2 * SGI RTC clock/timer routines.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
31 #define RTC_NAME "sgi_rtc"
33 static cycle_t
uv_read_rtc(struct clocksource
*cs
);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device
*);
35 static void uv_rtc_timer_setup(enum clock_event_mode
,
36 struct clock_event_device
*);
38 static struct clocksource clocksource_uv
= {
42 .mask
= (cycle_t
)UVH_RTC_REAL_TIME_CLOCK_MASK
,
43 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
46 static struct clock_event_device clock_event_device_uv
= {
48 .features
= CLOCK_EVT_FEAT_ONESHOT
,
52 .set_next_event
= uv_rtc_next_event
,
53 .set_mode
= uv_rtc_timer_setup
,
54 .event_handler
= NULL
,
57 static DEFINE_PER_CPU(struct clock_event_device
, cpu_ced
);
59 /* There is one of these allocated per node */
60 struct uv_rtc_timer_head
{
62 /* next cpu waiting for timer, local node relative: */
64 /* number of cpus on this node: */
67 int lcpu
; /* systemwide logical cpu number */
68 u64 expires
; /* next timer expiration for this cpu */
73 * Access to uv_rtc_timer_head via blade id.
75 static struct uv_rtc_timer_head
**blade_info __read_mostly
;
77 static int uv_rtc_evt_enable
;
80 * Hardware interface routines
83 /* Send IPIs to another node */
84 static void uv_rtc_send_IPI(int cpu
)
86 unsigned long apicid
, val
;
89 apicid
= cpu_physical_id(cpu
);
90 pnode
= uv_apicid_to_pnode(apicid
);
91 apicid
|= uv_apicid_hibits
;
92 val
= (1UL << UVH_IPI_INT_SEND_SHFT
) |
93 (apicid
<< UVH_IPI_INT_APIC_ID_SHFT
) |
94 (X86_PLATFORM_IPI_VECTOR
<< UVH_IPI_INT_VECTOR_SHFT
);
96 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
99 /* Check for an RTC interrupt pending */
100 static int uv_intr_pending(int pnode
)
103 return uv_read_global_mmr64(pnode
, UVH_EVENT_OCCURRED0
) &
104 UV1H_EVENT_OCCURRED0_RTC1_MASK
;
106 return uv_read_global_mmr64(pnode
, UV2H_EVENT_OCCURRED2
) &
107 UV2H_EVENT_OCCURRED2_RTC_1_MASK
;
110 /* Setup interrupt and return non-zero if early expiration occurred. */
111 static int uv_setup_intr(int cpu
, u64 expires
)
114 unsigned long apicid
= cpu_physical_id(cpu
) | uv_apicid_hibits
;
115 int pnode
= uv_cpu_to_pnode(cpu
);
117 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
,
118 UVH_RTC1_INT_CONFIG_M_MASK
);
119 uv_write_global_mmr64(pnode
, UVH_INT_CMPB
, -1L);
122 uv_write_global_mmr64(pnode
, UVH_EVENT_OCCURRED0_ALIAS
,
123 UV1H_EVENT_OCCURRED0_RTC1_MASK
);
125 uv_write_global_mmr64(pnode
, UV2H_EVENT_OCCURRED2_ALIAS
,
126 UV2H_EVENT_OCCURRED2_RTC_1_MASK
);
128 val
= (X86_PLATFORM_IPI_VECTOR
<< UVH_RTC1_INT_CONFIG_VECTOR_SHFT
) |
129 ((u64
)apicid
<< UVH_RTC1_INT_CONFIG_APIC_ID_SHFT
);
131 /* Set configuration */
132 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
, val
);
133 /* Initialize comparator value */
134 uv_write_global_mmr64(pnode
, UVH_INT_CMPB
, expires
);
136 if (uv_read_rtc(NULL
) <= expires
)
139 return !uv_intr_pending(pnode
);
143 * Per-cpu timer tracking routines
146 static __init
void uv_rtc_deallocate_timers(void)
150 for_each_possible_blade(bid
) {
151 kfree(blade_info
[bid
]);
156 /* Allocate per-node list of cpu timer expiration times. */
157 static __init
int uv_rtc_allocate_timers(void)
161 blade_info
= kmalloc(uv_possible_blades
* sizeof(void *), GFP_KERNEL
);
164 memset(blade_info
, 0, uv_possible_blades
* sizeof(void *));
166 for_each_present_cpu(cpu
) {
167 int nid
= cpu_to_node(cpu
);
168 int bid
= uv_cpu_to_blade_id(cpu
);
169 int bcpu
= uv_cpu_hub_info(cpu
)->blade_processor_id
;
170 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
173 head
= kmalloc_node(sizeof(struct uv_rtc_timer_head
) +
174 (uv_blade_nr_possible_cpus(bid
) *
178 uv_rtc_deallocate_timers();
181 spin_lock_init(&head
->lock
);
182 head
->ncpus
= uv_blade_nr_possible_cpus(bid
);
184 blade_info
[bid
] = head
;
187 head
->cpu
[bcpu
].lcpu
= cpu
;
188 head
->cpu
[bcpu
].expires
= ULLONG_MAX
;
194 /* Find and set the next expiring timer. */
195 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head
*head
, int pnode
)
197 u64 lowest
= ULLONG_MAX
;
201 for (c
= 0; c
< head
->ncpus
; c
++) {
202 u64 exp
= head
->cpu
[c
].expires
;
209 head
->next_cpu
= bcpu
;
210 c
= head
->cpu
[bcpu
].lcpu
;
211 if (uv_setup_intr(c
, lowest
))
212 /* If we didn't set it up in time, trigger */
215 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
,
216 UVH_RTC1_INT_CONFIG_M_MASK
);
221 * Set expiration time for current cpu.
223 * Returns 1 if we missed the expiration time.
225 static int uv_rtc_set_timer(int cpu
, u64 expires
)
227 int pnode
= uv_cpu_to_pnode(cpu
);
228 int bid
= uv_cpu_to_blade_id(cpu
);
229 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
230 int bcpu
= uv_cpu_hub_info(cpu
)->blade_processor_id
;
231 u64
*t
= &head
->cpu
[bcpu
].expires
;
235 spin_lock_irqsave(&head
->lock
, flags
);
237 next_cpu
= head
->next_cpu
;
240 /* Will this one be next to go off? */
241 if (next_cpu
< 0 || bcpu
== next_cpu
||
242 expires
< head
->cpu
[next_cpu
].expires
) {
243 head
->next_cpu
= bcpu
;
244 if (uv_setup_intr(cpu
, expires
)) {
246 uv_rtc_find_next_timer(head
, pnode
);
247 spin_unlock_irqrestore(&head
->lock
, flags
);
252 spin_unlock_irqrestore(&head
->lock
, flags
);
257 * Unset expiration time for current cpu.
259 * Returns 1 if this timer was pending.
261 static int uv_rtc_unset_timer(int cpu
, int force
)
263 int pnode
= uv_cpu_to_pnode(cpu
);
264 int bid
= uv_cpu_to_blade_id(cpu
);
265 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
266 int bcpu
= uv_cpu_hub_info(cpu
)->blade_processor_id
;
267 u64
*t
= &head
->cpu
[bcpu
].expires
;
271 spin_lock_irqsave(&head
->lock
, flags
);
273 if ((head
->next_cpu
== bcpu
&& uv_read_rtc(NULL
) >= *t
) || force
)
278 /* Was the hardware setup for this timer? */
279 if (head
->next_cpu
== bcpu
)
280 uv_rtc_find_next_timer(head
, pnode
);
283 spin_unlock_irqrestore(&head
->lock
, flags
);
290 * Kernel interface routines.
296 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
297 * cachelines of it's own page. This allows faster simultaneous reads
298 * from a given socket.
300 static cycle_t
uv_read_rtc(struct clocksource
*cs
)
302 unsigned long offset
;
304 if (uv_get_min_hub_revision_id() == 1)
307 offset
= (uv_blade_processor_id() * L1_CACHE_BYTES
) % PAGE_SIZE
;
309 return (cycle_t
)uv_read_local_mmr(UVH_RTC
| offset
);
313 * Program the next event, relative to now
315 static int uv_rtc_next_event(unsigned long delta
,
316 struct clock_event_device
*ced
)
318 int ced_cpu
= cpumask_first(ced
->cpumask
);
320 return uv_rtc_set_timer(ced_cpu
, delta
+ uv_read_rtc(NULL
));
324 * Setup the RTC timer in oneshot mode
326 static void uv_rtc_timer_setup(enum clock_event_mode mode
,
327 struct clock_event_device
*evt
)
329 int ced_cpu
= cpumask_first(evt
->cpumask
);
332 case CLOCK_EVT_MODE_PERIODIC
:
333 case CLOCK_EVT_MODE_ONESHOT
:
334 case CLOCK_EVT_MODE_RESUME
:
335 /* Nothing to do here yet */
337 case CLOCK_EVT_MODE_UNUSED
:
338 case CLOCK_EVT_MODE_SHUTDOWN
:
339 uv_rtc_unset_timer(ced_cpu
, 1);
344 static void uv_rtc_interrupt(void)
346 int cpu
= smp_processor_id();
347 struct clock_event_device
*ced
= &per_cpu(cpu_ced
, cpu
);
349 if (!ced
|| !ced
->event_handler
)
352 if (uv_rtc_unset_timer(cpu
, 0) != 1)
355 ced
->event_handler(ced
);
358 static int __init
uv_enable_evt_rtc(char *str
)
360 uv_rtc_evt_enable
= 1;
364 __setup("uvrtcevt", uv_enable_evt_rtc
);
366 static __init
void uv_rtc_register_clockevents(struct work_struct
*dummy
)
368 struct clock_event_device
*ced
= &__get_cpu_var(cpu_ced
);
370 *ced
= clock_event_device_uv
;
371 ced
->cpumask
= cpumask_of(smp_processor_id());
372 clockevents_register_device(ced
);
375 static __init
int uv_rtc_setup_clock(void)
382 rc
= clocksource_register_hz(&clocksource_uv
, sn_rtc_cycles_per_second
);
384 printk(KERN_INFO
"UV RTC clocksource failed rc %d\n", rc
);
386 printk(KERN_INFO
"UV RTC clocksource registered freq %lu MHz\n",
387 sn_rtc_cycles_per_second
/(unsigned long)1E6
);
389 if (rc
|| !uv_rtc_evt_enable
|| x86_platform_ipi_callback
)
392 /* Setup and register clockevents */
393 rc
= uv_rtc_allocate_timers();
397 x86_platform_ipi_callback
= uv_rtc_interrupt
;
399 clock_event_device_uv
.mult
= div_sc(sn_rtc_cycles_per_second
,
400 NSEC_PER_SEC
, clock_event_device_uv
.shift
);
402 clock_event_device_uv
.min_delta_ns
= NSEC_PER_SEC
/
403 sn_rtc_cycles_per_second
;
405 clock_event_device_uv
.max_delta_ns
= clocksource_uv
.mask
*
406 (NSEC_PER_SEC
/ sn_rtc_cycles_per_second
);
408 rc
= schedule_on_each_cpu(uv_rtc_register_clockevents
);
410 x86_platform_ipi_callback
= NULL
;
411 uv_rtc_deallocate_timers();
415 printk(KERN_INFO
"UV RTC clockevents registered\n");
420 clocksource_unregister(&clocksource_uv
);
421 printk(KERN_INFO
"UV RTC clockevents failed rc %d\n", rc
);
425 arch_initcall(uv_rtc_setup_clock
);