x86/asm/entry/64: Remove a bogus 'ret_from_fork' optimization
[linux/fpc-iii.git] / fs / exec.c
blobc32ae3444622a8185288c674fed3c17313117372
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 #include <linux/pipe_fs_i.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 #include "internal.h"
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 unsigned int core_pipe_limit;
68 int suid_dumpable = 0;
70 /* The maximal length of core_pattern is also specified in sysctl.c */
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 int __register_binfmt(struct linux_binfmt * fmt, int insert)
77 if (!fmt)
78 return -EINVAL;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83 return 0;
86 EXPORT_SYMBOL(__register_binfmt);
88 void unregister_binfmt(struct linux_binfmt * fmt)
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
95 EXPORT_SYMBOL(unregister_binfmt);
97 static inline void put_binfmt(struct linux_binfmt * fmt)
99 module_put(fmt->module);
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
106 * Also note that we take the address to load from from the file itself.
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
110 struct file *file;
111 char *tmp = getname(library);
112 int error = PTR_ERR(tmp);
114 if (IS_ERR(tmp))
115 goto out;
117 file = do_filp_open(AT_FDCWD, tmp,
118 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
119 MAY_READ | MAY_EXEC | MAY_OPEN);
120 putname(tmp);
121 error = PTR_ERR(file);
122 if (IS_ERR(file))
123 goto out;
125 error = -EINVAL;
126 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127 goto exit;
129 error = -EACCES;
130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 goto exit;
133 fsnotify_open(file->f_path.dentry);
135 error = -ENOEXEC;
136 if(file->f_op) {
137 struct linux_binfmt * fmt;
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
142 continue;
143 if (!try_module_get(fmt->module))
144 continue;
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
148 put_binfmt(fmt);
149 if (error != -ENOEXEC)
150 break;
152 read_unlock(&binfmt_lock);
154 exit:
155 fput(file);
156 out:
157 return error;
160 #ifdef CONFIG_MMU
162 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
164 struct mm_struct *mm = current->mm;
165 long diff = (long)(pages - bprm->vma_pages);
167 if (!mm || !diff)
168 return;
170 bprm->vma_pages = pages;
172 down_write(&mm->mmap_sem);
173 mm->total_vm += diff;
174 up_write(&mm->mmap_sem);
177 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
178 int write)
180 struct page *page;
181 int ret;
183 #ifdef CONFIG_STACK_GROWSUP
184 if (write) {
185 ret = expand_stack_downwards(bprm->vma, pos);
186 if (ret < 0)
187 return NULL;
189 #endif
190 ret = get_user_pages(current, bprm->mm, pos,
191 1, write, 1, &page, NULL);
192 if (ret <= 0)
193 return NULL;
195 if (write) {
196 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
197 struct rlimit *rlim;
199 acct_arg_size(bprm, size / PAGE_SIZE);
202 * We've historically supported up to 32 pages (ARG_MAX)
203 * of argument strings even with small stacks
205 if (size <= ARG_MAX)
206 return page;
209 * Limit to 1/4-th the stack size for the argv+env strings.
210 * This ensures that:
211 * - the remaining binfmt code will not run out of stack space,
212 * - the program will have a reasonable amount of stack left
213 * to work from.
215 rlim = current->signal->rlim;
216 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
217 put_page(page);
218 return NULL;
222 return page;
225 static void put_arg_page(struct page *page)
227 put_page(page);
230 static void free_arg_page(struct linux_binprm *bprm, int i)
234 static void free_arg_pages(struct linux_binprm *bprm)
238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
239 struct page *page)
241 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 static int __bprm_mm_init(struct linux_binprm *bprm)
246 int err;
247 struct vm_area_struct *vma = NULL;
248 struct mm_struct *mm = bprm->mm;
250 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
251 if (!vma)
252 return -ENOMEM;
254 down_write(&mm->mmap_sem);
255 vma->vm_mm = mm;
258 * Place the stack at the largest stack address the architecture
259 * supports. Later, we'll move this to an appropriate place. We don't
260 * use STACK_TOP because that can depend on attributes which aren't
261 * configured yet.
263 vma->vm_end = STACK_TOP_MAX;
264 vma->vm_start = vma->vm_end - PAGE_SIZE;
265 vma->vm_flags = VM_STACK_FLAGS;
266 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
268 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
269 if (err)
270 goto err;
272 err = insert_vm_struct(mm, vma);
273 if (err)
274 goto err;
276 mm->stack_vm = mm->total_vm = 1;
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 up_write(&mm->mmap_sem);
282 bprm->vma = NULL;
283 kmem_cache_free(vm_area_cachep, vma);
284 return err;
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 return len <= MAX_ARG_STRLEN;
292 #else
294 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 int write)
301 struct page *page;
303 page = bprm->page[pos / PAGE_SIZE];
304 if (!page && write) {
305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 if (!page)
307 return NULL;
308 bprm->page[pos / PAGE_SIZE] = page;
311 return page;
314 static void put_arg_page(struct page *page)
318 static void free_arg_page(struct linux_binprm *bprm, int i)
320 if (bprm->page[i]) {
321 __free_page(bprm->page[i]);
322 bprm->page[i] = NULL;
326 static void free_arg_pages(struct linux_binprm *bprm)
328 int i;
330 for (i = 0; i < MAX_ARG_PAGES; i++)
331 free_arg_page(bprm, i);
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 struct page *page)
339 static int __bprm_mm_init(struct linux_binprm *bprm)
341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 return 0;
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 return len <= bprm->p;
350 #endif /* CONFIG_MMU */
353 * Create a new mm_struct and populate it with a temporary stack
354 * vm_area_struct. We don't have enough context at this point to set the stack
355 * flags, permissions, and offset, so we use temporary values. We'll update
356 * them later in setup_arg_pages().
358 int bprm_mm_init(struct linux_binprm *bprm)
360 int err;
361 struct mm_struct *mm = NULL;
363 bprm->mm = mm = mm_alloc();
364 err = -ENOMEM;
365 if (!mm)
366 goto err;
368 err = init_new_context(current, mm);
369 if (err)
370 goto err;
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
376 return 0;
378 err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
384 return err;
388 * count() counts the number of strings in array ARGV.
390 static int count(char __user * __user * argv, int max)
392 int i = 0;
394 if (argv != NULL) {
395 for (;;) {
396 char __user * p;
398 if (get_user(p, argv))
399 return -EFAULT;
400 if (!p)
401 break;
402 argv++;
403 if (i++ >= max)
404 return -E2BIG;
406 if (fatal_signal_pending(current))
407 return -ERESTARTNOHAND;
408 cond_resched();
411 return i;
415 * 'copy_strings()' copies argument/environment strings from the old
416 * processes's memory to the new process's stack. The call to get_user_pages()
417 * ensures the destination page is created and not swapped out.
419 static int copy_strings(int argc, char __user * __user * argv,
420 struct linux_binprm *bprm)
422 struct page *kmapped_page = NULL;
423 char *kaddr = NULL;
424 unsigned long kpos = 0;
425 int ret;
427 while (argc-- > 0) {
428 char __user *str;
429 int len;
430 unsigned long pos;
432 if (get_user(str, argv+argc) ||
433 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
434 ret = -EFAULT;
435 goto out;
438 if (!valid_arg_len(bprm, len)) {
439 ret = -E2BIG;
440 goto out;
443 /* We're going to work our way backwords. */
444 pos = bprm->p;
445 str += len;
446 bprm->p -= len;
448 while (len > 0) {
449 int offset, bytes_to_copy;
451 if (fatal_signal_pending(current)) {
452 ret = -ERESTARTNOHAND;
453 goto out;
455 cond_resched();
457 offset = pos % PAGE_SIZE;
458 if (offset == 0)
459 offset = PAGE_SIZE;
461 bytes_to_copy = offset;
462 if (bytes_to_copy > len)
463 bytes_to_copy = len;
465 offset -= bytes_to_copy;
466 pos -= bytes_to_copy;
467 str -= bytes_to_copy;
468 len -= bytes_to_copy;
470 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
471 struct page *page;
473 page = get_arg_page(bprm, pos, 1);
474 if (!page) {
475 ret = -E2BIG;
476 goto out;
479 if (kmapped_page) {
480 flush_kernel_dcache_page(kmapped_page);
481 kunmap(kmapped_page);
482 put_arg_page(kmapped_page);
484 kmapped_page = page;
485 kaddr = kmap(kmapped_page);
486 kpos = pos & PAGE_MASK;
487 flush_arg_page(bprm, kpos, kmapped_page);
489 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
490 ret = -EFAULT;
491 goto out;
495 ret = 0;
496 out:
497 if (kmapped_page) {
498 flush_kernel_dcache_page(kmapped_page);
499 kunmap(kmapped_page);
500 put_arg_page(kmapped_page);
502 return ret;
506 * Like copy_strings, but get argv and its values from kernel memory.
508 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
510 int r;
511 mm_segment_t oldfs = get_fs();
512 set_fs(KERNEL_DS);
513 r = copy_strings(argc, (char __user * __user *)argv, bprm);
514 set_fs(oldfs);
515 return r;
517 EXPORT_SYMBOL(copy_strings_kernel);
519 #ifdef CONFIG_MMU
522 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
523 * the binfmt code determines where the new stack should reside, we shift it to
524 * its final location. The process proceeds as follows:
526 * 1) Use shift to calculate the new vma endpoints.
527 * 2) Extend vma to cover both the old and new ranges. This ensures the
528 * arguments passed to subsequent functions are consistent.
529 * 3) Move vma's page tables to the new range.
530 * 4) Free up any cleared pgd range.
531 * 5) Shrink the vma to cover only the new range.
533 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
535 struct mm_struct *mm = vma->vm_mm;
536 unsigned long old_start = vma->vm_start;
537 unsigned long old_end = vma->vm_end;
538 unsigned long length = old_end - old_start;
539 unsigned long new_start = old_start - shift;
540 unsigned long new_end = old_end - shift;
541 struct mmu_gather *tlb;
543 BUG_ON(new_start > new_end);
546 * ensure there are no vmas between where we want to go
547 * and where we are
549 if (vma != find_vma(mm, new_start))
550 return -EFAULT;
553 * cover the whole range: [new_start, old_end)
555 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
558 * move the page tables downwards, on failure we rely on
559 * process cleanup to remove whatever mess we made.
561 if (length != move_page_tables(vma, old_start,
562 vma, new_start, length))
563 return -ENOMEM;
565 lru_add_drain();
566 tlb = tlb_gather_mmu(mm, 0);
567 if (new_end > old_start) {
569 * when the old and new regions overlap clear from new_end.
571 free_pgd_range(tlb, new_end, old_end, new_end,
572 vma->vm_next ? vma->vm_next->vm_start : 0);
573 } else {
575 * otherwise, clean from old_start; this is done to not touch
576 * the address space in [new_end, old_start) some architectures
577 * have constraints on va-space that make this illegal (IA64) -
578 * for the others its just a little faster.
580 free_pgd_range(tlb, old_start, old_end, new_end,
581 vma->vm_next ? vma->vm_next->vm_start : 0);
583 tlb_finish_mmu(tlb, new_end, old_end);
586 * shrink the vma to just the new range.
588 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
590 return 0;
593 #define EXTRA_STACK_VM_PAGES 20 /* random */
596 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
597 * the stack is optionally relocated, and some extra space is added.
599 int setup_arg_pages(struct linux_binprm *bprm,
600 unsigned long stack_top,
601 int executable_stack)
603 unsigned long ret;
604 unsigned long stack_shift;
605 struct mm_struct *mm = current->mm;
606 struct vm_area_struct *vma = bprm->vma;
607 struct vm_area_struct *prev = NULL;
608 unsigned long vm_flags;
609 unsigned long stack_base;
610 unsigned long stack_size;
611 unsigned long stack_expand;
612 unsigned long rlim_stack;
614 #ifdef CONFIG_STACK_GROWSUP
615 /* Limit stack size to 1GB */
616 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
617 if (stack_base > (1 << 30))
618 stack_base = 1 << 30;
620 /* Make sure we didn't let the argument array grow too large. */
621 if (vma->vm_end - vma->vm_start > stack_base)
622 return -ENOMEM;
624 stack_base = PAGE_ALIGN(stack_top - stack_base);
626 stack_shift = vma->vm_start - stack_base;
627 mm->arg_start = bprm->p - stack_shift;
628 bprm->p = vma->vm_end - stack_shift;
629 #else
630 stack_top = arch_align_stack(stack_top);
631 stack_top = PAGE_ALIGN(stack_top);
633 if (unlikely(stack_top < mmap_min_addr) ||
634 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
635 return -ENOMEM;
637 stack_shift = vma->vm_end - stack_top;
639 bprm->p -= stack_shift;
640 mm->arg_start = bprm->p;
641 #endif
643 if (bprm->loader)
644 bprm->loader -= stack_shift;
645 bprm->exec -= stack_shift;
647 down_write(&mm->mmap_sem);
648 vm_flags = VM_STACK_FLAGS;
651 * Adjust stack execute permissions; explicitly enable for
652 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
653 * (arch default) otherwise.
655 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
656 vm_flags |= VM_EXEC;
657 else if (executable_stack == EXSTACK_DISABLE_X)
658 vm_flags &= ~VM_EXEC;
659 vm_flags |= mm->def_flags;
661 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
662 vm_flags);
663 if (ret)
664 goto out_unlock;
665 BUG_ON(prev != vma);
667 /* Move stack pages down in memory. */
668 if (stack_shift) {
669 ret = shift_arg_pages(vma, stack_shift);
670 if (ret)
671 goto out_unlock;
674 stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
675 stack_size = vma->vm_end - vma->vm_start;
677 * Align this down to a page boundary as expand_stack
678 * will align it up.
680 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
681 #ifdef CONFIG_STACK_GROWSUP
682 if (stack_size + stack_expand > rlim_stack)
683 stack_base = vma->vm_start + rlim_stack;
684 else
685 stack_base = vma->vm_end + stack_expand;
686 #else
687 if (stack_size + stack_expand > rlim_stack)
688 stack_base = vma->vm_end - rlim_stack;
689 else
690 stack_base = vma->vm_start - stack_expand;
691 #endif
692 ret = expand_stack(vma, stack_base);
693 if (ret)
694 ret = -EFAULT;
696 out_unlock:
697 up_write(&mm->mmap_sem);
698 return ret;
700 EXPORT_SYMBOL(setup_arg_pages);
702 #endif /* CONFIG_MMU */
704 struct file *open_exec(const char *name)
706 struct file *file;
707 int err;
709 file = do_filp_open(AT_FDCWD, name,
710 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
711 MAY_EXEC | MAY_OPEN);
712 if (IS_ERR(file))
713 goto out;
715 err = -EACCES;
716 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
717 goto exit;
719 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
720 goto exit;
722 fsnotify_open(file->f_path.dentry);
724 err = deny_write_access(file);
725 if (err)
726 goto exit;
728 out:
729 return file;
731 exit:
732 fput(file);
733 return ERR_PTR(err);
735 EXPORT_SYMBOL(open_exec);
737 int kernel_read(struct file *file, loff_t offset,
738 char *addr, unsigned long count)
740 mm_segment_t old_fs;
741 loff_t pos = offset;
742 int result;
744 old_fs = get_fs();
745 set_fs(get_ds());
746 /* The cast to a user pointer is valid due to the set_fs() */
747 result = vfs_read(file, (void __user *)addr, count, &pos);
748 set_fs(old_fs);
749 return result;
752 EXPORT_SYMBOL(kernel_read);
754 static int exec_mmap(struct mm_struct *mm)
756 struct task_struct *tsk;
757 struct mm_struct * old_mm, *active_mm;
759 /* Notify parent that we're no longer interested in the old VM */
760 tsk = current;
761 old_mm = current->mm;
762 mm_release(tsk, old_mm);
764 if (old_mm) {
766 * Make sure that if there is a core dump in progress
767 * for the old mm, we get out and die instead of going
768 * through with the exec. We must hold mmap_sem around
769 * checking core_state and changing tsk->mm.
771 down_read(&old_mm->mmap_sem);
772 if (unlikely(old_mm->core_state)) {
773 up_read(&old_mm->mmap_sem);
774 return -EINTR;
777 task_lock(tsk);
778 active_mm = tsk->active_mm;
779 tsk->mm = mm;
780 tsk->active_mm = mm;
781 activate_mm(active_mm, mm);
782 task_unlock(tsk);
783 arch_pick_mmap_layout(mm);
784 if (old_mm) {
785 up_read(&old_mm->mmap_sem);
786 BUG_ON(active_mm != old_mm);
787 mm_update_next_owner(old_mm);
788 mmput(old_mm);
789 return 0;
791 mmdrop(active_mm);
792 return 0;
796 * This function makes sure the current process has its own signal table,
797 * so that flush_signal_handlers can later reset the handlers without
798 * disturbing other processes. (Other processes might share the signal
799 * table via the CLONE_SIGHAND option to clone().)
801 static int de_thread(struct task_struct *tsk)
803 struct signal_struct *sig = tsk->signal;
804 struct sighand_struct *oldsighand = tsk->sighand;
805 spinlock_t *lock = &oldsighand->siglock;
806 int count;
808 if (thread_group_empty(tsk))
809 goto no_thread_group;
812 * Kill all other threads in the thread group.
814 spin_lock_irq(lock);
815 if (signal_group_exit(sig)) {
817 * Another group action in progress, just
818 * return so that the signal is processed.
820 spin_unlock_irq(lock);
821 return -EAGAIN;
823 sig->group_exit_task = tsk;
824 zap_other_threads(tsk);
826 /* Account for the thread group leader hanging around: */
827 count = thread_group_leader(tsk) ? 1 : 2;
828 sig->notify_count = count;
829 while (atomic_read(&sig->count) > count) {
830 __set_current_state(TASK_UNINTERRUPTIBLE);
831 spin_unlock_irq(lock);
832 schedule();
833 spin_lock_irq(lock);
835 spin_unlock_irq(lock);
838 * At this point all other threads have exited, all we have to
839 * do is to wait for the thread group leader to become inactive,
840 * and to assume its PID:
842 if (!thread_group_leader(tsk)) {
843 struct task_struct *leader = tsk->group_leader;
845 sig->notify_count = -1; /* for exit_notify() */
846 for (;;) {
847 write_lock_irq(&tasklist_lock);
848 if (likely(leader->exit_state))
849 break;
850 __set_current_state(TASK_UNINTERRUPTIBLE);
851 write_unlock_irq(&tasklist_lock);
852 schedule();
856 * The only record we have of the real-time age of a
857 * process, regardless of execs it's done, is start_time.
858 * All the past CPU time is accumulated in signal_struct
859 * from sister threads now dead. But in this non-leader
860 * exec, nothing survives from the original leader thread,
861 * whose birth marks the true age of this process now.
862 * When we take on its identity by switching to its PID, we
863 * also take its birthdate (always earlier than our own).
865 tsk->start_time = leader->start_time;
867 BUG_ON(!same_thread_group(leader, tsk));
868 BUG_ON(has_group_leader_pid(tsk));
870 * An exec() starts a new thread group with the
871 * TGID of the previous thread group. Rehash the
872 * two threads with a switched PID, and release
873 * the former thread group leader:
876 /* Become a process group leader with the old leader's pid.
877 * The old leader becomes a thread of the this thread group.
878 * Note: The old leader also uses this pid until release_task
879 * is called. Odd but simple and correct.
881 detach_pid(tsk, PIDTYPE_PID);
882 tsk->pid = leader->pid;
883 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
884 transfer_pid(leader, tsk, PIDTYPE_PGID);
885 transfer_pid(leader, tsk, PIDTYPE_SID);
886 list_replace_rcu(&leader->tasks, &tsk->tasks);
888 tsk->group_leader = tsk;
889 leader->group_leader = tsk;
891 tsk->exit_signal = SIGCHLD;
893 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
894 leader->exit_state = EXIT_DEAD;
895 write_unlock_irq(&tasklist_lock);
897 release_task(leader);
900 sig->group_exit_task = NULL;
901 sig->notify_count = 0;
903 no_thread_group:
904 if (current->mm)
905 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
907 exit_itimers(sig);
908 flush_itimer_signals();
910 if (atomic_read(&oldsighand->count) != 1) {
911 struct sighand_struct *newsighand;
913 * This ->sighand is shared with the CLONE_SIGHAND
914 * but not CLONE_THREAD task, switch to the new one.
916 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
917 if (!newsighand)
918 return -ENOMEM;
920 atomic_set(&newsighand->count, 1);
921 memcpy(newsighand->action, oldsighand->action,
922 sizeof(newsighand->action));
924 write_lock_irq(&tasklist_lock);
925 spin_lock(&oldsighand->siglock);
926 rcu_assign_pointer(tsk->sighand, newsighand);
927 spin_unlock(&oldsighand->siglock);
928 write_unlock_irq(&tasklist_lock);
930 __cleanup_sighand(oldsighand);
933 BUG_ON(!thread_group_leader(tsk));
934 return 0;
938 * These functions flushes out all traces of the currently running executable
939 * so that a new one can be started
941 static void flush_old_files(struct files_struct * files)
943 long j = -1;
944 struct fdtable *fdt;
946 spin_lock(&files->file_lock);
947 for (;;) {
948 unsigned long set, i;
950 j++;
951 i = j * __NFDBITS;
952 fdt = files_fdtable(files);
953 if (i >= fdt->max_fds)
954 break;
955 set = fdt->close_on_exec->fds_bits[j];
956 if (!set)
957 continue;
958 fdt->close_on_exec->fds_bits[j] = 0;
959 spin_unlock(&files->file_lock);
960 for ( ; set ; i++,set >>= 1) {
961 if (set & 1) {
962 sys_close(i);
965 spin_lock(&files->file_lock);
968 spin_unlock(&files->file_lock);
971 char *get_task_comm(char *buf, struct task_struct *tsk)
973 /* buf must be at least sizeof(tsk->comm) in size */
974 task_lock(tsk);
975 strncpy(buf, tsk->comm, sizeof(tsk->comm));
976 task_unlock(tsk);
977 return buf;
980 void set_task_comm(struct task_struct *tsk, char *buf)
982 task_lock(tsk);
983 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
984 task_unlock(tsk);
985 perf_event_comm(tsk);
988 int flush_old_exec(struct linux_binprm * bprm)
990 int retval;
993 * Make sure we have a private signal table and that
994 * we are unassociated from the previous thread group.
996 retval = de_thread(current);
997 if (retval)
998 goto out;
1000 set_mm_exe_file(bprm->mm, bprm->file);
1003 * Release all of the old mmap stuff
1005 acct_arg_size(bprm, 0);
1006 retval = exec_mmap(bprm->mm);
1007 if (retval)
1008 goto out;
1010 bprm->mm = NULL; /* We're using it now */
1012 set_fs(USER_DS);
1013 current->flags &= ~PF_RANDOMIZE;
1014 flush_thread();
1015 current->personality &= ~bprm->per_clear;
1017 return 0;
1019 out:
1020 return retval;
1022 EXPORT_SYMBOL(flush_old_exec);
1024 void setup_new_exec(struct linux_binprm * bprm)
1026 int i, ch;
1027 char * name;
1028 char tcomm[sizeof(current->comm)];
1030 arch_pick_mmap_layout(current->mm);
1032 /* This is the point of no return */
1033 current->sas_ss_sp = current->sas_ss_size = 0;
1035 if (current_euid() == current_uid() && current_egid() == current_gid())
1036 set_dumpable(current->mm, 1);
1037 else
1038 set_dumpable(current->mm, suid_dumpable);
1040 name = bprm->filename;
1042 /* Copies the binary name from after last slash */
1043 for (i=0; (ch = *(name++)) != '\0';) {
1044 if (ch == '/')
1045 i = 0; /* overwrite what we wrote */
1046 else
1047 if (i < (sizeof(tcomm) - 1))
1048 tcomm[i++] = ch;
1050 tcomm[i] = '\0';
1051 set_task_comm(current, tcomm);
1053 /* Set the new mm task size. We have to do that late because it may
1054 * depend on TIF_32BIT which is only updated in flush_thread() on
1055 * some architectures like powerpc
1057 current->mm->task_size = TASK_SIZE;
1059 /* install the new credentials */
1060 if (bprm->cred->uid != current_euid() ||
1061 bprm->cred->gid != current_egid()) {
1062 current->pdeath_signal = 0;
1063 } else if (file_permission(bprm->file, MAY_READ) ||
1064 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1065 set_dumpable(current->mm, suid_dumpable);
1069 * Flush performance counters when crossing a
1070 * security domain:
1072 if (!get_dumpable(current->mm))
1073 perf_event_exit_task(current);
1075 /* An exec changes our domain. We are no longer part of the thread
1076 group */
1078 current->self_exec_id++;
1080 flush_signal_handlers(current, 0);
1081 flush_old_files(current->files);
1083 EXPORT_SYMBOL(setup_new_exec);
1086 * Prepare credentials and lock ->cred_guard_mutex.
1087 * install_exec_creds() commits the new creds and drops the lock.
1088 * Or, if exec fails before, free_bprm() should release ->cred and
1089 * and unlock.
1091 int prepare_bprm_creds(struct linux_binprm *bprm)
1093 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1094 return -ERESTARTNOINTR;
1096 bprm->cred = prepare_exec_creds();
1097 if (likely(bprm->cred))
1098 return 0;
1100 mutex_unlock(&current->cred_guard_mutex);
1101 return -ENOMEM;
1104 void free_bprm(struct linux_binprm *bprm)
1106 free_arg_pages(bprm);
1107 if (bprm->cred) {
1108 mutex_unlock(&current->cred_guard_mutex);
1109 abort_creds(bprm->cred);
1111 /* If a binfmt changed the interp, free it. */
1112 if (bprm->interp != bprm->filename)
1113 kfree(bprm->interp);
1114 kfree(bprm);
1117 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1119 /* If a binfmt changed the interp, free it first. */
1120 if (bprm->interp != bprm->filename)
1121 kfree(bprm->interp);
1122 bprm->interp = kstrdup(interp, GFP_KERNEL);
1123 if (!bprm->interp)
1124 return -ENOMEM;
1125 return 0;
1127 EXPORT_SYMBOL(bprm_change_interp);
1130 * install the new credentials for this executable
1132 void install_exec_creds(struct linux_binprm *bprm)
1134 security_bprm_committing_creds(bprm);
1136 commit_creds(bprm->cred);
1137 bprm->cred = NULL;
1139 * cred_guard_mutex must be held at least to this point to prevent
1140 * ptrace_attach() from altering our determination of the task's
1141 * credentials; any time after this it may be unlocked.
1143 security_bprm_committed_creds(bprm);
1144 mutex_unlock(&current->cred_guard_mutex);
1146 EXPORT_SYMBOL(install_exec_creds);
1149 * determine how safe it is to execute the proposed program
1150 * - the caller must hold current->cred_guard_mutex to protect against
1151 * PTRACE_ATTACH
1153 int check_unsafe_exec(struct linux_binprm *bprm)
1155 struct task_struct *p = current, *t;
1156 unsigned n_fs;
1157 int res = 0;
1159 bprm->unsafe = tracehook_unsafe_exec(p);
1161 n_fs = 1;
1162 write_lock(&p->fs->lock);
1163 rcu_read_lock();
1164 for (t = next_thread(p); t != p; t = next_thread(t)) {
1165 if (t->fs == p->fs)
1166 n_fs++;
1168 rcu_read_unlock();
1170 if (p->fs->users > n_fs) {
1171 bprm->unsafe |= LSM_UNSAFE_SHARE;
1172 } else {
1173 res = -EAGAIN;
1174 if (!p->fs->in_exec) {
1175 p->fs->in_exec = 1;
1176 res = 1;
1179 write_unlock(&p->fs->lock);
1181 return res;
1185 * Fill the binprm structure from the inode.
1186 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1188 * This may be called multiple times for binary chains (scripts for example).
1190 int prepare_binprm(struct linux_binprm *bprm)
1192 umode_t mode;
1193 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1194 int retval;
1196 mode = inode->i_mode;
1197 if (bprm->file->f_op == NULL)
1198 return -EACCES;
1200 /* clear any previous set[ug]id data from a previous binary */
1201 bprm->cred->euid = current_euid();
1202 bprm->cred->egid = current_egid();
1204 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1205 /* Set-uid? */
1206 if (mode & S_ISUID) {
1207 bprm->per_clear |= PER_CLEAR_ON_SETID;
1208 bprm->cred->euid = inode->i_uid;
1211 /* Set-gid? */
1213 * If setgid is set but no group execute bit then this
1214 * is a candidate for mandatory locking, not a setgid
1215 * executable.
1217 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1218 bprm->per_clear |= PER_CLEAR_ON_SETID;
1219 bprm->cred->egid = inode->i_gid;
1223 /* fill in binprm security blob */
1224 retval = security_bprm_set_creds(bprm);
1225 if (retval)
1226 return retval;
1227 bprm->cred_prepared = 1;
1229 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1230 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1233 EXPORT_SYMBOL(prepare_binprm);
1236 * Arguments are '\0' separated strings found at the location bprm->p
1237 * points to; chop off the first by relocating brpm->p to right after
1238 * the first '\0' encountered.
1240 int remove_arg_zero(struct linux_binprm *bprm)
1242 int ret = 0;
1243 unsigned long offset;
1244 char *kaddr;
1245 struct page *page;
1247 if (!bprm->argc)
1248 return 0;
1250 do {
1251 offset = bprm->p & ~PAGE_MASK;
1252 page = get_arg_page(bprm, bprm->p, 0);
1253 if (!page) {
1254 ret = -EFAULT;
1255 goto out;
1257 kaddr = kmap_atomic(page, KM_USER0);
1259 for (; offset < PAGE_SIZE && kaddr[offset];
1260 offset++, bprm->p++)
1263 kunmap_atomic(kaddr, KM_USER0);
1264 put_arg_page(page);
1266 if (offset == PAGE_SIZE)
1267 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1268 } while (offset == PAGE_SIZE);
1270 bprm->p++;
1271 bprm->argc--;
1272 ret = 0;
1274 out:
1275 return ret;
1277 EXPORT_SYMBOL(remove_arg_zero);
1280 * cycle the list of binary formats handler, until one recognizes the image
1282 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1284 unsigned int depth = bprm->recursion_depth;
1285 int try,retval;
1286 struct linux_binfmt *fmt;
1288 /* This allows 4 levels of binfmt rewrites before failing hard. */
1289 if (depth > 5)
1290 return -ELOOP;
1292 retval = security_bprm_check(bprm);
1293 if (retval)
1294 return retval;
1295 retval = ima_bprm_check(bprm);
1296 if (retval)
1297 return retval;
1299 retval = audit_bprm(bprm);
1300 if (retval)
1301 return retval;
1303 retval = -ENOENT;
1304 for (try=0; try<2; try++) {
1305 read_lock(&binfmt_lock);
1306 list_for_each_entry(fmt, &formats, lh) {
1307 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1308 if (!fn)
1309 continue;
1310 if (!try_module_get(fmt->module))
1311 continue;
1312 read_unlock(&binfmt_lock);
1313 bprm->recursion_depth = depth + 1;
1314 retval = fn(bprm, regs);
1315 bprm->recursion_depth = depth;
1316 if (retval >= 0) {
1317 if (depth == 0)
1318 tracehook_report_exec(fmt, bprm, regs);
1319 put_binfmt(fmt);
1320 allow_write_access(bprm->file);
1321 if (bprm->file)
1322 fput(bprm->file);
1323 bprm->file = NULL;
1324 current->did_exec = 1;
1325 proc_exec_connector(current);
1326 return retval;
1328 read_lock(&binfmt_lock);
1329 put_binfmt(fmt);
1330 if (retval != -ENOEXEC || bprm->mm == NULL)
1331 break;
1332 if (!bprm->file) {
1333 read_unlock(&binfmt_lock);
1334 return retval;
1337 read_unlock(&binfmt_lock);
1338 if (retval != -ENOEXEC || bprm->mm == NULL) {
1339 break;
1340 #ifdef CONFIG_MODULES
1341 } else {
1342 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1343 if (printable(bprm->buf[0]) &&
1344 printable(bprm->buf[1]) &&
1345 printable(bprm->buf[2]) &&
1346 printable(bprm->buf[3]))
1347 break; /* -ENOEXEC */
1348 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1349 #endif
1352 return retval;
1355 EXPORT_SYMBOL(search_binary_handler);
1358 * sys_execve() executes a new program.
1360 int do_execve(char * filename,
1361 char __user *__user *argv,
1362 char __user *__user *envp,
1363 struct pt_regs * regs)
1365 struct linux_binprm *bprm;
1366 struct file *file;
1367 struct files_struct *displaced;
1368 bool clear_in_exec;
1369 int retval;
1371 retval = unshare_files(&displaced);
1372 if (retval)
1373 goto out_ret;
1375 retval = -ENOMEM;
1376 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1377 if (!bprm)
1378 goto out_files;
1380 retval = prepare_bprm_creds(bprm);
1381 if (retval)
1382 goto out_free;
1384 retval = check_unsafe_exec(bprm);
1385 if (retval < 0)
1386 goto out_free;
1387 clear_in_exec = retval;
1388 current->in_execve = 1;
1390 file = open_exec(filename);
1391 retval = PTR_ERR(file);
1392 if (IS_ERR(file))
1393 goto out_unmark;
1395 sched_exec();
1397 bprm->file = file;
1398 bprm->filename = filename;
1399 bprm->interp = filename;
1401 retval = bprm_mm_init(bprm);
1402 if (retval)
1403 goto out_file;
1405 bprm->argc = count(argv, MAX_ARG_STRINGS);
1406 if ((retval = bprm->argc) < 0)
1407 goto out;
1409 bprm->envc = count(envp, MAX_ARG_STRINGS);
1410 if ((retval = bprm->envc) < 0)
1411 goto out;
1413 retval = prepare_binprm(bprm);
1414 if (retval < 0)
1415 goto out;
1417 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1418 if (retval < 0)
1419 goto out;
1421 bprm->exec = bprm->p;
1422 retval = copy_strings(bprm->envc, envp, bprm);
1423 if (retval < 0)
1424 goto out;
1426 retval = copy_strings(bprm->argc, argv, bprm);
1427 if (retval < 0)
1428 goto out;
1430 current->flags &= ~PF_KTHREAD;
1431 retval = search_binary_handler(bprm,regs);
1432 if (retval < 0)
1433 goto out;
1435 /* execve succeeded */
1436 current->fs->in_exec = 0;
1437 current->in_execve = 0;
1438 acct_update_integrals(current);
1439 free_bprm(bprm);
1440 if (displaced)
1441 put_files_struct(displaced);
1442 return retval;
1444 out:
1445 if (bprm->mm) {
1446 acct_arg_size(bprm, 0);
1447 mmput(bprm->mm);
1450 out_file:
1451 if (bprm->file) {
1452 allow_write_access(bprm->file);
1453 fput(bprm->file);
1456 out_unmark:
1457 if (clear_in_exec)
1458 current->fs->in_exec = 0;
1459 current->in_execve = 0;
1461 out_free:
1462 free_bprm(bprm);
1464 out_files:
1465 if (displaced)
1466 reset_files_struct(displaced);
1467 out_ret:
1468 return retval;
1471 void set_binfmt(struct linux_binfmt *new)
1473 struct mm_struct *mm = current->mm;
1475 if (mm->binfmt)
1476 module_put(mm->binfmt->module);
1478 mm->binfmt = new;
1479 if (new)
1480 __module_get(new->module);
1483 EXPORT_SYMBOL(set_binfmt);
1485 /* format_corename will inspect the pattern parameter, and output a
1486 * name into corename, which must have space for at least
1487 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1489 static int format_corename(char *corename, long signr)
1491 const struct cred *cred = current_cred();
1492 const char *pat_ptr = core_pattern;
1493 int ispipe = (*pat_ptr == '|');
1494 char *out_ptr = corename;
1495 char *const out_end = corename + CORENAME_MAX_SIZE;
1496 int rc;
1497 int pid_in_pattern = 0;
1499 /* Repeat as long as we have more pattern to process and more output
1500 space */
1501 while (*pat_ptr) {
1502 if (*pat_ptr != '%') {
1503 if (out_ptr == out_end)
1504 goto out;
1505 *out_ptr++ = *pat_ptr++;
1506 } else {
1507 switch (*++pat_ptr) {
1508 case 0:
1509 goto out;
1510 /* Double percent, output one percent */
1511 case '%':
1512 if (out_ptr == out_end)
1513 goto out;
1514 *out_ptr++ = '%';
1515 break;
1516 /* pid */
1517 case 'p':
1518 pid_in_pattern = 1;
1519 rc = snprintf(out_ptr, out_end - out_ptr,
1520 "%d", task_tgid_vnr(current));
1521 if (rc > out_end - out_ptr)
1522 goto out;
1523 out_ptr += rc;
1524 break;
1525 /* uid */
1526 case 'u':
1527 rc = snprintf(out_ptr, out_end - out_ptr,
1528 "%d", cred->uid);
1529 if (rc > out_end - out_ptr)
1530 goto out;
1531 out_ptr += rc;
1532 break;
1533 /* gid */
1534 case 'g':
1535 rc = snprintf(out_ptr, out_end - out_ptr,
1536 "%d", cred->gid);
1537 if (rc > out_end - out_ptr)
1538 goto out;
1539 out_ptr += rc;
1540 break;
1541 /* signal that caused the coredump */
1542 case 's':
1543 rc = snprintf(out_ptr, out_end - out_ptr,
1544 "%ld", signr);
1545 if (rc > out_end - out_ptr)
1546 goto out;
1547 out_ptr += rc;
1548 break;
1549 /* UNIX time of coredump */
1550 case 't': {
1551 struct timeval tv;
1552 do_gettimeofday(&tv);
1553 rc = snprintf(out_ptr, out_end - out_ptr,
1554 "%lu", tv.tv_sec);
1555 if (rc > out_end - out_ptr)
1556 goto out;
1557 out_ptr += rc;
1558 break;
1560 /* hostname */
1561 case 'h':
1562 down_read(&uts_sem);
1563 rc = snprintf(out_ptr, out_end - out_ptr,
1564 "%s", utsname()->nodename);
1565 up_read(&uts_sem);
1566 if (rc > out_end - out_ptr)
1567 goto out;
1568 out_ptr += rc;
1569 break;
1570 /* executable */
1571 case 'e':
1572 rc = snprintf(out_ptr, out_end - out_ptr,
1573 "%s", current->comm);
1574 if (rc > out_end - out_ptr)
1575 goto out;
1576 out_ptr += rc;
1577 break;
1578 /* core limit size */
1579 case 'c':
1580 rc = snprintf(out_ptr, out_end - out_ptr,
1581 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1582 if (rc > out_end - out_ptr)
1583 goto out;
1584 out_ptr += rc;
1585 break;
1586 default:
1587 break;
1589 ++pat_ptr;
1592 /* Backward compatibility with core_uses_pid:
1594 * If core_pattern does not include a %p (as is the default)
1595 * and core_uses_pid is set, then .%pid will be appended to
1596 * the filename. Do not do this for piped commands. */
1597 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1598 rc = snprintf(out_ptr, out_end - out_ptr,
1599 ".%d", task_tgid_vnr(current));
1600 if (rc > out_end - out_ptr)
1601 goto out;
1602 out_ptr += rc;
1604 out:
1605 *out_ptr = 0;
1606 return ispipe;
1609 static int zap_process(struct task_struct *start)
1611 struct task_struct *t;
1612 int nr = 0;
1614 start->signal->flags = SIGNAL_GROUP_EXIT;
1615 start->signal->group_stop_count = 0;
1617 t = start;
1618 do {
1619 if (t != current && t->mm) {
1620 sigaddset(&t->pending.signal, SIGKILL);
1621 signal_wake_up(t, 1);
1622 nr++;
1624 } while_each_thread(start, t);
1626 return nr;
1629 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1630 struct core_state *core_state, int exit_code)
1632 struct task_struct *g, *p;
1633 unsigned long flags;
1634 int nr = -EAGAIN;
1636 spin_lock_irq(&tsk->sighand->siglock);
1637 if (!signal_group_exit(tsk->signal)) {
1638 mm->core_state = core_state;
1639 tsk->signal->group_exit_code = exit_code;
1640 nr = zap_process(tsk);
1642 spin_unlock_irq(&tsk->sighand->siglock);
1643 if (unlikely(nr < 0))
1644 return nr;
1646 if (atomic_read(&mm->mm_users) == nr + 1)
1647 goto done;
1649 * We should find and kill all tasks which use this mm, and we should
1650 * count them correctly into ->nr_threads. We don't take tasklist
1651 * lock, but this is safe wrt:
1653 * fork:
1654 * None of sub-threads can fork after zap_process(leader). All
1655 * processes which were created before this point should be
1656 * visible to zap_threads() because copy_process() adds the new
1657 * process to the tail of init_task.tasks list, and lock/unlock
1658 * of ->siglock provides a memory barrier.
1660 * do_exit:
1661 * The caller holds mm->mmap_sem. This means that the task which
1662 * uses this mm can't pass exit_mm(), so it can't exit or clear
1663 * its ->mm.
1665 * de_thread:
1666 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1667 * we must see either old or new leader, this does not matter.
1668 * However, it can change p->sighand, so lock_task_sighand(p)
1669 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1670 * it can't fail.
1672 * Note also that "g" can be the old leader with ->mm == NULL
1673 * and already unhashed and thus removed from ->thread_group.
1674 * This is OK, __unhash_process()->list_del_rcu() does not
1675 * clear the ->next pointer, we will find the new leader via
1676 * next_thread().
1678 rcu_read_lock();
1679 for_each_process(g) {
1680 if (g == tsk->group_leader)
1681 continue;
1682 if (g->flags & PF_KTHREAD)
1683 continue;
1684 p = g;
1685 do {
1686 if (p->mm) {
1687 if (unlikely(p->mm == mm)) {
1688 lock_task_sighand(p, &flags);
1689 nr += zap_process(p);
1690 unlock_task_sighand(p, &flags);
1692 break;
1694 } while_each_thread(g, p);
1696 rcu_read_unlock();
1697 done:
1698 atomic_set(&core_state->nr_threads, nr);
1699 return nr;
1702 static int coredump_wait(int exit_code, struct core_state *core_state)
1704 struct task_struct *tsk = current;
1705 struct mm_struct *mm = tsk->mm;
1706 struct completion *vfork_done;
1707 int core_waiters;
1709 init_completion(&core_state->startup);
1710 core_state->dumper.task = tsk;
1711 core_state->dumper.next = NULL;
1712 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1713 up_write(&mm->mmap_sem);
1715 if (unlikely(core_waiters < 0))
1716 goto fail;
1719 * Make sure nobody is waiting for us to release the VM,
1720 * otherwise we can deadlock when we wait on each other
1722 vfork_done = tsk->vfork_done;
1723 if (vfork_done) {
1724 tsk->vfork_done = NULL;
1725 complete(vfork_done);
1728 if (core_waiters)
1729 wait_for_completion(&core_state->startup);
1730 fail:
1731 return core_waiters;
1734 static void coredump_finish(struct mm_struct *mm)
1736 struct core_thread *curr, *next;
1737 struct task_struct *task;
1739 next = mm->core_state->dumper.next;
1740 while ((curr = next) != NULL) {
1741 next = curr->next;
1742 task = curr->task;
1744 * see exit_mm(), curr->task must not see
1745 * ->task == NULL before we read ->next.
1747 smp_mb();
1748 curr->task = NULL;
1749 wake_up_process(task);
1752 mm->core_state = NULL;
1756 * set_dumpable converts traditional three-value dumpable to two flags and
1757 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1758 * these bits are not changed atomically. So get_dumpable can observe the
1759 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1760 * return either old dumpable or new one by paying attention to the order of
1761 * modifying the bits.
1763 * dumpable | mm->flags (binary)
1764 * old new | initial interim final
1765 * ---------+-----------------------
1766 * 0 1 | 00 01 01
1767 * 0 2 | 00 10(*) 11
1768 * 1 0 | 01 00 00
1769 * 1 2 | 01 11 11
1770 * 2 0 | 11 10(*) 00
1771 * 2 1 | 11 11 01
1773 * (*) get_dumpable regards interim value of 10 as 11.
1775 void set_dumpable(struct mm_struct *mm, int value)
1777 switch (value) {
1778 case 0:
1779 clear_bit(MMF_DUMPABLE, &mm->flags);
1780 smp_wmb();
1781 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1782 break;
1783 case 1:
1784 set_bit(MMF_DUMPABLE, &mm->flags);
1785 smp_wmb();
1786 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1787 break;
1788 case 2:
1789 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1790 smp_wmb();
1791 set_bit(MMF_DUMPABLE, &mm->flags);
1792 break;
1797 * This returns the actual value of the suid_dumpable flag. For things
1798 * that are using this for checking for privilege transitions, it must
1799 * test against SUID_DUMP_USER rather than treating it as a boolean
1800 * value.
1802 int get_dumpable(struct mm_struct *mm)
1804 int ret;
1806 ret = mm->flags & 0x3;
1807 return (ret >= 2) ? 2 : ret;
1810 static void wait_for_dump_helpers(struct file *file)
1812 struct pipe_inode_info *pipe;
1814 pipe = file->f_path.dentry->d_inode->i_pipe;
1816 pipe_lock(pipe);
1817 pipe->readers++;
1818 pipe->writers--;
1820 while ((pipe->readers > 1) && (!signal_pending(current))) {
1821 wake_up_interruptible_sync(&pipe->wait);
1822 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1823 pipe_wait(pipe);
1826 pipe->readers--;
1827 pipe->writers++;
1828 pipe_unlock(pipe);
1833 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1835 struct core_state core_state;
1836 char corename[CORENAME_MAX_SIZE + 1];
1837 struct mm_struct *mm = current->mm;
1838 struct linux_binfmt * binfmt;
1839 struct inode * inode;
1840 struct file * file;
1841 const struct cred *old_cred;
1842 struct cred *cred;
1843 int retval = 0;
1844 int flag = 0;
1845 int ispipe = 0;
1846 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1847 char **helper_argv = NULL;
1848 int helper_argc = 0;
1849 int dump_count = 0;
1850 static atomic_t core_dump_count = ATOMIC_INIT(0);
1852 audit_core_dumps(signr);
1854 binfmt = mm->binfmt;
1855 if (!binfmt || !binfmt->core_dump)
1856 goto fail;
1858 cred = prepare_creds();
1859 if (!cred) {
1860 retval = -ENOMEM;
1861 goto fail;
1864 down_write(&mm->mmap_sem);
1866 * If another thread got here first, or we are not dumpable, bail out.
1868 if (mm->core_state || !get_dumpable(mm)) {
1869 up_write(&mm->mmap_sem);
1870 put_cred(cred);
1871 goto fail;
1875 * We cannot trust fsuid as being the "true" uid of the
1876 * process nor do we know its entire history. We only know it
1877 * was tainted so we dump it as root in mode 2.
1879 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1880 flag = O_EXCL; /* Stop rewrite attacks */
1881 cred->fsuid = 0; /* Dump root private */
1884 retval = coredump_wait(exit_code, &core_state);
1885 if (retval < 0) {
1886 put_cred(cred);
1887 goto fail;
1890 old_cred = override_creds(cred);
1893 * Clear any false indication of pending signals that might
1894 * be seen by the filesystem code called to write the core file.
1896 clear_thread_flag(TIF_SIGPENDING);
1899 * lock_kernel() because format_corename() is controlled by sysctl, which
1900 * uses lock_kernel()
1902 lock_kernel();
1903 ispipe = format_corename(corename, signr);
1904 unlock_kernel();
1906 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1907 goto fail_unlock;
1909 if (ispipe) {
1910 if (core_limit == 0) {
1912 * Normally core limits are irrelevant to pipes, since
1913 * we're not writing to the file system, but we use
1914 * core_limit of 0 here as a speacial value. Any
1915 * non-zero limit gets set to RLIM_INFINITY below, but
1916 * a limit of 0 skips the dump. This is a consistent
1917 * way to catch recursive crashes. We can still crash
1918 * if the core_pattern binary sets RLIM_CORE = !0
1919 * but it runs as root, and can do lots of stupid things
1920 * Note that we use task_tgid_vnr here to grab the pid
1921 * of the process group leader. That way we get the
1922 * right pid if a thread in a multi-threaded
1923 * core_pattern process dies.
1925 printk(KERN_WARNING
1926 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1927 task_tgid_vnr(current), current->comm);
1928 printk(KERN_WARNING "Aborting core\n");
1929 goto fail_unlock;
1932 dump_count = atomic_inc_return(&core_dump_count);
1933 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1934 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1935 task_tgid_vnr(current), current->comm);
1936 printk(KERN_WARNING "Skipping core dump\n");
1937 goto fail_dropcount;
1940 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1941 if (!helper_argv) {
1942 printk(KERN_WARNING "%s failed to allocate memory\n",
1943 __func__);
1944 goto fail_dropcount;
1947 core_limit = RLIM_INFINITY;
1949 /* SIGPIPE can happen, but it's just never processed */
1950 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1951 &file)) {
1952 printk(KERN_INFO "Core dump to %s pipe failed\n",
1953 corename);
1954 goto fail_dropcount;
1956 } else
1957 file = filp_open(corename,
1958 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1959 0600);
1960 if (IS_ERR(file))
1961 goto fail_dropcount;
1962 inode = file->f_path.dentry->d_inode;
1963 if (inode->i_nlink > 1)
1964 goto close_fail; /* multiple links - don't dump */
1965 if (!ispipe && d_unhashed(file->f_path.dentry))
1966 goto close_fail;
1968 /* AK: actually i see no reason to not allow this for named pipes etc.,
1969 but keep the previous behaviour for now. */
1970 if (!ispipe && !S_ISREG(inode->i_mode))
1971 goto close_fail;
1973 * Dont allow local users get cute and trick others to coredump
1974 * into their pre-created files:
1975 * Note, this is not relevant for pipes
1977 if (!ispipe && (inode->i_uid != current_fsuid()))
1978 goto close_fail;
1979 if (!file->f_op)
1980 goto close_fail;
1981 if (!file->f_op->write)
1982 goto close_fail;
1983 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1984 goto close_fail;
1986 retval = binfmt->core_dump(signr, regs, file, core_limit);
1988 if (retval)
1989 current->signal->group_exit_code |= 0x80;
1990 close_fail:
1991 if (ispipe && core_pipe_limit)
1992 wait_for_dump_helpers(file);
1993 filp_close(file, NULL);
1994 fail_dropcount:
1995 if (dump_count)
1996 atomic_dec(&core_dump_count);
1997 fail_unlock:
1998 if (helper_argv)
1999 argv_free(helper_argv);
2001 revert_creds(old_cred);
2002 put_cred(cred);
2003 coredump_finish(mm);
2004 fail:
2005 return;