ARM: mmp: fix potential NULL dereference
[linux/fpc-iii.git] / arch / um / kernel / trap.c
blob0353b98ae35a28208c695816bd9b7883ad6fb22e
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Licensed under the GPL
4 */
6 #include <linux/mm.h>
7 #include <linux/sched.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <asm/current.h>
11 #include <asm/pgtable.h>
12 #include <asm/tlbflush.h>
13 #include "arch.h"
14 #include "as-layout.h"
15 #include "kern_util.h"
16 #include "os.h"
17 #include "skas.h"
20 * Note this is constrained to return 0, -EFAULT, -EACCESS, -ENOMEM by
21 * segv().
23 int handle_page_fault(unsigned long address, unsigned long ip,
24 int is_write, int is_user, int *code_out)
26 struct mm_struct *mm = current->mm;
27 struct vm_area_struct *vma;
28 pgd_t *pgd;
29 pud_t *pud;
30 pmd_t *pmd;
31 pte_t *pte;
32 int err = -EFAULT;
33 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
34 (is_write ? FAULT_FLAG_WRITE : 0);
36 *code_out = SEGV_MAPERR;
39 * If the fault was during atomic operation, don't take the fault, just
40 * fail.
42 if (in_atomic())
43 goto out_nosemaphore;
45 retry:
46 down_read(&mm->mmap_sem);
47 vma = find_vma(mm, address);
48 if (!vma)
49 goto out;
50 else if (vma->vm_start <= address)
51 goto good_area;
52 else if (!(vma->vm_flags & VM_GROWSDOWN))
53 goto out;
54 else if (is_user && !ARCH_IS_STACKGROW(address))
55 goto out;
56 else if (expand_stack(vma, address))
57 goto out;
59 good_area:
60 *code_out = SEGV_ACCERR;
61 if (is_write && !(vma->vm_flags & VM_WRITE))
62 goto out;
64 /* Don't require VM_READ|VM_EXEC for write faults! */
65 if (!is_write && !(vma->vm_flags & (VM_READ | VM_EXEC)))
66 goto out;
68 do {
69 int fault;
71 fault = handle_mm_fault(mm, vma, address, flags);
73 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
74 goto out_nosemaphore;
76 if (unlikely(fault & VM_FAULT_ERROR)) {
77 if (fault & VM_FAULT_OOM) {
78 goto out_of_memory;
79 } else if (fault & VM_FAULT_SIGBUS) {
80 err = -EACCES;
81 goto out;
83 BUG();
85 if (flags & FAULT_FLAG_ALLOW_RETRY) {
86 if (fault & VM_FAULT_MAJOR)
87 current->maj_flt++;
88 else
89 current->min_flt++;
90 if (fault & VM_FAULT_RETRY) {
91 flags &= ~FAULT_FLAG_ALLOW_RETRY;
93 goto retry;
97 pgd = pgd_offset(mm, address);
98 pud = pud_offset(pgd, address);
99 pmd = pmd_offset(pud, address);
100 pte = pte_offset_kernel(pmd, address);
101 } while (!pte_present(*pte));
102 err = 0;
104 * The below warning was added in place of
105 * pte_mkyoung(); if (is_write) pte_mkdirty();
106 * If it's triggered, we'd see normally a hang here (a clean pte is
107 * marked read-only to emulate the dirty bit).
108 * However, the generic code can mark a PTE writable but clean on a
109 * concurrent read fault, triggering this harmlessly. So comment it out.
111 #if 0
112 WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
113 #endif
114 flush_tlb_page(vma, address);
115 out:
116 up_read(&mm->mmap_sem);
117 out_nosemaphore:
118 return err;
120 out_of_memory:
122 * We ran out of memory, call the OOM killer, and return the userspace
123 * (which will retry the fault, or kill us if we got oom-killed).
125 up_read(&mm->mmap_sem);
126 pagefault_out_of_memory();
127 return 0;
129 EXPORT_SYMBOL(handle_page_fault);
131 static void show_segv_info(struct uml_pt_regs *regs)
133 struct task_struct *tsk = current;
134 struct faultinfo *fi = UPT_FAULTINFO(regs);
136 if (!unhandled_signal(tsk, SIGSEGV))
137 return;
139 if (!printk_ratelimit())
140 return;
142 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %x",
143 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
144 tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
145 (void *)UPT_IP(regs), (void *)UPT_SP(regs),
146 fi->error_code);
148 print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
149 printk(KERN_CONT "\n");
152 static void bad_segv(struct faultinfo fi, unsigned long ip)
154 struct siginfo si;
156 si.si_signo = SIGSEGV;
157 si.si_code = SEGV_ACCERR;
158 si.si_addr = (void __user *) FAULT_ADDRESS(fi);
159 current->thread.arch.faultinfo = fi;
160 force_sig_info(SIGSEGV, &si, current);
163 void fatal_sigsegv(void)
165 force_sigsegv(SIGSEGV, current);
166 do_signal();
168 * This is to tell gcc that we're not returning - do_signal
169 * can, in general, return, but in this case, it's not, since
170 * we just got a fatal SIGSEGV queued.
172 os_dump_core();
175 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
177 struct faultinfo * fi = UPT_FAULTINFO(regs);
179 if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
180 show_segv_info(regs);
181 bad_segv(*fi, UPT_IP(regs));
182 return;
184 segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
188 * We give a *copy* of the faultinfo in the regs to segv.
189 * This must be done, since nesting SEGVs could overwrite
190 * the info in the regs. A pointer to the info then would
191 * give us bad data!
193 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
194 struct uml_pt_regs *regs)
196 struct siginfo si;
197 jmp_buf *catcher;
198 int err;
199 int is_write = FAULT_WRITE(fi);
200 unsigned long address = FAULT_ADDRESS(fi);
202 if (!is_user && (address >= start_vm) && (address < end_vm)) {
203 flush_tlb_kernel_vm();
204 return 0;
206 else if (current->mm == NULL) {
207 show_regs(container_of(regs, struct pt_regs, regs));
208 panic("Segfault with no mm");
211 if (SEGV_IS_FIXABLE(&fi) || SEGV_MAYBE_FIXABLE(&fi))
212 err = handle_page_fault(address, ip, is_write, is_user,
213 &si.si_code);
214 else {
215 err = -EFAULT;
217 * A thread accessed NULL, we get a fault, but CR2 is invalid.
218 * This code is used in __do_copy_from_user() of TT mode.
219 * XXX tt mode is gone, so maybe this isn't needed any more
221 address = 0;
224 catcher = current->thread.fault_catcher;
225 if (!err)
226 return 0;
227 else if (catcher != NULL) {
228 current->thread.fault_addr = (void *) address;
229 UML_LONGJMP(catcher, 1);
231 else if (current->thread.fault_addr != NULL)
232 panic("fault_addr set but no fault catcher");
233 else if (!is_user && arch_fixup(ip, regs))
234 return 0;
236 if (!is_user) {
237 show_regs(container_of(regs, struct pt_regs, regs));
238 panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
239 address, ip);
242 show_segv_info(regs);
244 if (err == -EACCES) {
245 si.si_signo = SIGBUS;
246 si.si_errno = 0;
247 si.si_code = BUS_ADRERR;
248 si.si_addr = (void __user *)address;
249 current->thread.arch.faultinfo = fi;
250 force_sig_info(SIGBUS, &si, current);
251 } else {
252 BUG_ON(err != -EFAULT);
253 si.si_signo = SIGSEGV;
254 si.si_addr = (void __user *) address;
255 current->thread.arch.faultinfo = fi;
256 force_sig_info(SIGSEGV, &si, current);
258 return 0;
261 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
263 struct faultinfo *fi;
264 struct siginfo clean_si;
266 if (!UPT_IS_USER(regs)) {
267 if (sig == SIGBUS)
268 printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
269 "mount likely just ran out of space\n");
270 panic("Kernel mode signal %d", sig);
273 arch_examine_signal(sig, regs);
275 memset(&clean_si, 0, sizeof(clean_si));
276 clean_si.si_signo = si->si_signo;
277 clean_si.si_errno = si->si_errno;
278 clean_si.si_code = si->si_code;
279 switch (sig) {
280 case SIGILL:
281 case SIGFPE:
282 case SIGSEGV:
283 case SIGBUS:
284 case SIGTRAP:
285 fi = UPT_FAULTINFO(regs);
286 clean_si.si_addr = (void __user *) FAULT_ADDRESS(*fi);
287 current->thread.arch.faultinfo = *fi;
288 #ifdef __ARCH_SI_TRAPNO
289 clean_si.si_trapno = si->si_trapno;
290 #endif
291 break;
292 default:
293 printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d)\n",
294 sig, si->si_code);
297 force_sig_info(sig, &clean_si, current);
300 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
302 if (current->thread.fault_catcher != NULL)
303 UML_LONGJMP(current->thread.fault_catcher, 1);
304 else
305 relay_signal(sig, si, regs);
308 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
310 do_IRQ(WINCH_IRQ, regs);
313 void trap_init(void)