2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
31 #define pr_fmt(fmt) "rcu: " fmt
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate_wait.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/sched/debug.h>
42 #include <linux/nmi.h>
43 #include <linux/atomic.h>
44 #include <linux/bitops.h>
45 #include <linux/export.h>
46 #include <linux/completion.h>
47 #include <linux/moduleparam.h>
48 #include <linux/percpu.h>
49 #include <linux/notifier.h>
50 #include <linux/cpu.h>
51 #include <linux/mutex.h>
52 #include <linux/time.h>
53 #include <linux/kernel_stat.h>
54 #include <linux/wait.h>
55 #include <linux/kthread.h>
56 #include <uapi/linux/sched/types.h>
57 #include <linux/prefetch.h>
58 #include <linux/delay.h>
59 #include <linux/stop_machine.h>
60 #include <linux/random.h>
61 #include <linux/trace_events.h>
62 #include <linux/suspend.h>
63 #include <linux/ftrace.h>
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
71 #define MODULE_PARAM_PREFIX "rcutree."
73 /* Data structures. */
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
84 # define DEFINE_RCU_TPS(sname) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87 # define RCU_STATE_NAME(sname) sname##_varname
89 # define DEFINE_RCU_TPS(sname)
90 # define RCU_STATE_NAME(sname) __stringify(sname)
93 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94 DEFINE_RCU_TPS(sname) \
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96 struct rcu_state sname##_state = { \
97 .level = { &sname##_state.node[0] }, \
98 .rda = &sname##_data, \
100 .gp_state = RCU_GP_IDLE, \
101 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 .ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \
110 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
111 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
113 static struct rcu_state
*const rcu_state_p
;
114 LIST_HEAD(rcu_struct_flavors
);
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree
;
118 module_param(dump_tree
, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact
;
121 module_param(rcu_fanout_exact
, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
124 module_param(rcu_fanout_leaf
, int, 0444);
125 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
126 /* Number of rcu_nodes at specified level. */
127 int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
128 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly
;
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
137 * optimize synchronize_rcu() to a simple barrier(). When this variable
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
144 int rcu_scheduler_active __read_mostly
;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
159 static int rcu_scheduler_fully_active __read_mostly
;
162 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
163 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
);
164 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
165 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
166 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
167 static void invoke_rcu_core(void);
168 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
169 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
170 struct rcu_data
*rdp
, bool wake
);
171 static void sync_sched_exp_online_cleanup(int cpu
);
173 /* rcuc/rcub kthread realtime priority */
174 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
175 module_param(kthread_prio
, int, 0644);
177 /* Delay in jiffies for grace-period initialization delays, debug only. */
179 static int gp_preinit_delay
;
180 module_param(gp_preinit_delay
, int, 0444);
181 static int gp_init_delay
;
182 module_param(gp_init_delay
, int, 0444);
183 static int gp_cleanup_delay
;
184 module_param(gp_cleanup_delay
, int, 0444);
186 /* Retreive RCU kthreads priority for rcutorture */
187 int rcu_get_gp_kthreads_prio(void)
191 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio
);
194 * Number of grace periods between delays, normalized by the duration of
195 * the delay. The longer the delay, the more the grace periods between
196 * each delay. The reason for this normalization is that it means that,
197 * for non-zero delays, the overall slowdown of grace periods is constant
198 * regardless of the duration of the delay. This arrangement balances
199 * the need for long delays to increase some race probabilities with the
200 * need for fast grace periods to increase other race probabilities.
202 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
205 * Compute the mask of online CPUs for the specified rcu_node structure.
206 * This will not be stable unless the rcu_node structure's ->lock is
207 * held, but the bit corresponding to the current CPU will be stable
210 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
212 return READ_ONCE(rnp
->qsmaskinitnext
);
216 * Return true if an RCU grace period is in progress. The READ_ONCE()s
217 * permit this function to be invoked without holding the root rcu_node
218 * structure's ->lock, but of course results can be subject to change.
220 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
222 return rcu_seq_state(rcu_seq_current(&rsp
->gp_seq
));
226 * Note a quiescent state. Because we do not need to know
227 * how many quiescent states passed, just if there was at least
228 * one since the start of the grace period, this just sets a flag.
229 * The caller must have disabled preemption.
231 void rcu_sched_qs(void)
233 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
234 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
236 trace_rcu_grace_period(TPS("rcu_sched"),
237 __this_cpu_read(rcu_sched_data
.gp_seq
),
239 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
240 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
242 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
243 rcu_report_exp_rdp(&rcu_sched_state
,
244 this_cpu_ptr(&rcu_sched_data
), true);
249 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
250 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
251 trace_rcu_grace_period(TPS("rcu_bh"),
252 __this_cpu_read(rcu_bh_data
.gp_seq
),
254 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
259 * Steal a bit from the bottom of ->dynticks for idle entry/exit
260 * control. Initially this is for TLB flushing.
262 #define RCU_DYNTICK_CTRL_MASK 0x1
263 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
264 #ifndef rcu_eqs_special_exit
265 #define rcu_eqs_special_exit() do { } while (0)
268 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
269 .dynticks_nesting
= 1,
270 .dynticks_nmi_nesting
= DYNTICK_IRQ_NONIDLE
,
271 .dynticks
= ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR
),
275 * Record entry into an extended quiescent state. This is only to be
276 * called when not already in an extended quiescent state.
278 static void rcu_dynticks_eqs_enter(void)
280 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
284 * CPUs seeing atomic_add_return() must see prior RCU read-side
285 * critical sections, and we also must force ordering with the
288 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
289 /* Better be in an extended quiescent state! */
290 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
291 (seq
& RCU_DYNTICK_CTRL_CTR
));
292 /* Better not have special action (TLB flush) pending! */
293 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
294 (seq
& RCU_DYNTICK_CTRL_MASK
));
298 * Record exit from an extended quiescent state. This is only to be
299 * called from an extended quiescent state.
301 static void rcu_dynticks_eqs_exit(void)
303 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
307 * CPUs seeing atomic_add_return() must see prior idle sojourns,
308 * and we also must force ordering with the next RCU read-side
311 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
312 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
313 !(seq
& RCU_DYNTICK_CTRL_CTR
));
314 if (seq
& RCU_DYNTICK_CTRL_MASK
) {
315 atomic_andnot(RCU_DYNTICK_CTRL_MASK
, &rdtp
->dynticks
);
316 smp_mb__after_atomic(); /* _exit after clearing mask. */
317 /* Prefer duplicate flushes to losing a flush. */
318 rcu_eqs_special_exit();
323 * Reset the current CPU's ->dynticks counter to indicate that the
324 * newly onlined CPU is no longer in an extended quiescent state.
325 * This will either leave the counter unchanged, or increment it
326 * to the next non-quiescent value.
328 * The non-atomic test/increment sequence works because the upper bits
329 * of the ->dynticks counter are manipulated only by the corresponding CPU,
330 * or when the corresponding CPU is offline.
332 static void rcu_dynticks_eqs_online(void)
334 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
336 if (atomic_read(&rdtp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
)
338 atomic_add(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
342 * Is the current CPU in an extended quiescent state?
344 * No ordering, as we are sampling CPU-local information.
346 bool rcu_dynticks_curr_cpu_in_eqs(void)
348 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
350 return !(atomic_read(&rdtp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
);
354 * Snapshot the ->dynticks counter with full ordering so as to allow
355 * stable comparison of this counter with past and future snapshots.
357 int rcu_dynticks_snap(struct rcu_dynticks
*rdtp
)
359 int snap
= atomic_add_return(0, &rdtp
->dynticks
);
361 return snap
& ~RCU_DYNTICK_CTRL_MASK
;
365 * Return true if the snapshot returned from rcu_dynticks_snap()
366 * indicates that RCU is in an extended quiescent state.
368 static bool rcu_dynticks_in_eqs(int snap
)
370 return !(snap
& RCU_DYNTICK_CTRL_CTR
);
374 * Return true if the CPU corresponding to the specified rcu_dynticks
375 * structure has spent some time in an extended quiescent state since
376 * rcu_dynticks_snap() returned the specified snapshot.
378 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks
*rdtp
, int snap
)
380 return snap
!= rcu_dynticks_snap(rdtp
);
384 * Set the special (bottom) bit of the specified CPU so that it
385 * will take special action (such as flushing its TLB) on the
386 * next exit from an extended quiescent state. Returns true if
387 * the bit was successfully set, or false if the CPU was not in
388 * an extended quiescent state.
390 bool rcu_eqs_special_set(int cpu
)
394 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
397 old
= atomic_read(&rdtp
->dynticks
);
398 if (old
& RCU_DYNTICK_CTRL_CTR
)
400 new = old
| RCU_DYNTICK_CTRL_MASK
;
401 } while (atomic_cmpxchg(&rdtp
->dynticks
, old
, new) != old
);
406 * Let the RCU core know that this CPU has gone through the scheduler,
407 * which is a quiescent state. This is called when the need for a
408 * quiescent state is urgent, so we burn an atomic operation and full
409 * memory barriers to let the RCU core know about it, regardless of what
410 * this CPU might (or might not) do in the near future.
412 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
414 * The caller must have disabled interrupts and must not be idle.
416 static void rcu_momentary_dyntick_idle(void)
418 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
421 raw_cpu_write(rcu_dynticks
.rcu_need_heavy_qs
, false);
422 special
= atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
423 /* It is illegal to call this from idle state. */
424 WARN_ON_ONCE(!(special
& RCU_DYNTICK_CTRL_CTR
));
428 * Note a context switch. This is a quiescent state for RCU-sched,
429 * and requires special handling for preemptible RCU.
430 * The caller must have disabled interrupts.
432 void rcu_note_context_switch(bool preempt
)
434 barrier(); /* Avoid RCU read-side critical sections leaking down. */
435 trace_rcu_utilization(TPS("Start context switch"));
437 rcu_preempt_note_context_switch(preempt
);
438 /* Load rcu_urgent_qs before other flags. */
439 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
)))
441 this_cpu_write(rcu_dynticks
.rcu_urgent_qs
, false);
442 if (unlikely(raw_cpu_read(rcu_dynticks
.rcu_need_heavy_qs
)))
443 rcu_momentary_dyntick_idle();
444 this_cpu_inc(rcu_dynticks
.rcu_qs_ctr
);
446 rcu_tasks_qs(current
);
448 trace_rcu_utilization(TPS("End context switch"));
449 barrier(); /* Avoid RCU read-side critical sections leaking up. */
451 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
454 * Register a quiescent state for all RCU flavors. If there is an
455 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
456 * dyntick-idle quiescent state visible to other CPUs (but only for those
457 * RCU flavors in desperate need of a quiescent state, which will normally
458 * be none of them). Either way, do a lightweight quiescent state for
461 * The barrier() calls are redundant in the common case when this is
462 * called externally, but just in case this is called from within this
466 void rcu_all_qs(void)
470 if (!raw_cpu_read(rcu_dynticks
.rcu_urgent_qs
))
473 /* Load rcu_urgent_qs before other flags. */
474 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
))) {
478 this_cpu_write(rcu_dynticks
.rcu_urgent_qs
, false);
479 barrier(); /* Avoid RCU read-side critical sections leaking down. */
480 if (unlikely(raw_cpu_read(rcu_dynticks
.rcu_need_heavy_qs
))) {
481 local_irq_save(flags
);
482 rcu_momentary_dyntick_idle();
483 local_irq_restore(flags
);
485 if (unlikely(raw_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
)))
487 this_cpu_inc(rcu_dynticks
.rcu_qs_ctr
);
488 barrier(); /* Avoid RCU read-side critical sections leaking up. */
491 EXPORT_SYMBOL_GPL(rcu_all_qs
);
493 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
494 static long blimit
= DEFAULT_RCU_BLIMIT
;
495 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
496 static long qhimark
= DEFAULT_RCU_QHIMARK
;
497 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
498 static long qlowmark
= DEFAULT_RCU_QLOMARK
;
500 module_param(blimit
, long, 0444);
501 module_param(qhimark
, long, 0444);
502 module_param(qlowmark
, long, 0444);
504 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
505 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
506 static bool rcu_kick_kthreads
;
508 static int param_set_first_fqs_jiffies(const char *val
, const struct kernel_param
*kp
)
511 int ret
= kstrtoul(val
, 0, &j
);
514 WRITE_ONCE(*(ulong
*)kp
->arg
, (j
> HZ
) ? HZ
: j
);
518 static int param_set_next_fqs_jiffies(const char *val
, const struct kernel_param
*kp
)
521 int ret
= kstrtoul(val
, 0, &j
);
524 WRITE_ONCE(*(ulong
*)kp
->arg
, (j
> HZ
) ? HZ
: (j
?: 1));
528 static struct kernel_param_ops first_fqs_jiffies_ops
= {
529 .set
= param_set_first_fqs_jiffies
,
530 .get
= param_get_ulong
,
533 static struct kernel_param_ops next_fqs_jiffies_ops
= {
534 .set
= param_set_next_fqs_jiffies
,
535 .get
= param_get_ulong
,
538 module_param_cb(jiffies_till_first_fqs
, &first_fqs_jiffies_ops
, &jiffies_till_first_fqs
, 0644);
539 module_param_cb(jiffies_till_next_fqs
, &next_fqs_jiffies_ops
, &jiffies_till_next_fqs
, 0644);
540 module_param(rcu_kick_kthreads
, bool, 0644);
543 * How long the grace period must be before we start recruiting
544 * quiescent-state help from rcu_note_context_switch().
546 static ulong jiffies_till_sched_qs
= HZ
/ 10;
547 module_param(jiffies_till_sched_qs
, ulong
, 0444);
549 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*rsp
));
550 static void force_quiescent_state(struct rcu_state
*rsp
);
551 static int rcu_pending(void);
554 * Return the number of RCU GPs completed thus far for debug & stats.
556 unsigned long rcu_get_gp_seq(void)
558 return READ_ONCE(rcu_state_p
->gp_seq
);
560 EXPORT_SYMBOL_GPL(rcu_get_gp_seq
);
563 * Return the number of RCU-sched GPs completed thus far for debug & stats.
565 unsigned long rcu_sched_get_gp_seq(void)
567 return READ_ONCE(rcu_sched_state
.gp_seq
);
569 EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq
);
572 * Return the number of RCU-bh GPs completed thus far for debug & stats.
574 unsigned long rcu_bh_get_gp_seq(void)
576 return READ_ONCE(rcu_bh_state
.gp_seq
);
578 EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq
);
581 * Return the number of RCU expedited batches completed thus far for
582 * debug & stats. Odd numbers mean that a batch is in progress, even
583 * numbers mean idle. The value returned will thus be roughly double
584 * the cumulative batches since boot.
586 unsigned long rcu_exp_batches_completed(void)
588 return rcu_state_p
->expedited_sequence
;
590 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
593 * Return the number of RCU-sched expedited batches completed thus far
594 * for debug & stats. Similar to rcu_exp_batches_completed().
596 unsigned long rcu_exp_batches_completed_sched(void)
598 return rcu_sched_state
.expedited_sequence
;
600 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched
);
603 * Force a quiescent state.
605 void rcu_force_quiescent_state(void)
607 force_quiescent_state(rcu_state_p
);
609 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
612 * Force a quiescent state for RCU BH.
614 void rcu_bh_force_quiescent_state(void)
616 force_quiescent_state(&rcu_bh_state
);
618 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
621 * Force a quiescent state for RCU-sched.
623 void rcu_sched_force_quiescent_state(void)
625 force_quiescent_state(&rcu_sched_state
);
627 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
630 * Show the state of the grace-period kthreads.
632 void show_rcu_gp_kthreads(void)
635 struct rcu_data
*rdp
;
636 struct rcu_node
*rnp
;
637 struct rcu_state
*rsp
;
639 for_each_rcu_flavor(rsp
) {
640 pr_info("%s: wait state: %d ->state: %#lx\n",
641 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
642 rcu_for_each_node_breadth_first(rsp
, rnp
) {
643 if (ULONG_CMP_GE(rsp
->gp_seq
, rnp
->gp_seq_needed
))
645 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
646 rnp
->grplo
, rnp
->grphi
, rnp
->gp_seq
,
648 if (!rcu_is_leaf_node(rnp
))
650 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
651 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
653 ULONG_CMP_GE(rsp
->gp_seq
,
656 pr_info("\tcpu %d ->gp_seq_needed %lu\n",
657 cpu
, rdp
->gp_seq_needed
);
660 /* sched_show_task(rsp->gp_kthread); */
663 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
666 * Send along grace-period-related data for rcutorture diagnostics.
668 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
669 unsigned long *gp_seq
)
671 struct rcu_state
*rsp
= NULL
;
680 case RCU_SCHED_FLAVOR
:
681 rsp
= &rcu_sched_state
;
688 *flags
= READ_ONCE(rsp
->gp_flags
);
689 *gp_seq
= rcu_seq_current(&rsp
->gp_seq
);
691 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
694 * Return the root node of the specified rcu_state structure.
696 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
698 return &rsp
->node
[0];
702 * Enter an RCU extended quiescent state, which can be either the
703 * idle loop or adaptive-tickless usermode execution.
705 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
706 * the possibility of usermode upcalls having messed up our count
707 * of interrupt nesting level during the prior busy period.
709 static void rcu_eqs_enter(bool user
)
711 struct rcu_state
*rsp
;
712 struct rcu_data
*rdp
;
713 struct rcu_dynticks
*rdtp
;
715 rdtp
= this_cpu_ptr(&rcu_dynticks
);
716 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, 0);
717 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
718 rdtp
->dynticks_nesting
== 0);
719 if (rdtp
->dynticks_nesting
!= 1) {
720 rdtp
->dynticks_nesting
--;
724 lockdep_assert_irqs_disabled();
725 trace_rcu_dyntick(TPS("Start"), rdtp
->dynticks_nesting
, 0, rdtp
->dynticks
);
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
727 for_each_rcu_flavor(rsp
) {
728 rdp
= this_cpu_ptr(rsp
->rda
);
729 do_nocb_deferred_wakeup(rdp
);
731 rcu_prepare_for_idle();
732 WRITE_ONCE(rdtp
->dynticks_nesting
, 0); /* Avoid irq-access tearing. */
733 rcu_dynticks_eqs_enter();
734 rcu_dynticks_task_enter();
738 * rcu_idle_enter - inform RCU that current CPU is entering idle
740 * Enter idle mode, in other words, -leave- the mode in which RCU
741 * read-side critical sections can occur. (Though RCU read-side
742 * critical sections can occur in irq handlers in idle, a possibility
743 * handled by irq_enter() and irq_exit().)
745 * If you add or remove a call to rcu_idle_enter(), be sure to test with
746 * CONFIG_RCU_EQS_DEBUG=y.
748 void rcu_idle_enter(void)
750 lockdep_assert_irqs_disabled();
751 rcu_eqs_enter(false);
754 #ifdef CONFIG_NO_HZ_FULL
756 * rcu_user_enter - inform RCU that we are resuming userspace.
758 * Enter RCU idle mode right before resuming userspace. No use of RCU
759 * is permitted between this call and rcu_user_exit(). This way the
760 * CPU doesn't need to maintain the tick for RCU maintenance purposes
761 * when the CPU runs in userspace.
763 * If you add or remove a call to rcu_user_enter(), be sure to test with
764 * CONFIG_RCU_EQS_DEBUG=y.
766 void rcu_user_enter(void)
768 lockdep_assert_irqs_disabled();
771 #endif /* CONFIG_NO_HZ_FULL */
774 * rcu_nmi_exit - inform RCU of exit from NMI context
776 * If we are returning from the outermost NMI handler that interrupted an
777 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
778 * to let the RCU grace-period handling know that the CPU is back to
781 * If you add or remove a call to rcu_nmi_exit(), be sure to test
782 * with CONFIG_RCU_EQS_DEBUG=y.
784 void rcu_nmi_exit(void)
786 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
789 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
790 * (We are exiting an NMI handler, so RCU better be paying attention
793 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
794 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
797 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
798 * leave it in non-RCU-idle state.
800 if (rdtp
->dynticks_nmi_nesting
!= 1) {
801 trace_rcu_dyntick(TPS("--="), rdtp
->dynticks_nmi_nesting
, rdtp
->dynticks_nmi_nesting
- 2, rdtp
->dynticks
);
802 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, /* No store tearing. */
803 rdtp
->dynticks_nmi_nesting
- 2);
807 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
808 trace_rcu_dyntick(TPS("Startirq"), rdtp
->dynticks_nmi_nesting
, 0, rdtp
->dynticks
);
809 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, 0); /* Avoid store tearing. */
810 rcu_dynticks_eqs_enter();
814 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
816 * Exit from an interrupt handler, which might possibly result in entering
817 * idle mode, in other words, leaving the mode in which read-side critical
818 * sections can occur. The caller must have disabled interrupts.
820 * This code assumes that the idle loop never does anything that might
821 * result in unbalanced calls to irq_enter() and irq_exit(). If your
822 * architecture's idle loop violates this assumption, RCU will give you what
823 * you deserve, good and hard. But very infrequently and irreproducibly.
825 * Use things like work queues to work around this limitation.
827 * You have been warned.
829 * If you add or remove a call to rcu_irq_exit(), be sure to test with
830 * CONFIG_RCU_EQS_DEBUG=y.
832 void rcu_irq_exit(void)
834 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
836 lockdep_assert_irqs_disabled();
837 if (rdtp
->dynticks_nmi_nesting
== 1)
838 rcu_prepare_for_idle();
840 if (rdtp
->dynticks_nmi_nesting
== 0)
841 rcu_dynticks_task_enter();
845 * Wrapper for rcu_irq_exit() where interrupts are enabled.
847 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
848 * with CONFIG_RCU_EQS_DEBUG=y.
850 void rcu_irq_exit_irqson(void)
854 local_irq_save(flags
);
856 local_irq_restore(flags
);
860 * Exit an RCU extended quiescent state, which can be either the
861 * idle loop or adaptive-tickless usermode execution.
863 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
864 * allow for the possibility of usermode upcalls messing up our count of
865 * interrupt nesting level during the busy period that is just now starting.
867 static void rcu_eqs_exit(bool user
)
869 struct rcu_dynticks
*rdtp
;
872 lockdep_assert_irqs_disabled();
873 rdtp
= this_cpu_ptr(&rcu_dynticks
);
874 oldval
= rdtp
->dynticks_nesting
;
875 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
877 rdtp
->dynticks_nesting
++;
880 rcu_dynticks_task_exit();
881 rcu_dynticks_eqs_exit();
882 rcu_cleanup_after_idle();
883 trace_rcu_dyntick(TPS("End"), rdtp
->dynticks_nesting
, 1, rdtp
->dynticks
);
884 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
885 WRITE_ONCE(rdtp
->dynticks_nesting
, 1);
886 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, DYNTICK_IRQ_NONIDLE
);
890 * rcu_idle_exit - inform RCU that current CPU is leaving idle
892 * Exit idle mode, in other words, -enter- the mode in which RCU
893 * read-side critical sections can occur.
895 * If you add or remove a call to rcu_idle_exit(), be sure to test with
896 * CONFIG_RCU_EQS_DEBUG=y.
898 void rcu_idle_exit(void)
902 local_irq_save(flags
);
904 local_irq_restore(flags
);
907 #ifdef CONFIG_NO_HZ_FULL
909 * rcu_user_exit - inform RCU that we are exiting userspace.
911 * Exit RCU idle mode while entering the kernel because it can
912 * run a RCU read side critical section anytime.
914 * If you add or remove a call to rcu_user_exit(), be sure to test with
915 * CONFIG_RCU_EQS_DEBUG=y.
917 void rcu_user_exit(void)
921 #endif /* CONFIG_NO_HZ_FULL */
924 * rcu_nmi_enter - inform RCU of entry to NMI context
926 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
927 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
928 * that the CPU is active. This implementation permits nested NMIs, as
929 * long as the nesting level does not overflow an int. (You will probably
930 * run out of stack space first.)
932 * If you add or remove a call to rcu_nmi_enter(), be sure to test
933 * with CONFIG_RCU_EQS_DEBUG=y.
935 void rcu_nmi_enter(void)
937 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
940 /* Complain about underflow. */
941 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
944 * If idle from RCU viewpoint, atomically increment ->dynticks
945 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
946 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
947 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
948 * to be in the outermost NMI handler that interrupted an RCU-idle
949 * period (observation due to Andy Lutomirski).
951 if (rcu_dynticks_curr_cpu_in_eqs()) {
952 rcu_dynticks_eqs_exit();
955 trace_rcu_dyntick(incby
== 1 ? TPS("Endirq") : TPS("++="),
956 rdtp
->dynticks_nmi_nesting
,
957 rdtp
->dynticks_nmi_nesting
+ incby
, rdtp
->dynticks
);
958 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, /* Prevent store tearing. */
959 rdtp
->dynticks_nmi_nesting
+ incby
);
964 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
966 * Enter an interrupt handler, which might possibly result in exiting
967 * idle mode, in other words, entering the mode in which read-side critical
968 * sections can occur. The caller must have disabled interrupts.
970 * Note that the Linux kernel is fully capable of entering an interrupt
971 * handler that it never exits, for example when doing upcalls to user mode!
972 * This code assumes that the idle loop never does upcalls to user mode.
973 * If your architecture's idle loop does do upcalls to user mode (or does
974 * anything else that results in unbalanced calls to the irq_enter() and
975 * irq_exit() functions), RCU will give you what you deserve, good and hard.
976 * But very infrequently and irreproducibly.
978 * Use things like work queues to work around this limitation.
980 * You have been warned.
982 * If you add or remove a call to rcu_irq_enter(), be sure to test with
983 * CONFIG_RCU_EQS_DEBUG=y.
985 void rcu_irq_enter(void)
987 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
989 lockdep_assert_irqs_disabled();
990 if (rdtp
->dynticks_nmi_nesting
== 0)
991 rcu_dynticks_task_exit();
993 if (rdtp
->dynticks_nmi_nesting
== 1)
994 rcu_cleanup_after_idle();
998 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1000 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1001 * with CONFIG_RCU_EQS_DEBUG=y.
1003 void rcu_irq_enter_irqson(void)
1005 unsigned long flags
;
1007 local_irq_save(flags
);
1009 local_irq_restore(flags
);
1013 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1015 * Return true if RCU is watching the running CPU, which means that this
1016 * CPU can safely enter RCU read-side critical sections. In other words,
1017 * if the current CPU is in its idle loop and is neither in an interrupt
1018 * or NMI handler, return true.
1020 bool notrace
rcu_is_watching(void)
1024 preempt_disable_notrace();
1025 ret
= !rcu_dynticks_curr_cpu_in_eqs();
1026 preempt_enable_notrace();
1029 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1032 * If a holdout task is actually running, request an urgent quiescent
1033 * state from its CPU. This is unsynchronized, so migrations can cause
1034 * the request to go to the wrong CPU. Which is OK, all that will happen
1035 * is that the CPU's next context switch will be a bit slower and next
1036 * time around this task will generate another request.
1038 void rcu_request_urgent_qs_task(struct task_struct
*t
)
1045 return; /* This task is not running on that CPU. */
1046 smp_store_release(per_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
, cpu
), true);
1049 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1052 * Is the current CPU online as far as RCU is concerned?
1054 * Disable preemption to avoid false positives that could otherwise
1055 * happen due to the current CPU number being sampled, this task being
1056 * preempted, its old CPU being taken offline, resuming on some other CPU,
1057 * then determining that its old CPU is now offline. Because there are
1058 * multiple flavors of RCU, and because this function can be called in the
1059 * midst of updating the flavors while a given CPU coming online or going
1060 * offline, it is necessary to check all flavors. If any of the flavors
1061 * believe that given CPU is online, it is considered to be online.
1063 * Disable checking if in an NMI handler because we cannot safely
1064 * report errors from NMI handlers anyway. In addition, it is OK to use
1065 * RCU on an offline processor during initial boot, hence the check for
1066 * rcu_scheduler_fully_active.
1068 bool rcu_lockdep_current_cpu_online(void)
1070 struct rcu_data
*rdp
;
1071 struct rcu_node
*rnp
;
1072 struct rcu_state
*rsp
;
1074 if (in_nmi() || !rcu_scheduler_fully_active
)
1077 for_each_rcu_flavor(rsp
) {
1078 rdp
= this_cpu_ptr(rsp
->rda
);
1080 if (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) {
1088 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1090 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1093 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1095 * If the current CPU is idle or running at a first-level (not nested)
1096 * interrupt from idle, return true. The caller must have at least
1097 * disabled preemption.
1099 static int rcu_is_cpu_rrupt_from_idle(void)
1101 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 0 &&
1102 __this_cpu_read(rcu_dynticks
.dynticks_nmi_nesting
) <= 1;
1106 * We are reporting a quiescent state on behalf of some other CPU, so
1107 * it is our responsibility to check for and handle potential overflow
1108 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1109 * After all, the CPU might be in deep idle state, and thus executing no
1112 static void rcu_gpnum_ovf(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1114 raw_lockdep_assert_held_rcu_node(rnp
);
1115 if (ULONG_CMP_LT(rcu_seq_current(&rdp
->gp_seq
) + ULONG_MAX
/ 4,
1117 WRITE_ONCE(rdp
->gpwrap
, true);
1118 if (ULONG_CMP_LT(rdp
->rcu_iw_gp_seq
+ ULONG_MAX
/ 4, rnp
->gp_seq
))
1119 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
+ ULONG_MAX
/ 4;
1123 * Snapshot the specified CPU's dynticks counter so that we can later
1124 * credit them with an implicit quiescent state. Return 1 if this CPU
1125 * is in dynticks idle mode, which is an extended quiescent state.
1127 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
1129 rdp
->dynticks_snap
= rcu_dynticks_snap(rdp
->dynticks
);
1130 if (rcu_dynticks_in_eqs(rdp
->dynticks_snap
)) {
1131 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gp_seq
, rdp
->cpu
, TPS("dti"));
1132 rcu_gpnum_ovf(rdp
->mynode
, rdp
);
1139 * Handler for the irq_work request posted when a grace period has
1140 * gone on for too long, but not yet long enough for an RCU CPU
1141 * stall warning. Set state appropriately, but just complain if
1142 * there is unexpected state on entry.
1144 static void rcu_iw_handler(struct irq_work
*iwp
)
1146 struct rcu_data
*rdp
;
1147 struct rcu_node
*rnp
;
1149 rdp
= container_of(iwp
, struct rcu_data
, rcu_iw
);
1151 raw_spin_lock_rcu_node(rnp
);
1152 if (!WARN_ON_ONCE(!rdp
->rcu_iw_pending
)) {
1153 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
;
1154 rdp
->rcu_iw_pending
= false;
1156 raw_spin_unlock_rcu_node(rnp
);
1160 * Return true if the specified CPU has passed through a quiescent
1161 * state by virtue of being in or having passed through an dynticks
1162 * idle state since the last call to dyntick_save_progress_counter()
1163 * for this same CPU, or by virtue of having been offline.
1165 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
1170 struct rcu_node
*rnp
= rdp
->mynode
;
1173 * If the CPU passed through or entered a dynticks idle phase with
1174 * no active irq/NMI handlers, then we can safely pretend that the CPU
1175 * already acknowledged the request to pass through a quiescent
1176 * state. Either way, that CPU cannot possibly be in an RCU
1177 * read-side critical section that started before the beginning
1178 * of the current RCU grace period.
1180 if (rcu_dynticks_in_eqs_since(rdp
->dynticks
, rdp
->dynticks_snap
)) {
1181 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gp_seq
, rdp
->cpu
, TPS("dti"));
1182 rdp
->dynticks_fqs
++;
1183 rcu_gpnum_ovf(rnp
, rdp
);
1188 * Has this CPU encountered a cond_resched() since the beginning
1189 * of the grace period? For this to be the case, the CPU has to
1190 * have noticed the current grace period. This might not be the
1191 * case for nohz_full CPUs looping in the kernel.
1193 jtsq
= jiffies_till_sched_qs
;
1194 ruqp
= per_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
, rdp
->cpu
);
1195 if (time_after(jiffies
, rdp
->rsp
->gp_start
+ jtsq
) &&
1196 READ_ONCE(rdp
->rcu_qs_ctr_snap
) != per_cpu(rcu_dynticks
.rcu_qs_ctr
, rdp
->cpu
) &&
1197 rcu_seq_current(&rdp
->gp_seq
) == rnp
->gp_seq
&& !rdp
->gpwrap
) {
1198 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gp_seq
, rdp
->cpu
, TPS("rqc"));
1199 rcu_gpnum_ovf(rnp
, rdp
);
1201 } else if (time_after(jiffies
, rdp
->rsp
->gp_start
+ jtsq
)) {
1202 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1203 smp_store_release(ruqp
, true);
1206 /* If waiting too long on an offline CPU, complain. */
1207 if (!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) &&
1208 time_after(jiffies
, rdp
->rsp
->gp_start
+ HZ
)) {
1210 struct rcu_node
*rnp1
;
1212 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1213 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1214 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
1215 (long)rnp
->gp_seq
, (long)rnp
->completedqs
);
1216 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
1217 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1218 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
, rnp1
->rcu_gp_init_mask
);
1219 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
1220 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1221 __func__
, rdp
->cpu
, ".o"[onl
],
1222 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
1223 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
1224 return 1; /* Break things loose after complaining. */
1228 * A CPU running for an extended time within the kernel can
1229 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1230 * even context-switching back and forth between a pair of
1231 * in-kernel CPU-bound tasks cannot advance grace periods.
1232 * So if the grace period is old enough, make the CPU pay attention.
1233 * Note that the unsynchronized assignments to the per-CPU
1234 * rcu_need_heavy_qs variable are safe. Yes, setting of
1235 * bits can be lost, but they will be set again on the next
1236 * force-quiescent-state pass. So lost bit sets do not result
1237 * in incorrect behavior, merely in a grace period lasting
1238 * a few jiffies longer than it might otherwise. Because
1239 * there are at most four threads involved, and because the
1240 * updates are only once every few jiffies, the probability of
1241 * lossage (and thus of slight grace-period extension) is
1244 rnhqp
= &per_cpu(rcu_dynticks
.rcu_need_heavy_qs
, rdp
->cpu
);
1245 if (!READ_ONCE(*rnhqp
) &&
1246 (time_after(jiffies
, rdp
->rsp
->gp_start
+ jtsq
) ||
1247 time_after(jiffies
, rdp
->rsp
->jiffies_resched
))) {
1248 WRITE_ONCE(*rnhqp
, true);
1249 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1250 smp_store_release(ruqp
, true);
1251 rdp
->rsp
->jiffies_resched
+= jtsq
; /* Re-enable beating. */
1255 * If more than halfway to RCU CPU stall-warning time, do a
1256 * resched_cpu() to try to loosen things up a bit. Also check to
1257 * see if the CPU is getting hammered with interrupts, but only
1258 * once per grace period, just to keep the IPIs down to a dull roar.
1260 if (jiffies
- rdp
->rsp
->gp_start
> rcu_jiffies_till_stall_check() / 2) {
1261 resched_cpu(rdp
->cpu
);
1262 if (IS_ENABLED(CONFIG_IRQ_WORK
) &&
1263 !rdp
->rcu_iw_pending
&& rdp
->rcu_iw_gp_seq
!= rnp
->gp_seq
&&
1264 (rnp
->ffmask
& rdp
->grpmask
)) {
1265 init_irq_work(&rdp
->rcu_iw
, rcu_iw_handler
);
1266 rdp
->rcu_iw_pending
= true;
1267 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
;
1268 irq_work_queue_on(&rdp
->rcu_iw
, rdp
->cpu
);
1275 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1277 unsigned long j
= jiffies
;
1281 j1
= rcu_jiffies_till_stall_check();
1282 /* Record ->gp_start before ->jiffies_stall. */
1283 smp_store_release(&rsp
->jiffies_stall
, j
+ j1
); /* ^^^ */
1284 rsp
->jiffies_resched
= j
+ j1
/ 2;
1285 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1289 * Convert a ->gp_state value to a character string.
1291 static const char *gp_state_getname(short gs
)
1293 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1295 return gp_state_names
[gs
];
1299 * Complain about starvation of grace-period kthread.
1301 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1307 gpa
= READ_ONCE(rsp
->gp_activity
);
1308 if (j
- gpa
> 2 * HZ
) {
1309 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1311 (long)rcu_seq_current(&rsp
->gp_seq
),
1313 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1314 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0,
1315 rsp
->gp_kthread
? task_cpu(rsp
->gp_kthread
) : -1);
1316 if (rsp
->gp_kthread
) {
1317 pr_err("RCU grace-period kthread stack dump:\n");
1318 sched_show_task(rsp
->gp_kthread
);
1319 wake_up_process(rsp
->gp_kthread
);
1325 * Dump stacks of all tasks running on stalled CPUs. First try using
1326 * NMIs, but fall back to manual remote stack tracing on architectures
1327 * that don't support NMI-based stack dumps. The NMI-triggered stack
1328 * traces are more accurate because they are printed by the target CPU.
1330 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1333 unsigned long flags
;
1334 struct rcu_node
*rnp
;
1336 rcu_for_each_leaf_node(rsp
, rnp
) {
1337 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1338 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1339 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
))
1340 if (!trigger_single_cpu_backtrace(cpu
))
1342 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1347 * If too much time has passed in the current grace period, and if
1348 * so configured, go kick the relevant kthreads.
1350 static void rcu_stall_kick_kthreads(struct rcu_state
*rsp
)
1354 if (!rcu_kick_kthreads
)
1356 j
= READ_ONCE(rsp
->jiffies_kick_kthreads
);
1357 if (time_after(jiffies
, j
) && rsp
->gp_kthread
&&
1358 (rcu_gp_in_progress(rsp
) || READ_ONCE(rsp
->gp_flags
))) {
1359 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp
->name
);
1360 rcu_ftrace_dump(DUMP_ALL
);
1361 wake_up_process(rsp
->gp_kthread
);
1362 WRITE_ONCE(rsp
->jiffies_kick_kthreads
, j
+ HZ
);
1366 static void panic_on_rcu_stall(void)
1368 if (sysctl_panic_on_rcu_stall
)
1369 panic("RCU Stall\n");
1372 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gp_seq
)
1375 unsigned long flags
;
1379 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1382 /* Kick and suppress, if so configured. */
1383 rcu_stall_kick_kthreads(rsp
);
1384 if (rcu_cpu_stall_suppress
)
1388 * OK, time to rat on our buddy...
1389 * See Documentation/RCU/stallwarn.txt for info on how to debug
1390 * RCU CPU stall warnings.
1392 pr_err("INFO: %s detected stalls on CPUs/tasks:", rsp
->name
);
1393 print_cpu_stall_info_begin();
1394 rcu_for_each_leaf_node(rsp
, rnp
) {
1395 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1396 ndetected
+= rcu_print_task_stall(rnp
);
1397 if (rnp
->qsmask
!= 0) {
1398 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1399 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
)) {
1400 print_cpu_stall_info(rsp
, cpu
);
1404 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1407 print_cpu_stall_info_end();
1408 for_each_possible_cpu(cpu
)
1409 totqlen
+= rcu_segcblist_n_cbs(&per_cpu_ptr(rsp
->rda
,
1411 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1412 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1413 (long)rcu_seq_current(&rsp
->gp_seq
), totqlen
);
1415 rcu_dump_cpu_stacks(rsp
);
1417 /* Complain about tasks blocking the grace period. */
1418 rcu_print_detail_task_stall(rsp
);
1420 if (rcu_seq_current(&rsp
->gp_seq
) != gp_seq
) {
1421 pr_err("INFO: Stall ended before state dump start\n");
1424 gpa
= READ_ONCE(rsp
->gp_activity
);
1425 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1426 rsp
->name
, j
- gpa
, j
, gpa
,
1427 jiffies_till_next_fqs
,
1428 rcu_get_root(rsp
)->qsmask
);
1429 /* In this case, the current CPU might be at fault. */
1430 sched_show_task(current
);
1433 /* Rewrite if needed in case of slow consoles. */
1434 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1435 WRITE_ONCE(rsp
->jiffies_stall
,
1436 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1438 rcu_check_gp_kthread_starvation(rsp
);
1440 panic_on_rcu_stall();
1442 force_quiescent_state(rsp
); /* Kick them all. */
1445 static void print_cpu_stall(struct rcu_state
*rsp
)
1448 unsigned long flags
;
1449 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1450 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1453 /* Kick and suppress, if so configured. */
1454 rcu_stall_kick_kthreads(rsp
);
1455 if (rcu_cpu_stall_suppress
)
1459 * OK, time to rat on ourselves...
1460 * See Documentation/RCU/stallwarn.txt for info on how to debug
1461 * RCU CPU stall warnings.
1463 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1464 print_cpu_stall_info_begin();
1465 raw_spin_lock_irqsave_rcu_node(rdp
->mynode
, flags
);
1466 print_cpu_stall_info(rsp
, smp_processor_id());
1467 raw_spin_unlock_irqrestore_rcu_node(rdp
->mynode
, flags
);
1468 print_cpu_stall_info_end();
1469 for_each_possible_cpu(cpu
)
1470 totqlen
+= rcu_segcblist_n_cbs(&per_cpu_ptr(rsp
->rda
,
1472 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1473 jiffies
- rsp
->gp_start
,
1474 (long)rcu_seq_current(&rsp
->gp_seq
), totqlen
);
1476 rcu_check_gp_kthread_starvation(rsp
);
1478 rcu_dump_cpu_stacks(rsp
);
1480 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1481 /* Rewrite if needed in case of slow consoles. */
1482 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1483 WRITE_ONCE(rsp
->jiffies_stall
,
1484 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1485 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1487 panic_on_rcu_stall();
1490 * Attempt to revive the RCU machinery by forcing a context switch.
1492 * A context switch would normally allow the RCU state machine to make
1493 * progress and it could be we're stuck in kernel space without context
1494 * switches for an entirely unreasonable amount of time.
1496 resched_cpu(smp_processor_id());
1499 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1507 struct rcu_node
*rnp
;
1509 if ((rcu_cpu_stall_suppress
&& !rcu_kick_kthreads
) ||
1510 !rcu_gp_in_progress(rsp
))
1512 rcu_stall_kick_kthreads(rsp
);
1516 * Lots of memory barriers to reject false positives.
1518 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall,
1519 * then rsp->gp_start, and finally another copy of rsp->gp_seq.
1520 * These values are updated in the opposite order with memory
1521 * barriers (or equivalent) during grace-period initialization
1522 * and cleanup. Now, a false positive can occur if we get an new
1523 * value of rsp->gp_start and a old value of rsp->jiffies_stall.
1524 * But given the memory barriers, the only way that this can happen
1525 * is if one grace period ends and another starts between these
1526 * two fetches. This is detected by comparing the second fetch
1527 * of rsp->gp_seq with the previous fetch from rsp->gp_seq.
1529 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1530 * and rsp->gp_start suffice to forestall false positives.
1532 gs1
= READ_ONCE(rsp
->gp_seq
);
1533 smp_rmb(); /* Pick up ->gp_seq first... */
1534 js
= READ_ONCE(rsp
->jiffies_stall
);
1535 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1536 gps
= READ_ONCE(rsp
->gp_start
);
1537 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1538 gs2
= READ_ONCE(rsp
->gp_seq
);
1540 ULONG_CMP_LT(j
, js
) ||
1541 ULONG_CMP_GE(gps
, js
))
1542 return; /* No stall or GP completed since entering function. */
1544 jn
= jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3;
1545 if (rcu_gp_in_progress(rsp
) &&
1546 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
) &&
1547 cmpxchg(&rsp
->jiffies_stall
, js
, jn
) == js
) {
1549 /* We haven't checked in, so go dump stack. */
1550 print_cpu_stall(rsp
);
1552 } else if (rcu_gp_in_progress(rsp
) &&
1553 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
) &&
1554 cmpxchg(&rsp
->jiffies_stall
, js
, jn
) == js
) {
1556 /* They had a few time units to dump stack, so complain. */
1557 print_other_cpu_stall(rsp
, gs2
);
1562 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1564 * Set the stall-warning timeout way off into the future, thus preventing
1565 * any RCU CPU stall-warning messages from appearing in the current set of
1566 * RCU grace periods.
1568 * The caller must disable hard irqs.
1570 void rcu_cpu_stall_reset(void)
1572 struct rcu_state
*rsp
;
1574 for_each_rcu_flavor(rsp
)
1575 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1578 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1579 static void trace_rcu_this_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1580 unsigned long gp_seq_req
, const char *s
)
1582 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gp_seq
, gp_seq_req
,
1583 rnp
->level
, rnp
->grplo
, rnp
->grphi
, s
);
1587 * rcu_start_this_gp - Request the start of a particular grace period
1588 * @rnp_start: The leaf node of the CPU from which to start.
1589 * @rdp: The rcu_data corresponding to the CPU from which to start.
1590 * @gp_seq_req: The gp_seq of the grace period to start.
1592 * Start the specified grace period, as needed to handle newly arrived
1593 * callbacks. The required future grace periods are recorded in each
1594 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1595 * is reason to awaken the grace-period kthread.
1597 * The caller must hold the specified rcu_node structure's ->lock, which
1598 * is why the caller is responsible for waking the grace-period kthread.
1600 * Returns true if the GP thread needs to be awakened else false.
1602 static bool rcu_start_this_gp(struct rcu_node
*rnp_start
, struct rcu_data
*rdp
,
1603 unsigned long gp_seq_req
)
1606 struct rcu_state
*rsp
= rdp
->rsp
;
1607 struct rcu_node
*rnp
;
1610 * Use funnel locking to either acquire the root rcu_node
1611 * structure's lock or bail out if the need for this grace period
1612 * has already been recorded -- or if that grace period has in
1613 * fact already started. If there is already a grace period in
1614 * progress in a non-leaf node, no recording is needed because the
1615 * end of the grace period will scan the leaf rcu_node structures.
1616 * Note that rnp_start->lock must not be released.
1618 raw_lockdep_assert_held_rcu_node(rnp_start
);
1619 trace_rcu_this_gp(rnp_start
, rdp
, gp_seq_req
, TPS("Startleaf"));
1620 for (rnp
= rnp_start
; 1; rnp
= rnp
->parent
) {
1621 if (rnp
!= rnp_start
)
1622 raw_spin_lock_rcu_node(rnp
);
1623 if (ULONG_CMP_GE(rnp
->gp_seq_needed
, gp_seq_req
) ||
1624 rcu_seq_started(&rnp
->gp_seq
, gp_seq_req
) ||
1625 (rnp
!= rnp_start
&&
1626 rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
)))) {
1627 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
,
1631 rnp
->gp_seq_needed
= gp_seq_req
;
1632 if (rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
))) {
1634 * We just marked the leaf or internal node, and a
1635 * grace period is in progress, which means that
1636 * rcu_gp_cleanup() will see the marking. Bail to
1637 * reduce contention.
1639 trace_rcu_this_gp(rnp_start
, rdp
, gp_seq_req
,
1640 TPS("Startedleaf"));
1643 if (rnp
!= rnp_start
&& rnp
->parent
!= NULL
)
1644 raw_spin_unlock_rcu_node(rnp
);
1646 break; /* At root, and perhaps also leaf. */
1649 /* If GP already in progress, just leave, otherwise start one. */
1650 if (rcu_gp_in_progress(rsp
)) {
1651 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("Startedleafroot"));
1654 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("Startedroot"));
1655 WRITE_ONCE(rsp
->gp_flags
, rsp
->gp_flags
| RCU_GP_FLAG_INIT
);
1656 rsp
->gp_req_activity
= jiffies
;
1657 if (!rsp
->gp_kthread
) {
1658 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("NoGPkthread"));
1661 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gp_seq
), TPS("newreq"));
1662 ret
= true; /* Caller must wake GP kthread. */
1664 /* Push furthest requested GP to leaf node and rcu_data structure. */
1665 if (ULONG_CMP_LT(gp_seq_req
, rnp
->gp_seq_needed
)) {
1666 rnp_start
->gp_seq_needed
= rnp
->gp_seq_needed
;
1667 rdp
->gp_seq_needed
= rnp
->gp_seq_needed
;
1669 if (rnp
!= rnp_start
)
1670 raw_spin_unlock_rcu_node(rnp
);
1675 * Clean up any old requests for the just-ended grace period. Also return
1676 * whether any additional grace periods have been requested.
1678 static bool rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1681 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1683 needmore
= ULONG_CMP_LT(rnp
->gp_seq
, rnp
->gp_seq_needed
);
1685 rnp
->gp_seq_needed
= rnp
->gp_seq
; /* Avoid counter wrap. */
1686 trace_rcu_this_gp(rnp
, rdp
, rnp
->gp_seq
,
1687 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1692 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1693 * an interrupt or softirq handler), and don't bother awakening when there
1694 * is nothing for the grace-period kthread to do (as in several CPUs raced
1695 * to awaken, and we lost), and finally don't try to awaken a kthread that
1696 * has not yet been created. If all those checks are passed, track some
1697 * debug information and awaken.
1699 * So why do the self-wakeup when in an interrupt or softirq handler
1700 * in the grace-period kthread's context? Because the kthread might have
1701 * been interrupted just as it was going to sleep, and just after the final
1702 * pre-sleep check of the awaken condition. In this case, a wakeup really
1703 * is required, and is therefore supplied.
1705 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1707 if ((current
== rsp
->gp_kthread
&&
1708 !in_interrupt() && !in_serving_softirq()) ||
1709 !READ_ONCE(rsp
->gp_flags
) ||
1712 swake_up_one(&rsp
->gp_wq
);
1716 * If there is room, assign a ->gp_seq number to any callbacks on this
1717 * CPU that have not already been assigned. Also accelerate any callbacks
1718 * that were previously assigned a ->gp_seq number that has since proven
1719 * to be too conservative, which can happen if callbacks get assigned a
1720 * ->gp_seq number while RCU is idle, but with reference to a non-root
1721 * rcu_node structure. This function is idempotent, so it does not hurt
1722 * to call it repeatedly. Returns an flag saying that we should awaken
1723 * the RCU grace-period kthread.
1725 * The caller must hold rnp->lock with interrupts disabled.
1727 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1728 struct rcu_data
*rdp
)
1730 unsigned long gp_seq_req
;
1733 raw_lockdep_assert_held_rcu_node(rnp
);
1735 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1736 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1740 * Callbacks are often registered with incomplete grace-period
1741 * information. Something about the fact that getting exact
1742 * information requires acquiring a global lock... RCU therefore
1743 * makes a conservative estimate of the grace period number at which
1744 * a given callback will become ready to invoke. The following
1745 * code checks this estimate and improves it when possible, thus
1746 * accelerating callback invocation to an earlier grace-period
1749 gp_seq_req
= rcu_seq_snap(&rsp
->gp_seq
);
1750 if (rcu_segcblist_accelerate(&rdp
->cblist
, gp_seq_req
))
1751 ret
= rcu_start_this_gp(rnp
, rdp
, gp_seq_req
);
1753 /* Trace depending on how much we were able to accelerate. */
1754 if (rcu_segcblist_restempty(&rdp
->cblist
, RCU_WAIT_TAIL
))
1755 trace_rcu_grace_period(rsp
->name
, rdp
->gp_seq
, TPS("AccWaitCB"));
1757 trace_rcu_grace_period(rsp
->name
, rdp
->gp_seq
, TPS("AccReadyCB"));
1762 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1763 * rcu_node structure's ->lock be held. It consults the cached value
1764 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1765 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1766 * while holding the leaf rcu_node structure's ->lock.
1768 static void rcu_accelerate_cbs_unlocked(struct rcu_state
*rsp
,
1769 struct rcu_node
*rnp
,
1770 struct rcu_data
*rdp
)
1775 lockdep_assert_irqs_disabled();
1776 c
= rcu_seq_snap(&rsp
->gp_seq
);
1777 if (!rdp
->gpwrap
&& ULONG_CMP_GE(rdp
->gp_seq_needed
, c
)) {
1778 /* Old request still live, so mark recent callbacks. */
1779 (void)rcu_segcblist_accelerate(&rdp
->cblist
, c
);
1782 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1783 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1784 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1786 rcu_gp_kthread_wake(rsp
);
1790 * Move any callbacks whose grace period has completed to the
1791 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1792 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1793 * sublist. This function is idempotent, so it does not hurt to
1794 * invoke it repeatedly. As long as it is not invoked -too- often...
1795 * Returns true if the RCU grace-period kthread needs to be awakened.
1797 * The caller must hold rnp->lock with interrupts disabled.
1799 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1800 struct rcu_data
*rdp
)
1802 raw_lockdep_assert_held_rcu_node(rnp
);
1804 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1805 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1809 * Find all callbacks whose ->gp_seq numbers indicate that they
1810 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1812 rcu_segcblist_advance(&rdp
->cblist
, rnp
->gp_seq
);
1814 /* Classify any remaining callbacks. */
1815 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1819 * Update CPU-local rcu_data state to record the beginnings and ends of
1820 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1821 * structure corresponding to the current CPU, and must have irqs disabled.
1822 * Returns true if the grace-period kthread needs to be awakened.
1824 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1825 struct rcu_data
*rdp
)
1830 raw_lockdep_assert_held_rcu_node(rnp
);
1832 if (rdp
->gp_seq
== rnp
->gp_seq
)
1833 return false; /* Nothing to do. */
1835 /* Handle the ends of any preceding grace periods first. */
1836 if (rcu_seq_completed_gp(rdp
->gp_seq
, rnp
->gp_seq
) ||
1837 unlikely(READ_ONCE(rdp
->gpwrap
))) {
1838 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
); /* Advance callbacks. */
1839 trace_rcu_grace_period(rsp
->name
, rdp
->gp_seq
, TPS("cpuend"));
1841 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
); /* Recent callbacks. */
1844 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1845 if (rcu_seq_new_gp(rdp
->gp_seq
, rnp
->gp_seq
) ||
1846 unlikely(READ_ONCE(rdp
->gpwrap
))) {
1848 * If the current grace period is waiting for this CPU,
1849 * set up to detect a quiescent state, otherwise don't
1850 * go looking for one.
1852 trace_rcu_grace_period(rsp
->name
, rnp
->gp_seq
, TPS("cpustart"));
1853 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1854 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1855 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_dynticks
.rcu_qs_ctr
);
1856 rdp
->core_needs_qs
= need_gp
;
1857 zero_cpu_stall_ticks(rdp
);
1859 rdp
->gp_seq
= rnp
->gp_seq
; /* Remember new grace-period state. */
1860 if (ULONG_CMP_GE(rnp
->gp_seq_needed
, rdp
->gp_seq_needed
) || rdp
->gpwrap
)
1861 rdp
->gp_seq_needed
= rnp
->gp_seq_needed
;
1862 WRITE_ONCE(rdp
->gpwrap
, false);
1863 rcu_gpnum_ovf(rnp
, rdp
);
1867 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1869 unsigned long flags
;
1871 struct rcu_node
*rnp
;
1873 local_irq_save(flags
);
1875 if ((rdp
->gp_seq
== rcu_seq_current(&rnp
->gp_seq
) &&
1876 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1877 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1878 local_irq_restore(flags
);
1881 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1882 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1884 rcu_gp_kthread_wake(rsp
);
1887 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1890 !(rcu_seq_ctr(rsp
->gp_seq
) %
1891 (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1892 schedule_timeout_uninterruptible(delay
);
1896 * Initialize a new grace period. Return false if no grace period required.
1898 static bool rcu_gp_init(struct rcu_state
*rsp
)
1900 unsigned long flags
;
1901 unsigned long oldmask
;
1903 struct rcu_data
*rdp
;
1904 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1906 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1907 raw_spin_lock_irq_rcu_node(rnp
);
1908 if (!READ_ONCE(rsp
->gp_flags
)) {
1909 /* Spurious wakeup, tell caller to go back to sleep. */
1910 raw_spin_unlock_irq_rcu_node(rnp
);
1913 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1915 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1917 * Grace period already in progress, don't start another.
1918 * Not supposed to be able to happen.
1920 raw_spin_unlock_irq_rcu_node(rnp
);
1924 /* Advance to a new grace period and initialize state. */
1925 record_gp_stall_check_time(rsp
);
1926 /* Record GP times before starting GP, hence rcu_seq_start(). */
1927 rcu_seq_start(&rsp
->gp_seq
);
1928 trace_rcu_grace_period(rsp
->name
, rsp
->gp_seq
, TPS("start"));
1929 raw_spin_unlock_irq_rcu_node(rnp
);
1932 * Apply per-leaf buffered online and offline operations to the
1933 * rcu_node tree. Note that this new grace period need not wait
1934 * for subsequent online CPUs, and that quiescent-state forcing
1935 * will handle subsequent offline CPUs.
1937 rsp
->gp_state
= RCU_GP_ONOFF
;
1938 rcu_for_each_leaf_node(rsp
, rnp
) {
1939 spin_lock(&rsp
->ofl_lock
);
1940 raw_spin_lock_irq_rcu_node(rnp
);
1941 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1942 !rnp
->wait_blkd_tasks
) {
1943 /* Nothing to do on this leaf rcu_node structure. */
1944 raw_spin_unlock_irq_rcu_node(rnp
);
1945 spin_unlock(&rsp
->ofl_lock
);
1949 /* Record old state, apply changes to ->qsmaskinit field. */
1950 oldmask
= rnp
->qsmaskinit
;
1951 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1953 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1954 if (!oldmask
!= !rnp
->qsmaskinit
) {
1955 if (!oldmask
) { /* First online CPU for rcu_node. */
1956 if (!rnp
->wait_blkd_tasks
) /* Ever offline? */
1957 rcu_init_new_rnp(rnp
);
1958 } else if (rcu_preempt_has_tasks(rnp
)) {
1959 rnp
->wait_blkd_tasks
= true; /* blocked tasks */
1960 } else { /* Last offline CPU and can propagate. */
1961 rcu_cleanup_dead_rnp(rnp
);
1966 * If all waited-on tasks from prior grace period are
1967 * done, and if all this rcu_node structure's CPUs are
1968 * still offline, propagate up the rcu_node tree and
1969 * clear ->wait_blkd_tasks. Otherwise, if one of this
1970 * rcu_node structure's CPUs has since come back online,
1971 * simply clear ->wait_blkd_tasks.
1973 if (rnp
->wait_blkd_tasks
&&
1974 (!rcu_preempt_has_tasks(rnp
) || rnp
->qsmaskinit
)) {
1975 rnp
->wait_blkd_tasks
= false;
1976 if (!rnp
->qsmaskinit
)
1977 rcu_cleanup_dead_rnp(rnp
);
1980 raw_spin_unlock_irq_rcu_node(rnp
);
1981 spin_unlock(&rsp
->ofl_lock
);
1983 rcu_gp_slow(rsp
, gp_preinit_delay
); /* Races with CPU hotplug. */
1986 * Set the quiescent-state-needed bits in all the rcu_node
1987 * structures for all currently online CPUs in breadth-first order,
1988 * starting from the root rcu_node structure, relying on the layout
1989 * of the tree within the rsp->node[] array. Note that other CPUs
1990 * will access only the leaves of the hierarchy, thus seeing that no
1991 * grace period is in progress, at least until the corresponding
1992 * leaf node has been initialized.
1994 * The grace period cannot complete until the initialization
1995 * process finishes, because this kthread handles both.
1997 rsp
->gp_state
= RCU_GP_INIT
;
1998 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1999 rcu_gp_slow(rsp
, gp_init_delay
);
2000 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2001 rdp
= this_cpu_ptr(rsp
->rda
);
2002 rcu_preempt_check_blocked_tasks(rsp
, rnp
);
2003 rnp
->qsmask
= rnp
->qsmaskinit
;
2004 WRITE_ONCE(rnp
->gp_seq
, rsp
->gp_seq
);
2005 if (rnp
== rdp
->mynode
)
2006 (void)__note_gp_changes(rsp
, rnp
, rdp
);
2007 rcu_preempt_boost_start_gp(rnp
);
2008 trace_rcu_grace_period_init(rsp
->name
, rnp
->gp_seq
,
2009 rnp
->level
, rnp
->grplo
,
2010 rnp
->grphi
, rnp
->qsmask
);
2011 /* Quiescent states for tasks on any now-offline CPUs. */
2012 mask
= rnp
->qsmask
& ~rnp
->qsmaskinitnext
;
2013 rnp
->rcu_gp_init_mask
= mask
;
2014 if ((mask
|| rnp
->wait_blkd_tasks
) && rcu_is_leaf_node(rnp
))
2015 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gp_seq
, flags
);
2017 raw_spin_unlock_irq_rcu_node(rnp
);
2018 cond_resched_tasks_rcu_qs();
2019 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2026 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
2029 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
2031 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2033 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2034 *gfp
= READ_ONCE(rsp
->gp_flags
);
2035 if (*gfp
& RCU_GP_FLAG_FQS
)
2038 /* The current grace period has completed. */
2039 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
2046 * Do one round of quiescent-state forcing.
2048 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
2050 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2052 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2055 /* Collect dyntick-idle snapshots. */
2056 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
2058 /* Handle dyntick-idle and offline CPUs. */
2059 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
2061 /* Clear flag to prevent immediate re-entry. */
2062 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2063 raw_spin_lock_irq_rcu_node(rnp
);
2064 WRITE_ONCE(rsp
->gp_flags
,
2065 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
2066 raw_spin_unlock_irq_rcu_node(rnp
);
2071 * Clean up after the old grace period.
2073 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2075 unsigned long gp_duration
;
2076 bool needgp
= false;
2077 unsigned long new_gp_seq
;
2078 struct rcu_data
*rdp
;
2079 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2080 struct swait_queue_head
*sq
;
2082 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2083 raw_spin_lock_irq_rcu_node(rnp
);
2084 gp_duration
= jiffies
- rsp
->gp_start
;
2085 if (gp_duration
> rsp
->gp_max
)
2086 rsp
->gp_max
= gp_duration
;
2089 * We know the grace period is complete, but to everyone else
2090 * it appears to still be ongoing. But it is also the case
2091 * that to everyone else it looks like there is nothing that
2092 * they can do to advance the grace period. It is therefore
2093 * safe for us to drop the lock in order to mark the grace
2094 * period as completed in all of the rcu_node structures.
2096 raw_spin_unlock_irq_rcu_node(rnp
);
2099 * Propagate new ->gp_seq value to rcu_node structures so that
2100 * other CPUs don't have to wait until the start of the next grace
2101 * period to process their callbacks. This also avoids some nasty
2102 * RCU grace-period initialization races by forcing the end of
2103 * the current grace period to be completely recorded in all of
2104 * the rcu_node structures before the beginning of the next grace
2105 * period is recorded in any of the rcu_node structures.
2107 new_gp_seq
= rsp
->gp_seq
;
2108 rcu_seq_end(&new_gp_seq
);
2109 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2110 raw_spin_lock_irq_rcu_node(rnp
);
2111 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
2112 dump_blkd_tasks(rsp
, rnp
, 10);
2113 WARN_ON_ONCE(rnp
->qsmask
);
2114 WRITE_ONCE(rnp
->gp_seq
, new_gp_seq
);
2115 rdp
= this_cpu_ptr(rsp
->rda
);
2116 if (rnp
== rdp
->mynode
)
2117 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2118 /* smp_mb() provided by prior unlock-lock pair. */
2119 needgp
= rcu_future_gp_cleanup(rsp
, rnp
) || needgp
;
2120 sq
= rcu_nocb_gp_get(rnp
);
2121 raw_spin_unlock_irq_rcu_node(rnp
);
2122 rcu_nocb_gp_cleanup(sq
);
2123 cond_resched_tasks_rcu_qs();
2124 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2125 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2127 rnp
= rcu_get_root(rsp
);
2128 raw_spin_lock_irq_rcu_node(rnp
); /* GP before rsp->gp_seq update. */
2130 /* Declare grace period done. */
2131 rcu_seq_end(&rsp
->gp_seq
);
2132 trace_rcu_grace_period(rsp
->name
, rsp
->gp_seq
, TPS("end"));
2133 rsp
->gp_state
= RCU_GP_IDLE
;
2134 /* Check for GP requests since above loop. */
2135 rdp
= this_cpu_ptr(rsp
->rda
);
2136 if (!needgp
&& ULONG_CMP_LT(rnp
->gp_seq
, rnp
->gp_seq_needed
)) {
2137 trace_rcu_this_gp(rnp
, rdp
, rnp
->gp_seq_needed
,
2138 TPS("CleanupMore"));
2141 /* Advance CBs to reduce false positives below. */
2142 if (!rcu_accelerate_cbs(rsp
, rnp
, rdp
) && needgp
) {
2143 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2144 rsp
->gp_req_activity
= jiffies
;
2145 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gp_seq
),
2148 WRITE_ONCE(rsp
->gp_flags
, rsp
->gp_flags
& RCU_GP_FLAG_INIT
);
2150 raw_spin_unlock_irq_rcu_node(rnp
);
2154 * Body of kthread that handles grace periods.
2156 static int __noreturn
rcu_gp_kthread(void *arg
)
2162 struct rcu_state
*rsp
= arg
;
2163 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2165 rcu_bind_gp_kthread();
2168 /* Handle grace-period start. */
2170 trace_rcu_grace_period(rsp
->name
,
2171 READ_ONCE(rsp
->gp_seq
),
2173 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2174 swait_event_idle_exclusive(rsp
->gp_wq
, READ_ONCE(rsp
->gp_flags
) &
2176 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2177 /* Locking provides needed memory barrier. */
2178 if (rcu_gp_init(rsp
))
2180 cond_resched_tasks_rcu_qs();
2181 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2182 WARN_ON(signal_pending(current
));
2183 trace_rcu_grace_period(rsp
->name
,
2184 READ_ONCE(rsp
->gp_seq
),
2188 /* Handle quiescent-state forcing. */
2189 first_gp_fqs
= true;
2190 j
= jiffies_till_first_fqs
;
2194 rsp
->jiffies_force_qs
= jiffies
+ j
;
2195 WRITE_ONCE(rsp
->jiffies_kick_kthreads
,
2198 trace_rcu_grace_period(rsp
->name
,
2199 READ_ONCE(rsp
->gp_seq
),
2201 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2202 ret
= swait_event_idle_timeout_exclusive(rsp
->gp_wq
,
2203 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2204 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2205 /* Locking provides needed memory barriers. */
2206 /* If grace period done, leave loop. */
2207 if (!READ_ONCE(rnp
->qsmask
) &&
2208 !rcu_preempt_blocked_readers_cgp(rnp
))
2210 /* If time for quiescent-state forcing, do it. */
2211 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2212 (gf
& RCU_GP_FLAG_FQS
)) {
2213 trace_rcu_grace_period(rsp
->name
,
2214 READ_ONCE(rsp
->gp_seq
),
2216 rcu_gp_fqs(rsp
, first_gp_fqs
);
2217 first_gp_fqs
= false;
2218 trace_rcu_grace_period(rsp
->name
,
2219 READ_ONCE(rsp
->gp_seq
),
2221 cond_resched_tasks_rcu_qs();
2222 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2223 ret
= 0; /* Force full wait till next FQS. */
2224 j
= jiffies_till_next_fqs
;
2226 /* Deal with stray signal. */
2227 cond_resched_tasks_rcu_qs();
2228 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2229 WARN_ON(signal_pending(current
));
2230 trace_rcu_grace_period(rsp
->name
,
2231 READ_ONCE(rsp
->gp_seq
),
2233 ret
= 1; /* Keep old FQS timing. */
2235 if (time_after(jiffies
, rsp
->jiffies_force_qs
))
2238 j
= rsp
->jiffies_force_qs
- j
;
2242 /* Handle grace-period end. */
2243 rsp
->gp_state
= RCU_GP_CLEANUP
;
2244 rcu_gp_cleanup(rsp
);
2245 rsp
->gp_state
= RCU_GP_CLEANED
;
2250 * Report a full set of quiescent states to the specified rcu_state data
2251 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2252 * kthread if another grace period is required. Whether we wake
2253 * the grace-period kthread or it awakens itself for the next round
2254 * of quiescent-state forcing, that kthread will clean up after the
2255 * just-completed grace period. Note that the caller must hold rnp->lock,
2256 * which is released before return.
2258 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2259 __releases(rcu_get_root(rsp
)->lock
)
2261 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp
));
2262 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2263 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2264 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2265 rcu_gp_kthread_wake(rsp
);
2269 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2270 * Allows quiescent states for a group of CPUs to be reported at one go
2271 * to the specified rcu_node structure, though all the CPUs in the group
2272 * must be represented by the same rcu_node structure (which need not be a
2273 * leaf rcu_node structure, though it often will be). The gps parameter
2274 * is the grace-period snapshot, which means that the quiescent states
2275 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2276 * must be held upon entry, and it is released before return.
2278 * As a special case, if mask is zero, the bit-already-cleared check is
2279 * disabled. This allows propagating quiescent state due to resumed tasks
2280 * during grace-period initialization.
2283 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2284 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2285 __releases(rnp
->lock
)
2287 unsigned long oldmask
= 0;
2288 struct rcu_node
*rnp_c
;
2290 raw_lockdep_assert_held_rcu_node(rnp
);
2292 /* Walk up the rcu_node hierarchy. */
2294 if ((!(rnp
->qsmask
& mask
) && mask
) || rnp
->gp_seq
!= gps
) {
2297 * Our bit has already been cleared, or the
2298 * relevant grace period is already over, so done.
2300 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2303 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2304 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
) &&
2305 rcu_preempt_blocked_readers_cgp(rnp
));
2306 rnp
->qsmask
&= ~mask
;
2307 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gp_seq
,
2308 mask
, rnp
->qsmask
, rnp
->level
,
2309 rnp
->grplo
, rnp
->grphi
,
2311 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2313 /* Other bits still set at this level, so done. */
2314 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2317 rnp
->completedqs
= rnp
->gp_seq
;
2318 mask
= rnp
->grpmask
;
2319 if (rnp
->parent
== NULL
) {
2321 /* No more levels. Exit loop holding root lock. */
2325 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2328 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2329 oldmask
= rnp_c
->qsmask
;
2333 * Get here if we are the last CPU to pass through a quiescent
2334 * state for this grace period. Invoke rcu_report_qs_rsp()
2335 * to clean up and start the next grace period if one is needed.
2337 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2341 * Record a quiescent state for all tasks that were previously queued
2342 * on the specified rcu_node structure and that were blocking the current
2343 * RCU grace period. The caller must hold the specified rnp->lock with
2344 * irqs disabled, and this lock is released upon return, but irqs remain
2347 static void __maybe_unused
2348 rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2349 struct rcu_node
*rnp
, unsigned long flags
)
2350 __releases(rnp
->lock
)
2354 struct rcu_node
*rnp_p
;
2356 raw_lockdep_assert_held_rcu_node(rnp
);
2357 if (WARN_ON_ONCE(rcu_state_p
== &rcu_sched_state
) ||
2358 WARN_ON_ONCE(rsp
!= rcu_state_p
) ||
2359 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)) ||
2361 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2362 return; /* Still need more quiescent states! */
2365 rnp
->completedqs
= rnp
->gp_seq
;
2366 rnp_p
= rnp
->parent
;
2367 if (rnp_p
== NULL
) {
2369 * Only one rcu_node structure in the tree, so don't
2370 * try to report up to its nonexistent parent!
2372 rcu_report_qs_rsp(rsp
, flags
);
2376 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2378 mask
= rnp
->grpmask
;
2379 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2380 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2381 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2385 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2386 * structure. This must be called from the specified CPU.
2389 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2391 unsigned long flags
;
2394 struct rcu_node
*rnp
;
2397 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2398 if (rdp
->cpu_no_qs
.b
.norm
|| rdp
->gp_seq
!= rnp
->gp_seq
||
2402 * The grace period in which this quiescent state was
2403 * recorded has ended, so don't report it upwards.
2404 * We will instead need a new quiescent state that lies
2405 * within the current grace period.
2407 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2408 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_dynticks
.rcu_qs_ctr
);
2409 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2412 mask
= rdp
->grpmask
;
2413 if ((rnp
->qsmask
& mask
) == 0) {
2414 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2416 rdp
->core_needs_qs
= false;
2419 * This GP can't end until cpu checks in, so all of our
2420 * callbacks can be processed during the next GP.
2422 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2424 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gp_seq
, flags
);
2425 /* ^^^ Released rnp->lock */
2427 rcu_gp_kthread_wake(rsp
);
2432 * Check to see if there is a new grace period of which this CPU
2433 * is not yet aware, and if so, set up local rcu_data state for it.
2434 * Otherwise, see if this CPU has just passed through its first
2435 * quiescent state for this grace period, and record that fact if so.
2438 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2440 /* Check for grace-period ends and beginnings. */
2441 note_gp_changes(rsp
, rdp
);
2444 * Does this CPU still need to do its part for current grace period?
2445 * If no, return and let the other CPUs do their part as well.
2447 if (!rdp
->core_needs_qs
)
2451 * Was there a quiescent state since the beginning of the grace
2452 * period? If no, then exit and wait for the next call.
2454 if (rdp
->cpu_no_qs
.b
.norm
)
2458 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2461 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2465 * Trace the fact that this CPU is going offline.
2467 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2469 RCU_TRACE(bool blkd
;)
2470 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);)
2471 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
;)
2473 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2476 RCU_TRACE(blkd
= !!(rnp
->qsmask
& rdp
->grpmask
);)
2477 trace_rcu_grace_period(rsp
->name
, rnp
->gp_seq
,
2478 blkd
? TPS("cpuofl") : TPS("cpuofl-bgp"));
2482 * All CPUs for the specified rcu_node structure have gone offline,
2483 * and all tasks that were preempted within an RCU read-side critical
2484 * section while running on one of those CPUs have since exited their RCU
2485 * read-side critical section. Some other CPU is reporting this fact with
2486 * the specified rcu_node structure's ->lock held and interrupts disabled.
2487 * This function therefore goes up the tree of rcu_node structures,
2488 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2489 * the leaf rcu_node structure's ->qsmaskinit field has already been
2492 * This function does check that the specified rcu_node structure has
2493 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2494 * prematurely. That said, invoking it after the fact will cost you
2495 * a needless lock acquisition. So once it has done its work, don't
2498 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2501 struct rcu_node
*rnp
= rnp_leaf
;
2503 raw_lockdep_assert_held_rcu_node(rnp_leaf
);
2504 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2505 WARN_ON_ONCE(rnp_leaf
->qsmaskinit
) ||
2506 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf
)))
2509 mask
= rnp
->grpmask
;
2513 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2514 rnp
->qsmaskinit
&= ~mask
;
2515 /* Between grace periods, so better already be zero! */
2516 WARN_ON_ONCE(rnp
->qsmask
);
2517 if (rnp
->qsmaskinit
) {
2518 raw_spin_unlock_rcu_node(rnp
);
2519 /* irqs remain disabled. */
2522 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2527 * The CPU has been completely removed, and some other CPU is reporting
2528 * this fact from process context. Do the remainder of the cleanup.
2529 * There can only be one CPU hotplug operation at a time, so no need for
2532 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2534 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2535 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2537 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2540 /* Adjust any no-longer-needed kthreads. */
2541 rcu_boost_kthread_setaffinity(rnp
, -1);
2545 * Invoke any RCU callbacks that have made it to the end of their grace
2546 * period. Thottle as specified by rdp->blimit.
2548 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2550 unsigned long flags
;
2551 struct rcu_head
*rhp
;
2552 struct rcu_cblist rcl
= RCU_CBLIST_INITIALIZER(rcl
);
2555 /* If no callbacks are ready, just return. */
2556 if (!rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2557 trace_rcu_batch_start(rsp
->name
,
2558 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2559 rcu_segcblist_n_cbs(&rdp
->cblist
), 0);
2560 trace_rcu_batch_end(rsp
->name
, 0,
2561 !rcu_segcblist_empty(&rdp
->cblist
),
2562 need_resched(), is_idle_task(current
),
2563 rcu_is_callbacks_kthread());
2568 * Extract the list of ready callbacks, disabling to prevent
2569 * races with call_rcu() from interrupt handlers. Leave the
2570 * callback counts, as rcu_barrier() needs to be conservative.
2572 local_irq_save(flags
);
2573 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2575 trace_rcu_batch_start(rsp
->name
, rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2576 rcu_segcblist_n_cbs(&rdp
->cblist
), bl
);
2577 rcu_segcblist_extract_done_cbs(&rdp
->cblist
, &rcl
);
2578 local_irq_restore(flags
);
2580 /* Invoke callbacks. */
2581 rhp
= rcu_cblist_dequeue(&rcl
);
2582 for (; rhp
; rhp
= rcu_cblist_dequeue(&rcl
)) {
2583 debug_rcu_head_unqueue(rhp
);
2584 if (__rcu_reclaim(rsp
->name
, rhp
))
2585 rcu_cblist_dequeued_lazy(&rcl
);
2587 * Stop only if limit reached and CPU has something to do.
2588 * Note: The rcl structure counts down from zero.
2590 if (-rcl
.len
>= bl
&&
2592 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2596 local_irq_save(flags
);
2598 trace_rcu_batch_end(rsp
->name
, count
, !!rcl
.head
, need_resched(),
2599 is_idle_task(current
), rcu_is_callbacks_kthread());
2601 /* Update counts and requeue any remaining callbacks. */
2602 rcu_segcblist_insert_done_cbs(&rdp
->cblist
, &rcl
);
2603 smp_mb(); /* List handling before counting for rcu_barrier(). */
2604 rcu_segcblist_insert_count(&rdp
->cblist
, &rcl
);
2606 /* Reinstate batch limit if we have worked down the excess. */
2607 count
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2608 if (rdp
->blimit
== LONG_MAX
&& count
<= qlowmark
)
2609 rdp
->blimit
= blimit
;
2611 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2612 if (count
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2613 rdp
->qlen_last_fqs_check
= 0;
2614 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2615 } else if (count
< rdp
->qlen_last_fqs_check
- qhimark
)
2616 rdp
->qlen_last_fqs_check
= count
;
2619 * The following usually indicates a double call_rcu(). To track
2620 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2622 WARN_ON_ONCE(rcu_segcblist_empty(&rdp
->cblist
) != (count
== 0));
2624 local_irq_restore(flags
);
2626 /* Re-invoke RCU core processing if there are callbacks remaining. */
2627 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2632 * Check to see if this CPU is in a non-context-switch quiescent state
2633 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2634 * Also schedule RCU core processing.
2636 * This function must be called from hardirq context. It is normally
2637 * invoked from the scheduling-clock interrupt.
2639 void rcu_check_callbacks(int user
)
2641 trace_rcu_utilization(TPS("Start scheduler-tick"));
2642 increment_cpu_stall_ticks();
2643 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2646 * Get here if this CPU took its interrupt from user
2647 * mode or from the idle loop, and if this is not a
2648 * nested interrupt. In this case, the CPU is in
2649 * a quiescent state, so note it.
2651 * No memory barrier is required here because both
2652 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2653 * variables that other CPUs neither access nor modify,
2654 * at least not while the corresponding CPU is online.
2659 rcu_note_voluntary_context_switch(current
);
2661 } else if (!in_softirq()) {
2664 * Get here if this CPU did not take its interrupt from
2665 * softirq, in other words, if it is not interrupting
2666 * a rcu_bh read-side critical section. This is an _bh
2667 * critical section, so note it.
2672 rcu_preempt_check_callbacks();
2673 /* The load-acquire pairs with the store-release setting to true. */
2674 if (smp_load_acquire(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
))) {
2675 /* Idle and userspace execution already are quiescent states. */
2676 if (!rcu_is_cpu_rrupt_from_idle() && !user
) {
2677 set_tsk_need_resched(current
);
2678 set_preempt_need_resched();
2680 __this_cpu_write(rcu_dynticks
.rcu_urgent_qs
, false);
2685 trace_rcu_utilization(TPS("End scheduler-tick"));
2689 * Scan the leaf rcu_node structures, processing dyntick state for any that
2690 * have not yet encountered a quiescent state, using the function specified.
2691 * Also initiate boosting for any threads blocked on the root rcu_node.
2693 * The caller must have suppressed start of new grace periods.
2695 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*rsp
))
2698 unsigned long flags
;
2700 struct rcu_node
*rnp
;
2702 rcu_for_each_leaf_node(rsp
, rnp
) {
2703 cond_resched_tasks_rcu_qs();
2705 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2706 if (rnp
->qsmask
== 0) {
2707 if (rcu_state_p
== &rcu_sched_state
||
2708 rsp
!= rcu_state_p
||
2709 rcu_preempt_blocked_readers_cgp(rnp
)) {
2711 * No point in scanning bits because they
2712 * are all zero. But we might need to
2713 * priority-boost blocked readers.
2715 rcu_initiate_boost(rnp
, flags
);
2716 /* rcu_initiate_boost() releases rnp->lock */
2719 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2722 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2723 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2724 if ((rnp
->qsmask
& bit
) != 0) {
2725 if (f(per_cpu_ptr(rsp
->rda
, cpu
)))
2730 /* Idle/offline CPUs, report (releases rnp->lock). */
2731 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gp_seq
, flags
);
2733 /* Nothing to do here, so just drop the lock. */
2734 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2740 * Force quiescent states on reluctant CPUs, and also detect which
2741 * CPUs are in dyntick-idle mode.
2743 static void force_quiescent_state(struct rcu_state
*rsp
)
2745 unsigned long flags
;
2747 struct rcu_node
*rnp
;
2748 struct rcu_node
*rnp_old
= NULL
;
2750 /* Funnel through hierarchy to reduce memory contention. */
2751 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2752 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2753 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2754 !raw_spin_trylock(&rnp
->fqslock
);
2755 if (rnp_old
!= NULL
)
2756 raw_spin_unlock(&rnp_old
->fqslock
);
2761 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2763 /* Reached the root of the rcu_node tree, acquire lock. */
2764 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2765 raw_spin_unlock(&rnp_old
->fqslock
);
2766 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2767 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2768 return; /* Someone beat us to it. */
2770 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2771 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2772 rcu_gp_kthread_wake(rsp
);
2776 * This function checks for grace-period requests that fail to motivate
2777 * RCU to come out of its idle mode.
2780 rcu_check_gp_start_stall(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2781 struct rcu_data
*rdp
)
2783 const unsigned long gpssdelay
= rcu_jiffies_till_stall_check() * HZ
;
2784 unsigned long flags
;
2786 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
2787 static atomic_t warned
= ATOMIC_INIT(0);
2789 if (!IS_ENABLED(CONFIG_PROVE_RCU
) || rcu_gp_in_progress(rsp
) ||
2790 ULONG_CMP_GE(rnp_root
->gp_seq
, rnp_root
->gp_seq_needed
))
2792 j
= jiffies
; /* Expensive access, and in common case don't get here. */
2793 if (time_before(j
, READ_ONCE(rsp
->gp_req_activity
) + gpssdelay
) ||
2794 time_before(j
, READ_ONCE(rsp
->gp_activity
) + gpssdelay
) ||
2795 atomic_read(&warned
))
2798 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2800 if (rcu_gp_in_progress(rsp
) ||
2801 ULONG_CMP_GE(rnp_root
->gp_seq
, rnp_root
->gp_seq_needed
) ||
2802 time_before(j
, READ_ONCE(rsp
->gp_req_activity
) + gpssdelay
) ||
2803 time_before(j
, READ_ONCE(rsp
->gp_activity
) + gpssdelay
) ||
2804 atomic_read(&warned
)) {
2805 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2808 /* Hold onto the leaf lock to make others see warned==1. */
2810 if (rnp_root
!= rnp
)
2811 raw_spin_lock_rcu_node(rnp_root
); /* irqs already disabled. */
2813 if (rcu_gp_in_progress(rsp
) ||
2814 ULONG_CMP_GE(rnp_root
->gp_seq
, rnp_root
->gp_seq_needed
) ||
2815 time_before(j
, rsp
->gp_req_activity
+ gpssdelay
) ||
2816 time_before(j
, rsp
->gp_activity
+ gpssdelay
) ||
2817 atomic_xchg(&warned
, 1)) {
2818 raw_spin_unlock_rcu_node(rnp_root
); /* irqs remain disabled. */
2819 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2822 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2823 __func__
, (long)READ_ONCE(rsp
->gp_seq
),
2824 (long)READ_ONCE(rnp_root
->gp_seq_needed
),
2825 j
- rsp
->gp_req_activity
, j
- rsp
->gp_activity
,
2826 rsp
->gp_flags
, rsp
->gp_state
, rsp
->name
,
2827 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: 0x1ffffL
);
2829 if (rnp_root
!= rnp
)
2830 raw_spin_unlock_rcu_node(rnp_root
);
2831 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2835 * This does the RCU core processing work for the specified rcu_state
2836 * and rcu_data structures. This may be called only from the CPU to
2837 * whom the rdp belongs.
2840 __rcu_process_callbacks(struct rcu_state
*rsp
)
2842 unsigned long flags
;
2843 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2844 struct rcu_node
*rnp
= rdp
->mynode
;
2846 WARN_ON_ONCE(!rdp
->beenonline
);
2848 /* Update RCU state based on any recent quiescent states. */
2849 rcu_check_quiescent_state(rsp
, rdp
);
2851 /* No grace period and unregistered callbacks? */
2852 if (!rcu_gp_in_progress(rsp
) &&
2853 rcu_segcblist_is_enabled(&rdp
->cblist
)) {
2854 local_irq_save(flags
);
2855 if (!rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
2856 rcu_accelerate_cbs_unlocked(rsp
, rnp
, rdp
);
2857 local_irq_restore(flags
);
2860 rcu_check_gp_start_stall(rsp
, rnp
, rdp
);
2862 /* If there are callbacks ready, invoke them. */
2863 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2864 invoke_rcu_callbacks(rsp
, rdp
);
2866 /* Do any needed deferred wakeups of rcuo kthreads. */
2867 do_nocb_deferred_wakeup(rdp
);
2871 * Do RCU core processing for the current CPU.
2873 static __latent_entropy
void rcu_process_callbacks(struct softirq_action
*unused
)
2875 struct rcu_state
*rsp
;
2877 if (cpu_is_offline(smp_processor_id()))
2879 trace_rcu_utilization(TPS("Start RCU core"));
2880 for_each_rcu_flavor(rsp
)
2881 __rcu_process_callbacks(rsp
);
2882 trace_rcu_utilization(TPS("End RCU core"));
2886 * Schedule RCU callback invocation. If the specified type of RCU
2887 * does not support RCU priority boosting, just do a direct call,
2888 * otherwise wake up the per-CPU kernel kthread. Note that because we
2889 * are running on the current CPU with softirqs disabled, the
2890 * rcu_cpu_kthread_task cannot disappear out from under us.
2892 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2894 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
2896 if (likely(!rsp
->boost
)) {
2897 rcu_do_batch(rsp
, rdp
);
2900 invoke_rcu_callbacks_kthread();
2903 static void invoke_rcu_core(void)
2905 if (cpu_online(smp_processor_id()))
2906 raise_softirq(RCU_SOFTIRQ
);
2910 * Handle any core-RCU processing required by a call_rcu() invocation.
2912 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
2913 struct rcu_head
*head
, unsigned long flags
)
2916 * If called from an extended quiescent state, invoke the RCU
2917 * core in order to force a re-evaluation of RCU's idleness.
2919 if (!rcu_is_watching())
2922 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2923 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
2927 * Force the grace period if too many callbacks or too long waiting.
2928 * Enforce hysteresis, and don't invoke force_quiescent_state()
2929 * if some other CPU has recently done so. Also, don't bother
2930 * invoking force_quiescent_state() if the newly enqueued callback
2931 * is the only one waiting for a grace period to complete.
2933 if (unlikely(rcu_segcblist_n_cbs(&rdp
->cblist
) >
2934 rdp
->qlen_last_fqs_check
+ qhimark
)) {
2936 /* Are we ignoring a completed grace period? */
2937 note_gp_changes(rsp
, rdp
);
2939 /* Start a new grace period if one not already started. */
2940 if (!rcu_gp_in_progress(rsp
)) {
2941 rcu_accelerate_cbs_unlocked(rsp
, rdp
->mynode
, rdp
);
2943 /* Give the grace period a kick. */
2944 rdp
->blimit
= LONG_MAX
;
2945 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
2946 rcu_segcblist_first_pend_cb(&rdp
->cblist
) != head
)
2947 force_quiescent_state(rsp
);
2948 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2949 rdp
->qlen_last_fqs_check
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2955 * RCU callback function to leak a callback.
2957 static void rcu_leak_callback(struct rcu_head
*rhp
)
2962 * Helper function for call_rcu() and friends. The cpu argument will
2963 * normally be -1, indicating "currently running CPU". It may specify
2964 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2965 * is expected to specify a CPU.
2968 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
2969 struct rcu_state
*rsp
, int cpu
, bool lazy
)
2971 unsigned long flags
;
2972 struct rcu_data
*rdp
;
2974 /* Misaligned rcu_head! */
2975 WARN_ON_ONCE((unsigned long)head
& (sizeof(void *) - 1));
2977 if (debug_rcu_head_queue(head
)) {
2979 * Probable double call_rcu(), so leak the callback.
2980 * Use rcu:rcu_callback trace event to find the previous
2981 * time callback was passed to __call_rcu().
2983 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2985 WRITE_ONCE(head
->func
, rcu_leak_callback
);
2990 local_irq_save(flags
);
2991 rdp
= this_cpu_ptr(rsp
->rda
);
2993 /* Add the callback to our list. */
2994 if (unlikely(!rcu_segcblist_is_enabled(&rdp
->cblist
)) || cpu
!= -1) {
2998 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2999 if (likely(rdp
->mynode
)) {
3000 /* Post-boot, so this should be for a no-CBs CPU. */
3001 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3002 WARN_ON_ONCE(offline
);
3003 /* Offline CPU, _call_rcu() illegal, leak callback. */
3004 local_irq_restore(flags
);
3008 * Very early boot, before rcu_init(). Initialize if needed
3009 * and then drop through to queue the callback.
3012 WARN_ON_ONCE(!rcu_is_watching());
3013 if (rcu_segcblist_empty(&rdp
->cblist
))
3014 rcu_segcblist_init(&rdp
->cblist
);
3016 rcu_segcblist_enqueue(&rdp
->cblist
, head
, lazy
);
3018 rcu_idle_count_callbacks_posted();
3020 if (__is_kfree_rcu_offset((unsigned long)func
))
3021 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3022 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
3023 rcu_segcblist_n_cbs(&rdp
->cblist
));
3025 trace_rcu_callback(rsp
->name
, head
,
3026 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
3027 rcu_segcblist_n_cbs(&rdp
->cblist
));
3029 /* Go handle any RCU core processing required. */
3030 __call_rcu_core(rsp
, rdp
, head
, flags
);
3031 local_irq_restore(flags
);
3035 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3036 * @head: structure to be used for queueing the RCU updates.
3037 * @func: actual callback function to be invoked after the grace period
3039 * The callback function will be invoked some time after a full grace
3040 * period elapses, in other words after all currently executing RCU
3041 * read-side critical sections have completed. call_rcu_sched() assumes
3042 * that the read-side critical sections end on enabling of preemption
3043 * or on voluntary preemption.
3044 * RCU read-side critical sections are delimited by:
3046 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3047 * - anything that disables preemption.
3049 * These may be nested.
3051 * See the description of call_rcu() for more detailed information on
3052 * memory ordering guarantees.
3054 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3056 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3058 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3061 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3062 * @head: structure to be used for queueing the RCU updates.
3063 * @func: actual callback function to be invoked after the grace period
3065 * The callback function will be invoked some time after a full grace
3066 * period elapses, in other words after all currently executing RCU
3067 * read-side critical sections have completed. call_rcu_bh() assumes
3068 * that the read-side critical sections end on completion of a softirq
3069 * handler. This means that read-side critical sections in process
3070 * context must not be interrupted by softirqs. This interface is to be
3071 * used when most of the read-side critical sections are in softirq context.
3072 * RCU read-side critical sections are delimited by:
3074 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3075 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3077 * These may be nested.
3079 * See the description of call_rcu() for more detailed information on
3080 * memory ordering guarantees.
3082 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3084 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3086 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3089 * Queue an RCU callback for lazy invocation after a grace period.
3090 * This will likely be later named something like "call_rcu_lazy()",
3091 * but this change will require some way of tagging the lazy RCU
3092 * callbacks in the list of pending callbacks. Until then, this
3093 * function may only be called from __kfree_rcu().
3095 void kfree_call_rcu(struct rcu_head
*head
,
3096 rcu_callback_t func
)
3098 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3100 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3103 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3104 * any blocking grace-period wait automatically implies a grace period
3105 * if there is only one CPU online at any point time during execution
3106 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3107 * occasionally incorrectly indicate that there are multiple CPUs online
3108 * when there was in fact only one the whole time, as this just adds
3109 * some overhead: RCU still operates correctly.
3111 static int rcu_blocking_is_gp(void)
3115 might_sleep(); /* Check for RCU read-side critical section. */
3117 ret
= num_online_cpus() <= 1;
3123 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3125 * Control will return to the caller some time after a full rcu-sched
3126 * grace period has elapsed, in other words after all currently executing
3127 * rcu-sched read-side critical sections have completed. These read-side
3128 * critical sections are delimited by rcu_read_lock_sched() and
3129 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3130 * local_irq_disable(), and so on may be used in place of
3131 * rcu_read_lock_sched().
3133 * This means that all preempt_disable code sequences, including NMI and
3134 * non-threaded hardware-interrupt handlers, in progress on entry will
3135 * have completed before this primitive returns. However, this does not
3136 * guarantee that softirq handlers will have completed, since in some
3137 * kernels, these handlers can run in process context, and can block.
3139 * Note that this guarantee implies further memory-ordering guarantees.
3140 * On systems with more than one CPU, when synchronize_sched() returns,
3141 * each CPU is guaranteed to have executed a full memory barrier since the
3142 * end of its last RCU-sched read-side critical section whose beginning
3143 * preceded the call to synchronize_sched(). In addition, each CPU having
3144 * an RCU read-side critical section that extends beyond the return from
3145 * synchronize_sched() is guaranteed to have executed a full memory barrier
3146 * after the beginning of synchronize_sched() and before the beginning of
3147 * that RCU read-side critical section. Note that these guarantees include
3148 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3149 * that are executing in the kernel.
3151 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3152 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3153 * to have executed a full memory barrier during the execution of
3154 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3155 * again only if the system has more than one CPU).
3157 void synchronize_sched(void)
3159 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3160 lock_is_held(&rcu_lock_map
) ||
3161 lock_is_held(&rcu_sched_lock_map
),
3162 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3163 if (rcu_blocking_is_gp())
3165 if (rcu_gp_is_expedited())
3166 synchronize_sched_expedited();
3168 wait_rcu_gp(call_rcu_sched
);
3170 EXPORT_SYMBOL_GPL(synchronize_sched
);
3173 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3175 * Control will return to the caller some time after a full rcu_bh grace
3176 * period has elapsed, in other words after all currently executing rcu_bh
3177 * read-side critical sections have completed. RCU read-side critical
3178 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3179 * and may be nested.
3181 * See the description of synchronize_sched() for more detailed information
3182 * on memory ordering guarantees.
3184 void synchronize_rcu_bh(void)
3186 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3187 lock_is_held(&rcu_lock_map
) ||
3188 lock_is_held(&rcu_sched_lock_map
),
3189 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3190 if (rcu_blocking_is_gp())
3192 if (rcu_gp_is_expedited())
3193 synchronize_rcu_bh_expedited();
3195 wait_rcu_gp(call_rcu_bh
);
3197 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3200 * get_state_synchronize_rcu - Snapshot current RCU state
3202 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3203 * to determine whether or not a full grace period has elapsed in the
3206 unsigned long get_state_synchronize_rcu(void)
3209 * Any prior manipulation of RCU-protected data must happen
3210 * before the load from ->gp_seq.
3213 return rcu_seq_snap(&rcu_state_p
->gp_seq
);
3215 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3218 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3220 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3222 * If a full RCU grace period has elapsed since the earlier call to
3223 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3224 * synchronize_rcu() to wait for a full grace period.
3226 * Yes, this function does not take counter wrap into account. But
3227 * counter wrap is harmless. If the counter wraps, we have waited for
3228 * more than 2 billion grace periods (and way more on a 64-bit system!),
3229 * so waiting for one additional grace period should be just fine.
3231 void cond_synchronize_rcu(unsigned long oldstate
)
3233 if (!rcu_seq_done(&rcu_state_p
->gp_seq
, oldstate
))
3236 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3238 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3241 * get_state_synchronize_sched - Snapshot current RCU-sched state
3243 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3244 * to determine whether or not a full grace period has elapsed in the
3247 unsigned long get_state_synchronize_sched(void)
3250 * Any prior manipulation of RCU-protected data must happen
3251 * before the load from ->gp_seq.
3254 return rcu_seq_snap(&rcu_sched_state
.gp_seq
);
3256 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3259 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3261 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3263 * If a full RCU-sched grace period has elapsed since the earlier call to
3264 * get_state_synchronize_sched(), just return. Otherwise, invoke
3265 * synchronize_sched() to wait for a full grace period.
3267 * Yes, this function does not take counter wrap into account. But
3268 * counter wrap is harmless. If the counter wraps, we have waited for
3269 * more than 2 billion grace periods (and way more on a 64-bit system!),
3270 * so waiting for one additional grace period should be just fine.
3272 void cond_synchronize_sched(unsigned long oldstate
)
3274 if (!rcu_seq_done(&rcu_sched_state
.gp_seq
, oldstate
))
3275 synchronize_sched();
3277 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3279 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3282 * Check to see if there is any immediate RCU-related work to be done
3283 * by the current CPU, for the specified type of RCU, returning 1 if so.
3284 * The checks are in order of increasing expense: checks that can be
3285 * carried out against CPU-local state are performed first. However,
3286 * we must check for CPU stalls first, else we might not get a chance.
3288 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3290 struct rcu_node
*rnp
= rdp
->mynode
;
3292 /* Check for CPU stalls, if enabled. */
3293 check_cpu_stall(rsp
, rdp
);
3295 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3296 if (rcu_nohz_full_cpu(rsp
))
3299 /* Is the RCU core waiting for a quiescent state from this CPU? */
3300 if (rdp
->core_needs_qs
&& !rdp
->cpu_no_qs
.b
.norm
)
3303 /* Does this CPU have callbacks ready to invoke? */
3304 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
3307 /* Has RCU gone idle with this CPU needing another grace period? */
3308 if (!rcu_gp_in_progress(rsp
) &&
3309 rcu_segcblist_is_enabled(&rdp
->cblist
) &&
3310 !rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
3313 /* Have RCU grace period completed or started? */
3314 if (rcu_seq_current(&rnp
->gp_seq
) != rdp
->gp_seq
||
3315 unlikely(READ_ONCE(rdp
->gpwrap
))) /* outside lock */
3318 /* Does this CPU need a deferred NOCB wakeup? */
3319 if (rcu_nocb_need_deferred_wakeup(rdp
))
3327 * Check to see if there is any immediate RCU-related work to be done
3328 * by the current CPU, returning 1 if so. This function is part of the
3329 * RCU implementation; it is -not- an exported member of the RCU API.
3331 static int rcu_pending(void)
3333 struct rcu_state
*rsp
;
3335 for_each_rcu_flavor(rsp
)
3336 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3342 * Return true if the specified CPU has any callback. If all_lazy is
3343 * non-NULL, store an indication of whether all callbacks are lazy.
3344 * (If there are no callbacks, all of them are deemed to be lazy.)
3346 static bool rcu_cpu_has_callbacks(bool *all_lazy
)
3350 struct rcu_data
*rdp
;
3351 struct rcu_state
*rsp
;
3353 for_each_rcu_flavor(rsp
) {
3354 rdp
= this_cpu_ptr(rsp
->rda
);
3355 if (rcu_segcblist_empty(&rdp
->cblist
))
3358 if (rcu_segcblist_n_nonlazy_cbs(&rdp
->cblist
) || !all_lazy
) {
3369 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3370 * the compiler is expected to optimize this away.
3372 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3373 int cpu
, unsigned long done
)
3375 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3376 atomic_read(&rsp
->barrier_cpu_count
), done
);
3380 * RCU callback function for _rcu_barrier(). If we are last, wake
3381 * up the task executing _rcu_barrier().
3383 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3385 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
3386 struct rcu_state
*rsp
= rdp
->rsp
;
3388 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
3389 _rcu_barrier_trace(rsp
, TPS("LastCB"), -1,
3390 rsp
->barrier_sequence
);
3391 complete(&rsp
->barrier_completion
);
3393 _rcu_barrier_trace(rsp
, TPS("CB"), -1, rsp
->barrier_sequence
);
3398 * Called with preemption disabled, and from cross-cpu IRQ context.
3400 static void rcu_barrier_func(void *type
)
3402 struct rcu_state
*rsp
= type
;
3403 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3405 _rcu_barrier_trace(rsp
, TPS("IRQ"), -1, rsp
->barrier_sequence
);
3406 rdp
->barrier_head
.func
= rcu_barrier_callback
;
3407 debug_rcu_head_queue(&rdp
->barrier_head
);
3408 if (rcu_segcblist_entrain(&rdp
->cblist
, &rdp
->barrier_head
, 0)) {
3409 atomic_inc(&rsp
->barrier_cpu_count
);
3411 debug_rcu_head_unqueue(&rdp
->barrier_head
);
3412 _rcu_barrier_trace(rsp
, TPS("IRQNQ"), -1,
3413 rsp
->barrier_sequence
);
3418 * Orchestrate the specified type of RCU barrier, waiting for all
3419 * RCU callbacks of the specified type to complete.
3421 static void _rcu_barrier(struct rcu_state
*rsp
)
3424 struct rcu_data
*rdp
;
3425 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
3427 _rcu_barrier_trace(rsp
, TPS("Begin"), -1, s
);
3429 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3430 mutex_lock(&rsp
->barrier_mutex
);
3432 /* Did someone else do our work for us? */
3433 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
3434 _rcu_barrier_trace(rsp
, TPS("EarlyExit"), -1,
3435 rsp
->barrier_sequence
);
3436 smp_mb(); /* caller's subsequent code after above check. */
3437 mutex_unlock(&rsp
->barrier_mutex
);
3441 /* Mark the start of the barrier operation. */
3442 rcu_seq_start(&rsp
->barrier_sequence
);
3443 _rcu_barrier_trace(rsp
, TPS("Inc1"), -1, rsp
->barrier_sequence
);
3446 * Initialize the count to one rather than to zero in order to
3447 * avoid a too-soon return to zero in case of a short grace period
3448 * (or preemption of this task). Exclude CPU-hotplug operations
3449 * to ensure that no offline CPU has callbacks queued.
3451 init_completion(&rsp
->barrier_completion
);
3452 atomic_set(&rsp
->barrier_cpu_count
, 1);
3456 * Force each CPU with callbacks to register a new callback.
3457 * When that callback is invoked, we will know that all of the
3458 * corresponding CPU's preceding callbacks have been invoked.
3460 for_each_possible_cpu(cpu
) {
3461 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
3463 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3464 if (rcu_is_nocb_cpu(cpu
)) {
3465 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
3466 _rcu_barrier_trace(rsp
, TPS("OfflineNoCB"), cpu
,
3467 rsp
->barrier_sequence
);
3469 _rcu_barrier_trace(rsp
, TPS("OnlineNoCB"), cpu
,
3470 rsp
->barrier_sequence
);
3471 smp_mb__before_atomic();
3472 atomic_inc(&rsp
->barrier_cpu_count
);
3473 __call_rcu(&rdp
->barrier_head
,
3474 rcu_barrier_callback
, rsp
, cpu
, 0);
3476 } else if (rcu_segcblist_n_cbs(&rdp
->cblist
)) {
3477 _rcu_barrier_trace(rsp
, TPS("OnlineQ"), cpu
,
3478 rsp
->barrier_sequence
);
3479 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
3481 _rcu_barrier_trace(rsp
, TPS("OnlineNQ"), cpu
,
3482 rsp
->barrier_sequence
);
3488 * Now that we have an rcu_barrier_callback() callback on each
3489 * CPU, and thus each counted, remove the initial count.
3491 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
3492 complete(&rsp
->barrier_completion
);
3494 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3495 wait_for_completion(&rsp
->barrier_completion
);
3497 /* Mark the end of the barrier operation. */
3498 _rcu_barrier_trace(rsp
, TPS("Inc2"), -1, rsp
->barrier_sequence
);
3499 rcu_seq_end(&rsp
->barrier_sequence
);
3501 /* Other rcu_barrier() invocations can now safely proceed. */
3502 mutex_unlock(&rsp
->barrier_mutex
);
3506 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3508 void rcu_barrier_bh(void)
3510 _rcu_barrier(&rcu_bh_state
);
3512 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
3515 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3517 void rcu_barrier_sched(void)
3519 _rcu_barrier(&rcu_sched_state
);
3521 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
3524 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3525 * first CPU in a given leaf rcu_node structure coming online. The caller
3526 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3529 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3533 struct rcu_node
*rnp
= rnp_leaf
;
3535 raw_lockdep_assert_held_rcu_node(rnp_leaf
);
3536 WARN_ON_ONCE(rnp
->wait_blkd_tasks
);
3538 mask
= rnp
->grpmask
;
3542 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3543 oldmask
= rnp
->qsmaskinit
;
3544 rnp
->qsmaskinit
|= mask
;
3545 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3552 * Do boot-time initialization of a CPU's per-CPU RCU data.
3555 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3557 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3559 /* Set up local state, ensuring consistent view of global state. */
3560 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3561 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
3562 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= 1);
3563 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp
->dynticks
)));
3564 rdp
->rcu_ofl_gp_seq
= rsp
->gp_seq
;
3565 rdp
->rcu_ofl_gp_flags
= RCU_GP_CLEANED
;
3566 rdp
->rcu_onl_gp_seq
= rsp
->gp_seq
;
3567 rdp
->rcu_onl_gp_flags
= RCU_GP_CLEANED
;
3570 rcu_boot_init_nocb_percpu_data(rdp
);
3574 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3575 * offline event can be happening at a given time. Note also that we can
3576 * accept some slop in the rsp->gp_seq access due to the fact that this
3577 * CPU cannot possibly have any RCU callbacks in flight yet.
3580 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3582 unsigned long flags
;
3583 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3584 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3586 /* Set up local state, ensuring consistent view of global state. */
3587 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3588 rdp
->qlen_last_fqs_check
= 0;
3589 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3590 rdp
->blimit
= blimit
;
3591 if (rcu_segcblist_empty(&rdp
->cblist
) && /* No early-boot CBs? */
3592 !init_nocb_callback_list(rdp
))
3593 rcu_segcblist_init(&rdp
->cblist
); /* Re-enable callbacks. */
3594 rdp
->dynticks
->dynticks_nesting
= 1; /* CPU not up, no tearing. */
3595 rcu_dynticks_eqs_online();
3596 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3599 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3600 * propagation up the rcu_node tree will happen at the beginning
3601 * of the next grace period.
3604 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3605 rdp
->beenonline
= true; /* We have now been online. */
3606 rdp
->gp_seq
= rnp
->gp_seq
;
3607 rdp
->gp_seq_needed
= rnp
->gp_seq
;
3608 rdp
->cpu_no_qs
.b
.norm
= true;
3609 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_dynticks
.rcu_qs_ctr
, cpu
);
3610 rdp
->core_needs_qs
= false;
3611 rdp
->rcu_iw_pending
= false;
3612 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
- 1;
3613 trace_rcu_grace_period(rsp
->name
, rdp
->gp_seq
, TPS("cpuonl"));
3614 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3618 * Invoked early in the CPU-online process, when pretty much all
3619 * services are available. The incoming CPU is not present.
3621 int rcutree_prepare_cpu(unsigned int cpu
)
3623 struct rcu_state
*rsp
;
3625 for_each_rcu_flavor(rsp
)
3626 rcu_init_percpu_data(cpu
, rsp
);
3628 rcu_prepare_kthreads(cpu
);
3629 rcu_spawn_all_nocb_kthreads(cpu
);
3635 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3637 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3639 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
3641 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3645 * Near the end of the CPU-online process. Pretty much all services
3646 * enabled, and the CPU is now very much alive.
3648 int rcutree_online_cpu(unsigned int cpu
)
3650 unsigned long flags
;
3651 struct rcu_data
*rdp
;
3652 struct rcu_node
*rnp
;
3653 struct rcu_state
*rsp
;
3655 for_each_rcu_flavor(rsp
) {
3656 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3658 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3659 rnp
->ffmask
|= rdp
->grpmask
;
3660 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3662 if (IS_ENABLED(CONFIG_TREE_SRCU
))
3663 srcu_online_cpu(cpu
);
3664 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
3665 return 0; /* Too early in boot for scheduler work. */
3666 sync_sched_exp_online_cleanup(cpu
);
3667 rcutree_affinity_setting(cpu
, -1);
3672 * Near the beginning of the process. The CPU is still very much alive
3673 * with pretty much all services enabled.
3675 int rcutree_offline_cpu(unsigned int cpu
)
3677 unsigned long flags
;
3678 struct rcu_data
*rdp
;
3679 struct rcu_node
*rnp
;
3680 struct rcu_state
*rsp
;
3682 for_each_rcu_flavor(rsp
) {
3683 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3685 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3686 rnp
->ffmask
&= ~rdp
->grpmask
;
3687 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3690 rcutree_affinity_setting(cpu
, cpu
);
3691 if (IS_ENABLED(CONFIG_TREE_SRCU
))
3692 srcu_offline_cpu(cpu
);
3697 * Near the end of the offline process. We do only tracing here.
3699 int rcutree_dying_cpu(unsigned int cpu
)
3701 struct rcu_state
*rsp
;
3703 for_each_rcu_flavor(rsp
)
3704 rcu_cleanup_dying_cpu(rsp
);
3709 * The outgoing CPU is gone and we are running elsewhere.
3711 int rcutree_dead_cpu(unsigned int cpu
)
3713 struct rcu_state
*rsp
;
3715 for_each_rcu_flavor(rsp
) {
3716 rcu_cleanup_dead_cpu(cpu
, rsp
);
3717 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
3722 static DEFINE_PER_CPU(int, rcu_cpu_started
);
3725 * Mark the specified CPU as being online so that subsequent grace periods
3726 * (both expedited and normal) will wait on it. Note that this means that
3727 * incoming CPUs are not allowed to use RCU read-side critical sections
3728 * until this function is called. Failing to observe this restriction
3729 * will result in lockdep splats.
3731 * Note that this function is special in that it is invoked directly
3732 * from the incoming CPU rather than from the cpuhp_step mechanism.
3733 * This is because this function must be invoked at a precise location.
3735 void rcu_cpu_starting(unsigned int cpu
)
3737 unsigned long flags
;
3740 unsigned long oldmask
;
3741 struct rcu_data
*rdp
;
3742 struct rcu_node
*rnp
;
3743 struct rcu_state
*rsp
;
3745 if (per_cpu(rcu_cpu_started
, cpu
))
3748 per_cpu(rcu_cpu_started
, cpu
) = 1;
3750 for_each_rcu_flavor(rsp
) {
3751 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3753 mask
= rdp
->grpmask
;
3754 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3755 rnp
->qsmaskinitnext
|= mask
;
3756 oldmask
= rnp
->expmaskinitnext
;
3757 rnp
->expmaskinitnext
|= mask
;
3758 oldmask
^= rnp
->expmaskinitnext
;
3759 nbits
= bitmap_weight(&oldmask
, BITS_PER_LONG
);
3760 /* Allow lockless access for expedited grace periods. */
3761 smp_store_release(&rsp
->ncpus
, rsp
->ncpus
+ nbits
); /* ^^^ */
3762 rcu_gpnum_ovf(rnp
, rdp
); /* Offline-induced counter wrap? */
3763 rdp
->rcu_onl_gp_seq
= READ_ONCE(rsp
->gp_seq
);
3764 rdp
->rcu_onl_gp_flags
= READ_ONCE(rsp
->gp_flags
);
3765 if (rnp
->qsmask
& mask
) { /* RCU waiting on incoming CPU? */
3766 /* Report QS -after- changing ->qsmaskinitnext! */
3767 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gp_seq
, flags
);
3769 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3772 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3775 #ifdef CONFIG_HOTPLUG_CPU
3777 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3778 * function. We now remove it from the rcu_node tree's ->qsmaskinitnext
3781 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
3783 unsigned long flags
;
3785 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3786 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3788 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3789 mask
= rdp
->grpmask
;
3790 spin_lock(&rsp
->ofl_lock
);
3791 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3792 rdp
->rcu_ofl_gp_seq
= READ_ONCE(rsp
->gp_seq
);
3793 rdp
->rcu_ofl_gp_flags
= READ_ONCE(rsp
->gp_flags
);
3794 if (rnp
->qsmask
& mask
) { /* RCU waiting on outgoing CPU? */
3795 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3796 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gp_seq
, flags
);
3797 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3799 rnp
->qsmaskinitnext
&= ~mask
;
3800 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3801 spin_unlock(&rsp
->ofl_lock
);
3805 * The outgoing function has no further need of RCU, so remove it from
3806 * the list of CPUs that RCU must track.
3808 * Note that this function is special in that it is invoked directly
3809 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3810 * This is because this function must be invoked at a precise location.
3812 void rcu_report_dead(unsigned int cpu
)
3814 struct rcu_state
*rsp
;
3816 /* QS for any half-done expedited RCU-sched GP. */
3818 rcu_report_exp_rdp(&rcu_sched_state
,
3819 this_cpu_ptr(rcu_sched_state
.rda
), true);
3821 for_each_rcu_flavor(rsp
)
3822 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
3824 per_cpu(rcu_cpu_started
, cpu
) = 0;
3827 /* Migrate the dead CPU's callbacks to the current CPU. */
3828 static void rcu_migrate_callbacks(int cpu
, struct rcu_state
*rsp
)
3830 unsigned long flags
;
3831 struct rcu_data
*my_rdp
;
3832 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3833 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
3836 if (rcu_is_nocb_cpu(cpu
) || rcu_segcblist_empty(&rdp
->cblist
))
3837 return; /* No callbacks to migrate. */
3839 local_irq_save(flags
);
3840 my_rdp
= this_cpu_ptr(rsp
->rda
);
3841 if (rcu_nocb_adopt_orphan_cbs(my_rdp
, rdp
, flags
)) {
3842 local_irq_restore(flags
);
3845 raw_spin_lock_rcu_node(rnp_root
); /* irqs already disabled. */
3846 /* Leverage recent GPs and set GP for new callbacks. */
3847 needwake
= rcu_advance_cbs(rsp
, rnp_root
, rdp
) ||
3848 rcu_advance_cbs(rsp
, rnp_root
, my_rdp
);
3849 rcu_segcblist_merge(&my_rdp
->cblist
, &rdp
->cblist
);
3850 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp
->cblist
) !=
3851 !rcu_segcblist_n_cbs(&my_rdp
->cblist
));
3852 raw_spin_unlock_irqrestore_rcu_node(rnp_root
, flags
);
3854 rcu_gp_kthread_wake(rsp
);
3855 WARN_ONCE(rcu_segcblist_n_cbs(&rdp
->cblist
) != 0 ||
3856 !rcu_segcblist_empty(&rdp
->cblist
),
3857 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3858 cpu
, rcu_segcblist_n_cbs(&rdp
->cblist
),
3859 rcu_segcblist_first_cb(&rdp
->cblist
));
3863 * The outgoing CPU has just passed through the dying-idle state,
3864 * and we are being invoked from the CPU that was IPIed to continue the
3865 * offline operation. We need to migrate the outgoing CPU's callbacks.
3867 void rcutree_migrate_callbacks(int cpu
)
3869 struct rcu_state
*rsp
;
3871 for_each_rcu_flavor(rsp
)
3872 rcu_migrate_callbacks(cpu
, rsp
);
3877 * On non-huge systems, use expedited RCU grace periods to make suspend
3878 * and hibernation run faster.
3880 static int rcu_pm_notify(struct notifier_block
*self
,
3881 unsigned long action
, void *hcpu
)
3884 case PM_HIBERNATION_PREPARE
:
3885 case PM_SUSPEND_PREPARE
:
3886 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3889 case PM_POST_HIBERNATION
:
3890 case PM_POST_SUSPEND
:
3891 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3892 rcu_unexpedite_gp();
3901 * Spawn the kthreads that handle each RCU flavor's grace periods.
3903 static int __init
rcu_spawn_gp_kthread(void)
3905 unsigned long flags
;
3906 int kthread_prio_in
= kthread_prio
;
3907 struct rcu_node
*rnp
;
3908 struct rcu_state
*rsp
;
3909 struct sched_param sp
;
3910 struct task_struct
*t
;
3912 /* Force priority into range. */
3913 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 2
3914 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST
))
3916 else if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3918 else if (kthread_prio
< 0)
3920 else if (kthread_prio
> 99)
3923 if (kthread_prio
!= kthread_prio_in
)
3924 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3925 kthread_prio
, kthread_prio_in
);
3927 rcu_scheduler_fully_active
= 1;
3928 for_each_rcu_flavor(rsp
) {
3929 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
3931 rnp
= rcu_get_root(rsp
);
3932 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3933 rsp
->gp_kthread
= t
;
3935 sp
.sched_priority
= kthread_prio
;
3936 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3938 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3941 rcu_spawn_nocb_kthreads();
3942 rcu_spawn_boost_kthreads();
3945 early_initcall(rcu_spawn_gp_kthread
);
3948 * This function is invoked towards the end of the scheduler's
3949 * initialization process. Before this is called, the idle task might
3950 * contain synchronous grace-period primitives (during which time, this idle
3951 * task is booting the system, and such primitives are no-ops). After this
3952 * function is called, any synchronous grace-period primitives are run as
3953 * expedited, with the requesting task driving the grace period forward.
3954 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3955 * runtime RCU functionality.
3957 void rcu_scheduler_starting(void)
3959 WARN_ON(num_online_cpus() != 1);
3960 WARN_ON(nr_context_switches() > 0);
3961 rcu_test_sync_prims();
3962 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
3963 rcu_test_sync_prims();
3967 * Helper function for rcu_init() that initializes one rcu_state structure.
3969 static void __init
rcu_init_one(struct rcu_state
*rsp
)
3971 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
3972 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
3973 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
3974 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
3976 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
3980 struct rcu_node
*rnp
;
3982 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
3984 /* Silence gcc 4.8 false positive about array index out of range. */
3985 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
3986 panic("rcu_init_one: rcu_num_lvls out of range");
3988 /* Initialize the level-tracking arrays. */
3990 for (i
= 1; i
< rcu_num_lvls
; i
++)
3991 rsp
->level
[i
] = rsp
->level
[i
- 1] + num_rcu_lvl
[i
- 1];
3992 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
3994 /* Initialize the elements themselves, starting from the leaves. */
3996 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
3997 cpustride
*= levelspread
[i
];
3998 rnp
= rsp
->level
[i
];
3999 for (j
= 0; j
< num_rcu_lvl
[i
]; j
++, rnp
++) {
4000 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4001 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4002 &rcu_node_class
[i
], buf
[i
]);
4003 raw_spin_lock_init(&rnp
->fqslock
);
4004 lockdep_set_class_and_name(&rnp
->fqslock
,
4005 &rcu_fqs_class
[i
], fqs
[i
]);
4006 rnp
->gp_seq
= rsp
->gp_seq
;
4007 rnp
->gp_seq_needed
= rsp
->gp_seq
;
4008 rnp
->completedqs
= rsp
->gp_seq
;
4010 rnp
->qsmaskinit
= 0;
4011 rnp
->grplo
= j
* cpustride
;
4012 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4013 if (rnp
->grphi
>= nr_cpu_ids
)
4014 rnp
->grphi
= nr_cpu_ids
- 1;
4020 rnp
->grpnum
= j
% levelspread
[i
- 1];
4021 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4022 rnp
->parent
= rsp
->level
[i
- 1] +
4023 j
/ levelspread
[i
- 1];
4026 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4027 rcu_init_one_nocb(rnp
);
4028 init_waitqueue_head(&rnp
->exp_wq
[0]);
4029 init_waitqueue_head(&rnp
->exp_wq
[1]);
4030 init_waitqueue_head(&rnp
->exp_wq
[2]);
4031 init_waitqueue_head(&rnp
->exp_wq
[3]);
4032 spin_lock_init(&rnp
->exp_lock
);
4036 init_swait_queue_head(&rsp
->gp_wq
);
4037 init_swait_queue_head(&rsp
->expedited_wq
);
4038 rnp
= rcu_first_leaf_node(rsp
);
4039 for_each_possible_cpu(i
) {
4040 while (i
> rnp
->grphi
)
4042 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4043 rcu_boot_init_percpu_data(i
, rsp
);
4045 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4049 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4050 * replace the definitions in tree.h because those are needed to size
4051 * the ->node array in the rcu_state structure.
4053 static void __init
rcu_init_geometry(void)
4057 int rcu_capacity
[RCU_NUM_LVLS
];
4060 * Initialize any unspecified boot parameters.
4061 * The default values of jiffies_till_first_fqs and
4062 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4063 * value, which is a function of HZ, then adding one for each
4064 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4066 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4067 if (jiffies_till_first_fqs
== ULONG_MAX
)
4068 jiffies_till_first_fqs
= d
;
4069 if (jiffies_till_next_fqs
== ULONG_MAX
)
4070 jiffies_till_next_fqs
= d
;
4072 /* If the compile-time values are accurate, just leave. */
4073 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4074 nr_cpu_ids
== NR_CPUS
)
4076 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4077 rcu_fanout_leaf
, nr_cpu_ids
);
4080 * The boot-time rcu_fanout_leaf parameter must be at least two
4081 * and cannot exceed the number of bits in the rcu_node masks.
4082 * Complain and fall back to the compile-time values if this
4083 * limit is exceeded.
4085 if (rcu_fanout_leaf
< 2 ||
4086 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4087 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4093 * Compute number of nodes that can be handled an rcu_node tree
4094 * with the given number of levels.
4096 rcu_capacity
[0] = rcu_fanout_leaf
;
4097 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4098 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4101 * The tree must be able to accommodate the configured number of CPUs.
4102 * If this limit is exceeded, fall back to the compile-time values.
4104 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4105 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4110 /* Calculate the number of levels in the tree. */
4111 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4113 rcu_num_lvls
= i
+ 1;
4115 /* Calculate the number of rcu_nodes at each level of the tree. */
4116 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4117 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4118 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4121 /* Calculate the total number of rcu_node structures. */
4123 for (i
= 0; i
< rcu_num_lvls
; i
++)
4124 rcu_num_nodes
+= num_rcu_lvl
[i
];
4128 * Dump out the structure of the rcu_node combining tree associated
4129 * with the rcu_state structure referenced by rsp.
4131 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4134 struct rcu_node
*rnp
;
4136 pr_info("rcu_node tree layout dump\n");
4138 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4139 if (rnp
->level
!= level
) {
4144 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4149 struct workqueue_struct
*rcu_gp_wq
;
4150 struct workqueue_struct
*rcu_par_gp_wq
;
4152 void __init
rcu_init(void)
4156 rcu_early_boot_tests();
4158 rcu_bootup_announce();
4159 rcu_init_geometry();
4160 rcu_init_one(&rcu_bh_state
);
4161 rcu_init_one(&rcu_sched_state
);
4163 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4164 __rcu_init_preempt();
4165 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4168 * We don't need protection against CPU-hotplug here because
4169 * this is called early in boot, before either interrupts
4170 * or the scheduler are operational.
4172 pm_notifier(rcu_pm_notify
, 0);
4173 for_each_online_cpu(cpu
) {
4174 rcutree_prepare_cpu(cpu
);
4175 rcu_cpu_starting(cpu
);
4176 rcutree_online_cpu(cpu
);
4179 /* Create workqueue for expedited GPs and for Tree SRCU. */
4180 rcu_gp_wq
= alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM
, 0);
4181 WARN_ON(!rcu_gp_wq
);
4182 rcu_par_gp_wq
= alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM
, 0);
4183 WARN_ON(!rcu_par_gp_wq
);
4186 #include "tree_exp.h"
4187 #include "tree_plugin.h"