ARM: mmp: fix potential NULL dereference
[linux/fpc-iii.git] / arch / x86 / kernel / tsc.c
blobcfa5d4f7ca56c06934c8b8bfa6e9815fe8e606b4
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
15 #include <asm/hpet.h>
16 #include <asm/timer.h>
17 #include <asm/vgtod.h>
18 #include <asm/time.h>
19 #include <asm/delay.h>
20 #include <asm/hypervisor.h>
21 #include <asm/nmi.h>
22 #include <asm/x86_init.h>
24 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
25 EXPORT_SYMBOL(cpu_khz);
27 unsigned int __read_mostly tsc_khz;
28 EXPORT_SYMBOL(tsc_khz);
31 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 static int __read_mostly tsc_unstable;
35 /* native_sched_clock() is called before tsc_init(), so
36 we must start with the TSC soft disabled to prevent
37 erroneous rdtsc usage on !cpu_has_tsc processors */
38 static int __read_mostly tsc_disabled = -1;
40 int tsc_clocksource_reliable;
42 * Scheduler clock - returns current time in nanosec units.
44 u64 native_sched_clock(void)
46 u64 this_offset;
49 * Fall back to jiffies if there's no TSC available:
50 * ( But note that we still use it if the TSC is marked
51 * unstable. We do this because unlike Time Of Day,
52 * the scheduler clock tolerates small errors and it's
53 * very important for it to be as fast as the platform
54 * can achieve it. )
56 if (unlikely(tsc_disabled)) {
57 /* No locking but a rare wrong value is not a big deal: */
58 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
61 /* read the Time Stamp Counter: */
62 rdtscll(this_offset);
64 /* return the value in ns */
65 return __cycles_2_ns(this_offset);
68 /* We need to define a real function for sched_clock, to override the
69 weak default version */
70 #ifdef CONFIG_PARAVIRT
71 unsigned long long sched_clock(void)
73 return paravirt_sched_clock();
75 #else
76 unsigned long long
77 sched_clock(void) __attribute__((alias("native_sched_clock")));
78 #endif
80 int check_tsc_unstable(void)
82 return tsc_unstable;
84 EXPORT_SYMBOL_GPL(check_tsc_unstable);
86 #ifdef CONFIG_X86_TSC
87 int __init notsc_setup(char *str)
89 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
90 tsc_disabled = 1;
91 return 1;
93 #else
95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
96 * in cpu/common.c
98 int __init notsc_setup(char *str)
100 setup_clear_cpu_cap(X86_FEATURE_TSC);
101 return 1;
103 #endif
105 __setup("notsc", notsc_setup);
107 static int no_sched_irq_time;
109 static int __init tsc_setup(char *str)
111 if (!strcmp(str, "reliable"))
112 tsc_clocksource_reliable = 1;
113 if (!strncmp(str, "noirqtime", 9))
114 no_sched_irq_time = 1;
115 return 1;
118 __setup("tsc=", tsc_setup);
120 #define MAX_RETRIES 5
121 #define SMI_TRESHOLD 50000
124 * Read TSC and the reference counters. Take care of SMI disturbance
126 static u64 tsc_read_refs(u64 *p, int hpet)
128 u64 t1, t2;
129 int i;
131 for (i = 0; i < MAX_RETRIES; i++) {
132 t1 = get_cycles();
133 if (hpet)
134 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
135 else
136 *p = acpi_pm_read_early();
137 t2 = get_cycles();
138 if ((t2 - t1) < SMI_TRESHOLD)
139 return t2;
141 return ULLONG_MAX;
145 * Calculate the TSC frequency from HPET reference
147 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
149 u64 tmp;
151 if (hpet2 < hpet1)
152 hpet2 += 0x100000000ULL;
153 hpet2 -= hpet1;
154 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
155 do_div(tmp, 1000000);
156 do_div(deltatsc, tmp);
158 return (unsigned long) deltatsc;
162 * Calculate the TSC frequency from PMTimer reference
164 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
166 u64 tmp;
168 if (!pm1 && !pm2)
169 return ULONG_MAX;
171 if (pm2 < pm1)
172 pm2 += (u64)ACPI_PM_OVRRUN;
173 pm2 -= pm1;
174 tmp = pm2 * 1000000000LL;
175 do_div(tmp, PMTMR_TICKS_PER_SEC);
176 do_div(deltatsc, tmp);
178 return (unsigned long) deltatsc;
181 #define CAL_MS 10
182 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
183 #define CAL_PIT_LOOPS 1000
185 #define CAL2_MS 50
186 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
187 #define CAL2_PIT_LOOPS 5000
191 * Try to calibrate the TSC against the Programmable
192 * Interrupt Timer and return the frequency of the TSC
193 * in kHz.
195 * Return ULONG_MAX on failure to calibrate.
197 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
199 u64 tsc, t1, t2, delta;
200 unsigned long tscmin, tscmax;
201 int pitcnt;
203 /* Set the Gate high, disable speaker */
204 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
207 * Setup CTC channel 2* for mode 0, (interrupt on terminal
208 * count mode), binary count. Set the latch register to 50ms
209 * (LSB then MSB) to begin countdown.
211 outb(0xb0, 0x43);
212 outb(latch & 0xff, 0x42);
213 outb(latch >> 8, 0x42);
215 tsc = t1 = t2 = get_cycles();
217 pitcnt = 0;
218 tscmax = 0;
219 tscmin = ULONG_MAX;
220 while ((inb(0x61) & 0x20) == 0) {
221 t2 = get_cycles();
222 delta = t2 - tsc;
223 tsc = t2;
224 if ((unsigned long) delta < tscmin)
225 tscmin = (unsigned int) delta;
226 if ((unsigned long) delta > tscmax)
227 tscmax = (unsigned int) delta;
228 pitcnt++;
232 * Sanity checks:
234 * If we were not able to read the PIT more than loopmin
235 * times, then we have been hit by a massive SMI
237 * If the maximum is 10 times larger than the minimum,
238 * then we got hit by an SMI as well.
240 if (pitcnt < loopmin || tscmax > 10 * tscmin)
241 return ULONG_MAX;
243 /* Calculate the PIT value */
244 delta = t2 - t1;
245 do_div(delta, ms);
246 return delta;
250 * This reads the current MSB of the PIT counter, and
251 * checks if we are running on sufficiently fast and
252 * non-virtualized hardware.
254 * Our expectations are:
256 * - the PIT is running at roughly 1.19MHz
258 * - each IO is going to take about 1us on real hardware,
259 * but we allow it to be much faster (by a factor of 10) or
260 * _slightly_ slower (ie we allow up to a 2us read+counter
261 * update - anything else implies a unacceptably slow CPU
262 * or PIT for the fast calibration to work.
264 * - with 256 PIT ticks to read the value, we have 214us to
265 * see the same MSB (and overhead like doing a single TSC
266 * read per MSB value etc).
268 * - We're doing 2 reads per loop (LSB, MSB), and we expect
269 * them each to take about a microsecond on real hardware.
270 * So we expect a count value of around 100. But we'll be
271 * generous, and accept anything over 50.
273 * - if the PIT is stuck, and we see *many* more reads, we
274 * return early (and the next caller of pit_expect_msb()
275 * then consider it a failure when they don't see the
276 * next expected value).
278 * These expectations mean that we know that we have seen the
279 * transition from one expected value to another with a fairly
280 * high accuracy, and we didn't miss any events. We can thus
281 * use the TSC value at the transitions to calculate a pretty
282 * good value for the TSC frequencty.
284 static inline int pit_verify_msb(unsigned char val)
286 /* Ignore LSB */
287 inb(0x42);
288 return inb(0x42) == val;
291 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
293 int count;
294 u64 tsc = 0, prev_tsc = 0;
296 for (count = 0; count < 50000; count++) {
297 if (!pit_verify_msb(val))
298 break;
299 prev_tsc = tsc;
300 tsc = get_cycles();
302 *deltap = get_cycles() - prev_tsc;
303 *tscp = tsc;
306 * We require _some_ success, but the quality control
307 * will be based on the error terms on the TSC values.
309 return count > 5;
313 * How many MSB values do we want to see? We aim for
314 * a maximum error rate of 500ppm (in practice the
315 * real error is much smaller), but refuse to spend
316 * more than 50ms on it.
318 #define MAX_QUICK_PIT_MS 50
319 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
321 static unsigned long quick_pit_calibrate(void)
323 int i;
324 u64 tsc, delta;
325 unsigned long d1, d2;
327 /* Set the Gate high, disable speaker */
328 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
331 * Counter 2, mode 0 (one-shot), binary count
333 * NOTE! Mode 2 decrements by two (and then the
334 * output is flipped each time, giving the same
335 * final output frequency as a decrement-by-one),
336 * so mode 0 is much better when looking at the
337 * individual counts.
339 outb(0xb0, 0x43);
341 /* Start at 0xffff */
342 outb(0xff, 0x42);
343 outb(0xff, 0x42);
346 * The PIT starts counting at the next edge, so we
347 * need to delay for a microsecond. The easiest way
348 * to do that is to just read back the 16-bit counter
349 * once from the PIT.
351 pit_verify_msb(0);
353 if (pit_expect_msb(0xff, &tsc, &d1)) {
354 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
355 if (!pit_expect_msb(0xff-i, &delta, &d2))
356 break;
359 * Iterate until the error is less than 500 ppm
361 delta -= tsc;
362 if (d1+d2 >= delta >> 11)
363 continue;
366 * Check the PIT one more time to verify that
367 * all TSC reads were stable wrt the PIT.
369 * This also guarantees serialization of the
370 * last cycle read ('d2') in pit_expect_msb.
372 if (!pit_verify_msb(0xfe - i))
373 break;
374 goto success;
377 pr_err("Fast TSC calibration failed\n");
378 return 0;
380 success:
382 * Ok, if we get here, then we've seen the
383 * MSB of the PIT decrement 'i' times, and the
384 * error has shrunk to less than 500 ppm.
386 * As a result, we can depend on there not being
387 * any odd delays anywhere, and the TSC reads are
388 * reliable (within the error).
390 * kHz = ticks / time-in-seconds / 1000;
391 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
392 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
394 delta *= PIT_TICK_RATE;
395 do_div(delta, i*256*1000);
396 pr_info("Fast TSC calibration using PIT\n");
397 return delta;
401 * native_calibrate_tsc - calibrate the tsc on boot
403 unsigned long native_calibrate_tsc(void)
405 u64 tsc1, tsc2, delta, ref1, ref2;
406 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
407 unsigned long flags, latch, ms, fast_calibrate;
408 int hpet = is_hpet_enabled(), i, loopmin;
410 local_irq_save(flags);
411 fast_calibrate = quick_pit_calibrate();
412 local_irq_restore(flags);
413 if (fast_calibrate)
414 return fast_calibrate;
417 * Run 5 calibration loops to get the lowest frequency value
418 * (the best estimate). We use two different calibration modes
419 * here:
421 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
422 * load a timeout of 50ms. We read the time right after we
423 * started the timer and wait until the PIT count down reaches
424 * zero. In each wait loop iteration we read the TSC and check
425 * the delta to the previous read. We keep track of the min
426 * and max values of that delta. The delta is mostly defined
427 * by the IO time of the PIT access, so we can detect when a
428 * SMI/SMM disturbance happened between the two reads. If the
429 * maximum time is significantly larger than the minimum time,
430 * then we discard the result and have another try.
432 * 2) Reference counter. If available we use the HPET or the
433 * PMTIMER as a reference to check the sanity of that value.
434 * We use separate TSC readouts and check inside of the
435 * reference read for a SMI/SMM disturbance. We dicard
436 * disturbed values here as well. We do that around the PIT
437 * calibration delay loop as we have to wait for a certain
438 * amount of time anyway.
441 /* Preset PIT loop values */
442 latch = CAL_LATCH;
443 ms = CAL_MS;
444 loopmin = CAL_PIT_LOOPS;
446 for (i = 0; i < 3; i++) {
447 unsigned long tsc_pit_khz;
450 * Read the start value and the reference count of
451 * hpet/pmtimer when available. Then do the PIT
452 * calibration, which will take at least 50ms, and
453 * read the end value.
455 local_irq_save(flags);
456 tsc1 = tsc_read_refs(&ref1, hpet);
457 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
458 tsc2 = tsc_read_refs(&ref2, hpet);
459 local_irq_restore(flags);
461 /* Pick the lowest PIT TSC calibration so far */
462 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
464 /* hpet or pmtimer available ? */
465 if (ref1 == ref2)
466 continue;
468 /* Check, whether the sampling was disturbed by an SMI */
469 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
470 continue;
472 tsc2 = (tsc2 - tsc1) * 1000000LL;
473 if (hpet)
474 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
475 else
476 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
478 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
480 /* Check the reference deviation */
481 delta = ((u64) tsc_pit_min) * 100;
482 do_div(delta, tsc_ref_min);
485 * If both calibration results are inside a 10% window
486 * then we can be sure, that the calibration
487 * succeeded. We break out of the loop right away. We
488 * use the reference value, as it is more precise.
490 if (delta >= 90 && delta <= 110) {
491 pr_info("PIT calibration matches %s. %d loops\n",
492 hpet ? "HPET" : "PMTIMER", i + 1);
493 return tsc_ref_min;
497 * Check whether PIT failed more than once. This
498 * happens in virtualized environments. We need to
499 * give the virtual PC a slightly longer timeframe for
500 * the HPET/PMTIMER to make the result precise.
502 if (i == 1 && tsc_pit_min == ULONG_MAX) {
503 latch = CAL2_LATCH;
504 ms = CAL2_MS;
505 loopmin = CAL2_PIT_LOOPS;
510 * Now check the results.
512 if (tsc_pit_min == ULONG_MAX) {
513 /* PIT gave no useful value */
514 pr_warn("Unable to calibrate against PIT\n");
516 /* We don't have an alternative source, disable TSC */
517 if (!hpet && !ref1 && !ref2) {
518 pr_notice("No reference (HPET/PMTIMER) available\n");
519 return 0;
522 /* The alternative source failed as well, disable TSC */
523 if (tsc_ref_min == ULONG_MAX) {
524 pr_warn("HPET/PMTIMER calibration failed\n");
525 return 0;
528 /* Use the alternative source */
529 pr_info("using %s reference calibration\n",
530 hpet ? "HPET" : "PMTIMER");
532 return tsc_ref_min;
535 /* We don't have an alternative source, use the PIT calibration value */
536 if (!hpet && !ref1 && !ref2) {
537 pr_info("Using PIT calibration value\n");
538 return tsc_pit_min;
541 /* The alternative source failed, use the PIT calibration value */
542 if (tsc_ref_min == ULONG_MAX) {
543 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
544 return tsc_pit_min;
548 * The calibration values differ too much. In doubt, we use
549 * the PIT value as we know that there are PMTIMERs around
550 * running at double speed. At least we let the user know:
552 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
553 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
554 pr_info("Using PIT calibration value\n");
555 return tsc_pit_min;
558 int recalibrate_cpu_khz(void)
560 #ifndef CONFIG_SMP
561 unsigned long cpu_khz_old = cpu_khz;
563 if (cpu_has_tsc) {
564 tsc_khz = x86_platform.calibrate_tsc();
565 cpu_khz = tsc_khz;
566 cpu_data(0).loops_per_jiffy =
567 cpufreq_scale(cpu_data(0).loops_per_jiffy,
568 cpu_khz_old, cpu_khz);
569 return 0;
570 } else
571 return -ENODEV;
572 #else
573 return -ENODEV;
574 #endif
577 EXPORT_SYMBOL(recalibrate_cpu_khz);
580 /* Accelerators for sched_clock()
581 * convert from cycles(64bits) => nanoseconds (64bits)
582 * basic equation:
583 * ns = cycles / (freq / ns_per_sec)
584 * ns = cycles * (ns_per_sec / freq)
585 * ns = cycles * (10^9 / (cpu_khz * 10^3))
586 * ns = cycles * (10^6 / cpu_khz)
588 * Then we use scaling math (suggested by george@mvista.com) to get:
589 * ns = cycles * (10^6 * SC / cpu_khz) / SC
590 * ns = cycles * cyc2ns_scale / SC
592 * And since SC is a constant power of two, we can convert the div
593 * into a shift.
595 * We can use khz divisor instead of mhz to keep a better precision, since
596 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
597 * (mathieu.desnoyers@polymtl.ca)
599 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
602 DEFINE_PER_CPU(unsigned long, cyc2ns);
603 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
605 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
607 unsigned long long tsc_now, ns_now, *offset;
608 unsigned long flags, *scale;
610 local_irq_save(flags);
611 sched_clock_idle_sleep_event();
613 scale = &per_cpu(cyc2ns, cpu);
614 offset = &per_cpu(cyc2ns_offset, cpu);
616 rdtscll(tsc_now);
617 ns_now = __cycles_2_ns(tsc_now);
619 if (cpu_khz) {
620 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
621 *offset = ns_now - mult_frac(tsc_now, *scale,
622 (1UL << CYC2NS_SCALE_FACTOR));
625 sched_clock_idle_wakeup_event(0);
626 local_irq_restore(flags);
629 static unsigned long long cyc2ns_suspend;
631 void tsc_save_sched_clock_state(void)
633 if (!sched_clock_stable)
634 return;
636 cyc2ns_suspend = sched_clock();
640 * Even on processors with invariant TSC, TSC gets reset in some the
641 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
642 * arbitrary value (still sync'd across cpu's) during resume from such sleep
643 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
644 * that sched_clock() continues from the point where it was left off during
645 * suspend.
647 void tsc_restore_sched_clock_state(void)
649 unsigned long long offset;
650 unsigned long flags;
651 int cpu;
653 if (!sched_clock_stable)
654 return;
656 local_irq_save(flags);
658 __this_cpu_write(cyc2ns_offset, 0);
659 offset = cyc2ns_suspend - sched_clock();
661 for_each_possible_cpu(cpu)
662 per_cpu(cyc2ns_offset, cpu) = offset;
664 local_irq_restore(flags);
667 #ifdef CONFIG_CPU_FREQ
669 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
670 * changes.
672 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
673 * not that important because current Opteron setups do not support
674 * scaling on SMP anyroads.
676 * Should fix up last_tsc too. Currently gettimeofday in the
677 * first tick after the change will be slightly wrong.
680 static unsigned int ref_freq;
681 static unsigned long loops_per_jiffy_ref;
682 static unsigned long tsc_khz_ref;
684 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
685 void *data)
687 struct cpufreq_freqs *freq = data;
688 unsigned long *lpj;
690 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
691 return 0;
693 lpj = &boot_cpu_data.loops_per_jiffy;
694 #ifdef CONFIG_SMP
695 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
696 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
697 #endif
699 if (!ref_freq) {
700 ref_freq = freq->old;
701 loops_per_jiffy_ref = *lpj;
702 tsc_khz_ref = tsc_khz;
704 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
705 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
706 (val == CPUFREQ_RESUMECHANGE)) {
707 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
709 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
710 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
711 mark_tsc_unstable("cpufreq changes");
714 set_cyc2ns_scale(tsc_khz, freq->cpu);
716 return 0;
719 static struct notifier_block time_cpufreq_notifier_block = {
720 .notifier_call = time_cpufreq_notifier
723 static int __init cpufreq_tsc(void)
725 if (!cpu_has_tsc)
726 return 0;
727 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
728 return 0;
729 cpufreq_register_notifier(&time_cpufreq_notifier_block,
730 CPUFREQ_TRANSITION_NOTIFIER);
731 return 0;
734 core_initcall(cpufreq_tsc);
736 #endif /* CONFIG_CPU_FREQ */
738 /* clocksource code */
740 static struct clocksource clocksource_tsc;
743 * We compare the TSC to the cycle_last value in the clocksource
744 * structure to avoid a nasty time-warp. This can be observed in a
745 * very small window right after one CPU updated cycle_last under
746 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
747 * is smaller than the cycle_last reference value due to a TSC which
748 * is slighty behind. This delta is nowhere else observable, but in
749 * that case it results in a forward time jump in the range of hours
750 * due to the unsigned delta calculation of the time keeping core
751 * code, which is necessary to support wrapping clocksources like pm
752 * timer.
754 static cycle_t read_tsc(struct clocksource *cs)
756 cycle_t ret = (cycle_t)get_cycles();
758 return ret >= clocksource_tsc.cycle_last ?
759 ret : clocksource_tsc.cycle_last;
762 static void resume_tsc(struct clocksource *cs)
764 clocksource_tsc.cycle_last = 0;
767 static struct clocksource clocksource_tsc = {
768 .name = "tsc",
769 .rating = 300,
770 .read = read_tsc,
771 .resume = resume_tsc,
772 .mask = CLOCKSOURCE_MASK(64),
773 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
774 CLOCK_SOURCE_MUST_VERIFY,
775 #ifdef CONFIG_X86_64
776 .archdata = { .vclock_mode = VCLOCK_TSC },
777 #endif
780 void mark_tsc_unstable(char *reason)
782 if (!tsc_unstable) {
783 tsc_unstable = 1;
784 sched_clock_stable = 0;
785 disable_sched_clock_irqtime();
786 pr_info("Marking TSC unstable due to %s\n", reason);
787 /* Change only the rating, when not registered */
788 if (clocksource_tsc.mult)
789 clocksource_mark_unstable(&clocksource_tsc);
790 else {
791 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
792 clocksource_tsc.rating = 0;
797 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
799 static void __init check_system_tsc_reliable(void)
801 #ifdef CONFIG_MGEODE_LX
802 /* RTSC counts during suspend */
803 #define RTSC_SUSP 0x100
804 unsigned long res_low, res_high;
806 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
807 /* Geode_LX - the OLPC CPU has a very reliable TSC */
808 if (res_low & RTSC_SUSP)
809 tsc_clocksource_reliable = 1;
810 #endif
811 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
812 tsc_clocksource_reliable = 1;
816 * Make an educated guess if the TSC is trustworthy and synchronized
817 * over all CPUs.
819 __cpuinit int unsynchronized_tsc(void)
821 if (!cpu_has_tsc || tsc_unstable)
822 return 1;
824 #ifdef CONFIG_SMP
825 if (apic_is_clustered_box())
826 return 1;
827 #endif
829 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
830 return 0;
832 if (tsc_clocksource_reliable)
833 return 0;
835 * Intel systems are normally all synchronized.
836 * Exceptions must mark TSC as unstable:
838 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
839 /* assume multi socket systems are not synchronized: */
840 if (num_possible_cpus() > 1)
841 return 1;
844 return 0;
848 static void tsc_refine_calibration_work(struct work_struct *work);
849 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
851 * tsc_refine_calibration_work - Further refine tsc freq calibration
852 * @work - ignored.
854 * This functions uses delayed work over a period of a
855 * second to further refine the TSC freq value. Since this is
856 * timer based, instead of loop based, we don't block the boot
857 * process while this longer calibration is done.
859 * If there are any calibration anomalies (too many SMIs, etc),
860 * or the refined calibration is off by 1% of the fast early
861 * calibration, we throw out the new calibration and use the
862 * early calibration.
864 static void tsc_refine_calibration_work(struct work_struct *work)
866 static u64 tsc_start = -1, ref_start;
867 static int hpet;
868 u64 tsc_stop, ref_stop, delta;
869 unsigned long freq;
871 /* Don't bother refining TSC on unstable systems */
872 if (check_tsc_unstable())
873 goto out;
876 * Since the work is started early in boot, we may be
877 * delayed the first time we expire. So set the workqueue
878 * again once we know timers are working.
880 if (tsc_start == -1) {
882 * Only set hpet once, to avoid mixing hardware
883 * if the hpet becomes enabled later.
885 hpet = is_hpet_enabled();
886 schedule_delayed_work(&tsc_irqwork, HZ);
887 tsc_start = tsc_read_refs(&ref_start, hpet);
888 return;
891 tsc_stop = tsc_read_refs(&ref_stop, hpet);
893 /* hpet or pmtimer available ? */
894 if (ref_start == ref_stop)
895 goto out;
897 /* Check, whether the sampling was disturbed by an SMI */
898 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
899 goto out;
901 delta = tsc_stop - tsc_start;
902 delta *= 1000000LL;
903 if (hpet)
904 freq = calc_hpet_ref(delta, ref_start, ref_stop);
905 else
906 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
908 /* Make sure we're within 1% */
909 if (abs(tsc_khz - freq) > tsc_khz/100)
910 goto out;
912 tsc_khz = freq;
913 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
914 (unsigned long)tsc_khz / 1000,
915 (unsigned long)tsc_khz % 1000);
917 out:
918 clocksource_register_khz(&clocksource_tsc, tsc_khz);
922 static int __init init_tsc_clocksource(void)
924 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
925 return 0;
927 if (tsc_clocksource_reliable)
928 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
929 /* lower the rating if we already know its unstable: */
930 if (check_tsc_unstable()) {
931 clocksource_tsc.rating = 0;
932 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
936 * Trust the results of the earlier calibration on systems
937 * exporting a reliable TSC.
939 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
940 clocksource_register_khz(&clocksource_tsc, tsc_khz);
941 return 0;
944 schedule_delayed_work(&tsc_irqwork, 0);
945 return 0;
948 * We use device_initcall here, to ensure we run after the hpet
949 * is fully initialized, which may occur at fs_initcall time.
951 device_initcall(init_tsc_clocksource);
953 void __init tsc_init(void)
955 u64 lpj;
956 int cpu;
958 x86_init.timers.tsc_pre_init();
960 if (!cpu_has_tsc)
961 return;
963 tsc_khz = x86_platform.calibrate_tsc();
964 cpu_khz = tsc_khz;
966 if (!tsc_khz) {
967 mark_tsc_unstable("could not calculate TSC khz");
968 return;
971 pr_info("Detected %lu.%03lu MHz processor\n",
972 (unsigned long)cpu_khz / 1000,
973 (unsigned long)cpu_khz % 1000);
976 * Secondary CPUs do not run through tsc_init(), so set up
977 * all the scale factors for all CPUs, assuming the same
978 * speed as the bootup CPU. (cpufreq notifiers will fix this
979 * up if their speed diverges)
981 for_each_possible_cpu(cpu)
982 set_cyc2ns_scale(cpu_khz, cpu);
984 if (tsc_disabled > 0)
985 return;
987 /* now allow native_sched_clock() to use rdtsc */
988 tsc_disabled = 0;
990 if (!no_sched_irq_time)
991 enable_sched_clock_irqtime();
993 lpj = ((u64)tsc_khz * 1000);
994 do_div(lpj, HZ);
995 lpj_fine = lpj;
997 use_tsc_delay();
999 if (unsynchronized_tsc())
1000 mark_tsc_unstable("TSCs unsynchronized");
1002 check_system_tsc_reliable();
1005 #ifdef CONFIG_SMP
1007 * If we have a constant TSC and are using the TSC for the delay loop,
1008 * we can skip clock calibration if another cpu in the same socket has already
1009 * been calibrated. This assumes that CONSTANT_TSC applies to all
1010 * cpus in the socket - this should be a safe assumption.
1012 unsigned long __cpuinit calibrate_delay_is_known(void)
1014 int i, cpu = smp_processor_id();
1016 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1017 return 0;
1019 for_each_online_cpu(i)
1020 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1021 return cpu_data(i).loops_per_jiffy;
1022 return 0;
1024 #endif