2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 * Documentation: S3C6410 User's Manual == PL080S
29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
32 * The PL080 has 8 channels available for simultaneous use, and the PL081
33 * has only two channels. So on these DMA controllers the number of channels
34 * and the number of incoming DMA signals are two totally different things.
35 * It is usually not possible to theoretically handle all physical signals,
36 * so a multiplexing scheme with possible denial of use is necessary.
38 * The PL080 has a dual bus master, PL081 has a single master.
40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
41 * It differs in following aspects:
42 * - CH_CONFIG register at different offset,
43 * - separate CH_CONTROL2 register for transfer size,
44 * - bigger maximum transfer size,
45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
46 * - no support for peripheral flow control.
48 * Memory to peripheral transfer may be visualized as
49 * Get data from memory to DMAC
51 * On burst request from peripheral
52 * Destination burst from DMAC to peripheral
54 * Raise terminal count interrupt
56 * For peripherals with a FIFO:
57 * Source burst size == half the depth of the peripheral FIFO
58 * Destination burst size == the depth of the peripheral FIFO
60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
61 * signals, the DMA controller will simply facilitate its AHB master.)
63 * ASSUMES default (little) endianness for DMA transfers
65 * The PL08x has two flow control settings:
66 * - DMAC flow control: the transfer size defines the number of transfers
67 * which occur for the current LLI entry, and the DMAC raises TC at the
68 * end of every LLI entry. Observed behaviour shows the DMAC listening
69 * to both the BREQ and SREQ signals (contrary to documented),
70 * transferring data if either is active. The LBREQ and LSREQ signals
73 * - Peripheral flow control: the transfer size is ignored (and should be
74 * zero). The data is transferred from the current LLI entry, until
75 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
76 * will then move to the next LLI entry. Unsupported by PL080S.
78 #include <linux/amba/bus.h>
79 #include <linux/amba/pl08x.h>
80 #include <linux/debugfs.h>
81 #include <linux/delay.h>
82 #include <linux/device.h>
83 #include <linux/dmaengine.h>
84 #include <linux/dmapool.h>
85 #include <linux/dma-mapping.h>
86 #include <linux/init.h>
87 #include <linux/interrupt.h>
88 #include <linux/module.h>
89 #include <linux/pm_runtime.h>
90 #include <linux/seq_file.h>
91 #include <linux/slab.h>
92 #include <linux/amba/pl080.h>
94 #include "dmaengine.h"
97 #define DRIVER_NAME "pl08xdmac"
99 static struct amba_driver pl08x_amba_driver
;
100 struct pl08x_driver_data
;
103 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
104 * @channels: the number of channels available in this variant
105 * @dualmaster: whether this version supports dual AHB masters or not.
106 * @nomadik: whether the channels have Nomadik security extension bits
107 * that need to be checked for permission before use and some registers are
109 * @pl080s: whether this version is a PL080S, which has separate register and
110 * LLI word for transfer size.
118 u32 max_transfer_size
;
122 * struct pl08x_bus_data - information of source or destination
123 * busses for a transfer
124 * @addr: current address
125 * @maxwidth: the maximum width of a transfer on this bus
126 * @buswidth: the width of this bus in bytes: 1, 2 or 4
128 struct pl08x_bus_data
{
134 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
137 * struct pl08x_phy_chan - holder for the physical channels
138 * @id: physical index to this channel
139 * @lock: a lock to use when altering an instance of this struct
140 * @serving: the virtual channel currently being served by this physical
142 * @locked: channel unavailable for the system, e.g. dedicated to secure
145 struct pl08x_phy_chan
{
148 void __iomem
*reg_config
;
150 struct pl08x_dma_chan
*serving
;
155 * struct pl08x_sg - structure containing data per sg
156 * @src_addr: src address of sg
157 * @dst_addr: dst address of sg
158 * @len: transfer len in bytes
159 * @node: node for txd's dsg_list
165 struct list_head node
;
169 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
170 * @vd: virtual DMA descriptor
171 * @dsg_list: list of children sg's
172 * @llis_bus: DMA memory address (physical) start for the LLIs
173 * @llis_va: virtual memory address start for the LLIs
174 * @cctl: control reg values for current txd
175 * @ccfg: config reg values for current txd
176 * @done: this marks completed descriptors, which should not have their
178 * @cyclic: indicate cyclic transfers
181 struct virt_dma_desc vd
;
182 struct list_head dsg_list
;
185 /* Default cctl value for LLIs */
188 * Settings to be put into the physical channel when we
189 * trigger this txd. Other registers are in llis_va[0].
197 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
199 * @PL08X_CHAN_IDLE: the channel is idle
200 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
201 * channel and is running a transfer on it
202 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
203 * channel, but the transfer is currently paused
204 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
205 * channel to become available (only pertains to memcpy channels)
207 enum pl08x_dma_chan_state
{
215 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
216 * @vc: wrappped virtual channel
217 * @phychan: the physical channel utilized by this channel, if there is one
218 * @name: name of channel
219 * @cd: channel platform data
220 * @runtime_addr: address for RX/TX according to the runtime config
221 * @at: active transaction on this channel
222 * @lock: a lock for this channel data
223 * @host: a pointer to the host (internal use)
224 * @state: whether the channel is idle, paused, running etc
225 * @slave: whether this channel is a device (slave) or for memcpy
226 * @signal: the physical DMA request signal which this channel is using
227 * @mux_use: count of descriptors using this DMA request signal setting
229 struct pl08x_dma_chan
{
230 struct virt_dma_chan vc
;
231 struct pl08x_phy_chan
*phychan
;
233 const struct pl08x_channel_data
*cd
;
234 struct dma_slave_config cfg
;
235 struct pl08x_txd
*at
;
236 struct pl08x_driver_data
*host
;
237 enum pl08x_dma_chan_state state
;
244 * struct pl08x_driver_data - the local state holder for the PL08x
245 * @slave: slave engine for this instance
246 * @memcpy: memcpy engine for this instance
247 * @base: virtual memory base (remapped) for the PL08x
248 * @adev: the corresponding AMBA (PrimeCell) bus entry
249 * @vd: vendor data for this PL08x variant
250 * @pd: platform data passed in from the platform/machine
251 * @phy_chans: array of data for the physical channels
252 * @pool: a pool for the LLI descriptors
253 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
255 * @mem_buses: set to indicate memory transfers on AHB2.
256 * @lock: a spinlock for this struct
258 struct pl08x_driver_data
{
259 struct dma_device slave
;
260 struct dma_device memcpy
;
262 struct amba_device
*adev
;
263 const struct vendor_data
*vd
;
264 struct pl08x_platform_data
*pd
;
265 struct pl08x_phy_chan
*phy_chans
;
266 struct dma_pool
*pool
;
273 * PL08X specific defines
276 /* The order of words in an LLI. */
277 #define PL080_LLI_SRC 0
278 #define PL080_LLI_DST 1
279 #define PL080_LLI_LLI 2
280 #define PL080_LLI_CCTL 3
281 #define PL080S_LLI_CCTL2 4
283 /* Total words in an LLI. */
284 #define PL080_LLI_WORDS 4
285 #define PL080S_LLI_WORDS 8
288 * Number of LLIs in each LLI buffer allocated for one transfer
289 * (maximum times we call dma_pool_alloc on this pool without freeing)
291 #define MAX_NUM_TSFR_LLIS 512
292 #define PL08X_ALIGN 8
294 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
296 return container_of(chan
, struct pl08x_dma_chan
, vc
.chan
);
299 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
301 return container_of(tx
, struct pl08x_txd
, vd
.tx
);
307 * This gives us the DMA request input to the PL08x primecell which the
308 * peripheral described by the channel data will be routed to, possibly
309 * via a board/SoC specific external MUX. One important point to note
310 * here is that this does not depend on the physical channel.
312 static int pl08x_request_mux(struct pl08x_dma_chan
*plchan
)
314 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
317 if (plchan
->mux_use
++ == 0 && pd
->get_xfer_signal
) {
318 ret
= pd
->get_xfer_signal(plchan
->cd
);
324 plchan
->signal
= ret
;
329 static void pl08x_release_mux(struct pl08x_dma_chan
*plchan
)
331 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
333 if (plchan
->signal
>= 0) {
334 WARN_ON(plchan
->mux_use
== 0);
336 if (--plchan
->mux_use
== 0 && pd
->put_xfer_signal
) {
337 pd
->put_xfer_signal(plchan
->cd
, plchan
->signal
);
344 * Physical channel handling
347 /* Whether a certain channel is busy or not */
348 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
352 val
= readl(ch
->reg_config
);
353 return val
& PL080_CONFIG_ACTIVE
;
356 static void pl08x_write_lli(struct pl08x_driver_data
*pl08x
,
357 struct pl08x_phy_chan
*phychan
, const u32
*lli
, u32 ccfg
)
359 if (pl08x
->vd
->pl080s
)
360 dev_vdbg(&pl08x
->adev
->dev
,
361 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
362 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
363 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
364 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
],
365 lli
[PL080S_LLI_CCTL2
], ccfg
);
367 dev_vdbg(&pl08x
->adev
->dev
,
368 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
369 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
370 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
371 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
], ccfg
);
373 writel_relaxed(lli
[PL080_LLI_SRC
], phychan
->base
+ PL080_CH_SRC_ADDR
);
374 writel_relaxed(lli
[PL080_LLI_DST
], phychan
->base
+ PL080_CH_DST_ADDR
);
375 writel_relaxed(lli
[PL080_LLI_LLI
], phychan
->base
+ PL080_CH_LLI
);
376 writel_relaxed(lli
[PL080_LLI_CCTL
], phychan
->base
+ PL080_CH_CONTROL
);
378 if (pl08x
->vd
->pl080s
)
379 writel_relaxed(lli
[PL080S_LLI_CCTL2
],
380 phychan
->base
+ PL080S_CH_CONTROL2
);
382 writel(ccfg
, phychan
->reg_config
);
386 * Set the initial DMA register values i.e. those for the first LLI
387 * The next LLI pointer and the configuration interrupt bit have
388 * been set when the LLIs were constructed. Poke them into the hardware
389 * and start the transfer.
391 static void pl08x_start_next_txd(struct pl08x_dma_chan
*plchan
)
393 struct pl08x_driver_data
*pl08x
= plchan
->host
;
394 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
395 struct virt_dma_desc
*vd
= vchan_next_desc(&plchan
->vc
);
396 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
399 list_del(&txd
->vd
.node
);
403 /* Wait for channel inactive */
404 while (pl08x_phy_channel_busy(phychan
))
407 pl08x_write_lli(pl08x
, phychan
, &txd
->llis_va
[0], txd
->ccfg
);
409 /* Enable the DMA channel */
410 /* Do not access config register until channel shows as disabled */
411 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << phychan
->id
))
414 /* Do not access config register until channel shows as inactive */
415 val
= readl(phychan
->reg_config
);
416 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
417 val
= readl(phychan
->reg_config
);
419 writel(val
| PL080_CONFIG_ENABLE
, phychan
->reg_config
);
423 * Pause the channel by setting the HALT bit.
425 * For M->P transfers, pause the DMAC first and then stop the peripheral -
426 * the FIFO can only drain if the peripheral is still requesting data.
427 * (note: this can still timeout if the DMAC FIFO never drains of data.)
429 * For P->M transfers, disable the peripheral first to stop it filling
430 * the DMAC FIFO, and then pause the DMAC.
432 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
437 /* Set the HALT bit and wait for the FIFO to drain */
438 val
= readl(ch
->reg_config
);
439 val
|= PL080_CONFIG_HALT
;
440 writel(val
, ch
->reg_config
);
442 /* Wait for channel inactive */
443 for (timeout
= 1000; timeout
; timeout
--) {
444 if (!pl08x_phy_channel_busy(ch
))
448 if (pl08x_phy_channel_busy(ch
))
449 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
452 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
456 /* Clear the HALT bit */
457 val
= readl(ch
->reg_config
);
458 val
&= ~PL080_CONFIG_HALT
;
459 writel(val
, ch
->reg_config
);
463 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
464 * clears any pending interrupt status. This should not be used for
465 * an on-going transfer, but as a method of shutting down a channel
466 * (eg, when it's no longer used) or terminating a transfer.
468 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
469 struct pl08x_phy_chan
*ch
)
471 u32 val
= readl(ch
->reg_config
);
473 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
474 PL080_CONFIG_TC_IRQ_MASK
);
476 writel(val
, ch
->reg_config
);
478 writel(1 << ch
->id
, pl08x
->base
+ PL080_ERR_CLEAR
);
479 writel(1 << ch
->id
, pl08x
->base
+ PL080_TC_CLEAR
);
482 static inline u32
get_bytes_in_cctl(u32 cctl
)
484 /* The source width defines the number of bytes */
485 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
487 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
489 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
490 case PL080_WIDTH_8BIT
:
492 case PL080_WIDTH_16BIT
:
495 case PL080_WIDTH_32BIT
:
502 static inline u32
get_bytes_in_cctl_pl080s(u32 cctl
, u32 cctl1
)
504 /* The source width defines the number of bytes */
505 u32 bytes
= cctl1
& PL080S_CONTROL_TRANSFER_SIZE_MASK
;
507 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
509 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
510 case PL080_WIDTH_8BIT
:
512 case PL080_WIDTH_16BIT
:
515 case PL080_WIDTH_32BIT
:
522 /* The channel should be paused when calling this */
523 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
525 struct pl08x_driver_data
*pl08x
= plchan
->host
;
526 const u32
*llis_va
, *llis_va_limit
;
527 struct pl08x_phy_chan
*ch
;
529 struct pl08x_txd
*txd
;
534 ch
= plchan
->phychan
;
541 * Follow the LLIs to get the number of remaining
542 * bytes in the currently active transaction.
544 clli
= readl(ch
->base
+ PL080_CH_LLI
) & ~PL080_LLI_LM_AHB2
;
546 /* First get the remaining bytes in the active transfer */
547 if (pl08x
->vd
->pl080s
)
548 bytes
= get_bytes_in_cctl_pl080s(
549 readl(ch
->base
+ PL080_CH_CONTROL
),
550 readl(ch
->base
+ PL080S_CH_CONTROL2
));
552 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
557 llis_va
= txd
->llis_va
;
558 llis_bus
= txd
->llis_bus
;
560 llis_max_words
= pl08x
->lli_words
* MAX_NUM_TSFR_LLIS
;
561 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
562 sizeof(u32
) * llis_max_words
);
565 * Locate the next LLI - as this is an array,
566 * it's simple maths to find.
568 llis_va
+= (clli
- llis_bus
) / sizeof(u32
);
570 llis_va_limit
= llis_va
+ llis_max_words
;
572 for (; llis_va
< llis_va_limit
; llis_va
+= pl08x
->lli_words
) {
573 if (pl08x
->vd
->pl080s
)
574 bytes
+= get_bytes_in_cctl_pl080s(
575 llis_va
[PL080_LLI_CCTL
],
576 llis_va
[PL080S_LLI_CCTL2
]);
578 bytes
+= get_bytes_in_cctl(llis_va
[PL080_LLI_CCTL
]);
581 * A LLI pointer going backward terminates the LLI list
583 if (llis_va
[PL080_LLI_LLI
] <= clli
)
591 * Allocate a physical channel for a virtual channel
593 * Try to locate a physical channel to be used for this transfer. If all
594 * are taken return NULL and the requester will have to cope by using
595 * some fallback PIO mode or retrying later.
597 static struct pl08x_phy_chan
*
598 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
599 struct pl08x_dma_chan
*virt_chan
)
601 struct pl08x_phy_chan
*ch
= NULL
;
605 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
606 ch
= &pl08x
->phy_chans
[i
];
608 spin_lock_irqsave(&ch
->lock
, flags
);
610 if (!ch
->locked
&& !ch
->serving
) {
611 ch
->serving
= virt_chan
;
612 spin_unlock_irqrestore(&ch
->lock
, flags
);
616 spin_unlock_irqrestore(&ch
->lock
, flags
);
619 if (i
== pl08x
->vd
->channels
) {
620 /* No physical channel available, cope with it */
627 /* Mark the physical channel as free. Note, this write is atomic. */
628 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
629 struct pl08x_phy_chan
*ch
)
635 * Try to allocate a physical channel. When successful, assign it to
636 * this virtual channel, and initiate the next descriptor. The
637 * virtual channel lock must be held at this point.
639 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan
*plchan
)
641 struct pl08x_driver_data
*pl08x
= plchan
->host
;
642 struct pl08x_phy_chan
*ch
;
644 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
646 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
647 plchan
->state
= PL08X_CHAN_WAITING
;
651 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d for xfer on %s\n",
652 ch
->id
, plchan
->name
);
654 plchan
->phychan
= ch
;
655 plchan
->state
= PL08X_CHAN_RUNNING
;
656 pl08x_start_next_txd(plchan
);
659 static void pl08x_phy_reassign_start(struct pl08x_phy_chan
*ch
,
660 struct pl08x_dma_chan
*plchan
)
662 struct pl08x_driver_data
*pl08x
= plchan
->host
;
664 dev_dbg(&pl08x
->adev
->dev
, "reassigned physical channel %d for xfer on %s\n",
665 ch
->id
, plchan
->name
);
668 * We do this without taking the lock; we're really only concerned
669 * about whether this pointer is NULL or not, and we're guaranteed
670 * that this will only be called when it _already_ is non-NULL.
672 ch
->serving
= plchan
;
673 plchan
->phychan
= ch
;
674 plchan
->state
= PL08X_CHAN_RUNNING
;
675 pl08x_start_next_txd(plchan
);
679 * Free a physical DMA channel, potentially reallocating it to another
680 * virtual channel if we have any pending.
682 static void pl08x_phy_free(struct pl08x_dma_chan
*plchan
)
684 struct pl08x_driver_data
*pl08x
= plchan
->host
;
685 struct pl08x_dma_chan
*p
, *next
;
690 /* Find a waiting virtual channel for the next transfer. */
691 list_for_each_entry(p
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
)
692 if (p
->state
== PL08X_CHAN_WAITING
) {
698 list_for_each_entry(p
, &pl08x
->slave
.channels
, vc
.chan
.device_node
)
699 if (p
->state
== PL08X_CHAN_WAITING
) {
705 /* Ensure that the physical channel is stopped */
706 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
712 * Eww. We know this isn't going to deadlock
713 * but lockdep probably doesn't.
715 spin_lock(&next
->vc
.lock
);
716 /* Re-check the state now that we have the lock */
717 success
= next
->state
== PL08X_CHAN_WAITING
;
719 pl08x_phy_reassign_start(plchan
->phychan
, next
);
720 spin_unlock(&next
->vc
.lock
);
722 /* If the state changed, try to find another channel */
726 /* No more jobs, so free up the physical channel */
727 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
730 plchan
->phychan
= NULL
;
731 plchan
->state
= PL08X_CHAN_IDLE
;
738 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
741 case PL080_WIDTH_8BIT
:
743 case PL080_WIDTH_16BIT
:
745 case PL080_WIDTH_32BIT
:
754 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
759 /* Remove all src, dst and transfer size bits */
760 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
761 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
762 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
764 /* Then set the bits according to the parameters */
767 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
770 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
773 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
782 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
785 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
788 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
795 tsize
&= PL080_CONTROL_TRANSFER_SIZE_MASK
;
796 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
800 struct pl08x_lli_build_data
{
801 struct pl08x_txd
*txd
;
802 struct pl08x_bus_data srcbus
;
803 struct pl08x_bus_data dstbus
;
809 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
810 * victim in case src & dest are not similarly aligned. i.e. If after aligning
811 * masters address with width requirements of transfer (by sending few byte by
812 * byte data), slave is still not aligned, then its width will be reduced to
814 * - prefers the destination bus if both available
815 * - prefers bus with fixed address (i.e. peripheral)
817 static void pl08x_choose_master_bus(struct pl08x_lli_build_data
*bd
,
818 struct pl08x_bus_data
**mbus
, struct pl08x_bus_data
**sbus
, u32 cctl
)
820 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
823 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
827 if (bd
->dstbus
.buswidth
>= bd
->srcbus
.buswidth
) {
838 * Fills in one LLI for a certain transfer descriptor and advance the counter
840 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data
*pl08x
,
841 struct pl08x_lli_build_data
*bd
,
842 int num_llis
, int len
, u32 cctl
, u32 cctl2
)
844 u32 offset
= num_llis
* pl08x
->lli_words
;
845 u32
*llis_va
= bd
->txd
->llis_va
+ offset
;
846 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
848 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
850 /* Advance the offset to next LLI. */
851 offset
+= pl08x
->lli_words
;
853 llis_va
[PL080_LLI_SRC
] = bd
->srcbus
.addr
;
854 llis_va
[PL080_LLI_DST
] = bd
->dstbus
.addr
;
855 llis_va
[PL080_LLI_LLI
] = (llis_bus
+ sizeof(u32
) * offset
);
856 llis_va
[PL080_LLI_LLI
] |= bd
->lli_bus
;
857 llis_va
[PL080_LLI_CCTL
] = cctl
;
858 if (pl08x
->vd
->pl080s
)
859 llis_va
[PL080S_LLI_CCTL2
] = cctl2
;
861 if (cctl
& PL080_CONTROL_SRC_INCR
)
862 bd
->srcbus
.addr
+= len
;
863 if (cctl
& PL080_CONTROL_DST_INCR
)
864 bd
->dstbus
.addr
+= len
;
866 BUG_ON(bd
->remainder
< len
);
868 bd
->remainder
-= len
;
871 static inline void prep_byte_width_lli(struct pl08x_driver_data
*pl08x
,
872 struct pl08x_lli_build_data
*bd
, u32
*cctl
, u32 len
,
873 int num_llis
, size_t *total_bytes
)
875 *cctl
= pl08x_cctl_bits(*cctl
, 1, 1, len
);
876 pl08x_fill_lli_for_desc(pl08x
, bd
, num_llis
, len
, *cctl
, len
);
877 (*total_bytes
) += len
;
881 static void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
882 const u32
*llis_va
, int num_llis
)
886 if (pl08x
->vd
->pl080s
) {
887 dev_vdbg(&pl08x
->adev
->dev
,
888 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
889 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
890 for (i
= 0; i
< num_llis
; i
++) {
891 dev_vdbg(&pl08x
->adev
->dev
,
892 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
893 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
894 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
895 llis_va
[PL080_LLI_CCTL
],
896 llis_va
[PL080S_LLI_CCTL2
]);
897 llis_va
+= pl08x
->lli_words
;
900 dev_vdbg(&pl08x
->adev
->dev
,
901 "%-3s %-9s %-10s %-10s %-10s %s\n",
902 "lli", "", "csrc", "cdst", "clli", "cctl");
903 for (i
= 0; i
< num_llis
; i
++) {
904 dev_vdbg(&pl08x
->adev
->dev
,
905 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
906 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
907 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
908 llis_va
[PL080_LLI_CCTL
]);
909 llis_va
+= pl08x
->lli_words
;
914 static inline void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
915 const u32
*llis_va
, int num_llis
) {}
919 * This fills in the table of LLIs for the transfer descriptor
920 * Note that we assume we never have to change the burst sizes
923 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
924 struct pl08x_txd
*txd
)
926 struct pl08x_bus_data
*mbus
, *sbus
;
927 struct pl08x_lli_build_data bd
;
929 u32 cctl
, early_bytes
= 0;
930 size_t max_bytes_per_lli
, total_bytes
;
931 u32
*llis_va
, *last_lli
;
932 struct pl08x_sg
*dsg
;
934 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
, &txd
->llis_bus
);
936 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
941 bd
.lli_bus
= (pl08x
->lli_buses
& PL08X_AHB2
) ? PL080_LLI_LM_AHB2
: 0;
944 /* Find maximum width of the source bus */
946 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
947 PL080_CONTROL_SWIDTH_SHIFT
);
949 /* Find maximum width of the destination bus */
951 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
952 PL080_CONTROL_DWIDTH_SHIFT
);
954 list_for_each_entry(dsg
, &txd
->dsg_list
, node
) {
958 bd
.srcbus
.addr
= dsg
->src_addr
;
959 bd
.dstbus
.addr
= dsg
->dst_addr
;
960 bd
.remainder
= dsg
->len
;
961 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
962 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
964 pl08x_choose_master_bus(&bd
, &mbus
, &sbus
, cctl
);
966 dev_vdbg(&pl08x
->adev
->dev
,
967 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
969 cctl
& PL080_CONTROL_SRC_INCR
? "+" : "",
972 cctl
& PL080_CONTROL_DST_INCR
? "+" : "",
975 dev_vdbg(&pl08x
->adev
->dev
, "mbus=%s sbus=%s\n",
976 mbus
== &bd
.srcbus
? "src" : "dst",
977 sbus
== &bd
.srcbus
? "src" : "dst");
980 * Zero length is only allowed if all these requirements are
982 * - flow controller is peripheral.
983 * - src.addr is aligned to src.width
984 * - dst.addr is aligned to dst.width
986 * sg_len == 1 should be true, as there can be two cases here:
988 * - Memory addresses are contiguous and are not scattered.
989 * Here, Only one sg will be passed by user driver, with
990 * memory address and zero length. We pass this to controller
991 * and after the transfer it will receive the last burst
992 * request from peripheral and so transfer finishes.
994 * - Memory addresses are scattered and are not contiguous.
995 * Here, Obviously as DMA controller doesn't know when a lli's
996 * transfer gets over, it can't load next lli. So in this
997 * case, there has to be an assumption that only one lli is
998 * supported. Thus, we can't have scattered addresses.
1000 if (!bd
.remainder
) {
1001 u32 fc
= (txd
->ccfg
& PL080_CONFIG_FLOW_CONTROL_MASK
) >>
1002 PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1003 if (!((fc
>= PL080_FLOW_SRC2DST_DST
) &&
1004 (fc
<= PL080_FLOW_SRC2DST_SRC
))) {
1005 dev_err(&pl08x
->adev
->dev
, "%s sg len can't be zero",
1010 if (!IS_BUS_ALIGNED(&bd
.srcbus
) ||
1011 !IS_BUS_ALIGNED(&bd
.dstbus
)) {
1012 dev_err(&pl08x
->adev
->dev
,
1013 "%s src & dst address must be aligned to src"
1014 " & dst width if peripheral is flow controller",
1019 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1020 bd
.dstbus
.buswidth
, 0);
1021 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1027 * Send byte by byte for following cases
1028 * - Less than a bus width available
1029 * - until master bus is aligned
1031 if (bd
.remainder
< mbus
->buswidth
)
1032 early_bytes
= bd
.remainder
;
1033 else if (!IS_BUS_ALIGNED(mbus
)) {
1034 early_bytes
= mbus
->buswidth
-
1035 (mbus
->addr
& (mbus
->buswidth
- 1));
1036 if ((bd
.remainder
- early_bytes
) < mbus
->buswidth
)
1037 early_bytes
= bd
.remainder
;
1041 dev_vdbg(&pl08x
->adev
->dev
,
1042 "%s byte width LLIs (remain 0x%08x)\n",
1043 __func__
, bd
.remainder
);
1044 prep_byte_width_lli(pl08x
, &bd
, &cctl
, early_bytes
,
1045 num_llis
++, &total_bytes
);
1050 * Master now aligned
1051 * - if slave is not then we must set its width down
1053 if (!IS_BUS_ALIGNED(sbus
)) {
1054 dev_dbg(&pl08x
->adev
->dev
,
1055 "%s set down bus width to one byte\n",
1062 * Bytes transferred = tsize * src width, not
1065 max_bytes_per_lli
= bd
.srcbus
.buswidth
*
1066 pl08x
->vd
->max_transfer_size
;
1067 dev_vdbg(&pl08x
->adev
->dev
,
1068 "%s max bytes per lli = %zu\n",
1069 __func__
, max_bytes_per_lli
);
1072 * Make largest possible LLIs until less than one bus
1075 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
1076 size_t lli_len
, tsize
, width
;
1079 * If enough left try to send max possible,
1080 * otherwise try to send the remainder
1082 lli_len
= min(bd
.remainder
, max_bytes_per_lli
);
1085 * Check against maximum bus alignment:
1086 * Calculate actual transfer size in relation to
1087 * bus width an get a maximum remainder of the
1088 * highest bus width - 1
1090 width
= max(mbus
->buswidth
, sbus
->buswidth
);
1091 lli_len
= (lli_len
/ width
) * width
;
1092 tsize
= lli_len
/ bd
.srcbus
.buswidth
;
1094 dev_vdbg(&pl08x
->adev
->dev
,
1095 "%s fill lli with single lli chunk of "
1096 "size 0x%08zx (remainder 0x%08zx)\n",
1097 __func__
, lli_len
, bd
.remainder
);
1099 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1100 bd
.dstbus
.buswidth
, tsize
);
1101 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1102 lli_len
, cctl
, tsize
);
1103 total_bytes
+= lli_len
;
1107 * Send any odd bytes
1110 dev_vdbg(&pl08x
->adev
->dev
,
1111 "%s align with boundary, send odd bytes (remain %zu)\n",
1112 __func__
, bd
.remainder
);
1113 prep_byte_width_lli(pl08x
, &bd
, &cctl
,
1114 bd
.remainder
, num_llis
++, &total_bytes
);
1118 if (total_bytes
!= dsg
->len
) {
1119 dev_err(&pl08x
->adev
->dev
,
1120 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1121 __func__
, total_bytes
, dsg
->len
);
1125 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
1126 dev_err(&pl08x
->adev
->dev
,
1127 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1128 __func__
, MAX_NUM_TSFR_LLIS
);
1133 llis_va
= txd
->llis_va
;
1134 last_lli
= llis_va
+ (num_llis
- 1) * pl08x
->lli_words
;
1137 /* Link back to the first LLI. */
1138 last_lli
[PL080_LLI_LLI
] = txd
->llis_bus
| bd
.lli_bus
;
1140 /* The final LLI terminates the LLI. */
1141 last_lli
[PL080_LLI_LLI
] = 0;
1142 /* The final LLI element shall also fire an interrupt. */
1143 last_lli
[PL080_LLI_CCTL
] |= PL080_CONTROL_TC_IRQ_EN
;
1146 pl08x_dump_lli(pl08x
, llis_va
, num_llis
);
1151 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
1152 struct pl08x_txd
*txd
)
1154 struct pl08x_sg
*dsg
, *_dsg
;
1157 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
1159 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
1160 list_del(&dsg
->node
);
1167 static void pl08x_unmap_buffers(struct pl08x_txd
*txd
)
1169 struct device
*dev
= txd
->vd
.tx
.chan
->device
->dev
;
1170 struct pl08x_sg
*dsg
;
1172 if (!(txd
->vd
.tx
.flags
& DMA_COMPL_SKIP_SRC_UNMAP
)) {
1173 if (txd
->vd
.tx
.flags
& DMA_COMPL_SRC_UNMAP_SINGLE
)
1174 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1175 dma_unmap_single(dev
, dsg
->src_addr
, dsg
->len
,
1178 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1179 dma_unmap_page(dev
, dsg
->src_addr
, dsg
->len
,
1183 if (!(txd
->vd
.tx
.flags
& DMA_COMPL_SKIP_DEST_UNMAP
)) {
1184 if (txd
->vd
.tx
.flags
& DMA_COMPL_DEST_UNMAP_SINGLE
)
1185 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1186 dma_unmap_single(dev
, dsg
->dst_addr
, dsg
->len
,
1189 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1190 dma_unmap_page(dev
, dsg
->dst_addr
, dsg
->len
,
1195 static void pl08x_desc_free(struct virt_dma_desc
*vd
)
1197 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1198 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(vd
->tx
.chan
);
1201 pl08x_unmap_buffers(txd
);
1204 pl08x_release_mux(plchan
);
1206 pl08x_free_txd(plchan
->host
, txd
);
1209 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
1210 struct pl08x_dma_chan
*plchan
)
1214 vchan_get_all_descriptors(&plchan
->vc
, &head
);
1215 vchan_dma_desc_free_list(&plchan
->vc
, &head
);
1219 * The DMA ENGINE API
1221 static int pl08x_alloc_chan_resources(struct dma_chan
*chan
)
1226 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
1228 /* Ensure all queued descriptors are freed */
1229 vchan_free_chan_resources(to_virt_chan(chan
));
1232 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1233 struct dma_chan
*chan
, unsigned long flags
)
1235 struct dma_async_tx_descriptor
*retval
= NULL
;
1241 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1242 * If slaves are relying on interrupts to signal completion this function
1243 * must not be called with interrupts disabled.
1245 static enum dma_status
pl08x_dma_tx_status(struct dma_chan
*chan
,
1246 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
1248 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1249 struct virt_dma_desc
*vd
;
1250 unsigned long flags
;
1251 enum dma_status ret
;
1254 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1255 if (ret
== DMA_SUCCESS
)
1259 * There's no point calculating the residue if there's
1260 * no txstate to store the value.
1263 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1268 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1269 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1270 if (ret
!= DMA_SUCCESS
) {
1271 vd
= vchan_find_desc(&plchan
->vc
, cookie
);
1273 /* On the issued list, so hasn't been processed yet */
1274 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1275 struct pl08x_sg
*dsg
;
1277 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1280 bytes
= pl08x_getbytes_chan(plchan
);
1283 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1286 * This cookie not complete yet
1287 * Get number of bytes left in the active transactions and queue
1289 dma_set_residue(txstate
, bytes
);
1291 if (plchan
->state
== PL08X_CHAN_PAUSED
&& ret
== DMA_IN_PROGRESS
)
1294 /* Whether waiting or running, we're in progress */
1298 /* PrimeCell DMA extension */
1299 struct burst_table
{
1304 static const struct burst_table burst_sizes
[] = {
1307 .reg
= PL080_BSIZE_256
,
1311 .reg
= PL080_BSIZE_128
,
1315 .reg
= PL080_BSIZE_64
,
1319 .reg
= PL080_BSIZE_32
,
1323 .reg
= PL080_BSIZE_16
,
1327 .reg
= PL080_BSIZE_8
,
1331 .reg
= PL080_BSIZE_4
,
1335 .reg
= PL080_BSIZE_1
,
1340 * Given the source and destination available bus masks, select which
1341 * will be routed to each port. We try to have source and destination
1342 * on separate ports, but always respect the allowable settings.
1344 static u32
pl08x_select_bus(u8 src
, u8 dst
)
1348 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1349 cctl
|= PL080_CONTROL_DST_AHB2
;
1350 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1351 cctl
|= PL080_CONTROL_SRC_AHB2
;
1356 static u32
pl08x_cctl(u32 cctl
)
1358 cctl
&= ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1359 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1360 PL080_CONTROL_PROT_MASK
);
1362 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1363 return cctl
| PL080_CONTROL_PROT_SYS
;
1366 static u32
pl08x_width(enum dma_slave_buswidth width
)
1369 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1370 return PL080_WIDTH_8BIT
;
1371 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1372 return PL080_WIDTH_16BIT
;
1373 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1374 return PL080_WIDTH_32BIT
;
1380 static u32
pl08x_burst(u32 maxburst
)
1384 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1385 if (burst_sizes
[i
].burstwords
<= maxburst
)
1388 return burst_sizes
[i
].reg
;
1391 static u32
pl08x_get_cctl(struct pl08x_dma_chan
*plchan
,
1392 enum dma_slave_buswidth addr_width
, u32 maxburst
)
1394 u32 width
, burst
, cctl
= 0;
1396 width
= pl08x_width(addr_width
);
1400 cctl
|= width
<< PL080_CONTROL_SWIDTH_SHIFT
;
1401 cctl
|= width
<< PL080_CONTROL_DWIDTH_SHIFT
;
1404 * If this channel will only request single transfers, set this
1405 * down to ONE element. Also select one element if no maxburst
1408 if (plchan
->cd
->single
)
1411 burst
= pl08x_burst(maxburst
);
1412 cctl
|= burst
<< PL080_CONTROL_SB_SIZE_SHIFT
;
1413 cctl
|= burst
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1415 return pl08x_cctl(cctl
);
1418 static int dma_set_runtime_config(struct dma_chan
*chan
,
1419 struct dma_slave_config
*config
)
1421 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1422 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1427 /* Reject definitely invalid configurations */
1428 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
1429 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
1432 if (config
->device_fc
&& pl08x
->vd
->pl080s
) {
1433 dev_err(&pl08x
->adev
->dev
,
1434 "%s: PL080S does not support peripheral flow control\n",
1439 plchan
->cfg
= *config
;
1445 * Slave transactions callback to the slave device to allow
1446 * synchronization of slave DMA signals with the DMAC enable
1448 static void pl08x_issue_pending(struct dma_chan
*chan
)
1450 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1451 unsigned long flags
;
1453 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1454 if (vchan_issue_pending(&plchan
->vc
)) {
1455 if (!plchan
->phychan
&& plchan
->state
!= PL08X_CHAN_WAITING
)
1456 pl08x_phy_alloc_and_start(plchan
);
1458 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1461 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
)
1463 struct pl08x_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
1466 INIT_LIST_HEAD(&txd
->dsg_list
);
1468 /* Always enable error and terminal interrupts */
1469 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1470 PL080_CONFIG_TC_IRQ_MASK
;
1476 * Initialize a descriptor to be used by memcpy submit
1478 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1479 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1480 size_t len
, unsigned long flags
)
1482 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1483 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1484 struct pl08x_txd
*txd
;
1485 struct pl08x_sg
*dsg
;
1488 txd
= pl08x_get_txd(plchan
);
1490 dev_err(&pl08x
->adev
->dev
,
1491 "%s no memory for descriptor\n", __func__
);
1495 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1497 pl08x_free_txd(pl08x
, txd
);
1498 dev_err(&pl08x
->adev
->dev
, "%s no memory for pl080 sg\n",
1502 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1504 dsg
->src_addr
= src
;
1505 dsg
->dst_addr
= dest
;
1508 /* Set platform data for m2m */
1509 txd
->ccfg
|= PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1510 txd
->cctl
= pl08x
->pd
->memcpy_channel
.cctl_memcpy
&
1511 ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
1513 /* Both to be incremented or the code will break */
1514 txd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1516 if (pl08x
->vd
->dualmaster
)
1517 txd
->cctl
|= pl08x_select_bus(pl08x
->mem_buses
,
1520 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1522 pl08x_free_txd(pl08x
, txd
);
1526 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1529 static struct pl08x_txd
*pl08x_init_txd(
1530 struct dma_chan
*chan
,
1531 enum dma_transfer_direction direction
,
1532 dma_addr_t
*slave_addr
)
1534 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1535 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1536 struct pl08x_txd
*txd
;
1537 enum dma_slave_buswidth addr_width
;
1539 u8 src_buses
, dst_buses
;
1542 txd
= pl08x_get_txd(plchan
);
1544 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1549 * Set up addresses, the PrimeCell configured address
1550 * will take precedence since this may configure the
1551 * channel target address dynamically at runtime.
1553 if (direction
== DMA_MEM_TO_DEV
) {
1554 cctl
= PL080_CONTROL_SRC_INCR
;
1555 *slave_addr
= plchan
->cfg
.dst_addr
;
1556 addr_width
= plchan
->cfg
.dst_addr_width
;
1557 maxburst
= plchan
->cfg
.dst_maxburst
;
1558 src_buses
= pl08x
->mem_buses
;
1559 dst_buses
= plchan
->cd
->periph_buses
;
1560 } else if (direction
== DMA_DEV_TO_MEM
) {
1561 cctl
= PL080_CONTROL_DST_INCR
;
1562 *slave_addr
= plchan
->cfg
.src_addr
;
1563 addr_width
= plchan
->cfg
.src_addr_width
;
1564 maxburst
= plchan
->cfg
.src_maxburst
;
1565 src_buses
= plchan
->cd
->periph_buses
;
1566 dst_buses
= pl08x
->mem_buses
;
1568 pl08x_free_txd(pl08x
, txd
);
1569 dev_err(&pl08x
->adev
->dev
,
1570 "%s direction unsupported\n", __func__
);
1574 cctl
|= pl08x_get_cctl(plchan
, addr_width
, maxburst
);
1576 pl08x_free_txd(pl08x
, txd
);
1577 dev_err(&pl08x
->adev
->dev
,
1578 "DMA slave configuration botched?\n");
1582 txd
->cctl
= cctl
| pl08x_select_bus(src_buses
, dst_buses
);
1584 if (plchan
->cfg
.device_fc
)
1585 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER_PER
:
1586 PL080_FLOW_PER2MEM_PER
;
1588 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER
:
1591 txd
->ccfg
|= tmp
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1593 ret
= pl08x_request_mux(plchan
);
1595 pl08x_free_txd(pl08x
, txd
);
1596 dev_dbg(&pl08x
->adev
->dev
,
1597 "unable to mux for transfer on %s due to platform restrictions\n",
1602 dev_dbg(&pl08x
->adev
->dev
, "allocated DMA request signal %d for xfer on %s\n",
1603 plchan
->signal
, plchan
->name
);
1605 /* Assign the flow control signal to this channel */
1606 if (direction
== DMA_MEM_TO_DEV
)
1607 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
1609 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
1614 static int pl08x_tx_add_sg(struct pl08x_txd
*txd
,
1615 enum dma_transfer_direction direction
,
1616 dma_addr_t slave_addr
,
1617 dma_addr_t buf_addr
,
1620 struct pl08x_sg
*dsg
;
1622 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1626 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1629 if (direction
== DMA_MEM_TO_DEV
) {
1630 dsg
->src_addr
= buf_addr
;
1631 dsg
->dst_addr
= slave_addr
;
1633 dsg
->src_addr
= slave_addr
;
1634 dsg
->dst_addr
= buf_addr
;
1640 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1641 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1642 unsigned int sg_len
, enum dma_transfer_direction direction
,
1643 unsigned long flags
, void *context
)
1645 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1646 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1647 struct pl08x_txd
*txd
;
1648 struct scatterlist
*sg
;
1650 dma_addr_t slave_addr
;
1652 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1653 __func__
, sg_dma_len(sgl
), plchan
->name
);
1655 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1659 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1660 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1664 pl08x_release_mux(plchan
);
1665 pl08x_free_txd(pl08x
, txd
);
1666 dev_err(&pl08x
->adev
->dev
, "%s no mem for pl080 sg\n",
1672 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1674 pl08x_release_mux(plchan
);
1675 pl08x_free_txd(pl08x
, txd
);
1679 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1682 static struct dma_async_tx_descriptor
*pl08x_prep_dma_cyclic(
1683 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
1684 size_t period_len
, enum dma_transfer_direction direction
,
1685 unsigned long flags
, void *context
)
1687 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1688 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1689 struct pl08x_txd
*txd
;
1691 dma_addr_t slave_addr
;
1693 dev_dbg(&pl08x
->adev
->dev
,
1694 "%s prepare cyclic transaction of %d/%d bytes %s %s\n",
1695 __func__
, period_len
, buf_len
,
1696 direction
== DMA_MEM_TO_DEV
? "to" : "from",
1699 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1704 txd
->cctl
|= PL080_CONTROL_TC_IRQ_EN
;
1705 for (tmp
= 0; tmp
< buf_len
; tmp
+= period_len
) {
1706 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1707 buf_addr
+ tmp
, period_len
);
1709 pl08x_release_mux(plchan
);
1710 pl08x_free_txd(pl08x
, txd
);
1715 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1717 pl08x_release_mux(plchan
);
1718 pl08x_free_txd(pl08x
, txd
);
1722 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1725 static int pl08x_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1728 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1729 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1730 unsigned long flags
;
1733 /* Controls applicable to inactive channels */
1734 if (cmd
== DMA_SLAVE_CONFIG
) {
1735 return dma_set_runtime_config(chan
,
1736 (struct dma_slave_config
*)arg
);
1740 * Anything succeeds on channels with no physical allocation and
1741 * no queued transfers.
1743 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1744 if (!plchan
->phychan
&& !plchan
->at
) {
1745 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1750 case DMA_TERMINATE_ALL
:
1751 plchan
->state
= PL08X_CHAN_IDLE
;
1753 if (plchan
->phychan
) {
1755 * Mark physical channel as free and free any slave
1758 pl08x_phy_free(plchan
);
1760 /* Dequeue jobs and free LLIs */
1762 pl08x_desc_free(&plchan
->at
->vd
);
1765 /* Dequeue jobs not yet fired as well */
1766 pl08x_free_txd_list(pl08x
, plchan
);
1769 pl08x_pause_phy_chan(plchan
->phychan
);
1770 plchan
->state
= PL08X_CHAN_PAUSED
;
1773 pl08x_resume_phy_chan(plchan
->phychan
);
1774 plchan
->state
= PL08X_CHAN_RUNNING
;
1777 /* Unknown command */
1782 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1787 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1789 struct pl08x_dma_chan
*plchan
;
1790 char *name
= chan_id
;
1792 /* Reject channels for devices not bound to this driver */
1793 if (chan
->device
->dev
->driver
!= &pl08x_amba_driver
.drv
)
1796 plchan
= to_pl08x_chan(chan
);
1798 /* Check that the channel is not taken! */
1799 if (!strcmp(plchan
->name
, name
))
1806 * Just check that the device is there and active
1807 * TODO: turn this bit on/off depending on the number of physical channels
1808 * actually used, if it is zero... well shut it off. That will save some
1809 * power. Cut the clock at the same time.
1811 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1813 /* The Nomadik variant does not have the config register */
1814 if (pl08x
->vd
->nomadik
)
1816 writel(PL080_CONFIG_ENABLE
, pl08x
->base
+ PL080_CONFIG
);
1819 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1821 struct pl08x_driver_data
*pl08x
= dev
;
1822 u32 mask
= 0, err
, tc
, i
;
1824 /* check & clear - ERR & TC interrupts */
1825 err
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1827 dev_err(&pl08x
->adev
->dev
, "%s error interrupt, register value 0x%08x\n",
1829 writel(err
, pl08x
->base
+ PL080_ERR_CLEAR
);
1831 tc
= readl(pl08x
->base
+ PL080_TC_STATUS
);
1833 writel(tc
, pl08x
->base
+ PL080_TC_CLEAR
);
1838 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1839 if (((1 << i
) & err
) || ((1 << i
) & tc
)) {
1840 /* Locate physical channel */
1841 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1842 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1843 struct pl08x_txd
*tx
;
1846 dev_err(&pl08x
->adev
->dev
,
1847 "%s Error TC interrupt on unused channel: 0x%08x\n",
1852 spin_lock(&plchan
->vc
.lock
);
1854 if (tx
&& tx
->cyclic
) {
1855 vchan_cyclic_callback(&tx
->vd
);
1859 * This descriptor is done, release its mux
1862 pl08x_release_mux(plchan
);
1864 vchan_cookie_complete(&tx
->vd
);
1867 * And start the next descriptor (if any),
1868 * otherwise free this channel.
1870 if (vchan_next_desc(&plchan
->vc
))
1871 pl08x_start_next_txd(plchan
);
1873 pl08x_phy_free(plchan
);
1875 spin_unlock(&plchan
->vc
.lock
);
1881 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1884 static void pl08x_dma_slave_init(struct pl08x_dma_chan
*chan
)
1887 chan
->name
= chan
->cd
->bus_id
;
1888 chan
->cfg
.src_addr
= chan
->cd
->addr
;
1889 chan
->cfg
.dst_addr
= chan
->cd
->addr
;
1893 * Initialise the DMAC memcpy/slave channels.
1894 * Make a local wrapper to hold required data
1896 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1897 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1899 struct pl08x_dma_chan
*chan
;
1902 INIT_LIST_HEAD(&dmadev
->channels
);
1905 * Register as many many memcpy as we have physical channels,
1906 * we won't always be able to use all but the code will have
1907 * to cope with that situation.
1909 for (i
= 0; i
< channels
; i
++) {
1910 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1912 dev_err(&pl08x
->adev
->dev
,
1913 "%s no memory for channel\n", __func__
);
1918 chan
->state
= PL08X_CHAN_IDLE
;
1922 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1923 pl08x_dma_slave_init(chan
);
1925 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1926 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1932 dev_dbg(&pl08x
->adev
->dev
,
1933 "initialize virtual channel \"%s\"\n",
1936 chan
->vc
.desc_free
= pl08x_desc_free
;
1937 vchan_init(&chan
->vc
, dmadev
);
1939 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1940 i
, slave
? "slave" : "memcpy");
1944 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1946 struct pl08x_dma_chan
*chan
= NULL
;
1947 struct pl08x_dma_chan
*next
;
1949 list_for_each_entry_safe(chan
,
1950 next
, &dmadev
->channels
, vc
.chan
.device_node
) {
1951 list_del(&chan
->vc
.chan
.device_node
);
1956 #ifdef CONFIG_DEBUG_FS
1957 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1960 case PL08X_CHAN_IDLE
:
1962 case PL08X_CHAN_RUNNING
:
1964 case PL08X_CHAN_PAUSED
:
1966 case PL08X_CHAN_WAITING
:
1971 return "UNKNOWN STATE";
1974 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1976 struct pl08x_driver_data
*pl08x
= s
->private;
1977 struct pl08x_dma_chan
*chan
;
1978 struct pl08x_phy_chan
*ch
;
1979 unsigned long flags
;
1982 seq_printf(s
, "PL08x physical channels:\n");
1983 seq_printf(s
, "CHANNEL:\tUSER:\n");
1984 seq_printf(s
, "--------\t-----\n");
1985 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1986 struct pl08x_dma_chan
*virt_chan
;
1988 ch
= &pl08x
->phy_chans
[i
];
1990 spin_lock_irqsave(&ch
->lock
, flags
);
1991 virt_chan
= ch
->serving
;
1993 seq_printf(s
, "%d\t\t%s%s\n",
1995 virt_chan
? virt_chan
->name
: "(none)",
1996 ch
->locked
? " LOCKED" : "");
1998 spin_unlock_irqrestore(&ch
->lock
, flags
);
2001 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
2002 seq_printf(s
, "CHANNEL:\tSTATE:\n");
2003 seq_printf(s
, "--------\t------\n");
2004 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
) {
2005 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2006 pl08x_state_str(chan
->state
));
2009 seq_printf(s
, "\nPL08x virtual slave channels:\n");
2010 seq_printf(s
, "CHANNEL:\tSTATE:\n");
2011 seq_printf(s
, "--------\t------\n");
2012 list_for_each_entry(chan
, &pl08x
->slave
.channels
, vc
.chan
.device_node
) {
2013 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2014 pl08x_state_str(chan
->state
));
2020 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
2022 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
2025 static const struct file_operations pl08x_debugfs_operations
= {
2026 .open
= pl08x_debugfs_open
,
2028 .llseek
= seq_lseek
,
2029 .release
= single_release
,
2032 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2034 /* Expose a simple debugfs interface to view all clocks */
2035 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
),
2036 S_IFREG
| S_IRUGO
, NULL
, pl08x
,
2037 &pl08x_debugfs_operations
);
2041 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2046 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2048 struct pl08x_driver_data
*pl08x
;
2049 const struct vendor_data
*vd
= id
->data
;
2054 ret
= amba_request_regions(adev
, NULL
);
2058 /* Create the driver state holder */
2059 pl08x
= kzalloc(sizeof(*pl08x
), GFP_KERNEL
);
2065 /* Initialize memcpy engine */
2066 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
2067 pl08x
->memcpy
.dev
= &adev
->dev
;
2068 pl08x
->memcpy
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
2069 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
2070 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
2071 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2072 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
2073 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
2074 pl08x
->memcpy
.device_control
= pl08x_control
;
2076 /* Initialize slave engine */
2077 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
2078 dma_cap_set(DMA_CYCLIC
, pl08x
->slave
.cap_mask
);
2079 pl08x
->slave
.dev
= &adev
->dev
;
2080 pl08x
->slave
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
2081 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
2082 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2083 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
2084 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
2085 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
2086 pl08x
->slave
.device_prep_dma_cyclic
= pl08x_prep_dma_cyclic
;
2087 pl08x
->slave
.device_control
= pl08x_control
;
2089 /* Get the platform data */
2090 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
2092 dev_err(&adev
->dev
, "no platform data supplied\n");
2094 goto out_no_platdata
;
2097 /* Assign useful pointers to the driver state */
2101 /* By default, AHB1 only. If dualmaster, from platform */
2102 pl08x
->lli_buses
= PL08X_AHB1
;
2103 pl08x
->mem_buses
= PL08X_AHB1
;
2104 if (pl08x
->vd
->dualmaster
) {
2105 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
2106 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
2110 pl08x
->lli_words
= PL080S_LLI_WORDS
;
2112 pl08x
->lli_words
= PL080_LLI_WORDS
;
2113 tsfr_size
= MAX_NUM_TSFR_LLIS
* pl08x
->lli_words
* sizeof(u32
);
2115 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2116 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
2117 tsfr_size
, PL08X_ALIGN
, 0);
2120 goto out_no_lli_pool
;
2123 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2126 goto out_no_ioremap
;
2129 /* Turn on the PL08x */
2130 pl08x_ensure_on(pl08x
);
2132 /* Attach the interrupt handler */
2133 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
2134 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
2136 ret
= request_irq(adev
->irq
[0], pl08x_irq
, IRQF_DISABLED
,
2137 DRIVER_NAME
, pl08x
);
2139 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
2140 __func__
, adev
->irq
[0]);
2144 /* Initialize physical channels */
2145 pl08x
->phy_chans
= kzalloc((vd
->channels
* sizeof(*pl08x
->phy_chans
)),
2147 if (!pl08x
->phy_chans
) {
2148 dev_err(&adev
->dev
, "%s failed to allocate "
2149 "physical channel holders\n",
2152 goto out_no_phychans
;
2155 for (i
= 0; i
< vd
->channels
; i
++) {
2156 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
2159 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
2160 ch
->reg_config
= ch
->base
+ vd
->config_offset
;
2161 spin_lock_init(&ch
->lock
);
2164 * Nomadik variants can have channels that are locked
2165 * down for the secure world only. Lock up these channels
2166 * by perpetually serving a dummy virtual channel.
2171 val
= readl(ch
->reg_config
);
2172 if (val
& (PL080N_CONFIG_ITPROT
| PL080N_CONFIG_SECPROT
)) {
2173 dev_info(&adev
->dev
, "physical channel %d reserved for secure access only\n", i
);
2178 dev_dbg(&adev
->dev
, "physical channel %d is %s\n",
2179 i
, pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
2182 /* Register as many memcpy channels as there are physical channels */
2183 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
2184 pl08x
->vd
->channels
, false);
2186 dev_warn(&pl08x
->adev
->dev
,
2187 "%s failed to enumerate memcpy channels - %d\n",
2191 pl08x
->memcpy
.chancnt
= ret
;
2193 /* Register slave channels */
2194 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
2195 pl08x
->pd
->num_slave_channels
, true);
2197 dev_warn(&pl08x
->adev
->dev
,
2198 "%s failed to enumerate slave channels - %d\n",
2202 pl08x
->slave
.chancnt
= ret
;
2204 ret
= dma_async_device_register(&pl08x
->memcpy
);
2206 dev_warn(&pl08x
->adev
->dev
,
2207 "%s failed to register memcpy as an async device - %d\n",
2209 goto out_no_memcpy_reg
;
2212 ret
= dma_async_device_register(&pl08x
->slave
);
2214 dev_warn(&pl08x
->adev
->dev
,
2215 "%s failed to register slave as an async device - %d\n",
2217 goto out_no_slave_reg
;
2220 amba_set_drvdata(adev
, pl08x
);
2221 init_pl08x_debugfs(pl08x
);
2222 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2223 amba_part(adev
), pl08x
->vd
->pl080s
? "s" : "", amba_rev(adev
),
2224 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
2229 dma_async_device_unregister(&pl08x
->memcpy
);
2231 pl08x_free_virtual_channels(&pl08x
->slave
);
2233 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2235 kfree(pl08x
->phy_chans
);
2237 free_irq(adev
->irq
[0], pl08x
);
2239 iounmap(pl08x
->base
);
2241 dma_pool_destroy(pl08x
->pool
);
2246 amba_release_regions(adev
);
2250 /* PL080 has 8 channels and the PL080 have just 2 */
2251 static struct vendor_data vendor_pl080
= {
2252 .config_offset
= PL080_CH_CONFIG
,
2255 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2258 static struct vendor_data vendor_nomadik
= {
2259 .config_offset
= PL080_CH_CONFIG
,
2263 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2266 static struct vendor_data vendor_pl080s
= {
2267 .config_offset
= PL080S_CH_CONFIG
,
2270 .max_transfer_size
= PL080S_CONTROL_TRANSFER_SIZE_MASK
,
2273 static struct vendor_data vendor_pl081
= {
2274 .config_offset
= PL080_CH_CONFIG
,
2276 .dualmaster
= false,
2277 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2280 static struct amba_id pl08x_ids
[] = {
2281 /* Samsung PL080S variant */
2285 .data
= &vendor_pl080s
,
2291 .data
= &vendor_pl080
,
2297 .data
= &vendor_pl081
,
2299 /* Nomadik 8815 PL080 variant */
2303 .data
= &vendor_nomadik
,
2308 MODULE_DEVICE_TABLE(amba
, pl08x_ids
);
2310 static struct amba_driver pl08x_amba_driver
= {
2311 .drv
.name
= DRIVER_NAME
,
2312 .id_table
= pl08x_ids
,
2313 .probe
= pl08x_probe
,
2316 static int __init
pl08x_init(void)
2319 retval
= amba_driver_register(&pl08x_amba_driver
);
2321 printk(KERN_WARNING DRIVER_NAME
2322 "failed to register as an AMBA device (%d)\n",
2326 subsys_initcall(pl08x_init
);