ARM: mmp: fix potential NULL dereference
[linux/fpc-iii.git] / arch / um / kernel / process.c
blob57fc7028714a51af6fc19952d0947a913523ccec
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Licensed under the GPL
5 */
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include "as-layout.h"
27 #include "kern_util.h"
28 #include "os.h"
29 #include "skas.h"
32 * This is a per-cpu array. A processor only modifies its entry and it only
33 * cares about its entry, so it's OK if another processor is modifying its
34 * entry.
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
38 static inline int external_pid(void)
40 /* FIXME: Need to look up userspace_pid by cpu */
41 return userspace_pid[0];
44 int pid_to_processor_id(int pid)
46 int i;
48 for (i = 0; i < ncpus; i++) {
49 if (cpu_tasks[i].pid == pid)
50 return i;
52 return -1;
55 void free_stack(unsigned long stack, int order)
57 free_pages(stack, order);
60 unsigned long alloc_stack(int order, int atomic)
62 unsigned long page;
63 gfp_t flags = GFP_KERNEL;
65 if (atomic)
66 flags = GFP_ATOMIC;
67 page = __get_free_pages(flags, order);
69 return page;
72 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
74 int pid;
76 current->thread.request.u.thread.proc = fn;
77 current->thread.request.u.thread.arg = arg;
78 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
79 &current->thread.regs, 0, NULL, NULL);
80 return pid;
82 EXPORT_SYMBOL(kernel_thread);
84 static inline void set_current(struct task_struct *task)
86 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
87 { external_pid(), task });
90 extern void arch_switch_to(struct task_struct *to);
92 void *__switch_to(struct task_struct *from, struct task_struct *to)
94 to->thread.prev_sched = from;
95 set_current(to);
97 do {
98 current->thread.saved_task = NULL;
100 switch_threads(&from->thread.switch_buf,
101 &to->thread.switch_buf);
103 arch_switch_to(current);
105 if (current->thread.saved_task)
106 show_regs(&(current->thread.regs));
107 to = current->thread.saved_task;
108 from = current;
109 } while (current->thread.saved_task);
111 return current->thread.prev_sched;
114 void interrupt_end(void)
116 if (need_resched())
117 schedule();
118 if (test_thread_flag(TIF_SIGPENDING))
119 do_signal();
120 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
121 tracehook_notify_resume(&current->thread.regs);
124 void exit_thread(void)
128 int get_current_pid(void)
130 return task_pid_nr(current);
134 * This is called magically, by its address being stuffed in a jmp_buf
135 * and being longjmp-d to.
137 void new_thread_handler(void)
139 int (*fn)(void *), n;
140 void *arg;
142 if (current->thread.prev_sched != NULL)
143 schedule_tail(current->thread.prev_sched);
144 current->thread.prev_sched = NULL;
146 fn = current->thread.request.u.thread.proc;
147 arg = current->thread.request.u.thread.arg;
150 * The return value is 1 if the kernel thread execs a process,
151 * 0 if it just exits
153 n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
154 if (n == 1)
155 userspace(&current->thread.regs.regs);
156 else
157 do_exit(0);
160 /* Called magically, see new_thread_handler above */
161 void fork_handler(void)
163 force_flush_all();
165 schedule_tail(current->thread.prev_sched);
168 * XXX: if interrupt_end() calls schedule, this call to
169 * arch_switch_to isn't needed. We could want to apply this to
170 * improve performance. -bb
172 arch_switch_to(current);
174 current->thread.prev_sched = NULL;
176 userspace(&current->thread.regs.regs);
179 int copy_thread(unsigned long clone_flags, unsigned long sp,
180 unsigned long stack_top, struct task_struct * p,
181 struct pt_regs *regs)
183 void (*handler)(void);
184 int ret = 0;
186 p->thread = (struct thread_struct) INIT_THREAD;
188 if (current->thread.forking) {
189 memcpy(&p->thread.regs.regs, &regs->regs,
190 sizeof(p->thread.regs.regs));
191 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
192 if (sp != 0)
193 REGS_SP(p->thread.regs.regs.gp) = sp;
195 handler = fork_handler;
197 arch_copy_thread(&current->thread.arch, &p->thread.arch);
199 else {
200 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
201 p->thread.request.u.thread = current->thread.request.u.thread;
202 handler = new_thread_handler;
205 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
207 if (current->thread.forking) {
208 clear_flushed_tls(p);
211 * Set a new TLS for the child thread?
213 if (clone_flags & CLONE_SETTLS)
214 ret = arch_copy_tls(p);
217 return ret;
220 void initial_thread_cb(void (*proc)(void *), void *arg)
222 int save_kmalloc_ok = kmalloc_ok;
224 kmalloc_ok = 0;
225 initial_thread_cb_skas(proc, arg);
226 kmalloc_ok = save_kmalloc_ok;
229 void default_idle(void)
231 unsigned long long nsecs;
233 while (1) {
234 /* endless idle loop with no priority at all */
237 * although we are an idle CPU, we do not want to
238 * get into the scheduler unnecessarily.
240 if (need_resched())
241 schedule();
243 tick_nohz_idle_enter();
244 rcu_idle_enter();
245 nsecs = disable_timer();
246 idle_sleep(nsecs);
247 rcu_idle_exit();
248 tick_nohz_idle_exit();
252 void cpu_idle(void)
254 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
255 default_idle();
258 int __cant_sleep(void) {
259 return in_atomic() || irqs_disabled() || in_interrupt();
260 /* Is in_interrupt() really needed? */
263 int user_context(unsigned long sp)
265 unsigned long stack;
267 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
268 return stack != (unsigned long) current_thread_info();
271 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
273 void do_uml_exitcalls(void)
275 exitcall_t *call;
277 call = &__uml_exitcall_end;
278 while (--call >= &__uml_exitcall_begin)
279 (*call)();
282 char *uml_strdup(const char *string)
284 return kstrdup(string, GFP_KERNEL);
286 EXPORT_SYMBOL(uml_strdup);
288 int copy_to_user_proc(void __user *to, void *from, int size)
290 return copy_to_user(to, from, size);
293 int copy_from_user_proc(void *to, void __user *from, int size)
295 return copy_from_user(to, from, size);
298 int clear_user_proc(void __user *buf, int size)
300 return clear_user(buf, size);
303 int strlen_user_proc(char __user *str)
305 return strlen_user(str);
308 int smp_sigio_handler(void)
310 #ifdef CONFIG_SMP
311 int cpu = current_thread_info()->cpu;
312 IPI_handler(cpu);
313 if (cpu != 0)
314 return 1;
315 #endif
316 return 0;
319 int cpu(void)
321 return current_thread_info()->cpu;
324 static atomic_t using_sysemu = ATOMIC_INIT(0);
325 int sysemu_supported;
327 void set_using_sysemu(int value)
329 if (value > sysemu_supported)
330 return;
331 atomic_set(&using_sysemu, value);
334 int get_using_sysemu(void)
336 return atomic_read(&using_sysemu);
339 static int sysemu_proc_show(struct seq_file *m, void *v)
341 seq_printf(m, "%d\n", get_using_sysemu());
342 return 0;
345 static int sysemu_proc_open(struct inode *inode, struct file *file)
347 return single_open(file, sysemu_proc_show, NULL);
350 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
351 size_t count, loff_t *pos)
353 char tmp[2];
355 if (copy_from_user(tmp, buf, 1))
356 return -EFAULT;
358 if (tmp[0] >= '0' && tmp[0] <= '2')
359 set_using_sysemu(tmp[0] - '0');
360 /* We use the first char, but pretend to write everything */
361 return count;
364 static const struct file_operations sysemu_proc_fops = {
365 .owner = THIS_MODULE,
366 .open = sysemu_proc_open,
367 .read = seq_read,
368 .llseek = seq_lseek,
369 .release = single_release,
370 .write = sysemu_proc_write,
373 int __init make_proc_sysemu(void)
375 struct proc_dir_entry *ent;
376 if (!sysemu_supported)
377 return 0;
379 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
381 if (ent == NULL)
383 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
384 return 0;
387 return 0;
390 late_initcall(make_proc_sysemu);
392 int singlestepping(void * t)
394 struct task_struct *task = t ? t : current;
396 if (!(task->ptrace & PT_DTRACE))
397 return 0;
399 if (task->thread.singlestep_syscall)
400 return 1;
402 return 2;
406 * Only x86 and x86_64 have an arch_align_stack().
407 * All other arches have "#define arch_align_stack(x) (x)"
408 * in their asm/system.h
409 * As this is included in UML from asm-um/system-generic.h,
410 * we can use it to behave as the subarch does.
412 #ifndef arch_align_stack
413 unsigned long arch_align_stack(unsigned long sp)
415 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
416 sp -= get_random_int() % 8192;
417 return sp & ~0xf;
419 #endif
421 unsigned long get_wchan(struct task_struct *p)
423 unsigned long stack_page, sp, ip;
424 bool seen_sched = 0;
426 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
427 return 0;
429 stack_page = (unsigned long) task_stack_page(p);
430 /* Bail if the process has no kernel stack for some reason */
431 if (stack_page == 0)
432 return 0;
434 sp = p->thread.switch_buf->JB_SP;
436 * Bail if the stack pointer is below the bottom of the kernel
437 * stack for some reason
439 if (sp < stack_page)
440 return 0;
442 while (sp < stack_page + THREAD_SIZE) {
443 ip = *((unsigned long *) sp);
444 if (in_sched_functions(ip))
445 /* Ignore everything until we're above the scheduler */
446 seen_sched = 1;
447 else if (kernel_text_address(ip) && seen_sched)
448 return ip;
450 sp += sizeof(unsigned long);
453 return 0;
456 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
458 int cpu = current_thread_info()->cpu;
460 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);