x86/asm/entry/64: Remove a bogus 'ret_from_fork' optimization
[linux/fpc-iii.git] / fs / namei.c
blob0d766d201200f241383a3515e680e55301cd8e01
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 static int __link_path_walk(const char *name, struct nameidata *nd);
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 static int do_getname(const char __user *filename, char *page)
122 int retval;
123 unsigned long len = PATH_MAX;
125 if (!segment_eq(get_fs(), KERNEL_DS)) {
126 if ((unsigned long) filename >= TASK_SIZE)
127 return -EFAULT;
128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 len = TASK_SIZE - (unsigned long) filename;
132 retval = strncpy_from_user(page, filename, len);
133 if (retval > 0) {
134 if (retval < len)
135 return 0;
136 return -ENAMETOOLONG;
137 } else if (!retval)
138 retval = -ENOENT;
139 return retval;
142 char * getname(const char __user * filename)
144 char *tmp, *result;
146 result = ERR_PTR(-ENOMEM);
147 tmp = __getname();
148 if (tmp) {
149 int retval = do_getname(filename, tmp);
151 result = tmp;
152 if (retval < 0) {
153 __putname(tmp);
154 result = ERR_PTR(retval);
157 audit_getname(result);
158 return result;
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
164 if (unlikely(!audit_dummy_context()))
165 audit_putname(name);
166 else
167 __putname(name);
169 EXPORT_SYMBOL(putname);
170 #endif
173 * This does basic POSIX ACL permission checking
175 static int acl_permission_check(struct inode *inode, int mask,
176 int (*check_acl)(struct inode *inode, int mask))
178 umode_t mode = inode->i_mode;
180 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
182 if (current_fsuid() == inode->i_uid)
183 mode >>= 6;
184 else {
185 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
186 int error = check_acl(inode, mask);
187 if (error != -EAGAIN)
188 return error;
191 if (in_group_p(inode->i_gid))
192 mode >>= 3;
196 * If the DACs are ok we don't need any capability check.
198 if ((mask & ~mode) == 0)
199 return 0;
200 return -EACCES;
204 * generic_permission - check for access rights on a Posix-like filesystem
205 * @inode: inode to check access rights for
206 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
207 * @check_acl: optional callback to check for Posix ACLs
209 * Used to check for read/write/execute permissions on a file.
210 * We use "fsuid" for this, letting us set arbitrary permissions
211 * for filesystem access without changing the "normal" uids which
212 * are used for other things..
214 int generic_permission(struct inode *inode, int mask,
215 int (*check_acl)(struct inode *inode, int mask))
217 int ret;
220 * Do the basic POSIX ACL permission checks.
222 ret = acl_permission_check(inode, mask, check_acl);
223 if (ret != -EACCES)
224 return ret;
227 * Read/write DACs are always overridable.
228 * Executable DACs are overridable if at least one exec bit is set.
230 if (!(mask & MAY_EXEC) || execute_ok(inode))
231 if (capable(CAP_DAC_OVERRIDE))
232 return 0;
235 * Searching includes executable on directories, else just read.
237 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
238 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
239 if (capable(CAP_DAC_READ_SEARCH))
240 return 0;
242 return -EACCES;
246 * inode_permission - check for access rights to a given inode
247 * @inode: inode to check permission on
248 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
250 * Used to check for read/write/execute permissions on an inode.
251 * We use "fsuid" for this, letting us set arbitrary permissions
252 * for filesystem access without changing the "normal" uids which
253 * are used for other things.
255 int inode_permission(struct inode *inode, int mask)
257 int retval;
259 if (mask & MAY_WRITE) {
260 umode_t mode = inode->i_mode;
263 * Nobody gets write access to a read-only fs.
265 if (IS_RDONLY(inode) &&
266 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
267 return -EROFS;
270 * Nobody gets write access to an immutable file.
272 if (IS_IMMUTABLE(inode))
273 return -EACCES;
276 if (inode->i_op->permission)
277 retval = inode->i_op->permission(inode, mask);
278 else
279 retval = generic_permission(inode, mask, inode->i_op->check_acl);
281 if (retval)
282 return retval;
284 retval = devcgroup_inode_permission(inode, mask);
285 if (retval)
286 return retval;
288 return security_inode_permission(inode,
289 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
293 * file_permission - check for additional access rights to a given file
294 * @file: file to check access rights for
295 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
297 * Used to check for read/write/execute permissions on an already opened
298 * file.
300 * Note:
301 * Do not use this function in new code. All access checks should
302 * be done using inode_permission().
304 int file_permission(struct file *file, int mask)
306 return inode_permission(file->f_path.dentry->d_inode, mask);
310 * get_write_access() gets write permission for a file.
311 * put_write_access() releases this write permission.
312 * This is used for regular files.
313 * We cannot support write (and maybe mmap read-write shared) accesses and
314 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
315 * can have the following values:
316 * 0: no writers, no VM_DENYWRITE mappings
317 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
318 * > 0: (i_writecount) users are writing to the file.
320 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
321 * except for the cases where we don't hold i_writecount yet. Then we need to
322 * use {get,deny}_write_access() - these functions check the sign and refuse
323 * to do the change if sign is wrong. Exclusion between them is provided by
324 * the inode->i_lock spinlock.
327 int get_write_access(struct inode * inode)
329 spin_lock(&inode->i_lock);
330 if (atomic_read(&inode->i_writecount) < 0) {
331 spin_unlock(&inode->i_lock);
332 return -ETXTBSY;
334 atomic_inc(&inode->i_writecount);
335 spin_unlock(&inode->i_lock);
337 return 0;
340 int deny_write_access(struct file * file)
342 struct inode *inode = file->f_path.dentry->d_inode;
344 spin_lock(&inode->i_lock);
345 if (atomic_read(&inode->i_writecount) > 0) {
346 spin_unlock(&inode->i_lock);
347 return -ETXTBSY;
349 atomic_dec(&inode->i_writecount);
350 spin_unlock(&inode->i_lock);
352 return 0;
356 * path_get - get a reference to a path
357 * @path: path to get the reference to
359 * Given a path increment the reference count to the dentry and the vfsmount.
361 void path_get(struct path *path)
363 mntget(path->mnt);
364 dget(path->dentry);
366 EXPORT_SYMBOL(path_get);
369 * path_put - put a reference to a path
370 * @path: path to put the reference to
372 * Given a path decrement the reference count to the dentry and the vfsmount.
374 void path_put(struct path *path)
376 dput(path->dentry);
377 mntput(path->mnt);
379 EXPORT_SYMBOL(path_put);
382 * release_open_intent - free up open intent resources
383 * @nd: pointer to nameidata
385 void release_open_intent(struct nameidata *nd)
387 if (nd->intent.open.file->f_path.dentry == NULL)
388 put_filp(nd->intent.open.file);
389 else
390 fput(nd->intent.open.file);
393 static inline struct dentry *
394 do_revalidate(struct dentry *dentry, struct nameidata *nd)
396 int status = dentry->d_op->d_revalidate(dentry, nd);
397 if (unlikely(status <= 0)) {
399 * The dentry failed validation.
400 * If d_revalidate returned 0 attempt to invalidate
401 * the dentry otherwise d_revalidate is asking us
402 * to return a fail status.
404 if (!status) {
405 if (!d_invalidate(dentry)) {
406 dput(dentry);
407 dentry = NULL;
409 } else {
410 dput(dentry);
411 dentry = ERR_PTR(status);
414 return dentry;
418 * Internal lookup() using the new generic dcache.
419 * SMP-safe
421 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
423 struct dentry * dentry = __d_lookup(parent, name);
425 /* lockess __d_lookup may fail due to concurrent d_move()
426 * in some unrelated directory, so try with d_lookup
428 if (!dentry)
429 dentry = d_lookup(parent, name);
431 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
432 dentry = do_revalidate(dentry, nd);
434 return dentry;
438 * Short-cut version of permission(), for calling by
439 * path_walk(), when dcache lock is held. Combines parts
440 * of permission() and generic_permission(), and tests ONLY for
441 * MAY_EXEC permission.
443 * If appropriate, check DAC only. If not appropriate, or
444 * short-cut DAC fails, then call permission() to do more
445 * complete permission check.
447 static int exec_permission_lite(struct inode *inode)
449 int ret;
451 if (inode->i_op->permission) {
452 ret = inode->i_op->permission(inode, MAY_EXEC);
453 if (!ret)
454 goto ok;
455 return ret;
457 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
458 if (!ret)
459 goto ok;
461 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
462 goto ok;
464 return ret;
466 return security_inode_permission(inode, MAY_EXEC);
470 * This is called when everything else fails, and we actually have
471 * to go to the low-level filesystem to find out what we should do..
473 * We get the directory semaphore, and after getting that we also
474 * make sure that nobody added the entry to the dcache in the meantime..
475 * SMP-safe
477 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
479 struct dentry * result;
480 struct inode *dir = parent->d_inode;
482 mutex_lock(&dir->i_mutex);
484 * First re-do the cached lookup just in case it was created
485 * while we waited for the directory semaphore..
487 * FIXME! This could use version numbering or similar to
488 * avoid unnecessary cache lookups.
490 * The "dcache_lock" is purely to protect the RCU list walker
491 * from concurrent renames at this point (we mustn't get false
492 * negatives from the RCU list walk here, unlike the optimistic
493 * fast walk).
495 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
497 result = d_lookup(parent, name);
498 if (!result) {
499 struct dentry *dentry;
501 /* Don't create child dentry for a dead directory. */
502 result = ERR_PTR(-ENOENT);
503 if (IS_DEADDIR(dir))
504 goto out_unlock;
506 dentry = d_alloc(parent, name);
507 result = ERR_PTR(-ENOMEM);
508 if (dentry) {
509 result = dir->i_op->lookup(dir, dentry, nd);
510 if (result)
511 dput(dentry);
512 else
513 result = dentry;
515 out_unlock:
516 mutex_unlock(&dir->i_mutex);
517 return result;
521 * Uhhuh! Nasty case: the cache was re-populated while
522 * we waited on the semaphore. Need to revalidate.
524 mutex_unlock(&dir->i_mutex);
525 if (result->d_op && result->d_op->d_revalidate) {
526 result = do_revalidate(result, nd);
527 if (!result)
528 result = ERR_PTR(-ENOENT);
530 return result;
534 * Wrapper to retry pathname resolution whenever the underlying
535 * file system returns an ESTALE.
537 * Retry the whole path once, forcing real lookup requests
538 * instead of relying on the dcache.
540 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
542 struct path save = nd->path;
543 int result;
545 /* make sure the stuff we saved doesn't go away */
546 path_get(&save);
548 result = __link_path_walk(name, nd);
549 if (result == -ESTALE) {
550 /* nd->path had been dropped */
551 nd->path = save;
552 path_get(&nd->path);
553 nd->flags |= LOOKUP_REVAL;
554 result = __link_path_walk(name, nd);
557 path_put(&save);
559 return result;
562 static __always_inline void set_root(struct nameidata *nd)
564 if (!nd->root.mnt) {
565 struct fs_struct *fs = current->fs;
566 read_lock(&fs->lock);
567 nd->root = fs->root;
568 path_get(&nd->root);
569 read_unlock(&fs->lock);
573 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
575 int res = 0;
576 char *name;
577 if (IS_ERR(link))
578 goto fail;
580 if (*link == '/') {
581 set_root(nd);
582 path_put(&nd->path);
583 nd->path = nd->root;
584 path_get(&nd->root);
587 res = link_path_walk(link, nd);
588 if (nd->depth || res || nd->last_type!=LAST_NORM)
589 return res;
591 * If it is an iterative symlinks resolution in open_namei() we
592 * have to copy the last component. And all that crap because of
593 * bloody create() on broken symlinks. Furrfu...
595 name = __getname();
596 if (unlikely(!name)) {
597 path_put(&nd->path);
598 return -ENOMEM;
600 strcpy(name, nd->last.name);
601 nd->last.name = name;
602 return 0;
603 fail:
604 path_put(&nd->path);
605 return PTR_ERR(link);
608 static void path_put_conditional(struct path *path, struct nameidata *nd)
610 dput(path->dentry);
611 if (path->mnt != nd->path.mnt)
612 mntput(path->mnt);
615 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
617 dput(nd->path.dentry);
618 if (nd->path.mnt != path->mnt)
619 mntput(nd->path.mnt);
620 nd->path.mnt = path->mnt;
621 nd->path.dentry = path->dentry;
624 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
626 int error;
627 void *cookie;
628 struct dentry *dentry = path->dentry;
630 touch_atime(path->mnt, dentry);
631 nd_set_link(nd, NULL);
633 if (path->mnt != nd->path.mnt) {
634 path_to_nameidata(path, nd);
635 dget(dentry);
637 mntget(path->mnt);
638 nd->last_type = LAST_BIND;
639 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
640 error = PTR_ERR(cookie);
641 if (!IS_ERR(cookie)) {
642 char *s = nd_get_link(nd);
643 error = 0;
644 if (s)
645 error = __vfs_follow_link(nd, s);
646 if (dentry->d_inode->i_op->put_link)
647 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
649 path_put(path);
651 return error;
655 * This limits recursive symlink follows to 8, while
656 * limiting consecutive symlinks to 40.
658 * Without that kind of total limit, nasty chains of consecutive
659 * symlinks can cause almost arbitrarily long lookups.
661 static inline int do_follow_link(struct path *path, struct nameidata *nd)
663 int err = -ELOOP;
664 if (current->link_count >= MAX_NESTED_LINKS)
665 goto loop;
666 if (current->total_link_count >= 40)
667 goto loop;
668 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
669 cond_resched();
670 err = security_inode_follow_link(path->dentry, nd);
671 if (err)
672 goto loop;
673 current->link_count++;
674 current->total_link_count++;
675 nd->depth++;
676 err = __do_follow_link(path, nd);
677 current->link_count--;
678 nd->depth--;
679 return err;
680 loop:
681 path_put_conditional(path, nd);
682 path_put(&nd->path);
683 return err;
686 int follow_up(struct path *path)
688 struct vfsmount *parent;
689 struct dentry *mountpoint;
690 spin_lock(&vfsmount_lock);
691 parent = path->mnt->mnt_parent;
692 if (parent == path->mnt) {
693 spin_unlock(&vfsmount_lock);
694 return 0;
696 mntget(parent);
697 mountpoint = dget(path->mnt->mnt_mountpoint);
698 spin_unlock(&vfsmount_lock);
699 dput(path->dentry);
700 path->dentry = mountpoint;
701 mntput(path->mnt);
702 path->mnt = parent;
703 return 1;
706 /* no need for dcache_lock, as serialization is taken care in
707 * namespace.c
709 static int __follow_mount(struct path *path)
711 int res = 0;
712 while (d_mountpoint(path->dentry)) {
713 struct vfsmount *mounted = lookup_mnt(path);
714 if (!mounted)
715 break;
716 dput(path->dentry);
717 if (res)
718 mntput(path->mnt);
719 path->mnt = mounted;
720 path->dentry = dget(mounted->mnt_root);
721 res = 1;
723 return res;
726 static void follow_mount(struct path *path)
728 while (d_mountpoint(path->dentry)) {
729 struct vfsmount *mounted = lookup_mnt(path);
730 if (!mounted)
731 break;
732 dput(path->dentry);
733 mntput(path->mnt);
734 path->mnt = mounted;
735 path->dentry = dget(mounted->mnt_root);
739 /* no need for dcache_lock, as serialization is taken care in
740 * namespace.c
742 int follow_down(struct path *path)
744 struct vfsmount *mounted;
746 mounted = lookup_mnt(path);
747 if (mounted) {
748 dput(path->dentry);
749 mntput(path->mnt);
750 path->mnt = mounted;
751 path->dentry = dget(mounted->mnt_root);
752 return 1;
754 return 0;
757 static __always_inline void follow_dotdot(struct nameidata *nd)
759 set_root(nd);
761 while(1) {
762 struct vfsmount *parent;
763 struct dentry *old = nd->path.dentry;
765 if (nd->path.dentry == nd->root.dentry &&
766 nd->path.mnt == nd->root.mnt) {
767 break;
769 spin_lock(&dcache_lock);
770 if (nd->path.dentry != nd->path.mnt->mnt_root) {
771 nd->path.dentry = dget(nd->path.dentry->d_parent);
772 spin_unlock(&dcache_lock);
773 dput(old);
774 break;
776 spin_unlock(&dcache_lock);
777 spin_lock(&vfsmount_lock);
778 parent = nd->path.mnt->mnt_parent;
779 if (parent == nd->path.mnt) {
780 spin_unlock(&vfsmount_lock);
781 break;
783 mntget(parent);
784 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
785 spin_unlock(&vfsmount_lock);
786 dput(old);
787 mntput(nd->path.mnt);
788 nd->path.mnt = parent;
790 follow_mount(&nd->path);
794 * It's more convoluted than I'd like it to be, but... it's still fairly
795 * small and for now I'd prefer to have fast path as straight as possible.
796 * It _is_ time-critical.
798 static int do_lookup(struct nameidata *nd, struct qstr *name,
799 struct path *path)
801 struct vfsmount *mnt = nd->path.mnt;
802 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
804 if (!dentry)
805 goto need_lookup;
806 if (dentry->d_op && dentry->d_op->d_revalidate)
807 goto need_revalidate;
808 done:
809 path->mnt = mnt;
810 path->dentry = dentry;
811 __follow_mount(path);
812 return 0;
814 need_lookup:
815 dentry = real_lookup(nd->path.dentry, name, nd);
816 if (IS_ERR(dentry))
817 goto fail;
818 goto done;
820 need_revalidate:
821 dentry = do_revalidate(dentry, nd);
822 if (!dentry)
823 goto need_lookup;
824 if (IS_ERR(dentry))
825 goto fail;
826 goto done;
828 fail:
829 return PTR_ERR(dentry);
833 * This is a temporary kludge to deal with "automount" symlinks; proper
834 * solution is to trigger them on follow_mount(), so that do_lookup()
835 * would DTRT. To be killed before 2.6.34-final.
837 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
839 return inode && unlikely(inode->i_op->follow_link) &&
840 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
844 * Name resolution.
845 * This is the basic name resolution function, turning a pathname into
846 * the final dentry. We expect 'base' to be positive and a directory.
848 * Returns 0 and nd will have valid dentry and mnt on success.
849 * Returns error and drops reference to input namei data on failure.
851 static int __link_path_walk(const char *name, struct nameidata *nd)
853 struct path next;
854 struct inode *inode;
855 int err;
856 unsigned int lookup_flags = nd->flags;
858 while (*name=='/')
859 name++;
860 if (!*name)
861 goto return_reval;
863 inode = nd->path.dentry->d_inode;
864 if (nd->depth)
865 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
867 /* At this point we know we have a real path component. */
868 for(;;) {
869 unsigned long hash;
870 struct qstr this;
871 unsigned int c;
873 nd->flags |= LOOKUP_CONTINUE;
874 err = exec_permission_lite(inode);
875 if (err)
876 break;
878 this.name = name;
879 c = *(const unsigned char *)name;
881 hash = init_name_hash();
882 do {
883 name++;
884 hash = partial_name_hash(c, hash);
885 c = *(const unsigned char *)name;
886 } while (c && (c != '/'));
887 this.len = name - (const char *) this.name;
888 this.hash = end_name_hash(hash);
890 /* remove trailing slashes? */
891 if (!c)
892 goto last_component;
893 while (*++name == '/');
894 if (!*name)
895 goto last_with_slashes;
898 * "." and ".." are special - ".." especially so because it has
899 * to be able to know about the current root directory and
900 * parent relationships.
902 if (this.name[0] == '.') switch (this.len) {
903 default:
904 break;
905 case 2:
906 if (this.name[1] != '.')
907 break;
908 follow_dotdot(nd);
909 inode = nd->path.dentry->d_inode;
910 /* fallthrough */
911 case 1:
912 continue;
915 * See if the low-level filesystem might want
916 * to use its own hash..
918 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
919 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
920 &this);
921 if (err < 0)
922 break;
924 /* This does the actual lookups.. */
925 err = do_lookup(nd, &this, &next);
926 if (err)
927 break;
929 err = -ENOENT;
930 inode = next.dentry->d_inode;
931 if (!inode)
932 goto out_dput;
934 if (inode->i_op->follow_link) {
935 err = do_follow_link(&next, nd);
936 if (err)
937 goto return_err;
938 err = -ENOENT;
939 inode = nd->path.dentry->d_inode;
940 if (!inode)
941 break;
942 } else
943 path_to_nameidata(&next, nd);
944 err = -ENOTDIR;
945 if (!inode->i_op->lookup)
946 break;
947 continue;
948 /* here ends the main loop */
950 last_with_slashes:
951 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
952 last_component:
953 /* Clear LOOKUP_CONTINUE iff it was previously unset */
954 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
955 if (lookup_flags & LOOKUP_PARENT)
956 goto lookup_parent;
957 if (this.name[0] == '.') switch (this.len) {
958 default:
959 break;
960 case 2:
961 if (this.name[1] != '.')
962 break;
963 follow_dotdot(nd);
964 inode = nd->path.dentry->d_inode;
965 /* fallthrough */
966 case 1:
967 goto return_reval;
969 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
970 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
971 &this);
972 if (err < 0)
973 break;
975 err = do_lookup(nd, &this, &next);
976 if (err)
977 break;
978 inode = next.dentry->d_inode;
979 if (follow_on_final(inode, lookup_flags)) {
980 err = do_follow_link(&next, nd);
981 if (err)
982 goto return_err;
983 inode = nd->path.dentry->d_inode;
984 } else
985 path_to_nameidata(&next, nd);
986 err = -ENOENT;
987 if (!inode)
988 break;
989 if (lookup_flags & LOOKUP_DIRECTORY) {
990 err = -ENOTDIR;
991 if (!inode->i_op->lookup)
992 break;
994 goto return_base;
995 lookup_parent:
996 nd->last = this;
997 nd->last_type = LAST_NORM;
998 if (this.name[0] != '.')
999 goto return_base;
1000 if (this.len == 1)
1001 nd->last_type = LAST_DOT;
1002 else if (this.len == 2 && this.name[1] == '.')
1003 nd->last_type = LAST_DOTDOT;
1004 else
1005 goto return_base;
1006 return_reval:
1008 * We bypassed the ordinary revalidation routines.
1009 * We may need to check the cached dentry for staleness.
1011 if (nd->path.dentry && nd->path.dentry->d_sb &&
1012 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1013 err = -ESTALE;
1014 /* Note: we do not d_invalidate() */
1015 if (!nd->path.dentry->d_op->d_revalidate(
1016 nd->path.dentry, nd))
1017 break;
1019 return_base:
1020 return 0;
1021 out_dput:
1022 path_put_conditional(&next, nd);
1023 break;
1025 path_put(&nd->path);
1026 return_err:
1027 return err;
1030 static int path_walk(const char *name, struct nameidata *nd)
1032 current->total_link_count = 0;
1033 return link_path_walk(name, nd);
1036 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1038 int retval = 0;
1039 int fput_needed;
1040 struct file *file;
1042 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1043 nd->flags = flags;
1044 nd->depth = 0;
1045 nd->root.mnt = NULL;
1047 if (*name=='/') {
1048 set_root(nd);
1049 nd->path = nd->root;
1050 path_get(&nd->root);
1051 } else if (dfd == AT_FDCWD) {
1052 struct fs_struct *fs = current->fs;
1053 read_lock(&fs->lock);
1054 nd->path = fs->pwd;
1055 path_get(&fs->pwd);
1056 read_unlock(&fs->lock);
1057 } else {
1058 struct dentry *dentry;
1060 file = fget_light(dfd, &fput_needed);
1061 retval = -EBADF;
1062 if (!file)
1063 goto out_fail;
1065 dentry = file->f_path.dentry;
1067 retval = -ENOTDIR;
1068 if (!S_ISDIR(dentry->d_inode->i_mode))
1069 goto fput_fail;
1071 retval = file_permission(file, MAY_EXEC);
1072 if (retval)
1073 goto fput_fail;
1075 nd->path = file->f_path;
1076 path_get(&file->f_path);
1078 fput_light(file, fput_needed);
1080 return 0;
1082 fput_fail:
1083 fput_light(file, fput_needed);
1084 out_fail:
1085 return retval;
1088 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1089 static int do_path_lookup(int dfd, const char *name,
1090 unsigned int flags, struct nameidata *nd)
1092 int retval = path_init(dfd, name, flags, nd);
1093 if (!retval)
1094 retval = path_walk(name, nd);
1095 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1096 nd->path.dentry->d_inode))
1097 audit_inode(name, nd->path.dentry);
1098 if (nd->root.mnt) {
1099 path_put(&nd->root);
1100 nd->root.mnt = NULL;
1102 return retval;
1105 int path_lookup(const char *name, unsigned int flags,
1106 struct nameidata *nd)
1108 return do_path_lookup(AT_FDCWD, name, flags, nd);
1111 int kern_path(const char *name, unsigned int flags, struct path *path)
1113 struct nameidata nd;
1114 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1115 if (!res)
1116 *path = nd.path;
1117 return res;
1121 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1122 * @dentry: pointer to dentry of the base directory
1123 * @mnt: pointer to vfs mount of the base directory
1124 * @name: pointer to file name
1125 * @flags: lookup flags
1126 * @nd: pointer to nameidata
1128 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1129 const char *name, unsigned int flags,
1130 struct nameidata *nd)
1132 int retval;
1134 /* same as do_path_lookup */
1135 nd->last_type = LAST_ROOT;
1136 nd->flags = flags;
1137 nd->depth = 0;
1139 nd->path.dentry = dentry;
1140 nd->path.mnt = mnt;
1141 path_get(&nd->path);
1142 nd->root = nd->path;
1143 path_get(&nd->root);
1145 retval = path_walk(name, nd);
1146 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1147 nd->path.dentry->d_inode))
1148 audit_inode(name, nd->path.dentry);
1150 path_put(&nd->root);
1151 nd->root.mnt = NULL;
1153 return retval;
1157 * path_lookup_open - lookup a file path with open intent
1158 * @dfd: the directory to use as base, or AT_FDCWD
1159 * @name: pointer to file name
1160 * @lookup_flags: lookup intent flags
1161 * @nd: pointer to nameidata
1162 * @open_flags: open intent flags
1164 static int path_lookup_open(int dfd, const char *name,
1165 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1167 struct file *filp = get_empty_filp();
1168 int err;
1170 if (filp == NULL)
1171 return -ENFILE;
1172 nd->intent.open.file = filp;
1173 nd->intent.open.flags = open_flags;
1174 nd->intent.open.create_mode = 0;
1175 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1176 if (IS_ERR(nd->intent.open.file)) {
1177 if (err == 0) {
1178 err = PTR_ERR(nd->intent.open.file);
1179 path_put(&nd->path);
1181 } else if (err != 0)
1182 release_open_intent(nd);
1183 return err;
1186 static struct dentry *__lookup_hash(struct qstr *name,
1187 struct dentry *base, struct nameidata *nd)
1189 struct dentry *dentry;
1190 struct inode *inode;
1191 int err;
1193 inode = base->d_inode;
1196 * See if the low-level filesystem might want
1197 * to use its own hash..
1199 if (base->d_op && base->d_op->d_hash) {
1200 err = base->d_op->d_hash(base, name);
1201 dentry = ERR_PTR(err);
1202 if (err < 0)
1203 goto out;
1206 dentry = cached_lookup(base, name, nd);
1207 if (!dentry) {
1208 struct dentry *new;
1210 /* Don't create child dentry for a dead directory. */
1211 dentry = ERR_PTR(-ENOENT);
1212 if (IS_DEADDIR(inode))
1213 goto out;
1215 new = d_alloc(base, name);
1216 dentry = ERR_PTR(-ENOMEM);
1217 if (!new)
1218 goto out;
1219 dentry = inode->i_op->lookup(inode, new, nd);
1220 if (!dentry)
1221 dentry = new;
1222 else
1223 dput(new);
1225 out:
1226 return dentry;
1230 * Restricted form of lookup. Doesn't follow links, single-component only,
1231 * needs parent already locked. Doesn't follow mounts.
1232 * SMP-safe.
1234 static struct dentry *lookup_hash(struct nameidata *nd)
1236 int err;
1238 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1239 if (err)
1240 return ERR_PTR(err);
1241 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1244 static int __lookup_one_len(const char *name, struct qstr *this,
1245 struct dentry *base, int len)
1247 unsigned long hash;
1248 unsigned int c;
1250 this->name = name;
1251 this->len = len;
1252 if (!len)
1253 return -EACCES;
1255 hash = init_name_hash();
1256 while (len--) {
1257 c = *(const unsigned char *)name++;
1258 if (c == '/' || c == '\0')
1259 return -EACCES;
1260 hash = partial_name_hash(c, hash);
1262 this->hash = end_name_hash(hash);
1263 return 0;
1267 * lookup_one_len - filesystem helper to lookup single pathname component
1268 * @name: pathname component to lookup
1269 * @base: base directory to lookup from
1270 * @len: maximum length @len should be interpreted to
1272 * Note that this routine is purely a helper for filesystem usage and should
1273 * not be called by generic code. Also note that by using this function the
1274 * nameidata argument is passed to the filesystem methods and a filesystem
1275 * using this helper needs to be prepared for that.
1277 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1279 int err;
1280 struct qstr this;
1282 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1284 err = __lookup_one_len(name, &this, base, len);
1285 if (err)
1286 return ERR_PTR(err);
1288 err = inode_permission(base->d_inode, MAY_EXEC);
1289 if (err)
1290 return ERR_PTR(err);
1291 return __lookup_hash(&this, base, NULL);
1295 * lookup_one_noperm - bad hack for sysfs
1296 * @name: pathname component to lookup
1297 * @base: base directory to lookup from
1299 * This is a variant of lookup_one_len that doesn't perform any permission
1300 * checks. It's a horrible hack to work around the braindead sysfs
1301 * architecture and should not be used anywhere else.
1303 * DON'T USE THIS FUNCTION EVER, thanks.
1305 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1307 int err;
1308 struct qstr this;
1310 err = __lookup_one_len(name, &this, base, strlen(name));
1311 if (err)
1312 return ERR_PTR(err);
1313 return __lookup_hash(&this, base, NULL);
1316 int user_path_at(int dfd, const char __user *name, unsigned flags,
1317 struct path *path)
1319 struct nameidata nd;
1320 char *tmp = getname(name);
1321 int err = PTR_ERR(tmp);
1322 if (!IS_ERR(tmp)) {
1324 BUG_ON(flags & LOOKUP_PARENT);
1326 err = do_path_lookup(dfd, tmp, flags, &nd);
1327 putname(tmp);
1328 if (!err)
1329 *path = nd.path;
1331 return err;
1334 static int user_path_parent(int dfd, const char __user *path,
1335 struct nameidata *nd, char **name)
1337 char *s = getname(path);
1338 int error;
1340 if (IS_ERR(s))
1341 return PTR_ERR(s);
1343 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1344 if (error)
1345 putname(s);
1346 else
1347 *name = s;
1349 return error;
1353 * It's inline, so penalty for filesystems that don't use sticky bit is
1354 * minimal.
1356 static inline int check_sticky(struct inode *dir, struct inode *inode)
1358 uid_t fsuid = current_fsuid();
1360 if (!(dir->i_mode & S_ISVTX))
1361 return 0;
1362 if (inode->i_uid == fsuid)
1363 return 0;
1364 if (dir->i_uid == fsuid)
1365 return 0;
1366 return !capable(CAP_FOWNER);
1370 * Check whether we can remove a link victim from directory dir, check
1371 * whether the type of victim is right.
1372 * 1. We can't do it if dir is read-only (done in permission())
1373 * 2. We should have write and exec permissions on dir
1374 * 3. We can't remove anything from append-only dir
1375 * 4. We can't do anything with immutable dir (done in permission())
1376 * 5. If the sticky bit on dir is set we should either
1377 * a. be owner of dir, or
1378 * b. be owner of victim, or
1379 * c. have CAP_FOWNER capability
1380 * 6. If the victim is append-only or immutable we can't do antyhing with
1381 * links pointing to it.
1382 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1383 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1384 * 9. We can't remove a root or mountpoint.
1385 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1386 * nfs_async_unlink().
1388 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1390 int error;
1392 if (!victim->d_inode)
1393 return -ENOENT;
1395 BUG_ON(victim->d_parent->d_inode != dir);
1396 audit_inode_child(victim->d_name.name, victim, dir);
1398 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1399 if (error)
1400 return error;
1401 if (IS_APPEND(dir))
1402 return -EPERM;
1403 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1404 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1405 return -EPERM;
1406 if (isdir) {
1407 if (!S_ISDIR(victim->d_inode->i_mode))
1408 return -ENOTDIR;
1409 if (IS_ROOT(victim))
1410 return -EBUSY;
1411 } else if (S_ISDIR(victim->d_inode->i_mode))
1412 return -EISDIR;
1413 if (IS_DEADDIR(dir))
1414 return -ENOENT;
1415 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1416 return -EBUSY;
1417 return 0;
1420 /* Check whether we can create an object with dentry child in directory
1421 * dir.
1422 * 1. We can't do it if child already exists (open has special treatment for
1423 * this case, but since we are inlined it's OK)
1424 * 2. We can't do it if dir is read-only (done in permission())
1425 * 3. We should have write and exec permissions on dir
1426 * 4. We can't do it if dir is immutable (done in permission())
1428 static inline int may_create(struct inode *dir, struct dentry *child)
1430 if (child->d_inode)
1431 return -EEXIST;
1432 if (IS_DEADDIR(dir))
1433 return -ENOENT;
1434 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1438 * O_DIRECTORY translates into forcing a directory lookup.
1440 static inline int lookup_flags(unsigned int f)
1442 unsigned long retval = LOOKUP_FOLLOW;
1444 if (f & O_NOFOLLOW)
1445 retval &= ~LOOKUP_FOLLOW;
1447 if (f & O_DIRECTORY)
1448 retval |= LOOKUP_DIRECTORY;
1450 return retval;
1454 * p1 and p2 should be directories on the same fs.
1456 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1458 struct dentry *p;
1460 if (p1 == p2) {
1461 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1462 return NULL;
1465 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1467 p = d_ancestor(p2, p1);
1468 if (p) {
1469 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1470 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1471 return p;
1474 p = d_ancestor(p1, p2);
1475 if (p) {
1476 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1477 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1478 return p;
1481 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1482 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1483 return NULL;
1486 void unlock_rename(struct dentry *p1, struct dentry *p2)
1488 mutex_unlock(&p1->d_inode->i_mutex);
1489 if (p1 != p2) {
1490 mutex_unlock(&p2->d_inode->i_mutex);
1491 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1495 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1496 struct nameidata *nd)
1498 int error = may_create(dir, dentry);
1500 if (error)
1501 return error;
1503 if (!dir->i_op->create)
1504 return -EACCES; /* shouldn't it be ENOSYS? */
1505 mode &= S_IALLUGO;
1506 mode |= S_IFREG;
1507 error = security_inode_create(dir, dentry, mode);
1508 if (error)
1509 return error;
1510 vfs_dq_init(dir);
1511 error = dir->i_op->create(dir, dentry, mode, nd);
1512 if (!error)
1513 fsnotify_create(dir, dentry);
1514 return error;
1517 int may_open(struct path *path, int acc_mode, int flag)
1519 struct dentry *dentry = path->dentry;
1520 struct inode *inode = dentry->d_inode;
1521 int error;
1523 if (!inode)
1524 return -ENOENT;
1526 switch (inode->i_mode & S_IFMT) {
1527 case S_IFLNK:
1528 return -ELOOP;
1529 case S_IFDIR:
1530 if (acc_mode & MAY_WRITE)
1531 return -EISDIR;
1532 break;
1533 case S_IFBLK:
1534 case S_IFCHR:
1535 if (path->mnt->mnt_flags & MNT_NODEV)
1536 return -EACCES;
1537 /*FALLTHRU*/
1538 case S_IFIFO:
1539 case S_IFSOCK:
1540 flag &= ~O_TRUNC;
1541 break;
1544 error = inode_permission(inode, acc_mode);
1545 if (error)
1546 return error;
1548 error = ima_path_check(path, acc_mode ?
1549 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1550 ACC_MODE(flag) & (MAY_READ | MAY_WRITE),
1551 IMA_COUNT_UPDATE);
1553 if (error)
1554 return error;
1556 * An append-only file must be opened in append mode for writing.
1558 if (IS_APPEND(inode)) {
1559 error = -EPERM;
1560 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1561 goto err_out;
1562 if (flag & O_TRUNC)
1563 goto err_out;
1566 /* O_NOATIME can only be set by the owner or superuser */
1567 if (flag & O_NOATIME)
1568 if (!is_owner_or_cap(inode)) {
1569 error = -EPERM;
1570 goto err_out;
1574 * Ensure there are no outstanding leases on the file.
1576 error = break_lease(inode, flag);
1577 if (error)
1578 goto err_out;
1580 if (flag & O_TRUNC) {
1581 error = get_write_access(inode);
1582 if (error)
1583 goto err_out;
1586 * Refuse to truncate files with mandatory locks held on them.
1588 error = locks_verify_locked(inode);
1589 if (!error)
1590 error = security_path_truncate(path, 0,
1591 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1592 if (!error) {
1593 vfs_dq_init(inode);
1595 error = do_truncate(dentry, 0,
1596 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1597 NULL);
1599 put_write_access(inode);
1600 if (error)
1601 goto err_out;
1602 } else
1603 if (flag & FMODE_WRITE)
1604 vfs_dq_init(inode);
1606 return 0;
1607 err_out:
1608 ima_counts_put(path, acc_mode ?
1609 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1610 ACC_MODE(flag) & (MAY_READ | MAY_WRITE));
1611 return error;
1615 * Be careful about ever adding any more callers of this
1616 * function. Its flags must be in the namei format, not
1617 * what get passed to sys_open().
1619 static int __open_namei_create(struct nameidata *nd, struct path *path,
1620 int flag, int mode)
1622 int error;
1623 struct dentry *dir = nd->path.dentry;
1625 if (!IS_POSIXACL(dir->d_inode))
1626 mode &= ~current_umask();
1627 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1628 if (error)
1629 goto out_unlock;
1630 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1631 out_unlock:
1632 mutex_unlock(&dir->d_inode->i_mutex);
1633 dput(nd->path.dentry);
1634 nd->path.dentry = path->dentry;
1635 if (error)
1636 return error;
1637 /* Don't check for write permission, don't truncate */
1638 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1642 * Note that while the flag value (low two bits) for sys_open means:
1643 * 00 - read-only
1644 * 01 - write-only
1645 * 10 - read-write
1646 * 11 - special
1647 * it is changed into
1648 * 00 - no permissions needed
1649 * 01 - read-permission
1650 * 10 - write-permission
1651 * 11 - read-write
1652 * for the internal routines (ie open_namei()/follow_link() etc)
1653 * This is more logical, and also allows the 00 "no perm needed"
1654 * to be used for symlinks (where the permissions are checked
1655 * later).
1658 static inline int open_to_namei_flags(int flag)
1660 if ((flag+1) & O_ACCMODE)
1661 flag++;
1662 return flag;
1665 static int open_will_write_to_fs(int flag, struct inode *inode)
1668 * We'll never write to the fs underlying
1669 * a device file.
1671 if (special_file(inode->i_mode))
1672 return 0;
1673 return (flag & O_TRUNC);
1677 * Note that the low bits of the passed in "open_flag"
1678 * are not the same as in the local variable "flag". See
1679 * open_to_namei_flags() for more details.
1681 struct file *do_filp_open(int dfd, const char *pathname,
1682 int open_flag, int mode, int acc_mode)
1684 struct file *filp;
1685 struct nameidata nd;
1686 int error;
1687 struct path path;
1688 struct dentry *dir;
1689 int count = 0;
1690 int will_write;
1691 int flag = open_to_namei_flags(open_flag);
1693 if (!acc_mode)
1694 acc_mode = MAY_OPEN | ACC_MODE(flag);
1696 /* O_TRUNC implies we need access checks for write permissions */
1697 if (flag & O_TRUNC)
1698 acc_mode |= MAY_WRITE;
1700 /* Allow the LSM permission hook to distinguish append
1701 access from general write access. */
1702 if (flag & O_APPEND)
1703 acc_mode |= MAY_APPEND;
1706 * The simplest case - just a plain lookup.
1708 if (!(flag & O_CREAT)) {
1709 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1710 &nd, flag);
1711 if (error)
1712 return ERR_PTR(error);
1713 goto ok;
1717 * Create - we need to know the parent.
1719 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1720 if (error)
1721 return ERR_PTR(error);
1722 error = path_walk(pathname, &nd);
1723 if (error) {
1724 if (nd.root.mnt)
1725 path_put(&nd.root);
1726 return ERR_PTR(error);
1728 if (unlikely(!audit_dummy_context()))
1729 audit_inode(pathname, nd.path.dentry);
1732 * We have the parent and last component. First of all, check
1733 * that we are not asked to creat(2) an obvious directory - that
1734 * will not do.
1736 error = -EISDIR;
1737 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1738 goto exit_parent;
1740 error = -ENFILE;
1741 filp = get_empty_filp();
1742 if (filp == NULL)
1743 goto exit_parent;
1744 nd.intent.open.file = filp;
1745 nd.intent.open.flags = flag;
1746 nd.intent.open.create_mode = mode;
1747 dir = nd.path.dentry;
1748 nd.flags &= ~LOOKUP_PARENT;
1749 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1750 if (flag & O_EXCL)
1751 nd.flags |= LOOKUP_EXCL;
1752 mutex_lock(&dir->d_inode->i_mutex);
1753 path.dentry = lookup_hash(&nd);
1754 path.mnt = nd.path.mnt;
1756 do_last:
1757 error = PTR_ERR(path.dentry);
1758 if (IS_ERR(path.dentry)) {
1759 mutex_unlock(&dir->d_inode->i_mutex);
1760 goto exit;
1763 if (IS_ERR(nd.intent.open.file)) {
1764 error = PTR_ERR(nd.intent.open.file);
1765 goto exit_mutex_unlock;
1768 /* Negative dentry, just create the file */
1769 if (!path.dentry->d_inode) {
1771 * This write is needed to ensure that a
1772 * ro->rw transition does not occur between
1773 * the time when the file is created and when
1774 * a permanent write count is taken through
1775 * the 'struct file' in nameidata_to_filp().
1777 error = mnt_want_write(nd.path.mnt);
1778 if (error)
1779 goto exit_mutex_unlock;
1780 error = __open_namei_create(&nd, &path, flag, mode);
1781 if (error) {
1782 mnt_drop_write(nd.path.mnt);
1783 goto exit;
1785 filp = nameidata_to_filp(&nd, open_flag);
1786 if (IS_ERR(filp))
1787 ima_counts_put(&nd.path,
1788 acc_mode & (MAY_READ | MAY_WRITE |
1789 MAY_EXEC));
1790 mnt_drop_write(nd.path.mnt);
1791 if (nd.root.mnt)
1792 path_put(&nd.root);
1793 return filp;
1797 * It already exists.
1799 mutex_unlock(&dir->d_inode->i_mutex);
1800 audit_inode(pathname, path.dentry);
1802 error = -EEXIST;
1803 if (flag & O_EXCL)
1804 goto exit_dput;
1806 if (__follow_mount(&path)) {
1807 error = -ELOOP;
1808 if (flag & O_NOFOLLOW)
1809 goto exit_dput;
1812 error = -ENOENT;
1813 if (!path.dentry->d_inode)
1814 goto exit_dput;
1815 if (path.dentry->d_inode->i_op->follow_link)
1816 goto do_link;
1818 path_to_nameidata(&path, &nd);
1819 error = -EISDIR;
1820 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1821 goto exit;
1824 * Consider:
1825 * 1. may_open() truncates a file
1826 * 2. a rw->ro mount transition occurs
1827 * 3. nameidata_to_filp() fails due to
1828 * the ro mount.
1829 * That would be inconsistent, and should
1830 * be avoided. Taking this mnt write here
1831 * ensures that (2) can not occur.
1833 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1834 if (will_write) {
1835 error = mnt_want_write(nd.path.mnt);
1836 if (error)
1837 goto exit;
1839 error = may_open(&nd.path, acc_mode, flag);
1840 if (error) {
1841 if (will_write)
1842 mnt_drop_write(nd.path.mnt);
1843 goto exit;
1845 filp = nameidata_to_filp(&nd, open_flag);
1846 if (IS_ERR(filp))
1847 ima_counts_put(&nd.path,
1848 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1850 * It is now safe to drop the mnt write
1851 * because the filp has had a write taken
1852 * on its behalf.
1854 if (will_write)
1855 mnt_drop_write(nd.path.mnt);
1856 if (nd.root.mnt)
1857 path_put(&nd.root);
1858 return filp;
1860 exit_mutex_unlock:
1861 mutex_unlock(&dir->d_inode->i_mutex);
1862 exit_dput:
1863 path_put_conditional(&path, &nd);
1864 exit:
1865 if (!IS_ERR(nd.intent.open.file))
1866 release_open_intent(&nd);
1867 exit_parent:
1868 if (nd.root.mnt)
1869 path_put(&nd.root);
1870 path_put(&nd.path);
1871 return ERR_PTR(error);
1873 do_link:
1874 error = -ELOOP;
1875 if (flag & O_NOFOLLOW)
1876 goto exit_dput;
1878 * This is subtle. Instead of calling do_follow_link() we do the
1879 * thing by hands. The reason is that this way we have zero link_count
1880 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1881 * After that we have the parent and last component, i.e.
1882 * we are in the same situation as after the first path_walk().
1883 * Well, almost - if the last component is normal we get its copy
1884 * stored in nd->last.name and we will have to putname() it when we
1885 * are done. Procfs-like symlinks just set LAST_BIND.
1887 nd.flags |= LOOKUP_PARENT;
1888 error = security_inode_follow_link(path.dentry, &nd);
1889 if (error)
1890 goto exit_dput;
1891 error = __do_follow_link(&path, &nd);
1892 if (error) {
1893 /* Does someone understand code flow here? Or it is only
1894 * me so stupid? Anathema to whoever designed this non-sense
1895 * with "intent.open".
1897 release_open_intent(&nd);
1898 if (nd.root.mnt)
1899 path_put(&nd.root);
1900 return ERR_PTR(error);
1902 nd.flags &= ~LOOKUP_PARENT;
1903 if (nd.last_type == LAST_BIND)
1904 goto ok;
1905 error = -EISDIR;
1906 if (nd.last_type != LAST_NORM)
1907 goto exit;
1908 if (nd.last.name[nd.last.len]) {
1909 __putname(nd.last.name);
1910 goto exit;
1912 error = -ELOOP;
1913 if (count++==32) {
1914 __putname(nd.last.name);
1915 goto exit;
1917 dir = nd.path.dentry;
1918 mutex_lock(&dir->d_inode->i_mutex);
1919 path.dentry = lookup_hash(&nd);
1920 path.mnt = nd.path.mnt;
1921 __putname(nd.last.name);
1922 goto do_last;
1926 * filp_open - open file and return file pointer
1928 * @filename: path to open
1929 * @flags: open flags as per the open(2) second argument
1930 * @mode: mode for the new file if O_CREAT is set, else ignored
1932 * This is the helper to open a file from kernelspace if you really
1933 * have to. But in generally you should not do this, so please move
1934 * along, nothing to see here..
1936 struct file *filp_open(const char *filename, int flags, int mode)
1938 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1940 EXPORT_SYMBOL(filp_open);
1943 * lookup_create - lookup a dentry, creating it if it doesn't exist
1944 * @nd: nameidata info
1945 * @is_dir: directory flag
1947 * Simple function to lookup and return a dentry and create it
1948 * if it doesn't exist. Is SMP-safe.
1950 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1952 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1954 struct dentry *dentry = ERR_PTR(-EEXIST);
1956 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1958 * Yucky last component or no last component at all?
1959 * (foo/., foo/.., /////)
1961 if (nd->last_type != LAST_NORM)
1962 goto fail;
1963 nd->flags &= ~LOOKUP_PARENT;
1964 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1965 nd->intent.open.flags = O_EXCL;
1968 * Do the final lookup.
1970 dentry = lookup_hash(nd);
1971 if (IS_ERR(dentry))
1972 goto fail;
1974 if (dentry->d_inode)
1975 goto eexist;
1977 * Special case - lookup gave negative, but... we had foo/bar/
1978 * From the vfs_mknod() POV we just have a negative dentry -
1979 * all is fine. Let's be bastards - you had / on the end, you've
1980 * been asking for (non-existent) directory. -ENOENT for you.
1982 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1983 dput(dentry);
1984 dentry = ERR_PTR(-ENOENT);
1986 return dentry;
1987 eexist:
1988 dput(dentry);
1989 dentry = ERR_PTR(-EEXIST);
1990 fail:
1991 return dentry;
1993 EXPORT_SYMBOL_GPL(lookup_create);
1995 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1997 int error = may_create(dir, dentry);
1999 if (error)
2000 return error;
2002 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2003 return -EPERM;
2005 if (!dir->i_op->mknod)
2006 return -EPERM;
2008 error = devcgroup_inode_mknod(mode, dev);
2009 if (error)
2010 return error;
2012 error = security_inode_mknod(dir, dentry, mode, dev);
2013 if (error)
2014 return error;
2016 vfs_dq_init(dir);
2017 error = dir->i_op->mknod(dir, dentry, mode, dev);
2018 if (!error)
2019 fsnotify_create(dir, dentry);
2020 return error;
2023 static int may_mknod(mode_t mode)
2025 switch (mode & S_IFMT) {
2026 case S_IFREG:
2027 case S_IFCHR:
2028 case S_IFBLK:
2029 case S_IFIFO:
2030 case S_IFSOCK:
2031 case 0: /* zero mode translates to S_IFREG */
2032 return 0;
2033 case S_IFDIR:
2034 return -EPERM;
2035 default:
2036 return -EINVAL;
2040 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2041 unsigned, dev)
2043 int error;
2044 char *tmp;
2045 struct dentry *dentry;
2046 struct nameidata nd;
2048 if (S_ISDIR(mode))
2049 return -EPERM;
2051 error = user_path_parent(dfd, filename, &nd, &tmp);
2052 if (error)
2053 return error;
2055 dentry = lookup_create(&nd, 0);
2056 if (IS_ERR(dentry)) {
2057 error = PTR_ERR(dentry);
2058 goto out_unlock;
2060 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2061 mode &= ~current_umask();
2062 error = may_mknod(mode);
2063 if (error)
2064 goto out_dput;
2065 error = mnt_want_write(nd.path.mnt);
2066 if (error)
2067 goto out_dput;
2068 error = security_path_mknod(&nd.path, dentry, mode, dev);
2069 if (error)
2070 goto out_drop_write;
2071 switch (mode & S_IFMT) {
2072 case 0: case S_IFREG:
2073 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2074 break;
2075 case S_IFCHR: case S_IFBLK:
2076 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2077 new_decode_dev(dev));
2078 break;
2079 case S_IFIFO: case S_IFSOCK:
2080 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2081 break;
2083 out_drop_write:
2084 mnt_drop_write(nd.path.mnt);
2085 out_dput:
2086 dput(dentry);
2087 out_unlock:
2088 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2089 path_put(&nd.path);
2090 putname(tmp);
2092 return error;
2095 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2097 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2100 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2102 int error = may_create(dir, dentry);
2104 if (error)
2105 return error;
2107 if (!dir->i_op->mkdir)
2108 return -EPERM;
2110 mode &= (S_IRWXUGO|S_ISVTX);
2111 error = security_inode_mkdir(dir, dentry, mode);
2112 if (error)
2113 return error;
2115 vfs_dq_init(dir);
2116 error = dir->i_op->mkdir(dir, dentry, mode);
2117 if (!error)
2118 fsnotify_mkdir(dir, dentry);
2119 return error;
2122 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2124 int error = 0;
2125 char * tmp;
2126 struct dentry *dentry;
2127 struct nameidata nd;
2129 error = user_path_parent(dfd, pathname, &nd, &tmp);
2130 if (error)
2131 goto out_err;
2133 dentry = lookup_create(&nd, 1);
2134 error = PTR_ERR(dentry);
2135 if (IS_ERR(dentry))
2136 goto out_unlock;
2138 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2139 mode &= ~current_umask();
2140 error = mnt_want_write(nd.path.mnt);
2141 if (error)
2142 goto out_dput;
2143 error = security_path_mkdir(&nd.path, dentry, mode);
2144 if (error)
2145 goto out_drop_write;
2146 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2147 out_drop_write:
2148 mnt_drop_write(nd.path.mnt);
2149 out_dput:
2150 dput(dentry);
2151 out_unlock:
2152 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2153 path_put(&nd.path);
2154 putname(tmp);
2155 out_err:
2156 return error;
2159 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2161 return sys_mkdirat(AT_FDCWD, pathname, mode);
2165 * We try to drop the dentry early: we should have
2166 * a usage count of 2 if we're the only user of this
2167 * dentry, and if that is true (possibly after pruning
2168 * the dcache), then we drop the dentry now.
2170 * A low-level filesystem can, if it choses, legally
2171 * do a
2173 * if (!d_unhashed(dentry))
2174 * return -EBUSY;
2176 * if it cannot handle the case of removing a directory
2177 * that is still in use by something else..
2179 void dentry_unhash(struct dentry *dentry)
2181 dget(dentry);
2182 shrink_dcache_parent(dentry);
2183 spin_lock(&dcache_lock);
2184 spin_lock(&dentry->d_lock);
2185 if (atomic_read(&dentry->d_count) == 2)
2186 __d_drop(dentry);
2187 spin_unlock(&dentry->d_lock);
2188 spin_unlock(&dcache_lock);
2191 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2193 int error = may_delete(dir, dentry, 1);
2195 if (error)
2196 return error;
2198 if (!dir->i_op->rmdir)
2199 return -EPERM;
2201 vfs_dq_init(dir);
2203 mutex_lock(&dentry->d_inode->i_mutex);
2204 dentry_unhash(dentry);
2205 if (d_mountpoint(dentry))
2206 error = -EBUSY;
2207 else {
2208 error = security_inode_rmdir(dir, dentry);
2209 if (!error) {
2210 error = dir->i_op->rmdir(dir, dentry);
2211 if (!error)
2212 dentry->d_inode->i_flags |= S_DEAD;
2215 mutex_unlock(&dentry->d_inode->i_mutex);
2216 if (!error) {
2217 d_delete(dentry);
2219 dput(dentry);
2221 return error;
2224 static long do_rmdir(int dfd, const char __user *pathname)
2226 int error = 0;
2227 char * name;
2228 struct dentry *dentry;
2229 struct nameidata nd;
2231 error = user_path_parent(dfd, pathname, &nd, &name);
2232 if (error)
2233 return error;
2235 switch(nd.last_type) {
2236 case LAST_DOTDOT:
2237 error = -ENOTEMPTY;
2238 goto exit1;
2239 case LAST_DOT:
2240 error = -EINVAL;
2241 goto exit1;
2242 case LAST_ROOT:
2243 error = -EBUSY;
2244 goto exit1;
2247 nd.flags &= ~LOOKUP_PARENT;
2249 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2250 dentry = lookup_hash(&nd);
2251 error = PTR_ERR(dentry);
2252 if (IS_ERR(dentry))
2253 goto exit2;
2254 error = mnt_want_write(nd.path.mnt);
2255 if (error)
2256 goto exit3;
2257 error = security_path_rmdir(&nd.path, dentry);
2258 if (error)
2259 goto exit4;
2260 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2261 exit4:
2262 mnt_drop_write(nd.path.mnt);
2263 exit3:
2264 dput(dentry);
2265 exit2:
2266 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2267 exit1:
2268 path_put(&nd.path);
2269 putname(name);
2270 return error;
2273 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2275 return do_rmdir(AT_FDCWD, pathname);
2278 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2280 int error = may_delete(dir, dentry, 0);
2282 if (error)
2283 return error;
2285 if (!dir->i_op->unlink)
2286 return -EPERM;
2288 vfs_dq_init(dir);
2290 mutex_lock(&dentry->d_inode->i_mutex);
2291 if (d_mountpoint(dentry))
2292 error = -EBUSY;
2293 else {
2294 error = security_inode_unlink(dir, dentry);
2295 if (!error)
2296 error = dir->i_op->unlink(dir, dentry);
2298 mutex_unlock(&dentry->d_inode->i_mutex);
2300 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2301 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2302 fsnotify_link_count(dentry->d_inode);
2303 d_delete(dentry);
2306 return error;
2310 * Make sure that the actual truncation of the file will occur outside its
2311 * directory's i_mutex. Truncate can take a long time if there is a lot of
2312 * writeout happening, and we don't want to prevent access to the directory
2313 * while waiting on the I/O.
2315 static long do_unlinkat(int dfd, const char __user *pathname)
2317 int error;
2318 char *name;
2319 struct dentry *dentry;
2320 struct nameidata nd;
2321 struct inode *inode = NULL;
2323 error = user_path_parent(dfd, pathname, &nd, &name);
2324 if (error)
2325 return error;
2327 error = -EISDIR;
2328 if (nd.last_type != LAST_NORM)
2329 goto exit1;
2331 nd.flags &= ~LOOKUP_PARENT;
2333 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2334 dentry = lookup_hash(&nd);
2335 error = PTR_ERR(dentry);
2336 if (!IS_ERR(dentry)) {
2337 /* Why not before? Because we want correct error value */
2338 if (nd.last.name[nd.last.len])
2339 goto slashes;
2340 inode = dentry->d_inode;
2341 if (inode)
2342 atomic_inc(&inode->i_count);
2343 error = mnt_want_write(nd.path.mnt);
2344 if (error)
2345 goto exit2;
2346 error = security_path_unlink(&nd.path, dentry);
2347 if (error)
2348 goto exit3;
2349 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2350 exit3:
2351 mnt_drop_write(nd.path.mnt);
2352 exit2:
2353 dput(dentry);
2355 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2356 if (inode)
2357 iput(inode); /* truncate the inode here */
2358 exit1:
2359 path_put(&nd.path);
2360 putname(name);
2361 return error;
2363 slashes:
2364 error = !dentry->d_inode ? -ENOENT :
2365 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2366 goto exit2;
2369 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2371 if ((flag & ~AT_REMOVEDIR) != 0)
2372 return -EINVAL;
2374 if (flag & AT_REMOVEDIR)
2375 return do_rmdir(dfd, pathname);
2377 return do_unlinkat(dfd, pathname);
2380 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2382 return do_unlinkat(AT_FDCWD, pathname);
2385 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2387 int error = may_create(dir, dentry);
2389 if (error)
2390 return error;
2392 if (!dir->i_op->symlink)
2393 return -EPERM;
2395 error = security_inode_symlink(dir, dentry, oldname);
2396 if (error)
2397 return error;
2399 vfs_dq_init(dir);
2400 error = dir->i_op->symlink(dir, dentry, oldname);
2401 if (!error)
2402 fsnotify_create(dir, dentry);
2403 return error;
2406 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2407 int, newdfd, const char __user *, newname)
2409 int error;
2410 char *from;
2411 char *to;
2412 struct dentry *dentry;
2413 struct nameidata nd;
2415 from = getname(oldname);
2416 if (IS_ERR(from))
2417 return PTR_ERR(from);
2419 error = user_path_parent(newdfd, newname, &nd, &to);
2420 if (error)
2421 goto out_putname;
2423 dentry = lookup_create(&nd, 0);
2424 error = PTR_ERR(dentry);
2425 if (IS_ERR(dentry))
2426 goto out_unlock;
2428 error = mnt_want_write(nd.path.mnt);
2429 if (error)
2430 goto out_dput;
2431 error = security_path_symlink(&nd.path, dentry, from);
2432 if (error)
2433 goto out_drop_write;
2434 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2435 out_drop_write:
2436 mnt_drop_write(nd.path.mnt);
2437 out_dput:
2438 dput(dentry);
2439 out_unlock:
2440 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2441 path_put(&nd.path);
2442 putname(to);
2443 out_putname:
2444 putname(from);
2445 return error;
2448 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2450 return sys_symlinkat(oldname, AT_FDCWD, newname);
2453 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2455 struct inode *inode = old_dentry->d_inode;
2456 int error;
2458 if (!inode)
2459 return -ENOENT;
2461 error = may_create(dir, new_dentry);
2462 if (error)
2463 return error;
2465 if (dir->i_sb != inode->i_sb)
2466 return -EXDEV;
2469 * A link to an append-only or immutable file cannot be created.
2471 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2472 return -EPERM;
2473 if (!dir->i_op->link)
2474 return -EPERM;
2475 if (S_ISDIR(inode->i_mode))
2476 return -EPERM;
2478 error = security_inode_link(old_dentry, dir, new_dentry);
2479 if (error)
2480 return error;
2482 mutex_lock(&inode->i_mutex);
2483 vfs_dq_init(dir);
2484 error = dir->i_op->link(old_dentry, dir, new_dentry);
2485 mutex_unlock(&inode->i_mutex);
2486 if (!error)
2487 fsnotify_link(dir, inode, new_dentry);
2488 return error;
2492 * Hardlinks are often used in delicate situations. We avoid
2493 * security-related surprises by not following symlinks on the
2494 * newname. --KAB
2496 * We don't follow them on the oldname either to be compatible
2497 * with linux 2.0, and to avoid hard-linking to directories
2498 * and other special files. --ADM
2500 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2501 int, newdfd, const char __user *, newname, int, flags)
2503 struct dentry *new_dentry;
2504 struct nameidata nd;
2505 struct path old_path;
2506 int error;
2507 char *to;
2509 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2510 return -EINVAL;
2512 error = user_path_at(olddfd, oldname,
2513 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2514 &old_path);
2515 if (error)
2516 return error;
2518 error = user_path_parent(newdfd, newname, &nd, &to);
2519 if (error)
2520 goto out;
2521 error = -EXDEV;
2522 if (old_path.mnt != nd.path.mnt)
2523 goto out_release;
2524 new_dentry = lookup_create(&nd, 0);
2525 error = PTR_ERR(new_dentry);
2526 if (IS_ERR(new_dentry))
2527 goto out_unlock;
2528 error = mnt_want_write(nd.path.mnt);
2529 if (error)
2530 goto out_dput;
2531 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2532 if (error)
2533 goto out_drop_write;
2534 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2535 out_drop_write:
2536 mnt_drop_write(nd.path.mnt);
2537 out_dput:
2538 dput(new_dentry);
2539 out_unlock:
2540 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2541 out_release:
2542 path_put(&nd.path);
2543 putname(to);
2544 out:
2545 path_put(&old_path);
2547 return error;
2550 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2552 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2556 * The worst of all namespace operations - renaming directory. "Perverted"
2557 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2558 * Problems:
2559 * a) we can get into loop creation. Check is done in is_subdir().
2560 * b) race potential - two innocent renames can create a loop together.
2561 * That's where 4.4 screws up. Current fix: serialization on
2562 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2563 * story.
2564 * c) we have to lock _three_ objects - parents and victim (if it exists).
2565 * And that - after we got ->i_mutex on parents (until then we don't know
2566 * whether the target exists). Solution: try to be smart with locking
2567 * order for inodes. We rely on the fact that tree topology may change
2568 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2569 * move will be locked. Thus we can rank directories by the tree
2570 * (ancestors first) and rank all non-directories after them.
2571 * That works since everybody except rename does "lock parent, lookup,
2572 * lock child" and rename is under ->s_vfs_rename_mutex.
2573 * HOWEVER, it relies on the assumption that any object with ->lookup()
2574 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2575 * we'd better make sure that there's no link(2) for them.
2576 * d) some filesystems don't support opened-but-unlinked directories,
2577 * either because of layout or because they are not ready to deal with
2578 * all cases correctly. The latter will be fixed (taking this sort of
2579 * stuff into VFS), but the former is not going away. Solution: the same
2580 * trick as in rmdir().
2581 * e) conversion from fhandle to dentry may come in the wrong moment - when
2582 * we are removing the target. Solution: we will have to grab ->i_mutex
2583 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2584 * ->i_mutex on parents, which works but leads to some truely excessive
2585 * locking].
2587 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2588 struct inode *new_dir, struct dentry *new_dentry)
2590 int error = 0;
2591 struct inode *target;
2594 * If we are going to change the parent - check write permissions,
2595 * we'll need to flip '..'.
2597 if (new_dir != old_dir) {
2598 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2599 if (error)
2600 return error;
2603 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2604 if (error)
2605 return error;
2607 target = new_dentry->d_inode;
2608 if (target) {
2609 mutex_lock(&target->i_mutex);
2610 dentry_unhash(new_dentry);
2612 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2613 error = -EBUSY;
2614 else
2615 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2616 if (target) {
2617 if (!error)
2618 target->i_flags |= S_DEAD;
2619 mutex_unlock(&target->i_mutex);
2620 if (d_unhashed(new_dentry))
2621 d_rehash(new_dentry);
2622 dput(new_dentry);
2624 if (!error)
2625 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2626 d_move(old_dentry,new_dentry);
2627 return error;
2630 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2631 struct inode *new_dir, struct dentry *new_dentry)
2633 struct inode *target;
2634 int error;
2636 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2637 if (error)
2638 return error;
2640 dget(new_dentry);
2641 target = new_dentry->d_inode;
2642 if (target)
2643 mutex_lock(&target->i_mutex);
2644 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2645 error = -EBUSY;
2646 else
2647 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2648 if (!error) {
2649 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2650 d_move(old_dentry, new_dentry);
2652 if (target)
2653 mutex_unlock(&target->i_mutex);
2654 dput(new_dentry);
2655 return error;
2658 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2659 struct inode *new_dir, struct dentry *new_dentry)
2661 int error;
2662 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2663 const char *old_name;
2665 if (old_dentry->d_inode == new_dentry->d_inode)
2666 return 0;
2668 error = may_delete(old_dir, old_dentry, is_dir);
2669 if (error)
2670 return error;
2672 if (!new_dentry->d_inode)
2673 error = may_create(new_dir, new_dentry);
2674 else
2675 error = may_delete(new_dir, new_dentry, is_dir);
2676 if (error)
2677 return error;
2679 if (!old_dir->i_op->rename)
2680 return -EPERM;
2682 vfs_dq_init(old_dir);
2683 vfs_dq_init(new_dir);
2685 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2687 if (is_dir)
2688 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2689 else
2690 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2691 if (!error) {
2692 const char *new_name = old_dentry->d_name.name;
2693 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2694 new_dentry->d_inode, old_dentry);
2696 fsnotify_oldname_free(old_name);
2698 return error;
2701 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2702 int, newdfd, const char __user *, newname)
2704 struct dentry *old_dir, *new_dir;
2705 struct dentry *old_dentry, *new_dentry;
2706 struct dentry *trap;
2707 struct nameidata oldnd, newnd;
2708 char *from;
2709 char *to;
2710 int error;
2712 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2713 if (error)
2714 goto exit;
2716 error = user_path_parent(newdfd, newname, &newnd, &to);
2717 if (error)
2718 goto exit1;
2720 error = -EXDEV;
2721 if (oldnd.path.mnt != newnd.path.mnt)
2722 goto exit2;
2724 old_dir = oldnd.path.dentry;
2725 error = -EBUSY;
2726 if (oldnd.last_type != LAST_NORM)
2727 goto exit2;
2729 new_dir = newnd.path.dentry;
2730 if (newnd.last_type != LAST_NORM)
2731 goto exit2;
2733 oldnd.flags &= ~LOOKUP_PARENT;
2734 newnd.flags &= ~LOOKUP_PARENT;
2735 newnd.flags |= LOOKUP_RENAME_TARGET;
2737 trap = lock_rename(new_dir, old_dir);
2739 old_dentry = lookup_hash(&oldnd);
2740 error = PTR_ERR(old_dentry);
2741 if (IS_ERR(old_dentry))
2742 goto exit3;
2743 /* source must exist */
2744 error = -ENOENT;
2745 if (!old_dentry->d_inode)
2746 goto exit4;
2747 /* unless the source is a directory trailing slashes give -ENOTDIR */
2748 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2749 error = -ENOTDIR;
2750 if (oldnd.last.name[oldnd.last.len])
2751 goto exit4;
2752 if (newnd.last.name[newnd.last.len])
2753 goto exit4;
2755 /* source should not be ancestor of target */
2756 error = -EINVAL;
2757 if (old_dentry == trap)
2758 goto exit4;
2759 new_dentry = lookup_hash(&newnd);
2760 error = PTR_ERR(new_dentry);
2761 if (IS_ERR(new_dentry))
2762 goto exit4;
2763 /* target should not be an ancestor of source */
2764 error = -ENOTEMPTY;
2765 if (new_dentry == trap)
2766 goto exit5;
2768 error = mnt_want_write(oldnd.path.mnt);
2769 if (error)
2770 goto exit5;
2771 error = security_path_rename(&oldnd.path, old_dentry,
2772 &newnd.path, new_dentry);
2773 if (error)
2774 goto exit6;
2775 error = vfs_rename(old_dir->d_inode, old_dentry,
2776 new_dir->d_inode, new_dentry);
2777 exit6:
2778 mnt_drop_write(oldnd.path.mnt);
2779 exit5:
2780 dput(new_dentry);
2781 exit4:
2782 dput(old_dentry);
2783 exit3:
2784 unlock_rename(new_dir, old_dir);
2785 exit2:
2786 path_put(&newnd.path);
2787 putname(to);
2788 exit1:
2789 path_put(&oldnd.path);
2790 putname(from);
2791 exit:
2792 return error;
2795 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2797 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2800 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2802 int len;
2804 len = PTR_ERR(link);
2805 if (IS_ERR(link))
2806 goto out;
2808 len = strlen(link);
2809 if (len > (unsigned) buflen)
2810 len = buflen;
2811 if (copy_to_user(buffer, link, len))
2812 len = -EFAULT;
2813 out:
2814 return len;
2818 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2819 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2820 * using) it for any given inode is up to filesystem.
2822 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2824 struct nameidata nd;
2825 void *cookie;
2826 int res;
2828 nd.depth = 0;
2829 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2830 if (IS_ERR(cookie))
2831 return PTR_ERR(cookie);
2833 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2834 if (dentry->d_inode->i_op->put_link)
2835 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2836 return res;
2839 int vfs_follow_link(struct nameidata *nd, const char *link)
2841 return __vfs_follow_link(nd, link);
2844 /* get the link contents into pagecache */
2845 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2847 char *kaddr;
2848 struct page *page;
2849 struct address_space *mapping = dentry->d_inode->i_mapping;
2850 page = read_mapping_page(mapping, 0, NULL);
2851 if (IS_ERR(page))
2852 return (char*)page;
2853 *ppage = page;
2854 kaddr = kmap(page);
2855 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2856 return kaddr;
2859 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2861 struct page *page = NULL;
2862 char *s = page_getlink(dentry, &page);
2863 int res = vfs_readlink(dentry,buffer,buflen,s);
2864 if (page) {
2865 kunmap(page);
2866 page_cache_release(page);
2868 return res;
2871 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2873 struct page *page = NULL;
2874 nd_set_link(nd, page_getlink(dentry, &page));
2875 return page;
2878 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2880 struct page *page = cookie;
2882 if (page) {
2883 kunmap(page);
2884 page_cache_release(page);
2889 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2891 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2893 struct address_space *mapping = inode->i_mapping;
2894 struct page *page;
2895 void *fsdata;
2896 int err;
2897 char *kaddr;
2898 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2899 if (nofs)
2900 flags |= AOP_FLAG_NOFS;
2902 retry:
2903 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2904 flags, &page, &fsdata);
2905 if (err)
2906 goto fail;
2908 kaddr = kmap_atomic(page, KM_USER0);
2909 memcpy(kaddr, symname, len-1);
2910 kunmap_atomic(kaddr, KM_USER0);
2912 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2913 page, fsdata);
2914 if (err < 0)
2915 goto fail;
2916 if (err < len-1)
2917 goto retry;
2919 mark_inode_dirty(inode);
2920 return 0;
2921 fail:
2922 return err;
2925 int page_symlink(struct inode *inode, const char *symname, int len)
2927 return __page_symlink(inode, symname, len,
2928 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2931 const struct inode_operations page_symlink_inode_operations = {
2932 .readlink = generic_readlink,
2933 .follow_link = page_follow_link_light,
2934 .put_link = page_put_link,
2937 EXPORT_SYMBOL(user_path_at);
2938 EXPORT_SYMBOL(follow_down);
2939 EXPORT_SYMBOL(follow_up);
2940 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2941 EXPORT_SYMBOL(getname);
2942 EXPORT_SYMBOL(lock_rename);
2943 EXPORT_SYMBOL(lookup_one_len);
2944 EXPORT_SYMBOL(page_follow_link_light);
2945 EXPORT_SYMBOL(page_put_link);
2946 EXPORT_SYMBOL(page_readlink);
2947 EXPORT_SYMBOL(__page_symlink);
2948 EXPORT_SYMBOL(page_symlink);
2949 EXPORT_SYMBOL(page_symlink_inode_operations);
2950 EXPORT_SYMBOL(path_lookup);
2951 EXPORT_SYMBOL(kern_path);
2952 EXPORT_SYMBOL(vfs_path_lookup);
2953 EXPORT_SYMBOL(inode_permission);
2954 EXPORT_SYMBOL(file_permission);
2955 EXPORT_SYMBOL(unlock_rename);
2956 EXPORT_SYMBOL(vfs_create);
2957 EXPORT_SYMBOL(vfs_follow_link);
2958 EXPORT_SYMBOL(vfs_link);
2959 EXPORT_SYMBOL(vfs_mkdir);
2960 EXPORT_SYMBOL(vfs_mknod);
2961 EXPORT_SYMBOL(generic_permission);
2962 EXPORT_SYMBOL(vfs_readlink);
2963 EXPORT_SYMBOL(vfs_rename);
2964 EXPORT_SYMBOL(vfs_rmdir);
2965 EXPORT_SYMBOL(vfs_symlink);
2966 EXPORT_SYMBOL(vfs_unlink);
2967 EXPORT_SYMBOL(dentry_unhash);
2968 EXPORT_SYMBOL(generic_readlink);