2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
40 #include <asm/atomic.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
96 /* Maximum msec timeout value storeable in a long int */
97 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
99 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
101 #define EP_UNACTIVE_PTR ((void *) -1L)
103 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
105 struct epoll_filefd
{
111 * Structure used to track possible nested calls, for too deep recursions
114 struct nested_call_node
{
115 struct list_head llink
;
121 * This structure is used as collector for nested calls, to check for
122 * maximum recursion dept and loop cycles.
124 struct nested_calls
{
125 struct list_head tasks_call_list
;
130 * Each file descriptor added to the eventpoll interface will
131 * have an entry of this type linked to the "rbr" RB tree.
134 /* RB tree node used to link this structure to the eventpoll RB tree */
137 /* List header used to link this structure to the eventpoll ready list */
138 struct list_head rdllink
;
141 * Works together "struct eventpoll"->ovflist in keeping the
142 * single linked chain of items.
146 /* The file descriptor information this item refers to */
147 struct epoll_filefd ffd
;
149 /* Number of active wait queue attached to poll operations */
152 /* List containing poll wait queues */
153 struct list_head pwqlist
;
155 /* The "container" of this item */
156 struct eventpoll
*ep
;
158 /* List header used to link this item to the "struct file" items list */
159 struct list_head fllink
;
161 /* The structure that describe the interested events and the source fd */
162 struct epoll_event event
;
166 * This structure is stored inside the "private_data" member of the file
167 * structure and rapresent the main data sructure for the eventpoll
171 /* Protect the this structure access */
175 * This mutex is used to ensure that files are not removed
176 * while epoll is using them. This is held during the event
177 * collection loop, the file cleanup path, the epoll file exit
178 * code and the ctl operations.
182 /* Wait queue used by sys_epoll_wait() */
183 wait_queue_head_t wq
;
185 /* Wait queue used by file->poll() */
186 wait_queue_head_t poll_wait
;
188 /* List of ready file descriptors */
189 struct list_head rdllist
;
191 /* RB tree root used to store monitored fd structs */
195 * This is a single linked list that chains all the "struct epitem" that
196 * happened while transfering ready events to userspace w/out
199 struct epitem
*ovflist
;
201 /* The user that created the eventpoll descriptor */
202 struct user_struct
*user
;
206 /* used to optimize loop detection check */
208 struct list_head visited_list_link
;
211 /* Wait structure used by the poll hooks */
212 struct eppoll_entry
{
213 /* List header used to link this structure to the "struct epitem" */
214 struct list_head llink
;
216 /* The "base" pointer is set to the container "struct epitem" */
220 * Wait queue item that will be linked to the target file wait
225 /* The wait queue head that linked the "wait" wait queue item */
226 wait_queue_head_t
*whead
;
229 /* Wrapper struct used by poll queueing */
235 /* Used by the ep_send_events() function as callback private data */
236 struct ep_send_events_data
{
238 struct epoll_event __user
*events
;
242 * Configuration options available inside /proc/sys/fs/epoll/
244 /* Maximum number of epoll watched descriptors, per user */
245 static int max_user_watches __read_mostly
;
248 * This mutex is used to serialize ep_free() and eventpoll_release_file().
250 static DEFINE_MUTEX(epmutex
);
252 /* Used to check for epoll file descriptor inclusion loops */
253 static struct nested_calls poll_loop_ncalls
;
255 /* Used for safe wake up implementation */
256 static struct nested_calls poll_safewake_ncalls
;
258 /* Used to call file's f_op->poll() under the nested calls boundaries */
259 static struct nested_calls poll_readywalk_ncalls
;
261 /* Slab cache used to allocate "struct epitem" */
262 static struct kmem_cache
*epi_cache __read_mostly
;
264 /* Slab cache used to allocate "struct eppoll_entry" */
265 static struct kmem_cache
*pwq_cache __read_mostly
;
267 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
268 static LIST_HEAD(visited_list
);
271 * List of files with newly added links, where we may need to limit the number
272 * of emanating paths. Protected by the epmutex.
274 static LIST_HEAD(tfile_check_list
);
278 #include <linux/sysctl.h>
282 ctl_table epoll_table
[] = {
284 .procname
= "max_user_watches",
285 .data
= &max_user_watches
,
286 .maxlen
= sizeof(int),
288 .proc_handler
= &proc_dointvec_minmax
,
293 #endif /* CONFIG_SYSCTL */
295 static const struct file_operations eventpoll_fops
;
297 static inline int is_file_epoll(struct file
*f
)
299 return f
->f_op
== &eventpoll_fops
;
302 /* Setup the structure that is used as key for the RB tree */
303 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
304 struct file
*file
, int fd
)
310 /* Compare RB tree keys */
311 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
312 struct epoll_filefd
*p2
)
314 return (p1
->file
> p2
->file
? +1:
315 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
318 /* Tells us if the item is currently linked */
319 static inline int ep_is_linked(struct list_head
*p
)
321 return !list_empty(p
);
324 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_t
*p
)
326 return container_of(p
, struct eppoll_entry
, wait
);
329 /* Get the "struct epitem" from a wait queue pointer */
330 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
332 return container_of(p
, struct eppoll_entry
, wait
)->base
;
335 /* Get the "struct epitem" from an epoll queue wrapper */
336 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
338 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
341 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
342 static inline int ep_op_has_event(int op
)
344 return op
!= EPOLL_CTL_DEL
;
347 /* Initialize the poll safe wake up structure */
348 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
350 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
351 spin_lock_init(&ncalls
->lock
);
355 * ep_call_nested - Perform a bound (possibly) nested call, by checking
356 * that the recursion limit is not exceeded, and that
357 * the same nested call (by the meaning of same cookie) is
360 * @ncalls: Pointer to the nested_calls structure to be used for this call.
361 * @max_nests: Maximum number of allowed nesting calls.
362 * @nproc: Nested call core function pointer.
363 * @priv: Opaque data to be passed to the @nproc callback.
364 * @cookie: Cookie to be used to identify this nested call.
365 * @ctx: This instance context.
367 * Returns: Returns the code returned by the @nproc callback, or -1 if
368 * the maximum recursion limit has been exceeded.
370 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
371 int (*nproc
)(void *, void *, int), void *priv
,
372 void *cookie
, void *ctx
)
374 int error
, call_nests
= 0;
376 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
377 struct nested_call_node
*tncur
;
378 struct nested_call_node tnode
;
380 spin_lock_irqsave(&ncalls
->lock
, flags
);
383 * Try to see if the current task is already inside this wakeup call.
384 * We use a list here, since the population inside this set is always
387 list_for_each_entry(tncur
, lsthead
, llink
) {
388 if (tncur
->ctx
== ctx
&&
389 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
391 * Ops ... loop detected or maximum nest level reached.
392 * We abort this wake by breaking the cycle itself.
399 /* Add the current task and cookie to the list */
401 tnode
.cookie
= cookie
;
402 list_add(&tnode
.llink
, lsthead
);
404 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
406 /* Call the nested function */
407 error
= (*nproc
)(priv
, cookie
, call_nests
);
409 /* Remove the current task from the list */
410 spin_lock_irqsave(&ncalls
->lock
, flags
);
411 list_del(&tnode
.llink
);
413 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
418 #ifdef CONFIG_DEBUG_LOCK_ALLOC
419 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
420 unsigned long events
, int subclass
)
424 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
425 wake_up_locked_poll(wqueue
, events
);
426 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
429 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
430 unsigned long events
, int subclass
)
432 wake_up_poll(wqueue
, events
);
436 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
438 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
444 * Perform a safe wake up of the poll wait list. The problem is that
445 * with the new callback'd wake up system, it is possible that the
446 * poll callback is reentered from inside the call to wake_up() done
447 * on the poll wait queue head. The rule is that we cannot reenter the
448 * wake up code from the same task more than EP_MAX_NESTS times,
449 * and we cannot reenter the same wait queue head at all. This will
450 * enable to have a hierarchy of epoll file descriptor of no more than
453 static void ep_poll_safewake(wait_queue_head_t
*wq
)
455 int this_cpu
= get_cpu();
457 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
458 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
463 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
465 wait_queue_head_t
*whead
;
468 /* If it is cleared by POLLFREE, it should be rcu-safe */
469 whead
= rcu_dereference(pwq
->whead
);
471 remove_wait_queue(whead
, &pwq
->wait
);
476 * This function unregisters poll callbacks from the associated file
477 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
480 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
482 struct list_head
*lsthead
= &epi
->pwqlist
;
483 struct eppoll_entry
*pwq
;
485 while (!list_empty(lsthead
)) {
486 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
488 list_del(&pwq
->llink
);
489 ep_remove_wait_queue(pwq
);
490 kmem_cache_free(pwq_cache
, pwq
);
495 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
496 * the scan code, to call f_op->poll(). Also allows for
497 * O(NumReady) performance.
499 * @ep: Pointer to the epoll private data structure.
500 * @sproc: Pointer to the scan callback.
501 * @priv: Private opaque data passed to the @sproc callback.
502 * @depth: The current depth of recursive f_op->poll calls.
504 * Returns: The same integer error code returned by the @sproc callback.
506 static int ep_scan_ready_list(struct eventpoll
*ep
,
507 int (*sproc
)(struct eventpoll
*,
508 struct list_head
*, void *),
512 int error
, pwake
= 0;
514 struct epitem
*epi
, *nepi
;
518 * We need to lock this because we could be hit by
519 * eventpoll_release_file() and epoll_ctl().
521 mutex_lock_nested(&ep
->mtx
, depth
);
524 * Steal the ready list, and re-init the original one to the
525 * empty list. Also, set ep->ovflist to NULL so that events
526 * happening while looping w/out locks, are not lost. We cannot
527 * have the poll callback to queue directly on ep->rdllist,
528 * because we want the "sproc" callback to be able to do it
531 spin_lock_irqsave(&ep
->lock
, flags
);
532 list_splice_init(&ep
->rdllist
, &txlist
);
534 spin_unlock_irqrestore(&ep
->lock
, flags
);
537 * Now call the callback function.
539 error
= (*sproc
)(ep
, &txlist
, priv
);
541 spin_lock_irqsave(&ep
->lock
, flags
);
543 * During the time we spent inside the "sproc" callback, some
544 * other events might have been queued by the poll callback.
545 * We re-insert them inside the main ready-list here.
547 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
548 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
550 * We need to check if the item is already in the list.
551 * During the "sproc" callback execution time, items are
552 * queued into ->ovflist but the "txlist" might already
553 * contain them, and the list_splice() below takes care of them.
555 if (!ep_is_linked(&epi
->rdllink
))
556 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
559 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
560 * releasing the lock, events will be queued in the normal way inside
563 ep
->ovflist
= EP_UNACTIVE_PTR
;
566 * Quickly re-inject items left on "txlist".
568 list_splice(&txlist
, &ep
->rdllist
);
570 if (!list_empty(&ep
->rdllist
)) {
572 * Wake up (if active) both the eventpoll wait list and
573 * the ->poll() wait list (delayed after we release the lock).
575 if (waitqueue_active(&ep
->wq
))
576 wake_up_locked(&ep
->wq
);
577 if (waitqueue_active(&ep
->poll_wait
))
580 spin_unlock_irqrestore(&ep
->lock
, flags
);
582 mutex_unlock(&ep
->mtx
);
584 /* We have to call this outside the lock */
586 ep_poll_safewake(&ep
->poll_wait
);
592 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
593 * all the associated resources. Must be called with "mtx" held.
595 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
598 struct file
*file
= epi
->ffd
.file
;
601 * Removes poll wait queue hooks. We _have_ to do this without holding
602 * the "ep->lock" otherwise a deadlock might occur. This because of the
603 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
604 * queue head lock when unregistering the wait queue. The wakeup callback
605 * will run by holding the wait queue head lock and will call our callback
606 * that will try to get "ep->lock".
608 ep_unregister_pollwait(ep
, epi
);
610 /* Remove the current item from the list of epoll hooks */
611 spin_lock(&file
->f_lock
);
612 if (ep_is_linked(&epi
->fllink
))
613 list_del_init(&epi
->fllink
);
614 spin_unlock(&file
->f_lock
);
616 rb_erase(&epi
->rbn
, &ep
->rbr
);
618 spin_lock_irqsave(&ep
->lock
, flags
);
619 if (ep_is_linked(&epi
->rdllink
))
620 list_del_init(&epi
->rdllink
);
621 spin_unlock_irqrestore(&ep
->lock
, flags
);
623 /* At this point it is safe to free the eventpoll item */
624 kmem_cache_free(epi_cache
, epi
);
626 atomic_dec(&ep
->user
->epoll_watches
);
631 static void ep_free(struct eventpoll
*ep
)
636 /* We need to release all tasks waiting for these file */
637 if (waitqueue_active(&ep
->poll_wait
))
638 ep_poll_safewake(&ep
->poll_wait
);
641 * We need to lock this because we could be hit by
642 * eventpoll_release_file() while we're freeing the "struct eventpoll".
643 * We do not need to hold "ep->mtx" here because the epoll file
644 * is on the way to be removed and no one has references to it
645 * anymore. The only hit might come from eventpoll_release_file() but
646 * holding "epmutex" is sufficent here.
648 mutex_lock(&epmutex
);
651 * Walks through the whole tree by unregistering poll callbacks.
653 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
654 epi
= rb_entry(rbp
, struct epitem
, rbn
);
656 ep_unregister_pollwait(ep
, epi
);
660 * Walks through the whole tree by freeing each "struct epitem". At this
661 * point we are sure no poll callbacks will be lingering around, and also by
662 * holding "epmutex" we can be sure that no file cleanup code will hit
663 * us during this operation. So we can avoid the lock on "ep->lock".
665 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
666 epi
= rb_entry(rbp
, struct epitem
, rbn
);
670 mutex_unlock(&epmutex
);
671 mutex_destroy(&ep
->mtx
);
676 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
678 struct eventpoll
*ep
= file
->private_data
;
686 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
689 struct epitem
*epi
, *tmp
;
691 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
692 if (epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
) &
694 return POLLIN
| POLLRDNORM
;
697 * Item has been dropped into the ready list by the poll
698 * callback, but it's not actually ready, as far as
699 * caller requested events goes. We can remove it here.
701 list_del_init(&epi
->rdllink
);
708 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
710 return ep_scan_ready_list(priv
, ep_read_events_proc
, NULL
, call_nests
+ 1);
713 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
716 struct eventpoll
*ep
= file
->private_data
;
718 /* Insert inside our poll wait queue */
719 poll_wait(file
, &ep
->poll_wait
, wait
);
722 * Proceed to find out if wanted events are really available inside
723 * the ready list. This need to be done under ep_call_nested()
724 * supervision, since the call to f_op->poll() done on listed files
725 * could re-enter here.
727 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
728 ep_poll_readyevents_proc
, ep
, ep
, current
);
730 return pollflags
!= -1 ? pollflags
: 0;
733 /* File callbacks that implement the eventpoll file behaviour */
734 static const struct file_operations eventpoll_fops
= {
735 .release
= ep_eventpoll_release
,
736 .poll
= ep_eventpoll_poll
740 * This is called from eventpoll_release() to unlink files from the eventpoll
741 * interface. We need to have this facility to cleanup correctly files that are
742 * closed without being removed from the eventpoll interface.
744 void eventpoll_release_file(struct file
*file
)
746 struct list_head
*lsthead
= &file
->f_ep_links
;
747 struct eventpoll
*ep
;
751 * We don't want to get "file->f_lock" because it is not
752 * necessary. It is not necessary because we're in the "struct file"
753 * cleanup path, and this means that noone is using this file anymore.
754 * So, for example, epoll_ctl() cannot hit here since if we reach this
755 * point, the file counter already went to zero and fget() would fail.
756 * The only hit might come from ep_free() but by holding the mutex
757 * will correctly serialize the operation. We do need to acquire
758 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
759 * from anywhere but ep_free().
761 * Besides, ep_remove() acquires the lock, so we can't hold it here.
763 mutex_lock(&epmutex
);
765 while (!list_empty(lsthead
)) {
766 epi
= list_first_entry(lsthead
, struct epitem
, fllink
);
769 list_del_init(&epi
->fllink
);
770 mutex_lock_nested(&ep
->mtx
, 0);
772 mutex_unlock(&ep
->mtx
);
775 mutex_unlock(&epmutex
);
778 static int ep_alloc(struct eventpoll
**pep
)
781 struct user_struct
*user
;
782 struct eventpoll
*ep
;
784 user
= get_current_user();
786 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
790 spin_lock_init(&ep
->lock
);
791 mutex_init(&ep
->mtx
);
792 init_waitqueue_head(&ep
->wq
);
793 init_waitqueue_head(&ep
->poll_wait
);
794 INIT_LIST_HEAD(&ep
->rdllist
);
796 ep
->ovflist
= EP_UNACTIVE_PTR
;
809 * Search the file inside the eventpoll tree. The RB tree operations
810 * are protected by the "mtx" mutex, and ep_find() must be called with
813 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
817 struct epitem
*epi
, *epir
= NULL
;
818 struct epoll_filefd ffd
;
820 ep_set_ffd(&ffd
, file
, fd
);
821 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
822 epi
= rb_entry(rbp
, struct epitem
, rbn
);
823 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
838 * This is the callback that is passed to the wait queue wakeup
839 * machanism. It is called by the stored file descriptors when they
840 * have events to report.
842 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
846 struct epitem
*epi
= ep_item_from_wait(wait
);
847 struct eventpoll
*ep
= epi
->ep
;
849 if ((unsigned long)key
& POLLFREE
) {
850 ep_pwq_from_wait(wait
)->whead
= NULL
;
852 * whead = NULL above can race with ep_remove_wait_queue()
853 * which can do another remove_wait_queue() after us, so we
854 * can't use __remove_wait_queue(). whead->lock is held by
857 list_del_init(&wait
->task_list
);
860 spin_lock_irqsave(&ep
->lock
, flags
);
863 * If the event mask does not contain any poll(2) event, we consider the
864 * descriptor to be disabled. This condition is likely the effect of the
865 * EPOLLONESHOT bit that disables the descriptor when an event is received,
866 * until the next EPOLL_CTL_MOD will be issued.
868 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
872 * Check the events coming with the callback. At this stage, not
873 * every device reports the events in the "key" parameter of the
874 * callback. We need to be able to handle both cases here, hence the
875 * test for "key" != NULL before the event match test.
877 if (key
&& !((unsigned long) key
& epi
->event
.events
))
881 * If we are trasfering events to userspace, we can hold no locks
882 * (because we're accessing user memory, and because of linux f_op->poll()
883 * semantics). All the events that happens during that period of time are
884 * chained in ep->ovflist and requeued later on.
886 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
887 if (epi
->next
== EP_UNACTIVE_PTR
) {
888 epi
->next
= ep
->ovflist
;
894 /* If this file is already in the ready list we exit soon */
895 if (!ep_is_linked(&epi
->rdllink
))
896 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
899 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
902 if (waitqueue_active(&ep
->wq
))
903 wake_up_locked(&ep
->wq
);
904 if (waitqueue_active(&ep
->poll_wait
))
908 spin_unlock_irqrestore(&ep
->lock
, flags
);
910 /* We have to call this outside the lock */
912 ep_poll_safewake(&ep
->poll_wait
);
918 * This is the callback that is used to add our wait queue to the
919 * target file wakeup lists.
921 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
924 struct epitem
*epi
= ep_item_from_epqueue(pt
);
925 struct eppoll_entry
*pwq
;
927 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
928 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
931 add_wait_queue(whead
, &pwq
->wait
);
932 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
935 /* We have to signal that an error occurred */
940 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
943 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
948 epic
= rb_entry(parent
, struct epitem
, rbn
);
949 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
951 p
= &parent
->rb_right
;
953 p
= &parent
->rb_left
;
955 rb_link_node(&epi
->rbn
, parent
, p
);
956 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
961 #define PATH_ARR_SIZE 5
963 * These are the number paths of length 1 to 5, that we are allowing to emanate
964 * from a single file of interest. For example, we allow 1000 paths of length
965 * 1, to emanate from each file of interest. This essentially represents the
966 * potential wakeup paths, which need to be limited in order to avoid massive
967 * uncontrolled wakeup storms. The common use case should be a single ep which
968 * is connected to n file sources. In this case each file source has 1 path
969 * of length 1. Thus, the numbers below should be more than sufficient. These
970 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
971 * and delete can't add additional paths. Protected by the epmutex.
973 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
974 static int path_count
[PATH_ARR_SIZE
];
976 static int path_count_inc(int nests
)
978 /* Allow an arbitrary number of depth 1 paths */
982 if (++path_count
[nests
] > path_limits
[nests
])
987 static void path_count_init(void)
991 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
995 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
998 struct file
*file
= priv
;
999 struct file
*child_file
;
1002 list_for_each_entry(epi
, &file
->f_ep_links
, fllink
) {
1003 child_file
= epi
->ep
->file
;
1004 if (is_file_epoll(child_file
)) {
1005 if (list_empty(&child_file
->f_ep_links
)) {
1006 if (path_count_inc(call_nests
)) {
1011 error
= ep_call_nested(&poll_loop_ncalls
,
1013 reverse_path_check_proc
,
1014 child_file
, child_file
,
1020 printk(KERN_ERR
"reverse_path_check_proc: "
1021 "file is not an ep!\n");
1028 * reverse_path_check - The tfile_check_list is list of file *, which have
1029 * links that are proposed to be newly added. We need to
1030 * make sure that those added links don't add too many
1031 * paths such that we will spend all our time waking up
1032 * eventpoll objects.
1034 * Returns: Returns zero if the proposed links don't create too many paths,
1037 static int reverse_path_check(void)
1041 struct file
*current_file
;
1043 /* let's call this for all tfiles */
1044 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1047 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1048 reverse_path_check_proc
, current_file
,
1049 current_file
, current
);
1057 * Must be called with "mtx" held.
1059 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1060 struct file
*tfile
, int fd
)
1062 int error
, revents
, pwake
= 0;
1063 unsigned long flags
;
1065 struct ep_pqueue epq
;
1067 if (unlikely(atomic_read(&ep
->user
->epoll_watches
) >=
1070 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1073 /* Item initialization follow here ... */
1074 INIT_LIST_HEAD(&epi
->rdllink
);
1075 INIT_LIST_HEAD(&epi
->fllink
);
1076 INIT_LIST_HEAD(&epi
->pwqlist
);
1078 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1079 epi
->event
= *event
;
1081 epi
->next
= EP_UNACTIVE_PTR
;
1083 /* Initialize the poll table using the queue callback */
1085 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1088 * Attach the item to the poll hooks and get current event bits.
1089 * We can safely use the file* here because its usage count has
1090 * been increased by the caller of this function. Note that after
1091 * this operation completes, the poll callback can start hitting
1094 revents
= tfile
->f_op
->poll(tfile
, &epq
.pt
);
1097 * We have to check if something went wrong during the poll wait queue
1098 * install process. Namely an allocation for a wait queue failed due
1099 * high memory pressure.
1103 goto error_unregister
;
1105 /* Add the current item to the list of active epoll hook for this file */
1106 spin_lock(&tfile
->f_lock
);
1107 list_add_tail(&epi
->fllink
, &tfile
->f_ep_links
);
1108 spin_unlock(&tfile
->f_lock
);
1111 * Add the current item to the RB tree. All RB tree operations are
1112 * protected by "mtx", and ep_insert() is called with "mtx" held.
1114 ep_rbtree_insert(ep
, epi
);
1116 /* now check if we've created too many backpaths */
1118 if (reverse_path_check())
1119 goto error_remove_epi
;
1121 /* We have to drop the new item inside our item list to keep track of it */
1122 spin_lock_irqsave(&ep
->lock
, flags
);
1124 /* If the file is already "ready" we drop it inside the ready list */
1125 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1126 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1128 /* Notify waiting tasks that events are available */
1129 if (waitqueue_active(&ep
->wq
))
1130 wake_up_locked(&ep
->wq
);
1131 if (waitqueue_active(&ep
->poll_wait
))
1135 spin_unlock_irqrestore(&ep
->lock
, flags
);
1137 atomic_inc(&ep
->user
->epoll_watches
);
1139 /* We have to call this outside the lock */
1141 ep_poll_safewake(&ep
->poll_wait
);
1146 spin_lock(&tfile
->f_lock
);
1147 if (ep_is_linked(&epi
->fllink
))
1148 list_del_init(&epi
->fllink
);
1149 spin_unlock(&tfile
->f_lock
);
1151 rb_erase(&epi
->rbn
, &ep
->rbr
);
1154 ep_unregister_pollwait(ep
, epi
);
1157 * We need to do this because an event could have been arrived on some
1158 * allocated wait queue. Note that we don't care about the ep->ovflist
1159 * list, since that is used/cleaned only inside a section bound by "mtx".
1160 * And ep_insert() is called with "mtx" held.
1162 spin_lock_irqsave(&ep
->lock
, flags
);
1163 if (ep_is_linked(&epi
->rdllink
))
1164 list_del_init(&epi
->rdllink
);
1165 spin_unlock_irqrestore(&ep
->lock
, flags
);
1167 kmem_cache_free(epi_cache
, epi
);
1173 * Modify the interest event mask by dropping an event if the new mask
1174 * has a match in the current file status. Must be called with "mtx" held.
1176 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1179 unsigned int revents
;
1182 * Set the new event interest mask before calling f_op->poll();
1183 * otherwise we might miss an event that happens between the
1184 * f_op->poll() call and the new event set registering.
1186 epi
->event
.events
= event
->events
; /* need barrier below */
1187 epi
->event
.data
= event
->data
; /* protected by mtx */
1190 * The following barrier has two effects:
1192 * 1) Flush epi changes above to other CPUs. This ensures
1193 * we do not miss events from ep_poll_callback if an
1194 * event occurs immediately after we call f_op->poll().
1195 * We need this because we did not take ep->lock while
1196 * changing epi above (but ep_poll_callback does take
1199 * 2) We also need to ensure we do not miss _past_ events
1200 * when calling f_op->poll(). This barrier also
1201 * pairs with the barrier in wq_has_sleeper (see
1202 * comments for wq_has_sleeper).
1204 * This barrier will now guarantee ep_poll_callback or f_op->poll
1205 * (or both) will notice the readiness of an item.
1210 * Get current event bits. We can safely use the file* here because
1211 * its usage count has been increased by the caller of this function.
1213 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
);
1216 * If the item is "hot" and it is not registered inside the ready
1217 * list, push it inside.
1219 if (revents
& event
->events
) {
1220 spin_lock_irq(&ep
->lock
);
1221 if (!ep_is_linked(&epi
->rdllink
)) {
1222 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1224 /* Notify waiting tasks that events are available */
1225 if (waitqueue_active(&ep
->wq
))
1226 wake_up_locked(&ep
->wq
);
1227 if (waitqueue_active(&ep
->poll_wait
))
1230 spin_unlock_irq(&ep
->lock
);
1233 /* We have to call this outside the lock */
1235 ep_poll_safewake(&ep
->poll_wait
);
1240 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1243 struct ep_send_events_data
*esed
= priv
;
1245 unsigned int revents
;
1247 struct epoll_event __user
*uevent
;
1250 * We can loop without lock because we are passed a task private list.
1251 * Items cannot vanish during the loop because ep_scan_ready_list() is
1252 * holding "mtx" during this call.
1254 for (eventcnt
= 0, uevent
= esed
->events
;
1255 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1256 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1258 list_del_init(&epi
->rdllink
);
1260 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
) &
1264 * If the event mask intersect the caller-requested one,
1265 * deliver the event to userspace. Again, ep_scan_ready_list()
1266 * is holding "mtx", so no operations coming from userspace
1267 * can change the item.
1270 if (__put_user(revents
, &uevent
->events
) ||
1271 __put_user(epi
->event
.data
, &uevent
->data
)) {
1272 list_add(&epi
->rdllink
, head
);
1273 return eventcnt
? eventcnt
: -EFAULT
;
1277 if (epi
->event
.events
& EPOLLONESHOT
)
1278 epi
->event
.events
&= EP_PRIVATE_BITS
;
1279 else if (!(epi
->event
.events
& EPOLLET
)) {
1281 * If this file has been added with Level
1282 * Trigger mode, we need to insert back inside
1283 * the ready list, so that the next call to
1284 * epoll_wait() will check again the events
1285 * availability. At this point, noone can insert
1286 * into ep->rdllist besides us. The epoll_ctl()
1287 * callers are locked out by
1288 * ep_scan_ready_list() holding "mtx" and the
1289 * poll callback will queue them in ep->ovflist.
1291 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1299 static int ep_send_events(struct eventpoll
*ep
,
1300 struct epoll_event __user
*events
, int maxevents
)
1302 struct ep_send_events_data esed
;
1304 esed
.maxevents
= maxevents
;
1305 esed
.events
= events
;
1307 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0);
1310 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1311 int maxevents
, long timeout
)
1314 unsigned long flags
;
1319 * Calculate the timeout by checking for the "infinite" value (-1)
1320 * and the overflow condition. The passed timeout is in milliseconds,
1321 * that why (t * HZ) / 1000.
1323 jtimeout
= (timeout
< 0 || timeout
>= EP_MAX_MSTIMEO
) ?
1324 MAX_SCHEDULE_TIMEOUT
: (timeout
* HZ
+ 999) / 1000;
1327 spin_lock_irqsave(&ep
->lock
, flags
);
1330 if (list_empty(&ep
->rdllist
)) {
1332 * We don't have any available event to return to the caller.
1333 * We need to sleep here, and we will be wake up by
1334 * ep_poll_callback() when events will become available.
1336 init_waitqueue_entry(&wait
, current
);
1337 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
1338 __add_wait_queue(&ep
->wq
, &wait
);
1342 * We don't want to sleep if the ep_poll_callback() sends us
1343 * a wakeup in between. That's why we set the task state
1344 * to TASK_INTERRUPTIBLE before doing the checks.
1346 set_current_state(TASK_INTERRUPTIBLE
);
1347 if (!list_empty(&ep
->rdllist
) || !jtimeout
)
1349 if (signal_pending(current
)) {
1354 spin_unlock_irqrestore(&ep
->lock
, flags
);
1355 jtimeout
= schedule_timeout(jtimeout
);
1356 spin_lock_irqsave(&ep
->lock
, flags
);
1358 __remove_wait_queue(&ep
->wq
, &wait
);
1360 set_current_state(TASK_RUNNING
);
1362 /* Is it worth to try to dig for events ? */
1363 eavail
= !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
1365 spin_unlock_irqrestore(&ep
->lock
, flags
);
1368 * Try to transfer events to user space. In case we get 0 events and
1369 * there's still timeout left over, we go trying again in search of
1372 if (!res
&& eavail
&&
1373 !(res
= ep_send_events(ep
, events
, maxevents
)) && jtimeout
)
1380 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1381 * API, to verify that adding an epoll file inside another
1382 * epoll structure, does not violate the constraints, in
1383 * terms of closed loops, or too deep chains (which can
1384 * result in excessive stack usage).
1386 * @priv: Pointer to the epoll file to be currently checked.
1387 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1388 * data structure pointer.
1389 * @call_nests: Current dept of the @ep_call_nested() call stack.
1391 * Returns: Returns zero if adding the epoll @file inside current epoll
1392 * structure @ep does not violate the constraints, or -1 otherwise.
1394 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1397 struct file
*file
= priv
;
1398 struct eventpoll
*ep
= file
->private_data
;
1399 struct eventpoll
*ep_tovisit
;
1400 struct rb_node
*rbp
;
1403 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1405 list_add(&ep
->visited_list_link
, &visited_list
);
1406 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1407 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1408 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1409 ep_tovisit
= epi
->ffd
.file
->private_data
;
1410 if (ep_tovisit
->visited
)
1412 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1413 ep_loop_check_proc
, epi
->ffd
.file
,
1414 ep_tovisit
, current
);
1419 * If we've reached a file that is not associated with
1420 * an ep, then we need to check if the newly added
1421 * links are going to add too many wakeup paths. We do
1422 * this by adding it to the tfile_check_list, if it's
1423 * not already there, and calling reverse_path_check()
1424 * during ep_insert().
1426 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1427 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1431 mutex_unlock(&ep
->mtx
);
1437 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1438 * another epoll file (represented by @ep) does not create
1439 * closed loops or too deep chains.
1441 * @ep: Pointer to the epoll private data structure.
1442 * @file: Pointer to the epoll file to be checked.
1444 * Returns: Returns zero if adding the epoll @file inside current epoll
1445 * structure @ep does not violate the constraints, or -1 otherwise.
1447 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1450 struct eventpoll
*ep_cur
, *ep_next
;
1452 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1453 ep_loop_check_proc
, file
, ep
, current
);
1454 /* clear visited list */
1455 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1456 visited_list_link
) {
1457 ep_cur
->visited
= 0;
1458 list_del(&ep_cur
->visited_list_link
);
1463 static void clear_tfile_check_list(void)
1467 /* first clear the tfile_check_list */
1468 while (!list_empty(&tfile_check_list
)) {
1469 file
= list_first_entry(&tfile_check_list
, struct file
,
1471 list_del_init(&file
->f_tfile_llink
);
1473 INIT_LIST_HEAD(&tfile_check_list
);
1477 * Open an eventpoll file descriptor.
1479 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1482 struct eventpoll
*ep
= NULL
;
1485 /* Check the EPOLL_* constant for consistency. */
1486 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1488 if (flags
& ~EPOLL_CLOEXEC
)
1491 * Create the internal data structure ("struct eventpoll").
1493 error
= ep_alloc(&ep
);
1497 * Creates all the items needed to setup an eventpoll file. That is,
1498 * a file structure and a free file descriptor.
1500 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1505 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1506 O_RDWR
| (flags
& O_CLOEXEC
));
1508 error
= PTR_ERR(file
);
1511 fd_install(fd
, file
);
1522 SYSCALL_DEFINE1(epoll_create
, int, size
)
1527 return sys_epoll_create1(0);
1531 * The following function implements the controller interface for
1532 * the eventpoll file that enables the insertion/removal/change of
1533 * file descriptors inside the interest set.
1535 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1536 struct epoll_event __user
*, event
)
1539 int did_lock_epmutex
= 0;
1540 struct file
*file
, *tfile
;
1541 struct eventpoll
*ep
;
1543 struct epoll_event epds
;
1546 if (ep_op_has_event(op
) &&
1547 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1550 /* Get the "struct file *" for the eventpoll file */
1556 /* Get the "struct file *" for the target file */
1561 /* The target file descriptor must support poll */
1563 if (!tfile
->f_op
|| !tfile
->f_op
->poll
)
1564 goto error_tgt_fput
;
1567 * We have to check that the file structure underneath the file descriptor
1568 * the user passed to us _is_ an eventpoll file. And also we do not permit
1569 * adding an epoll file descriptor inside itself.
1572 if (file
== tfile
|| !is_file_epoll(file
))
1573 goto error_tgt_fput
;
1576 * At this point it is safe to assume that the "private_data" contains
1577 * our own data structure.
1579 ep
= file
->private_data
;
1582 * When we insert an epoll file descriptor, inside another epoll file
1583 * descriptor, there is the change of creating closed loops, which are
1584 * better be handled here, than in more critical paths. While we are
1585 * checking for loops we also determine the list of files reachable
1586 * and hang them on the tfile_check_list, so we can check that we
1587 * haven't created too many possible wakeup paths.
1589 * We need to hold the epmutex across both ep_insert and ep_remove
1590 * b/c we want to make sure we are looking at a coherent view of
1593 if (op
== EPOLL_CTL_ADD
|| op
== EPOLL_CTL_DEL
) {
1594 mutex_lock(&epmutex
);
1595 did_lock_epmutex
= 1;
1597 if (op
== EPOLL_CTL_ADD
) {
1598 if (is_file_epoll(tfile
)) {
1600 if (ep_loop_check(ep
, tfile
) != 0) {
1601 clear_tfile_check_list();
1602 goto error_tgt_fput
;
1605 list_add(&tfile
->f_tfile_llink
, &tfile_check_list
);
1608 mutex_lock_nested(&ep
->mtx
, 0);
1611 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1612 * above, we can be sure to be able to use the item looked up by
1613 * ep_find() till we release the mutex.
1615 epi
= ep_find(ep
, tfile
, fd
);
1621 epds
.events
|= POLLERR
| POLLHUP
;
1622 error
= ep_insert(ep
, &epds
, tfile
, fd
);
1625 clear_tfile_check_list();
1629 error
= ep_remove(ep
, epi
);
1635 epds
.events
|= POLLERR
| POLLHUP
;
1636 error
= ep_modify(ep
, epi
, &epds
);
1641 mutex_unlock(&ep
->mtx
);
1644 if (did_lock_epmutex
)
1645 mutex_unlock(&epmutex
);
1656 * Implement the event wait interface for the eventpoll file. It is the kernel
1657 * part of the user space epoll_wait(2).
1659 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
1660 int, maxevents
, int, timeout
)
1664 struct eventpoll
*ep
;
1666 /* The maximum number of event must be greater than zero */
1667 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
1670 /* Verify that the area passed by the user is writeable */
1671 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
))) {
1676 /* Get the "struct file *" for the eventpoll file */
1683 * We have to check that the file structure underneath the fd
1684 * the user passed to us _is_ an eventpoll file.
1687 if (!is_file_epoll(file
))
1691 * At this point it is safe to assume that the "private_data" contains
1692 * our own data structure.
1694 ep
= file
->private_data
;
1696 /* Time to fish for events ... */
1697 error
= ep_poll(ep
, events
, maxevents
, timeout
);
1706 #ifdef HAVE_SET_RESTORE_SIGMASK
1709 * Implement the event wait interface for the eventpoll file. It is the kernel
1710 * part of the user space epoll_pwait(2).
1712 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
1713 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
1717 sigset_t ksigmask
, sigsaved
;
1720 * If the caller wants a certain signal mask to be set during the wait,
1724 if (sigsetsize
!= sizeof(sigset_t
))
1726 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
1728 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
1729 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
1732 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
1735 * If we changed the signal mask, we need to restore the original one.
1736 * In case we've got a signal while waiting, we do not restore the
1737 * signal mask yet, and we allow do_signal() to deliver the signal on
1738 * the way back to userspace, before the signal mask is restored.
1741 if (error
== -EINTR
) {
1742 memcpy(¤t
->saved_sigmask
, &sigsaved
,
1744 set_restore_sigmask();
1746 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1752 #endif /* HAVE_SET_RESTORE_SIGMASK */
1754 static int __init
eventpoll_init(void)
1760 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1762 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
1766 * Initialize the structure used to perform epoll file descriptor
1767 * inclusion loops checks.
1769 ep_nested_calls_init(&poll_loop_ncalls
);
1771 /* Initialize the structure used to perform safe poll wait head wake ups */
1772 ep_nested_calls_init(&poll_safewake_ncalls
);
1774 /* Initialize the structure used to perform file's f_op->poll() calls */
1775 ep_nested_calls_init(&poll_readywalk_ncalls
);
1777 /* Allocates slab cache used to allocate "struct epitem" items */
1778 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
1779 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
1781 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1782 pwq_cache
= kmem_cache_create("eventpoll_pwq",
1783 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
1787 fs_initcall(eventpoll_init
);