Linux 4.19.168
[linux/fpc-iii.git] / kernel / module.c
blob429769605871db350b555707aa8bc4fa60c7d081
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data
81 # define debug_align(X) ALIGN(X, PAGE_SIZE)
83 /* If this is set, the section belongs in the init part of the module */
84 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
87 * Mutex protects:
88 * 1) List of modules (also safely readable with preempt_disable),
89 * 2) module_use links,
90 * 3) module_addr_min/module_addr_max.
91 * (delete and add uses RCU list operations). */
92 DEFINE_MUTEX(module_mutex);
93 EXPORT_SYMBOL_GPL(module_mutex);
94 static LIST_HEAD(modules);
96 #ifdef CONFIG_MODULES_TREE_LOOKUP
99 * Use a latched RB-tree for __module_address(); this allows us to use
100 * RCU-sched lookups of the address from any context.
102 * This is conditional on PERF_EVENTS || TRACING because those can really hit
103 * __module_address() hard by doing a lot of stack unwinding; potentially from
104 * NMI context.
107 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
109 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
111 return (unsigned long)layout->base;
114 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
116 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
118 return (unsigned long)layout->size;
121 static __always_inline bool
122 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
124 return __mod_tree_val(a) < __mod_tree_val(b);
127 static __always_inline int
128 mod_tree_comp(void *key, struct latch_tree_node *n)
130 unsigned long val = (unsigned long)key;
131 unsigned long start, end;
133 start = __mod_tree_val(n);
134 if (val < start)
135 return -1;
137 end = start + __mod_tree_size(n);
138 if (val >= end)
139 return 1;
141 return 0;
144 static const struct latch_tree_ops mod_tree_ops = {
145 .less = mod_tree_less,
146 .comp = mod_tree_comp,
149 static struct mod_tree_root {
150 struct latch_tree_root root;
151 unsigned long addr_min;
152 unsigned long addr_max;
153 } mod_tree __cacheline_aligned = {
154 .addr_min = -1UL,
157 #define module_addr_min mod_tree.addr_min
158 #define module_addr_max mod_tree.addr_max
160 static noinline void __mod_tree_insert(struct mod_tree_node *node)
162 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
165 static void __mod_tree_remove(struct mod_tree_node *node)
167 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
171 * These modifications: insert, remove_init and remove; are serialized by the
172 * module_mutex.
174 static void mod_tree_insert(struct module *mod)
176 mod->core_layout.mtn.mod = mod;
177 mod->init_layout.mtn.mod = mod;
179 __mod_tree_insert(&mod->core_layout.mtn);
180 if (mod->init_layout.size)
181 __mod_tree_insert(&mod->init_layout.mtn);
184 static void mod_tree_remove_init(struct module *mod)
186 if (mod->init_layout.size)
187 __mod_tree_remove(&mod->init_layout.mtn);
190 static void mod_tree_remove(struct module *mod)
192 __mod_tree_remove(&mod->core_layout.mtn);
193 mod_tree_remove_init(mod);
196 static struct module *mod_find(unsigned long addr)
198 struct latch_tree_node *ltn;
200 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
201 if (!ltn)
202 return NULL;
204 return container_of(ltn, struct mod_tree_node, node)->mod;
207 #else /* MODULES_TREE_LOOKUP */
209 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
211 static void mod_tree_insert(struct module *mod) { }
212 static void mod_tree_remove_init(struct module *mod) { }
213 static void mod_tree_remove(struct module *mod) { }
215 static struct module *mod_find(unsigned long addr)
217 struct module *mod;
219 list_for_each_entry_rcu(mod, &modules, list) {
220 if (within_module(addr, mod))
221 return mod;
224 return NULL;
227 #endif /* MODULES_TREE_LOOKUP */
230 * Bounds of module text, for speeding up __module_address.
231 * Protected by module_mutex.
233 static void __mod_update_bounds(void *base, unsigned int size)
235 unsigned long min = (unsigned long)base;
236 unsigned long max = min + size;
238 if (min < module_addr_min)
239 module_addr_min = min;
240 if (max > module_addr_max)
241 module_addr_max = max;
244 static void mod_update_bounds(struct module *mod)
246 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
247 if (mod->init_layout.size)
248 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
251 #ifdef CONFIG_KGDB_KDB
252 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
253 #endif /* CONFIG_KGDB_KDB */
255 static void module_assert_mutex(void)
257 lockdep_assert_held(&module_mutex);
260 static void module_assert_mutex_or_preempt(void)
262 #ifdef CONFIG_LOCKDEP
263 if (unlikely(!debug_locks))
264 return;
266 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
267 !lockdep_is_held(&module_mutex));
268 #endif
271 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
272 module_param(sig_enforce, bool_enable_only, 0644);
275 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
276 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
278 bool is_module_sig_enforced(void)
280 return sig_enforce;
282 EXPORT_SYMBOL(is_module_sig_enforced);
284 /* Block module loading/unloading? */
285 int modules_disabled = 0;
286 core_param(nomodule, modules_disabled, bint, 0);
288 /* Waiting for a module to finish initializing? */
289 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
291 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
293 int register_module_notifier(struct notifier_block *nb)
295 return blocking_notifier_chain_register(&module_notify_list, nb);
297 EXPORT_SYMBOL(register_module_notifier);
299 int unregister_module_notifier(struct notifier_block *nb)
301 return blocking_notifier_chain_unregister(&module_notify_list, nb);
303 EXPORT_SYMBOL(unregister_module_notifier);
306 * We require a truly strong try_module_get(): 0 means success.
307 * Otherwise an error is returned due to ongoing or failed
308 * initialization etc.
310 static inline int strong_try_module_get(struct module *mod)
312 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
313 if (mod && mod->state == MODULE_STATE_COMING)
314 return -EBUSY;
315 if (try_module_get(mod))
316 return 0;
317 else
318 return -ENOENT;
321 static inline void add_taint_module(struct module *mod, unsigned flag,
322 enum lockdep_ok lockdep_ok)
324 add_taint(flag, lockdep_ok);
325 set_bit(flag, &mod->taints);
329 * A thread that wants to hold a reference to a module only while it
330 * is running can call this to safely exit. nfsd and lockd use this.
332 void __noreturn __module_put_and_exit(struct module *mod, long code)
334 module_put(mod);
335 do_exit(code);
337 EXPORT_SYMBOL(__module_put_and_exit);
339 /* Find a module section: 0 means not found. */
340 static unsigned int find_sec(const struct load_info *info, const char *name)
342 unsigned int i;
344 for (i = 1; i < info->hdr->e_shnum; i++) {
345 Elf_Shdr *shdr = &info->sechdrs[i];
346 /* Alloc bit cleared means "ignore it." */
347 if ((shdr->sh_flags & SHF_ALLOC)
348 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
349 return i;
351 return 0;
354 /* Find a module section, or NULL. */
355 static void *section_addr(const struct load_info *info, const char *name)
357 /* Section 0 has sh_addr 0. */
358 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
361 /* Find a module section, or NULL. Fill in number of "objects" in section. */
362 static void *section_objs(const struct load_info *info,
363 const char *name,
364 size_t object_size,
365 unsigned int *num)
367 unsigned int sec = find_sec(info, name);
369 /* Section 0 has sh_addr 0 and sh_size 0. */
370 *num = info->sechdrs[sec].sh_size / object_size;
371 return (void *)info->sechdrs[sec].sh_addr;
374 /* Provided by the linker */
375 extern const struct kernel_symbol __start___ksymtab[];
376 extern const struct kernel_symbol __stop___ksymtab[];
377 extern const struct kernel_symbol __start___ksymtab_gpl[];
378 extern const struct kernel_symbol __stop___ksymtab_gpl[];
379 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
380 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
381 extern const s32 __start___kcrctab[];
382 extern const s32 __start___kcrctab_gpl[];
383 extern const s32 __start___kcrctab_gpl_future[];
384 #ifdef CONFIG_UNUSED_SYMBOLS
385 extern const struct kernel_symbol __start___ksymtab_unused[];
386 extern const struct kernel_symbol __stop___ksymtab_unused[];
387 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
388 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
389 extern const s32 __start___kcrctab_unused[];
390 extern const s32 __start___kcrctab_unused_gpl[];
391 #endif
393 #ifndef CONFIG_MODVERSIONS
394 #define symversion(base, idx) NULL
395 #else
396 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
397 #endif
399 static bool each_symbol_in_section(const struct symsearch *arr,
400 unsigned int arrsize,
401 struct module *owner,
402 bool (*fn)(const struct symsearch *syms,
403 struct module *owner,
404 void *data),
405 void *data)
407 unsigned int j;
409 for (j = 0; j < arrsize; j++) {
410 if (fn(&arr[j], owner, data))
411 return true;
414 return false;
417 /* Returns true as soon as fn returns true, otherwise false. */
418 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
419 struct module *owner,
420 void *data),
421 void *data)
423 struct module *mod;
424 static const struct symsearch arr[] = {
425 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
426 NOT_GPL_ONLY, false },
427 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
428 __start___kcrctab_gpl,
429 GPL_ONLY, false },
430 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
431 __start___kcrctab_gpl_future,
432 WILL_BE_GPL_ONLY, false },
433 #ifdef CONFIG_UNUSED_SYMBOLS
434 { __start___ksymtab_unused, __stop___ksymtab_unused,
435 __start___kcrctab_unused,
436 NOT_GPL_ONLY, true },
437 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
438 __start___kcrctab_unused_gpl,
439 GPL_ONLY, true },
440 #endif
443 module_assert_mutex_or_preempt();
445 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
446 return true;
448 list_for_each_entry_rcu(mod, &modules, list) {
449 struct symsearch arr[] = {
450 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
451 NOT_GPL_ONLY, false },
452 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
453 mod->gpl_crcs,
454 GPL_ONLY, false },
455 { mod->gpl_future_syms,
456 mod->gpl_future_syms + mod->num_gpl_future_syms,
457 mod->gpl_future_crcs,
458 WILL_BE_GPL_ONLY, false },
459 #ifdef CONFIG_UNUSED_SYMBOLS
460 { mod->unused_syms,
461 mod->unused_syms + mod->num_unused_syms,
462 mod->unused_crcs,
463 NOT_GPL_ONLY, true },
464 { mod->unused_gpl_syms,
465 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
466 mod->unused_gpl_crcs,
467 GPL_ONLY, true },
468 #endif
471 if (mod->state == MODULE_STATE_UNFORMED)
472 continue;
474 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
475 return true;
477 return false;
479 EXPORT_SYMBOL_GPL(each_symbol_section);
481 struct find_symbol_arg {
482 /* Input */
483 const char *name;
484 bool gplok;
485 bool warn;
487 /* Output */
488 struct module *owner;
489 const s32 *crc;
490 const struct kernel_symbol *sym;
493 static bool check_symbol(const struct symsearch *syms,
494 struct module *owner,
495 unsigned int symnum, void *data)
497 struct find_symbol_arg *fsa = data;
499 if (!fsa->gplok) {
500 if (syms->licence == GPL_ONLY)
501 return false;
502 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
503 pr_warn("Symbol %s is being used by a non-GPL module, "
504 "which will not be allowed in the future\n",
505 fsa->name);
509 #ifdef CONFIG_UNUSED_SYMBOLS
510 if (syms->unused && fsa->warn) {
511 pr_warn("Symbol %s is marked as UNUSED, however this module is "
512 "using it.\n", fsa->name);
513 pr_warn("This symbol will go away in the future.\n");
514 pr_warn("Please evaluate if this is the right api to use and "
515 "if it really is, submit a report to the linux kernel "
516 "mailing list together with submitting your code for "
517 "inclusion.\n");
519 #endif
521 fsa->owner = owner;
522 fsa->crc = symversion(syms->crcs, symnum);
523 fsa->sym = &syms->start[symnum];
524 return true;
527 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
529 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
530 return (unsigned long)offset_to_ptr(&sym->value_offset);
531 #else
532 return sym->value;
533 #endif
536 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
538 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
539 return offset_to_ptr(&sym->name_offset);
540 #else
541 return sym->name;
542 #endif
545 static int cmp_name(const void *va, const void *vb)
547 const char *a;
548 const struct kernel_symbol *b;
549 a = va; b = vb;
550 return strcmp(a, kernel_symbol_name(b));
553 static bool find_symbol_in_section(const struct symsearch *syms,
554 struct module *owner,
555 void *data)
557 struct find_symbol_arg *fsa = data;
558 struct kernel_symbol *sym;
560 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
561 sizeof(struct kernel_symbol), cmp_name);
563 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
564 return true;
566 return false;
569 /* Find a symbol and return it, along with, (optional) crc and
570 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
571 const struct kernel_symbol *find_symbol(const char *name,
572 struct module **owner,
573 const s32 **crc,
574 bool gplok,
575 bool warn)
577 struct find_symbol_arg fsa;
579 fsa.name = name;
580 fsa.gplok = gplok;
581 fsa.warn = warn;
583 if (each_symbol_section(find_symbol_in_section, &fsa)) {
584 if (owner)
585 *owner = fsa.owner;
586 if (crc)
587 *crc = fsa.crc;
588 return fsa.sym;
591 pr_debug("Failed to find symbol %s\n", name);
592 return NULL;
594 EXPORT_SYMBOL_GPL(find_symbol);
597 * Search for module by name: must hold module_mutex (or preempt disabled
598 * for read-only access).
600 static struct module *find_module_all(const char *name, size_t len,
601 bool even_unformed)
603 struct module *mod;
605 module_assert_mutex_or_preempt();
607 list_for_each_entry_rcu(mod, &modules, list) {
608 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
609 continue;
610 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
611 return mod;
613 return NULL;
616 struct module *find_module(const char *name)
618 module_assert_mutex();
619 return find_module_all(name, strlen(name), false);
621 EXPORT_SYMBOL_GPL(find_module);
623 #ifdef CONFIG_SMP
625 static inline void __percpu *mod_percpu(struct module *mod)
627 return mod->percpu;
630 static int percpu_modalloc(struct module *mod, struct load_info *info)
632 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
633 unsigned long align = pcpusec->sh_addralign;
635 if (!pcpusec->sh_size)
636 return 0;
638 if (align > PAGE_SIZE) {
639 pr_warn("%s: per-cpu alignment %li > %li\n",
640 mod->name, align, PAGE_SIZE);
641 align = PAGE_SIZE;
644 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
645 if (!mod->percpu) {
646 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
647 mod->name, (unsigned long)pcpusec->sh_size);
648 return -ENOMEM;
650 mod->percpu_size = pcpusec->sh_size;
651 return 0;
654 static void percpu_modfree(struct module *mod)
656 free_percpu(mod->percpu);
659 static unsigned int find_pcpusec(struct load_info *info)
661 return find_sec(info, ".data..percpu");
664 static void percpu_modcopy(struct module *mod,
665 const void *from, unsigned long size)
667 int cpu;
669 for_each_possible_cpu(cpu)
670 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
673 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
675 struct module *mod;
676 unsigned int cpu;
678 preempt_disable();
680 list_for_each_entry_rcu(mod, &modules, list) {
681 if (mod->state == MODULE_STATE_UNFORMED)
682 continue;
683 if (!mod->percpu_size)
684 continue;
685 for_each_possible_cpu(cpu) {
686 void *start = per_cpu_ptr(mod->percpu, cpu);
687 void *va = (void *)addr;
689 if (va >= start && va < start + mod->percpu_size) {
690 if (can_addr) {
691 *can_addr = (unsigned long) (va - start);
692 *can_addr += (unsigned long)
693 per_cpu_ptr(mod->percpu,
694 get_boot_cpu_id());
696 preempt_enable();
697 return true;
702 preempt_enable();
703 return false;
707 * is_module_percpu_address - test whether address is from module static percpu
708 * @addr: address to test
710 * Test whether @addr belongs to module static percpu area.
712 * RETURNS:
713 * %true if @addr is from module static percpu area
715 bool is_module_percpu_address(unsigned long addr)
717 return __is_module_percpu_address(addr, NULL);
720 #else /* ... !CONFIG_SMP */
722 static inline void __percpu *mod_percpu(struct module *mod)
724 return NULL;
726 static int percpu_modalloc(struct module *mod, struct load_info *info)
728 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
729 if (info->sechdrs[info->index.pcpu].sh_size != 0)
730 return -ENOMEM;
731 return 0;
733 static inline void percpu_modfree(struct module *mod)
736 static unsigned int find_pcpusec(struct load_info *info)
738 return 0;
740 static inline void percpu_modcopy(struct module *mod,
741 const void *from, unsigned long size)
743 /* pcpusec should be 0, and size of that section should be 0. */
744 BUG_ON(size != 0);
746 bool is_module_percpu_address(unsigned long addr)
748 return false;
751 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
753 return false;
756 #endif /* CONFIG_SMP */
758 #define MODINFO_ATTR(field) \
759 static void setup_modinfo_##field(struct module *mod, const char *s) \
761 mod->field = kstrdup(s, GFP_KERNEL); \
763 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
764 struct module_kobject *mk, char *buffer) \
766 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
768 static int modinfo_##field##_exists(struct module *mod) \
770 return mod->field != NULL; \
772 static void free_modinfo_##field(struct module *mod) \
774 kfree(mod->field); \
775 mod->field = NULL; \
777 static struct module_attribute modinfo_##field = { \
778 .attr = { .name = __stringify(field), .mode = 0444 }, \
779 .show = show_modinfo_##field, \
780 .setup = setup_modinfo_##field, \
781 .test = modinfo_##field##_exists, \
782 .free = free_modinfo_##field, \
785 MODINFO_ATTR(version);
786 MODINFO_ATTR(srcversion);
788 static char last_unloaded_module[MODULE_NAME_LEN+1];
790 #ifdef CONFIG_MODULE_UNLOAD
792 EXPORT_TRACEPOINT_SYMBOL(module_get);
794 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
795 #define MODULE_REF_BASE 1
797 /* Init the unload section of the module. */
798 static int module_unload_init(struct module *mod)
801 * Initialize reference counter to MODULE_REF_BASE.
802 * refcnt == 0 means module is going.
804 atomic_set(&mod->refcnt, MODULE_REF_BASE);
806 INIT_LIST_HEAD(&mod->source_list);
807 INIT_LIST_HEAD(&mod->target_list);
809 /* Hold reference count during initialization. */
810 atomic_inc(&mod->refcnt);
812 return 0;
815 /* Does a already use b? */
816 static int already_uses(struct module *a, struct module *b)
818 struct module_use *use;
820 list_for_each_entry(use, &b->source_list, source_list) {
821 if (use->source == a) {
822 pr_debug("%s uses %s!\n", a->name, b->name);
823 return 1;
826 pr_debug("%s does not use %s!\n", a->name, b->name);
827 return 0;
831 * Module a uses b
832 * - we add 'a' as a "source", 'b' as a "target" of module use
833 * - the module_use is added to the list of 'b' sources (so
834 * 'b' can walk the list to see who sourced them), and of 'a'
835 * targets (so 'a' can see what modules it targets).
837 static int add_module_usage(struct module *a, struct module *b)
839 struct module_use *use;
841 pr_debug("Allocating new usage for %s.\n", a->name);
842 use = kmalloc(sizeof(*use), GFP_ATOMIC);
843 if (!use)
844 return -ENOMEM;
846 use->source = a;
847 use->target = b;
848 list_add(&use->source_list, &b->source_list);
849 list_add(&use->target_list, &a->target_list);
850 return 0;
853 /* Module a uses b: caller needs module_mutex() */
854 int ref_module(struct module *a, struct module *b)
856 int err;
858 if (b == NULL || already_uses(a, b))
859 return 0;
861 /* If module isn't available, we fail. */
862 err = strong_try_module_get(b);
863 if (err)
864 return err;
866 err = add_module_usage(a, b);
867 if (err) {
868 module_put(b);
869 return err;
871 return 0;
873 EXPORT_SYMBOL_GPL(ref_module);
875 /* Clear the unload stuff of the module. */
876 static void module_unload_free(struct module *mod)
878 struct module_use *use, *tmp;
880 mutex_lock(&module_mutex);
881 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
882 struct module *i = use->target;
883 pr_debug("%s unusing %s\n", mod->name, i->name);
884 module_put(i);
885 list_del(&use->source_list);
886 list_del(&use->target_list);
887 kfree(use);
889 mutex_unlock(&module_mutex);
892 #ifdef CONFIG_MODULE_FORCE_UNLOAD
893 static inline int try_force_unload(unsigned int flags)
895 int ret = (flags & O_TRUNC);
896 if (ret)
897 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
898 return ret;
900 #else
901 static inline int try_force_unload(unsigned int flags)
903 return 0;
905 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
907 /* Try to release refcount of module, 0 means success. */
908 static int try_release_module_ref(struct module *mod)
910 int ret;
912 /* Try to decrement refcnt which we set at loading */
913 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
914 BUG_ON(ret < 0);
915 if (ret)
916 /* Someone can put this right now, recover with checking */
917 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
919 return ret;
922 static int try_stop_module(struct module *mod, int flags, int *forced)
924 /* If it's not unused, quit unless we're forcing. */
925 if (try_release_module_ref(mod) != 0) {
926 *forced = try_force_unload(flags);
927 if (!(*forced))
928 return -EWOULDBLOCK;
931 /* Mark it as dying. */
932 mod->state = MODULE_STATE_GOING;
934 return 0;
938 * module_refcount - return the refcount or -1 if unloading
940 * @mod: the module we're checking
942 * Returns:
943 * -1 if the module is in the process of unloading
944 * otherwise the number of references in the kernel to the module
946 int module_refcount(struct module *mod)
948 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
950 EXPORT_SYMBOL(module_refcount);
952 /* This exists whether we can unload or not */
953 static void free_module(struct module *mod);
955 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
956 unsigned int, flags)
958 struct module *mod;
959 char name[MODULE_NAME_LEN];
960 int ret, forced = 0;
962 if (!capable(CAP_SYS_MODULE) || modules_disabled)
963 return -EPERM;
965 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
966 return -EFAULT;
967 name[MODULE_NAME_LEN-1] = '\0';
969 audit_log_kern_module(name);
971 if (mutex_lock_interruptible(&module_mutex) != 0)
972 return -EINTR;
974 mod = find_module(name);
975 if (!mod) {
976 ret = -ENOENT;
977 goto out;
980 if (!list_empty(&mod->source_list)) {
981 /* Other modules depend on us: get rid of them first. */
982 ret = -EWOULDBLOCK;
983 goto out;
986 /* Doing init or already dying? */
987 if (mod->state != MODULE_STATE_LIVE) {
988 /* FIXME: if (force), slam module count damn the torpedoes */
989 pr_debug("%s already dying\n", mod->name);
990 ret = -EBUSY;
991 goto out;
994 /* If it has an init func, it must have an exit func to unload */
995 if (mod->init && !mod->exit) {
996 forced = try_force_unload(flags);
997 if (!forced) {
998 /* This module can't be removed */
999 ret = -EBUSY;
1000 goto out;
1004 /* Stop the machine so refcounts can't move and disable module. */
1005 ret = try_stop_module(mod, flags, &forced);
1006 if (ret != 0)
1007 goto out;
1009 mutex_unlock(&module_mutex);
1010 /* Final destruction now no one is using it. */
1011 if (mod->exit != NULL)
1012 mod->exit();
1013 blocking_notifier_call_chain(&module_notify_list,
1014 MODULE_STATE_GOING, mod);
1015 klp_module_going(mod);
1016 ftrace_release_mod(mod);
1018 async_synchronize_full();
1020 /* Store the name of the last unloaded module for diagnostic purposes */
1021 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1023 free_module(mod);
1024 /* someone could wait for the module in add_unformed_module() */
1025 wake_up_all(&module_wq);
1026 return 0;
1027 out:
1028 mutex_unlock(&module_mutex);
1029 return ret;
1032 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1034 struct module_use *use;
1035 int printed_something = 0;
1037 seq_printf(m, " %i ", module_refcount(mod));
1040 * Always include a trailing , so userspace can differentiate
1041 * between this and the old multi-field proc format.
1043 list_for_each_entry(use, &mod->source_list, source_list) {
1044 printed_something = 1;
1045 seq_printf(m, "%s,", use->source->name);
1048 if (mod->init != NULL && mod->exit == NULL) {
1049 printed_something = 1;
1050 seq_puts(m, "[permanent],");
1053 if (!printed_something)
1054 seq_puts(m, "-");
1057 void __symbol_put(const char *symbol)
1059 struct module *owner;
1061 preempt_disable();
1062 if (!find_symbol(symbol, &owner, NULL, true, false))
1063 BUG();
1064 module_put(owner);
1065 preempt_enable();
1067 EXPORT_SYMBOL(__symbol_put);
1069 /* Note this assumes addr is a function, which it currently always is. */
1070 void symbol_put_addr(void *addr)
1072 struct module *modaddr;
1073 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1075 if (core_kernel_text(a))
1076 return;
1079 * Even though we hold a reference on the module; we still need to
1080 * disable preemption in order to safely traverse the data structure.
1082 preempt_disable();
1083 modaddr = __module_text_address(a);
1084 BUG_ON(!modaddr);
1085 module_put(modaddr);
1086 preempt_enable();
1088 EXPORT_SYMBOL_GPL(symbol_put_addr);
1090 static ssize_t show_refcnt(struct module_attribute *mattr,
1091 struct module_kobject *mk, char *buffer)
1093 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1096 static struct module_attribute modinfo_refcnt =
1097 __ATTR(refcnt, 0444, show_refcnt, NULL);
1099 void __module_get(struct module *module)
1101 if (module) {
1102 preempt_disable();
1103 atomic_inc(&module->refcnt);
1104 trace_module_get(module, _RET_IP_);
1105 preempt_enable();
1108 EXPORT_SYMBOL(__module_get);
1110 bool try_module_get(struct module *module)
1112 bool ret = true;
1114 if (module) {
1115 preempt_disable();
1116 /* Note: here, we can fail to get a reference */
1117 if (likely(module_is_live(module) &&
1118 atomic_inc_not_zero(&module->refcnt) != 0))
1119 trace_module_get(module, _RET_IP_);
1120 else
1121 ret = false;
1123 preempt_enable();
1125 return ret;
1127 EXPORT_SYMBOL(try_module_get);
1129 void module_put(struct module *module)
1131 int ret;
1133 if (module) {
1134 preempt_disable();
1135 ret = atomic_dec_if_positive(&module->refcnt);
1136 WARN_ON(ret < 0); /* Failed to put refcount */
1137 trace_module_put(module, _RET_IP_);
1138 preempt_enable();
1141 EXPORT_SYMBOL(module_put);
1143 #else /* !CONFIG_MODULE_UNLOAD */
1144 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1146 /* We don't know the usage count, or what modules are using. */
1147 seq_puts(m, " - -");
1150 static inline void module_unload_free(struct module *mod)
1154 int ref_module(struct module *a, struct module *b)
1156 return strong_try_module_get(b);
1158 EXPORT_SYMBOL_GPL(ref_module);
1160 static inline int module_unload_init(struct module *mod)
1162 return 0;
1164 #endif /* CONFIG_MODULE_UNLOAD */
1166 static size_t module_flags_taint(struct module *mod, char *buf)
1168 size_t l = 0;
1169 int i;
1171 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1172 if (taint_flags[i].module && test_bit(i, &mod->taints))
1173 buf[l++] = taint_flags[i].c_true;
1176 return l;
1179 static ssize_t show_initstate(struct module_attribute *mattr,
1180 struct module_kobject *mk, char *buffer)
1182 const char *state = "unknown";
1184 switch (mk->mod->state) {
1185 case MODULE_STATE_LIVE:
1186 state = "live";
1187 break;
1188 case MODULE_STATE_COMING:
1189 state = "coming";
1190 break;
1191 case MODULE_STATE_GOING:
1192 state = "going";
1193 break;
1194 default:
1195 BUG();
1197 return sprintf(buffer, "%s\n", state);
1200 static struct module_attribute modinfo_initstate =
1201 __ATTR(initstate, 0444, show_initstate, NULL);
1203 static ssize_t store_uevent(struct module_attribute *mattr,
1204 struct module_kobject *mk,
1205 const char *buffer, size_t count)
1207 int rc;
1209 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1210 return rc ? rc : count;
1213 struct module_attribute module_uevent =
1214 __ATTR(uevent, 0200, NULL, store_uevent);
1216 static ssize_t show_coresize(struct module_attribute *mattr,
1217 struct module_kobject *mk, char *buffer)
1219 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1222 static struct module_attribute modinfo_coresize =
1223 __ATTR(coresize, 0444, show_coresize, NULL);
1225 static ssize_t show_initsize(struct module_attribute *mattr,
1226 struct module_kobject *mk, char *buffer)
1228 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1231 static struct module_attribute modinfo_initsize =
1232 __ATTR(initsize, 0444, show_initsize, NULL);
1234 static ssize_t show_taint(struct module_attribute *mattr,
1235 struct module_kobject *mk, char *buffer)
1237 size_t l;
1239 l = module_flags_taint(mk->mod, buffer);
1240 buffer[l++] = '\n';
1241 return l;
1244 static struct module_attribute modinfo_taint =
1245 __ATTR(taint, 0444, show_taint, NULL);
1247 static struct module_attribute *modinfo_attrs[] = {
1248 &module_uevent,
1249 &modinfo_version,
1250 &modinfo_srcversion,
1251 &modinfo_initstate,
1252 &modinfo_coresize,
1253 &modinfo_initsize,
1254 &modinfo_taint,
1255 #ifdef CONFIG_MODULE_UNLOAD
1256 &modinfo_refcnt,
1257 #endif
1258 NULL,
1261 static const char vermagic[] = VERMAGIC_STRING;
1263 static int try_to_force_load(struct module *mod, const char *reason)
1265 #ifdef CONFIG_MODULE_FORCE_LOAD
1266 if (!test_taint(TAINT_FORCED_MODULE))
1267 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1268 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1269 return 0;
1270 #else
1271 return -ENOEXEC;
1272 #endif
1275 #ifdef CONFIG_MODVERSIONS
1277 static u32 resolve_rel_crc(const s32 *crc)
1279 return *(u32 *)((void *)crc + *crc);
1282 static int check_version(const struct load_info *info,
1283 const char *symname,
1284 struct module *mod,
1285 const s32 *crc)
1287 Elf_Shdr *sechdrs = info->sechdrs;
1288 unsigned int versindex = info->index.vers;
1289 unsigned int i, num_versions;
1290 struct modversion_info *versions;
1292 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1293 if (!crc)
1294 return 1;
1296 /* No versions at all? modprobe --force does this. */
1297 if (versindex == 0)
1298 return try_to_force_load(mod, symname) == 0;
1300 versions = (void *) sechdrs[versindex].sh_addr;
1301 num_versions = sechdrs[versindex].sh_size
1302 / sizeof(struct modversion_info);
1304 for (i = 0; i < num_versions; i++) {
1305 u32 crcval;
1307 if (strcmp(versions[i].name, symname) != 0)
1308 continue;
1310 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1311 crcval = resolve_rel_crc(crc);
1312 else
1313 crcval = *crc;
1314 if (versions[i].crc == crcval)
1315 return 1;
1316 pr_debug("Found checksum %X vs module %lX\n",
1317 crcval, versions[i].crc);
1318 goto bad_version;
1321 /* Broken toolchain. Warn once, then let it go.. */
1322 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1323 return 1;
1325 bad_version:
1326 pr_warn("%s: disagrees about version of symbol %s\n",
1327 info->name, symname);
1328 return 0;
1331 static inline int check_modstruct_version(const struct load_info *info,
1332 struct module *mod)
1334 const s32 *crc;
1337 * Since this should be found in kernel (which can't be removed), no
1338 * locking is necessary -- use preempt_disable() to placate lockdep.
1340 preempt_disable();
1341 if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1342 preempt_enable();
1343 BUG();
1345 preempt_enable();
1346 return check_version(info, "module_layout", mod, crc);
1349 /* First part is kernel version, which we ignore if module has crcs. */
1350 static inline int same_magic(const char *amagic, const char *bmagic,
1351 bool has_crcs)
1353 if (has_crcs) {
1354 amagic += strcspn(amagic, " ");
1355 bmagic += strcspn(bmagic, " ");
1357 return strcmp(amagic, bmagic) == 0;
1359 #else
1360 static inline int check_version(const struct load_info *info,
1361 const char *symname,
1362 struct module *mod,
1363 const s32 *crc)
1365 return 1;
1368 static inline int check_modstruct_version(const struct load_info *info,
1369 struct module *mod)
1371 return 1;
1374 static inline int same_magic(const char *amagic, const char *bmagic,
1375 bool has_crcs)
1377 return strcmp(amagic, bmagic) == 0;
1379 #endif /* CONFIG_MODVERSIONS */
1381 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1382 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1383 const struct load_info *info,
1384 const char *name,
1385 char ownername[])
1387 struct module *owner;
1388 const struct kernel_symbol *sym;
1389 const s32 *crc;
1390 int err;
1393 * The module_mutex should not be a heavily contended lock;
1394 * if we get the occasional sleep here, we'll go an extra iteration
1395 * in the wait_event_interruptible(), which is harmless.
1397 sched_annotate_sleep();
1398 mutex_lock(&module_mutex);
1399 sym = find_symbol(name, &owner, &crc,
1400 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1401 if (!sym)
1402 goto unlock;
1404 if (!check_version(info, name, mod, crc)) {
1405 sym = ERR_PTR(-EINVAL);
1406 goto getname;
1409 err = ref_module(mod, owner);
1410 if (err) {
1411 sym = ERR_PTR(err);
1412 goto getname;
1415 getname:
1416 /* We must make copy under the lock if we failed to get ref. */
1417 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1418 unlock:
1419 mutex_unlock(&module_mutex);
1420 return sym;
1423 static const struct kernel_symbol *
1424 resolve_symbol_wait(struct module *mod,
1425 const struct load_info *info,
1426 const char *name)
1428 const struct kernel_symbol *ksym;
1429 char owner[MODULE_NAME_LEN];
1431 if (wait_event_interruptible_timeout(module_wq,
1432 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1433 || PTR_ERR(ksym) != -EBUSY,
1434 30 * HZ) <= 0) {
1435 pr_warn("%s: gave up waiting for init of module %s.\n",
1436 mod->name, owner);
1438 return ksym;
1442 * /sys/module/foo/sections stuff
1443 * J. Corbet <corbet@lwn.net>
1445 #ifdef CONFIG_SYSFS
1447 #ifdef CONFIG_KALLSYMS
1448 static inline bool sect_empty(const Elf_Shdr *sect)
1450 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1453 struct module_sect_attr {
1454 struct bin_attribute battr;
1455 unsigned long address;
1458 struct module_sect_attrs {
1459 struct attribute_group grp;
1460 unsigned int nsections;
1461 struct module_sect_attr attrs[0];
1464 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1465 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1466 struct bin_attribute *battr,
1467 char *buf, loff_t pos, size_t count)
1469 struct module_sect_attr *sattr =
1470 container_of(battr, struct module_sect_attr, battr);
1471 char bounce[MODULE_SECT_READ_SIZE + 1];
1472 size_t wrote;
1474 if (pos != 0)
1475 return -EINVAL;
1478 * Since we're a binary read handler, we must account for the
1479 * trailing NUL byte that sprintf will write: if "buf" is
1480 * too small to hold the NUL, or the NUL is exactly the last
1481 * byte, the read will look like it got truncated by one byte.
1482 * Since there is no way to ask sprintf nicely to not write
1483 * the NUL, we have to use a bounce buffer.
1485 wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1486 kallsyms_show_value(file->f_cred)
1487 ? (void *)sattr->address : NULL);
1488 count = min(count, wrote);
1489 memcpy(buf, bounce, count);
1491 return count;
1494 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1496 unsigned int section;
1498 for (section = 0; section < sect_attrs->nsections; section++)
1499 kfree(sect_attrs->attrs[section].battr.attr.name);
1500 kfree(sect_attrs);
1503 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1505 unsigned int nloaded = 0, i, size[2];
1506 struct module_sect_attrs *sect_attrs;
1507 struct module_sect_attr *sattr;
1508 struct bin_attribute **gattr;
1510 /* Count loaded sections and allocate structures */
1511 for (i = 0; i < info->hdr->e_shnum; i++)
1512 if (!sect_empty(&info->sechdrs[i]))
1513 nloaded++;
1514 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1515 sizeof(sect_attrs->grp.bin_attrs[0]));
1516 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1517 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1518 if (sect_attrs == NULL)
1519 return;
1521 /* Setup section attributes. */
1522 sect_attrs->grp.name = "sections";
1523 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1525 sect_attrs->nsections = 0;
1526 sattr = &sect_attrs->attrs[0];
1527 gattr = &sect_attrs->grp.bin_attrs[0];
1528 for (i = 0; i < info->hdr->e_shnum; i++) {
1529 Elf_Shdr *sec = &info->sechdrs[i];
1530 if (sect_empty(sec))
1531 continue;
1532 sysfs_bin_attr_init(&sattr->battr);
1533 sattr->address = sec->sh_addr;
1534 sattr->battr.attr.name =
1535 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1536 if (sattr->battr.attr.name == NULL)
1537 goto out;
1538 sect_attrs->nsections++;
1539 sattr->battr.read = module_sect_read;
1540 sattr->battr.size = MODULE_SECT_READ_SIZE;
1541 sattr->battr.attr.mode = 0400;
1542 *(gattr++) = &(sattr++)->battr;
1544 *gattr = NULL;
1546 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1547 goto out;
1549 mod->sect_attrs = sect_attrs;
1550 return;
1551 out:
1552 free_sect_attrs(sect_attrs);
1555 static void remove_sect_attrs(struct module *mod)
1557 if (mod->sect_attrs) {
1558 sysfs_remove_group(&mod->mkobj.kobj,
1559 &mod->sect_attrs->grp);
1560 /* We are positive that no one is using any sect attrs
1561 * at this point. Deallocate immediately. */
1562 free_sect_attrs(mod->sect_attrs);
1563 mod->sect_attrs = NULL;
1568 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1571 struct module_notes_attrs {
1572 struct kobject *dir;
1573 unsigned int notes;
1574 struct bin_attribute attrs[0];
1577 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1578 struct bin_attribute *bin_attr,
1579 char *buf, loff_t pos, size_t count)
1582 * The caller checked the pos and count against our size.
1584 memcpy(buf, bin_attr->private + pos, count);
1585 return count;
1588 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1589 unsigned int i)
1591 if (notes_attrs->dir) {
1592 while (i-- > 0)
1593 sysfs_remove_bin_file(notes_attrs->dir,
1594 &notes_attrs->attrs[i]);
1595 kobject_put(notes_attrs->dir);
1597 kfree(notes_attrs);
1600 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1602 unsigned int notes, loaded, i;
1603 struct module_notes_attrs *notes_attrs;
1604 struct bin_attribute *nattr;
1606 /* failed to create section attributes, so can't create notes */
1607 if (!mod->sect_attrs)
1608 return;
1610 /* Count notes sections and allocate structures. */
1611 notes = 0;
1612 for (i = 0; i < info->hdr->e_shnum; i++)
1613 if (!sect_empty(&info->sechdrs[i]) &&
1614 (info->sechdrs[i].sh_type == SHT_NOTE))
1615 ++notes;
1617 if (notes == 0)
1618 return;
1620 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1621 GFP_KERNEL);
1622 if (notes_attrs == NULL)
1623 return;
1625 notes_attrs->notes = notes;
1626 nattr = &notes_attrs->attrs[0];
1627 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1628 if (sect_empty(&info->sechdrs[i]))
1629 continue;
1630 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1631 sysfs_bin_attr_init(nattr);
1632 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1633 nattr->attr.mode = S_IRUGO;
1634 nattr->size = info->sechdrs[i].sh_size;
1635 nattr->private = (void *) info->sechdrs[i].sh_addr;
1636 nattr->read = module_notes_read;
1637 ++nattr;
1639 ++loaded;
1642 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1643 if (!notes_attrs->dir)
1644 goto out;
1646 for (i = 0; i < notes; ++i)
1647 if (sysfs_create_bin_file(notes_attrs->dir,
1648 &notes_attrs->attrs[i]))
1649 goto out;
1651 mod->notes_attrs = notes_attrs;
1652 return;
1654 out:
1655 free_notes_attrs(notes_attrs, i);
1658 static void remove_notes_attrs(struct module *mod)
1660 if (mod->notes_attrs)
1661 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1664 #else
1666 static inline void add_sect_attrs(struct module *mod,
1667 const struct load_info *info)
1671 static inline void remove_sect_attrs(struct module *mod)
1675 static inline void add_notes_attrs(struct module *mod,
1676 const struct load_info *info)
1680 static inline void remove_notes_attrs(struct module *mod)
1683 #endif /* CONFIG_KALLSYMS */
1685 static void del_usage_links(struct module *mod)
1687 #ifdef CONFIG_MODULE_UNLOAD
1688 struct module_use *use;
1690 mutex_lock(&module_mutex);
1691 list_for_each_entry(use, &mod->target_list, target_list)
1692 sysfs_remove_link(use->target->holders_dir, mod->name);
1693 mutex_unlock(&module_mutex);
1694 #endif
1697 static int add_usage_links(struct module *mod)
1699 int ret = 0;
1700 #ifdef CONFIG_MODULE_UNLOAD
1701 struct module_use *use;
1703 mutex_lock(&module_mutex);
1704 list_for_each_entry(use, &mod->target_list, target_list) {
1705 ret = sysfs_create_link(use->target->holders_dir,
1706 &mod->mkobj.kobj, mod->name);
1707 if (ret)
1708 break;
1710 mutex_unlock(&module_mutex);
1711 if (ret)
1712 del_usage_links(mod);
1713 #endif
1714 return ret;
1717 static void module_remove_modinfo_attrs(struct module *mod, int end);
1719 static int module_add_modinfo_attrs(struct module *mod)
1721 struct module_attribute *attr;
1722 struct module_attribute *temp_attr;
1723 int error = 0;
1724 int i;
1726 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1727 (ARRAY_SIZE(modinfo_attrs) + 1)),
1728 GFP_KERNEL);
1729 if (!mod->modinfo_attrs)
1730 return -ENOMEM;
1732 temp_attr = mod->modinfo_attrs;
1733 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1734 if (!attr->test || attr->test(mod)) {
1735 memcpy(temp_attr, attr, sizeof(*temp_attr));
1736 sysfs_attr_init(&temp_attr->attr);
1737 error = sysfs_create_file(&mod->mkobj.kobj,
1738 &temp_attr->attr);
1739 if (error)
1740 goto error_out;
1741 ++temp_attr;
1745 return 0;
1747 error_out:
1748 if (i > 0)
1749 module_remove_modinfo_attrs(mod, --i);
1750 else
1751 kfree(mod->modinfo_attrs);
1752 return error;
1755 static void module_remove_modinfo_attrs(struct module *mod, int end)
1757 struct module_attribute *attr;
1758 int i;
1760 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1761 if (end >= 0 && i > end)
1762 break;
1763 /* pick a field to test for end of list */
1764 if (!attr->attr.name)
1765 break;
1766 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1767 if (attr->free)
1768 attr->free(mod);
1770 kfree(mod->modinfo_attrs);
1773 static void mod_kobject_put(struct module *mod)
1775 DECLARE_COMPLETION_ONSTACK(c);
1776 mod->mkobj.kobj_completion = &c;
1777 kobject_put(&mod->mkobj.kobj);
1778 wait_for_completion(&c);
1781 static int mod_sysfs_init(struct module *mod)
1783 int err;
1784 struct kobject *kobj;
1786 if (!module_sysfs_initialized) {
1787 pr_err("%s: module sysfs not initialized\n", mod->name);
1788 err = -EINVAL;
1789 goto out;
1792 kobj = kset_find_obj(module_kset, mod->name);
1793 if (kobj) {
1794 pr_err("%s: module is already loaded\n", mod->name);
1795 kobject_put(kobj);
1796 err = -EINVAL;
1797 goto out;
1800 mod->mkobj.mod = mod;
1802 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1803 mod->mkobj.kobj.kset = module_kset;
1804 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1805 "%s", mod->name);
1806 if (err)
1807 mod_kobject_put(mod);
1809 out:
1810 return err;
1813 static int mod_sysfs_setup(struct module *mod,
1814 const struct load_info *info,
1815 struct kernel_param *kparam,
1816 unsigned int num_params)
1818 int err;
1820 err = mod_sysfs_init(mod);
1821 if (err)
1822 goto out;
1824 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1825 if (!mod->holders_dir) {
1826 err = -ENOMEM;
1827 goto out_unreg;
1830 err = module_param_sysfs_setup(mod, kparam, num_params);
1831 if (err)
1832 goto out_unreg_holders;
1834 err = module_add_modinfo_attrs(mod);
1835 if (err)
1836 goto out_unreg_param;
1838 err = add_usage_links(mod);
1839 if (err)
1840 goto out_unreg_modinfo_attrs;
1842 add_sect_attrs(mod, info);
1843 add_notes_attrs(mod, info);
1845 return 0;
1847 out_unreg_modinfo_attrs:
1848 module_remove_modinfo_attrs(mod, -1);
1849 out_unreg_param:
1850 module_param_sysfs_remove(mod);
1851 out_unreg_holders:
1852 kobject_put(mod->holders_dir);
1853 out_unreg:
1854 mod_kobject_put(mod);
1855 out:
1856 return err;
1859 static void mod_sysfs_fini(struct module *mod)
1861 remove_notes_attrs(mod);
1862 remove_sect_attrs(mod);
1863 mod_kobject_put(mod);
1866 static void init_param_lock(struct module *mod)
1868 mutex_init(&mod->param_lock);
1870 #else /* !CONFIG_SYSFS */
1872 static int mod_sysfs_setup(struct module *mod,
1873 const struct load_info *info,
1874 struct kernel_param *kparam,
1875 unsigned int num_params)
1877 return 0;
1880 static void mod_sysfs_fini(struct module *mod)
1884 static void module_remove_modinfo_attrs(struct module *mod, int end)
1888 static void del_usage_links(struct module *mod)
1892 static void init_param_lock(struct module *mod)
1895 #endif /* CONFIG_SYSFS */
1897 static void mod_sysfs_teardown(struct module *mod)
1899 del_usage_links(mod);
1900 module_remove_modinfo_attrs(mod, -1);
1901 module_param_sysfs_remove(mod);
1902 kobject_put(mod->mkobj.drivers_dir);
1903 kobject_put(mod->holders_dir);
1904 mod_sysfs_fini(mod);
1907 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1909 * LKM RO/NX protection: protect module's text/ro-data
1910 * from modification and any data from execution.
1912 * General layout of module is:
1913 * [text] [read-only-data] [ro-after-init] [writable data]
1914 * text_size -----^ ^ ^ ^
1915 * ro_size ------------------------| | |
1916 * ro_after_init_size -----------------------------| |
1917 * size -----------------------------------------------------------|
1919 * These values are always page-aligned (as is base)
1921 static void frob_text(const struct module_layout *layout,
1922 int (*set_memory)(unsigned long start, int num_pages))
1924 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1925 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1926 set_memory((unsigned long)layout->base,
1927 layout->text_size >> PAGE_SHIFT);
1930 #ifdef CONFIG_STRICT_MODULE_RWX
1931 static void frob_rodata(const struct module_layout *layout,
1932 int (*set_memory)(unsigned long start, int num_pages))
1934 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1935 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1936 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1937 set_memory((unsigned long)layout->base + layout->text_size,
1938 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1941 static void frob_ro_after_init(const struct module_layout *layout,
1942 int (*set_memory)(unsigned long start, int num_pages))
1944 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1945 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1946 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1947 set_memory((unsigned long)layout->base + layout->ro_size,
1948 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1951 static void frob_writable_data(const struct module_layout *layout,
1952 int (*set_memory)(unsigned long start, int num_pages))
1954 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1955 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1956 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1957 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1958 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1961 /* livepatching wants to disable read-only so it can frob module. */
1962 void module_disable_ro(const struct module *mod)
1964 if (!rodata_enabled)
1965 return;
1967 frob_text(&mod->core_layout, set_memory_rw);
1968 frob_rodata(&mod->core_layout, set_memory_rw);
1969 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1970 frob_text(&mod->init_layout, set_memory_rw);
1971 frob_rodata(&mod->init_layout, set_memory_rw);
1974 void module_enable_ro(const struct module *mod, bool after_init)
1976 if (!rodata_enabled)
1977 return;
1979 frob_text(&mod->core_layout, set_memory_ro);
1981 frob_rodata(&mod->core_layout, set_memory_ro);
1982 frob_text(&mod->init_layout, set_memory_ro);
1983 frob_rodata(&mod->init_layout, set_memory_ro);
1985 if (after_init)
1986 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1989 static void module_enable_nx(const struct module *mod)
1991 frob_rodata(&mod->core_layout, set_memory_nx);
1992 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1993 frob_writable_data(&mod->core_layout, set_memory_nx);
1994 frob_rodata(&mod->init_layout, set_memory_nx);
1995 frob_writable_data(&mod->init_layout, set_memory_nx);
1998 static void module_disable_nx(const struct module *mod)
2000 frob_rodata(&mod->core_layout, set_memory_x);
2001 frob_ro_after_init(&mod->core_layout, set_memory_x);
2002 frob_writable_data(&mod->core_layout, set_memory_x);
2003 frob_rodata(&mod->init_layout, set_memory_x);
2004 frob_writable_data(&mod->init_layout, set_memory_x);
2007 /* Iterate through all modules and set each module's text as RW */
2008 void set_all_modules_text_rw(void)
2010 struct module *mod;
2012 if (!rodata_enabled)
2013 return;
2015 mutex_lock(&module_mutex);
2016 list_for_each_entry_rcu(mod, &modules, list) {
2017 if (mod->state == MODULE_STATE_UNFORMED)
2018 continue;
2020 frob_text(&mod->core_layout, set_memory_rw);
2021 frob_text(&mod->init_layout, set_memory_rw);
2023 mutex_unlock(&module_mutex);
2026 /* Iterate through all modules and set each module's text as RO */
2027 void set_all_modules_text_ro(void)
2029 struct module *mod;
2031 if (!rodata_enabled)
2032 return;
2034 mutex_lock(&module_mutex);
2035 list_for_each_entry_rcu(mod, &modules, list) {
2037 * Ignore going modules since it's possible that ro
2038 * protection has already been disabled, otherwise we'll
2039 * run into protection faults at module deallocation.
2041 if (mod->state == MODULE_STATE_UNFORMED ||
2042 mod->state == MODULE_STATE_GOING)
2043 continue;
2045 frob_text(&mod->core_layout, set_memory_ro);
2046 frob_text(&mod->init_layout, set_memory_ro);
2048 mutex_unlock(&module_mutex);
2051 static void disable_ro_nx(const struct module_layout *layout)
2053 if (rodata_enabled) {
2054 frob_text(layout, set_memory_rw);
2055 frob_rodata(layout, set_memory_rw);
2056 frob_ro_after_init(layout, set_memory_rw);
2058 frob_rodata(layout, set_memory_x);
2059 frob_ro_after_init(layout, set_memory_x);
2060 frob_writable_data(layout, set_memory_x);
2063 #else /* !CONFIG_STRICT_MODULE_RWX */
2064 static void disable_ro_nx(const struct module_layout *layout) { }
2065 static void module_enable_nx(const struct module *mod) { }
2066 static void module_disable_nx(const struct module *mod) { }
2067 #endif /* CONFIG_STRICT_MODULE_RWX */
2069 static void module_enable_x(const struct module *mod)
2071 frob_text(&mod->core_layout, set_memory_x);
2072 frob_text(&mod->init_layout, set_memory_x);
2074 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2075 static void disable_ro_nx(const struct module_layout *layout) { }
2076 static void module_enable_nx(const struct module *mod) { }
2077 static void module_disable_nx(const struct module *mod) { }
2078 static void module_enable_x(const struct module *mod) { }
2079 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2081 #ifdef CONFIG_LIVEPATCH
2083 * Persist Elf information about a module. Copy the Elf header,
2084 * section header table, section string table, and symtab section
2085 * index from info to mod->klp_info.
2087 static int copy_module_elf(struct module *mod, struct load_info *info)
2089 unsigned int size, symndx;
2090 int ret;
2092 size = sizeof(*mod->klp_info);
2093 mod->klp_info = kmalloc(size, GFP_KERNEL);
2094 if (mod->klp_info == NULL)
2095 return -ENOMEM;
2097 /* Elf header */
2098 size = sizeof(mod->klp_info->hdr);
2099 memcpy(&mod->klp_info->hdr, info->hdr, size);
2101 /* Elf section header table */
2102 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2103 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2104 if (mod->klp_info->sechdrs == NULL) {
2105 ret = -ENOMEM;
2106 goto free_info;
2109 /* Elf section name string table */
2110 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2111 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2112 if (mod->klp_info->secstrings == NULL) {
2113 ret = -ENOMEM;
2114 goto free_sechdrs;
2117 /* Elf symbol section index */
2118 symndx = info->index.sym;
2119 mod->klp_info->symndx = symndx;
2122 * For livepatch modules, core_kallsyms.symtab is a complete
2123 * copy of the original symbol table. Adjust sh_addr to point
2124 * to core_kallsyms.symtab since the copy of the symtab in module
2125 * init memory is freed at the end of do_init_module().
2127 mod->klp_info->sechdrs[symndx].sh_addr = \
2128 (unsigned long) mod->core_kallsyms.symtab;
2130 return 0;
2132 free_sechdrs:
2133 kfree(mod->klp_info->sechdrs);
2134 free_info:
2135 kfree(mod->klp_info);
2136 return ret;
2139 static void free_module_elf(struct module *mod)
2141 kfree(mod->klp_info->sechdrs);
2142 kfree(mod->klp_info->secstrings);
2143 kfree(mod->klp_info);
2145 #else /* !CONFIG_LIVEPATCH */
2146 static int copy_module_elf(struct module *mod, struct load_info *info)
2148 return 0;
2151 static void free_module_elf(struct module *mod)
2154 #endif /* CONFIG_LIVEPATCH */
2156 void __weak module_memfree(void *module_region)
2158 vfree(module_region);
2161 void __weak module_arch_cleanup(struct module *mod)
2165 void __weak module_arch_freeing_init(struct module *mod)
2169 /* Free a module, remove from lists, etc. */
2170 static void free_module(struct module *mod)
2172 trace_module_free(mod);
2174 mod_sysfs_teardown(mod);
2176 /* We leave it in list to prevent duplicate loads, but make sure
2177 * that noone uses it while it's being deconstructed. */
2178 mutex_lock(&module_mutex);
2179 mod->state = MODULE_STATE_UNFORMED;
2180 mutex_unlock(&module_mutex);
2182 /* Remove dynamic debug info */
2183 ddebug_remove_module(mod->name);
2185 /* Arch-specific cleanup. */
2186 module_arch_cleanup(mod);
2188 /* Module unload stuff */
2189 module_unload_free(mod);
2191 /* Free any allocated parameters. */
2192 destroy_params(mod->kp, mod->num_kp);
2194 if (is_livepatch_module(mod))
2195 free_module_elf(mod);
2197 /* Now we can delete it from the lists */
2198 mutex_lock(&module_mutex);
2199 /* Unlink carefully: kallsyms could be walking list. */
2200 list_del_rcu(&mod->list);
2201 mod_tree_remove(mod);
2202 /* Remove this module from bug list, this uses list_del_rcu */
2203 module_bug_cleanup(mod);
2204 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2205 synchronize_sched();
2206 mutex_unlock(&module_mutex);
2208 /* This may be empty, but that's OK */
2209 disable_ro_nx(&mod->init_layout);
2210 module_arch_freeing_init(mod);
2211 module_memfree(mod->init_layout.base);
2212 kfree(mod->args);
2213 percpu_modfree(mod);
2215 /* Free lock-classes; relies on the preceding sync_rcu(). */
2216 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2218 /* Finally, free the core (containing the module structure) */
2219 disable_ro_nx(&mod->core_layout);
2220 module_memfree(mod->core_layout.base);
2223 void *__symbol_get(const char *symbol)
2225 struct module *owner;
2226 const struct kernel_symbol *sym;
2228 preempt_disable();
2229 sym = find_symbol(symbol, &owner, NULL, true, true);
2230 if (sym && strong_try_module_get(owner))
2231 sym = NULL;
2232 preempt_enable();
2234 return sym ? (void *)kernel_symbol_value(sym) : NULL;
2236 EXPORT_SYMBOL_GPL(__symbol_get);
2239 * Ensure that an exported symbol [global namespace] does not already exist
2240 * in the kernel or in some other module's exported symbol table.
2242 * You must hold the module_mutex.
2244 static int verify_export_symbols(struct module *mod)
2246 unsigned int i;
2247 struct module *owner;
2248 const struct kernel_symbol *s;
2249 struct {
2250 const struct kernel_symbol *sym;
2251 unsigned int num;
2252 } arr[] = {
2253 { mod->syms, mod->num_syms },
2254 { mod->gpl_syms, mod->num_gpl_syms },
2255 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2256 #ifdef CONFIG_UNUSED_SYMBOLS
2257 { mod->unused_syms, mod->num_unused_syms },
2258 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2259 #endif
2262 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2263 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2264 if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2265 true, false)) {
2266 pr_err("%s: exports duplicate symbol %s"
2267 " (owned by %s)\n",
2268 mod->name, kernel_symbol_name(s),
2269 module_name(owner));
2270 return -ENOEXEC;
2274 return 0;
2277 /* Change all symbols so that st_value encodes the pointer directly. */
2278 static int simplify_symbols(struct module *mod, const struct load_info *info)
2280 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2281 Elf_Sym *sym = (void *)symsec->sh_addr;
2282 unsigned long secbase;
2283 unsigned int i;
2284 int ret = 0;
2285 const struct kernel_symbol *ksym;
2287 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2288 const char *name = info->strtab + sym[i].st_name;
2290 switch (sym[i].st_shndx) {
2291 case SHN_COMMON:
2292 /* Ignore common symbols */
2293 if (!strncmp(name, "__gnu_lto", 9))
2294 break;
2296 /* We compiled with -fno-common. These are not
2297 supposed to happen. */
2298 pr_debug("Common symbol: %s\n", name);
2299 pr_warn("%s: please compile with -fno-common\n",
2300 mod->name);
2301 ret = -ENOEXEC;
2302 break;
2304 case SHN_ABS:
2305 /* Don't need to do anything */
2306 pr_debug("Absolute symbol: 0x%08lx\n",
2307 (long)sym[i].st_value);
2308 break;
2310 case SHN_LIVEPATCH:
2311 /* Livepatch symbols are resolved by livepatch */
2312 break;
2314 case SHN_UNDEF:
2315 ksym = resolve_symbol_wait(mod, info, name);
2316 /* Ok if resolved. */
2317 if (ksym && !IS_ERR(ksym)) {
2318 sym[i].st_value = kernel_symbol_value(ksym);
2319 break;
2322 /* Ok if weak. */
2323 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2324 break;
2326 ret = PTR_ERR(ksym) ?: -ENOENT;
2327 pr_warn("%s: Unknown symbol %s (err %d)\n",
2328 mod->name, name, ret);
2329 break;
2331 default:
2332 /* Divert to percpu allocation if a percpu var. */
2333 if (sym[i].st_shndx == info->index.pcpu)
2334 secbase = (unsigned long)mod_percpu(mod);
2335 else
2336 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2337 sym[i].st_value += secbase;
2338 break;
2342 return ret;
2345 static int apply_relocations(struct module *mod, const struct load_info *info)
2347 unsigned int i;
2348 int err = 0;
2350 /* Now do relocations. */
2351 for (i = 1; i < info->hdr->e_shnum; i++) {
2352 unsigned int infosec = info->sechdrs[i].sh_info;
2354 /* Not a valid relocation section? */
2355 if (infosec >= info->hdr->e_shnum)
2356 continue;
2358 /* Don't bother with non-allocated sections */
2359 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2360 continue;
2362 /* Livepatch relocation sections are applied by livepatch */
2363 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2364 continue;
2366 if (info->sechdrs[i].sh_type == SHT_REL)
2367 err = apply_relocate(info->sechdrs, info->strtab,
2368 info->index.sym, i, mod);
2369 else if (info->sechdrs[i].sh_type == SHT_RELA)
2370 err = apply_relocate_add(info->sechdrs, info->strtab,
2371 info->index.sym, i, mod);
2372 if (err < 0)
2373 break;
2375 return err;
2378 /* Additional bytes needed by arch in front of individual sections */
2379 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2380 unsigned int section)
2382 /* default implementation just returns zero */
2383 return 0;
2386 /* Update size with this section: return offset. */
2387 static long get_offset(struct module *mod, unsigned int *size,
2388 Elf_Shdr *sechdr, unsigned int section)
2390 long ret;
2392 *size += arch_mod_section_prepend(mod, section);
2393 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2394 *size = ret + sechdr->sh_size;
2395 return ret;
2398 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2399 might -- code, read-only data, read-write data, small data. Tally
2400 sizes, and place the offsets into sh_entsize fields: high bit means it
2401 belongs in init. */
2402 static void layout_sections(struct module *mod, struct load_info *info)
2404 static unsigned long const masks[][2] = {
2405 /* NOTE: all executable code must be the first section
2406 * in this array; otherwise modify the text_size
2407 * finder in the two loops below */
2408 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2409 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2410 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2411 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2412 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2414 unsigned int m, i;
2416 for (i = 0; i < info->hdr->e_shnum; i++)
2417 info->sechdrs[i].sh_entsize = ~0UL;
2419 pr_debug("Core section allocation order:\n");
2420 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2421 for (i = 0; i < info->hdr->e_shnum; ++i) {
2422 Elf_Shdr *s = &info->sechdrs[i];
2423 const char *sname = info->secstrings + s->sh_name;
2425 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2426 || (s->sh_flags & masks[m][1])
2427 || s->sh_entsize != ~0UL
2428 || strstarts(sname, ".init"))
2429 continue;
2430 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2431 pr_debug("\t%s\n", sname);
2433 switch (m) {
2434 case 0: /* executable */
2435 mod->core_layout.size = debug_align(mod->core_layout.size);
2436 mod->core_layout.text_size = mod->core_layout.size;
2437 break;
2438 case 1: /* RO: text and ro-data */
2439 mod->core_layout.size = debug_align(mod->core_layout.size);
2440 mod->core_layout.ro_size = mod->core_layout.size;
2441 break;
2442 case 2: /* RO after init */
2443 mod->core_layout.size = debug_align(mod->core_layout.size);
2444 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2445 break;
2446 case 4: /* whole core */
2447 mod->core_layout.size = debug_align(mod->core_layout.size);
2448 break;
2452 pr_debug("Init section allocation order:\n");
2453 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2454 for (i = 0; i < info->hdr->e_shnum; ++i) {
2455 Elf_Shdr *s = &info->sechdrs[i];
2456 const char *sname = info->secstrings + s->sh_name;
2458 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2459 || (s->sh_flags & masks[m][1])
2460 || s->sh_entsize != ~0UL
2461 || !strstarts(sname, ".init"))
2462 continue;
2463 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2464 | INIT_OFFSET_MASK);
2465 pr_debug("\t%s\n", sname);
2467 switch (m) {
2468 case 0: /* executable */
2469 mod->init_layout.size = debug_align(mod->init_layout.size);
2470 mod->init_layout.text_size = mod->init_layout.size;
2471 break;
2472 case 1: /* RO: text and ro-data */
2473 mod->init_layout.size = debug_align(mod->init_layout.size);
2474 mod->init_layout.ro_size = mod->init_layout.size;
2475 break;
2476 case 2:
2478 * RO after init doesn't apply to init_layout (only
2479 * core_layout), so it just takes the value of ro_size.
2481 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2482 break;
2483 case 4: /* whole init */
2484 mod->init_layout.size = debug_align(mod->init_layout.size);
2485 break;
2490 static void set_license(struct module *mod, const char *license)
2492 if (!license)
2493 license = "unspecified";
2495 if (!license_is_gpl_compatible(license)) {
2496 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2497 pr_warn("%s: module license '%s' taints kernel.\n",
2498 mod->name, license);
2499 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2500 LOCKDEP_NOW_UNRELIABLE);
2504 /* Parse tag=value strings from .modinfo section */
2505 static char *next_string(char *string, unsigned long *secsize)
2507 /* Skip non-zero chars */
2508 while (string[0]) {
2509 string++;
2510 if ((*secsize)-- <= 1)
2511 return NULL;
2514 /* Skip any zero padding. */
2515 while (!string[0]) {
2516 string++;
2517 if ((*secsize)-- <= 1)
2518 return NULL;
2520 return string;
2523 static char *get_modinfo(struct load_info *info, const char *tag)
2525 char *p;
2526 unsigned int taglen = strlen(tag);
2527 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2528 unsigned long size = infosec->sh_size;
2531 * get_modinfo() calls made before rewrite_section_headers()
2532 * must use sh_offset, as sh_addr isn't set!
2534 for (p = (char *)info->hdr + infosec->sh_offset; p; p = next_string(p, &size)) {
2535 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2536 return p + taglen + 1;
2538 return NULL;
2541 static void setup_modinfo(struct module *mod, struct load_info *info)
2543 struct module_attribute *attr;
2544 int i;
2546 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2547 if (attr->setup)
2548 attr->setup(mod, get_modinfo(info, attr->attr.name));
2552 static void free_modinfo(struct module *mod)
2554 struct module_attribute *attr;
2555 int i;
2557 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2558 if (attr->free)
2559 attr->free(mod);
2563 #ifdef CONFIG_KALLSYMS
2565 /* lookup symbol in given range of kernel_symbols */
2566 static const struct kernel_symbol *lookup_symbol(const char *name,
2567 const struct kernel_symbol *start,
2568 const struct kernel_symbol *stop)
2570 return bsearch(name, start, stop - start,
2571 sizeof(struct kernel_symbol), cmp_name);
2574 static int is_exported(const char *name, unsigned long value,
2575 const struct module *mod)
2577 const struct kernel_symbol *ks;
2578 if (!mod)
2579 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2580 else
2581 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2582 return ks != NULL && kernel_symbol_value(ks) == value;
2585 /* As per nm */
2586 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2588 const Elf_Shdr *sechdrs = info->sechdrs;
2590 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2591 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2592 return 'v';
2593 else
2594 return 'w';
2596 if (sym->st_shndx == SHN_UNDEF)
2597 return 'U';
2598 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2599 return 'a';
2600 if (sym->st_shndx >= SHN_LORESERVE)
2601 return '?';
2602 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2603 return 't';
2604 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2605 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2606 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2607 return 'r';
2608 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2609 return 'g';
2610 else
2611 return 'd';
2613 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2614 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2615 return 's';
2616 else
2617 return 'b';
2619 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2620 ".debug")) {
2621 return 'n';
2623 return '?';
2626 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2627 unsigned int shnum, unsigned int pcpundx)
2629 const Elf_Shdr *sec;
2631 if (src->st_shndx == SHN_UNDEF
2632 || src->st_shndx >= shnum
2633 || !src->st_name)
2634 return false;
2636 #ifdef CONFIG_KALLSYMS_ALL
2637 if (src->st_shndx == pcpundx)
2638 return true;
2639 #endif
2641 sec = sechdrs + src->st_shndx;
2642 if (!(sec->sh_flags & SHF_ALLOC)
2643 #ifndef CONFIG_KALLSYMS_ALL
2644 || !(sec->sh_flags & SHF_EXECINSTR)
2645 #endif
2646 || (sec->sh_entsize & INIT_OFFSET_MASK))
2647 return false;
2649 return true;
2653 * We only allocate and copy the strings needed by the parts of symtab
2654 * we keep. This is simple, but has the effect of making multiple
2655 * copies of duplicates. We could be more sophisticated, see
2656 * linux-kernel thread starting with
2657 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2659 static void layout_symtab(struct module *mod, struct load_info *info)
2661 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2662 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2663 const Elf_Sym *src;
2664 unsigned int i, nsrc, ndst, strtab_size = 0;
2666 /* Put symbol section at end of init part of module. */
2667 symsect->sh_flags |= SHF_ALLOC;
2668 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2669 info->index.sym) | INIT_OFFSET_MASK;
2670 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2672 src = (void *)info->hdr + symsect->sh_offset;
2673 nsrc = symsect->sh_size / sizeof(*src);
2675 /* Compute total space required for the core symbols' strtab. */
2676 for (ndst = i = 0; i < nsrc; i++) {
2677 if (i == 0 || is_livepatch_module(mod) ||
2678 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2679 info->index.pcpu)) {
2680 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2681 ndst++;
2685 /* Append room for core symbols at end of core part. */
2686 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2687 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2688 mod->core_layout.size += strtab_size;
2689 mod->core_layout.size = debug_align(mod->core_layout.size);
2691 /* Put string table section at end of init part of module. */
2692 strsect->sh_flags |= SHF_ALLOC;
2693 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2694 info->index.str) | INIT_OFFSET_MASK;
2695 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2697 /* We'll tack temporary mod_kallsyms on the end. */
2698 mod->init_layout.size = ALIGN(mod->init_layout.size,
2699 __alignof__(struct mod_kallsyms));
2700 info->mod_kallsyms_init_off = mod->init_layout.size;
2701 mod->init_layout.size += sizeof(struct mod_kallsyms);
2702 mod->init_layout.size = debug_align(mod->init_layout.size);
2706 * We use the full symtab and strtab which layout_symtab arranged to
2707 * be appended to the init section. Later we switch to the cut-down
2708 * core-only ones.
2710 static void add_kallsyms(struct module *mod, const struct load_info *info)
2712 unsigned int i, ndst;
2713 const Elf_Sym *src;
2714 Elf_Sym *dst;
2715 char *s;
2716 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2718 /* Set up to point into init section. */
2719 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2721 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2722 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2723 /* Make sure we get permanent strtab: don't use info->strtab. */
2724 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2726 /* Set types up while we still have access to sections. */
2727 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2728 mod->kallsyms->symtab[i].st_info
2729 = elf_type(&mod->kallsyms->symtab[i], info);
2731 /* Now populate the cut down core kallsyms for after init. */
2732 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2733 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2734 src = mod->kallsyms->symtab;
2735 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2736 if (i == 0 || is_livepatch_module(mod) ||
2737 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2738 info->index.pcpu)) {
2739 dst[ndst] = src[i];
2740 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2741 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2742 KSYM_NAME_LEN) + 1;
2745 mod->core_kallsyms.num_symtab = ndst;
2747 #else
2748 static inline void layout_symtab(struct module *mod, struct load_info *info)
2752 static void add_kallsyms(struct module *mod, const struct load_info *info)
2755 #endif /* CONFIG_KALLSYMS */
2757 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2759 if (!debug)
2760 return;
2761 #ifdef CONFIG_DYNAMIC_DEBUG
2762 if (ddebug_add_module(debug, num, mod->name))
2763 pr_err("dynamic debug error adding module: %s\n",
2764 debug->modname);
2765 #endif
2768 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2770 if (debug)
2771 ddebug_remove_module(mod->name);
2774 void * __weak module_alloc(unsigned long size)
2776 return vmalloc_exec(size);
2779 #ifdef CONFIG_DEBUG_KMEMLEAK
2780 static void kmemleak_load_module(const struct module *mod,
2781 const struct load_info *info)
2783 unsigned int i;
2785 /* only scan the sections containing data */
2786 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2788 for (i = 1; i < info->hdr->e_shnum; i++) {
2789 /* Scan all writable sections that's not executable */
2790 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2791 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2792 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2793 continue;
2795 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2796 info->sechdrs[i].sh_size, GFP_KERNEL);
2799 #else
2800 static inline void kmemleak_load_module(const struct module *mod,
2801 const struct load_info *info)
2804 #endif
2806 #ifdef CONFIG_MODULE_SIG
2807 static int module_sig_check(struct load_info *info, int flags)
2809 int err = -ENOKEY;
2810 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2811 const void *mod = info->hdr;
2814 * Require flags == 0, as a module with version information
2815 * removed is no longer the module that was signed
2817 if (flags == 0 &&
2818 info->len > markerlen &&
2819 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2820 /* We truncate the module to discard the signature */
2821 info->len -= markerlen;
2822 err = mod_verify_sig(mod, info);
2825 if (!err) {
2826 info->sig_ok = true;
2827 return 0;
2830 /* Not having a signature is only an error if we're strict. */
2831 if (err == -ENOKEY && !is_module_sig_enforced())
2832 err = 0;
2834 return err;
2836 #else /* !CONFIG_MODULE_SIG */
2837 static int module_sig_check(struct load_info *info, int flags)
2839 return 0;
2841 #endif /* !CONFIG_MODULE_SIG */
2843 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2844 static int elf_header_check(struct load_info *info)
2846 if (info->len < sizeof(*(info->hdr)))
2847 return -ENOEXEC;
2849 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2850 || info->hdr->e_type != ET_REL
2851 || !elf_check_arch(info->hdr)
2852 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2853 return -ENOEXEC;
2855 if (info->hdr->e_shoff >= info->len
2856 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2857 info->len - info->hdr->e_shoff))
2858 return -ENOEXEC;
2860 return 0;
2863 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2865 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2867 do {
2868 unsigned long n = min(len, COPY_CHUNK_SIZE);
2870 if (copy_from_user(dst, usrc, n) != 0)
2871 return -EFAULT;
2872 cond_resched();
2873 dst += n;
2874 usrc += n;
2875 len -= n;
2876 } while (len);
2877 return 0;
2880 #ifdef CONFIG_LIVEPATCH
2881 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2883 if (get_modinfo(info, "livepatch")) {
2884 mod->klp = true;
2885 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2886 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2887 mod->name);
2890 return 0;
2892 #else /* !CONFIG_LIVEPATCH */
2893 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2895 if (get_modinfo(info, "livepatch")) {
2896 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2897 mod->name);
2898 return -ENOEXEC;
2901 return 0;
2903 #endif /* CONFIG_LIVEPATCH */
2905 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2907 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2908 return;
2910 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2911 mod->name);
2914 /* Sets info->hdr and info->len. */
2915 static int copy_module_from_user(const void __user *umod, unsigned long len,
2916 struct load_info *info)
2918 int err;
2920 info->len = len;
2921 if (info->len < sizeof(*(info->hdr)))
2922 return -ENOEXEC;
2924 err = security_kernel_load_data(LOADING_MODULE);
2925 if (err)
2926 return err;
2928 /* Suck in entire file: we'll want most of it. */
2929 info->hdr = __vmalloc(info->len,
2930 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2931 if (!info->hdr)
2932 return -ENOMEM;
2934 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2935 vfree(info->hdr);
2936 return -EFAULT;
2939 return 0;
2942 static void free_copy(struct load_info *info)
2944 vfree(info->hdr);
2947 static int rewrite_section_headers(struct load_info *info, int flags)
2949 unsigned int i;
2951 /* This should always be true, but let's be sure. */
2952 info->sechdrs[0].sh_addr = 0;
2954 for (i = 1; i < info->hdr->e_shnum; i++) {
2955 Elf_Shdr *shdr = &info->sechdrs[i];
2956 if (shdr->sh_type != SHT_NOBITS
2957 && info->len < shdr->sh_offset + shdr->sh_size) {
2958 pr_err("Module len %lu truncated\n", info->len);
2959 return -ENOEXEC;
2962 /* Mark all sections sh_addr with their address in the
2963 temporary image. */
2964 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2966 #ifndef CONFIG_MODULE_UNLOAD
2967 /* Don't load .exit sections */
2968 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2969 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2970 #endif
2973 /* Track but don't keep modinfo and version sections. */
2974 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2975 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2977 return 0;
2981 * Set up our basic convenience variables (pointers to section headers,
2982 * search for module section index etc), and do some basic section
2983 * verification.
2985 * Set info->mod to the temporary copy of the module in info->hdr. The final one
2986 * will be allocated in move_module().
2988 static int setup_load_info(struct load_info *info, int flags)
2990 unsigned int i;
2992 /* Set up the convenience variables */
2993 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2994 info->secstrings = (void *)info->hdr
2995 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2997 /* Try to find a name early so we can log errors with a module name */
2998 info->index.info = find_sec(info, ".modinfo");
2999 if (info->index.info)
3000 info->name = get_modinfo(info, "name");
3002 /* Find internal symbols and strings. */
3003 for (i = 1; i < info->hdr->e_shnum; i++) {
3004 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3005 info->index.sym = i;
3006 info->index.str = info->sechdrs[i].sh_link;
3007 info->strtab = (char *)info->hdr
3008 + info->sechdrs[info->index.str].sh_offset;
3009 break;
3013 if (info->index.sym == 0) {
3014 pr_warn("%s: module has no symbols (stripped?)\n",
3015 info->name ?: "(missing .modinfo section or name field)");
3016 return -ENOEXEC;
3019 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3020 if (!info->index.mod) {
3021 pr_warn("%s: No module found in object\n",
3022 info->name ?: "(missing .modinfo section or name field)");
3023 return -ENOEXEC;
3025 /* This is temporary: point mod into copy of data. */
3026 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3029 * If we didn't load the .modinfo 'name' field earlier, fall back to
3030 * on-disk struct mod 'name' field.
3032 if (!info->name)
3033 info->name = info->mod->name;
3035 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3036 info->index.vers = 0; /* Pretend no __versions section! */
3037 else
3038 info->index.vers = find_sec(info, "__versions");
3040 info->index.pcpu = find_pcpusec(info);
3042 return 0;
3045 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3047 const char *modmagic = get_modinfo(info, "vermagic");
3048 int err;
3050 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3051 modmagic = NULL;
3053 /* This is allowed: modprobe --force will invalidate it. */
3054 if (!modmagic) {
3055 err = try_to_force_load(mod, "bad vermagic");
3056 if (err)
3057 return err;
3058 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3059 pr_err("%s: version magic '%s' should be '%s'\n",
3060 info->name, modmagic, vermagic);
3061 return -ENOEXEC;
3064 if (!get_modinfo(info, "intree")) {
3065 if (!test_taint(TAINT_OOT_MODULE))
3066 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3067 mod->name);
3068 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3071 check_modinfo_retpoline(mod, info);
3073 if (get_modinfo(info, "staging")) {
3074 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3075 pr_warn("%s: module is from the staging directory, the quality "
3076 "is unknown, you have been warned.\n", mod->name);
3079 err = check_modinfo_livepatch(mod, info);
3080 if (err)
3081 return err;
3083 /* Set up license info based on the info section */
3084 set_license(mod, get_modinfo(info, "license"));
3086 return 0;
3089 static int find_module_sections(struct module *mod, struct load_info *info)
3091 mod->kp = section_objs(info, "__param",
3092 sizeof(*mod->kp), &mod->num_kp);
3093 mod->syms = section_objs(info, "__ksymtab",
3094 sizeof(*mod->syms), &mod->num_syms);
3095 mod->crcs = section_addr(info, "__kcrctab");
3096 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3097 sizeof(*mod->gpl_syms),
3098 &mod->num_gpl_syms);
3099 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3100 mod->gpl_future_syms = section_objs(info,
3101 "__ksymtab_gpl_future",
3102 sizeof(*mod->gpl_future_syms),
3103 &mod->num_gpl_future_syms);
3104 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3106 #ifdef CONFIG_UNUSED_SYMBOLS
3107 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3108 sizeof(*mod->unused_syms),
3109 &mod->num_unused_syms);
3110 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3111 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3112 sizeof(*mod->unused_gpl_syms),
3113 &mod->num_unused_gpl_syms);
3114 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3115 #endif
3116 #ifdef CONFIG_CONSTRUCTORS
3117 mod->ctors = section_objs(info, ".ctors",
3118 sizeof(*mod->ctors), &mod->num_ctors);
3119 if (!mod->ctors)
3120 mod->ctors = section_objs(info, ".init_array",
3121 sizeof(*mod->ctors), &mod->num_ctors);
3122 else if (find_sec(info, ".init_array")) {
3124 * This shouldn't happen with same compiler and binutils
3125 * building all parts of the module.
3127 pr_warn("%s: has both .ctors and .init_array.\n",
3128 mod->name);
3129 return -EINVAL;
3131 #endif
3133 #ifdef CONFIG_TRACEPOINTS
3134 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3135 sizeof(*mod->tracepoints_ptrs),
3136 &mod->num_tracepoints);
3137 #endif
3138 #ifdef CONFIG_JUMP_LABEL
3139 mod->jump_entries = section_objs(info, "__jump_table",
3140 sizeof(*mod->jump_entries),
3141 &mod->num_jump_entries);
3142 #endif
3143 #ifdef CONFIG_EVENT_TRACING
3144 mod->trace_events = section_objs(info, "_ftrace_events",
3145 sizeof(*mod->trace_events),
3146 &mod->num_trace_events);
3147 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3148 sizeof(*mod->trace_evals),
3149 &mod->num_trace_evals);
3150 #endif
3151 #ifdef CONFIG_TRACING
3152 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3153 sizeof(*mod->trace_bprintk_fmt_start),
3154 &mod->num_trace_bprintk_fmt);
3155 #endif
3156 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3157 /* sechdrs[0].sh_size is always zero */
3158 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3159 sizeof(*mod->ftrace_callsites),
3160 &mod->num_ftrace_callsites);
3161 #endif
3162 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3163 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3164 sizeof(*mod->ei_funcs),
3165 &mod->num_ei_funcs);
3166 #endif
3167 mod->extable = section_objs(info, "__ex_table",
3168 sizeof(*mod->extable), &mod->num_exentries);
3170 if (section_addr(info, "__obsparm"))
3171 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3173 info->debug = section_objs(info, "__verbose",
3174 sizeof(*info->debug), &info->num_debug);
3176 return 0;
3179 static int move_module(struct module *mod, struct load_info *info)
3181 int i;
3182 void *ptr;
3184 /* Do the allocs. */
3185 ptr = module_alloc(mod->core_layout.size);
3187 * The pointer to this block is stored in the module structure
3188 * which is inside the block. Just mark it as not being a
3189 * leak.
3191 kmemleak_not_leak(ptr);
3192 if (!ptr)
3193 return -ENOMEM;
3195 memset(ptr, 0, mod->core_layout.size);
3196 mod->core_layout.base = ptr;
3198 if (mod->init_layout.size) {
3199 ptr = module_alloc(mod->init_layout.size);
3201 * The pointer to this block is stored in the module structure
3202 * which is inside the block. This block doesn't need to be
3203 * scanned as it contains data and code that will be freed
3204 * after the module is initialized.
3206 kmemleak_ignore(ptr);
3207 if (!ptr) {
3208 module_memfree(mod->core_layout.base);
3209 return -ENOMEM;
3211 memset(ptr, 0, mod->init_layout.size);
3212 mod->init_layout.base = ptr;
3213 } else
3214 mod->init_layout.base = NULL;
3216 /* Transfer each section which specifies SHF_ALLOC */
3217 pr_debug("final section addresses:\n");
3218 for (i = 0; i < info->hdr->e_shnum; i++) {
3219 void *dest;
3220 Elf_Shdr *shdr = &info->sechdrs[i];
3222 if (!(shdr->sh_flags & SHF_ALLOC))
3223 continue;
3225 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3226 dest = mod->init_layout.base
3227 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3228 else
3229 dest = mod->core_layout.base + shdr->sh_entsize;
3231 if (shdr->sh_type != SHT_NOBITS)
3232 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3233 /* Update sh_addr to point to copy in image. */
3234 shdr->sh_addr = (unsigned long)dest;
3235 pr_debug("\t0x%lx %s\n",
3236 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3239 return 0;
3242 static int check_module_license_and_versions(struct module *mod)
3244 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3247 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3248 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3249 * using GPL-only symbols it needs.
3251 if (strcmp(mod->name, "ndiswrapper") == 0)
3252 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3254 /* driverloader was caught wrongly pretending to be under GPL */
3255 if (strcmp(mod->name, "driverloader") == 0)
3256 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3257 LOCKDEP_NOW_UNRELIABLE);
3259 /* lve claims to be GPL but upstream won't provide source */
3260 if (strcmp(mod->name, "lve") == 0)
3261 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3262 LOCKDEP_NOW_UNRELIABLE);
3264 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3265 pr_warn("%s: module license taints kernel.\n", mod->name);
3267 #ifdef CONFIG_MODVERSIONS
3268 if ((mod->num_syms && !mod->crcs)
3269 || (mod->num_gpl_syms && !mod->gpl_crcs)
3270 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3271 #ifdef CONFIG_UNUSED_SYMBOLS
3272 || (mod->num_unused_syms && !mod->unused_crcs)
3273 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3274 #endif
3276 return try_to_force_load(mod,
3277 "no versions for exported symbols");
3279 #endif
3280 return 0;
3283 static void flush_module_icache(const struct module *mod)
3285 mm_segment_t old_fs;
3287 /* flush the icache in correct context */
3288 old_fs = get_fs();
3289 set_fs(KERNEL_DS);
3292 * Flush the instruction cache, since we've played with text.
3293 * Do it before processing of module parameters, so the module
3294 * can provide parameter accessor functions of its own.
3296 if (mod->init_layout.base)
3297 flush_icache_range((unsigned long)mod->init_layout.base,
3298 (unsigned long)mod->init_layout.base
3299 + mod->init_layout.size);
3300 flush_icache_range((unsigned long)mod->core_layout.base,
3301 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3303 set_fs(old_fs);
3306 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3307 Elf_Shdr *sechdrs,
3308 char *secstrings,
3309 struct module *mod)
3311 return 0;
3314 /* module_blacklist is a comma-separated list of module names */
3315 static char *module_blacklist;
3316 static bool blacklisted(const char *module_name)
3318 const char *p;
3319 size_t len;
3321 if (!module_blacklist)
3322 return false;
3324 for (p = module_blacklist; *p; p += len) {
3325 len = strcspn(p, ",");
3326 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3327 return true;
3328 if (p[len] == ',')
3329 len++;
3331 return false;
3333 core_param(module_blacklist, module_blacklist, charp, 0400);
3335 static struct module *layout_and_allocate(struct load_info *info, int flags)
3337 struct module *mod;
3338 unsigned int ndx;
3339 int err;
3341 err = check_modinfo(info->mod, info, flags);
3342 if (err)
3343 return ERR_PTR(err);
3345 /* Allow arches to frob section contents and sizes. */
3346 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3347 info->secstrings, info->mod);
3348 if (err < 0)
3349 return ERR_PTR(err);
3351 /* We will do a special allocation for per-cpu sections later. */
3352 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3355 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3356 * layout_sections() can put it in the right place.
3357 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3359 ndx = find_sec(info, ".data..ro_after_init");
3360 if (ndx)
3361 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3363 /* Determine total sizes, and put offsets in sh_entsize. For now
3364 this is done generically; there doesn't appear to be any
3365 special cases for the architectures. */
3366 layout_sections(info->mod, info);
3367 layout_symtab(info->mod, info);
3369 /* Allocate and move to the final place */
3370 err = move_module(info->mod, info);
3371 if (err)
3372 return ERR_PTR(err);
3374 /* Module has been copied to its final place now: return it. */
3375 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3376 kmemleak_load_module(mod, info);
3377 return mod;
3380 /* mod is no longer valid after this! */
3381 static void module_deallocate(struct module *mod, struct load_info *info)
3383 percpu_modfree(mod);
3384 module_arch_freeing_init(mod);
3385 module_memfree(mod->init_layout.base);
3386 module_memfree(mod->core_layout.base);
3389 int __weak module_finalize(const Elf_Ehdr *hdr,
3390 const Elf_Shdr *sechdrs,
3391 struct module *me)
3393 return 0;
3396 static int post_relocation(struct module *mod, const struct load_info *info)
3398 /* Sort exception table now relocations are done. */
3399 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3401 /* Copy relocated percpu area over. */
3402 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3403 info->sechdrs[info->index.pcpu].sh_size);
3405 /* Setup kallsyms-specific fields. */
3406 add_kallsyms(mod, info);
3408 /* Arch-specific module finalizing. */
3409 return module_finalize(info->hdr, info->sechdrs, mod);
3412 /* Is this module of this name done loading? No locks held. */
3413 static bool finished_loading(const char *name)
3415 struct module *mod;
3416 bool ret;
3419 * The module_mutex should not be a heavily contended lock;
3420 * if we get the occasional sleep here, we'll go an extra iteration
3421 * in the wait_event_interruptible(), which is harmless.
3423 sched_annotate_sleep();
3424 mutex_lock(&module_mutex);
3425 mod = find_module_all(name, strlen(name), true);
3426 ret = !mod || mod->state == MODULE_STATE_LIVE;
3427 mutex_unlock(&module_mutex);
3429 return ret;
3432 /* Call module constructors. */
3433 static void do_mod_ctors(struct module *mod)
3435 #ifdef CONFIG_CONSTRUCTORS
3436 unsigned long i;
3438 for (i = 0; i < mod->num_ctors; i++)
3439 mod->ctors[i]();
3440 #endif
3443 /* For freeing module_init on success, in case kallsyms traversing */
3444 struct mod_initfree {
3445 struct rcu_head rcu;
3446 void *module_init;
3449 static void do_free_init(struct rcu_head *head)
3451 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3452 module_memfree(m->module_init);
3453 kfree(m);
3457 * This is where the real work happens.
3459 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3460 * helper command 'lx-symbols'.
3462 static noinline int do_init_module(struct module *mod)
3464 int ret = 0;
3465 struct mod_initfree *freeinit;
3467 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3468 if (!freeinit) {
3469 ret = -ENOMEM;
3470 goto fail;
3472 freeinit->module_init = mod->init_layout.base;
3475 * We want to find out whether @mod uses async during init. Clear
3476 * PF_USED_ASYNC. async_schedule*() will set it.
3478 current->flags &= ~PF_USED_ASYNC;
3480 do_mod_ctors(mod);
3481 /* Start the module */
3482 if (mod->init != NULL)
3483 ret = do_one_initcall(mod->init);
3484 if (ret < 0) {
3485 goto fail_free_freeinit;
3487 if (ret > 0) {
3488 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3489 "follow 0/-E convention\n"
3490 "%s: loading module anyway...\n",
3491 __func__, mod->name, ret, __func__);
3492 dump_stack();
3495 /* Now it's a first class citizen! */
3496 mod->state = MODULE_STATE_LIVE;
3497 blocking_notifier_call_chain(&module_notify_list,
3498 MODULE_STATE_LIVE, mod);
3500 /* Delay uevent until module has finished its init routine */
3501 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3504 * We need to finish all async code before the module init sequence
3505 * is done. This has potential to deadlock. For example, a newly
3506 * detected block device can trigger request_module() of the
3507 * default iosched from async probing task. Once userland helper
3508 * reaches here, async_synchronize_full() will wait on the async
3509 * task waiting on request_module() and deadlock.
3511 * This deadlock is avoided by perfomring async_synchronize_full()
3512 * iff module init queued any async jobs. This isn't a full
3513 * solution as it will deadlock the same if module loading from
3514 * async jobs nests more than once; however, due to the various
3515 * constraints, this hack seems to be the best option for now.
3516 * Please refer to the following thread for details.
3518 * http://thread.gmane.org/gmane.linux.kernel/1420814
3520 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3521 async_synchronize_full();
3523 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3524 mod->init_layout.size);
3525 mutex_lock(&module_mutex);
3526 /* Drop initial reference. */
3527 module_put(mod);
3528 trim_init_extable(mod);
3529 #ifdef CONFIG_KALLSYMS
3530 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3531 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3532 #endif
3533 module_enable_ro(mod, true);
3534 mod_tree_remove_init(mod);
3535 disable_ro_nx(&mod->init_layout);
3536 module_arch_freeing_init(mod);
3537 mod->init_layout.base = NULL;
3538 mod->init_layout.size = 0;
3539 mod->init_layout.ro_size = 0;
3540 mod->init_layout.ro_after_init_size = 0;
3541 mod->init_layout.text_size = 0;
3543 * We want to free module_init, but be aware that kallsyms may be
3544 * walking this with preempt disabled. In all the failure paths, we
3545 * call synchronize_sched(), but we don't want to slow down the success
3546 * path, so use actual RCU here.
3547 * Note that module_alloc() on most architectures creates W+X page
3548 * mappings which won't be cleaned up until do_free_init() runs. Any
3549 * code such as mark_rodata_ro() which depends on those mappings to
3550 * be cleaned up needs to sync with the queued work - ie
3551 * rcu_barrier_sched()
3553 call_rcu_sched(&freeinit->rcu, do_free_init);
3554 mutex_unlock(&module_mutex);
3555 wake_up_all(&module_wq);
3557 return 0;
3559 fail_free_freeinit:
3560 kfree(freeinit);
3561 fail:
3562 /* Try to protect us from buggy refcounters. */
3563 mod->state = MODULE_STATE_GOING;
3564 synchronize_sched();
3565 module_put(mod);
3566 blocking_notifier_call_chain(&module_notify_list,
3567 MODULE_STATE_GOING, mod);
3568 klp_module_going(mod);
3569 ftrace_release_mod(mod);
3570 free_module(mod);
3571 wake_up_all(&module_wq);
3572 return ret;
3575 static int may_init_module(void)
3577 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3578 return -EPERM;
3580 return 0;
3584 * We try to place it in the list now to make sure it's unique before
3585 * we dedicate too many resources. In particular, temporary percpu
3586 * memory exhaustion.
3588 static int add_unformed_module(struct module *mod)
3590 int err;
3591 struct module *old;
3593 mod->state = MODULE_STATE_UNFORMED;
3595 again:
3596 mutex_lock(&module_mutex);
3597 old = find_module_all(mod->name, strlen(mod->name), true);
3598 if (old != NULL) {
3599 if (old->state != MODULE_STATE_LIVE) {
3600 /* Wait in case it fails to load. */
3601 mutex_unlock(&module_mutex);
3602 err = wait_event_interruptible(module_wq,
3603 finished_loading(mod->name));
3604 if (err)
3605 goto out_unlocked;
3606 goto again;
3608 err = -EEXIST;
3609 goto out;
3611 mod_update_bounds(mod);
3612 list_add_rcu(&mod->list, &modules);
3613 mod_tree_insert(mod);
3614 err = 0;
3616 out:
3617 mutex_unlock(&module_mutex);
3618 out_unlocked:
3619 return err;
3622 static int complete_formation(struct module *mod, struct load_info *info)
3624 int err;
3626 mutex_lock(&module_mutex);
3628 /* Find duplicate symbols (must be called under lock). */
3629 err = verify_export_symbols(mod);
3630 if (err < 0)
3631 goto out;
3633 /* This relies on module_mutex for list integrity. */
3634 module_bug_finalize(info->hdr, info->sechdrs, mod);
3636 module_enable_ro(mod, false);
3637 module_enable_nx(mod);
3638 module_enable_x(mod);
3640 /* Mark state as coming so strong_try_module_get() ignores us,
3641 * but kallsyms etc. can see us. */
3642 mod->state = MODULE_STATE_COMING;
3643 mutex_unlock(&module_mutex);
3645 return 0;
3647 out:
3648 mutex_unlock(&module_mutex);
3649 return err;
3652 static int prepare_coming_module(struct module *mod)
3654 int err;
3656 ftrace_module_enable(mod);
3657 err = klp_module_coming(mod);
3658 if (err)
3659 return err;
3661 blocking_notifier_call_chain(&module_notify_list,
3662 MODULE_STATE_COMING, mod);
3663 return 0;
3666 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3667 void *arg)
3669 struct module *mod = arg;
3670 int ret;
3672 if (strcmp(param, "async_probe") == 0) {
3673 mod->async_probe_requested = true;
3674 return 0;
3677 /* Check for magic 'dyndbg' arg */
3678 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3679 if (ret != 0)
3680 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3681 return 0;
3684 /* Allocate and load the module: note that size of section 0 is always
3685 zero, and we rely on this for optional sections. */
3686 static int load_module(struct load_info *info, const char __user *uargs,
3687 int flags)
3689 struct module *mod;
3690 long err = 0;
3691 char *after_dashes;
3693 err = elf_header_check(info);
3694 if (err)
3695 goto free_copy;
3697 err = setup_load_info(info, flags);
3698 if (err)
3699 goto free_copy;
3701 if (blacklisted(info->name)) {
3702 err = -EPERM;
3703 goto free_copy;
3706 err = module_sig_check(info, flags);
3707 if (err)
3708 goto free_copy;
3710 err = rewrite_section_headers(info, flags);
3711 if (err)
3712 goto free_copy;
3714 /* Check module struct version now, before we try to use module. */
3715 if (!check_modstruct_version(info, info->mod)) {
3716 err = -ENOEXEC;
3717 goto free_copy;
3720 /* Figure out module layout, and allocate all the memory. */
3721 mod = layout_and_allocate(info, flags);
3722 if (IS_ERR(mod)) {
3723 err = PTR_ERR(mod);
3724 goto free_copy;
3727 audit_log_kern_module(mod->name);
3729 /* Reserve our place in the list. */
3730 err = add_unformed_module(mod);
3731 if (err)
3732 goto free_module;
3734 #ifdef CONFIG_MODULE_SIG
3735 mod->sig_ok = info->sig_ok;
3736 if (!mod->sig_ok) {
3737 pr_notice_once("%s: module verification failed: signature "
3738 "and/or required key missing - tainting "
3739 "kernel\n", mod->name);
3740 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3742 #endif
3744 /* To avoid stressing percpu allocator, do this once we're unique. */
3745 err = percpu_modalloc(mod, info);
3746 if (err)
3747 goto unlink_mod;
3749 /* Now module is in final location, initialize linked lists, etc. */
3750 err = module_unload_init(mod);
3751 if (err)
3752 goto unlink_mod;
3754 init_param_lock(mod);
3756 /* Now we've got everything in the final locations, we can
3757 * find optional sections. */
3758 err = find_module_sections(mod, info);
3759 if (err)
3760 goto free_unload;
3762 err = check_module_license_and_versions(mod);
3763 if (err)
3764 goto free_unload;
3766 /* Set up MODINFO_ATTR fields */
3767 setup_modinfo(mod, info);
3769 /* Fix up syms, so that st_value is a pointer to location. */
3770 err = simplify_symbols(mod, info);
3771 if (err < 0)
3772 goto free_modinfo;
3774 err = apply_relocations(mod, info);
3775 if (err < 0)
3776 goto free_modinfo;
3778 err = post_relocation(mod, info);
3779 if (err < 0)
3780 goto free_modinfo;
3782 flush_module_icache(mod);
3784 /* Now copy in args */
3785 mod->args = strndup_user(uargs, ~0UL >> 1);
3786 if (IS_ERR(mod->args)) {
3787 err = PTR_ERR(mod->args);
3788 goto free_arch_cleanup;
3791 dynamic_debug_setup(mod, info->debug, info->num_debug);
3793 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3794 ftrace_module_init(mod);
3796 /* Finally it's fully formed, ready to start executing. */
3797 err = complete_formation(mod, info);
3798 if (err)
3799 goto ddebug_cleanup;
3801 err = prepare_coming_module(mod);
3802 if (err)
3803 goto bug_cleanup;
3805 /* Module is ready to execute: parsing args may do that. */
3806 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3807 -32768, 32767, mod,
3808 unknown_module_param_cb);
3809 if (IS_ERR(after_dashes)) {
3810 err = PTR_ERR(after_dashes);
3811 goto coming_cleanup;
3812 } else if (after_dashes) {
3813 pr_warn("%s: parameters '%s' after `--' ignored\n",
3814 mod->name, after_dashes);
3817 /* Link in to sysfs. */
3818 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3819 if (err < 0)
3820 goto coming_cleanup;
3822 if (is_livepatch_module(mod)) {
3823 err = copy_module_elf(mod, info);
3824 if (err < 0)
3825 goto sysfs_cleanup;
3828 /* Get rid of temporary copy. */
3829 free_copy(info);
3831 /* Done! */
3832 trace_module_load(mod);
3834 return do_init_module(mod);
3836 sysfs_cleanup:
3837 mod_sysfs_teardown(mod);
3838 coming_cleanup:
3839 mod->state = MODULE_STATE_GOING;
3840 destroy_params(mod->kp, mod->num_kp);
3841 blocking_notifier_call_chain(&module_notify_list,
3842 MODULE_STATE_GOING, mod);
3843 klp_module_going(mod);
3844 bug_cleanup:
3845 mod->state = MODULE_STATE_GOING;
3846 /* module_bug_cleanup needs module_mutex protection */
3847 mutex_lock(&module_mutex);
3848 module_bug_cleanup(mod);
3849 mutex_unlock(&module_mutex);
3851 /* we can't deallocate the module until we clear memory protection */
3852 module_disable_ro(mod);
3853 module_disable_nx(mod);
3855 ddebug_cleanup:
3856 ftrace_release_mod(mod);
3857 dynamic_debug_remove(mod, info->debug);
3858 synchronize_sched();
3859 kfree(mod->args);
3860 free_arch_cleanup:
3861 module_arch_cleanup(mod);
3862 free_modinfo:
3863 free_modinfo(mod);
3864 free_unload:
3865 module_unload_free(mod);
3866 unlink_mod:
3867 mutex_lock(&module_mutex);
3868 /* Unlink carefully: kallsyms could be walking list. */
3869 list_del_rcu(&mod->list);
3870 mod_tree_remove(mod);
3871 wake_up_all(&module_wq);
3872 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3873 synchronize_sched();
3874 mutex_unlock(&module_mutex);
3875 free_module:
3876 /* Free lock-classes; relies on the preceding sync_rcu() */
3877 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3879 module_deallocate(mod, info);
3880 free_copy:
3881 free_copy(info);
3882 return err;
3885 SYSCALL_DEFINE3(init_module, void __user *, umod,
3886 unsigned long, len, const char __user *, uargs)
3888 int err;
3889 struct load_info info = { };
3891 err = may_init_module();
3892 if (err)
3893 return err;
3895 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3896 umod, len, uargs);
3898 err = copy_module_from_user(umod, len, &info);
3899 if (err)
3900 return err;
3902 return load_module(&info, uargs, 0);
3905 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3907 struct load_info info = { };
3908 loff_t size;
3909 void *hdr;
3910 int err;
3912 err = may_init_module();
3913 if (err)
3914 return err;
3916 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3918 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3919 |MODULE_INIT_IGNORE_VERMAGIC))
3920 return -EINVAL;
3922 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3923 READING_MODULE);
3924 if (err)
3925 return err;
3926 info.hdr = hdr;
3927 info.len = size;
3929 return load_module(&info, uargs, flags);
3932 static inline int within(unsigned long addr, void *start, unsigned long size)
3934 return ((void *)addr >= start && (void *)addr < start + size);
3937 #ifdef CONFIG_KALLSYMS
3939 * This ignores the intensely annoying "mapping symbols" found
3940 * in ARM ELF files: $a, $t and $d.
3942 static inline int is_arm_mapping_symbol(const char *str)
3944 if (str[0] == '.' && str[1] == 'L')
3945 return true;
3946 return str[0] == '$' && strchr("axtd", str[1])
3947 && (str[2] == '\0' || str[2] == '.');
3950 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3952 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3955 static const char *get_ksymbol(struct module *mod,
3956 unsigned long addr,
3957 unsigned long *size,
3958 unsigned long *offset)
3960 unsigned int i, best = 0;
3961 unsigned long nextval;
3962 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3964 /* At worse, next value is at end of module */
3965 if (within_module_init(addr, mod))
3966 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3967 else
3968 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3970 /* Scan for closest preceding symbol, and next symbol. (ELF
3971 starts real symbols at 1). */
3972 for (i = 1; i < kallsyms->num_symtab; i++) {
3973 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3974 continue;
3976 /* We ignore unnamed symbols: they're uninformative
3977 * and inserted at a whim. */
3978 if (*symname(kallsyms, i) == '\0'
3979 || is_arm_mapping_symbol(symname(kallsyms, i)))
3980 continue;
3982 if (kallsyms->symtab[i].st_value <= addr
3983 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3984 best = i;
3985 if (kallsyms->symtab[i].st_value > addr
3986 && kallsyms->symtab[i].st_value < nextval)
3987 nextval = kallsyms->symtab[i].st_value;
3990 if (!best)
3991 return NULL;
3993 if (size)
3994 *size = nextval - kallsyms->symtab[best].st_value;
3995 if (offset)
3996 *offset = addr - kallsyms->symtab[best].st_value;
3997 return symname(kallsyms, best);
4000 void * __weak dereference_module_function_descriptor(struct module *mod,
4001 void *ptr)
4003 return ptr;
4006 /* For kallsyms to ask for address resolution. NULL means not found. Careful
4007 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4008 const char *module_address_lookup(unsigned long addr,
4009 unsigned long *size,
4010 unsigned long *offset,
4011 char **modname,
4012 char *namebuf)
4014 const char *ret = NULL;
4015 struct module *mod;
4017 preempt_disable();
4018 mod = __module_address(addr);
4019 if (mod) {
4020 if (modname)
4021 *modname = mod->name;
4022 ret = get_ksymbol(mod, addr, size, offset);
4024 /* Make a copy in here where it's safe */
4025 if (ret) {
4026 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4027 ret = namebuf;
4029 preempt_enable();
4031 return ret;
4034 int lookup_module_symbol_name(unsigned long addr, char *symname)
4036 struct module *mod;
4038 preempt_disable();
4039 list_for_each_entry_rcu(mod, &modules, list) {
4040 if (mod->state == MODULE_STATE_UNFORMED)
4041 continue;
4042 if (within_module(addr, mod)) {
4043 const char *sym;
4045 sym = get_ksymbol(mod, addr, NULL, NULL);
4046 if (!sym)
4047 goto out;
4048 strlcpy(symname, sym, KSYM_NAME_LEN);
4049 preempt_enable();
4050 return 0;
4053 out:
4054 preempt_enable();
4055 return -ERANGE;
4058 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4059 unsigned long *offset, char *modname, char *name)
4061 struct module *mod;
4063 preempt_disable();
4064 list_for_each_entry_rcu(mod, &modules, list) {
4065 if (mod->state == MODULE_STATE_UNFORMED)
4066 continue;
4067 if (within_module(addr, mod)) {
4068 const char *sym;
4070 sym = get_ksymbol(mod, addr, size, offset);
4071 if (!sym)
4072 goto out;
4073 if (modname)
4074 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4075 if (name)
4076 strlcpy(name, sym, KSYM_NAME_LEN);
4077 preempt_enable();
4078 return 0;
4081 out:
4082 preempt_enable();
4083 return -ERANGE;
4086 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4087 char *name, char *module_name, int *exported)
4089 struct module *mod;
4091 preempt_disable();
4092 list_for_each_entry_rcu(mod, &modules, list) {
4093 struct mod_kallsyms *kallsyms;
4095 if (mod->state == MODULE_STATE_UNFORMED)
4096 continue;
4097 kallsyms = rcu_dereference_sched(mod->kallsyms);
4098 if (symnum < kallsyms->num_symtab) {
4099 *value = kallsyms->symtab[symnum].st_value;
4100 *type = kallsyms->symtab[symnum].st_info;
4101 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4102 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4103 *exported = is_exported(name, *value, mod);
4104 preempt_enable();
4105 return 0;
4107 symnum -= kallsyms->num_symtab;
4109 preempt_enable();
4110 return -ERANGE;
4113 static unsigned long mod_find_symname(struct module *mod, const char *name)
4115 unsigned int i;
4116 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4118 for (i = 0; i < kallsyms->num_symtab; i++)
4119 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4120 kallsyms->symtab[i].st_shndx != SHN_UNDEF)
4121 return kallsyms->symtab[i].st_value;
4122 return 0;
4125 /* Look for this name: can be of form module:name. */
4126 unsigned long module_kallsyms_lookup_name(const char *name)
4128 struct module *mod;
4129 char *colon;
4130 unsigned long ret = 0;
4132 /* Don't lock: we're in enough trouble already. */
4133 preempt_disable();
4134 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4135 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4136 ret = mod_find_symname(mod, colon+1);
4137 } else {
4138 list_for_each_entry_rcu(mod, &modules, list) {
4139 if (mod->state == MODULE_STATE_UNFORMED)
4140 continue;
4141 if ((ret = mod_find_symname(mod, name)) != 0)
4142 break;
4145 preempt_enable();
4146 return ret;
4149 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4150 struct module *, unsigned long),
4151 void *data)
4153 struct module *mod;
4154 unsigned int i;
4155 int ret;
4157 module_assert_mutex();
4159 list_for_each_entry(mod, &modules, list) {
4160 /* We hold module_mutex: no need for rcu_dereference_sched */
4161 struct mod_kallsyms *kallsyms = mod->kallsyms;
4163 if (mod->state == MODULE_STATE_UNFORMED)
4164 continue;
4165 for (i = 0; i < kallsyms->num_symtab; i++) {
4167 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
4168 continue;
4170 ret = fn(data, symname(kallsyms, i),
4171 mod, kallsyms->symtab[i].st_value);
4172 if (ret != 0)
4173 return ret;
4176 return 0;
4178 #endif /* CONFIG_KALLSYMS */
4180 /* Maximum number of characters written by module_flags() */
4181 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4183 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4184 static char *module_flags(struct module *mod, char *buf)
4186 int bx = 0;
4188 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4189 if (mod->taints ||
4190 mod->state == MODULE_STATE_GOING ||
4191 mod->state == MODULE_STATE_COMING) {
4192 buf[bx++] = '(';
4193 bx += module_flags_taint(mod, buf + bx);
4194 /* Show a - for module-is-being-unloaded */
4195 if (mod->state == MODULE_STATE_GOING)
4196 buf[bx++] = '-';
4197 /* Show a + for module-is-being-loaded */
4198 if (mod->state == MODULE_STATE_COMING)
4199 buf[bx++] = '+';
4200 buf[bx++] = ')';
4202 buf[bx] = '\0';
4204 return buf;
4207 #ifdef CONFIG_PROC_FS
4208 /* Called by the /proc file system to return a list of modules. */
4209 static void *m_start(struct seq_file *m, loff_t *pos)
4211 mutex_lock(&module_mutex);
4212 return seq_list_start(&modules, *pos);
4215 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4217 return seq_list_next(p, &modules, pos);
4220 static void m_stop(struct seq_file *m, void *p)
4222 mutex_unlock(&module_mutex);
4225 static int m_show(struct seq_file *m, void *p)
4227 struct module *mod = list_entry(p, struct module, list);
4228 char buf[MODULE_FLAGS_BUF_SIZE];
4229 void *value;
4231 /* We always ignore unformed modules. */
4232 if (mod->state == MODULE_STATE_UNFORMED)
4233 return 0;
4235 seq_printf(m, "%s %u",
4236 mod->name, mod->init_layout.size + mod->core_layout.size);
4237 print_unload_info(m, mod);
4239 /* Informative for users. */
4240 seq_printf(m, " %s",
4241 mod->state == MODULE_STATE_GOING ? "Unloading" :
4242 mod->state == MODULE_STATE_COMING ? "Loading" :
4243 "Live");
4244 /* Used by oprofile and other similar tools. */
4245 value = m->private ? NULL : mod->core_layout.base;
4246 seq_printf(m, " 0x%px", value);
4248 /* Taints info */
4249 if (mod->taints)
4250 seq_printf(m, " %s", module_flags(mod, buf));
4252 seq_puts(m, "\n");
4253 return 0;
4256 /* Format: modulename size refcount deps address
4258 Where refcount is a number or -, and deps is a comma-separated list
4259 of depends or -.
4261 static const struct seq_operations modules_op = {
4262 .start = m_start,
4263 .next = m_next,
4264 .stop = m_stop,
4265 .show = m_show
4269 * This also sets the "private" pointer to non-NULL if the
4270 * kernel pointers should be hidden (so you can just test
4271 * "m->private" to see if you should keep the values private).
4273 * We use the same logic as for /proc/kallsyms.
4275 static int modules_open(struct inode *inode, struct file *file)
4277 int err = seq_open(file, &modules_op);
4279 if (!err) {
4280 struct seq_file *m = file->private_data;
4281 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4284 return err;
4287 static const struct file_operations proc_modules_operations = {
4288 .open = modules_open,
4289 .read = seq_read,
4290 .llseek = seq_lseek,
4291 .release = seq_release,
4294 static int __init proc_modules_init(void)
4296 proc_create("modules", 0, NULL, &proc_modules_operations);
4297 return 0;
4299 module_init(proc_modules_init);
4300 #endif
4302 /* Given an address, look for it in the module exception tables. */
4303 const struct exception_table_entry *search_module_extables(unsigned long addr)
4305 const struct exception_table_entry *e = NULL;
4306 struct module *mod;
4308 preempt_disable();
4309 mod = __module_address(addr);
4310 if (!mod)
4311 goto out;
4313 if (!mod->num_exentries)
4314 goto out;
4316 e = search_extable(mod->extable,
4317 mod->num_exentries,
4318 addr);
4319 out:
4320 preempt_enable();
4323 * Now, if we found one, we are running inside it now, hence
4324 * we cannot unload the module, hence no refcnt needed.
4326 return e;
4330 * is_module_address - is this address inside a module?
4331 * @addr: the address to check.
4333 * See is_module_text_address() if you simply want to see if the address
4334 * is code (not data).
4336 bool is_module_address(unsigned long addr)
4338 bool ret;
4340 preempt_disable();
4341 ret = __module_address(addr) != NULL;
4342 preempt_enable();
4344 return ret;
4348 * __module_address - get the module which contains an address.
4349 * @addr: the address.
4351 * Must be called with preempt disabled or module mutex held so that
4352 * module doesn't get freed during this.
4354 struct module *__module_address(unsigned long addr)
4356 struct module *mod;
4358 if (addr < module_addr_min || addr > module_addr_max)
4359 return NULL;
4361 module_assert_mutex_or_preempt();
4363 mod = mod_find(addr);
4364 if (mod) {
4365 BUG_ON(!within_module(addr, mod));
4366 if (mod->state == MODULE_STATE_UNFORMED)
4367 mod = NULL;
4369 return mod;
4371 EXPORT_SYMBOL_GPL(__module_address);
4374 * is_module_text_address - is this address inside module code?
4375 * @addr: the address to check.
4377 * See is_module_address() if you simply want to see if the address is
4378 * anywhere in a module. See kernel_text_address() for testing if an
4379 * address corresponds to kernel or module code.
4381 bool is_module_text_address(unsigned long addr)
4383 bool ret;
4385 preempt_disable();
4386 ret = __module_text_address(addr) != NULL;
4387 preempt_enable();
4389 return ret;
4393 * __module_text_address - get the module whose code contains an address.
4394 * @addr: the address.
4396 * Must be called with preempt disabled or module mutex held so that
4397 * module doesn't get freed during this.
4399 struct module *__module_text_address(unsigned long addr)
4401 struct module *mod = __module_address(addr);
4402 if (mod) {
4403 /* Make sure it's within the text section. */
4404 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4405 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4406 mod = NULL;
4408 return mod;
4410 EXPORT_SYMBOL_GPL(__module_text_address);
4412 /* Don't grab lock, we're oopsing. */
4413 void print_modules(void)
4415 struct module *mod;
4416 char buf[MODULE_FLAGS_BUF_SIZE];
4418 printk(KERN_DEFAULT "Modules linked in:");
4419 /* Most callers should already have preempt disabled, but make sure */
4420 preempt_disable();
4421 list_for_each_entry_rcu(mod, &modules, list) {
4422 if (mod->state == MODULE_STATE_UNFORMED)
4423 continue;
4424 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4426 preempt_enable();
4427 if (last_unloaded_module[0])
4428 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4429 pr_cont("\n");
4432 #ifdef CONFIG_MODVERSIONS
4433 /* Generate the signature for all relevant module structures here.
4434 * If these change, we don't want to try to parse the module. */
4435 void module_layout(struct module *mod,
4436 struct modversion_info *ver,
4437 struct kernel_param *kp,
4438 struct kernel_symbol *ks,
4439 struct tracepoint * const *tp)
4442 EXPORT_SYMBOL(module_layout);
4443 #endif