
1249 /* Attempt to load a protocol module if the find failed.
1251 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1252 * requested real, full-featured networking support upon configuration.
1253 * Otherwise module support will break!
1255 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1256 request_module("net-pf-%d", family
);
1260 pf
= rcu_dereference(net_families
[family
]);
1261 err
= -EAFNOSUPPORT
;
1266 * We will call the ->create function, that possibly is in a loadable
1267 * module, so we have to bump that loadable module refcnt first.
1269 if (!try_module_get(pf
->owner
))
1272 /* Now protected by module ref count */
1275 err
= pf
->create(net
, sock
, protocol
, kern
);
1277 goto out_module_put
;
1280 * Now to bump the refcnt of the [loadable] module that owns this
1281 * socket at sock_release time we decrement its refcnt.
1283 if (!try_module_get(sock
->ops
->owner
))
1284 goto out_module_busy
;
1287 * Now that we're done with the ->create function, the [loadable]
1288 * module can have its refcnt decremented
1290 module_put(pf
->owner
);
1291 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1293 goto out_sock_release
;
1299 err
= -EAFNOSUPPORT
;
1302 module_put(pf
->owner
);
1309 goto out_sock_release
;
1311 EXPORT_SYMBOL(__sock_create
);
1313 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1315 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1317 EXPORT_SYMBOL(sock_create
);
1319 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1321 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1323 EXPORT_SYMBOL(sock_create_kern
);
1325 int __sys_socket(int family
, int type
, int protocol
)
1328 struct socket
*sock
;
1331 /* Check the SOCK_* constants for consistency. */
1332 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1333 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1334 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1335 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1337 flags
= type
& ~SOCK_TYPE_MASK
;
1338 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1340 type
&= SOCK_TYPE_MASK
;
1342 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1343 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1345 retval
= sock_create(family
, type
, protocol
, &sock
);
1349 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1352 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1354 return __sys_socket(family
, type
, protocol
);
1358 * Create a pair of connected sockets.
1361 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1363 struct socket
*sock1
, *sock2
;
1365 struct file
*newfile1
, *newfile2
;
1368 flags
= type
& ~SOCK_TYPE_MASK
;
1369 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1371 type
&= SOCK_TYPE_MASK
;
1373 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1374 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1377 * reserve descriptors and make sure we won't fail
1378 * to return them to userland.
1380 fd1
= get_unused_fd_flags(flags
);
1381 if (unlikely(fd1
< 0))
1384 fd2
= get_unused_fd_flags(flags
);
1385 if (unlikely(fd2
< 0)) {
1390 err
= put_user(fd1
, &usockvec
[0]);
1394 err
= put_user(fd2
, &usockvec
[1]);
1399 * Obtain the first socket and check if the underlying protocol
1400 * supports the socketpair call.
1403 err
= sock_create(family
, type
, protocol
, &sock1
);
1404 if (unlikely(err
< 0))
1407 err
= sock_create(family
, type
, protocol
, &sock2
);
1408 if (unlikely(err
< 0)) {
1409 sock_release(sock1
);
1413 err
= security_socket_socketpair(sock1
, sock2
);
1414 if (unlikely(err
)) {
1415 sock_release(sock2
);
1416 sock_release(sock1
);
1420 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1421 if (unlikely(err
< 0)) {
1422 sock_release(sock2
);
1423 sock_release(sock1
);
1427 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1428 if (IS_ERR(newfile1
)) {
1429 err
= PTR_ERR(newfile1
);
1430 sock_release(sock2
);
1434 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1435 if (IS_ERR(newfile2
)) {
1436 err
= PTR_ERR(newfile2
);
1441 audit_fd_pair(fd1
, fd2
);
1443 fd_install(fd1
, newfile1
);
1444 fd_install(fd2
, newfile2
);
1453 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1454 int __user
*, usockvec
)
1456 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1460 * Bind a name to a socket. Nothing much to do here since it's
1461 * the protocol's responsibility to handle the local address.
1463 * We move the socket address to kernel space before we call
1464 * the protocol layer (having also checked the address is ok).
1467 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1469 struct socket
*sock
;
1470 struct sockaddr_storage address
;
1471 int err
, fput_needed
;
1473 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1475 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1477 err
= security_socket_bind(sock
,
1478 (struct sockaddr
*)&address
,
1481 err
= sock
->ops
->bind(sock
,
1485 fput_light(sock
->file
, fput_needed
);
1490 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1492 return __sys_bind(fd
, umyaddr
, addrlen
);
1496 * Perform a listen. Basically, we allow the protocol to do anything
1497 * necessary for a listen, and if that works, we mark the socket as
1498 * ready for listening.
1501 int __sys_listen(int fd
, int backlog
)
1503 struct socket
*sock
;
1504 int err
, fput_needed
;
1507 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1509 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1510 if ((unsigned int)backlog
> somaxconn
)
1511 backlog
= somaxconn
;
1513 err
= security_socket_listen(sock
, backlog
);
1515 err
= sock
->ops
->listen(sock
, backlog
);
1517 fput_light(sock
->file
, fput_needed
);
1522 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1524 return __sys_listen(fd
, backlog
);
1528 * For accept, we attempt to create a new socket, set up the link
1529 * with the client, wake up the client, then return the new
1530 * connected fd. We collect the address of the connector in kernel
1531 * space and move it to user at the very end. This is unclean because
1532 * we open the socket then return an error.
1534 * 1003.1g adds the ability to recvmsg() to query connection pending
1535 * status to recvmsg. We need to add that support in a way thats
1536 * clean when we restructure accept also.
1539 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1540 int __user
*upeer_addrlen
, int flags
)
1542 struct socket
*sock
, *newsock
;
1543 struct file
*newfile
;
1544 int err
, len
, newfd
, fput_needed
;
1545 struct sockaddr_storage address
;
1547 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1550 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1551 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1553 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1558 newsock
= sock_alloc();
1562 newsock
->type
= sock
->type
;
1563 newsock
->ops
= sock
->ops
;
1566 * We don't need try_module_get here, as the listening socket (sock)
1567 * has the protocol module (sock->ops->owner) held.
1569 __module_get(newsock
->ops
->owner
);
1571 newfd
= get_unused_fd_flags(flags
);
1572 if (unlikely(newfd
< 0)) {
1574 sock_release(newsock
);
1577 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1578 if (IS_ERR(newfile
)) {
1579 err
= PTR_ERR(newfile
);
1580 put_unused_fd(newfd
);
1584 err
= security_socket_accept(sock
, newsock
);
1588 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1592 if (upeer_sockaddr
) {
1593 len
= newsock
->ops
->getname(newsock
,
1594 (struct sockaddr
*)&address
, 2);
1596 err
= -ECONNABORTED
;
1599 err
= move_addr_to_user(&address
,
1600 len
, upeer_sockaddr
, upeer_addrlen
);
1605 /* File flags are not inherited via accept() unlike another OSes. */
1607 fd_install(newfd
, newfile
);
1611 fput_light(sock
->file
, fput_needed
);
1616 put_unused_fd(newfd
);
1620 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1621 int __user
*, upeer_addrlen
, int, flags
)
1623 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1626 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1627 int __user
*, upeer_addrlen
)
1629 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1633 * Attempt to connect to a socket with the server address. The address
1634 * is in user space so we verify it is OK and move it to kernel space.
1636 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1639 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1640 * other SEQPACKET protocols that take time to connect() as it doesn't
1641 * include the -EINPROGRESS status for such sockets.
1644 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1646 struct socket
*sock
;
1647 struct sockaddr_storage address
;
1648 int err
, fput_needed
;
1650 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1653 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1658 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1662 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1663 sock
->file
->f_flags
);
1665 fput_light(sock
->file
, fput_needed
);
1670 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1673 return __sys_connect(fd
, uservaddr
, addrlen
);
1677 * Get the local address ('name') of a socket object. Move the obtained
1678 * name to user space.
1681 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1682 int __user
*usockaddr_len
)
1684 struct socket
*sock
;
1685 struct sockaddr_storage address
;
1686 int err
, fput_needed
;
1688 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1692 err
= security_socket_getsockname(sock
);
1696 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1699 /* "err" is actually length in this case */
1700 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1703 fput_light(sock
->file
, fput_needed
);
1708 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1709 int __user
*, usockaddr_len
)
1711 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1715 * Get the remote address ('name') of a socket object. Move the obtained
1716 * name to user space.
1719 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1720 int __user
*usockaddr_len
)
1722 struct socket
*sock
;
1723 struct sockaddr_storage address
;
1724 int err
, fput_needed
;
1726 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1728 err
= security_socket_getpeername(sock
);
1730 fput_light(sock
->file
, fput_needed
);
1734 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1736 /* "err" is actually length in this case */
1737 err
= move_addr_to_user(&address
, err
, usockaddr
,
1739 fput_light(sock
->file
, fput_needed
);
1744 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1745 int __user
*, usockaddr_len
)
1747 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1751 * Send a datagram to a given address. We move the address into kernel
1752 * space and check the user space data area is readable before invoking
1755 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1756 struct sockaddr __user
*addr
, int addr_len
)
1758 struct socket
*sock
;
1759 struct sockaddr_storage address
;
1765 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1768 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1772 msg
.msg_name
= NULL
;
1773 msg
.msg_control
= NULL
;
1774 msg
.msg_controllen
= 0;
1775 msg
.msg_namelen
= 0;
1777 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1780 msg
.msg_name
= (struct sockaddr
*)&address
;
1781 msg
.msg_namelen
= addr_len
;
1783 if (sock
->file
->f_flags
& O_NONBLOCK
)
1784 flags
|= MSG_DONTWAIT
;
1785 msg
.msg_flags
= flags
;
1786 err
= sock_sendmsg(sock
, &msg
);
1789 fput_light(sock
->file
, fput_needed
);
1794 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1795 unsigned int, flags
, struct sockaddr __user
*, addr
,
1798 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
1802 * Send a datagram down a socket.
1805 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1806 unsigned int, flags
)
1808 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1812 * Receive a frame from the socket and optionally record the address of the
1813 * sender. We verify the buffers are writable and if needed move the
1814 * sender address from kernel to user space.
1816 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
1817 struct sockaddr __user
*addr
, int __user
*addr_len
)
1819 struct socket
*sock
;
1822 struct sockaddr_storage address
;
1826 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1829 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1833 msg
.msg_control
= NULL
;
1834 msg
.msg_controllen
= 0;
1835 /* Save some cycles and don't copy the address if not needed */
1836 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1837 /* We assume all kernel code knows the size of sockaddr_storage */
1838 msg
.msg_namelen
= 0;
1839 msg
.msg_iocb
= NULL
;
1841 if (sock
->file
->f_flags
& O_NONBLOCK
)
1842 flags
|= MSG_DONTWAIT
;
1843 err
= sock_recvmsg(sock
, &msg
, flags
);
1845 if (err
>= 0 && addr
!= NULL
) {
1846 err2
= move_addr_to_user(&address
,
1847 msg
.msg_namelen
, addr
, addr_len
);
1852 fput_light(sock
->file
, fput_needed
);
1857 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1858 unsigned int, flags
, struct sockaddr __user
*, addr
,
1859 int __user
*, addr_len
)
1861 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
1865 * Receive a datagram from a socket.
1868 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1869 unsigned int, flags
)
1871 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1875 * Set a socket option. Because we don't know the option lengths we have
1876 * to pass the user mode parameter for the protocols to sort out.
1879 static int __sys_setsockopt(int fd
, int level
, int optname
,
1880 char __user
*optval
, int optlen
)
1882 int err
, fput_needed
;
1883 struct socket
*sock
;
1888 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1890 err
= security_socket_setsockopt(sock
, level
, optname
);
1894 if (level
== SOL_SOCKET
)
1896 sock_setsockopt(sock
, level
, optname
, optval
,
1900 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1903 fput_light(sock
->file
, fput_needed
);
1908 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1909 char __user
*, optval
, int, optlen
)
1911 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
1915 * Get a socket option. Because we don't know the option lengths we have
1916 * to pass a user mode parameter for the protocols to sort out.
1919 static int __sys_getsockopt(int fd
, int level
, int optname
,
1920 char __user
*optval
, int __user
*optlen
)
1922 int err
, fput_needed
;
1923 struct socket
*sock
;
1925 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1927 err
= security_socket_getsockopt(sock
, level
, optname
);
1931 if (level
== SOL_SOCKET
)
1933 sock_getsockopt(sock
, level
, optname
, optval
,
1937 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1940 fput_light(sock
->file
, fput_needed
);
1945 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1946 char __user
*, optval
, int __user
*, optlen
)
1948 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
1952 * Shutdown a socket.
1955 int __sys_shutdown(int fd
, int how
)
1957 int err
, fput_needed
;
1958 struct socket
*sock
;
1960 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1962 err
= security_socket_shutdown(sock
, how
);
1964 err
= sock
->ops
->shutdown(sock
, how
);
1965 fput_light(sock
->file
, fput_needed
);
1970 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1972 return __sys_shutdown(fd
, how
);
1975 /* A couple of helpful macros for getting the address of the 32/64 bit
1976 * fields which are the same type (int / unsigned) on our platforms.
1978 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1979 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1980 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1982 struct used_address
{
1983 struct sockaddr_storage name
;
1984 unsigned int name_len
;
1987 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1988 struct user_msghdr __user
*umsg
,
1989 struct sockaddr __user
**save_addr
,
1992 struct user_msghdr msg
;
1995 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
1998 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
1999 kmsg
->msg_controllen
= msg
.msg_controllen
;
2000 kmsg
->msg_flags
= msg
.msg_flags
;
2002 kmsg
->msg_namelen
= msg
.msg_namelen
;
2004 kmsg
->msg_namelen
= 0;
2006 if (kmsg
->msg_namelen
< 0)
2009 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2010 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2013 *save_addr
= msg
.msg_name
;
2015 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2017 err
= move_addr_to_kernel(msg
.msg_name
,
2024 kmsg
->msg_name
= NULL
;
2025 kmsg
->msg_namelen
= 0;
2028 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2031 kmsg
->msg_iocb
= NULL
;
2033 return import_iovec(save_addr
? READ
: WRITE
,
2034 msg
.msg_iov
, msg
.msg_iovlen
,
2035 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2038 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2039 struct msghdr
*msg_sys
, unsigned int flags
,
2040 struct used_address
*used_address
,
2041 unsigned int allowed_msghdr_flags
)
2043 struct compat_msghdr __user
*msg_compat
=
2044 (struct compat_msghdr __user
*)msg
;
2045 struct sockaddr_storage address
;
2046 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2047 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2048 __aligned(sizeof(__kernel_size_t
));
2049 /* 20 is size of ipv6_pktinfo */
2050 unsigned char *ctl_buf
= ctl
;
2054 msg_sys
->msg_name
= &address
;
2056 if (MSG_CMSG_COMPAT
& flags
)
2057 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
2059 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
2065 if (msg_sys
->msg_controllen
> INT_MAX
)
2067 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2068 ctl_len
= msg_sys
->msg_controllen
;
2069 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2071 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2075 ctl_buf
= msg_sys
->msg_control
;
2076 ctl_len
= msg_sys
->msg_controllen
;
2077 } else if (ctl_len
) {
2078 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2079 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2080 if (ctl_len
> sizeof(ctl
)) {
2081 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2082 if (ctl_buf
== NULL
)
2087 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2088 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2089 * checking falls down on this.
2091 if (copy_from_user(ctl_buf
,
2092 (void __user __force
*)msg_sys
->msg_control
,
2095 msg_sys
->msg_control
= ctl_buf
;
2097 msg_sys
->msg_flags
= flags
;
2099 if (sock
->file
->f_flags
& O_NONBLOCK
)
2100 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2102 * If this is sendmmsg() and current destination address is same as
2103 * previously succeeded address, omit asking LSM's decision.
2104 * used_address->name_len is initialized to UINT_MAX so that the first
2105 * destination address never matches.
2107 if (used_address
&& msg_sys
->msg_name
&&
2108 used_address
->name_len
== msg_sys
->msg_namelen
&&
2109 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2110 used_address
->name_len
)) {
2111 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2114 err
= sock_sendmsg(sock
, msg_sys
);
2116 * If this is sendmmsg() and sending to current destination address was
2117 * successful, remember it.
2119 if (used_address
&& err
>= 0) {
2120 used_address
->name_len
= msg_sys
->msg_namelen
;
2121 if (msg_sys
->msg_name
)
2122 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2123 used_address
->name_len
);
2128 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2135 * BSD sendmsg interface
2138 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2139 bool forbid_cmsg_compat
)
2141 int fput_needed
, err
;
2142 struct msghdr msg_sys
;
2143 struct socket
*sock
;
2145 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2148 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2152 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2154 fput_light(sock
->file
, fput_needed
);
2159 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2161 return __sys_sendmsg(fd
, msg
, flags
, true);
2165 * Linux sendmmsg interface
2168 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2169 unsigned int flags
, bool forbid_cmsg_compat
)
2171 int fput_needed
, err
, datagrams
;
2172 struct socket
*sock
;
2173 struct mmsghdr __user
*entry
;
2174 struct compat_mmsghdr __user
*compat_entry
;
2175 struct msghdr msg_sys
;
2176 struct used_address used_address
;
2177 unsigned int oflags
= flags
;
2179 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2182 if (vlen
> UIO_MAXIOV
)
2187 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2191 used_address
.name_len
= UINT_MAX
;
2193 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2197 while (datagrams
< vlen
) {
2198 if (datagrams
== vlen
- 1)
2201 if (MSG_CMSG_COMPAT
& flags
) {
2202 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2203 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2206 err
= __put_user(err
, &compat_entry
->msg_len
);
2209 err
= ___sys_sendmsg(sock
,
2210 (struct user_msghdr __user
*)entry
,
2211 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2214 err
= put_user(err
, &entry
->msg_len
);
2221 if (msg_data_left(&msg_sys
))
2226 fput_light(sock
->file
, fput_needed
);
2228 /* We only return an error if no datagrams were able to be sent */
2235 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2236 unsigned int, vlen
, unsigned int, flags
)
2238 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2241 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2242 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2244 struct compat_msghdr __user
*msg_compat
=
2245 (struct compat_msghdr __user
*)msg
;
2246 struct iovec iovstack
[UIO_FASTIOV
];
2247 struct iovec
*iov
= iovstack
;
2248 unsigned long cmsg_ptr
;
2252 /* kernel mode address */
2253 struct sockaddr_storage addr
;
2255 /* user mode address pointers */
2256 struct sockaddr __user
*uaddr
;
2257 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2259 msg_sys
->msg_name
= &addr
;
2261 if (MSG_CMSG_COMPAT
& flags
)
2262 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2264 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2268 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2269 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2271 /* We assume all kernel code knows the size of sockaddr_storage */
2272 msg_sys
->msg_namelen
= 0;
2274 if (sock
->file
->f_flags
& O_NONBLOCK
)
2275 flags
|= MSG_DONTWAIT
;
2276 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2281 if (uaddr
!= NULL
) {
2282 err
= move_addr_to_user(&addr
,
2283 msg_sys
->msg_namelen
, uaddr
,
2288 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2292 if (MSG_CMSG_COMPAT
& flags
)
2293 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2294 &msg_compat
->msg_controllen
);
2296 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2297 &msg
->msg_controllen
);
2308 * BSD recvmsg interface
2311 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2312 bool forbid_cmsg_compat
)
2314 int fput_needed
, err
;
2315 struct msghdr msg_sys
;
2316 struct socket
*sock
;
2318 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2321 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2325 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2327 fput_light(sock
->file
, fput_needed
);
2332 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2333 unsigned int, flags
)
2335 return __sys_recvmsg(fd
, msg
, flags
, true);
2339 * Linux recvmmsg interface
2342 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2343 unsigned int flags
, struct timespec64
*timeout
)
2345 int fput_needed
, err
, datagrams
;
2346 struct socket
*sock
;
2347 struct mmsghdr __user
*entry
;
2348 struct compat_mmsghdr __user
*compat_entry
;
2349 struct msghdr msg_sys
;
2350 struct timespec64 end_time
;
2351 struct timespec64 timeout64
;
2354 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2360 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2364 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2365 err
= sock_error(sock
->sk
);
2373 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2375 while (datagrams
< vlen
) {
2377 * No need to ask LSM for more than the first datagram.
2379 if (MSG_CMSG_COMPAT
& flags
) {
2380 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2381 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2385 err
= __put_user(err
, &compat_entry
->msg_len
);
2388 err
= ___sys_recvmsg(sock
,
2389 (struct user_msghdr __user
*)entry
,
2390 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2394 err
= put_user(err
, &entry
->msg_len
);
2402 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2403 if (flags
& MSG_WAITFORONE
)
2404 flags
|= MSG_DONTWAIT
;
2407 ktime_get_ts64(&timeout64
);
2408 *timeout
= timespec64_sub(end_time
, timeout64
);
2409 if (timeout
->tv_sec
< 0) {
2410 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2414 /* Timeout, return less than vlen datagrams */
2415 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2419 /* Out of band data, return right away */
2420 if (msg_sys
.msg_flags
& MSG_OOB
)
2428 if (datagrams
== 0) {
2434 * We may return less entries than requested (vlen) if the
2435 * sock is non block and there aren't enough datagrams...
2437 if (err
!= -EAGAIN
) {
2439 * ... or if recvmsg returns an error after we
2440 * received some datagrams, where we record the
2441 * error to return on the next call or if the
2442 * app asks about it using getsockopt(SO_ERROR).
2444 sock
->sk
->sk_err
= -err
;
2447 fput_light(sock
->file
, fput_needed
);
2452 static int do_sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2453 unsigned int vlen
, unsigned int flags
,
2454 struct __kernel_timespec __user
*timeout
)
2457 struct timespec64 timeout_sys
;
2459 if (flags
& MSG_CMSG_COMPAT
)
2463 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2465 if (get_timespec64(&timeout_sys
, timeout
))
2468 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2470 if (datagrams
> 0 && put_timespec64(&timeout_sys
, timeout
))
2471 datagrams
= -EFAULT
;
2476 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2477 unsigned int, vlen
, unsigned int, flags
,
2478 struct __kernel_timespec __user
*, timeout
)
2480 return do_sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
);
2483 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2484 /* Argument list sizes for sys_socketcall */
2485 #define AL(x) ((x) * sizeof(unsigned long))
2486 static const unsigned char nargs
[21] = {
2487 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2488 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2489 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2496 * System call vectors.
2498 * Argument checking cleaned up. Saved 20% in size.
2499 * This function doesn't need to set the kernel lock because
2500 * it is set by the callees.
2503 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2505 unsigned long a
[AUDITSC_ARGS
];
2506 unsigned long a0
, a1
;
2510 if (call
< 1 || call
> SYS_SENDMMSG
)
2512 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2515 if (len
> sizeof(a
))
2518 /* copy_from_user should be SMP safe. */
2519 if (copy_from_user(a
, args
, len
))
2522 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2531 err
= __sys_socket(a0
, a1
, a
[2]);
2534 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2537 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2540 err
= __sys_listen(a0
, a1
);
2543 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2544 (int __user
*)a
[2], 0);
2546 case SYS_GETSOCKNAME
:
2548 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2549 (int __user
*)a
[2]);
2551 case SYS_GETPEERNAME
:
2553 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2554 (int __user
*)a
[2]);
2556 case SYS_SOCKETPAIR
:
2557 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2560 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2564 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2565 (struct sockaddr __user
*)a
[4], a
[5]);
2568 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2572 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2573 (struct sockaddr __user
*)a
[4],
2574 (int __user
*)a
[5]);
2577 err
= __sys_shutdown(a0
, a1
);
2579 case SYS_SETSOCKOPT
:
2580 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2583 case SYS_GETSOCKOPT
:
2585 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2586 (int __user
*)a
[4]);
2589 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2593 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2597 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2601 err
= do_sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2602 a
[3], (struct __kernel_timespec __user
*)a
[4]);
2605 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2606 (int __user
*)a
[2], a
[3]);
2615 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2618 * sock_register - add a socket protocol handler
2619 * @ops: description of protocol
2621 * This function is called by a protocol handler that wants to
2622 * advertise its address family, and have it linked into the
2623 * socket interface. The value ops->family corresponds to the
2624 * socket system call protocol family.
2626 int sock_register(const struct net_proto_family
*ops
)
2630 if (ops
->family
>= NPROTO
) {
2631 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2635 spin_lock(&net_family_lock
);
2636 if (rcu_dereference_protected(net_families
[ops
->family
],
2637 lockdep_is_held(&net_family_lock
)))
2640 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2643 spin_unlock(&net_family_lock
);
2645 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2648 EXPORT_SYMBOL(sock_register
);
2651 * sock_unregister - remove a protocol handler
2652 * @family: protocol family to remove
2654 * This function is called by a protocol handler that wants to
2655 * remove its address family, and have it unlinked from the
2656 * new socket creation.
2658 * If protocol handler is a module, then it can use module reference
2659 * counts to protect against new references. If protocol handler is not
2660 * a module then it needs to provide its own protection in
2661 * the ops->create routine.
2663 void sock_unregister(int family
)
2665 BUG_ON(family
< 0 || family
>= NPROTO
);
2667 spin_lock(&net_family_lock
);
2668 RCU_INIT_POINTER(net_families
[family
], NULL
);
2669 spin_unlock(&net_family_lock
);
2673 pr_info("NET: Unregistered protocol family %d\n", family
);
2675 EXPORT_SYMBOL(sock_unregister
);
2677 bool sock_is_registered(int family
)
2679 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
2682 static int __init
sock_init(void)
2686 * Initialize the network sysctl infrastructure.
2688 err
= net_sysctl_init();
2693 * Initialize skbuff SLAB cache
2698 * Initialize the protocols module.
2703 err
= register_filesystem(&sock_fs_type
);
2706 sock_mnt
= kern_mount(&sock_fs_type
);
2707 if (IS_ERR(sock_mnt
)) {
2708 err
= PTR_ERR(sock_mnt
);
2712 /* The real protocol initialization is performed in later initcalls.
2715 #ifdef CONFIG_NETFILTER
2716 err
= netfilter_init();
2721 ptp_classifier_init();
2727 unregister_filesystem(&sock_fs_type
);
2732 core_initcall(sock_init
); /* early initcall */
2734 #ifdef CONFIG_PROC_FS
2735 void socket_seq_show(struct seq_file
*seq
)
2737 seq_printf(seq
, "sockets: used %d\n",
2738 sock_inuse_get(seq
->private));
2740 #endif /* CONFIG_PROC_FS */
2742 #ifdef CONFIG_COMPAT
2743 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2744 unsigned int cmd
, void __user
*up
)
2746 mm_segment_t old_fs
= get_fs();
2751 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2754 err
= compat_put_timeval(&ktv
, up
);
2759 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2760 unsigned int cmd
, void __user
*up
)
2762 mm_segment_t old_fs
= get_fs();
2763 struct timespec kts
;
2767 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2770 err
= compat_put_timespec(&kts
, up
);
2775 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2777 struct compat_ifconf ifc32
;
2781 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2784 ifc
.ifc_len
= ifc32
.ifc_len
;
2785 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
2788 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
2793 ifc32
.ifc_len
= ifc
.ifc_len
;
2794 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2800 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2802 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2803 bool convert_in
= false, convert_out
= false;
2804 size_t buf_size
= 0;
2805 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
2807 u32 rule_cnt
= 0, actual_rule_cnt
;
2812 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2815 compat_rxnfc
= compat_ptr(data
);
2817 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2820 /* Most ethtool structures are defined without padding.
2821 * Unfortunately struct ethtool_rxnfc is an exception.
2826 case ETHTOOL_GRXCLSRLALL
:
2827 /* Buffer size is variable */
2828 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2830 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2832 buf_size
+= rule_cnt
* sizeof(u32
);
2834 case ETHTOOL_GRXRINGS
:
2835 case ETHTOOL_GRXCLSRLCNT
:
2836 case ETHTOOL_GRXCLSRULE
:
2837 case ETHTOOL_SRXCLSRLINS
:
2840 case ETHTOOL_SRXCLSRLDEL
:
2841 buf_size
+= sizeof(struct ethtool_rxnfc
);
2843 rxnfc
= compat_alloc_user_space(buf_size
);
2847 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2850 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
2853 /* We expect there to be holes between fs.m_ext and
2854 * fs.ring_cookie and at the end of fs, but nowhere else.
2856 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2857 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2858 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2859 sizeof(rxnfc
->fs
.m_ext
));
2861 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2862 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2863 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2864 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2866 if (copy_in_user(rxnfc
, compat_rxnfc
,
2867 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2868 (void __user
*)rxnfc
) ||
2869 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2870 &compat_rxnfc
->fs
.ring_cookie
,
2871 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2872 (void __user
*)&rxnfc
->fs
.ring_cookie
))
2874 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2875 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
2877 } else if (copy_in_user(&rxnfc
->rule_cnt
,
2878 &compat_rxnfc
->rule_cnt
,
2879 sizeof(rxnfc
->rule_cnt
)))
2883 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
2888 if (copy_in_user(compat_rxnfc
, rxnfc
,
2889 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2890 (const void __user
*)rxnfc
) ||
2891 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2892 &rxnfc
->fs
.ring_cookie
,
2893 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2894 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2895 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2896 sizeof(rxnfc
->rule_cnt
)))
2899 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2900 /* As an optimisation, we only copy the actual
2901 * number of rules that the underlying
2902 * function returned. Since Mallory might
2903 * change the rule count in user memory, we
2904 * check that it is less than the rule count
2905 * originally given (as the user buffer size),
2906 * which has been range-checked.
2908 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2910 if (actual_rule_cnt
< rule_cnt
)
2911 rule_cnt
= actual_rule_cnt
;
2912 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2913 &rxnfc
->rule_locs
[0],
2914 rule_cnt
* sizeof(u32
)))
2922 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2924 compat_uptr_t uptr32
;
2929 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
2932 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2935 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
2936 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
2938 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
2940 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
2941 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
2947 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2948 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2949 struct compat_ifreq __user
*u_ifreq32
)
2954 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
2956 if (get_user(data32
, &u_ifreq32
->ifr_data
))
2958 ifreq
.ifr_data
= compat_ptr(data32
);
2960 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
2963 static int compat_ifreq_ioctl(struct net
*net
, struct socket
*sock
,
2965 struct compat_ifreq __user
*uifr32
)
2967 struct ifreq __user
*uifr
;
2970 /* Handle the fact that while struct ifreq has the same *layout* on
2971 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
2972 * which are handled elsewhere, it still has different *size* due to
2973 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
2974 * resulting in struct ifreq being 32 and 40 bytes respectively).
2975 * As a result, if the struct happens to be at the end of a page and
2976 * the next page isn't readable/writable, we get a fault. To prevent
2977 * that, copy back and forth to the full size.
2980 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2981 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2984 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2995 case SIOCGIFBRDADDR
:
2996 case SIOCGIFDSTADDR
:
2997 case SIOCGIFNETMASK
:
3003 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3011 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3012 struct compat_ifreq __user
*uifr32
)
3015 struct compat_ifmap __user
*uifmap32
;
3018 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3019 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3020 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3021 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3022 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3023 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3024 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3025 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3029 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
3031 if (cmd
== SIOCGIFMAP
&& !err
) {
3032 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3033 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3034 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3035 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3036 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3037 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3038 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3047 struct sockaddr rt_dst
; /* target address */
3048 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3049 struct sockaddr rt_genmask
; /* target network mask (IP) */
3050 unsigned short rt_flags
;
3053 unsigned char rt_tos
;
3054 unsigned char rt_class
;
3056 short rt_metric
; /* +1 for binary compatibility! */
3057 /* char * */ u32 rt_dev
; /* forcing the device at add */
3058 u32 rt_mtu
; /* per route MTU/Window */
3059 u32 rt_window
; /* Window clamping */
3060 unsigned short rt_irtt
; /* Initial RTT */
3063 struct in6_rtmsg32
{
3064 struct in6_addr rtmsg_dst
;
3065 struct in6_addr rtmsg_src
;
3066 struct in6_addr rtmsg_gateway
;
3076 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3077 unsigned int cmd
, void __user
*argp
)
3081 struct in6_rtmsg r6
;
3085 mm_segment_t old_fs
= get_fs();
3087 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3088 struct in6_rtmsg32 __user
*ur6
= argp
;
3089 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3090 3 * sizeof(struct in6_addr
));
3091 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3092 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3093 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3094 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3095 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3096 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3097 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3101 struct rtentry32 __user
*ur4
= argp
;
3102 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3103 3 * sizeof(struct sockaddr
));
3104 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3105 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3106 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3107 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3108 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3109 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3111 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3112 r4
.rt_dev
= (char __user __force
*)devname
;
3126 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3133 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3134 * for some operations; this forces use of the newer bridge-utils that
3135 * use compatible ioctls
3137 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3141 if (get_user(tmp
, argp
))
3143 if (tmp
== BRCTL_GET_VERSION
)
3144 return BRCTL_VERSION
+ 1;
3148 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3149 unsigned int cmd
, unsigned long arg
)
3151 void __user
*argp
= compat_ptr(arg
);
3152 struct sock
*sk
= sock
->sk
;
3153 struct net
*net
= sock_net(sk
);
3155 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3156 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3161 return old_bridge_ioctl(argp
);
3163 return compat_dev_ifconf(net
, argp
);
3165 return ethtool_ioctl(net
, argp
);
3167 return compat_siocwandev(net
, argp
);
3170 return compat_sioc_ifmap(net
, cmd
, argp
);
3173 return routing_ioctl(net
, sock
, cmd
, argp
);
3175 return do_siocgstamp(net
, sock
, cmd
, argp
);
3177 return do_siocgstampns(net
, sock
, cmd
, argp
);
3178 case SIOCBONDSLAVEINFOQUERY
:
3179 case SIOCBONDINFOQUERY
:
3182 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3195 return sock_ioctl(file
, cmd
, arg
);
3212 case SIOCSIFHWBROADCAST
:
3214 case SIOCGIFBRDADDR
:
3215 case SIOCSIFBRDADDR
:
3216 case SIOCGIFDSTADDR
:
3217 case SIOCSIFDSTADDR
:
3218 case SIOCGIFNETMASK
:
3219 case SIOCSIFNETMASK
:
3231 case SIOCBONDENSLAVE
:
3232 case SIOCBONDRELEASE
:
3233 case SIOCBONDSETHWADDR
:
3234 case SIOCBONDCHANGEACTIVE
:
3235 return compat_ifreq_ioctl(net
, sock
, cmd
, argp
);
3241 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3244 return -ENOIOCTLCMD
;
3247 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3250 struct socket
*sock
= file
->private_data
;
3251 int ret
= -ENOIOCTLCMD
;
3258 if (sock
->ops
->compat_ioctl
)
3259 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3261 if (ret
== -ENOIOCTLCMD
&&
3262 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3263 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3265 if (ret
== -ENOIOCTLCMD
)
3266 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3272 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3274 return sock
->ops
->bind(sock
, addr
, addrlen
);
3276 EXPORT_SYMBOL(kernel_bind
);
3278 int kernel_listen(struct socket
*sock
, int backlog
)
3280 return sock
->ops
->listen(sock
, backlog
);
3282 EXPORT_SYMBOL(kernel_listen
);
3284 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3286 struct sock
*sk
= sock
->sk
;
3289 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3294 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3296 sock_release(*newsock
);
3301 (*newsock
)->ops
= sock
->ops
;
3302 __module_get((*newsock
)->ops
->owner
);
3307 EXPORT_SYMBOL(kernel_accept
);
3309 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3312 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3314 EXPORT_SYMBOL(kernel_connect
);
3316 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3318 return sock
->ops
->getname(sock
, addr
, 0);
3320 EXPORT_SYMBOL(kernel_getsockname
);
3322 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3324 return sock
->ops
->getname(sock
, addr
, 1);
3326 EXPORT_SYMBOL(kernel_getpeername
);
3328 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3329 char *optval
, int *optlen
)
3331 mm_segment_t oldfs
= get_fs();
3332 char __user
*uoptval
;
3333 int __user
*uoptlen
;
3336 uoptval
= (char __user __force
*) optval
;
3337 uoptlen
= (int __user __force
*) optlen
;
3340 if (level
== SOL_SOCKET
)
3341 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3343 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3348 EXPORT_SYMBOL(kernel_getsockopt
);
3350 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3351 char *optval
, unsigned int optlen
)
3353 mm_segment_t oldfs
= get_fs();
3354 char __user
*uoptval
;
3357 uoptval
= (char __user __force
*) optval
;
3360 if (level
== SOL_SOCKET
)
3361 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3363 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3368 EXPORT_SYMBOL(kernel_setsockopt
);
3370 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3371 size_t size
, int flags
)
3373 if (sock
->ops
->sendpage
)
3374 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3376 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3378 EXPORT_SYMBOL(kernel_sendpage
);
3380 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3381 size_t size
, int flags
)
3383 struct socket
*sock
= sk
->sk_socket
;
3385 if (sock
->ops
->sendpage_locked
)
3386 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3389 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3391 EXPORT_SYMBOL(kernel_sendpage_locked
);
3393 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3395 return sock
->ops
->shutdown(sock
, how
);
3397 EXPORT_SYMBOL(kernel_sock_shutdown
);
3399 /* This routine returns the IP overhead imposed by a socket i.e.
3400 * the length of the underlying IP header, depending on whether
3401 * this is an IPv4 or IPv6 socket and the length from IP options turned
3402 * on at the socket. Assumes that the caller has a lock on the socket.
3404 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3406 struct inet_sock
*inet
;
3407 struct ip_options_rcu
*opt
;
3409 #if IS_ENABLED(CONFIG_IPV6)
3410 struct ipv6_pinfo
*np
;
3411 struct ipv6_txoptions
*optv6
= NULL
;
3412 #endif /* IS_ENABLED(CONFIG_IPV6) */
3417 switch (sk
->sk_family
) {
3420 overhead
+= sizeof(struct iphdr
);
3421 opt
= rcu_dereference_protected(inet
->inet_opt
,
3422 sock_owned_by_user(sk
));
3424 overhead
+= opt
->opt
.optlen
;
3426 #if IS_ENABLED(CONFIG_IPV6)
3429 overhead
+= sizeof(struct ipv6hdr
);
3431 optv6
= rcu_dereference_protected(np
->opt
,
3432 sock_owned_by_user(sk
));
3434 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3436 #endif /* IS_ENABLED(CONFIG_IPV6) */
3437 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3441 EXPORT_SYMBOL(kernel_sock_ip_overhead
);