dsa: mv88e6xxx: Enable forwarding for unknown to the CPU port
[linux/fpc-iii.git] / kernel / power / swap.c
blobb2066fb5b10f7639af4a391fe9786429cff90ac4
1 /*
2 * linux/kernel/power/swap.c
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 * This file is released under the GPLv2.
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
35 #include "power.h"
37 #define HIBERNATE_SIG "S1SUSPEND"
40 * The swap map is a data structure used for keeping track of each page
41 * written to a swap partition. It consists of many swap_map_page
42 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43 * These structures are stored on the swap and linked together with the
44 * help of the .next_swap member.
46 * The swap map is created during suspend. The swap map pages are
47 * allocated and populated one at a time, so we only need one memory
48 * page to set up the entire structure.
50 * During resume we pick up all swap_map_page structures into a list.
53 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
56 * Number of free pages that are not high.
58 static inline unsigned long low_free_pages(void)
60 return nr_free_pages() - nr_free_highpages();
64 * Number of pages required to be kept free while writing the image. Always
65 * half of all available low pages before the writing starts.
67 static inline unsigned long reqd_free_pages(void)
69 return low_free_pages() / 2;
72 struct swap_map_page {
73 sector_t entries[MAP_PAGE_ENTRIES];
74 sector_t next_swap;
77 struct swap_map_page_list {
78 struct swap_map_page *map;
79 struct swap_map_page_list *next;
82 /**
83 * The swap_map_handle structure is used for handling swap in
84 * a file-alike way
87 struct swap_map_handle {
88 struct swap_map_page *cur;
89 struct swap_map_page_list *maps;
90 sector_t cur_swap;
91 sector_t first_sector;
92 unsigned int k;
93 unsigned long reqd_free_pages;
94 u32 crc32;
97 struct swsusp_header {
98 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99 sizeof(u32)];
100 u32 crc32;
101 sector_t image;
102 unsigned int flags; /* Flags to pass to the "boot" kernel */
103 char orig_sig[10];
104 char sig[10];
105 } __packed;
107 static struct swsusp_header *swsusp_header;
110 * The following functions are used for tracing the allocated
111 * swap pages, so that they can be freed in case of an error.
114 struct swsusp_extent {
115 struct rb_node node;
116 unsigned long start;
117 unsigned long end;
120 static struct rb_root swsusp_extents = RB_ROOT;
122 static int swsusp_extents_insert(unsigned long swap_offset)
124 struct rb_node **new = &(swsusp_extents.rb_node);
125 struct rb_node *parent = NULL;
126 struct swsusp_extent *ext;
128 /* Figure out where to put the new node */
129 while (*new) {
130 ext = rb_entry(*new, struct swsusp_extent, node);
131 parent = *new;
132 if (swap_offset < ext->start) {
133 /* Try to merge */
134 if (swap_offset == ext->start - 1) {
135 ext->start--;
136 return 0;
138 new = &((*new)->rb_left);
139 } else if (swap_offset > ext->end) {
140 /* Try to merge */
141 if (swap_offset == ext->end + 1) {
142 ext->end++;
143 return 0;
145 new = &((*new)->rb_right);
146 } else {
147 /* It already is in the tree */
148 return -EINVAL;
151 /* Add the new node and rebalance the tree. */
152 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153 if (!ext)
154 return -ENOMEM;
156 ext->start = swap_offset;
157 ext->end = swap_offset;
158 rb_link_node(&ext->node, parent, new);
159 rb_insert_color(&ext->node, &swsusp_extents);
160 return 0;
164 * alloc_swapdev_block - allocate a swap page and register that it has
165 * been allocated, so that it can be freed in case of an error.
168 sector_t alloc_swapdev_block(int swap)
170 unsigned long offset;
172 offset = swp_offset(get_swap_page_of_type(swap));
173 if (offset) {
174 if (swsusp_extents_insert(offset))
175 swap_free(swp_entry(swap, offset));
176 else
177 return swapdev_block(swap, offset);
179 return 0;
183 * free_all_swap_pages - free swap pages allocated for saving image data.
184 * It also frees the extents used to register which swap entries had been
185 * allocated.
188 void free_all_swap_pages(int swap)
190 struct rb_node *node;
192 while ((node = swsusp_extents.rb_node)) {
193 struct swsusp_extent *ext;
194 unsigned long offset;
196 ext = container_of(node, struct swsusp_extent, node);
197 rb_erase(node, &swsusp_extents);
198 for (offset = ext->start; offset <= ext->end; offset++)
199 swap_free(swp_entry(swap, offset));
201 kfree(ext);
205 int swsusp_swap_in_use(void)
207 return (swsusp_extents.rb_node != NULL);
211 * General things
214 static unsigned short root_swap = 0xffff;
215 static struct block_device *hib_resume_bdev;
217 struct hib_bio_batch {
218 atomic_t count;
219 wait_queue_head_t wait;
220 int error;
223 static void hib_init_batch(struct hib_bio_batch *hb)
225 atomic_set(&hb->count, 0);
226 init_waitqueue_head(&hb->wait);
227 hb->error = 0;
230 static void hib_end_io(struct bio *bio)
232 struct hib_bio_batch *hb = bio->bi_private;
233 struct page *page = bio->bi_io_vec[0].bv_page;
235 if (bio->bi_error) {
236 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
237 imajor(bio->bi_bdev->bd_inode),
238 iminor(bio->bi_bdev->bd_inode),
239 (unsigned long long)bio->bi_iter.bi_sector);
242 if (bio_data_dir(bio) == WRITE)
243 put_page(page);
245 if (bio->bi_error && !hb->error)
246 hb->error = bio->bi_error;
247 if (atomic_dec_and_test(&hb->count))
248 wake_up(&hb->wait);
250 bio_put(bio);
253 static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
254 struct hib_bio_batch *hb)
256 struct page *page = virt_to_page(addr);
257 struct bio *bio;
258 int error = 0;
260 bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1);
261 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
262 bio->bi_bdev = hib_resume_bdev;
264 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
265 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
266 (unsigned long long)bio->bi_iter.bi_sector);
267 bio_put(bio);
268 return -EFAULT;
271 if (hb) {
272 bio->bi_end_io = hib_end_io;
273 bio->bi_private = hb;
274 atomic_inc(&hb->count);
275 submit_bio(rw, bio);
276 } else {
277 error = submit_bio_wait(rw, bio);
278 bio_put(bio);
281 return error;
284 static int hib_wait_io(struct hib_bio_batch *hb)
286 wait_event(hb->wait, atomic_read(&hb->count) == 0);
287 return hb->error;
291 * Saving part
294 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
296 int error;
298 hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
299 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
300 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
301 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
302 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
303 swsusp_header->image = handle->first_sector;
304 swsusp_header->flags = flags;
305 if (flags & SF_CRC32_MODE)
306 swsusp_header->crc32 = handle->crc32;
307 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
308 swsusp_header, NULL);
309 } else {
310 printk(KERN_ERR "PM: Swap header not found!\n");
311 error = -ENODEV;
313 return error;
317 * swsusp_swap_check - check if the resume device is a swap device
318 * and get its index (if so)
320 * This is called before saving image
322 static int swsusp_swap_check(void)
324 int res;
326 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
327 &hib_resume_bdev);
328 if (res < 0)
329 return res;
331 root_swap = res;
332 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
333 if (res)
334 return res;
336 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
337 if (res < 0)
338 blkdev_put(hib_resume_bdev, FMODE_WRITE);
340 return res;
344 * write_page - Write one page to given swap location.
345 * @buf: Address we're writing.
346 * @offset: Offset of the swap page we're writing to.
347 * @hb: bio completion batch
350 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
352 void *src;
353 int ret;
355 if (!offset)
356 return -ENOSPC;
358 if (hb) {
359 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
360 __GFP_NORETRY);
361 if (src) {
362 copy_page(src, buf);
363 } else {
364 ret = hib_wait_io(hb); /* Free pages */
365 if (ret)
366 return ret;
367 src = (void *)__get_free_page(__GFP_WAIT |
368 __GFP_NOWARN |
369 __GFP_NORETRY);
370 if (src) {
371 copy_page(src, buf);
372 } else {
373 WARN_ON_ONCE(1);
374 hb = NULL; /* Go synchronous */
375 src = buf;
378 } else {
379 src = buf;
381 return hib_submit_io(WRITE_SYNC, offset, src, hb);
384 static void release_swap_writer(struct swap_map_handle *handle)
386 if (handle->cur)
387 free_page((unsigned long)handle->cur);
388 handle->cur = NULL;
391 static int get_swap_writer(struct swap_map_handle *handle)
393 int ret;
395 ret = swsusp_swap_check();
396 if (ret) {
397 if (ret != -ENOSPC)
398 printk(KERN_ERR "PM: Cannot find swap device, try "
399 "swapon -a.\n");
400 return ret;
402 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
403 if (!handle->cur) {
404 ret = -ENOMEM;
405 goto err_close;
407 handle->cur_swap = alloc_swapdev_block(root_swap);
408 if (!handle->cur_swap) {
409 ret = -ENOSPC;
410 goto err_rel;
412 handle->k = 0;
413 handle->reqd_free_pages = reqd_free_pages();
414 handle->first_sector = handle->cur_swap;
415 return 0;
416 err_rel:
417 release_swap_writer(handle);
418 err_close:
419 swsusp_close(FMODE_WRITE);
420 return ret;
423 static int swap_write_page(struct swap_map_handle *handle, void *buf,
424 struct hib_bio_batch *hb)
426 int error = 0;
427 sector_t offset;
429 if (!handle->cur)
430 return -EINVAL;
431 offset = alloc_swapdev_block(root_swap);
432 error = write_page(buf, offset, hb);
433 if (error)
434 return error;
435 handle->cur->entries[handle->k++] = offset;
436 if (handle->k >= MAP_PAGE_ENTRIES) {
437 offset = alloc_swapdev_block(root_swap);
438 if (!offset)
439 return -ENOSPC;
440 handle->cur->next_swap = offset;
441 error = write_page(handle->cur, handle->cur_swap, hb);
442 if (error)
443 goto out;
444 clear_page(handle->cur);
445 handle->cur_swap = offset;
446 handle->k = 0;
448 if (hb && low_free_pages() <= handle->reqd_free_pages) {
449 error = hib_wait_io(hb);
450 if (error)
451 goto out;
453 * Recalculate the number of required free pages, to
454 * make sure we never take more than half.
456 handle->reqd_free_pages = reqd_free_pages();
459 out:
460 return error;
463 static int flush_swap_writer(struct swap_map_handle *handle)
465 if (handle->cur && handle->cur_swap)
466 return write_page(handle->cur, handle->cur_swap, NULL);
467 else
468 return -EINVAL;
471 static int swap_writer_finish(struct swap_map_handle *handle,
472 unsigned int flags, int error)
474 if (!error) {
475 flush_swap_writer(handle);
476 printk(KERN_INFO "PM: S");
477 error = mark_swapfiles(handle, flags);
478 printk("|\n");
481 if (error)
482 free_all_swap_pages(root_swap);
483 release_swap_writer(handle);
484 swsusp_close(FMODE_WRITE);
486 return error;
489 /* We need to remember how much compressed data we need to read. */
490 #define LZO_HEADER sizeof(size_t)
492 /* Number of pages/bytes we'll compress at one time. */
493 #define LZO_UNC_PAGES 32
494 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
496 /* Number of pages/bytes we need for compressed data (worst case). */
497 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
498 LZO_HEADER, PAGE_SIZE)
499 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
501 /* Maximum number of threads for compression/decompression. */
502 #define LZO_THREADS 3
504 /* Minimum/maximum number of pages for read buffering. */
505 #define LZO_MIN_RD_PAGES 1024
506 #define LZO_MAX_RD_PAGES 8192
510 * save_image - save the suspend image data
513 static int save_image(struct swap_map_handle *handle,
514 struct snapshot_handle *snapshot,
515 unsigned int nr_to_write)
517 unsigned int m;
518 int ret;
519 int nr_pages;
520 int err2;
521 struct hib_bio_batch hb;
522 ktime_t start;
523 ktime_t stop;
525 hib_init_batch(&hb);
527 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
528 nr_to_write);
529 m = nr_to_write / 10;
530 if (!m)
531 m = 1;
532 nr_pages = 0;
533 start = ktime_get();
534 while (1) {
535 ret = snapshot_read_next(snapshot);
536 if (ret <= 0)
537 break;
538 ret = swap_write_page(handle, data_of(*snapshot), &hb);
539 if (ret)
540 break;
541 if (!(nr_pages % m))
542 printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
543 nr_pages / m * 10);
544 nr_pages++;
546 err2 = hib_wait_io(&hb);
547 stop = ktime_get();
548 if (!ret)
549 ret = err2;
550 if (!ret)
551 printk(KERN_INFO "PM: Image saving done.\n");
552 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
553 return ret;
557 * Structure used for CRC32.
559 struct crc_data {
560 struct task_struct *thr; /* thread */
561 atomic_t ready; /* ready to start flag */
562 atomic_t stop; /* ready to stop flag */
563 unsigned run_threads; /* nr current threads */
564 wait_queue_head_t go; /* start crc update */
565 wait_queue_head_t done; /* crc update done */
566 u32 *crc32; /* points to handle's crc32 */
567 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
568 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
572 * CRC32 update function that runs in its own thread.
574 static int crc32_threadfn(void *data)
576 struct crc_data *d = data;
577 unsigned i;
579 while (1) {
580 wait_event(d->go, atomic_read(&d->ready) ||
581 kthread_should_stop());
582 if (kthread_should_stop()) {
583 d->thr = NULL;
584 atomic_set(&d->stop, 1);
585 wake_up(&d->done);
586 break;
588 atomic_set(&d->ready, 0);
590 for (i = 0; i < d->run_threads; i++)
591 *d->crc32 = crc32_le(*d->crc32,
592 d->unc[i], *d->unc_len[i]);
593 atomic_set(&d->stop, 1);
594 wake_up(&d->done);
596 return 0;
599 * Structure used for LZO data compression.
601 struct cmp_data {
602 struct task_struct *thr; /* thread */
603 atomic_t ready; /* ready to start flag */
604 atomic_t stop; /* ready to stop flag */
605 int ret; /* return code */
606 wait_queue_head_t go; /* start compression */
607 wait_queue_head_t done; /* compression done */
608 size_t unc_len; /* uncompressed length */
609 size_t cmp_len; /* compressed length */
610 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
611 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
612 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
616 * Compression function that runs in its own thread.
618 static int lzo_compress_threadfn(void *data)
620 struct cmp_data *d = data;
622 while (1) {
623 wait_event(d->go, atomic_read(&d->ready) ||
624 kthread_should_stop());
625 if (kthread_should_stop()) {
626 d->thr = NULL;
627 d->ret = -1;
628 atomic_set(&d->stop, 1);
629 wake_up(&d->done);
630 break;
632 atomic_set(&d->ready, 0);
634 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
635 d->cmp + LZO_HEADER, &d->cmp_len,
636 d->wrk);
637 atomic_set(&d->stop, 1);
638 wake_up(&d->done);
640 return 0;
644 * save_image_lzo - Save the suspend image data compressed with LZO.
645 * @handle: Swap map handle to use for saving the image.
646 * @snapshot: Image to read data from.
647 * @nr_to_write: Number of pages to save.
649 static int save_image_lzo(struct swap_map_handle *handle,
650 struct snapshot_handle *snapshot,
651 unsigned int nr_to_write)
653 unsigned int m;
654 int ret = 0;
655 int nr_pages;
656 int err2;
657 struct hib_bio_batch hb;
658 ktime_t start;
659 ktime_t stop;
660 size_t off;
661 unsigned thr, run_threads, nr_threads;
662 unsigned char *page = NULL;
663 struct cmp_data *data = NULL;
664 struct crc_data *crc = NULL;
666 hib_init_batch(&hb);
669 * We'll limit the number of threads for compression to limit memory
670 * footprint.
672 nr_threads = num_online_cpus() - 1;
673 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
675 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
676 if (!page) {
677 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
678 ret = -ENOMEM;
679 goto out_clean;
682 data = vmalloc(sizeof(*data) * nr_threads);
683 if (!data) {
684 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
685 ret = -ENOMEM;
686 goto out_clean;
688 for (thr = 0; thr < nr_threads; thr++)
689 memset(&data[thr], 0, offsetof(struct cmp_data, go));
691 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
692 if (!crc) {
693 printk(KERN_ERR "PM: Failed to allocate crc\n");
694 ret = -ENOMEM;
695 goto out_clean;
697 memset(crc, 0, offsetof(struct crc_data, go));
700 * Start the compression threads.
702 for (thr = 0; thr < nr_threads; thr++) {
703 init_waitqueue_head(&data[thr].go);
704 init_waitqueue_head(&data[thr].done);
706 data[thr].thr = kthread_run(lzo_compress_threadfn,
707 &data[thr],
708 "image_compress/%u", thr);
709 if (IS_ERR(data[thr].thr)) {
710 data[thr].thr = NULL;
711 printk(KERN_ERR
712 "PM: Cannot start compression threads\n");
713 ret = -ENOMEM;
714 goto out_clean;
719 * Start the CRC32 thread.
721 init_waitqueue_head(&crc->go);
722 init_waitqueue_head(&crc->done);
724 handle->crc32 = 0;
725 crc->crc32 = &handle->crc32;
726 for (thr = 0; thr < nr_threads; thr++) {
727 crc->unc[thr] = data[thr].unc;
728 crc->unc_len[thr] = &data[thr].unc_len;
731 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
732 if (IS_ERR(crc->thr)) {
733 crc->thr = NULL;
734 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
735 ret = -ENOMEM;
736 goto out_clean;
740 * Adjust the number of required free pages after all allocations have
741 * been done. We don't want to run out of pages when writing.
743 handle->reqd_free_pages = reqd_free_pages();
745 printk(KERN_INFO
746 "PM: Using %u thread(s) for compression.\n"
747 "PM: Compressing and saving image data (%u pages)...\n",
748 nr_threads, nr_to_write);
749 m = nr_to_write / 10;
750 if (!m)
751 m = 1;
752 nr_pages = 0;
753 start = ktime_get();
754 for (;;) {
755 for (thr = 0; thr < nr_threads; thr++) {
756 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
757 ret = snapshot_read_next(snapshot);
758 if (ret < 0)
759 goto out_finish;
761 if (!ret)
762 break;
764 memcpy(data[thr].unc + off,
765 data_of(*snapshot), PAGE_SIZE);
767 if (!(nr_pages % m))
768 printk(KERN_INFO
769 "PM: Image saving progress: "
770 "%3d%%\n",
771 nr_pages / m * 10);
772 nr_pages++;
774 if (!off)
775 break;
777 data[thr].unc_len = off;
779 atomic_set(&data[thr].ready, 1);
780 wake_up(&data[thr].go);
783 if (!thr)
784 break;
786 crc->run_threads = thr;
787 atomic_set(&crc->ready, 1);
788 wake_up(&crc->go);
790 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
791 wait_event(data[thr].done,
792 atomic_read(&data[thr].stop));
793 atomic_set(&data[thr].stop, 0);
795 ret = data[thr].ret;
797 if (ret < 0) {
798 printk(KERN_ERR "PM: LZO compression failed\n");
799 goto out_finish;
802 if (unlikely(!data[thr].cmp_len ||
803 data[thr].cmp_len >
804 lzo1x_worst_compress(data[thr].unc_len))) {
805 printk(KERN_ERR
806 "PM: Invalid LZO compressed length\n");
807 ret = -1;
808 goto out_finish;
811 *(size_t *)data[thr].cmp = data[thr].cmp_len;
814 * Given we are writing one page at a time to disk, we
815 * copy that much from the buffer, although the last
816 * bit will likely be smaller than full page. This is
817 * OK - we saved the length of the compressed data, so
818 * any garbage at the end will be discarded when we
819 * read it.
821 for (off = 0;
822 off < LZO_HEADER + data[thr].cmp_len;
823 off += PAGE_SIZE) {
824 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
826 ret = swap_write_page(handle, page, &hb);
827 if (ret)
828 goto out_finish;
832 wait_event(crc->done, atomic_read(&crc->stop));
833 atomic_set(&crc->stop, 0);
836 out_finish:
837 err2 = hib_wait_io(&hb);
838 stop = ktime_get();
839 if (!ret)
840 ret = err2;
841 if (!ret)
842 printk(KERN_INFO "PM: Image saving done.\n");
843 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
844 out_clean:
845 if (crc) {
846 if (crc->thr)
847 kthread_stop(crc->thr);
848 kfree(crc);
850 if (data) {
851 for (thr = 0; thr < nr_threads; thr++)
852 if (data[thr].thr)
853 kthread_stop(data[thr].thr);
854 vfree(data);
856 if (page) free_page((unsigned long)page);
858 return ret;
862 * enough_swap - Make sure we have enough swap to save the image.
864 * Returns TRUE or FALSE after checking the total amount of swap
865 * space avaiable from the resume partition.
868 static int enough_swap(unsigned int nr_pages, unsigned int flags)
870 unsigned int free_swap = count_swap_pages(root_swap, 1);
871 unsigned int required;
873 pr_debug("PM: Free swap pages: %u\n", free_swap);
875 required = PAGES_FOR_IO + nr_pages;
876 return free_swap > required;
880 * swsusp_write - Write entire image and metadata.
881 * @flags: flags to pass to the "boot" kernel in the image header
883 * It is important _NOT_ to umount filesystems at this point. We want
884 * them synced (in case something goes wrong) but we DO not want to mark
885 * filesystem clean: it is not. (And it does not matter, if we resume
886 * correctly, we'll mark system clean, anyway.)
889 int swsusp_write(unsigned int flags)
891 struct swap_map_handle handle;
892 struct snapshot_handle snapshot;
893 struct swsusp_info *header;
894 unsigned long pages;
895 int error;
897 pages = snapshot_get_image_size();
898 error = get_swap_writer(&handle);
899 if (error) {
900 printk(KERN_ERR "PM: Cannot get swap writer\n");
901 return error;
903 if (flags & SF_NOCOMPRESS_MODE) {
904 if (!enough_swap(pages, flags)) {
905 printk(KERN_ERR "PM: Not enough free swap\n");
906 error = -ENOSPC;
907 goto out_finish;
910 memset(&snapshot, 0, sizeof(struct snapshot_handle));
911 error = snapshot_read_next(&snapshot);
912 if (error < PAGE_SIZE) {
913 if (error >= 0)
914 error = -EFAULT;
916 goto out_finish;
918 header = (struct swsusp_info *)data_of(snapshot);
919 error = swap_write_page(&handle, header, NULL);
920 if (!error) {
921 error = (flags & SF_NOCOMPRESS_MODE) ?
922 save_image(&handle, &snapshot, pages - 1) :
923 save_image_lzo(&handle, &snapshot, pages - 1);
925 out_finish:
926 error = swap_writer_finish(&handle, flags, error);
927 return error;
931 * The following functions allow us to read data using a swap map
932 * in a file-alike way
935 static void release_swap_reader(struct swap_map_handle *handle)
937 struct swap_map_page_list *tmp;
939 while (handle->maps) {
940 if (handle->maps->map)
941 free_page((unsigned long)handle->maps->map);
942 tmp = handle->maps;
943 handle->maps = handle->maps->next;
944 kfree(tmp);
946 handle->cur = NULL;
949 static int get_swap_reader(struct swap_map_handle *handle,
950 unsigned int *flags_p)
952 int error;
953 struct swap_map_page_list *tmp, *last;
954 sector_t offset;
956 *flags_p = swsusp_header->flags;
958 if (!swsusp_header->image) /* how can this happen? */
959 return -EINVAL;
961 handle->cur = NULL;
962 last = handle->maps = NULL;
963 offset = swsusp_header->image;
964 while (offset) {
965 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
966 if (!tmp) {
967 release_swap_reader(handle);
968 return -ENOMEM;
970 memset(tmp, 0, sizeof(*tmp));
971 if (!handle->maps)
972 handle->maps = tmp;
973 if (last)
974 last->next = tmp;
975 last = tmp;
977 tmp->map = (struct swap_map_page *)
978 __get_free_page(__GFP_WAIT | __GFP_HIGH);
979 if (!tmp->map) {
980 release_swap_reader(handle);
981 return -ENOMEM;
984 error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
985 if (error) {
986 release_swap_reader(handle);
987 return error;
989 offset = tmp->map->next_swap;
991 handle->k = 0;
992 handle->cur = handle->maps->map;
993 return 0;
996 static int swap_read_page(struct swap_map_handle *handle, void *buf,
997 struct hib_bio_batch *hb)
999 sector_t offset;
1000 int error;
1001 struct swap_map_page_list *tmp;
1003 if (!handle->cur)
1004 return -EINVAL;
1005 offset = handle->cur->entries[handle->k];
1006 if (!offset)
1007 return -EFAULT;
1008 error = hib_submit_io(READ_SYNC, offset, buf, hb);
1009 if (error)
1010 return error;
1011 if (++handle->k >= MAP_PAGE_ENTRIES) {
1012 handle->k = 0;
1013 free_page((unsigned long)handle->maps->map);
1014 tmp = handle->maps;
1015 handle->maps = handle->maps->next;
1016 kfree(tmp);
1017 if (!handle->maps)
1018 release_swap_reader(handle);
1019 else
1020 handle->cur = handle->maps->map;
1022 return error;
1025 static int swap_reader_finish(struct swap_map_handle *handle)
1027 release_swap_reader(handle);
1029 return 0;
1033 * load_image - load the image using the swap map handle
1034 * @handle and the snapshot handle @snapshot
1035 * (assume there are @nr_pages pages to load)
1038 static int load_image(struct swap_map_handle *handle,
1039 struct snapshot_handle *snapshot,
1040 unsigned int nr_to_read)
1042 unsigned int m;
1043 int ret = 0;
1044 ktime_t start;
1045 ktime_t stop;
1046 struct hib_bio_batch hb;
1047 int err2;
1048 unsigned nr_pages;
1050 hib_init_batch(&hb);
1052 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1053 nr_to_read);
1054 m = nr_to_read / 10;
1055 if (!m)
1056 m = 1;
1057 nr_pages = 0;
1058 start = ktime_get();
1059 for ( ; ; ) {
1060 ret = snapshot_write_next(snapshot);
1061 if (ret <= 0)
1062 break;
1063 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1064 if (ret)
1065 break;
1066 if (snapshot->sync_read)
1067 ret = hib_wait_io(&hb);
1068 if (ret)
1069 break;
1070 if (!(nr_pages % m))
1071 printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1072 nr_pages / m * 10);
1073 nr_pages++;
1075 err2 = hib_wait_io(&hb);
1076 stop = ktime_get();
1077 if (!ret)
1078 ret = err2;
1079 if (!ret) {
1080 printk(KERN_INFO "PM: Image loading done.\n");
1081 snapshot_write_finalize(snapshot);
1082 if (!snapshot_image_loaded(snapshot))
1083 ret = -ENODATA;
1085 swsusp_show_speed(start, stop, nr_to_read, "Read");
1086 return ret;
1090 * Structure used for LZO data decompression.
1092 struct dec_data {
1093 struct task_struct *thr; /* thread */
1094 atomic_t ready; /* ready to start flag */
1095 atomic_t stop; /* ready to stop flag */
1096 int ret; /* return code */
1097 wait_queue_head_t go; /* start decompression */
1098 wait_queue_head_t done; /* decompression done */
1099 size_t unc_len; /* uncompressed length */
1100 size_t cmp_len; /* compressed length */
1101 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1102 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1106 * Deompression function that runs in its own thread.
1108 static int lzo_decompress_threadfn(void *data)
1110 struct dec_data *d = data;
1112 while (1) {
1113 wait_event(d->go, atomic_read(&d->ready) ||
1114 kthread_should_stop());
1115 if (kthread_should_stop()) {
1116 d->thr = NULL;
1117 d->ret = -1;
1118 atomic_set(&d->stop, 1);
1119 wake_up(&d->done);
1120 break;
1122 atomic_set(&d->ready, 0);
1124 d->unc_len = LZO_UNC_SIZE;
1125 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1126 d->unc, &d->unc_len);
1127 atomic_set(&d->stop, 1);
1128 wake_up(&d->done);
1130 return 0;
1134 * load_image_lzo - Load compressed image data and decompress them with LZO.
1135 * @handle: Swap map handle to use for loading data.
1136 * @snapshot: Image to copy uncompressed data into.
1137 * @nr_to_read: Number of pages to load.
1139 static int load_image_lzo(struct swap_map_handle *handle,
1140 struct snapshot_handle *snapshot,
1141 unsigned int nr_to_read)
1143 unsigned int m;
1144 int ret = 0;
1145 int eof = 0;
1146 struct hib_bio_batch hb;
1147 ktime_t start;
1148 ktime_t stop;
1149 unsigned nr_pages;
1150 size_t off;
1151 unsigned i, thr, run_threads, nr_threads;
1152 unsigned ring = 0, pg = 0, ring_size = 0,
1153 have = 0, want, need, asked = 0;
1154 unsigned long read_pages = 0;
1155 unsigned char **page = NULL;
1156 struct dec_data *data = NULL;
1157 struct crc_data *crc = NULL;
1159 hib_init_batch(&hb);
1162 * We'll limit the number of threads for decompression to limit memory
1163 * footprint.
1165 nr_threads = num_online_cpus() - 1;
1166 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1168 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1169 if (!page) {
1170 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1171 ret = -ENOMEM;
1172 goto out_clean;
1175 data = vmalloc(sizeof(*data) * nr_threads);
1176 if (!data) {
1177 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1178 ret = -ENOMEM;
1179 goto out_clean;
1181 for (thr = 0; thr < nr_threads; thr++)
1182 memset(&data[thr], 0, offsetof(struct dec_data, go));
1184 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1185 if (!crc) {
1186 printk(KERN_ERR "PM: Failed to allocate crc\n");
1187 ret = -ENOMEM;
1188 goto out_clean;
1190 memset(crc, 0, offsetof(struct crc_data, go));
1193 * Start the decompression threads.
1195 for (thr = 0; thr < nr_threads; thr++) {
1196 init_waitqueue_head(&data[thr].go);
1197 init_waitqueue_head(&data[thr].done);
1199 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1200 &data[thr],
1201 "image_decompress/%u", thr);
1202 if (IS_ERR(data[thr].thr)) {
1203 data[thr].thr = NULL;
1204 printk(KERN_ERR
1205 "PM: Cannot start decompression threads\n");
1206 ret = -ENOMEM;
1207 goto out_clean;
1212 * Start the CRC32 thread.
1214 init_waitqueue_head(&crc->go);
1215 init_waitqueue_head(&crc->done);
1217 handle->crc32 = 0;
1218 crc->crc32 = &handle->crc32;
1219 for (thr = 0; thr < nr_threads; thr++) {
1220 crc->unc[thr] = data[thr].unc;
1221 crc->unc_len[thr] = &data[thr].unc_len;
1224 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1225 if (IS_ERR(crc->thr)) {
1226 crc->thr = NULL;
1227 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1228 ret = -ENOMEM;
1229 goto out_clean;
1233 * Set the number of pages for read buffering.
1234 * This is complete guesswork, because we'll only know the real
1235 * picture once prepare_image() is called, which is much later on
1236 * during the image load phase. We'll assume the worst case and
1237 * say that none of the image pages are from high memory.
1239 if (low_free_pages() > snapshot_get_image_size())
1240 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1241 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1243 for (i = 0; i < read_pages; i++) {
1244 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1245 __GFP_WAIT | __GFP_HIGH :
1246 __GFP_WAIT | __GFP_NOWARN |
1247 __GFP_NORETRY);
1249 if (!page[i]) {
1250 if (i < LZO_CMP_PAGES) {
1251 ring_size = i;
1252 printk(KERN_ERR
1253 "PM: Failed to allocate LZO pages\n");
1254 ret = -ENOMEM;
1255 goto out_clean;
1256 } else {
1257 break;
1261 want = ring_size = i;
1263 printk(KERN_INFO
1264 "PM: Using %u thread(s) for decompression.\n"
1265 "PM: Loading and decompressing image data (%u pages)...\n",
1266 nr_threads, nr_to_read);
1267 m = nr_to_read / 10;
1268 if (!m)
1269 m = 1;
1270 nr_pages = 0;
1271 start = ktime_get();
1273 ret = snapshot_write_next(snapshot);
1274 if (ret <= 0)
1275 goto out_finish;
1277 for(;;) {
1278 for (i = 0; !eof && i < want; i++) {
1279 ret = swap_read_page(handle, page[ring], &hb);
1280 if (ret) {
1282 * On real read error, finish. On end of data,
1283 * set EOF flag and just exit the read loop.
1285 if (handle->cur &&
1286 handle->cur->entries[handle->k]) {
1287 goto out_finish;
1288 } else {
1289 eof = 1;
1290 break;
1293 if (++ring >= ring_size)
1294 ring = 0;
1296 asked += i;
1297 want -= i;
1300 * We are out of data, wait for some more.
1302 if (!have) {
1303 if (!asked)
1304 break;
1306 ret = hib_wait_io(&hb);
1307 if (ret)
1308 goto out_finish;
1309 have += asked;
1310 asked = 0;
1311 if (eof)
1312 eof = 2;
1315 if (crc->run_threads) {
1316 wait_event(crc->done, atomic_read(&crc->stop));
1317 atomic_set(&crc->stop, 0);
1318 crc->run_threads = 0;
1321 for (thr = 0; have && thr < nr_threads; thr++) {
1322 data[thr].cmp_len = *(size_t *)page[pg];
1323 if (unlikely(!data[thr].cmp_len ||
1324 data[thr].cmp_len >
1325 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1326 printk(KERN_ERR
1327 "PM: Invalid LZO compressed length\n");
1328 ret = -1;
1329 goto out_finish;
1332 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1333 PAGE_SIZE);
1334 if (need > have) {
1335 if (eof > 1) {
1336 ret = -1;
1337 goto out_finish;
1339 break;
1342 for (off = 0;
1343 off < LZO_HEADER + data[thr].cmp_len;
1344 off += PAGE_SIZE) {
1345 memcpy(data[thr].cmp + off,
1346 page[pg], PAGE_SIZE);
1347 have--;
1348 want++;
1349 if (++pg >= ring_size)
1350 pg = 0;
1353 atomic_set(&data[thr].ready, 1);
1354 wake_up(&data[thr].go);
1358 * Wait for more data while we are decompressing.
1360 if (have < LZO_CMP_PAGES && asked) {
1361 ret = hib_wait_io(&hb);
1362 if (ret)
1363 goto out_finish;
1364 have += asked;
1365 asked = 0;
1366 if (eof)
1367 eof = 2;
1370 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1371 wait_event(data[thr].done,
1372 atomic_read(&data[thr].stop));
1373 atomic_set(&data[thr].stop, 0);
1375 ret = data[thr].ret;
1377 if (ret < 0) {
1378 printk(KERN_ERR
1379 "PM: LZO decompression failed\n");
1380 goto out_finish;
1383 if (unlikely(!data[thr].unc_len ||
1384 data[thr].unc_len > LZO_UNC_SIZE ||
1385 data[thr].unc_len & (PAGE_SIZE - 1))) {
1386 printk(KERN_ERR
1387 "PM: Invalid LZO uncompressed length\n");
1388 ret = -1;
1389 goto out_finish;
1392 for (off = 0;
1393 off < data[thr].unc_len; off += PAGE_SIZE) {
1394 memcpy(data_of(*snapshot),
1395 data[thr].unc + off, PAGE_SIZE);
1397 if (!(nr_pages % m))
1398 printk(KERN_INFO
1399 "PM: Image loading progress: "
1400 "%3d%%\n",
1401 nr_pages / m * 10);
1402 nr_pages++;
1404 ret = snapshot_write_next(snapshot);
1405 if (ret <= 0) {
1406 crc->run_threads = thr + 1;
1407 atomic_set(&crc->ready, 1);
1408 wake_up(&crc->go);
1409 goto out_finish;
1414 crc->run_threads = thr;
1415 atomic_set(&crc->ready, 1);
1416 wake_up(&crc->go);
1419 out_finish:
1420 if (crc->run_threads) {
1421 wait_event(crc->done, atomic_read(&crc->stop));
1422 atomic_set(&crc->stop, 0);
1424 stop = ktime_get();
1425 if (!ret) {
1426 printk(KERN_INFO "PM: Image loading done.\n");
1427 snapshot_write_finalize(snapshot);
1428 if (!snapshot_image_loaded(snapshot))
1429 ret = -ENODATA;
1430 if (!ret) {
1431 if (swsusp_header->flags & SF_CRC32_MODE) {
1432 if(handle->crc32 != swsusp_header->crc32) {
1433 printk(KERN_ERR
1434 "PM: Invalid image CRC32!\n");
1435 ret = -ENODATA;
1440 swsusp_show_speed(start, stop, nr_to_read, "Read");
1441 out_clean:
1442 for (i = 0; i < ring_size; i++)
1443 free_page((unsigned long)page[i]);
1444 if (crc) {
1445 if (crc->thr)
1446 kthread_stop(crc->thr);
1447 kfree(crc);
1449 if (data) {
1450 for (thr = 0; thr < nr_threads; thr++)
1451 if (data[thr].thr)
1452 kthread_stop(data[thr].thr);
1453 vfree(data);
1455 vfree(page);
1457 return ret;
1461 * swsusp_read - read the hibernation image.
1462 * @flags_p: flags passed by the "frozen" kernel in the image header should
1463 * be written into this memory location
1466 int swsusp_read(unsigned int *flags_p)
1468 int error;
1469 struct swap_map_handle handle;
1470 struct snapshot_handle snapshot;
1471 struct swsusp_info *header;
1473 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1474 error = snapshot_write_next(&snapshot);
1475 if (error < PAGE_SIZE)
1476 return error < 0 ? error : -EFAULT;
1477 header = (struct swsusp_info *)data_of(snapshot);
1478 error = get_swap_reader(&handle, flags_p);
1479 if (error)
1480 goto end;
1481 if (!error)
1482 error = swap_read_page(&handle, header, NULL);
1483 if (!error) {
1484 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1485 load_image(&handle, &snapshot, header->pages - 1) :
1486 load_image_lzo(&handle, &snapshot, header->pages - 1);
1488 swap_reader_finish(&handle);
1489 end:
1490 if (!error)
1491 pr_debug("PM: Image successfully loaded\n");
1492 else
1493 pr_debug("PM: Error %d resuming\n", error);
1494 return error;
1498 * swsusp_check - Check for swsusp signature in the resume device
1501 int swsusp_check(void)
1503 int error;
1505 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1506 FMODE_READ, NULL);
1507 if (!IS_ERR(hib_resume_bdev)) {
1508 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1509 clear_page(swsusp_header);
1510 error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1511 swsusp_header, NULL);
1512 if (error)
1513 goto put;
1515 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1516 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1517 /* Reset swap signature now */
1518 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1519 swsusp_header, NULL);
1520 } else {
1521 error = -EINVAL;
1524 put:
1525 if (error)
1526 blkdev_put(hib_resume_bdev, FMODE_READ);
1527 else
1528 pr_debug("PM: Image signature found, resuming\n");
1529 } else {
1530 error = PTR_ERR(hib_resume_bdev);
1533 if (error)
1534 pr_debug("PM: Image not found (code %d)\n", error);
1536 return error;
1540 * swsusp_close - close swap device.
1543 void swsusp_close(fmode_t mode)
1545 if (IS_ERR(hib_resume_bdev)) {
1546 pr_debug("PM: Image device not initialised\n");
1547 return;
1550 blkdev_put(hib_resume_bdev, mode);
1554 * swsusp_unmark - Unmark swsusp signature in the resume device
1557 #ifdef CONFIG_SUSPEND
1558 int swsusp_unmark(void)
1560 int error;
1562 hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
1563 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1564 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1565 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1566 swsusp_header, NULL);
1567 } else {
1568 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1569 error = -ENODEV;
1573 * We just returned from suspend, we don't need the image any more.
1575 free_all_swap_pages(root_swap);
1577 return error;
1579 #endif
1581 static int swsusp_header_init(void)
1583 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1584 if (!swsusp_header)
1585 panic("Could not allocate memory for swsusp_header\n");
1586 return 0;
1589 core_initcall(swsusp_header_init);