1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
16 #include <asm/timer.h>
17 #include <asm/vgtod.h>
19 #include <asm/delay.h>
20 #include <asm/hypervisor.h>
22 #include <asm/x86_init.h>
24 unsigned int __read_mostly cpu_khz
; /* TSC clocks / usec, not used here */
25 EXPORT_SYMBOL(cpu_khz
);
27 unsigned int __read_mostly tsc_khz
;
28 EXPORT_SYMBOL(tsc_khz
);
31 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 static int __read_mostly tsc_unstable
;
35 /* native_sched_clock() is called before tsc_init(), so
36 we must start with the TSC soft disabled to prevent
37 erroneous rdtsc usage on !cpu_has_tsc processors */
38 static int __read_mostly tsc_disabled
= -1;
40 int tsc_clocksource_reliable
;
42 * Scheduler clock - returns current time in nanosec units.
44 u64
native_sched_clock(void)
49 * Fall back to jiffies if there's no TSC available:
50 * ( But note that we still use it if the TSC is marked
51 * unstable. We do this because unlike Time Of Day,
52 * the scheduler clock tolerates small errors and it's
53 * very important for it to be as fast as the platform
56 if (unlikely(tsc_disabled
)) {
57 /* No locking but a rare wrong value is not a big deal: */
58 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
61 /* read the Time Stamp Counter: */
64 /* return the value in ns */
65 return __cycles_2_ns(this_offset
);
68 /* We need to define a real function for sched_clock, to override the
69 weak default version */
70 #ifdef CONFIG_PARAVIRT
71 unsigned long long sched_clock(void)
73 return paravirt_sched_clock();
77 sched_clock(void) __attribute__((alias("native_sched_clock")));
80 int check_tsc_unstable(void)
84 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
87 int __init
notsc_setup(char *str
)
89 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
98 int __init
notsc_setup(char *str
)
100 setup_clear_cpu_cap(X86_FEATURE_TSC
);
105 __setup("notsc", notsc_setup
);
107 static int no_sched_irq_time
;
109 static int __init
tsc_setup(char *str
)
111 if (!strcmp(str
, "reliable"))
112 tsc_clocksource_reliable
= 1;
113 if (!strncmp(str
, "noirqtime", 9))
114 no_sched_irq_time
= 1;
118 __setup("tsc=", tsc_setup
);
120 #define MAX_RETRIES 5
121 #define SMI_TRESHOLD 50000
124 * Read TSC and the reference counters. Take care of SMI disturbance
126 static u64
tsc_read_refs(u64
*p
, int hpet
)
131 for (i
= 0; i
< MAX_RETRIES
; i
++) {
134 *p
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
136 *p
= acpi_pm_read_early();
138 if ((t2
- t1
) < SMI_TRESHOLD
)
145 * Calculate the TSC frequency from HPET reference
147 static unsigned long calc_hpet_ref(u64 deltatsc
, u64 hpet1
, u64 hpet2
)
152 hpet2
+= 0x100000000ULL
;
154 tmp
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
155 do_div(tmp
, 1000000);
156 do_div(deltatsc
, tmp
);
158 return (unsigned long) deltatsc
;
162 * Calculate the TSC frequency from PMTimer reference
164 static unsigned long calc_pmtimer_ref(u64 deltatsc
, u64 pm1
, u64 pm2
)
172 pm2
+= (u64
)ACPI_PM_OVRRUN
;
174 tmp
= pm2
* 1000000000LL;
175 do_div(tmp
, PMTMR_TICKS_PER_SEC
);
176 do_div(deltatsc
, tmp
);
178 return (unsigned long) deltatsc
;
182 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
183 #define CAL_PIT_LOOPS 1000
186 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
187 #define CAL2_PIT_LOOPS 5000
191 * Try to calibrate the TSC against the Programmable
192 * Interrupt Timer and return the frequency of the TSC
195 * Return ULONG_MAX on failure to calibrate.
197 static unsigned long pit_calibrate_tsc(u32 latch
, unsigned long ms
, int loopmin
)
199 u64 tsc
, t1
, t2
, delta
;
200 unsigned long tscmin
, tscmax
;
203 /* Set the Gate high, disable speaker */
204 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
207 * Setup CTC channel 2* for mode 0, (interrupt on terminal
208 * count mode), binary count. Set the latch register to 50ms
209 * (LSB then MSB) to begin countdown.
212 outb(latch
& 0xff, 0x42);
213 outb(latch
>> 8, 0x42);
215 tsc
= t1
= t2
= get_cycles();
220 while ((inb(0x61) & 0x20) == 0) {
224 if ((unsigned long) delta
< tscmin
)
225 tscmin
= (unsigned int) delta
;
226 if ((unsigned long) delta
> tscmax
)
227 tscmax
= (unsigned int) delta
;
234 * If we were not able to read the PIT more than loopmin
235 * times, then we have been hit by a massive SMI
237 * If the maximum is 10 times larger than the minimum,
238 * then we got hit by an SMI as well.
240 if (pitcnt
< loopmin
|| tscmax
> 10 * tscmin
)
243 /* Calculate the PIT value */
250 * This reads the current MSB of the PIT counter, and
251 * checks if we are running on sufficiently fast and
252 * non-virtualized hardware.
254 * Our expectations are:
256 * - the PIT is running at roughly 1.19MHz
258 * - each IO is going to take about 1us on real hardware,
259 * but we allow it to be much faster (by a factor of 10) or
260 * _slightly_ slower (ie we allow up to a 2us read+counter
261 * update - anything else implies a unacceptably slow CPU
262 * or PIT for the fast calibration to work.
264 * - with 256 PIT ticks to read the value, we have 214us to
265 * see the same MSB (and overhead like doing a single TSC
266 * read per MSB value etc).
268 * - We're doing 2 reads per loop (LSB, MSB), and we expect
269 * them each to take about a microsecond on real hardware.
270 * So we expect a count value of around 100. But we'll be
271 * generous, and accept anything over 50.
273 * - if the PIT is stuck, and we see *many* more reads, we
274 * return early (and the next caller of pit_expect_msb()
275 * then consider it a failure when they don't see the
276 * next expected value).
278 * These expectations mean that we know that we have seen the
279 * transition from one expected value to another with a fairly
280 * high accuracy, and we didn't miss any events. We can thus
281 * use the TSC value at the transitions to calculate a pretty
282 * good value for the TSC frequencty.
284 static inline int pit_verify_msb(unsigned char val
)
288 return inb(0x42) == val
;
291 static inline int pit_expect_msb(unsigned char val
, u64
*tscp
, unsigned long *deltap
)
294 u64 tsc
= 0, prev_tsc
= 0;
296 for (count
= 0; count
< 50000; count
++) {
297 if (!pit_verify_msb(val
))
302 *deltap
= get_cycles() - prev_tsc
;
306 * We require _some_ success, but the quality control
307 * will be based on the error terms on the TSC values.
313 * How many MSB values do we want to see? We aim for
314 * a maximum error rate of 500ppm (in practice the
315 * real error is much smaller), but refuse to spend
316 * more than 50ms on it.
318 #define MAX_QUICK_PIT_MS 50
319 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
321 static unsigned long quick_pit_calibrate(void)
325 unsigned long d1
, d2
;
327 /* Set the Gate high, disable speaker */
328 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
331 * Counter 2, mode 0 (one-shot), binary count
333 * NOTE! Mode 2 decrements by two (and then the
334 * output is flipped each time, giving the same
335 * final output frequency as a decrement-by-one),
336 * so mode 0 is much better when looking at the
341 /* Start at 0xffff */
346 * The PIT starts counting at the next edge, so we
347 * need to delay for a microsecond. The easiest way
348 * to do that is to just read back the 16-bit counter
353 if (pit_expect_msb(0xff, &tsc
, &d1
)) {
354 for (i
= 1; i
<= MAX_QUICK_PIT_ITERATIONS
; i
++) {
355 if (!pit_expect_msb(0xff-i
, &delta
, &d2
))
359 * Iterate until the error is less than 500 ppm
362 if (d1
+d2
>= delta
>> 11)
366 * Check the PIT one more time to verify that
367 * all TSC reads were stable wrt the PIT.
369 * This also guarantees serialization of the
370 * last cycle read ('d2') in pit_expect_msb.
372 if (!pit_verify_msb(0xfe - i
))
377 pr_err("Fast TSC calibration failed\n");
382 * Ok, if we get here, then we've seen the
383 * MSB of the PIT decrement 'i' times, and the
384 * error has shrunk to less than 500 ppm.
386 * As a result, we can depend on there not being
387 * any odd delays anywhere, and the TSC reads are
388 * reliable (within the error).
390 * kHz = ticks / time-in-seconds / 1000;
391 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
392 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
394 delta
*= PIT_TICK_RATE
;
395 do_div(delta
, i
*256*1000);
396 pr_info("Fast TSC calibration using PIT\n");
401 * native_calibrate_tsc - calibrate the tsc on boot
403 unsigned long native_calibrate_tsc(void)
405 u64 tsc1
, tsc2
, delta
, ref1
, ref2
;
406 unsigned long tsc_pit_min
= ULONG_MAX
, tsc_ref_min
= ULONG_MAX
;
407 unsigned long flags
, latch
, ms
, fast_calibrate
;
408 int hpet
= is_hpet_enabled(), i
, loopmin
;
410 local_irq_save(flags
);
411 fast_calibrate
= quick_pit_calibrate();
412 local_irq_restore(flags
);
414 return fast_calibrate
;
417 * Run 5 calibration loops to get the lowest frequency value
418 * (the best estimate). We use two different calibration modes
421 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
422 * load a timeout of 50ms. We read the time right after we
423 * started the timer and wait until the PIT count down reaches
424 * zero. In each wait loop iteration we read the TSC and check
425 * the delta to the previous read. We keep track of the min
426 * and max values of that delta. The delta is mostly defined
427 * by the IO time of the PIT access, so we can detect when a
428 * SMI/SMM disturbance happened between the two reads. If the
429 * maximum time is significantly larger than the minimum time,
430 * then we discard the result and have another try.
432 * 2) Reference counter. If available we use the HPET or the
433 * PMTIMER as a reference to check the sanity of that value.
434 * We use separate TSC readouts and check inside of the
435 * reference read for a SMI/SMM disturbance. We dicard
436 * disturbed values here as well. We do that around the PIT
437 * calibration delay loop as we have to wait for a certain
438 * amount of time anyway.
441 /* Preset PIT loop values */
444 loopmin
= CAL_PIT_LOOPS
;
446 for (i
= 0; i
< 3; i
++) {
447 unsigned long tsc_pit_khz
;
450 * Read the start value and the reference count of
451 * hpet/pmtimer when available. Then do the PIT
452 * calibration, which will take at least 50ms, and
453 * read the end value.
455 local_irq_save(flags
);
456 tsc1
= tsc_read_refs(&ref1
, hpet
);
457 tsc_pit_khz
= pit_calibrate_tsc(latch
, ms
, loopmin
);
458 tsc2
= tsc_read_refs(&ref2
, hpet
);
459 local_irq_restore(flags
);
461 /* Pick the lowest PIT TSC calibration so far */
462 tsc_pit_min
= min(tsc_pit_min
, tsc_pit_khz
);
464 /* hpet or pmtimer available ? */
468 /* Check, whether the sampling was disturbed by an SMI */
469 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
)
472 tsc2
= (tsc2
- tsc1
) * 1000000LL;
474 tsc2
= calc_hpet_ref(tsc2
, ref1
, ref2
);
476 tsc2
= calc_pmtimer_ref(tsc2
, ref1
, ref2
);
478 tsc_ref_min
= min(tsc_ref_min
, (unsigned long) tsc2
);
480 /* Check the reference deviation */
481 delta
= ((u64
) tsc_pit_min
) * 100;
482 do_div(delta
, tsc_ref_min
);
485 * If both calibration results are inside a 10% window
486 * then we can be sure, that the calibration
487 * succeeded. We break out of the loop right away. We
488 * use the reference value, as it is more precise.
490 if (delta
>= 90 && delta
<= 110) {
491 pr_info("PIT calibration matches %s. %d loops\n",
492 hpet
? "HPET" : "PMTIMER", i
+ 1);
497 * Check whether PIT failed more than once. This
498 * happens in virtualized environments. We need to
499 * give the virtual PC a slightly longer timeframe for
500 * the HPET/PMTIMER to make the result precise.
502 if (i
== 1 && tsc_pit_min
== ULONG_MAX
) {
505 loopmin
= CAL2_PIT_LOOPS
;
510 * Now check the results.
512 if (tsc_pit_min
== ULONG_MAX
) {
513 /* PIT gave no useful value */
514 pr_warn("Unable to calibrate against PIT\n");
516 /* We don't have an alternative source, disable TSC */
517 if (!hpet
&& !ref1
&& !ref2
) {
518 pr_notice("No reference (HPET/PMTIMER) available\n");
522 /* The alternative source failed as well, disable TSC */
523 if (tsc_ref_min
== ULONG_MAX
) {
524 pr_warn("HPET/PMTIMER calibration failed\n");
528 /* Use the alternative source */
529 pr_info("using %s reference calibration\n",
530 hpet
? "HPET" : "PMTIMER");
535 /* We don't have an alternative source, use the PIT calibration value */
536 if (!hpet
&& !ref1
&& !ref2
) {
537 pr_info("Using PIT calibration value\n");
541 /* The alternative source failed, use the PIT calibration value */
542 if (tsc_ref_min
== ULONG_MAX
) {
543 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
548 * The calibration values differ too much. In doubt, we use
549 * the PIT value as we know that there are PMTIMERs around
550 * running at double speed. At least we let the user know:
552 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
553 hpet
? "HPET" : "PMTIMER", tsc_pit_min
, tsc_ref_min
);
554 pr_info("Using PIT calibration value\n");
558 int recalibrate_cpu_khz(void)
561 unsigned long cpu_khz_old
= cpu_khz
;
564 tsc_khz
= x86_platform
.calibrate_tsc();
566 cpu_data(0).loops_per_jiffy
=
567 cpufreq_scale(cpu_data(0).loops_per_jiffy
,
568 cpu_khz_old
, cpu_khz
);
577 EXPORT_SYMBOL(recalibrate_cpu_khz
);
580 /* Accelerators for sched_clock()
581 * convert from cycles(64bits) => nanoseconds (64bits)
583 * ns = cycles / (freq / ns_per_sec)
584 * ns = cycles * (ns_per_sec / freq)
585 * ns = cycles * (10^9 / (cpu_khz * 10^3))
586 * ns = cycles * (10^6 / cpu_khz)
588 * Then we use scaling math (suggested by george@mvista.com) to get:
589 * ns = cycles * (10^6 * SC / cpu_khz) / SC
590 * ns = cycles * cyc2ns_scale / SC
592 * And since SC is a constant power of two, we can convert the div
595 * We can use khz divisor instead of mhz to keep a better precision, since
596 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
597 * (mathieu.desnoyers@polymtl.ca)
599 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
602 DEFINE_PER_CPU(unsigned long, cyc2ns
);
603 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset
);
605 static void set_cyc2ns_scale(unsigned long cpu_khz
, int cpu
)
607 unsigned long long tsc_now
, ns_now
, *offset
;
608 unsigned long flags
, *scale
;
610 local_irq_save(flags
);
611 sched_clock_idle_sleep_event();
613 scale
= &per_cpu(cyc2ns
, cpu
);
614 offset
= &per_cpu(cyc2ns_offset
, cpu
);
617 ns_now
= __cycles_2_ns(tsc_now
);
620 *scale
= (NSEC_PER_MSEC
<< CYC2NS_SCALE_FACTOR
)/cpu_khz
;
621 *offset
= ns_now
- mult_frac(tsc_now
, *scale
,
622 (1UL << CYC2NS_SCALE_FACTOR
));
625 sched_clock_idle_wakeup_event(0);
626 local_irq_restore(flags
);
629 static unsigned long long cyc2ns_suspend
;
631 void tsc_save_sched_clock_state(void)
633 if (!sched_clock_stable
)
636 cyc2ns_suspend
= sched_clock();
640 * Even on processors with invariant TSC, TSC gets reset in some the
641 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
642 * arbitrary value (still sync'd across cpu's) during resume from such sleep
643 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
644 * that sched_clock() continues from the point where it was left off during
647 void tsc_restore_sched_clock_state(void)
649 unsigned long long offset
;
653 if (!sched_clock_stable
)
656 local_irq_save(flags
);
658 __this_cpu_write(cyc2ns_offset
, 0);
659 offset
= cyc2ns_suspend
- sched_clock();
661 for_each_possible_cpu(cpu
)
662 per_cpu(cyc2ns_offset
, cpu
) = offset
;
664 local_irq_restore(flags
);
667 #ifdef CONFIG_CPU_FREQ
669 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
672 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
673 * not that important because current Opteron setups do not support
674 * scaling on SMP anyroads.
676 * Should fix up last_tsc too. Currently gettimeofday in the
677 * first tick after the change will be slightly wrong.
680 static unsigned int ref_freq
;
681 static unsigned long loops_per_jiffy_ref
;
682 static unsigned long tsc_khz_ref
;
684 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
687 struct cpufreq_freqs
*freq
= data
;
690 if (cpu_has(&cpu_data(freq
->cpu
), X86_FEATURE_CONSTANT_TSC
))
693 lpj
= &boot_cpu_data
.loops_per_jiffy
;
695 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
696 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
700 ref_freq
= freq
->old
;
701 loops_per_jiffy_ref
= *lpj
;
702 tsc_khz_ref
= tsc_khz
;
704 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
705 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
706 (val
== CPUFREQ_RESUMECHANGE
)) {
707 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
709 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
710 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
711 mark_tsc_unstable("cpufreq changes");
714 set_cyc2ns_scale(tsc_khz
, freq
->cpu
);
719 static struct notifier_block time_cpufreq_notifier_block
= {
720 .notifier_call
= time_cpufreq_notifier
723 static int __init
cpufreq_tsc(void)
727 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
729 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
730 CPUFREQ_TRANSITION_NOTIFIER
);
734 core_initcall(cpufreq_tsc
);
736 #endif /* CONFIG_CPU_FREQ */
738 /* clocksource code */
740 static struct clocksource clocksource_tsc
;
743 * We compare the TSC to the cycle_last value in the clocksource
744 * structure to avoid a nasty time-warp. This can be observed in a
745 * very small window right after one CPU updated cycle_last under
746 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
747 * is smaller than the cycle_last reference value due to a TSC which
748 * is slighty behind. This delta is nowhere else observable, but in
749 * that case it results in a forward time jump in the range of hours
750 * due to the unsigned delta calculation of the time keeping core
751 * code, which is necessary to support wrapping clocksources like pm
754 static cycle_t
read_tsc(struct clocksource
*cs
)
756 cycle_t ret
= (cycle_t
)get_cycles();
758 return ret
>= clocksource_tsc
.cycle_last
?
759 ret
: clocksource_tsc
.cycle_last
;
762 static void resume_tsc(struct clocksource
*cs
)
764 clocksource_tsc
.cycle_last
= 0;
767 static struct clocksource clocksource_tsc
= {
771 .resume
= resume_tsc
,
772 .mask
= CLOCKSOURCE_MASK(64),
773 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
774 CLOCK_SOURCE_MUST_VERIFY
,
776 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
780 void mark_tsc_unstable(char *reason
)
784 sched_clock_stable
= 0;
785 disable_sched_clock_irqtime();
786 pr_info("Marking TSC unstable due to %s\n", reason
);
787 /* Change only the rating, when not registered */
788 if (clocksource_tsc
.mult
)
789 clocksource_mark_unstable(&clocksource_tsc
);
791 clocksource_tsc
.flags
|= CLOCK_SOURCE_UNSTABLE
;
792 clocksource_tsc
.rating
= 0;
797 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
799 static void __init
check_system_tsc_reliable(void)
801 #ifdef CONFIG_MGEODE_LX
802 /* RTSC counts during suspend */
803 #define RTSC_SUSP 0x100
804 unsigned long res_low
, res_high
;
806 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
807 /* Geode_LX - the OLPC CPU has a very reliable TSC */
808 if (res_low
& RTSC_SUSP
)
809 tsc_clocksource_reliable
= 1;
811 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
))
812 tsc_clocksource_reliable
= 1;
816 * Make an educated guess if the TSC is trustworthy and synchronized
819 __cpuinit
int unsynchronized_tsc(void)
821 if (!cpu_has_tsc
|| tsc_unstable
)
825 if (apic_is_clustered_box())
829 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
832 if (tsc_clocksource_reliable
)
835 * Intel systems are normally all synchronized.
836 * Exceptions must mark TSC as unstable:
838 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
839 /* assume multi socket systems are not synchronized: */
840 if (num_possible_cpus() > 1)
848 static void tsc_refine_calibration_work(struct work_struct
*work
);
849 static DECLARE_DELAYED_WORK(tsc_irqwork
, tsc_refine_calibration_work
);
851 * tsc_refine_calibration_work - Further refine tsc freq calibration
854 * This functions uses delayed work over a period of a
855 * second to further refine the TSC freq value. Since this is
856 * timer based, instead of loop based, we don't block the boot
857 * process while this longer calibration is done.
859 * If there are any calibration anomalies (too many SMIs, etc),
860 * or the refined calibration is off by 1% of the fast early
861 * calibration, we throw out the new calibration and use the
864 static void tsc_refine_calibration_work(struct work_struct
*work
)
866 static u64 tsc_start
= -1, ref_start
;
868 u64 tsc_stop
, ref_stop
, delta
;
871 /* Don't bother refining TSC on unstable systems */
872 if (check_tsc_unstable())
876 * Since the work is started early in boot, we may be
877 * delayed the first time we expire. So set the workqueue
878 * again once we know timers are working.
880 if (tsc_start
== -1) {
882 * Only set hpet once, to avoid mixing hardware
883 * if the hpet becomes enabled later.
885 hpet
= is_hpet_enabled();
886 schedule_delayed_work(&tsc_irqwork
, HZ
);
887 tsc_start
= tsc_read_refs(&ref_start
, hpet
);
891 tsc_stop
= tsc_read_refs(&ref_stop
, hpet
);
893 /* hpet or pmtimer available ? */
894 if (ref_start
== ref_stop
)
897 /* Check, whether the sampling was disturbed by an SMI */
898 if (tsc_start
== ULLONG_MAX
|| tsc_stop
== ULLONG_MAX
)
901 delta
= tsc_stop
- tsc_start
;
904 freq
= calc_hpet_ref(delta
, ref_start
, ref_stop
);
906 freq
= calc_pmtimer_ref(delta
, ref_start
, ref_stop
);
908 /* Make sure we're within 1% */
909 if (abs(tsc_khz
- freq
) > tsc_khz
/100)
913 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
914 (unsigned long)tsc_khz
/ 1000,
915 (unsigned long)tsc_khz
% 1000);
918 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
922 static int __init
init_tsc_clocksource(void)
924 if (!cpu_has_tsc
|| tsc_disabled
> 0 || !tsc_khz
)
927 if (tsc_clocksource_reliable
)
928 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
929 /* lower the rating if we already know its unstable: */
930 if (check_tsc_unstable()) {
931 clocksource_tsc
.rating
= 0;
932 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_IS_CONTINUOUS
;
936 * Trust the results of the earlier calibration on systems
937 * exporting a reliable TSC.
939 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
)) {
940 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
944 schedule_delayed_work(&tsc_irqwork
, 0);
948 * We use device_initcall here, to ensure we run after the hpet
949 * is fully initialized, which may occur at fs_initcall time.
951 device_initcall(init_tsc_clocksource
);
953 void __init
tsc_init(void)
958 x86_init
.timers
.tsc_pre_init();
963 tsc_khz
= x86_platform
.calibrate_tsc();
967 mark_tsc_unstable("could not calculate TSC khz");
971 pr_info("Detected %lu.%03lu MHz processor\n",
972 (unsigned long)cpu_khz
/ 1000,
973 (unsigned long)cpu_khz
% 1000);
976 * Secondary CPUs do not run through tsc_init(), so set up
977 * all the scale factors for all CPUs, assuming the same
978 * speed as the bootup CPU. (cpufreq notifiers will fix this
979 * up if their speed diverges)
981 for_each_possible_cpu(cpu
)
982 set_cyc2ns_scale(cpu_khz
, cpu
);
984 if (tsc_disabled
> 0)
987 /* now allow native_sched_clock() to use rdtsc */
990 if (!no_sched_irq_time
)
991 enable_sched_clock_irqtime();
993 lpj
= ((u64
)tsc_khz
* 1000);
999 if (unsynchronized_tsc())
1000 mark_tsc_unstable("TSCs unsynchronized");
1002 check_system_tsc_reliable();
1007 * If we have a constant TSC and are using the TSC for the delay loop,
1008 * we can skip clock calibration if another cpu in the same socket has already
1009 * been calibrated. This assumes that CONSTANT_TSC applies to all
1010 * cpus in the socket - this should be a safe assumption.
1012 unsigned long __cpuinit
calibrate_delay_is_known(void)
1014 int i
, cpu
= smp_processor_id();
1016 if (!tsc_disabled
&& !cpu_has(&cpu_data(cpu
), X86_FEATURE_CONSTANT_TSC
))
1019 for_each_online_cpu(i
)
1020 if (cpu_data(i
).phys_proc_id
== cpu_data(cpu
).phys_proc_id
)
1021 return cpu_data(i
).loops_per_jiffy
;