ARM: mmp: fix potential NULL dereference
[linux/fpc-iii.git] / arch / x86 / kernel / process_32.c
blob516fa186121b6d7dd82d9b73e1fa79ed11aa323a
1 /*
2 * Copyright (C) 1995 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/fs.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/elfcore.h>
19 #include <linux/smp.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/module.h>
30 #include <linux/kallsyms.h>
31 #include <linux/ptrace.h>
32 #include <linux/personality.h>
33 #include <linux/percpu.h>
34 #include <linux/prctl.h>
35 #include <linux/ftrace.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/kdebug.h>
40 #include <asm/pgtable.h>
41 #include <asm/ldt.h>
42 #include <asm/processor.h>
43 #include <asm/i387.h>
44 #include <asm/fpu-internal.h>
45 #include <asm/desc.h>
46 #ifdef CONFIG_MATH_EMULATION
47 #include <asm/math_emu.h>
48 #endif
50 #include <linux/err.h>
52 #include <asm/tlbflush.h>
53 #include <asm/cpu.h>
54 #include <asm/idle.h>
55 #include <asm/syscalls.h>
56 #include <asm/debugreg.h>
57 #include <asm/switch_to.h>
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
62 * Return saved PC of a blocked thread.
64 unsigned long thread_saved_pc(struct task_struct *tsk)
66 return ((unsigned long *)tsk->thread.sp)[3];
69 void __show_regs(struct pt_regs *regs, int all)
71 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
72 unsigned long d0, d1, d2, d3, d6, d7;
73 unsigned long sp;
74 unsigned short ss, gs;
76 if (user_mode_vm(regs)) {
77 sp = regs->sp;
78 ss = regs->ss & 0xffff;
79 gs = get_user_gs(regs);
80 } else {
81 sp = kernel_stack_pointer(regs);
82 savesegment(ss, ss);
83 savesegment(gs, gs);
86 show_regs_common();
88 printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
89 (u16)regs->cs, regs->ip, regs->flags,
90 smp_processor_id());
91 print_symbol("EIP is at %s\n", regs->ip);
93 printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
94 regs->ax, regs->bx, regs->cx, regs->dx);
95 printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
96 regs->si, regs->di, regs->bp, sp);
97 printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
98 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
100 if (!all)
101 return;
103 cr0 = read_cr0();
104 cr2 = read_cr2();
105 cr3 = read_cr3();
106 cr4 = read_cr4_safe();
107 printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
108 cr0, cr2, cr3, cr4);
110 get_debugreg(d0, 0);
111 get_debugreg(d1, 1);
112 get_debugreg(d2, 2);
113 get_debugreg(d3, 3);
114 printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
115 d0, d1, d2, d3);
117 get_debugreg(d6, 6);
118 get_debugreg(d7, 7);
119 printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
120 d6, d7);
123 void release_thread(struct task_struct *dead_task)
125 BUG_ON(dead_task->mm);
126 release_vm86_irqs(dead_task);
129 int copy_thread(unsigned long clone_flags, unsigned long sp,
130 unsigned long unused,
131 struct task_struct *p, struct pt_regs *regs)
133 struct pt_regs *childregs;
134 struct task_struct *tsk;
135 int err;
137 childregs = task_pt_regs(p);
138 *childregs = *regs;
139 childregs->ax = 0;
140 childregs->sp = sp;
142 p->thread.sp = (unsigned long) childregs;
143 p->thread.sp0 = (unsigned long) (childregs+1);
145 p->thread.ip = (unsigned long) ret_from_fork;
147 task_user_gs(p) = get_user_gs(regs);
149 p->fpu_counter = 0;
150 p->thread.io_bitmap_ptr = NULL;
151 tsk = current;
152 err = -ENOMEM;
154 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
156 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
157 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
158 IO_BITMAP_BYTES, GFP_KERNEL);
159 if (!p->thread.io_bitmap_ptr) {
160 p->thread.io_bitmap_max = 0;
161 return -ENOMEM;
163 set_tsk_thread_flag(p, TIF_IO_BITMAP);
166 err = 0;
169 * Set a new TLS for the child thread?
171 if (clone_flags & CLONE_SETTLS)
172 err = do_set_thread_area(p, -1,
173 (struct user_desc __user *)childregs->si, 0);
175 if (err && p->thread.io_bitmap_ptr) {
176 kfree(p->thread.io_bitmap_ptr);
177 p->thread.io_bitmap_max = 0;
179 return err;
182 void
183 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
185 set_user_gs(regs, 0);
186 regs->fs = 0;
187 regs->ds = __USER_DS;
188 regs->es = __USER_DS;
189 regs->ss = __USER_DS;
190 regs->cs = __USER_CS;
191 regs->ip = new_ip;
192 regs->sp = new_sp;
194 * Free the old FP and other extended state
196 free_thread_xstate(current);
198 EXPORT_SYMBOL_GPL(start_thread);
202 * switch_to(x,y) should switch tasks from x to y.
204 * We fsave/fwait so that an exception goes off at the right time
205 * (as a call from the fsave or fwait in effect) rather than to
206 * the wrong process. Lazy FP saving no longer makes any sense
207 * with modern CPU's, and this simplifies a lot of things (SMP
208 * and UP become the same).
210 * NOTE! We used to use the x86 hardware context switching. The
211 * reason for not using it any more becomes apparent when you
212 * try to recover gracefully from saved state that is no longer
213 * valid (stale segment register values in particular). With the
214 * hardware task-switch, there is no way to fix up bad state in
215 * a reasonable manner.
217 * The fact that Intel documents the hardware task-switching to
218 * be slow is a fairly red herring - this code is not noticeably
219 * faster. However, there _is_ some room for improvement here,
220 * so the performance issues may eventually be a valid point.
221 * More important, however, is the fact that this allows us much
222 * more flexibility.
224 * The return value (in %ax) will be the "prev" task after
225 * the task-switch, and shows up in ret_from_fork in entry.S,
226 * for example.
228 __notrace_funcgraph struct task_struct *
229 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
231 struct thread_struct *prev = &prev_p->thread,
232 *next = &next_p->thread;
233 int cpu = smp_processor_id();
234 struct tss_struct *tss = &per_cpu(init_tss, cpu);
235 fpu_switch_t fpu;
237 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
239 fpu = switch_fpu_prepare(prev_p, next_p, cpu);
242 * Reload esp0.
244 load_sp0(tss, next);
247 * Save away %gs. No need to save %fs, as it was saved on the
248 * stack on entry. No need to save %es and %ds, as those are
249 * always kernel segments while inside the kernel. Doing this
250 * before setting the new TLS descriptors avoids the situation
251 * where we temporarily have non-reloadable segments in %fs
252 * and %gs. This could be an issue if the NMI handler ever
253 * used %fs or %gs (it does not today), or if the kernel is
254 * running inside of a hypervisor layer.
256 lazy_save_gs(prev->gs);
259 * Load the per-thread Thread-Local Storage descriptor.
261 load_TLS(next, cpu);
264 * Restore IOPL if needed. In normal use, the flags restore
265 * in the switch assembly will handle this. But if the kernel
266 * is running virtualized at a non-zero CPL, the popf will
267 * not restore flags, so it must be done in a separate step.
269 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
270 set_iopl_mask(next->iopl);
273 * Now maybe handle debug registers and/or IO bitmaps
275 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
276 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
277 __switch_to_xtra(prev_p, next_p, tss);
280 * Leave lazy mode, flushing any hypercalls made here.
281 * This must be done before restoring TLS segments so
282 * the GDT and LDT are properly updated, and must be
283 * done before math_state_restore, so the TS bit is up
284 * to date.
286 arch_end_context_switch(next_p);
289 * Restore %gs if needed (which is common)
291 if (prev->gs | next->gs)
292 lazy_load_gs(next->gs);
294 switch_fpu_finish(next_p, fpu);
296 this_cpu_write(current_task, next_p);
298 return prev_p;
301 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
302 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
304 unsigned long get_wchan(struct task_struct *p)
306 unsigned long bp, sp, ip;
307 unsigned long stack_page;
308 int count = 0;
309 if (!p || p == current || p->state == TASK_RUNNING)
310 return 0;
311 stack_page = (unsigned long)task_stack_page(p);
312 sp = p->thread.sp;
313 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
314 return 0;
315 /* include/asm-i386/system.h:switch_to() pushes bp last. */
316 bp = *(unsigned long *) sp;
317 do {
318 if (bp < stack_page || bp > top_ebp+stack_page)
319 return 0;
320 ip = *(unsigned long *) (bp+4);
321 if (!in_sched_functions(ip))
322 return ip;
323 bp = *(unsigned long *) bp;
324 } while (count++ < 16);
325 return 0;