2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
34 #include "trace_gfs2.h"
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
65 static const char valid_change
[16] = {
73 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
74 const struct gfs2_inode
*ip
, bool nowrap
,
75 const struct gfs2_alloc_parms
*ap
);
79 * gfs2_setbit - Set a bit in the bitmaps
80 * @rbm: The position of the bit to set
81 * @do_clone: Also set the clone bitmap, if it exists
82 * @new_state: the new state of the block
86 static inline void gfs2_setbit(const struct gfs2_rbm
*rbm
, bool do_clone
,
87 unsigned char new_state
)
89 unsigned char *byte1
, *byte2
, *end
, cur_state
;
90 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
91 unsigned int buflen
= bi
->bi_len
;
92 const unsigned int bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
94 byte1
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
95 end
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ buflen
;
99 cur_state
= (*byte1
>> bit
) & GFS2_BIT_MASK
;
101 if (unlikely(!valid_change
[new_state
* 4 + cur_state
])) {
102 printk(KERN_WARNING
"GFS2: buf_blk = 0x%x old_state=%d, "
103 "new_state=%d\n", rbm
->offset
, cur_state
, new_state
);
104 printk(KERN_WARNING
"GFS2: rgrp=0x%llx bi_start=0x%x\n",
105 (unsigned long long)rbm
->rgd
->rd_addr
, bi
->bi_start
);
106 printk(KERN_WARNING
"GFS2: bi_offset=0x%x bi_len=0x%x\n",
107 bi
->bi_offset
, bi
->bi_len
);
109 gfs2_consist_rgrpd(rbm
->rgd
);
112 *byte1
^= (cur_state
^ new_state
) << bit
;
114 if (do_clone
&& bi
->bi_clone
) {
115 byte2
= bi
->bi_clone
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
116 cur_state
= (*byte2
>> bit
) & GFS2_BIT_MASK
;
117 *byte2
^= (cur_state
^ new_state
) << bit
;
122 * gfs2_testbit - test a bit in the bitmaps
123 * @rbm: The bit to test
125 * Returns: The two bit block state of the requested bit
128 static inline u8
gfs2_testbit(const struct gfs2_rbm
*rbm
)
130 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
131 const u8
*buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
135 byte
= buffer
+ (rbm
->offset
/ GFS2_NBBY
);
136 bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
138 return (*byte
>> bit
) & GFS2_BIT_MASK
;
143 * @ptr: Pointer to bitmap data
144 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
145 * @state: The state we are searching for
147 * We xor the bitmap data with a patter which is the bitwise opposite
148 * of what we are looking for, this gives rise to a pattern of ones
149 * wherever there is a match. Since we have two bits per entry, we
150 * take this pattern, shift it down by one place and then and it with
151 * the original. All the even bit positions (0,2,4, etc) then represent
152 * successful matches, so we mask with 0x55555..... to remove the unwanted
155 * This allows searching of a whole u64 at once (32 blocks) with a
156 * single test (on 64 bit arches).
159 static inline u64
gfs2_bit_search(const __le64
*ptr
, u64 mask
, u8 state
)
162 static const u64 search
[] = {
163 [0] = 0xffffffffffffffffULL
,
164 [1] = 0xaaaaaaaaaaaaaaaaULL
,
165 [2] = 0x5555555555555555ULL
,
166 [3] = 0x0000000000000000ULL
,
168 tmp
= le64_to_cpu(*ptr
) ^ search
[state
];
175 * rs_cmp - multi-block reservation range compare
176 * @blk: absolute file system block number of the new reservation
177 * @len: number of blocks in the new reservation
178 * @rs: existing reservation to compare against
180 * returns: 1 if the block range is beyond the reach of the reservation
181 * -1 if the block range is before the start of the reservation
182 * 0 if the block range overlaps with the reservation
184 static inline int rs_cmp(u64 blk
, u32 len
, struct gfs2_blkreserv
*rs
)
186 u64 startblk
= gfs2_rbm_to_block(&rs
->rs_rbm
);
188 if (blk
>= startblk
+ rs
->rs_free
)
190 if (blk
+ len
- 1 < startblk
)
196 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
197 * a block in a given allocation state.
198 * @buf: the buffer that holds the bitmaps
199 * @len: the length (in bytes) of the buffer
200 * @goal: start search at this block's bit-pair (within @buffer)
201 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
203 * Scope of @goal and returned block number is only within this bitmap buffer,
204 * not entire rgrp or filesystem. @buffer will be offset from the actual
205 * beginning of a bitmap block buffer, skipping any header structures, but
206 * headers are always a multiple of 64 bits long so that the buffer is
207 * always aligned to a 64 bit boundary.
209 * The size of the buffer is in bytes, but is it assumed that it is
210 * always ok to read a complete multiple of 64 bits at the end
211 * of the block in case the end is no aligned to a natural boundary.
213 * Return: the block number (bitmap buffer scope) that was found
216 static u32
gfs2_bitfit(const u8
*buf
, const unsigned int len
,
219 u32 spoint
= (goal
<< 1) & ((8*sizeof(u64
)) - 1);
220 const __le64
*ptr
= ((__le64
*)buf
) + (goal
>> 5);
221 const __le64
*end
= (__le64
*)(buf
+ ALIGN(len
, sizeof(u64
)));
223 u64 mask
= 0x5555555555555555ULL
;
226 /* Mask off bits we don't care about at the start of the search */
228 tmp
= gfs2_bit_search(ptr
, mask
, state
);
230 while(tmp
== 0 && ptr
< end
) {
231 tmp
= gfs2_bit_search(ptr
, 0x5555555555555555ULL
, state
);
234 /* Mask off any bits which are more than len bytes from the start */
235 if (ptr
== end
&& (len
& (sizeof(u64
) - 1)))
236 tmp
&= (((u64
)~0) >> (64 - 8*(len
& (sizeof(u64
) - 1))));
237 /* Didn't find anything, so return */
242 bit
/= 2; /* two bits per entry in the bitmap */
243 return (((const unsigned char *)ptr
- buf
) * GFS2_NBBY
) + bit
;
247 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
248 * @rbm: The rbm with rgd already set correctly
249 * @block: The block number (filesystem relative)
251 * This sets the bi and offset members of an rbm based on a
252 * resource group and a filesystem relative block number. The
253 * resource group must be set in the rbm on entry, the bi and
254 * offset members will be set by this function.
256 * Returns: 0 on success, or an error code
259 static int gfs2_rbm_from_block(struct gfs2_rbm
*rbm
, u64 block
)
261 u64 rblock
= block
- rbm
->rgd
->rd_data0
;
263 if (WARN_ON_ONCE(rblock
> UINT_MAX
))
265 if (block
>= rbm
->rgd
->rd_data0
+ rbm
->rgd
->rd_data
)
269 rbm
->offset
= (u32
)(rblock
);
270 /* Check if the block is within the first block */
271 if (rbm
->offset
< rbm_bi(rbm
)->bi_blocks
)
274 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
275 rbm
->offset
+= (sizeof(struct gfs2_rgrp
) -
276 sizeof(struct gfs2_meta_header
)) * GFS2_NBBY
;
277 rbm
->bii
= rbm
->offset
/ rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
278 rbm
->offset
-= rbm
->bii
* rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
283 * gfs2_rbm_incr - increment an rbm structure
284 * @rbm: The rbm with rgd already set correctly
286 * This function takes an existing rbm structure and increments it to the next
287 * viable block offset.
289 * Returns: If incrementing the offset would cause the rbm to go past the
290 * end of the rgrp, true is returned, otherwise false.
294 static bool gfs2_rbm_incr(struct gfs2_rbm
*rbm
)
296 if (rbm
->offset
+ 1 < rbm_bi(rbm
)->bi_blocks
) { /* in the same bitmap */
300 if (rbm
->bii
== rbm
->rgd
->rd_length
- 1) /* at the last bitmap */
309 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
310 * @rbm: Position to search (value/result)
311 * @n_unaligned: Number of unaligned blocks to check
312 * @len: Decremented for each block found (terminate on zero)
314 * Returns: true if a non-free block is encountered
317 static bool gfs2_unaligned_extlen(struct gfs2_rbm
*rbm
, u32 n_unaligned
, u32
*len
)
322 for (n
= 0; n
< n_unaligned
; n
++) {
323 res
= gfs2_testbit(rbm
);
324 if (res
!= GFS2_BLKST_FREE
)
329 if (gfs2_rbm_incr(rbm
))
337 * gfs2_free_extlen - Return extent length of free blocks
338 * @rbm: Starting position
339 * @len: Max length to check
341 * Starting at the block specified by the rbm, see how many free blocks
342 * there are, not reading more than len blocks ahead. This can be done
343 * using memchr_inv when the blocks are byte aligned, but has to be done
344 * on a block by block basis in case of unaligned blocks. Also this
345 * function can cope with bitmap boundaries (although it must stop on
346 * a resource group boundary)
348 * Returns: Number of free blocks in the extent
351 static u32
gfs2_free_extlen(const struct gfs2_rbm
*rrbm
, u32 len
)
353 struct gfs2_rbm rbm
= *rrbm
;
354 u32 n_unaligned
= rbm
.offset
& 3;
358 u8
*ptr
, *start
, *end
;
360 struct gfs2_bitmap
*bi
;
363 gfs2_unaligned_extlen(&rbm
, 4 - n_unaligned
, &len
))
366 n_unaligned
= len
& 3;
367 /* Start is now byte aligned */
370 start
= bi
->bi_bh
->b_data
;
372 start
= bi
->bi_clone
;
373 end
= start
+ bi
->bi_bh
->b_size
;
374 start
+= bi
->bi_offset
;
375 BUG_ON(rbm
.offset
& 3);
376 start
+= (rbm
.offset
/ GFS2_NBBY
);
377 bytes
= min_t(u32
, len
/ GFS2_NBBY
, (end
- start
));
378 ptr
= memchr_inv(start
, 0, bytes
);
379 chunk_size
= ((ptr
== NULL
) ? bytes
: (ptr
- start
));
380 chunk_size
*= GFS2_NBBY
;
381 BUG_ON(len
< chunk_size
);
383 block
= gfs2_rbm_to_block(&rbm
);
384 if (gfs2_rbm_from_block(&rbm
, block
+ chunk_size
)) {
392 n_unaligned
= len
& 3;
395 /* Deal with any bits left over at the end */
397 gfs2_unaligned_extlen(&rbm
, n_unaligned
, &len
);
403 * gfs2_bitcount - count the number of bits in a certain state
404 * @rgd: the resource group descriptor
405 * @buffer: the buffer that holds the bitmaps
406 * @buflen: the length (in bytes) of the buffer
407 * @state: the state of the block we're looking for
409 * Returns: The number of bits
412 static u32
gfs2_bitcount(struct gfs2_rgrpd
*rgd
, const u8
*buffer
,
413 unsigned int buflen
, u8 state
)
415 const u8
*byte
= buffer
;
416 const u8
*end
= buffer
+ buflen
;
417 const u8 state1
= state
<< 2;
418 const u8 state2
= state
<< 4;
419 const u8 state3
= state
<< 6;
422 for (; byte
< end
; byte
++) {
423 if (((*byte
) & 0x03) == state
)
425 if (((*byte
) & 0x0C) == state1
)
427 if (((*byte
) & 0x30) == state2
)
429 if (((*byte
) & 0xC0) == state3
)
437 * gfs2_rgrp_verify - Verify that a resource group is consistent
442 void gfs2_rgrp_verify(struct gfs2_rgrpd
*rgd
)
444 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
445 struct gfs2_bitmap
*bi
= NULL
;
446 u32 length
= rgd
->rd_length
;
450 memset(count
, 0, 4 * sizeof(u32
));
452 /* Count # blocks in each of 4 possible allocation states */
453 for (buf
= 0; buf
< length
; buf
++) {
454 bi
= rgd
->rd_bits
+ buf
;
455 for (x
= 0; x
< 4; x
++)
456 count
[x
] += gfs2_bitcount(rgd
,
462 if (count
[0] != rgd
->rd_free
) {
463 if (gfs2_consist_rgrpd(rgd
))
464 fs_err(sdp
, "free data mismatch: %u != %u\n",
465 count
[0], rgd
->rd_free
);
469 tmp
= rgd
->rd_data
- rgd
->rd_free
- rgd
->rd_dinodes
;
470 if (count
[1] != tmp
) {
471 if (gfs2_consist_rgrpd(rgd
))
472 fs_err(sdp
, "used data mismatch: %u != %u\n",
477 if (count
[2] + count
[3] != rgd
->rd_dinodes
) {
478 if (gfs2_consist_rgrpd(rgd
))
479 fs_err(sdp
, "used metadata mismatch: %u != %u\n",
480 count
[2] + count
[3], rgd
->rd_dinodes
);
485 static inline int rgrp_contains_block(struct gfs2_rgrpd
*rgd
, u64 block
)
487 u64 first
= rgd
->rd_data0
;
488 u64 last
= first
+ rgd
->rd_data
;
489 return first
<= block
&& block
< last
;
493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
494 * @sdp: The GFS2 superblock
495 * @blk: The data block number
496 * @exact: True if this needs to be an exact match
498 * Returns: The resource group, or NULL if not found
501 struct gfs2_rgrpd
*gfs2_blk2rgrpd(struct gfs2_sbd
*sdp
, u64 blk
, bool exact
)
503 struct rb_node
*n
, *next
;
504 struct gfs2_rgrpd
*cur
;
506 spin_lock(&sdp
->sd_rindex_spin
);
507 n
= sdp
->sd_rindex_tree
.rb_node
;
509 cur
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
511 if (blk
< cur
->rd_addr
)
513 else if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
516 spin_unlock(&sdp
->sd_rindex_spin
);
518 if (blk
< cur
->rd_addr
)
520 if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
527 spin_unlock(&sdp
->sd_rindex_spin
);
533 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
534 * @sdp: The GFS2 superblock
536 * Returns: The first rgrp in the filesystem
539 struct gfs2_rgrpd
*gfs2_rgrpd_get_first(struct gfs2_sbd
*sdp
)
541 const struct rb_node
*n
;
542 struct gfs2_rgrpd
*rgd
;
544 spin_lock(&sdp
->sd_rindex_spin
);
545 n
= rb_first(&sdp
->sd_rindex_tree
);
546 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
547 spin_unlock(&sdp
->sd_rindex_spin
);
553 * gfs2_rgrpd_get_next - get the next RG
554 * @rgd: the resource group descriptor
556 * Returns: The next rgrp
559 struct gfs2_rgrpd
*gfs2_rgrpd_get_next(struct gfs2_rgrpd
*rgd
)
561 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
562 const struct rb_node
*n
;
564 spin_lock(&sdp
->sd_rindex_spin
);
565 n
= rb_next(&rgd
->rd_node
);
567 n
= rb_first(&sdp
->sd_rindex_tree
);
569 if (unlikely(&rgd
->rd_node
== n
)) {
570 spin_unlock(&sdp
->sd_rindex_spin
);
573 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
574 spin_unlock(&sdp
->sd_rindex_spin
);
578 void gfs2_free_clones(struct gfs2_rgrpd
*rgd
)
582 for (x
= 0; x
< rgd
->rd_length
; x
++) {
583 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
590 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
591 * @ip: the inode for this reservation
593 int gfs2_rs_alloc(struct gfs2_inode
*ip
)
597 down_write(&ip
->i_rw_mutex
);
601 ip
->i_res
= kmem_cache_zalloc(gfs2_rsrv_cachep
, GFP_NOFS
);
607 RB_CLEAR_NODE(&ip
->i_res
->rs_node
);
609 up_write(&ip
->i_rw_mutex
);
613 static void dump_rs(struct seq_file
*seq
, const struct gfs2_blkreserv
*rs
)
615 gfs2_print_dbg(seq
, " B: n:%llu s:%llu b:%u f:%u\n",
616 (unsigned long long)rs
->rs_inum
,
617 (unsigned long long)gfs2_rbm_to_block(&rs
->rs_rbm
),
618 rs
->rs_rbm
.offset
, rs
->rs_free
);
622 * __rs_deltree - remove a multi-block reservation from the rgd tree
623 * @rs: The reservation to remove
626 static void __rs_deltree(struct gfs2_blkreserv
*rs
)
628 struct gfs2_rgrpd
*rgd
;
630 if (!gfs2_rs_active(rs
))
633 rgd
= rs
->rs_rbm
.rgd
;
634 trace_gfs2_rs(rs
, TRACE_RS_TREEDEL
);
635 rb_erase(&rs
->rs_node
, &rgd
->rd_rstree
);
636 RB_CLEAR_NODE(&rs
->rs_node
);
639 struct gfs2_bitmap
*bi
= rbm_bi(&rs
->rs_rbm
);
641 /* return reserved blocks to the rgrp */
642 BUG_ON(rs
->rs_rbm
.rgd
->rd_reserved
< rs
->rs_free
);
643 rs
->rs_rbm
.rgd
->rd_reserved
-= rs
->rs_free
;
644 /* The rgrp extent failure point is likely not to increase;
645 it will only do so if the freed blocks are somehow
646 contiguous with a span of free blocks that follows. Still,
647 it will force the number to be recalculated later. */
648 rgd
->rd_extfail_pt
+= rs
->rs_free
;
650 clear_bit(GBF_FULL
, &bi
->bi_flags
);
655 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
656 * @rs: The reservation to remove
659 void gfs2_rs_deltree(struct gfs2_blkreserv
*rs
)
661 struct gfs2_rgrpd
*rgd
;
663 rgd
= rs
->rs_rbm
.rgd
;
665 spin_lock(&rgd
->rd_rsspin
);
667 spin_unlock(&rgd
->rd_rsspin
);
672 * gfs2_rs_delete - delete a multi-block reservation
673 * @ip: The inode for this reservation
674 * @wcount: The inode's write count, or NULL
677 void gfs2_rs_delete(struct gfs2_inode
*ip
, atomic_t
*wcount
)
679 down_write(&ip
->i_rw_mutex
);
680 if (ip
->i_res
&& ((wcount
== NULL
) || (atomic_read(wcount
) <= 1))) {
681 gfs2_rs_deltree(ip
->i_res
);
682 BUG_ON(ip
->i_res
->rs_free
);
683 kmem_cache_free(gfs2_rsrv_cachep
, ip
->i_res
);
686 up_write(&ip
->i_rw_mutex
);
690 * return_all_reservations - return all reserved blocks back to the rgrp.
691 * @rgd: the rgrp that needs its space back
693 * We previously reserved a bunch of blocks for allocation. Now we need to
694 * give them back. This leave the reservation structures in tact, but removes
695 * all of their corresponding "no-fly zones".
697 static void return_all_reservations(struct gfs2_rgrpd
*rgd
)
700 struct gfs2_blkreserv
*rs
;
702 spin_lock(&rgd
->rd_rsspin
);
703 while ((n
= rb_first(&rgd
->rd_rstree
))) {
704 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
707 spin_unlock(&rgd
->rd_rsspin
);
710 void gfs2_clear_rgrpd(struct gfs2_sbd
*sdp
)
713 struct gfs2_rgrpd
*rgd
;
714 struct gfs2_glock
*gl
;
716 while ((n
= rb_first(&sdp
->sd_rindex_tree
))) {
717 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
720 rb_erase(n
, &sdp
->sd_rindex_tree
);
723 spin_lock(&gl
->gl_spin
);
724 gl
->gl_object
= NULL
;
725 spin_unlock(&gl
->gl_spin
);
726 gfs2_glock_add_to_lru(gl
);
730 gfs2_free_clones(rgd
);
732 return_all_reservations(rgd
);
733 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
737 static void gfs2_rindex_print(const struct gfs2_rgrpd
*rgd
)
739 printk(KERN_INFO
" ri_addr = %llu\n", (unsigned long long)rgd
->rd_addr
);
740 printk(KERN_INFO
" ri_length = %u\n", rgd
->rd_length
);
741 printk(KERN_INFO
" ri_data0 = %llu\n", (unsigned long long)rgd
->rd_data0
);
742 printk(KERN_INFO
" ri_data = %u\n", rgd
->rd_data
);
743 printk(KERN_INFO
" ri_bitbytes = %u\n", rgd
->rd_bitbytes
);
747 * gfs2_compute_bitstructs - Compute the bitmap sizes
748 * @rgd: The resource group descriptor
750 * Calculates bitmap descriptors, one for each block that contains bitmap data
755 static int compute_bitstructs(struct gfs2_rgrpd
*rgd
)
757 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
758 struct gfs2_bitmap
*bi
;
759 u32 length
= rgd
->rd_length
; /* # blocks in hdr & bitmap */
760 u32 bytes_left
, bytes
;
766 rgd
->rd_bits
= kcalloc(length
, sizeof(struct gfs2_bitmap
), GFP_NOFS
);
770 bytes_left
= rgd
->rd_bitbytes
;
772 for (x
= 0; x
< length
; x
++) {
773 bi
= rgd
->rd_bits
+ x
;
776 /* small rgrp; bitmap stored completely in header block */
779 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
782 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
785 bytes
= sdp
->sd_sb
.sb_bsize
- sizeof(struct gfs2_rgrp
);
786 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
789 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
791 } else if (x
+ 1 == length
) {
793 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
794 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
796 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
799 bytes
= sdp
->sd_sb
.sb_bsize
-
800 sizeof(struct gfs2_meta_header
);
801 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
802 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
804 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
811 gfs2_consist_rgrpd(rgd
);
814 bi
= rgd
->rd_bits
+ (length
- 1);
815 if ((bi
->bi_start
+ bi
->bi_len
) * GFS2_NBBY
!= rgd
->rd_data
) {
816 if (gfs2_consist_rgrpd(rgd
)) {
817 gfs2_rindex_print(rgd
);
818 fs_err(sdp
, "start=%u len=%u offset=%u\n",
819 bi
->bi_start
, bi
->bi_len
, bi
->bi_offset
);
828 * gfs2_ri_total - Total up the file system space, according to the rindex.
829 * @sdp: the filesystem
832 u64
gfs2_ri_total(struct gfs2_sbd
*sdp
)
835 struct inode
*inode
= sdp
->sd_rindex
;
836 struct gfs2_inode
*ip
= GFS2_I(inode
);
837 char buf
[sizeof(struct gfs2_rindex
)];
840 for (rgrps
= 0;; rgrps
++) {
841 loff_t pos
= rgrps
* sizeof(struct gfs2_rindex
);
843 if (pos
+ sizeof(struct gfs2_rindex
) > i_size_read(inode
))
845 error
= gfs2_internal_read(ip
, buf
, &pos
,
846 sizeof(struct gfs2_rindex
));
847 if (error
!= sizeof(struct gfs2_rindex
))
849 total_data
+= be32_to_cpu(((struct gfs2_rindex
*)buf
)->ri_data
);
854 static int rgd_insert(struct gfs2_rgrpd
*rgd
)
856 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
857 struct rb_node
**newn
= &sdp
->sd_rindex_tree
.rb_node
, *parent
= NULL
;
859 /* Figure out where to put new node */
861 struct gfs2_rgrpd
*cur
= rb_entry(*newn
, struct gfs2_rgrpd
,
865 if (rgd
->rd_addr
< cur
->rd_addr
)
866 newn
= &((*newn
)->rb_left
);
867 else if (rgd
->rd_addr
> cur
->rd_addr
)
868 newn
= &((*newn
)->rb_right
);
873 rb_link_node(&rgd
->rd_node
, parent
, newn
);
874 rb_insert_color(&rgd
->rd_node
, &sdp
->sd_rindex_tree
);
880 * read_rindex_entry - Pull in a new resource index entry from the disk
881 * @ip: Pointer to the rindex inode
883 * Returns: 0 on success, > 0 on EOF, error code otherwise
886 static int read_rindex_entry(struct gfs2_inode
*ip
)
888 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
889 const unsigned bsize
= sdp
->sd_sb
.sb_bsize
;
890 loff_t pos
= sdp
->sd_rgrps
* sizeof(struct gfs2_rindex
);
891 struct gfs2_rindex buf
;
893 struct gfs2_rgrpd
*rgd
;
895 if (pos
>= i_size_read(&ip
->i_inode
))
898 error
= gfs2_internal_read(ip
, (char *)&buf
, &pos
,
899 sizeof(struct gfs2_rindex
));
901 if (error
!= sizeof(struct gfs2_rindex
))
902 return (error
== 0) ? 1 : error
;
904 rgd
= kmem_cache_zalloc(gfs2_rgrpd_cachep
, GFP_NOFS
);
910 rgd
->rd_addr
= be64_to_cpu(buf
.ri_addr
);
911 rgd
->rd_length
= be32_to_cpu(buf
.ri_length
);
912 rgd
->rd_data0
= be64_to_cpu(buf
.ri_data0
);
913 rgd
->rd_data
= be32_to_cpu(buf
.ri_data
);
914 rgd
->rd_bitbytes
= be32_to_cpu(buf
.ri_bitbytes
);
915 spin_lock_init(&rgd
->rd_rsspin
);
917 error
= compute_bitstructs(rgd
);
921 error
= gfs2_glock_get(sdp
, rgd
->rd_addr
,
922 &gfs2_rgrp_glops
, CREATE
, &rgd
->rd_gl
);
926 rgd
->rd_gl
->gl_object
= rgd
;
927 rgd
->rd_gl
->gl_vm
.start
= rgd
->rd_addr
* bsize
;
928 rgd
->rd_gl
->gl_vm
.end
= rgd
->rd_gl
->gl_vm
.start
+ (rgd
->rd_length
* bsize
) - 1;
929 rgd
->rd_rgl
= (struct gfs2_rgrp_lvb
*)rgd
->rd_gl
->gl_lksb
.sb_lvbptr
;
930 rgd
->rd_flags
&= ~GFS2_RDF_UPTODATE
;
931 if (rgd
->rd_data
> sdp
->sd_max_rg_data
)
932 sdp
->sd_max_rg_data
= rgd
->rd_data
;
933 spin_lock(&sdp
->sd_rindex_spin
);
934 error
= rgd_insert(rgd
);
935 spin_unlock(&sdp
->sd_rindex_spin
);
939 error
= 0; /* someone else read in the rgrp; free it and ignore it */
940 gfs2_glock_put(rgd
->rd_gl
);
944 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
949 * gfs2_ri_update - Pull in a new resource index from the disk
950 * @ip: pointer to the rindex inode
952 * Returns: 0 on successful update, error code otherwise
955 static int gfs2_ri_update(struct gfs2_inode
*ip
)
957 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
961 error
= read_rindex_entry(ip
);
962 } while (error
== 0);
967 sdp
->sd_rindex_uptodate
= 1;
972 * gfs2_rindex_update - Update the rindex if required
973 * @sdp: The GFS2 superblock
975 * We grab a lock on the rindex inode to make sure that it doesn't
976 * change whilst we are performing an operation. We keep this lock
977 * for quite long periods of time compared to other locks. This
978 * doesn't matter, since it is shared and it is very, very rarely
979 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
981 * This makes sure that we're using the latest copy of the resource index
982 * special file, which might have been updated if someone expanded the
983 * filesystem (via gfs2_grow utility), which adds new resource groups.
985 * Returns: 0 on succeess, error code otherwise
988 int gfs2_rindex_update(struct gfs2_sbd
*sdp
)
990 struct gfs2_inode
*ip
= GFS2_I(sdp
->sd_rindex
);
991 struct gfs2_glock
*gl
= ip
->i_gl
;
992 struct gfs2_holder ri_gh
;
994 int unlock_required
= 0;
996 /* Read new copy from disk if we don't have the latest */
997 if (!sdp
->sd_rindex_uptodate
) {
998 if (!gfs2_glock_is_locked_by_me(gl
)) {
999 error
= gfs2_glock_nq_init(gl
, LM_ST_SHARED
, 0, &ri_gh
);
1002 unlock_required
= 1;
1004 if (!sdp
->sd_rindex_uptodate
)
1005 error
= gfs2_ri_update(ip
);
1006 if (unlock_required
)
1007 gfs2_glock_dq_uninit(&ri_gh
);
1013 static void gfs2_rgrp_in(struct gfs2_rgrpd
*rgd
, const void *buf
)
1015 const struct gfs2_rgrp
*str
= buf
;
1018 rg_flags
= be32_to_cpu(str
->rg_flags
);
1019 rg_flags
&= ~GFS2_RDF_MASK
;
1020 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1021 rgd
->rd_flags
|= rg_flags
;
1022 rgd
->rd_free
= be32_to_cpu(str
->rg_free
);
1023 rgd
->rd_dinodes
= be32_to_cpu(str
->rg_dinodes
);
1024 rgd
->rd_igeneration
= be64_to_cpu(str
->rg_igeneration
);
1027 static void gfs2_rgrp_out(struct gfs2_rgrpd
*rgd
, void *buf
)
1029 struct gfs2_rgrp
*str
= buf
;
1031 str
->rg_flags
= cpu_to_be32(rgd
->rd_flags
& ~GFS2_RDF_MASK
);
1032 str
->rg_free
= cpu_to_be32(rgd
->rd_free
);
1033 str
->rg_dinodes
= cpu_to_be32(rgd
->rd_dinodes
);
1034 str
->__pad
= cpu_to_be32(0);
1035 str
->rg_igeneration
= cpu_to_be64(rgd
->rd_igeneration
);
1036 memset(&str
->rg_reserved
, 0, sizeof(str
->rg_reserved
));
1039 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd
*rgd
)
1041 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1042 struct gfs2_rgrp
*str
= (struct gfs2_rgrp
*)rgd
->rd_bits
[0].bi_bh
->b_data
;
1044 if (rgl
->rl_flags
!= str
->rg_flags
|| rgl
->rl_free
!= str
->rg_free
||
1045 rgl
->rl_dinodes
!= str
->rg_dinodes
||
1046 rgl
->rl_igeneration
!= str
->rg_igeneration
)
1051 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb
*rgl
, const void *buf
)
1053 const struct gfs2_rgrp
*str
= buf
;
1055 rgl
->rl_magic
= cpu_to_be32(GFS2_MAGIC
);
1056 rgl
->rl_flags
= str
->rg_flags
;
1057 rgl
->rl_free
= str
->rg_free
;
1058 rgl
->rl_dinodes
= str
->rg_dinodes
;
1059 rgl
->rl_igeneration
= str
->rg_igeneration
;
1063 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd
*rgd
, u32 change
)
1065 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1066 u32 unlinked
= be32_to_cpu(rgl
->rl_unlinked
) + change
;
1067 rgl
->rl_unlinked
= cpu_to_be32(unlinked
);
1070 static u32
count_unlinked(struct gfs2_rgrpd
*rgd
)
1072 struct gfs2_bitmap
*bi
;
1073 const u32 length
= rgd
->rd_length
;
1074 const u8
*buffer
= NULL
;
1075 u32 i
, goal
, count
= 0;
1077 for (i
= 0, bi
= rgd
->rd_bits
; i
< length
; i
++, bi
++) {
1079 buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
1080 WARN_ON(!buffer_uptodate(bi
->bi_bh
));
1081 while (goal
< bi
->bi_len
* GFS2_NBBY
) {
1082 goal
= gfs2_bitfit(buffer
, bi
->bi_len
, goal
,
1083 GFS2_BLKST_UNLINKED
);
1084 if (goal
== BFITNOENT
)
1096 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1097 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1099 * Read in all of a Resource Group's header and bitmap blocks.
1100 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1105 int gfs2_rgrp_bh_get(struct gfs2_rgrpd
*rgd
)
1107 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1108 struct gfs2_glock
*gl
= rgd
->rd_gl
;
1109 unsigned int length
= rgd
->rd_length
;
1110 struct gfs2_bitmap
*bi
;
1114 if (rgd
->rd_bits
[0].bi_bh
!= NULL
)
1117 for (x
= 0; x
< length
; x
++) {
1118 bi
= rgd
->rd_bits
+ x
;
1119 error
= gfs2_meta_read(gl
, rgd
->rd_addr
+ x
, 0, &bi
->bi_bh
);
1124 for (y
= length
; y
--;) {
1125 bi
= rgd
->rd_bits
+ y
;
1126 error
= gfs2_meta_wait(sdp
, bi
->bi_bh
);
1129 if (gfs2_metatype_check(sdp
, bi
->bi_bh
, y
? GFS2_METATYPE_RB
:
1130 GFS2_METATYPE_RG
)) {
1136 if (!(rgd
->rd_flags
& GFS2_RDF_UPTODATE
)) {
1137 for (x
= 0; x
< length
; x
++)
1138 clear_bit(GBF_FULL
, &rgd
->rd_bits
[x
].bi_flags
);
1139 gfs2_rgrp_in(rgd
, (rgd
->rd_bits
[0].bi_bh
)->b_data
);
1140 rgd
->rd_flags
|= (GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1141 rgd
->rd_free_clone
= rgd
->rd_free
;
1142 /* max out the rgrp allocation failure point */
1143 rgd
->rd_extfail_pt
= rgd
->rd_free
;
1145 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
) {
1146 rgd
->rd_rgl
->rl_unlinked
= cpu_to_be32(count_unlinked(rgd
));
1147 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
,
1148 rgd
->rd_bits
[0].bi_bh
->b_data
);
1150 else if (sdp
->sd_args
.ar_rgrplvb
) {
1151 if (!gfs2_rgrp_lvb_valid(rgd
)){
1152 gfs2_consist_rgrpd(rgd
);
1156 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1157 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1163 bi
= rgd
->rd_bits
+ x
;
1166 gfs2_assert_warn(sdp
, !bi
->bi_clone
);
1172 int update_rgrp_lvb(struct gfs2_rgrpd
*rgd
)
1176 if (rgd
->rd_flags
& GFS2_RDF_UPTODATE
)
1179 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
)
1180 return gfs2_rgrp_bh_get(rgd
);
1182 rl_flags
= be32_to_cpu(rgd
->rd_rgl
->rl_flags
);
1183 rl_flags
&= ~GFS2_RDF_MASK
;
1184 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1185 rgd
->rd_flags
|= (rl_flags
| GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1186 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1187 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1188 rgd
->rd_free
= be32_to_cpu(rgd
->rd_rgl
->rl_free
);
1189 rgd
->rd_free_clone
= rgd
->rd_free
;
1190 rgd
->rd_dinodes
= be32_to_cpu(rgd
->rd_rgl
->rl_dinodes
);
1191 rgd
->rd_igeneration
= be64_to_cpu(rgd
->rd_rgl
->rl_igeneration
);
1195 int gfs2_rgrp_go_lock(struct gfs2_holder
*gh
)
1197 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1198 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1200 if (gh
->gh_flags
& GL_SKIP
&& sdp
->sd_args
.ar_rgrplvb
)
1202 return gfs2_rgrp_bh_get(rgd
);
1206 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1207 * @gh: The glock holder for the resource group
1211 void gfs2_rgrp_go_unlock(struct gfs2_holder
*gh
)
1213 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1214 int x
, length
= rgd
->rd_length
;
1216 for (x
= 0; x
< length
; x
++) {
1217 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1226 int gfs2_rgrp_send_discards(struct gfs2_sbd
*sdp
, u64 offset
,
1227 struct buffer_head
*bh
,
1228 const struct gfs2_bitmap
*bi
, unsigned minlen
, u64
*ptrimmed
)
1230 struct super_block
*sb
= sdp
->sd_vfs
;
1233 sector_t nr_blks
= 0;
1239 for (x
= 0; x
< bi
->bi_len
; x
++) {
1240 const u8
*clone
= bi
->bi_clone
? bi
->bi_clone
: bi
->bi_bh
->b_data
;
1241 clone
+= bi
->bi_offset
;
1244 const u8
*orig
= bh
->b_data
+ bi
->bi_offset
+ x
;
1245 diff
= ~(*orig
| (*orig
>> 1)) & (*clone
| (*clone
>> 1));
1247 diff
= ~(*clone
| (*clone
>> 1));
1252 blk
= offset
+ ((bi
->bi_start
+ x
) * GFS2_NBBY
);
1256 goto start_new_extent
;
1257 if ((start
+ nr_blks
) != blk
) {
1258 if (nr_blks
>= minlen
) {
1259 rv
= sb_issue_discard(sb
,
1276 if (nr_blks
>= minlen
) {
1277 rv
= sb_issue_discard(sb
, start
, nr_blks
, GFP_NOFS
, 0);
1283 *ptrimmed
= trimmed
;
1287 if (sdp
->sd_args
.ar_discard
)
1288 fs_warn(sdp
, "error %d on discard request, turning discards off for this filesystem", rv
);
1289 sdp
->sd_args
.ar_discard
= 0;
1294 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1295 * @filp: Any file on the filesystem
1296 * @argp: Pointer to the arguments (also used to pass result)
1298 * Returns: 0 on success, otherwise error code
1301 int gfs2_fitrim(struct file
*filp
, void __user
*argp
)
1303 struct inode
*inode
= file_inode(filp
);
1304 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1305 struct request_queue
*q
= bdev_get_queue(sdp
->sd_vfs
->s_bdev
);
1306 struct buffer_head
*bh
;
1307 struct gfs2_rgrpd
*rgd
;
1308 struct gfs2_rgrpd
*rgd_end
;
1309 struct gfs2_holder gh
;
1310 struct fstrim_range r
;
1314 u64 start
, end
, minlen
;
1316 unsigned bs_shift
= sdp
->sd_sb
.sb_bsize_shift
;
1318 if (!capable(CAP_SYS_ADMIN
))
1321 if (!blk_queue_discard(q
))
1324 if (copy_from_user(&r
, argp
, sizeof(r
)))
1327 ret
= gfs2_rindex_update(sdp
);
1331 start
= r
.start
>> bs_shift
;
1332 end
= start
+ (r
.len
>> bs_shift
);
1333 minlen
= max_t(u64
, r
.minlen
,
1334 q
->limits
.discard_granularity
) >> bs_shift
;
1336 if (end
<= start
|| minlen
> sdp
->sd_max_rg_data
)
1339 rgd
= gfs2_blk2rgrpd(sdp
, start
, 0);
1340 rgd_end
= gfs2_blk2rgrpd(sdp
, end
, 0);
1342 if ((gfs2_rgrpd_get_first(sdp
) == gfs2_rgrpd_get_next(rgd_end
))
1343 && (start
> rgd_end
->rd_data0
+ rgd_end
->rd_data
))
1344 return -EINVAL
; /* start is beyond the end of the fs */
1348 ret
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1352 if (!(rgd
->rd_flags
& GFS2_RGF_TRIMMED
)) {
1353 /* Trim each bitmap in the rgrp */
1354 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1355 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1356 ret
= gfs2_rgrp_send_discards(sdp
,
1357 rgd
->rd_data0
, NULL
, bi
, minlen
,
1360 gfs2_glock_dq_uninit(&gh
);
1366 /* Mark rgrp as having been trimmed */
1367 ret
= gfs2_trans_begin(sdp
, RES_RG_HDR
, 0);
1369 bh
= rgd
->rd_bits
[0].bi_bh
;
1370 rgd
->rd_flags
|= GFS2_RGF_TRIMMED
;
1371 gfs2_trans_add_meta(rgd
->rd_gl
, bh
);
1372 gfs2_rgrp_out(rgd
, bh
->b_data
);
1373 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, bh
->b_data
);
1374 gfs2_trans_end(sdp
);
1377 gfs2_glock_dq_uninit(&gh
);
1382 rgd
= gfs2_rgrpd_get_next(rgd
);
1386 r
.len
= trimmed
<< bs_shift
;
1387 if (copy_to_user(argp
, &r
, sizeof(r
)))
1394 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1395 * @ip: the inode structure
1398 static void rs_insert(struct gfs2_inode
*ip
)
1400 struct rb_node
**newn
, *parent
= NULL
;
1402 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1403 struct gfs2_rgrpd
*rgd
= rs
->rs_rbm
.rgd
;
1404 u64 fsblock
= gfs2_rbm_to_block(&rs
->rs_rbm
);
1406 BUG_ON(gfs2_rs_active(rs
));
1408 spin_lock(&rgd
->rd_rsspin
);
1409 newn
= &rgd
->rd_rstree
.rb_node
;
1411 struct gfs2_blkreserv
*cur
=
1412 rb_entry(*newn
, struct gfs2_blkreserv
, rs_node
);
1415 rc
= rs_cmp(fsblock
, rs
->rs_free
, cur
);
1417 newn
= &((*newn
)->rb_right
);
1419 newn
= &((*newn
)->rb_left
);
1421 spin_unlock(&rgd
->rd_rsspin
);
1427 rb_link_node(&rs
->rs_node
, parent
, newn
);
1428 rb_insert_color(&rs
->rs_node
, &rgd
->rd_rstree
);
1430 /* Do our rgrp accounting for the reservation */
1431 rgd
->rd_reserved
+= rs
->rs_free
; /* blocks reserved */
1432 spin_unlock(&rgd
->rd_rsspin
);
1433 trace_gfs2_rs(rs
, TRACE_RS_INSERT
);
1437 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1438 * @rgd: the resource group descriptor
1439 * @ip: pointer to the inode for which we're reserving blocks
1440 * @ap: the allocation parameters
1444 static void rg_mblk_search(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
,
1445 const struct gfs2_alloc_parms
*ap
)
1447 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
1449 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1451 u32 free_blocks
= rgd
->rd_free_clone
- rgd
->rd_reserved
;
1453 struct inode
*inode
= &ip
->i_inode
;
1455 if (S_ISDIR(inode
->i_mode
))
1458 extlen
= max_t(u32
, atomic_read(&rs
->rs_sizehint
), ap
->target
);
1459 extlen
= clamp(extlen
, RGRP_RSRV_MINBLKS
, free_blocks
);
1461 if ((rgd
->rd_free_clone
< rgd
->rd_reserved
) || (free_blocks
< extlen
))
1464 /* Find bitmap block that contains bits for goal block */
1465 if (rgrp_contains_block(rgd
, ip
->i_goal
))
1468 goal
= rgd
->rd_last_alloc
+ rgd
->rd_data0
;
1470 if (WARN_ON(gfs2_rbm_from_block(&rbm
, goal
)))
1473 ret
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &extlen
, ip
, true, ap
);
1476 rs
->rs_free
= extlen
;
1477 rs
->rs_inum
= ip
->i_no_addr
;
1480 if (goal
== rgd
->rd_last_alloc
+ rgd
->rd_data0
)
1481 rgd
->rd_last_alloc
= 0;
1486 * gfs2_next_unreserved_block - Return next block that is not reserved
1487 * @rgd: The resource group
1488 * @block: The starting block
1489 * @length: The required length
1490 * @ip: Ignore any reservations for this inode
1492 * If the block does not appear in any reservation, then return the
1493 * block number unchanged. If it does appear in the reservation, then
1494 * keep looking through the tree of reservations in order to find the
1495 * first block number which is not reserved.
1498 static u64
gfs2_next_unreserved_block(struct gfs2_rgrpd
*rgd
, u64 block
,
1500 const struct gfs2_inode
*ip
)
1502 struct gfs2_blkreserv
*rs
;
1506 spin_lock(&rgd
->rd_rsspin
);
1507 n
= rgd
->rd_rstree
.rb_node
;
1509 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1510 rc
= rs_cmp(block
, length
, rs
);
1520 while ((rs_cmp(block
, length
, rs
) == 0) && (ip
->i_res
!= rs
)) {
1521 block
= gfs2_rbm_to_block(&rs
->rs_rbm
) + rs
->rs_free
;
1525 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1529 spin_unlock(&rgd
->rd_rsspin
);
1534 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1535 * @rbm: The current position in the resource group
1536 * @ip: The inode for which we are searching for blocks
1537 * @minext: The minimum extent length
1538 * @maxext: A pointer to the maximum extent structure
1540 * This checks the current position in the rgrp to see whether there is
1541 * a reservation covering this block. If not then this function is a
1542 * no-op. If there is, then the position is moved to the end of the
1543 * contiguous reservation(s) so that we are pointing at the first
1544 * non-reserved block.
1546 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1549 static int gfs2_reservation_check_and_update(struct gfs2_rbm
*rbm
,
1550 const struct gfs2_inode
*ip
,
1552 struct gfs2_extent
*maxext
)
1554 u64 block
= gfs2_rbm_to_block(rbm
);
1560 * If we have a minimum extent length, then skip over any extent
1561 * which is less than the min extent length in size.
1564 extlen
= gfs2_free_extlen(rbm
, minext
);
1565 if (extlen
<= maxext
->len
)
1570 * Check the extent which has been found against the reservations
1571 * and skip if parts of it are already reserved
1573 nblock
= gfs2_next_unreserved_block(rbm
->rgd
, block
, extlen
, ip
);
1574 if (nblock
== block
) {
1575 if (!minext
|| extlen
>= minext
)
1578 if (extlen
> maxext
->len
) {
1579 maxext
->len
= extlen
;
1583 nblock
= block
+ extlen
;
1585 ret
= gfs2_rbm_from_block(rbm
, nblock
);
1592 * gfs2_rbm_find - Look for blocks of a particular state
1593 * @rbm: Value/result starting position and final position
1594 * @state: The state which we want to find
1595 * @minext: Pointer to the requested extent length (NULL for a single block)
1596 * This is updated to be the actual reservation size.
1597 * @ip: If set, check for reservations
1598 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1599 * around until we've reached the starting point.
1600 * @ap: the allocation parameters
1603 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1604 * has no free blocks in it.
1605 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1606 * has come up short on a free block search.
1608 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1611 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
1612 const struct gfs2_inode
*ip
, bool nowrap
,
1613 const struct gfs2_alloc_parms
*ap
)
1615 struct buffer_head
*bh
;
1618 int first_bii
= rbm
->bii
;
1619 u32 first_offset
= rbm
->offset
;
1623 int iters
= rbm
->rgd
->rd_length
;
1625 struct gfs2_bitmap
*bi
;
1626 struct gfs2_extent maxext
= { .rbm
.rgd
= rbm
->rgd
, };
1628 /* If we are not starting at the beginning of a bitmap, then we
1629 * need to add one to the bitmap count to ensure that we search
1630 * the starting bitmap twice.
1632 if (rbm
->offset
!= 0)
1637 if (test_bit(GBF_FULL
, &bi
->bi_flags
) &&
1638 (state
== GFS2_BLKST_FREE
))
1642 buffer
= bh
->b_data
+ bi
->bi_offset
;
1643 WARN_ON(!buffer_uptodate(bh
));
1644 if (state
!= GFS2_BLKST_UNLINKED
&& bi
->bi_clone
)
1645 buffer
= bi
->bi_clone
+ bi
->bi_offset
;
1646 initial_offset
= rbm
->offset
;
1647 offset
= gfs2_bitfit(buffer
, bi
->bi_len
, rbm
->offset
, state
);
1648 if (offset
== BFITNOENT
)
1650 rbm
->offset
= offset
;
1654 initial_bii
= rbm
->bii
;
1655 ret
= gfs2_reservation_check_and_update(rbm
, ip
,
1656 minext
? *minext
: 0,
1661 n
+= (rbm
->bii
- initial_bii
);
1664 if (ret
== -E2BIG
) {
1667 n
+= (rbm
->bii
- initial_bii
);
1668 goto res_covered_end_of_rgrp
;
1672 bitmap_full
: /* Mark bitmap as full and fall through */
1673 if ((state
== GFS2_BLKST_FREE
) && initial_offset
== 0) {
1674 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
1675 set_bit(GBF_FULL
, &bi
->bi_flags
);
1678 next_bitmap
: /* Find next bitmap in the rgrp */
1681 if (rbm
->bii
== rbm
->rgd
->rd_length
)
1683 res_covered_end_of_rgrp
:
1684 if ((rbm
->bii
== 0) && nowrap
)
1692 if (minext
== NULL
|| state
!= GFS2_BLKST_FREE
)
1695 /* If the extent was too small, and it's smaller than the smallest
1696 to have failed before, remember for future reference that it's
1697 useless to search this rgrp again for this amount or more. */
1698 if ((first_offset
== 0) && (first_bii
== 0) &&
1699 (*minext
< rbm
->rgd
->rd_extfail_pt
))
1700 rbm
->rgd
->rd_extfail_pt
= *minext
;
1702 /* If the maximum extent we found is big enough to fulfill the
1703 minimum requirements, use it anyway. */
1706 *minext
= maxext
.len
;
1714 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1716 * @last_unlinked: block address of the last dinode we unlinked
1717 * @skip: block address we should explicitly not unlink
1719 * Returns: 0 if no error
1720 * The inode, if one has been found, in inode.
1723 static void try_rgrp_unlink(struct gfs2_rgrpd
*rgd
, u64
*last_unlinked
, u64 skip
)
1726 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1727 struct gfs2_glock
*gl
;
1728 struct gfs2_inode
*ip
;
1731 struct gfs2_rbm rbm
= { .rgd
= rgd
, .bii
= 0, .offset
= 0 };
1734 down_write(&sdp
->sd_log_flush_lock
);
1735 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_UNLINKED
, NULL
, NULL
,
1737 up_write(&sdp
->sd_log_flush_lock
);
1738 if (error
== -ENOSPC
)
1740 if (WARN_ON_ONCE(error
))
1743 block
= gfs2_rbm_to_block(&rbm
);
1744 if (gfs2_rbm_from_block(&rbm
, block
+ 1))
1746 if (*last_unlinked
!= NO_BLOCK
&& block
<= *last_unlinked
)
1750 *last_unlinked
= block
;
1752 error
= gfs2_glock_get(sdp
, block
, &gfs2_inode_glops
, CREATE
, &gl
);
1756 /* If the inode is already in cache, we can ignore it here
1757 * because the existing inode disposal code will deal with
1758 * it when all refs have gone away. Accessing gl_object like
1759 * this is not safe in general. Here it is ok because we do
1760 * not dereference the pointer, and we only need an approx
1761 * answer to whether it is NULL or not.
1765 if (ip
|| queue_work(gfs2_delete_workqueue
, &gl
->gl_delete
) == 0)
1770 /* Limit reclaim to sensible number of tasks */
1771 if (found
> NR_CPUS
)
1775 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1780 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1781 * @rgd: The rgrp in question
1782 * @loops: An indication of how picky we can be (0=very, 1=less so)
1784 * This function uses the recently added glock statistics in order to
1785 * figure out whether a parciular resource group is suffering from
1786 * contention from multiple nodes. This is done purely on the basis
1787 * of timings, since this is the only data we have to work with and
1788 * our aim here is to reject a resource group which is highly contended
1789 * but (very important) not to do this too often in order to ensure that
1790 * we do not land up introducing fragmentation by changing resource
1791 * groups when not actually required.
1793 * The calculation is fairly simple, we want to know whether the SRTTB
1794 * (i.e. smoothed round trip time for blocking operations) to acquire
1795 * the lock for this rgrp's glock is significantly greater than the
1796 * time taken for resource groups on average. We introduce a margin in
1797 * the form of the variable @var which is computed as the sum of the two
1798 * respective variences, and multiplied by a factor depending on @loops
1799 * and whether we have a lot of data to base the decision on. This is
1800 * then tested against the square difference of the means in order to
1801 * decide whether the result is statistically significant or not.
1803 * Returns: A boolean verdict on the congestion status
1806 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd
*rgd
, int loops
)
1808 const struct gfs2_glock
*gl
= rgd
->rd_gl
;
1809 const struct gfs2_sbd
*sdp
= gl
->gl_sbd
;
1810 struct gfs2_lkstats
*st
;
1811 s64 r_dcount
, l_dcount
;
1812 s64 r_srttb
, l_srttb
;
1818 st
= &this_cpu_ptr(sdp
->sd_lkstats
)->lkstats
[LM_TYPE_RGRP
];
1819 r_srttb
= st
->stats
[GFS2_LKS_SRTTB
];
1820 r_dcount
= st
->stats
[GFS2_LKS_DCOUNT
];
1821 var
= st
->stats
[GFS2_LKS_SRTTVARB
] +
1822 gl
->gl_stats
.stats
[GFS2_LKS_SRTTVARB
];
1825 l_srttb
= gl
->gl_stats
.stats
[GFS2_LKS_SRTTB
];
1826 l_dcount
= gl
->gl_stats
.stats
[GFS2_LKS_DCOUNT
];
1828 if ((l_dcount
< 1) || (r_dcount
< 1) || (r_srttb
== 0))
1831 srttb_diff
= r_srttb
- l_srttb
;
1832 sqr_diff
= srttb_diff
* srttb_diff
;
1835 if (l_dcount
< 8 || r_dcount
< 8)
1840 return ((srttb_diff
< 0) && (sqr_diff
> var
));
1844 * gfs2_rgrp_used_recently
1845 * @rs: The block reservation with the rgrp to test
1846 * @msecs: The time limit in milliseconds
1848 * Returns: True if the rgrp glock has been used within the time limit
1850 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv
*rs
,
1855 tdiff
= ktime_to_ns(ktime_sub(ktime_get_real(),
1856 rs
->rs_rbm
.rgd
->rd_gl
->gl_dstamp
));
1858 return tdiff
> (msecs
* 1000 * 1000);
1861 static u32
gfs2_orlov_skip(const struct gfs2_inode
*ip
)
1863 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1866 get_random_bytes(&skip
, sizeof(skip
));
1867 return skip
% sdp
->sd_rgrps
;
1870 static bool gfs2_select_rgrp(struct gfs2_rgrpd
**pos
, const struct gfs2_rgrpd
*begin
)
1872 struct gfs2_rgrpd
*rgd
= *pos
;
1873 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1875 rgd
= gfs2_rgrpd_get_next(rgd
);
1877 rgd
= gfs2_rgrpd_get_first(sdp
);
1879 if (rgd
!= begin
) /* If we didn't wrap */
1885 * gfs2_inplace_reserve - Reserve space in the filesystem
1886 * @ip: the inode to reserve space for
1887 * @ap: the allocation parameters
1892 int gfs2_inplace_reserve(struct gfs2_inode
*ip
, const struct gfs2_alloc_parms
*ap
)
1894 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1895 struct gfs2_rgrpd
*begin
= NULL
;
1896 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1897 int error
= 0, rg_locked
, flags
= 0;
1898 u64 last_unlinked
= NO_BLOCK
;
1902 if (sdp
->sd_args
.ar_rgrplvb
)
1904 if (gfs2_assert_warn(sdp
, ap
->target
))
1906 if (gfs2_rs_active(rs
)) {
1907 begin
= rs
->rs_rbm
.rgd
;
1908 } else if (ip
->i_rgd
&& rgrp_contains_block(ip
->i_rgd
, ip
->i_goal
)) {
1909 rs
->rs_rbm
.rgd
= begin
= ip
->i_rgd
;
1911 rs
->rs_rbm
.rgd
= begin
= gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1);
1913 if (S_ISDIR(ip
->i_inode
.i_mode
) && (ap
->aflags
& GFS2_AF_ORLOV
))
1914 skip
= gfs2_orlov_skip(ip
);
1915 if (rs
->rs_rbm
.rgd
== NULL
)
1921 if (!gfs2_glock_is_locked_by_me(rs
->rs_rbm
.rgd
->rd_gl
)) {
1925 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
1926 gfs2_rgrp_used_recently(rs
, 1000) &&
1927 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
1929 error
= gfs2_glock_nq_init(rs
->rs_rbm
.rgd
->rd_gl
,
1930 LM_ST_EXCLUSIVE
, flags
,
1932 if (unlikely(error
))
1934 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
1935 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
1937 if (sdp
->sd_args
.ar_rgrplvb
) {
1938 error
= update_rgrp_lvb(rs
->rs_rbm
.rgd
);
1939 if (unlikely(error
)) {
1940 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
1946 /* Skip unuseable resource groups */
1947 if ((rs
->rs_rbm
.rgd
->rd_flags
& (GFS2_RGF_NOALLOC
|
1949 (ap
->target
> rs
->rs_rbm
.rgd
->rd_extfail_pt
))
1952 if (sdp
->sd_args
.ar_rgrplvb
)
1953 gfs2_rgrp_bh_get(rs
->rs_rbm
.rgd
);
1955 /* Get a reservation if we don't already have one */
1956 if (!gfs2_rs_active(rs
))
1957 rg_mblk_search(rs
->rs_rbm
.rgd
, ip
, ap
);
1959 /* Skip rgrps when we can't get a reservation on first pass */
1960 if (!gfs2_rs_active(rs
) && (loops
< 1))
1963 /* If rgrp has enough free space, use it */
1964 if (rs
->rs_rbm
.rgd
->rd_free_clone
>= ap
->target
) {
1965 ip
->i_rgd
= rs
->rs_rbm
.rgd
;
1970 /* Check for unlinked inodes which can be reclaimed */
1971 if (rs
->rs_rbm
.rgd
->rd_flags
& GFS2_RDF_CHECK
)
1972 try_rgrp_unlink(rs
->rs_rbm
.rgd
, &last_unlinked
,
1975 /* Drop reservation, if we couldn't use reserved rgrp */
1976 if (gfs2_rs_active(rs
))
1977 gfs2_rs_deltree(rs
);
1979 /* Unlock rgrp if required */
1981 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
1983 /* Find the next rgrp, and continue looking */
1984 if (gfs2_select_rgrp(&rs
->rs_rbm
.rgd
, begin
))
1989 /* If we've scanned all the rgrps, but found no free blocks
1990 * then this checks for some less likely conditions before
1994 /* Check that fs hasn't grown if writing to rindex */
1995 if (ip
== GFS2_I(sdp
->sd_rindex
) && !sdp
->sd_rindex_uptodate
) {
1996 error
= gfs2_ri_update(ip
);
2000 /* Flushing the log may release space */
2002 gfs2_log_flush(sdp
, NULL
);
2009 * gfs2_inplace_release - release an inplace reservation
2010 * @ip: the inode the reservation was taken out on
2012 * Release a reservation made by gfs2_inplace_reserve().
2015 void gfs2_inplace_release(struct gfs2_inode
*ip
)
2017 struct gfs2_blkreserv
*rs
= ip
->i_res
;
2019 if (rs
->rs_rgd_gh
.gh_gl
)
2020 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
2024 * gfs2_get_block_type - Check a block in a RG is of given type
2025 * @rgd: the resource group holding the block
2026 * @block: the block number
2028 * Returns: The block type (GFS2_BLKST_*)
2031 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd
*rgd
, u64 block
)
2033 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
2036 ret
= gfs2_rbm_from_block(&rbm
, block
);
2037 WARN_ON_ONCE(ret
!= 0);
2039 return gfs2_testbit(&rbm
);
2044 * gfs2_alloc_extent - allocate an extent from a given bitmap
2045 * @rbm: the resource group information
2046 * @dinode: TRUE if the first block we allocate is for a dinode
2047 * @n: The extent length (value/result)
2049 * Add the bitmap buffer to the transaction.
2050 * Set the found bits to @new_state to change block's allocation state.
2052 static void gfs2_alloc_extent(const struct gfs2_rbm
*rbm
, bool dinode
,
2055 struct gfs2_rbm pos
= { .rgd
= rbm
->rgd
, };
2056 const unsigned int elen
= *n
;
2061 block
= gfs2_rbm_to_block(rbm
);
2062 gfs2_trans_add_meta(rbm
->rgd
->rd_gl
, rbm_bi(rbm
)->bi_bh
);
2063 gfs2_setbit(rbm
, true, dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2066 ret
= gfs2_rbm_from_block(&pos
, block
);
2067 if (ret
|| gfs2_testbit(&pos
) != GFS2_BLKST_FREE
)
2069 gfs2_trans_add_meta(pos
.rgd
->rd_gl
, rbm_bi(&pos
)->bi_bh
);
2070 gfs2_setbit(&pos
, true, GFS2_BLKST_USED
);
2077 * rgblk_free - Change alloc state of given block(s)
2078 * @sdp: the filesystem
2079 * @bstart: the start of a run of blocks to free
2080 * @blen: the length of the block run (all must lie within ONE RG!)
2081 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2083 * Returns: Resource group containing the block(s)
2086 static struct gfs2_rgrpd
*rgblk_free(struct gfs2_sbd
*sdp
, u64 bstart
,
2087 u32 blen
, unsigned char new_state
)
2089 struct gfs2_rbm rbm
;
2090 struct gfs2_bitmap
*bi
;
2092 rbm
.rgd
= gfs2_blk2rgrpd(sdp
, bstart
, 1);
2094 if (gfs2_consist(sdp
))
2095 fs_err(sdp
, "block = %llu\n", (unsigned long long)bstart
);
2100 gfs2_rbm_from_block(&rbm
, bstart
);
2103 if (!bi
->bi_clone
) {
2104 bi
->bi_clone
= kmalloc(bi
->bi_bh
->b_size
,
2105 GFP_NOFS
| __GFP_NOFAIL
);
2106 memcpy(bi
->bi_clone
+ bi
->bi_offset
,
2107 bi
->bi_bh
->b_data
+ bi
->bi_offset
, bi
->bi_len
);
2109 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, bi
->bi_bh
);
2110 gfs2_setbit(&rbm
, false, new_state
);
2117 * gfs2_rgrp_dump - print out an rgrp
2118 * @seq: The iterator
2119 * @gl: The glock in question
2123 void gfs2_rgrp_dump(struct seq_file
*seq
, const struct gfs2_glock
*gl
)
2125 struct gfs2_rgrpd
*rgd
= gl
->gl_object
;
2126 struct gfs2_blkreserv
*trs
;
2127 const struct rb_node
*n
;
2131 gfs2_print_dbg(seq
, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2132 (unsigned long long)rgd
->rd_addr
, rgd
->rd_flags
,
2133 rgd
->rd_free
, rgd
->rd_free_clone
, rgd
->rd_dinodes
,
2134 rgd
->rd_reserved
, rgd
->rd_extfail_pt
);
2135 spin_lock(&rgd
->rd_rsspin
);
2136 for (n
= rb_first(&rgd
->rd_rstree
); n
; n
= rb_next(&trs
->rs_node
)) {
2137 trs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
2140 spin_unlock(&rgd
->rd_rsspin
);
2143 static void gfs2_rgrp_error(struct gfs2_rgrpd
*rgd
)
2145 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2146 fs_warn(sdp
, "rgrp %llu has an error, marking it readonly until umount\n",
2147 (unsigned long long)rgd
->rd_addr
);
2148 fs_warn(sdp
, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2149 gfs2_rgrp_dump(NULL
, rgd
->rd_gl
);
2150 rgd
->rd_flags
|= GFS2_RDF_ERROR
;
2154 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2155 * @ip: The inode we have just allocated blocks for
2156 * @rbm: The start of the allocated blocks
2157 * @len: The extent length
2159 * Adjusts a reservation after an allocation has taken place. If the
2160 * reservation does not match the allocation, or if it is now empty
2161 * then it is removed.
2164 static void gfs2_adjust_reservation(struct gfs2_inode
*ip
,
2165 const struct gfs2_rbm
*rbm
, unsigned len
)
2167 struct gfs2_blkreserv
*rs
= ip
->i_res
;
2168 struct gfs2_rgrpd
*rgd
= rbm
->rgd
;
2173 spin_lock(&rgd
->rd_rsspin
);
2174 if (gfs2_rs_active(rs
)) {
2175 if (gfs2_rbm_eq(&rs
->rs_rbm
, rbm
)) {
2176 block
= gfs2_rbm_to_block(rbm
);
2177 ret
= gfs2_rbm_from_block(&rs
->rs_rbm
, block
+ len
);
2178 rlen
= min(rs
->rs_free
, len
);
2179 rs
->rs_free
-= rlen
;
2180 rgd
->rd_reserved
-= rlen
;
2181 trace_gfs2_rs(rs
, TRACE_RS_CLAIM
);
2182 if (rs
->rs_free
&& !ret
)
2188 spin_unlock(&rgd
->rd_rsspin
);
2192 * gfs2_set_alloc_start - Set starting point for block allocation
2193 * @rbm: The rbm which will be set to the required location
2194 * @ip: The gfs2 inode
2195 * @dinode: Flag to say if allocation includes a new inode
2197 * This sets the starting point from the reservation if one is active
2198 * otherwise it falls back to guessing a start point based on the
2199 * inode's goal block or the last allocation point in the rgrp.
2202 static void gfs2_set_alloc_start(struct gfs2_rbm
*rbm
,
2203 const struct gfs2_inode
*ip
, bool dinode
)
2207 if (gfs2_rs_active(ip
->i_res
)) {
2208 *rbm
= ip
->i_res
->rs_rbm
;
2212 if (!dinode
&& rgrp_contains_block(rbm
->rgd
, ip
->i_goal
))
2215 goal
= rbm
->rgd
->rd_last_alloc
+ rbm
->rgd
->rd_data0
;
2217 gfs2_rbm_from_block(rbm
, goal
);
2221 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2222 * @ip: the inode to allocate the block for
2223 * @bn: Used to return the starting block number
2224 * @nblocks: requested number of blocks/extent length (value/result)
2225 * @dinode: 1 if we're allocating a dinode block, else 0
2226 * @generation: the generation number of the inode
2228 * Returns: 0 or error
2231 int gfs2_alloc_blocks(struct gfs2_inode
*ip
, u64
*bn
, unsigned int *nblocks
,
2232 bool dinode
, u64
*generation
)
2234 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2235 struct buffer_head
*dibh
;
2236 struct gfs2_rbm rbm
= { .rgd
= ip
->i_rgd
, };
2238 u64 block
; /* block, within the file system scope */
2241 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2242 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, ip
, false, NULL
);
2244 if (error
== -ENOSPC
) {
2245 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2246 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, NULL
, false,
2250 /* Since all blocks are reserved in advance, this shouldn't happen */
2252 fs_warn(sdp
, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2253 (unsigned long long)ip
->i_no_addr
, error
, *nblocks
,
2254 test_bit(GBF_FULL
, &rbm
.rgd
->rd_bits
->bi_flags
),
2255 rbm
.rgd
->rd_extfail_pt
);
2259 gfs2_alloc_extent(&rbm
, dinode
, nblocks
);
2260 block
= gfs2_rbm_to_block(&rbm
);
2261 rbm
.rgd
->rd_last_alloc
= block
- rbm
.rgd
->rd_data0
;
2262 if (gfs2_rs_active(ip
->i_res
))
2263 gfs2_adjust_reservation(ip
, &rbm
, *nblocks
);
2269 ip
->i_goal
= block
+ ndata
- 1;
2270 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
2272 struct gfs2_dinode
*di
=
2273 (struct gfs2_dinode
*)dibh
->b_data
;
2274 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
2275 di
->di_goal_meta
= di
->di_goal_data
=
2276 cpu_to_be64(ip
->i_goal
);
2280 if (rbm
.rgd
->rd_free
< *nblocks
) {
2281 printk(KERN_WARNING
"nblocks=%u\n", *nblocks
);
2285 rbm
.rgd
->rd_free
-= *nblocks
;
2287 rbm
.rgd
->rd_dinodes
++;
2288 *generation
= rbm
.rgd
->rd_igeneration
++;
2289 if (*generation
== 0)
2290 *generation
= rbm
.rgd
->rd_igeneration
++;
2293 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_bits
[0].bi_bh
);
2294 gfs2_rgrp_out(rbm
.rgd
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2295 gfs2_rgrp_ondisk2lvb(rbm
.rgd
->rd_rgl
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2297 gfs2_statfs_change(sdp
, 0, -(s64
)*nblocks
, dinode
? 1 : 0);
2299 gfs2_trans_add_unrevoke(sdp
, block
, 1);
2301 gfs2_quota_change(ip
, *nblocks
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2303 rbm
.rgd
->rd_free_clone
-= *nblocks
;
2304 trace_gfs2_block_alloc(ip
, rbm
.rgd
, block
, *nblocks
,
2305 dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2310 gfs2_rgrp_error(rbm
.rgd
);
2315 * __gfs2_free_blocks - free a contiguous run of block(s)
2316 * @ip: the inode these blocks are being freed from
2317 * @bstart: first block of a run of contiguous blocks
2318 * @blen: the length of the block run
2319 * @meta: 1 if the blocks represent metadata
2323 void __gfs2_free_blocks(struct gfs2_inode
*ip
, u64 bstart
, u32 blen
, int meta
)
2325 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2326 struct gfs2_rgrpd
*rgd
;
2328 rgd
= rgblk_free(sdp
, bstart
, blen
, GFS2_BLKST_FREE
);
2331 trace_gfs2_block_alloc(ip
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2332 rgd
->rd_free
+= blen
;
2333 rgd
->rd_flags
&= ~GFS2_RGF_TRIMMED
;
2334 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2335 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2336 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2338 /* Directories keep their data in the metadata address space */
2339 if (meta
|| ip
->i_depth
)
2340 gfs2_meta_wipe(ip
, bstart
, blen
);
2344 * gfs2_free_meta - free a contiguous run of data block(s)
2345 * @ip: the inode these blocks are being freed from
2346 * @bstart: first block of a run of contiguous blocks
2347 * @blen: the length of the block run
2351 void gfs2_free_meta(struct gfs2_inode
*ip
, u64 bstart
, u32 blen
)
2353 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2355 __gfs2_free_blocks(ip
, bstart
, blen
, 1);
2356 gfs2_statfs_change(sdp
, 0, +blen
, 0);
2357 gfs2_quota_change(ip
, -(s64
)blen
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2360 void gfs2_unlink_di(struct inode
*inode
)
2362 struct gfs2_inode
*ip
= GFS2_I(inode
);
2363 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
2364 struct gfs2_rgrpd
*rgd
;
2365 u64 blkno
= ip
->i_no_addr
;
2367 rgd
= rgblk_free(sdp
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2370 trace_gfs2_block_alloc(ip
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2371 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2372 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2373 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2374 update_rgrp_lvb_unlinked(rgd
, 1);
2377 static void gfs2_free_uninit_di(struct gfs2_rgrpd
*rgd
, u64 blkno
)
2379 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2380 struct gfs2_rgrpd
*tmp_rgd
;
2382 tmp_rgd
= rgblk_free(sdp
, blkno
, 1, GFS2_BLKST_FREE
);
2385 gfs2_assert_withdraw(sdp
, rgd
== tmp_rgd
);
2387 if (!rgd
->rd_dinodes
)
2388 gfs2_consist_rgrpd(rgd
);
2392 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2393 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2394 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2395 update_rgrp_lvb_unlinked(rgd
, -1);
2397 gfs2_statfs_change(sdp
, 0, +1, -1);
2401 void gfs2_free_di(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
)
2403 gfs2_free_uninit_di(rgd
, ip
->i_no_addr
);
2404 trace_gfs2_block_alloc(ip
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2405 gfs2_quota_change(ip
, -1, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2406 gfs2_meta_wipe(ip
, ip
->i_no_addr
, 1);
2410 * gfs2_check_blk_type - Check the type of a block
2411 * @sdp: The superblock
2412 * @no_addr: The block number to check
2413 * @type: The block type we are looking for
2415 * Returns: 0 if the block type matches the expected type
2416 * -ESTALE if it doesn't match
2417 * or -ve errno if something went wrong while checking
2420 int gfs2_check_blk_type(struct gfs2_sbd
*sdp
, u64 no_addr
, unsigned int type
)
2422 struct gfs2_rgrpd
*rgd
;
2423 struct gfs2_holder rgd_gh
;
2424 int error
= -EINVAL
;
2426 rgd
= gfs2_blk2rgrpd(sdp
, no_addr
, 1);
2430 error
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_SHARED
, 0, &rgd_gh
);
2434 if (gfs2_get_block_type(rgd
, no_addr
) != type
)
2437 gfs2_glock_dq_uninit(&rgd_gh
);
2443 * gfs2_rlist_add - add a RG to a list of RGs
2445 * @rlist: the list of resource groups
2448 * Figure out what RG a block belongs to and add that RG to the list
2450 * FIXME: Don't use NOFAIL
2454 void gfs2_rlist_add(struct gfs2_inode
*ip
, struct gfs2_rgrp_list
*rlist
,
2457 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2458 struct gfs2_rgrpd
*rgd
;
2459 struct gfs2_rgrpd
**tmp
;
2460 unsigned int new_space
;
2463 if (gfs2_assert_warn(sdp
, !rlist
->rl_ghs
))
2466 if (ip
->i_rgd
&& rgrp_contains_block(ip
->i_rgd
, block
))
2469 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2471 fs_err(sdp
, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block
);
2476 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2477 if (rlist
->rl_rgd
[x
] == rgd
)
2480 if (rlist
->rl_rgrps
== rlist
->rl_space
) {
2481 new_space
= rlist
->rl_space
+ 10;
2483 tmp
= kcalloc(new_space
, sizeof(struct gfs2_rgrpd
*),
2484 GFP_NOFS
| __GFP_NOFAIL
);
2486 if (rlist
->rl_rgd
) {
2487 memcpy(tmp
, rlist
->rl_rgd
,
2488 rlist
->rl_space
* sizeof(struct gfs2_rgrpd
*));
2489 kfree(rlist
->rl_rgd
);
2492 rlist
->rl_space
= new_space
;
2493 rlist
->rl_rgd
= tmp
;
2496 rlist
->rl_rgd
[rlist
->rl_rgrps
++] = rgd
;
2500 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2501 * and initialize an array of glock holders for them
2502 * @rlist: the list of resource groups
2503 * @state: the lock state to acquire the RG lock in
2505 * FIXME: Don't use NOFAIL
2509 void gfs2_rlist_alloc(struct gfs2_rgrp_list
*rlist
, unsigned int state
)
2513 rlist
->rl_ghs
= kcalloc(rlist
->rl_rgrps
, sizeof(struct gfs2_holder
),
2514 GFP_NOFS
| __GFP_NOFAIL
);
2515 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2516 gfs2_holder_init(rlist
->rl_rgd
[x
]->rd_gl
,
2522 * gfs2_rlist_free - free a resource group list
2523 * @list: the list of resource groups
2527 void gfs2_rlist_free(struct gfs2_rgrp_list
*rlist
)
2531 kfree(rlist
->rl_rgd
);
2533 if (rlist
->rl_ghs
) {
2534 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2535 gfs2_holder_uninit(&rlist
->rl_ghs
[x
]);
2536 kfree(rlist
->rl_ghs
);
2537 rlist
->rl_ghs
= NULL
;