x86/asm/entry/64: Remove a bogus 'ret_from_fork' optimization
[linux/fpc-iii.git] / fs / eventpoll.c
blob83fbd64bebc78dd9934769857d8edf9bfb49374d
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
43 * LOCKING:
44 * There are three level of locking required by epoll :
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
96 /* Maximum msec timeout value storeable in a long int */
97 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
99 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
101 #define EP_UNACTIVE_PTR ((void *) -1L)
103 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
105 struct epoll_filefd {
106 struct file *file;
107 int fd;
111 * Structure used to track possible nested calls, for too deep recursions
112 * and loop cycles.
114 struct nested_call_node {
115 struct list_head llink;
116 void *cookie;
117 void *ctx;
121 * This structure is used as collector for nested calls, to check for
122 * maximum recursion dept and loop cycles.
124 struct nested_calls {
125 struct list_head tasks_call_list;
126 spinlock_t lock;
130 * Each file descriptor added to the eventpoll interface will
131 * have an entry of this type linked to the "rbr" RB tree.
133 struct epitem {
134 /* RB tree node used to link this structure to the eventpoll RB tree */
135 struct rb_node rbn;
137 /* List header used to link this structure to the eventpoll ready list */
138 struct list_head rdllink;
141 * Works together "struct eventpoll"->ovflist in keeping the
142 * single linked chain of items.
144 struct epitem *next;
146 /* The file descriptor information this item refers to */
147 struct epoll_filefd ffd;
149 /* Number of active wait queue attached to poll operations */
150 int nwait;
152 /* List containing poll wait queues */
153 struct list_head pwqlist;
155 /* The "container" of this item */
156 struct eventpoll *ep;
158 /* List header used to link this item to the "struct file" items list */
159 struct list_head fllink;
161 /* The structure that describe the interested events and the source fd */
162 struct epoll_event event;
166 * This structure is stored inside the "private_data" member of the file
167 * structure and rapresent the main data sructure for the eventpoll
168 * interface.
170 struct eventpoll {
171 /* Protect the this structure access */
172 spinlock_t lock;
175 * This mutex is used to ensure that files are not removed
176 * while epoll is using them. This is held during the event
177 * collection loop, the file cleanup path, the epoll file exit
178 * code and the ctl operations.
180 struct mutex mtx;
182 /* Wait queue used by sys_epoll_wait() */
183 wait_queue_head_t wq;
185 /* Wait queue used by file->poll() */
186 wait_queue_head_t poll_wait;
188 /* List of ready file descriptors */
189 struct list_head rdllist;
191 /* RB tree root used to store monitored fd structs */
192 struct rb_root rbr;
195 * This is a single linked list that chains all the "struct epitem" that
196 * happened while transfering ready events to userspace w/out
197 * holding ->lock.
199 struct epitem *ovflist;
201 /* The user that created the eventpoll descriptor */
202 struct user_struct *user;
204 struct file *file;
206 /* used to optimize loop detection check */
207 int visited;
208 struct list_head visited_list_link;
211 /* Wait structure used by the poll hooks */
212 struct eppoll_entry {
213 /* List header used to link this structure to the "struct epitem" */
214 struct list_head llink;
216 /* The "base" pointer is set to the container "struct epitem" */
217 struct epitem *base;
220 * Wait queue item that will be linked to the target file wait
221 * queue head.
223 wait_queue_t wait;
225 /* The wait queue head that linked the "wait" wait queue item */
226 wait_queue_head_t *whead;
229 /* Wrapper struct used by poll queueing */
230 struct ep_pqueue {
231 poll_table pt;
232 struct epitem *epi;
235 /* Used by the ep_send_events() function as callback private data */
236 struct ep_send_events_data {
237 int maxevents;
238 struct epoll_event __user *events;
242 * Configuration options available inside /proc/sys/fs/epoll/
244 /* Maximum number of epoll watched descriptors, per user */
245 static int max_user_watches __read_mostly;
248 * This mutex is used to serialize ep_free() and eventpoll_release_file().
250 static DEFINE_MUTEX(epmutex);
252 /* Used to check for epoll file descriptor inclusion loops */
253 static struct nested_calls poll_loop_ncalls;
255 /* Used for safe wake up implementation */
256 static struct nested_calls poll_safewake_ncalls;
258 /* Used to call file's f_op->poll() under the nested calls boundaries */
259 static struct nested_calls poll_readywalk_ncalls;
261 /* Slab cache used to allocate "struct epitem" */
262 static struct kmem_cache *epi_cache __read_mostly;
264 /* Slab cache used to allocate "struct eppoll_entry" */
265 static struct kmem_cache *pwq_cache __read_mostly;
267 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
268 static LIST_HEAD(visited_list);
271 * List of files with newly added links, where we may need to limit the number
272 * of emanating paths. Protected by the epmutex.
274 static LIST_HEAD(tfile_check_list);
276 #ifdef CONFIG_SYSCTL
278 #include <linux/sysctl.h>
280 static int zero;
282 ctl_table epoll_table[] = {
284 .procname = "max_user_watches",
285 .data = &max_user_watches,
286 .maxlen = sizeof(int),
287 .mode = 0644,
288 .proc_handler = &proc_dointvec_minmax,
289 .extra1 = &zero,
291 { .ctl_name = 0 }
293 #endif /* CONFIG_SYSCTL */
295 static const struct file_operations eventpoll_fops;
297 static inline int is_file_epoll(struct file *f)
299 return f->f_op == &eventpoll_fops;
302 /* Setup the structure that is used as key for the RB tree */
303 static inline void ep_set_ffd(struct epoll_filefd *ffd,
304 struct file *file, int fd)
306 ffd->file = file;
307 ffd->fd = fd;
310 /* Compare RB tree keys */
311 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
312 struct epoll_filefd *p2)
314 return (p1->file > p2->file ? +1:
315 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
318 /* Tells us if the item is currently linked */
319 static inline int ep_is_linked(struct list_head *p)
321 return !list_empty(p);
324 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
326 return container_of(p, struct eppoll_entry, wait);
329 /* Get the "struct epitem" from a wait queue pointer */
330 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
332 return container_of(p, struct eppoll_entry, wait)->base;
335 /* Get the "struct epitem" from an epoll queue wrapper */
336 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
338 return container_of(p, struct ep_pqueue, pt)->epi;
341 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
342 static inline int ep_op_has_event(int op)
344 return op != EPOLL_CTL_DEL;
347 /* Initialize the poll safe wake up structure */
348 static void ep_nested_calls_init(struct nested_calls *ncalls)
350 INIT_LIST_HEAD(&ncalls->tasks_call_list);
351 spin_lock_init(&ncalls->lock);
355 * ep_call_nested - Perform a bound (possibly) nested call, by checking
356 * that the recursion limit is not exceeded, and that
357 * the same nested call (by the meaning of same cookie) is
358 * no re-entered.
360 * @ncalls: Pointer to the nested_calls structure to be used for this call.
361 * @max_nests: Maximum number of allowed nesting calls.
362 * @nproc: Nested call core function pointer.
363 * @priv: Opaque data to be passed to the @nproc callback.
364 * @cookie: Cookie to be used to identify this nested call.
365 * @ctx: This instance context.
367 * Returns: Returns the code returned by the @nproc callback, or -1 if
368 * the maximum recursion limit has been exceeded.
370 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
371 int (*nproc)(void *, void *, int), void *priv,
372 void *cookie, void *ctx)
374 int error, call_nests = 0;
375 unsigned long flags;
376 struct list_head *lsthead = &ncalls->tasks_call_list;
377 struct nested_call_node *tncur;
378 struct nested_call_node tnode;
380 spin_lock_irqsave(&ncalls->lock, flags);
383 * Try to see if the current task is already inside this wakeup call.
384 * We use a list here, since the population inside this set is always
385 * very much limited.
387 list_for_each_entry(tncur, lsthead, llink) {
388 if (tncur->ctx == ctx &&
389 (tncur->cookie == cookie || ++call_nests > max_nests)) {
391 * Ops ... loop detected or maximum nest level reached.
392 * We abort this wake by breaking the cycle itself.
394 error = -1;
395 goto out_unlock;
399 /* Add the current task and cookie to the list */
400 tnode.ctx = ctx;
401 tnode.cookie = cookie;
402 list_add(&tnode.llink, lsthead);
404 spin_unlock_irqrestore(&ncalls->lock, flags);
406 /* Call the nested function */
407 error = (*nproc)(priv, cookie, call_nests);
409 /* Remove the current task from the list */
410 spin_lock_irqsave(&ncalls->lock, flags);
411 list_del(&tnode.llink);
412 out_unlock:
413 spin_unlock_irqrestore(&ncalls->lock, flags);
415 return error;
418 #ifdef CONFIG_DEBUG_LOCK_ALLOC
419 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
420 unsigned long events, int subclass)
422 unsigned long flags;
424 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
425 wake_up_locked_poll(wqueue, events);
426 spin_unlock_irqrestore(&wqueue->lock, flags);
428 #else
429 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
430 unsigned long events, int subclass)
432 wake_up_poll(wqueue, events);
434 #endif
436 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
438 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
439 1 + call_nests);
440 return 0;
444 * Perform a safe wake up of the poll wait list. The problem is that
445 * with the new callback'd wake up system, it is possible that the
446 * poll callback is reentered from inside the call to wake_up() done
447 * on the poll wait queue head. The rule is that we cannot reenter the
448 * wake up code from the same task more than EP_MAX_NESTS times,
449 * and we cannot reenter the same wait queue head at all. This will
450 * enable to have a hierarchy of epoll file descriptor of no more than
451 * EP_MAX_NESTS deep.
453 static void ep_poll_safewake(wait_queue_head_t *wq)
455 int this_cpu = get_cpu();
457 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
458 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
460 put_cpu();
463 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
465 wait_queue_head_t *whead;
467 rcu_read_lock();
468 /* If it is cleared by POLLFREE, it should be rcu-safe */
469 whead = rcu_dereference(pwq->whead);
470 if (whead)
471 remove_wait_queue(whead, &pwq->wait);
472 rcu_read_unlock();
476 * This function unregisters poll callbacks from the associated file
477 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
478 * ep_free).
480 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
482 struct list_head *lsthead = &epi->pwqlist;
483 struct eppoll_entry *pwq;
485 while (!list_empty(lsthead)) {
486 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
488 list_del(&pwq->llink);
489 ep_remove_wait_queue(pwq);
490 kmem_cache_free(pwq_cache, pwq);
495 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
496 * the scan code, to call f_op->poll(). Also allows for
497 * O(NumReady) performance.
499 * @ep: Pointer to the epoll private data structure.
500 * @sproc: Pointer to the scan callback.
501 * @priv: Private opaque data passed to the @sproc callback.
502 * @depth: The current depth of recursive f_op->poll calls.
504 * Returns: The same integer error code returned by the @sproc callback.
506 static int ep_scan_ready_list(struct eventpoll *ep,
507 int (*sproc)(struct eventpoll *,
508 struct list_head *, void *),
509 void *priv,
510 int depth)
512 int error, pwake = 0;
513 unsigned long flags;
514 struct epitem *epi, *nepi;
515 LIST_HEAD(txlist);
518 * We need to lock this because we could be hit by
519 * eventpoll_release_file() and epoll_ctl().
521 mutex_lock_nested(&ep->mtx, depth);
524 * Steal the ready list, and re-init the original one to the
525 * empty list. Also, set ep->ovflist to NULL so that events
526 * happening while looping w/out locks, are not lost. We cannot
527 * have the poll callback to queue directly on ep->rdllist,
528 * because we want the "sproc" callback to be able to do it
529 * in a lockless way.
531 spin_lock_irqsave(&ep->lock, flags);
532 list_splice_init(&ep->rdllist, &txlist);
533 ep->ovflist = NULL;
534 spin_unlock_irqrestore(&ep->lock, flags);
537 * Now call the callback function.
539 error = (*sproc)(ep, &txlist, priv);
541 spin_lock_irqsave(&ep->lock, flags);
543 * During the time we spent inside the "sproc" callback, some
544 * other events might have been queued by the poll callback.
545 * We re-insert them inside the main ready-list here.
547 for (nepi = ep->ovflist; (epi = nepi) != NULL;
548 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
550 * We need to check if the item is already in the list.
551 * During the "sproc" callback execution time, items are
552 * queued into ->ovflist but the "txlist" might already
553 * contain them, and the list_splice() below takes care of them.
555 if (!ep_is_linked(&epi->rdllink))
556 list_add_tail(&epi->rdllink, &ep->rdllist);
559 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
560 * releasing the lock, events will be queued in the normal way inside
561 * ep->rdllist.
563 ep->ovflist = EP_UNACTIVE_PTR;
566 * Quickly re-inject items left on "txlist".
568 list_splice(&txlist, &ep->rdllist);
570 if (!list_empty(&ep->rdllist)) {
572 * Wake up (if active) both the eventpoll wait list and
573 * the ->poll() wait list (delayed after we release the lock).
575 if (waitqueue_active(&ep->wq))
576 wake_up_locked(&ep->wq);
577 if (waitqueue_active(&ep->poll_wait))
578 pwake++;
580 spin_unlock_irqrestore(&ep->lock, flags);
582 mutex_unlock(&ep->mtx);
584 /* We have to call this outside the lock */
585 if (pwake)
586 ep_poll_safewake(&ep->poll_wait);
588 return error;
592 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
593 * all the associated resources. Must be called with "mtx" held.
595 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
597 unsigned long flags;
598 struct file *file = epi->ffd.file;
601 * Removes poll wait queue hooks. We _have_ to do this without holding
602 * the "ep->lock" otherwise a deadlock might occur. This because of the
603 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
604 * queue head lock when unregistering the wait queue. The wakeup callback
605 * will run by holding the wait queue head lock and will call our callback
606 * that will try to get "ep->lock".
608 ep_unregister_pollwait(ep, epi);
610 /* Remove the current item from the list of epoll hooks */
611 spin_lock(&file->f_lock);
612 if (ep_is_linked(&epi->fllink))
613 list_del_init(&epi->fllink);
614 spin_unlock(&file->f_lock);
616 rb_erase(&epi->rbn, &ep->rbr);
618 spin_lock_irqsave(&ep->lock, flags);
619 if (ep_is_linked(&epi->rdllink))
620 list_del_init(&epi->rdllink);
621 spin_unlock_irqrestore(&ep->lock, flags);
623 /* At this point it is safe to free the eventpoll item */
624 kmem_cache_free(epi_cache, epi);
626 atomic_dec(&ep->user->epoll_watches);
628 return 0;
631 static void ep_free(struct eventpoll *ep)
633 struct rb_node *rbp;
634 struct epitem *epi;
636 /* We need to release all tasks waiting for these file */
637 if (waitqueue_active(&ep->poll_wait))
638 ep_poll_safewake(&ep->poll_wait);
641 * We need to lock this because we could be hit by
642 * eventpoll_release_file() while we're freeing the "struct eventpoll".
643 * We do not need to hold "ep->mtx" here because the epoll file
644 * is on the way to be removed and no one has references to it
645 * anymore. The only hit might come from eventpoll_release_file() but
646 * holding "epmutex" is sufficent here.
648 mutex_lock(&epmutex);
651 * Walks through the whole tree by unregistering poll callbacks.
653 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
654 epi = rb_entry(rbp, struct epitem, rbn);
656 ep_unregister_pollwait(ep, epi);
660 * Walks through the whole tree by freeing each "struct epitem". At this
661 * point we are sure no poll callbacks will be lingering around, and also by
662 * holding "epmutex" we can be sure that no file cleanup code will hit
663 * us during this operation. So we can avoid the lock on "ep->lock".
665 while ((rbp = rb_first(&ep->rbr)) != NULL) {
666 epi = rb_entry(rbp, struct epitem, rbn);
667 ep_remove(ep, epi);
670 mutex_unlock(&epmutex);
671 mutex_destroy(&ep->mtx);
672 free_uid(ep->user);
673 kfree(ep);
676 static int ep_eventpoll_release(struct inode *inode, struct file *file)
678 struct eventpoll *ep = file->private_data;
680 if (ep)
681 ep_free(ep);
683 return 0;
686 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
687 void *priv)
689 struct epitem *epi, *tmp;
691 list_for_each_entry_safe(epi, tmp, head, rdllink) {
692 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
693 epi->event.events)
694 return POLLIN | POLLRDNORM;
695 else {
697 * Item has been dropped into the ready list by the poll
698 * callback, but it's not actually ready, as far as
699 * caller requested events goes. We can remove it here.
701 list_del_init(&epi->rdllink);
705 return 0;
708 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
710 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
713 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
715 int pollflags;
716 struct eventpoll *ep = file->private_data;
718 /* Insert inside our poll wait queue */
719 poll_wait(file, &ep->poll_wait, wait);
722 * Proceed to find out if wanted events are really available inside
723 * the ready list. This need to be done under ep_call_nested()
724 * supervision, since the call to f_op->poll() done on listed files
725 * could re-enter here.
727 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
728 ep_poll_readyevents_proc, ep, ep, current);
730 return pollflags != -1 ? pollflags : 0;
733 /* File callbacks that implement the eventpoll file behaviour */
734 static const struct file_operations eventpoll_fops = {
735 .release = ep_eventpoll_release,
736 .poll = ep_eventpoll_poll
740 * This is called from eventpoll_release() to unlink files from the eventpoll
741 * interface. We need to have this facility to cleanup correctly files that are
742 * closed without being removed from the eventpoll interface.
744 void eventpoll_release_file(struct file *file)
746 struct list_head *lsthead = &file->f_ep_links;
747 struct eventpoll *ep;
748 struct epitem *epi;
751 * We don't want to get "file->f_lock" because it is not
752 * necessary. It is not necessary because we're in the "struct file"
753 * cleanup path, and this means that noone is using this file anymore.
754 * So, for example, epoll_ctl() cannot hit here since if we reach this
755 * point, the file counter already went to zero and fget() would fail.
756 * The only hit might come from ep_free() but by holding the mutex
757 * will correctly serialize the operation. We do need to acquire
758 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
759 * from anywhere but ep_free().
761 * Besides, ep_remove() acquires the lock, so we can't hold it here.
763 mutex_lock(&epmutex);
765 while (!list_empty(lsthead)) {
766 epi = list_first_entry(lsthead, struct epitem, fllink);
768 ep = epi->ep;
769 list_del_init(&epi->fllink);
770 mutex_lock_nested(&ep->mtx, 0);
771 ep_remove(ep, epi);
772 mutex_unlock(&ep->mtx);
775 mutex_unlock(&epmutex);
778 static int ep_alloc(struct eventpoll **pep)
780 int error;
781 struct user_struct *user;
782 struct eventpoll *ep;
784 user = get_current_user();
785 error = -ENOMEM;
786 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
787 if (unlikely(!ep))
788 goto free_uid;
790 spin_lock_init(&ep->lock);
791 mutex_init(&ep->mtx);
792 init_waitqueue_head(&ep->wq);
793 init_waitqueue_head(&ep->poll_wait);
794 INIT_LIST_HEAD(&ep->rdllist);
795 ep->rbr = RB_ROOT;
796 ep->ovflist = EP_UNACTIVE_PTR;
797 ep->user = user;
799 *pep = ep;
801 return 0;
803 free_uid:
804 free_uid(user);
805 return error;
809 * Search the file inside the eventpoll tree. The RB tree operations
810 * are protected by the "mtx" mutex, and ep_find() must be called with
811 * "mtx" held.
813 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
815 int kcmp;
816 struct rb_node *rbp;
817 struct epitem *epi, *epir = NULL;
818 struct epoll_filefd ffd;
820 ep_set_ffd(&ffd, file, fd);
821 for (rbp = ep->rbr.rb_node; rbp; ) {
822 epi = rb_entry(rbp, struct epitem, rbn);
823 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
824 if (kcmp > 0)
825 rbp = rbp->rb_right;
826 else if (kcmp < 0)
827 rbp = rbp->rb_left;
828 else {
829 epir = epi;
830 break;
834 return epir;
838 * This is the callback that is passed to the wait queue wakeup
839 * machanism. It is called by the stored file descriptors when they
840 * have events to report.
842 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
844 int pwake = 0;
845 unsigned long flags;
846 struct epitem *epi = ep_item_from_wait(wait);
847 struct eventpoll *ep = epi->ep;
849 if ((unsigned long)key & POLLFREE) {
850 ep_pwq_from_wait(wait)->whead = NULL;
852 * whead = NULL above can race with ep_remove_wait_queue()
853 * which can do another remove_wait_queue() after us, so we
854 * can't use __remove_wait_queue(). whead->lock is held by
855 * the caller.
857 list_del_init(&wait->task_list);
860 spin_lock_irqsave(&ep->lock, flags);
863 * If the event mask does not contain any poll(2) event, we consider the
864 * descriptor to be disabled. This condition is likely the effect of the
865 * EPOLLONESHOT bit that disables the descriptor when an event is received,
866 * until the next EPOLL_CTL_MOD will be issued.
868 if (!(epi->event.events & ~EP_PRIVATE_BITS))
869 goto out_unlock;
872 * Check the events coming with the callback. At this stage, not
873 * every device reports the events in the "key" parameter of the
874 * callback. We need to be able to handle both cases here, hence the
875 * test for "key" != NULL before the event match test.
877 if (key && !((unsigned long) key & epi->event.events))
878 goto out_unlock;
881 * If we are trasfering events to userspace, we can hold no locks
882 * (because we're accessing user memory, and because of linux f_op->poll()
883 * semantics). All the events that happens during that period of time are
884 * chained in ep->ovflist and requeued later on.
886 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
887 if (epi->next == EP_UNACTIVE_PTR) {
888 epi->next = ep->ovflist;
889 ep->ovflist = epi;
891 goto out_unlock;
894 /* If this file is already in the ready list we exit soon */
895 if (!ep_is_linked(&epi->rdllink))
896 list_add_tail(&epi->rdllink, &ep->rdllist);
899 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
900 * wait list.
902 if (waitqueue_active(&ep->wq))
903 wake_up_locked(&ep->wq);
904 if (waitqueue_active(&ep->poll_wait))
905 pwake++;
907 out_unlock:
908 spin_unlock_irqrestore(&ep->lock, flags);
910 /* We have to call this outside the lock */
911 if (pwake)
912 ep_poll_safewake(&ep->poll_wait);
914 return 1;
918 * This is the callback that is used to add our wait queue to the
919 * target file wakeup lists.
921 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
922 poll_table *pt)
924 struct epitem *epi = ep_item_from_epqueue(pt);
925 struct eppoll_entry *pwq;
927 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
928 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
929 pwq->whead = whead;
930 pwq->base = epi;
931 add_wait_queue(whead, &pwq->wait);
932 list_add_tail(&pwq->llink, &epi->pwqlist);
933 epi->nwait++;
934 } else {
935 /* We have to signal that an error occurred */
936 epi->nwait = -1;
940 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
942 int kcmp;
943 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
944 struct epitem *epic;
946 while (*p) {
947 parent = *p;
948 epic = rb_entry(parent, struct epitem, rbn);
949 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
950 if (kcmp > 0)
951 p = &parent->rb_right;
952 else
953 p = &parent->rb_left;
955 rb_link_node(&epi->rbn, parent, p);
956 rb_insert_color(&epi->rbn, &ep->rbr);
961 #define PATH_ARR_SIZE 5
963 * These are the number paths of length 1 to 5, that we are allowing to emanate
964 * from a single file of interest. For example, we allow 1000 paths of length
965 * 1, to emanate from each file of interest. This essentially represents the
966 * potential wakeup paths, which need to be limited in order to avoid massive
967 * uncontrolled wakeup storms. The common use case should be a single ep which
968 * is connected to n file sources. In this case each file source has 1 path
969 * of length 1. Thus, the numbers below should be more than sufficient. These
970 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
971 * and delete can't add additional paths. Protected by the epmutex.
973 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
974 static int path_count[PATH_ARR_SIZE];
976 static int path_count_inc(int nests)
978 /* Allow an arbitrary number of depth 1 paths */
979 if (nests == 0)
980 return 0;
982 if (++path_count[nests] > path_limits[nests])
983 return -1;
984 return 0;
987 static void path_count_init(void)
989 int i;
991 for (i = 0; i < PATH_ARR_SIZE; i++)
992 path_count[i] = 0;
995 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
997 int error = 0;
998 struct file *file = priv;
999 struct file *child_file;
1000 struct epitem *epi;
1002 list_for_each_entry(epi, &file->f_ep_links, fllink) {
1003 child_file = epi->ep->file;
1004 if (is_file_epoll(child_file)) {
1005 if (list_empty(&child_file->f_ep_links)) {
1006 if (path_count_inc(call_nests)) {
1007 error = -1;
1008 break;
1010 } else {
1011 error = ep_call_nested(&poll_loop_ncalls,
1012 EP_MAX_NESTS,
1013 reverse_path_check_proc,
1014 child_file, child_file,
1015 current);
1017 if (error != 0)
1018 break;
1019 } else {
1020 printk(KERN_ERR "reverse_path_check_proc: "
1021 "file is not an ep!\n");
1024 return error;
1028 * reverse_path_check - The tfile_check_list is list of file *, which have
1029 * links that are proposed to be newly added. We need to
1030 * make sure that those added links don't add too many
1031 * paths such that we will spend all our time waking up
1032 * eventpoll objects.
1034 * Returns: Returns zero if the proposed links don't create too many paths,
1035 * -1 otherwise.
1037 static int reverse_path_check(void)
1039 int length = 0;
1040 int error = 0;
1041 struct file *current_file;
1043 /* let's call this for all tfiles */
1044 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1045 length++;
1046 path_count_init();
1047 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1048 reverse_path_check_proc, current_file,
1049 current_file, current);
1050 if (error)
1051 break;
1053 return error;
1057 * Must be called with "mtx" held.
1059 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1060 struct file *tfile, int fd)
1062 int error, revents, pwake = 0;
1063 unsigned long flags;
1064 struct epitem *epi;
1065 struct ep_pqueue epq;
1067 if (unlikely(atomic_read(&ep->user->epoll_watches) >=
1068 max_user_watches))
1069 return -ENOSPC;
1070 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1071 return -ENOMEM;
1073 /* Item initialization follow here ... */
1074 INIT_LIST_HEAD(&epi->rdllink);
1075 INIT_LIST_HEAD(&epi->fllink);
1076 INIT_LIST_HEAD(&epi->pwqlist);
1077 epi->ep = ep;
1078 ep_set_ffd(&epi->ffd, tfile, fd);
1079 epi->event = *event;
1080 epi->nwait = 0;
1081 epi->next = EP_UNACTIVE_PTR;
1083 /* Initialize the poll table using the queue callback */
1084 epq.epi = epi;
1085 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1088 * Attach the item to the poll hooks and get current event bits.
1089 * We can safely use the file* here because its usage count has
1090 * been increased by the caller of this function. Note that after
1091 * this operation completes, the poll callback can start hitting
1092 * the new item.
1094 revents = tfile->f_op->poll(tfile, &epq.pt);
1097 * We have to check if something went wrong during the poll wait queue
1098 * install process. Namely an allocation for a wait queue failed due
1099 * high memory pressure.
1101 error = -ENOMEM;
1102 if (epi->nwait < 0)
1103 goto error_unregister;
1105 /* Add the current item to the list of active epoll hook for this file */
1106 spin_lock(&tfile->f_lock);
1107 list_add_tail(&epi->fllink, &tfile->f_ep_links);
1108 spin_unlock(&tfile->f_lock);
1111 * Add the current item to the RB tree. All RB tree operations are
1112 * protected by "mtx", and ep_insert() is called with "mtx" held.
1114 ep_rbtree_insert(ep, epi);
1116 /* now check if we've created too many backpaths */
1117 error = -EINVAL;
1118 if (reverse_path_check())
1119 goto error_remove_epi;
1121 /* We have to drop the new item inside our item list to keep track of it */
1122 spin_lock_irqsave(&ep->lock, flags);
1124 /* If the file is already "ready" we drop it inside the ready list */
1125 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1126 list_add_tail(&epi->rdllink, &ep->rdllist);
1128 /* Notify waiting tasks that events are available */
1129 if (waitqueue_active(&ep->wq))
1130 wake_up_locked(&ep->wq);
1131 if (waitqueue_active(&ep->poll_wait))
1132 pwake++;
1135 spin_unlock_irqrestore(&ep->lock, flags);
1137 atomic_inc(&ep->user->epoll_watches);
1139 /* We have to call this outside the lock */
1140 if (pwake)
1141 ep_poll_safewake(&ep->poll_wait);
1143 return 0;
1145 error_remove_epi:
1146 spin_lock(&tfile->f_lock);
1147 if (ep_is_linked(&epi->fllink))
1148 list_del_init(&epi->fllink);
1149 spin_unlock(&tfile->f_lock);
1151 rb_erase(&epi->rbn, &ep->rbr);
1153 error_unregister:
1154 ep_unregister_pollwait(ep, epi);
1157 * We need to do this because an event could have been arrived on some
1158 * allocated wait queue. Note that we don't care about the ep->ovflist
1159 * list, since that is used/cleaned only inside a section bound by "mtx".
1160 * And ep_insert() is called with "mtx" held.
1162 spin_lock_irqsave(&ep->lock, flags);
1163 if (ep_is_linked(&epi->rdllink))
1164 list_del_init(&epi->rdllink);
1165 spin_unlock_irqrestore(&ep->lock, flags);
1167 kmem_cache_free(epi_cache, epi);
1169 return error;
1173 * Modify the interest event mask by dropping an event if the new mask
1174 * has a match in the current file status. Must be called with "mtx" held.
1176 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1178 int pwake = 0;
1179 unsigned int revents;
1182 * Set the new event interest mask before calling f_op->poll();
1183 * otherwise we might miss an event that happens between the
1184 * f_op->poll() call and the new event set registering.
1186 epi->event.events = event->events; /* need barrier below */
1187 epi->event.data = event->data; /* protected by mtx */
1190 * The following barrier has two effects:
1192 * 1) Flush epi changes above to other CPUs. This ensures
1193 * we do not miss events from ep_poll_callback if an
1194 * event occurs immediately after we call f_op->poll().
1195 * We need this because we did not take ep->lock while
1196 * changing epi above (but ep_poll_callback does take
1197 * ep->lock).
1199 * 2) We also need to ensure we do not miss _past_ events
1200 * when calling f_op->poll(). This barrier also
1201 * pairs with the barrier in wq_has_sleeper (see
1202 * comments for wq_has_sleeper).
1204 * This barrier will now guarantee ep_poll_callback or f_op->poll
1205 * (or both) will notice the readiness of an item.
1207 smp_mb();
1210 * Get current event bits. We can safely use the file* here because
1211 * its usage count has been increased by the caller of this function.
1213 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1216 * If the item is "hot" and it is not registered inside the ready
1217 * list, push it inside.
1219 if (revents & event->events) {
1220 spin_lock_irq(&ep->lock);
1221 if (!ep_is_linked(&epi->rdllink)) {
1222 list_add_tail(&epi->rdllink, &ep->rdllist);
1224 /* Notify waiting tasks that events are available */
1225 if (waitqueue_active(&ep->wq))
1226 wake_up_locked(&ep->wq);
1227 if (waitqueue_active(&ep->poll_wait))
1228 pwake++;
1230 spin_unlock_irq(&ep->lock);
1233 /* We have to call this outside the lock */
1234 if (pwake)
1235 ep_poll_safewake(&ep->poll_wait);
1237 return 0;
1240 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1241 void *priv)
1243 struct ep_send_events_data *esed = priv;
1244 int eventcnt;
1245 unsigned int revents;
1246 struct epitem *epi;
1247 struct epoll_event __user *uevent;
1250 * We can loop without lock because we are passed a task private list.
1251 * Items cannot vanish during the loop because ep_scan_ready_list() is
1252 * holding "mtx" during this call.
1254 for (eventcnt = 0, uevent = esed->events;
1255 !list_empty(head) && eventcnt < esed->maxevents;) {
1256 epi = list_first_entry(head, struct epitem, rdllink);
1258 list_del_init(&epi->rdllink);
1260 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1261 epi->event.events;
1264 * If the event mask intersect the caller-requested one,
1265 * deliver the event to userspace. Again, ep_scan_ready_list()
1266 * is holding "mtx", so no operations coming from userspace
1267 * can change the item.
1269 if (revents) {
1270 if (__put_user(revents, &uevent->events) ||
1271 __put_user(epi->event.data, &uevent->data)) {
1272 list_add(&epi->rdllink, head);
1273 return eventcnt ? eventcnt : -EFAULT;
1275 eventcnt++;
1276 uevent++;
1277 if (epi->event.events & EPOLLONESHOT)
1278 epi->event.events &= EP_PRIVATE_BITS;
1279 else if (!(epi->event.events & EPOLLET)) {
1281 * If this file has been added with Level
1282 * Trigger mode, we need to insert back inside
1283 * the ready list, so that the next call to
1284 * epoll_wait() will check again the events
1285 * availability. At this point, noone can insert
1286 * into ep->rdllist besides us. The epoll_ctl()
1287 * callers are locked out by
1288 * ep_scan_ready_list() holding "mtx" and the
1289 * poll callback will queue them in ep->ovflist.
1291 list_add_tail(&epi->rdllink, &ep->rdllist);
1296 return eventcnt;
1299 static int ep_send_events(struct eventpoll *ep,
1300 struct epoll_event __user *events, int maxevents)
1302 struct ep_send_events_data esed;
1304 esed.maxevents = maxevents;
1305 esed.events = events;
1307 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1310 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1311 int maxevents, long timeout)
1313 int res, eavail;
1314 unsigned long flags;
1315 long jtimeout;
1316 wait_queue_t wait;
1319 * Calculate the timeout by checking for the "infinite" value (-1)
1320 * and the overflow condition. The passed timeout is in milliseconds,
1321 * that why (t * HZ) / 1000.
1323 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1324 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1326 retry:
1327 spin_lock_irqsave(&ep->lock, flags);
1329 res = 0;
1330 if (list_empty(&ep->rdllist)) {
1332 * We don't have any available event to return to the caller.
1333 * We need to sleep here, and we will be wake up by
1334 * ep_poll_callback() when events will become available.
1336 init_waitqueue_entry(&wait, current);
1337 wait.flags |= WQ_FLAG_EXCLUSIVE;
1338 __add_wait_queue(&ep->wq, &wait);
1340 for (;;) {
1342 * We don't want to sleep if the ep_poll_callback() sends us
1343 * a wakeup in between. That's why we set the task state
1344 * to TASK_INTERRUPTIBLE before doing the checks.
1346 set_current_state(TASK_INTERRUPTIBLE);
1347 if (!list_empty(&ep->rdllist) || !jtimeout)
1348 break;
1349 if (signal_pending(current)) {
1350 res = -EINTR;
1351 break;
1354 spin_unlock_irqrestore(&ep->lock, flags);
1355 jtimeout = schedule_timeout(jtimeout);
1356 spin_lock_irqsave(&ep->lock, flags);
1358 __remove_wait_queue(&ep->wq, &wait);
1360 set_current_state(TASK_RUNNING);
1362 /* Is it worth to try to dig for events ? */
1363 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1365 spin_unlock_irqrestore(&ep->lock, flags);
1368 * Try to transfer events to user space. In case we get 0 events and
1369 * there's still timeout left over, we go trying again in search of
1370 * more luck.
1372 if (!res && eavail &&
1373 !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1374 goto retry;
1376 return res;
1380 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1381 * API, to verify that adding an epoll file inside another
1382 * epoll structure, does not violate the constraints, in
1383 * terms of closed loops, or too deep chains (which can
1384 * result in excessive stack usage).
1386 * @priv: Pointer to the epoll file to be currently checked.
1387 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1388 * data structure pointer.
1389 * @call_nests: Current dept of the @ep_call_nested() call stack.
1391 * Returns: Returns zero if adding the epoll @file inside current epoll
1392 * structure @ep does not violate the constraints, or -1 otherwise.
1394 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1396 int error = 0;
1397 struct file *file = priv;
1398 struct eventpoll *ep = file->private_data;
1399 struct eventpoll *ep_tovisit;
1400 struct rb_node *rbp;
1401 struct epitem *epi;
1403 mutex_lock_nested(&ep->mtx, call_nests + 1);
1404 ep->visited = 1;
1405 list_add(&ep->visited_list_link, &visited_list);
1406 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1407 epi = rb_entry(rbp, struct epitem, rbn);
1408 if (unlikely(is_file_epoll(epi->ffd.file))) {
1409 ep_tovisit = epi->ffd.file->private_data;
1410 if (ep_tovisit->visited)
1411 continue;
1412 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1413 ep_loop_check_proc, epi->ffd.file,
1414 ep_tovisit, current);
1415 if (error != 0)
1416 break;
1417 } else {
1419 * If we've reached a file that is not associated with
1420 * an ep, then we need to check if the newly added
1421 * links are going to add too many wakeup paths. We do
1422 * this by adding it to the tfile_check_list, if it's
1423 * not already there, and calling reverse_path_check()
1424 * during ep_insert().
1426 if (list_empty(&epi->ffd.file->f_tfile_llink))
1427 list_add(&epi->ffd.file->f_tfile_llink,
1428 &tfile_check_list);
1431 mutex_unlock(&ep->mtx);
1433 return error;
1437 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1438 * another epoll file (represented by @ep) does not create
1439 * closed loops or too deep chains.
1441 * @ep: Pointer to the epoll private data structure.
1442 * @file: Pointer to the epoll file to be checked.
1444 * Returns: Returns zero if adding the epoll @file inside current epoll
1445 * structure @ep does not violate the constraints, or -1 otherwise.
1447 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1449 int ret;
1450 struct eventpoll *ep_cur, *ep_next;
1452 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1453 ep_loop_check_proc, file, ep, current);
1454 /* clear visited list */
1455 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1456 visited_list_link) {
1457 ep_cur->visited = 0;
1458 list_del(&ep_cur->visited_list_link);
1460 return ret;
1463 static void clear_tfile_check_list(void)
1465 struct file *file;
1467 /* first clear the tfile_check_list */
1468 while (!list_empty(&tfile_check_list)) {
1469 file = list_first_entry(&tfile_check_list, struct file,
1470 f_tfile_llink);
1471 list_del_init(&file->f_tfile_llink);
1473 INIT_LIST_HEAD(&tfile_check_list);
1477 * Open an eventpoll file descriptor.
1479 SYSCALL_DEFINE1(epoll_create1, int, flags)
1481 int error, fd;
1482 struct eventpoll *ep = NULL;
1483 struct file *file;
1485 /* Check the EPOLL_* constant for consistency. */
1486 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1488 if (flags & ~EPOLL_CLOEXEC)
1489 return -EINVAL;
1491 * Create the internal data structure ("struct eventpoll").
1493 error = ep_alloc(&ep);
1494 if (error < 0)
1495 return error;
1497 * Creates all the items needed to setup an eventpoll file. That is,
1498 * a file structure and a free file descriptor.
1500 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1501 if (fd < 0) {
1502 error = fd;
1503 goto out_free_ep;
1505 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1506 O_RDWR | (flags & O_CLOEXEC));
1507 if (IS_ERR(file)) {
1508 error = PTR_ERR(file);
1509 goto out_free_fd;
1511 fd_install(fd, file);
1512 ep->file = file;
1513 return fd;
1515 out_free_fd:
1516 put_unused_fd(fd);
1517 out_free_ep:
1518 ep_free(ep);
1519 return error;
1522 SYSCALL_DEFINE1(epoll_create, int, size)
1524 if (size <= 0)
1525 return -EINVAL;
1527 return sys_epoll_create1(0);
1531 * The following function implements the controller interface for
1532 * the eventpoll file that enables the insertion/removal/change of
1533 * file descriptors inside the interest set.
1535 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1536 struct epoll_event __user *, event)
1538 int error;
1539 int did_lock_epmutex = 0;
1540 struct file *file, *tfile;
1541 struct eventpoll *ep;
1542 struct epitem *epi;
1543 struct epoll_event epds;
1545 error = -EFAULT;
1546 if (ep_op_has_event(op) &&
1547 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1548 goto error_return;
1550 /* Get the "struct file *" for the eventpoll file */
1551 error = -EBADF;
1552 file = fget(epfd);
1553 if (!file)
1554 goto error_return;
1556 /* Get the "struct file *" for the target file */
1557 tfile = fget(fd);
1558 if (!tfile)
1559 goto error_fput;
1561 /* The target file descriptor must support poll */
1562 error = -EPERM;
1563 if (!tfile->f_op || !tfile->f_op->poll)
1564 goto error_tgt_fput;
1567 * We have to check that the file structure underneath the file descriptor
1568 * the user passed to us _is_ an eventpoll file. And also we do not permit
1569 * adding an epoll file descriptor inside itself.
1571 error = -EINVAL;
1572 if (file == tfile || !is_file_epoll(file))
1573 goto error_tgt_fput;
1576 * At this point it is safe to assume that the "private_data" contains
1577 * our own data structure.
1579 ep = file->private_data;
1582 * When we insert an epoll file descriptor, inside another epoll file
1583 * descriptor, there is the change of creating closed loops, which are
1584 * better be handled here, than in more critical paths. While we are
1585 * checking for loops we also determine the list of files reachable
1586 * and hang them on the tfile_check_list, so we can check that we
1587 * haven't created too many possible wakeup paths.
1589 * We need to hold the epmutex across both ep_insert and ep_remove
1590 * b/c we want to make sure we are looking at a coherent view of
1591 * epoll network.
1593 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1594 mutex_lock(&epmutex);
1595 did_lock_epmutex = 1;
1597 if (op == EPOLL_CTL_ADD) {
1598 if (is_file_epoll(tfile)) {
1599 error = -ELOOP;
1600 if (ep_loop_check(ep, tfile) != 0) {
1601 clear_tfile_check_list();
1602 goto error_tgt_fput;
1604 } else
1605 list_add(&tfile->f_tfile_llink, &tfile_check_list);
1608 mutex_lock_nested(&ep->mtx, 0);
1611 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1612 * above, we can be sure to be able to use the item looked up by
1613 * ep_find() till we release the mutex.
1615 epi = ep_find(ep, tfile, fd);
1617 error = -EINVAL;
1618 switch (op) {
1619 case EPOLL_CTL_ADD:
1620 if (!epi) {
1621 epds.events |= POLLERR | POLLHUP;
1622 error = ep_insert(ep, &epds, tfile, fd);
1623 } else
1624 error = -EEXIST;
1625 clear_tfile_check_list();
1626 break;
1627 case EPOLL_CTL_DEL:
1628 if (epi)
1629 error = ep_remove(ep, epi);
1630 else
1631 error = -ENOENT;
1632 break;
1633 case EPOLL_CTL_MOD:
1634 if (epi) {
1635 epds.events |= POLLERR | POLLHUP;
1636 error = ep_modify(ep, epi, &epds);
1637 } else
1638 error = -ENOENT;
1639 break;
1641 mutex_unlock(&ep->mtx);
1643 error_tgt_fput:
1644 if (did_lock_epmutex)
1645 mutex_unlock(&epmutex);
1647 fput(tfile);
1648 error_fput:
1649 fput(file);
1650 error_return:
1652 return error;
1656 * Implement the event wait interface for the eventpoll file. It is the kernel
1657 * part of the user space epoll_wait(2).
1659 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1660 int, maxevents, int, timeout)
1662 int error;
1663 struct file *file;
1664 struct eventpoll *ep;
1666 /* The maximum number of event must be greater than zero */
1667 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1668 return -EINVAL;
1670 /* Verify that the area passed by the user is writeable */
1671 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1672 error = -EFAULT;
1673 goto error_return;
1676 /* Get the "struct file *" for the eventpoll file */
1677 error = -EBADF;
1678 file = fget(epfd);
1679 if (!file)
1680 goto error_return;
1683 * We have to check that the file structure underneath the fd
1684 * the user passed to us _is_ an eventpoll file.
1686 error = -EINVAL;
1687 if (!is_file_epoll(file))
1688 goto error_fput;
1691 * At this point it is safe to assume that the "private_data" contains
1692 * our own data structure.
1694 ep = file->private_data;
1696 /* Time to fish for events ... */
1697 error = ep_poll(ep, events, maxevents, timeout);
1699 error_fput:
1700 fput(file);
1701 error_return:
1703 return error;
1706 #ifdef HAVE_SET_RESTORE_SIGMASK
1709 * Implement the event wait interface for the eventpoll file. It is the kernel
1710 * part of the user space epoll_pwait(2).
1712 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1713 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1714 size_t, sigsetsize)
1716 int error;
1717 sigset_t ksigmask, sigsaved;
1720 * If the caller wants a certain signal mask to be set during the wait,
1721 * we apply it here.
1723 if (sigmask) {
1724 if (sigsetsize != sizeof(sigset_t))
1725 return -EINVAL;
1726 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1727 return -EFAULT;
1728 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1729 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1732 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1735 * If we changed the signal mask, we need to restore the original one.
1736 * In case we've got a signal while waiting, we do not restore the
1737 * signal mask yet, and we allow do_signal() to deliver the signal on
1738 * the way back to userspace, before the signal mask is restored.
1740 if (sigmask) {
1741 if (error == -EINTR) {
1742 memcpy(&current->saved_sigmask, &sigsaved,
1743 sizeof(sigsaved));
1744 set_restore_sigmask();
1745 } else
1746 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1749 return error;
1752 #endif /* HAVE_SET_RESTORE_SIGMASK */
1754 static int __init eventpoll_init(void)
1756 struct sysinfo si;
1758 si_meminfo(&si);
1760 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1762 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1763 EP_ITEM_COST;
1766 * Initialize the structure used to perform epoll file descriptor
1767 * inclusion loops checks.
1769 ep_nested_calls_init(&poll_loop_ncalls);
1771 /* Initialize the structure used to perform safe poll wait head wake ups */
1772 ep_nested_calls_init(&poll_safewake_ncalls);
1774 /* Initialize the structure used to perform file's f_op->poll() calls */
1775 ep_nested_calls_init(&poll_readywalk_ncalls);
1777 /* Allocates slab cache used to allocate "struct epitem" items */
1778 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1779 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1781 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1782 pwq_cache = kmem_cache_create("eventpoll_pwq",
1783 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1785 return 0;
1787 fs_initcall(eventpoll_init);