Linux 4.19.168
[linux/fpc-iii.git] / kernel / rcu / tree_plugin.h
blob5f6de49dc78e555c45f9dd71ce890bf433554200
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
36 #ifdef CONFIG_RCU_BOOST
38 #include "../locking/rtmutex_common.h"
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
49 #else /* #ifdef CONFIG_RCU_BOOST */
52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53 * all uses are in dead code. Provide a definition to keep the compiler
54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55 * This probably needs to be excluded from -rt builds.
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
68 * Check the RCU kernel configuration parameters and print informative
69 * messages about anything out of the ordinary.
71 static void __init rcu_bootup_announce_oddness(void)
73 if (IS_ENABLED(CONFIG_RCU_TRACE))
74 pr_info("\tRCU event tracing is enabled.\n");
75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
78 RCU_FANOUT);
79 if (rcu_fanout_exact)
80 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83 if (IS_ENABLED(CONFIG_PROVE_RCU))
84 pr_info("\tRCU lockdep checking is enabled.\n");
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 if (RCU_FANOUT_LEAF != 16)
88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
92 rcu_fanout_leaf);
93 if (nr_cpu_ids != NR_CPUS)
94 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
95 #ifdef CONFIG_RCU_BOOST
96 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
97 kthread_prio, CONFIG_RCU_BOOST_DELAY);
98 #endif
99 if (blimit != DEFAULT_RCU_BLIMIT)
100 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
101 if (qhimark != DEFAULT_RCU_QHIMARK)
102 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
103 if (qlowmark != DEFAULT_RCU_QLOMARK)
104 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
105 if (jiffies_till_first_fqs != ULONG_MAX)
106 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
107 if (jiffies_till_next_fqs != ULONG_MAX)
108 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
109 if (rcu_kick_kthreads)
110 pr_info("\tKick kthreads if too-long grace period.\n");
111 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
112 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
113 if (gp_preinit_delay)
114 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
115 if (gp_init_delay)
116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
117 if (gp_cleanup_delay)
118 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
119 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
120 pr_info("\tRCU debug extended QS entry/exit.\n");
121 rcupdate_announce_bootup_oddness();
124 #ifdef CONFIG_PREEMPT_RCU
126 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
127 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
128 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
130 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
131 bool wake);
132 static void rcu_read_unlock_special(struct task_struct *t);
135 * Tell them what RCU they are running.
137 static void __init rcu_bootup_announce(void)
139 pr_info("Preemptible hierarchical RCU implementation.\n");
140 rcu_bootup_announce_oddness();
143 /* Flags for rcu_preempt_ctxt_queue() decision table. */
144 #define RCU_GP_TASKS 0x8
145 #define RCU_EXP_TASKS 0x4
146 #define RCU_GP_BLKD 0x2
147 #define RCU_EXP_BLKD 0x1
150 * Queues a task preempted within an RCU-preempt read-side critical
151 * section into the appropriate location within the ->blkd_tasks list,
152 * depending on the states of any ongoing normal and expedited grace
153 * periods. The ->gp_tasks pointer indicates which element the normal
154 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
155 * indicates which element the expedited grace period is waiting on (again,
156 * NULL if none). If a grace period is waiting on a given element in the
157 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
158 * adding a task to the tail of the list blocks any grace period that is
159 * already waiting on one of the elements. In contrast, adding a task
160 * to the head of the list won't block any grace period that is already
161 * waiting on one of the elements.
163 * This queuing is imprecise, and can sometimes make an ongoing grace
164 * period wait for a task that is not strictly speaking blocking it.
165 * Given the choice, we needlessly block a normal grace period rather than
166 * blocking an expedited grace period.
168 * Note that an endless sequence of expedited grace periods still cannot
169 * indefinitely postpone a normal grace period. Eventually, all of the
170 * fixed number of preempted tasks blocking the normal grace period that are
171 * not also blocking the expedited grace period will resume and complete
172 * their RCU read-side critical sections. At that point, the ->gp_tasks
173 * pointer will equal the ->exp_tasks pointer, at which point the end of
174 * the corresponding expedited grace period will also be the end of the
175 * normal grace period.
177 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
178 __releases(rnp->lock) /* But leaves rrupts disabled. */
180 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
181 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
182 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
183 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
184 struct task_struct *t = current;
186 raw_lockdep_assert_held_rcu_node(rnp);
187 WARN_ON_ONCE(rdp->mynode != rnp);
188 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
189 /* RCU better not be waiting on newly onlined CPUs! */
190 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
191 rdp->grpmask);
194 * Decide where to queue the newly blocked task. In theory,
195 * this could be an if-statement. In practice, when I tried
196 * that, it was quite messy.
198 switch (blkd_state) {
199 case 0:
200 case RCU_EXP_TASKS:
201 case RCU_EXP_TASKS + RCU_GP_BLKD:
202 case RCU_GP_TASKS:
203 case RCU_GP_TASKS + RCU_EXP_TASKS:
206 * Blocking neither GP, or first task blocking the normal
207 * GP but not blocking the already-waiting expedited GP.
208 * Queue at the head of the list to avoid unnecessarily
209 * blocking the already-waiting GPs.
211 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
212 break;
214 case RCU_EXP_BLKD:
215 case RCU_GP_BLKD:
216 case RCU_GP_BLKD + RCU_EXP_BLKD:
217 case RCU_GP_TASKS + RCU_EXP_BLKD:
218 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
219 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
222 * First task arriving that blocks either GP, or first task
223 * arriving that blocks the expedited GP (with the normal
224 * GP already waiting), or a task arriving that blocks
225 * both GPs with both GPs already waiting. Queue at the
226 * tail of the list to avoid any GP waiting on any of the
227 * already queued tasks that are not blocking it.
229 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
230 break;
232 case RCU_EXP_TASKS + RCU_EXP_BLKD:
233 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
234 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
237 * Second or subsequent task blocking the expedited GP.
238 * The task either does not block the normal GP, or is the
239 * first task blocking the normal GP. Queue just after
240 * the first task blocking the expedited GP.
242 list_add(&t->rcu_node_entry, rnp->exp_tasks);
243 break;
245 case RCU_GP_TASKS + RCU_GP_BLKD:
246 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
249 * Second or subsequent task blocking the normal GP.
250 * The task does not block the expedited GP. Queue just
251 * after the first task blocking the normal GP.
253 list_add(&t->rcu_node_entry, rnp->gp_tasks);
254 break;
256 default:
258 /* Yet another exercise in excessive paranoia. */
259 WARN_ON_ONCE(1);
260 break;
264 * We have now queued the task. If it was the first one to
265 * block either grace period, update the ->gp_tasks and/or
266 * ->exp_tasks pointers, respectively, to reference the newly
267 * blocked tasks.
269 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
270 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
271 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
273 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
274 rnp->exp_tasks = &t->rcu_node_entry;
275 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
276 !(rnp->qsmask & rdp->grpmask));
277 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
278 !(rnp->expmask & rdp->grpmask));
279 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
282 * Report the quiescent state for the expedited GP. This expedited
283 * GP should not be able to end until we report, so there should be
284 * no need to check for a subsequent expedited GP. (Though we are
285 * still in a quiescent state in any case.)
287 if (blkd_state & RCU_EXP_BLKD &&
288 t->rcu_read_unlock_special.b.exp_need_qs) {
289 t->rcu_read_unlock_special.b.exp_need_qs = false;
290 rcu_report_exp_rdp(rdp->rsp, rdp, true);
291 } else {
292 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
297 * Record a preemptible-RCU quiescent state for the specified CPU.
298 * Note that this does not necessarily mean that the task currently running
299 * on the CPU is in a quiescent state: Instead, it means that the current
300 * grace period need not wait on any RCU read-side critical section that
301 * starts later on this CPU. It also means that if the current task is
302 * in an RCU read-side critical section, it has already added itself to
303 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
304 * current task, there might be any number of other tasks blocked while
305 * in an RCU read-side critical section.
307 * Callers to this function must disable preemption.
309 static void rcu_preempt_qs(void)
311 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
312 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
313 trace_rcu_grace_period(TPS("rcu_preempt"),
314 __this_cpu_read(rcu_data_p->gp_seq),
315 TPS("cpuqs"));
316 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
317 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
318 current->rcu_read_unlock_special.b.need_qs = false;
323 * We have entered the scheduler, and the current task might soon be
324 * context-switched away from. If this task is in an RCU read-side
325 * critical section, we will no longer be able to rely on the CPU to
326 * record that fact, so we enqueue the task on the blkd_tasks list.
327 * The task will dequeue itself when it exits the outermost enclosing
328 * RCU read-side critical section. Therefore, the current grace period
329 * cannot be permitted to complete until the blkd_tasks list entries
330 * predating the current grace period drain, in other words, until
331 * rnp->gp_tasks becomes NULL.
333 * Caller must disable interrupts.
335 static void rcu_preempt_note_context_switch(bool preempt)
337 struct task_struct *t = current;
338 struct rcu_data *rdp;
339 struct rcu_node *rnp;
341 lockdep_assert_irqs_disabled();
342 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
343 if (t->rcu_read_lock_nesting > 0 &&
344 !t->rcu_read_unlock_special.b.blocked) {
346 /* Possibly blocking in an RCU read-side critical section. */
347 rdp = this_cpu_ptr(rcu_state_p->rda);
348 rnp = rdp->mynode;
349 raw_spin_lock_rcu_node(rnp);
350 t->rcu_read_unlock_special.b.blocked = true;
351 t->rcu_blocked_node = rnp;
354 * Verify the CPU's sanity, trace the preemption, and
355 * then queue the task as required based on the states
356 * of any ongoing and expedited grace periods.
358 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
359 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
360 trace_rcu_preempt_task(rdp->rsp->name,
361 t->pid,
362 (rnp->qsmask & rdp->grpmask)
363 ? rnp->gp_seq
364 : rcu_seq_snap(&rnp->gp_seq));
365 rcu_preempt_ctxt_queue(rnp, rdp);
366 } else if (t->rcu_read_lock_nesting < 0 &&
367 t->rcu_read_unlock_special.s) {
370 * Complete exit from RCU read-side critical section on
371 * behalf of preempted instance of __rcu_read_unlock().
373 rcu_read_unlock_special(t);
377 * Either we were not in an RCU read-side critical section to
378 * begin with, or we have now recorded that critical section
379 * globally. Either way, we can now note a quiescent state
380 * for this CPU. Again, if we were in an RCU read-side critical
381 * section, and if that critical section was blocking the current
382 * grace period, then the fact that the task has been enqueued
383 * means that we continue to block the current grace period.
385 rcu_preempt_qs();
389 * Check for preempted RCU readers blocking the current grace period
390 * for the specified rcu_node structure. If the caller needs a reliable
391 * answer, it must hold the rcu_node's ->lock.
393 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
395 return READ_ONCE(rnp->gp_tasks) != NULL;
399 * Preemptible RCU implementation for rcu_read_lock().
400 * Just increment ->rcu_read_lock_nesting, shared state will be updated
401 * if we block.
403 void __rcu_read_lock(void)
405 current->rcu_read_lock_nesting++;
406 barrier(); /* critical section after entry code. */
408 EXPORT_SYMBOL_GPL(__rcu_read_lock);
411 * Preemptible RCU implementation for rcu_read_unlock().
412 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
413 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
414 * invoke rcu_read_unlock_special() to clean up after a context switch
415 * in an RCU read-side critical section and other special cases.
417 void __rcu_read_unlock(void)
419 struct task_struct *t = current;
421 if (t->rcu_read_lock_nesting != 1) {
422 --t->rcu_read_lock_nesting;
423 } else {
424 barrier(); /* critical section before exit code. */
425 t->rcu_read_lock_nesting = INT_MIN;
426 barrier(); /* assign before ->rcu_read_unlock_special load */
427 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
428 rcu_read_unlock_special(t);
429 barrier(); /* ->rcu_read_unlock_special load before assign */
430 t->rcu_read_lock_nesting = 0;
432 #ifdef CONFIG_PROVE_LOCKING
434 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
436 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
438 #endif /* #ifdef CONFIG_PROVE_LOCKING */
440 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
443 * Advance a ->blkd_tasks-list pointer to the next entry, instead
444 * returning NULL if at the end of the list.
446 static struct list_head *rcu_next_node_entry(struct task_struct *t,
447 struct rcu_node *rnp)
449 struct list_head *np;
451 np = t->rcu_node_entry.next;
452 if (np == &rnp->blkd_tasks)
453 np = NULL;
454 return np;
458 * Return true if the specified rcu_node structure has tasks that were
459 * preempted within an RCU read-side critical section.
461 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
463 return !list_empty(&rnp->blkd_tasks);
467 * Handle special cases during rcu_read_unlock(), such as needing to
468 * notify RCU core processing or task having blocked during the RCU
469 * read-side critical section.
471 static void rcu_read_unlock_special(struct task_struct *t)
473 bool empty_exp;
474 bool empty_norm;
475 bool empty_exp_now;
476 unsigned long flags;
477 struct list_head *np;
478 bool drop_boost_mutex = false;
479 struct rcu_data *rdp;
480 struct rcu_node *rnp;
481 union rcu_special special;
483 /* NMI handlers cannot block and cannot safely manipulate state. */
484 if (in_nmi())
485 return;
487 local_irq_save(flags);
490 * If RCU core is waiting for this CPU to exit its critical section,
491 * report the fact that it has exited. Because irqs are disabled,
492 * t->rcu_read_unlock_special cannot change.
494 special = t->rcu_read_unlock_special;
495 if (special.b.need_qs) {
496 rcu_preempt_qs();
497 t->rcu_read_unlock_special.b.need_qs = false;
498 if (!t->rcu_read_unlock_special.s) {
499 local_irq_restore(flags);
500 return;
505 * Respond to a request for an expedited grace period, but only if
506 * we were not preempted, meaning that we were running on the same
507 * CPU throughout. If we were preempted, the exp_need_qs flag
508 * would have been cleared at the time of the first preemption,
509 * and the quiescent state would be reported when we were dequeued.
511 if (special.b.exp_need_qs) {
512 WARN_ON_ONCE(special.b.blocked);
513 t->rcu_read_unlock_special.b.exp_need_qs = false;
514 rdp = this_cpu_ptr(rcu_state_p->rda);
515 rcu_report_exp_rdp(rcu_state_p, rdp, true);
516 if (!t->rcu_read_unlock_special.s) {
517 local_irq_restore(flags);
518 return;
522 /* Hardware IRQ handlers cannot block, complain if they get here. */
523 if (in_irq() || in_serving_softirq()) {
524 lockdep_rcu_suspicious(__FILE__, __LINE__,
525 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
526 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
527 t->rcu_read_unlock_special.s,
528 t->rcu_read_unlock_special.b.blocked,
529 t->rcu_read_unlock_special.b.exp_need_qs,
530 t->rcu_read_unlock_special.b.need_qs);
531 local_irq_restore(flags);
532 return;
535 /* Clean up if blocked during RCU read-side critical section. */
536 if (special.b.blocked) {
537 t->rcu_read_unlock_special.b.blocked = false;
540 * Remove this task from the list it blocked on. The task
541 * now remains queued on the rcu_node corresponding to the
542 * CPU it first blocked on, so there is no longer any need
543 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
545 rnp = t->rcu_blocked_node;
546 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
547 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
548 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
549 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
550 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
551 (!empty_norm || rnp->qsmask));
552 empty_exp = sync_rcu_preempt_exp_done(rnp);
553 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
554 np = rcu_next_node_entry(t, rnp);
555 list_del_init(&t->rcu_node_entry);
556 t->rcu_blocked_node = NULL;
557 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
558 rnp->gp_seq, t->pid);
559 if (&t->rcu_node_entry == rnp->gp_tasks)
560 WRITE_ONCE(rnp->gp_tasks, np);
561 if (&t->rcu_node_entry == rnp->exp_tasks)
562 rnp->exp_tasks = np;
563 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
564 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
565 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
566 if (&t->rcu_node_entry == rnp->boost_tasks)
567 rnp->boost_tasks = np;
571 * If this was the last task on the current list, and if
572 * we aren't waiting on any CPUs, report the quiescent state.
573 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
574 * so we must take a snapshot of the expedited state.
576 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
577 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
578 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
579 rnp->gp_seq,
580 0, rnp->qsmask,
581 rnp->level,
582 rnp->grplo,
583 rnp->grphi,
584 !!rnp->gp_tasks);
585 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
586 } else {
587 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
590 /* Unboost if we were boosted. */
591 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
592 rt_mutex_futex_unlock(&rnp->boost_mtx);
595 * If this was the last task on the expedited lists,
596 * then we need to report up the rcu_node hierarchy.
598 if (!empty_exp && empty_exp_now)
599 rcu_report_exp_rnp(rcu_state_p, rnp, true);
600 } else {
601 local_irq_restore(flags);
606 * Dump detailed information for all tasks blocking the current RCU
607 * grace period on the specified rcu_node structure.
609 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
611 unsigned long flags;
612 struct task_struct *t;
614 raw_spin_lock_irqsave_rcu_node(rnp, flags);
615 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
616 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
617 return;
619 t = list_entry(rnp->gp_tasks->prev,
620 struct task_struct, rcu_node_entry);
621 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
623 * We could be printing a lot while holding a spinlock.
624 * Avoid triggering hard lockup.
626 touch_nmi_watchdog();
627 sched_show_task(t);
629 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
633 * Dump detailed information for all tasks blocking the current RCU
634 * grace period.
636 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
638 struct rcu_node *rnp = rcu_get_root(rsp);
640 rcu_print_detail_task_stall_rnp(rnp);
641 rcu_for_each_leaf_node(rsp, rnp)
642 rcu_print_detail_task_stall_rnp(rnp);
645 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
647 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
648 rnp->level, rnp->grplo, rnp->grphi);
651 static void rcu_print_task_stall_end(void)
653 pr_cont("\n");
657 * Scan the current list of tasks blocked within RCU read-side critical
658 * sections, printing out the tid of each.
660 static int rcu_print_task_stall(struct rcu_node *rnp)
662 struct task_struct *t;
663 int ndetected = 0;
665 if (!rcu_preempt_blocked_readers_cgp(rnp))
666 return 0;
667 rcu_print_task_stall_begin(rnp);
668 t = list_entry(rnp->gp_tasks->prev,
669 struct task_struct, rcu_node_entry);
670 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
671 pr_cont(" P%d", t->pid);
672 ndetected++;
674 rcu_print_task_stall_end();
675 return ndetected;
679 * Scan the current list of tasks blocked within RCU read-side critical
680 * sections, printing out the tid of each that is blocking the current
681 * expedited grace period.
683 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
685 struct task_struct *t;
686 int ndetected = 0;
688 if (!rnp->exp_tasks)
689 return 0;
690 t = list_entry(rnp->exp_tasks->prev,
691 struct task_struct, rcu_node_entry);
692 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
693 pr_cont(" P%d", t->pid);
694 ndetected++;
696 return ndetected;
700 * Check that the list of blocked tasks for the newly completed grace
701 * period is in fact empty. It is a serious bug to complete a grace
702 * period that still has RCU readers blocked! This function must be
703 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
704 * must be held by the caller.
706 * Also, if there are blocked tasks on the list, they automatically
707 * block the newly created grace period, so set up ->gp_tasks accordingly.
709 static void
710 rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp)
712 struct task_struct *t;
714 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
715 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
716 dump_blkd_tasks(rsp, rnp, 10);
717 if (rcu_preempt_has_tasks(rnp) &&
718 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
719 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
720 t = container_of(rnp->gp_tasks, struct task_struct,
721 rcu_node_entry);
722 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
723 rnp->gp_seq, t->pid);
725 WARN_ON_ONCE(rnp->qsmask);
729 * Check for a quiescent state from the current CPU. When a task blocks,
730 * the task is recorded in the corresponding CPU's rcu_node structure,
731 * which is checked elsewhere.
733 * Caller must disable hard irqs.
735 static void rcu_preempt_check_callbacks(void)
737 struct rcu_state *rsp = &rcu_preempt_state;
738 struct task_struct *t = current;
740 if (t->rcu_read_lock_nesting == 0) {
741 rcu_preempt_qs();
742 return;
744 if (t->rcu_read_lock_nesting > 0 &&
745 __this_cpu_read(rcu_data_p->core_needs_qs) &&
746 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm) &&
747 !t->rcu_read_unlock_special.b.need_qs &&
748 time_after(jiffies, rsp->gp_start + HZ))
749 t->rcu_read_unlock_special.b.need_qs = true;
753 * call_rcu() - Queue an RCU callback for invocation after a grace period.
754 * @head: structure to be used for queueing the RCU updates.
755 * @func: actual callback function to be invoked after the grace period
757 * The callback function will be invoked some time after a full grace
758 * period elapses, in other words after all pre-existing RCU read-side
759 * critical sections have completed. However, the callback function
760 * might well execute concurrently with RCU read-side critical sections
761 * that started after call_rcu() was invoked. RCU read-side critical
762 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
763 * and may be nested.
765 * Note that all CPUs must agree that the grace period extended beyond
766 * all pre-existing RCU read-side critical section. On systems with more
767 * than one CPU, this means that when "func()" is invoked, each CPU is
768 * guaranteed to have executed a full memory barrier since the end of its
769 * last RCU read-side critical section whose beginning preceded the call
770 * to call_rcu(). It also means that each CPU executing an RCU read-side
771 * critical section that continues beyond the start of "func()" must have
772 * executed a memory barrier after the call_rcu() but before the beginning
773 * of that RCU read-side critical section. Note that these guarantees
774 * include CPUs that are offline, idle, or executing in user mode, as
775 * well as CPUs that are executing in the kernel.
777 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
778 * resulting RCU callback function "func()", then both CPU A and CPU B are
779 * guaranteed to execute a full memory barrier during the time interval
780 * between the call to call_rcu() and the invocation of "func()" -- even
781 * if CPU A and CPU B are the same CPU (but again only if the system has
782 * more than one CPU).
784 void call_rcu(struct rcu_head *head, rcu_callback_t func)
786 __call_rcu(head, func, rcu_state_p, -1, 0);
788 EXPORT_SYMBOL_GPL(call_rcu);
791 * synchronize_rcu - wait until a grace period has elapsed.
793 * Control will return to the caller some time after a full grace
794 * period has elapsed, in other words after all currently executing RCU
795 * read-side critical sections have completed. Note, however, that
796 * upon return from synchronize_rcu(), the caller might well be executing
797 * concurrently with new RCU read-side critical sections that began while
798 * synchronize_rcu() was waiting. RCU read-side critical sections are
799 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
801 * See the description of synchronize_sched() for more detailed
802 * information on memory-ordering guarantees. However, please note
803 * that -only- the memory-ordering guarantees apply. For example,
804 * synchronize_rcu() is -not- guaranteed to wait on things like code
805 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
806 * guaranteed to wait on RCU read-side critical sections, that is, sections
807 * of code protected by rcu_read_lock().
809 void synchronize_rcu(void)
811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
812 lock_is_held(&rcu_lock_map) ||
813 lock_is_held(&rcu_sched_lock_map),
814 "Illegal synchronize_rcu() in RCU read-side critical section");
815 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
816 return;
817 if (rcu_gp_is_expedited())
818 synchronize_rcu_expedited();
819 else
820 wait_rcu_gp(call_rcu);
822 EXPORT_SYMBOL_GPL(synchronize_rcu);
825 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
827 * Note that this primitive does not necessarily wait for an RCU grace period
828 * to complete. For example, if there are no RCU callbacks queued anywhere
829 * in the system, then rcu_barrier() is within its rights to return
830 * immediately, without waiting for anything, much less an RCU grace period.
832 void rcu_barrier(void)
834 _rcu_barrier(rcu_state_p);
836 EXPORT_SYMBOL_GPL(rcu_barrier);
839 * Initialize preemptible RCU's state structures.
841 static void __init __rcu_init_preempt(void)
843 rcu_init_one(rcu_state_p);
847 * Check for a task exiting while in a preemptible-RCU read-side
848 * critical section, clean up if so. No need to issue warnings,
849 * as debug_check_no_locks_held() already does this if lockdep
850 * is enabled.
852 void exit_rcu(void)
854 struct task_struct *t = current;
856 if (likely(list_empty(&current->rcu_node_entry)))
857 return;
858 t->rcu_read_lock_nesting = 1;
859 barrier();
860 t->rcu_read_unlock_special.b.blocked = true;
861 __rcu_read_unlock();
865 * Dump the blocked-tasks state, but limit the list dump to the
866 * specified number of elements.
868 static void
869 dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck)
871 int cpu;
872 int i;
873 struct list_head *lhp;
874 bool onl;
875 struct rcu_data *rdp;
876 struct rcu_node *rnp1;
878 raw_lockdep_assert_held_rcu_node(rnp);
879 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
880 __func__, rnp->grplo, rnp->grphi, rnp->level,
881 (long)rnp->gp_seq, (long)rnp->completedqs);
882 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
883 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
884 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
885 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
886 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
887 rnp->exp_tasks);
888 pr_info("%s: ->blkd_tasks", __func__);
889 i = 0;
890 list_for_each(lhp, &rnp->blkd_tasks) {
891 pr_cont(" %p", lhp);
892 if (++i >= 10)
893 break;
895 pr_cont("\n");
896 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
897 rdp = per_cpu_ptr(rsp->rda, cpu);
898 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
899 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
900 cpu, ".o"[onl],
901 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
902 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
906 #else /* #ifdef CONFIG_PREEMPT_RCU */
908 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
911 * Tell them what RCU they are running.
913 static void __init rcu_bootup_announce(void)
915 pr_info("Hierarchical RCU implementation.\n");
916 rcu_bootup_announce_oddness();
920 * Because preemptible RCU does not exist, we never have to check for
921 * CPUs being in quiescent states.
923 static void rcu_preempt_note_context_switch(bool preempt)
928 * Because preemptible RCU does not exist, there are never any preempted
929 * RCU readers.
931 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
933 return 0;
937 * Because there is no preemptible RCU, there can be no readers blocked.
939 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
941 return false;
945 * Because preemptible RCU does not exist, we never have to check for
946 * tasks blocked within RCU read-side critical sections.
948 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
953 * Because preemptible RCU does not exist, we never have to check for
954 * tasks blocked within RCU read-side critical sections.
956 static int rcu_print_task_stall(struct rcu_node *rnp)
958 return 0;
962 * Because preemptible RCU does not exist, we never have to check for
963 * tasks blocked within RCU read-side critical sections that are
964 * blocking the current expedited grace period.
966 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
968 return 0;
972 * Because there is no preemptible RCU, there can be no readers blocked,
973 * so there is no need to check for blocked tasks. So check only for
974 * bogus qsmask values.
976 static void
977 rcu_preempt_check_blocked_tasks(struct rcu_state *rsp, struct rcu_node *rnp)
979 WARN_ON_ONCE(rnp->qsmask);
983 * Because preemptible RCU does not exist, it never has any callbacks
984 * to check.
986 static void rcu_preempt_check_callbacks(void)
991 * Because preemptible RCU does not exist, rcu_barrier() is just
992 * another name for rcu_barrier_sched().
994 void rcu_barrier(void)
996 rcu_barrier_sched();
998 EXPORT_SYMBOL_GPL(rcu_barrier);
1001 * Because preemptible RCU does not exist, it need not be initialized.
1003 static void __init __rcu_init_preempt(void)
1008 * Because preemptible RCU does not exist, tasks cannot possibly exit
1009 * while in preemptible RCU read-side critical sections.
1011 void exit_rcu(void)
1016 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
1018 static void
1019 dump_blkd_tasks(struct rcu_state *rsp, struct rcu_node *rnp, int ncheck)
1021 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1024 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1026 #ifdef CONFIG_RCU_BOOST
1028 static void rcu_wake_cond(struct task_struct *t, int status)
1031 * If the thread is yielding, only wake it when this
1032 * is invoked from idle
1034 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1035 wake_up_process(t);
1039 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1040 * or ->boost_tasks, advancing the pointer to the next task in the
1041 * ->blkd_tasks list.
1043 * Note that irqs must be enabled: boosting the task can block.
1044 * Returns 1 if there are more tasks needing to be boosted.
1046 static int rcu_boost(struct rcu_node *rnp)
1048 unsigned long flags;
1049 struct task_struct *t;
1050 struct list_head *tb;
1052 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1053 READ_ONCE(rnp->boost_tasks) == NULL)
1054 return 0; /* Nothing left to boost. */
1056 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1059 * Recheck under the lock: all tasks in need of boosting
1060 * might exit their RCU read-side critical sections on their own.
1062 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1063 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1064 return 0;
1068 * Preferentially boost tasks blocking expedited grace periods.
1069 * This cannot starve the normal grace periods because a second
1070 * expedited grace period must boost all blocked tasks, including
1071 * those blocking the pre-existing normal grace period.
1073 if (rnp->exp_tasks != NULL)
1074 tb = rnp->exp_tasks;
1075 else
1076 tb = rnp->boost_tasks;
1079 * We boost task t by manufacturing an rt_mutex that appears to
1080 * be held by task t. We leave a pointer to that rt_mutex where
1081 * task t can find it, and task t will release the mutex when it
1082 * exits its outermost RCU read-side critical section. Then
1083 * simply acquiring this artificial rt_mutex will boost task
1084 * t's priority. (Thanks to tglx for suggesting this approach!)
1086 * Note that task t must acquire rnp->lock to remove itself from
1087 * the ->blkd_tasks list, which it will do from exit() if from
1088 * nowhere else. We therefore are guaranteed that task t will
1089 * stay around at least until we drop rnp->lock. Note that
1090 * rnp->lock also resolves races between our priority boosting
1091 * and task t's exiting its outermost RCU read-side critical
1092 * section.
1094 t = container_of(tb, struct task_struct, rcu_node_entry);
1095 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1096 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1097 /* Lock only for side effect: boosts task t's priority. */
1098 rt_mutex_lock(&rnp->boost_mtx);
1099 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1101 return READ_ONCE(rnp->exp_tasks) != NULL ||
1102 READ_ONCE(rnp->boost_tasks) != NULL;
1106 * Priority-boosting kthread, one per leaf rcu_node.
1108 static int rcu_boost_kthread(void *arg)
1110 struct rcu_node *rnp = (struct rcu_node *)arg;
1111 int spincnt = 0;
1112 int more2boost;
1114 trace_rcu_utilization(TPS("Start boost kthread@init"));
1115 for (;;) {
1116 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1117 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1118 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1119 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1120 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1121 more2boost = rcu_boost(rnp);
1122 if (more2boost)
1123 spincnt++;
1124 else
1125 spincnt = 0;
1126 if (spincnt > 10) {
1127 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1128 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1129 schedule_timeout_interruptible(2);
1130 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1131 spincnt = 0;
1134 /* NOTREACHED */
1135 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1136 return 0;
1140 * Check to see if it is time to start boosting RCU readers that are
1141 * blocking the current grace period, and, if so, tell the per-rcu_node
1142 * kthread to start boosting them. If there is an expedited grace
1143 * period in progress, it is always time to boost.
1145 * The caller must hold rnp->lock, which this function releases.
1146 * The ->boost_kthread_task is immortal, so we don't need to worry
1147 * about it going away.
1149 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1150 __releases(rnp->lock)
1152 struct task_struct *t;
1154 raw_lockdep_assert_held_rcu_node(rnp);
1155 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1156 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1157 return;
1159 if (rnp->exp_tasks != NULL ||
1160 (rnp->gp_tasks != NULL &&
1161 rnp->boost_tasks == NULL &&
1162 rnp->qsmask == 0 &&
1163 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1164 if (rnp->exp_tasks == NULL)
1165 rnp->boost_tasks = rnp->gp_tasks;
1166 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1167 t = rnp->boost_kthread_task;
1168 if (t)
1169 rcu_wake_cond(t, rnp->boost_kthread_status);
1170 } else {
1171 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1176 * Wake up the per-CPU kthread to invoke RCU callbacks.
1178 static void invoke_rcu_callbacks_kthread(void)
1180 unsigned long flags;
1182 local_irq_save(flags);
1183 __this_cpu_write(rcu_cpu_has_work, 1);
1184 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1185 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1186 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1187 __this_cpu_read(rcu_cpu_kthread_status));
1189 local_irq_restore(flags);
1193 * Is the current CPU running the RCU-callbacks kthread?
1194 * Caller must have preemption disabled.
1196 static bool rcu_is_callbacks_kthread(void)
1198 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1201 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1204 * Do priority-boost accounting for the start of a new grace period.
1206 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1208 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1212 * Create an RCU-boost kthread for the specified node if one does not
1213 * already exist. We only create this kthread for preemptible RCU.
1214 * Returns zero if all is well, a negated errno otherwise.
1216 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1217 struct rcu_node *rnp)
1219 int rnp_index = rnp - &rsp->node[0];
1220 unsigned long flags;
1221 struct sched_param sp;
1222 struct task_struct *t;
1224 if (rcu_state_p != rsp)
1225 return 0;
1227 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1228 return 0;
1230 rsp->boost = 1;
1231 if (rnp->boost_kthread_task != NULL)
1232 return 0;
1233 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1234 "rcub/%d", rnp_index);
1235 if (IS_ERR(t))
1236 return PTR_ERR(t);
1237 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1238 rnp->boost_kthread_task = t;
1239 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1240 sp.sched_priority = kthread_prio;
1241 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1242 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1243 return 0;
1246 static void rcu_kthread_do_work(void)
1248 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1249 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1250 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
1253 static void rcu_cpu_kthread_setup(unsigned int cpu)
1255 struct sched_param sp;
1257 sp.sched_priority = kthread_prio;
1258 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1261 static void rcu_cpu_kthread_park(unsigned int cpu)
1263 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1266 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1268 return __this_cpu_read(rcu_cpu_has_work);
1272 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1273 * RCU softirq used in flavors and configurations of RCU that do not
1274 * support RCU priority boosting.
1276 static void rcu_cpu_kthread(unsigned int cpu)
1278 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1279 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1280 int spincnt;
1282 for (spincnt = 0; spincnt < 10; spincnt++) {
1283 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1284 local_bh_disable();
1285 *statusp = RCU_KTHREAD_RUNNING;
1286 this_cpu_inc(rcu_cpu_kthread_loops);
1287 local_irq_disable();
1288 work = *workp;
1289 *workp = 0;
1290 local_irq_enable();
1291 if (work)
1292 rcu_kthread_do_work();
1293 local_bh_enable();
1294 if (*workp == 0) {
1295 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1296 *statusp = RCU_KTHREAD_WAITING;
1297 return;
1300 *statusp = RCU_KTHREAD_YIELDING;
1301 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1302 schedule_timeout_interruptible(2);
1303 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1304 *statusp = RCU_KTHREAD_WAITING;
1308 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1309 * served by the rcu_node in question. The CPU hotplug lock is still
1310 * held, so the value of rnp->qsmaskinit will be stable.
1312 * We don't include outgoingcpu in the affinity set, use -1 if there is
1313 * no outgoing CPU. If there are no CPUs left in the affinity set,
1314 * this function allows the kthread to execute on any CPU.
1316 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1318 struct task_struct *t = rnp->boost_kthread_task;
1319 unsigned long mask = rcu_rnp_online_cpus(rnp);
1320 cpumask_var_t cm;
1321 int cpu;
1323 if (!t)
1324 return;
1325 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1326 return;
1327 for_each_leaf_node_possible_cpu(rnp, cpu)
1328 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1329 cpu != outgoingcpu)
1330 cpumask_set_cpu(cpu, cm);
1331 if (cpumask_weight(cm) == 0)
1332 cpumask_setall(cm);
1333 set_cpus_allowed_ptr(t, cm);
1334 free_cpumask_var(cm);
1337 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1338 .store = &rcu_cpu_kthread_task,
1339 .thread_should_run = rcu_cpu_kthread_should_run,
1340 .thread_fn = rcu_cpu_kthread,
1341 .thread_comm = "rcuc/%u",
1342 .setup = rcu_cpu_kthread_setup,
1343 .park = rcu_cpu_kthread_park,
1347 * Spawn boost kthreads -- called as soon as the scheduler is running.
1349 static void __init rcu_spawn_boost_kthreads(void)
1351 struct rcu_node *rnp;
1352 int cpu;
1354 for_each_possible_cpu(cpu)
1355 per_cpu(rcu_cpu_has_work, cpu) = 0;
1356 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1357 rcu_for_each_leaf_node(rcu_state_p, rnp)
1358 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1361 static void rcu_prepare_kthreads(int cpu)
1363 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1364 struct rcu_node *rnp = rdp->mynode;
1366 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1367 if (rcu_scheduler_fully_active)
1368 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1371 #else /* #ifdef CONFIG_RCU_BOOST */
1373 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1374 __releases(rnp->lock)
1376 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1379 static void invoke_rcu_callbacks_kthread(void)
1381 WARN_ON_ONCE(1);
1384 static bool rcu_is_callbacks_kthread(void)
1386 return false;
1389 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1393 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1397 static void __init rcu_spawn_boost_kthreads(void)
1401 static void rcu_prepare_kthreads(int cpu)
1405 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1407 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1410 * Check to see if any future RCU-related work will need to be done
1411 * by the current CPU, even if none need be done immediately, returning
1412 * 1 if so. This function is part of the RCU implementation; it is -not-
1413 * an exported member of the RCU API.
1415 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1416 * any flavor of RCU.
1418 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1420 *nextevt = KTIME_MAX;
1421 return rcu_cpu_has_callbacks(NULL);
1425 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1426 * after it.
1428 static void rcu_cleanup_after_idle(void)
1433 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1434 * is nothing.
1436 static void rcu_prepare_for_idle(void)
1441 * Don't bother keeping a running count of the number of RCU callbacks
1442 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1444 static void rcu_idle_count_callbacks_posted(void)
1448 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1451 * This code is invoked when a CPU goes idle, at which point we want
1452 * to have the CPU do everything required for RCU so that it can enter
1453 * the energy-efficient dyntick-idle mode. This is handled by a
1454 * state machine implemented by rcu_prepare_for_idle() below.
1456 * The following three proprocessor symbols control this state machine:
1458 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1459 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1460 * is sized to be roughly one RCU grace period. Those energy-efficiency
1461 * benchmarkers who might otherwise be tempted to set this to a large
1462 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1463 * system. And if you are -that- concerned about energy efficiency,
1464 * just power the system down and be done with it!
1465 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1466 * permitted to sleep in dyntick-idle mode with only lazy RCU
1467 * callbacks pending. Setting this too high can OOM your system.
1469 * The values below work well in practice. If future workloads require
1470 * adjustment, they can be converted into kernel config parameters, though
1471 * making the state machine smarter might be a better option.
1473 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1474 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1476 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1477 module_param(rcu_idle_gp_delay, int, 0644);
1478 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1479 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1482 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1483 * only if it has been awhile since the last time we did so. Afterwards,
1484 * if there are any callbacks ready for immediate invocation, return true.
1486 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1488 bool cbs_ready = false;
1489 struct rcu_data *rdp;
1490 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1491 struct rcu_node *rnp;
1492 struct rcu_state *rsp;
1494 /* Exit early if we advanced recently. */
1495 if (jiffies == rdtp->last_advance_all)
1496 return false;
1497 rdtp->last_advance_all = jiffies;
1499 for_each_rcu_flavor(rsp) {
1500 rdp = this_cpu_ptr(rsp->rda);
1501 rnp = rdp->mynode;
1504 * Don't bother checking unless a grace period has
1505 * completed since we last checked and there are
1506 * callbacks not yet ready to invoke.
1508 if ((rcu_seq_completed_gp(rdp->gp_seq,
1509 rcu_seq_current(&rnp->gp_seq)) ||
1510 unlikely(READ_ONCE(rdp->gpwrap))) &&
1511 rcu_segcblist_pend_cbs(&rdp->cblist))
1512 note_gp_changes(rsp, rdp);
1514 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1515 cbs_ready = true;
1517 return cbs_ready;
1521 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1522 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1523 * caller to set the timeout based on whether or not there are non-lazy
1524 * callbacks.
1526 * The caller must have disabled interrupts.
1528 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1530 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1531 unsigned long dj;
1533 lockdep_assert_irqs_disabled();
1535 /* Snapshot to detect later posting of non-lazy callback. */
1536 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1538 /* If no callbacks, RCU doesn't need the CPU. */
1539 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1540 *nextevt = KTIME_MAX;
1541 return 0;
1544 /* Attempt to advance callbacks. */
1545 if (rcu_try_advance_all_cbs()) {
1546 /* Some ready to invoke, so initiate later invocation. */
1547 invoke_rcu_core();
1548 return 1;
1550 rdtp->last_accelerate = jiffies;
1552 /* Request timer delay depending on laziness, and round. */
1553 if (!rdtp->all_lazy) {
1554 dj = round_up(rcu_idle_gp_delay + jiffies,
1555 rcu_idle_gp_delay) - jiffies;
1556 } else {
1557 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1559 *nextevt = basemono + dj * TICK_NSEC;
1560 return 0;
1564 * Prepare a CPU for idle from an RCU perspective. The first major task
1565 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1566 * The second major task is to check to see if a non-lazy callback has
1567 * arrived at a CPU that previously had only lazy callbacks. The third
1568 * major task is to accelerate (that is, assign grace-period numbers to)
1569 * any recently arrived callbacks.
1571 * The caller must have disabled interrupts.
1573 static void rcu_prepare_for_idle(void)
1575 bool needwake;
1576 struct rcu_data *rdp;
1577 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1578 struct rcu_node *rnp;
1579 struct rcu_state *rsp;
1580 int tne;
1582 lockdep_assert_irqs_disabled();
1583 if (rcu_is_nocb_cpu(smp_processor_id()))
1584 return;
1586 /* Handle nohz enablement switches conservatively. */
1587 tne = READ_ONCE(tick_nohz_active);
1588 if (tne != rdtp->tick_nohz_enabled_snap) {
1589 if (rcu_cpu_has_callbacks(NULL))
1590 invoke_rcu_core(); /* force nohz to see update. */
1591 rdtp->tick_nohz_enabled_snap = tne;
1592 return;
1594 if (!tne)
1595 return;
1598 * If a non-lazy callback arrived at a CPU having only lazy
1599 * callbacks, invoke RCU core for the side-effect of recalculating
1600 * idle duration on re-entry to idle.
1602 if (rdtp->all_lazy &&
1603 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1604 rdtp->all_lazy = false;
1605 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1606 invoke_rcu_core();
1607 return;
1611 * If we have not yet accelerated this jiffy, accelerate all
1612 * callbacks on this CPU.
1614 if (rdtp->last_accelerate == jiffies)
1615 return;
1616 rdtp->last_accelerate = jiffies;
1617 for_each_rcu_flavor(rsp) {
1618 rdp = this_cpu_ptr(rsp->rda);
1619 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1620 continue;
1621 rnp = rdp->mynode;
1622 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1623 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1624 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1625 if (needwake)
1626 rcu_gp_kthread_wake(rsp);
1631 * Clean up for exit from idle. Attempt to advance callbacks based on
1632 * any grace periods that elapsed while the CPU was idle, and if any
1633 * callbacks are now ready to invoke, initiate invocation.
1635 static void rcu_cleanup_after_idle(void)
1637 lockdep_assert_irqs_disabled();
1638 if (rcu_is_nocb_cpu(smp_processor_id()))
1639 return;
1640 if (rcu_try_advance_all_cbs())
1641 invoke_rcu_core();
1645 * Keep a running count of the number of non-lazy callbacks posted
1646 * on this CPU. This running counter (which is never decremented) allows
1647 * rcu_prepare_for_idle() to detect when something out of the idle loop
1648 * posts a callback, even if an equal number of callbacks are invoked.
1649 * Of course, callbacks should only be posted from within a trace event
1650 * designed to be called from idle or from within RCU_NONIDLE().
1652 static void rcu_idle_count_callbacks_posted(void)
1654 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1658 * Data for flushing lazy RCU callbacks at OOM time.
1660 static atomic_t oom_callback_count;
1661 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1664 * RCU OOM callback -- decrement the outstanding count and deliver the
1665 * wake-up if we are the last one.
1667 static void rcu_oom_callback(struct rcu_head *rhp)
1669 if (atomic_dec_and_test(&oom_callback_count))
1670 wake_up(&oom_callback_wq);
1674 * Post an rcu_oom_notify callback on the current CPU if it has at
1675 * least one lazy callback. This will unnecessarily post callbacks
1676 * to CPUs that already have a non-lazy callback at the end of their
1677 * callback list, but this is an infrequent operation, so accept some
1678 * extra overhead to keep things simple.
1680 static void rcu_oom_notify_cpu(void *unused)
1682 struct rcu_state *rsp;
1683 struct rcu_data *rdp;
1685 for_each_rcu_flavor(rsp) {
1686 rdp = raw_cpu_ptr(rsp->rda);
1687 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1688 atomic_inc(&oom_callback_count);
1689 rsp->call(&rdp->oom_head, rcu_oom_callback);
1695 * If low on memory, ensure that each CPU has a non-lazy callback.
1696 * This will wake up CPUs that have only lazy callbacks, in turn
1697 * ensuring that they free up the corresponding memory in a timely manner.
1698 * Because an uncertain amount of memory will be freed in some uncertain
1699 * timeframe, we do not claim to have freed anything.
1701 static int rcu_oom_notify(struct notifier_block *self,
1702 unsigned long notused, void *nfreed)
1704 int cpu;
1706 /* Wait for callbacks from earlier instance to complete. */
1707 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1708 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1711 * Prevent premature wakeup: ensure that all increments happen
1712 * before there is a chance of the counter reaching zero.
1714 atomic_set(&oom_callback_count, 1);
1716 for_each_online_cpu(cpu) {
1717 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1718 cond_resched_tasks_rcu_qs();
1721 /* Unconditionally decrement: no need to wake ourselves up. */
1722 atomic_dec(&oom_callback_count);
1724 return NOTIFY_OK;
1727 static struct notifier_block rcu_oom_nb = {
1728 .notifier_call = rcu_oom_notify
1731 static int __init rcu_register_oom_notifier(void)
1733 register_oom_notifier(&rcu_oom_nb);
1734 return 0;
1736 early_initcall(rcu_register_oom_notifier);
1738 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1740 #ifdef CONFIG_RCU_FAST_NO_HZ
1742 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1744 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1745 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1747 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1748 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1749 ulong2long(nlpd),
1750 rdtp->all_lazy ? 'L' : '.',
1751 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1754 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1756 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1758 *cp = '\0';
1761 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1763 /* Initiate the stall-info list. */
1764 static void print_cpu_stall_info_begin(void)
1766 pr_cont("\n");
1770 * Print out diagnostic information for the specified stalled CPU.
1772 * If the specified CPU is aware of the current RCU grace period
1773 * (flavor specified by rsp), then print the number of scheduling
1774 * clock interrupts the CPU has taken during the time that it has
1775 * been aware. Otherwise, print the number of RCU grace periods
1776 * that this CPU is ignorant of, for example, "1" if the CPU was
1777 * aware of the previous grace period.
1779 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1781 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1783 unsigned long delta;
1784 char fast_no_hz[72];
1785 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1786 struct rcu_dynticks *rdtp = rdp->dynticks;
1787 char *ticks_title;
1788 unsigned long ticks_value;
1791 * We could be printing a lot while holding a spinlock. Avoid
1792 * triggering hard lockup.
1794 touch_nmi_watchdog();
1796 ticks_value = rcu_seq_ctr(rsp->gp_seq - rdp->gp_seq);
1797 if (ticks_value) {
1798 ticks_title = "GPs behind";
1799 } else {
1800 ticks_title = "ticks this GP";
1801 ticks_value = rdp->ticks_this_gp;
1803 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1804 delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq);
1805 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
1806 cpu,
1807 "O."[!!cpu_online(cpu)],
1808 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1809 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1810 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1811 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1812 "!."[!delta],
1813 ticks_value, ticks_title,
1814 rcu_dynticks_snap(rdtp) & 0xfff,
1815 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1816 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1817 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1818 fast_no_hz);
1821 /* Terminate the stall-info list. */
1822 static void print_cpu_stall_info_end(void)
1824 pr_err("\t");
1827 /* Zero ->ticks_this_gp for all flavors of RCU. */
1828 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1830 rdp->ticks_this_gp = 0;
1831 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1834 /* Increment ->ticks_this_gp for all flavors of RCU. */
1835 static void increment_cpu_stall_ticks(void)
1837 struct rcu_state *rsp;
1839 for_each_rcu_flavor(rsp)
1840 raw_cpu_inc(rsp->rda->ticks_this_gp);
1843 #ifdef CONFIG_RCU_NOCB_CPU
1846 * Offload callback processing from the boot-time-specified set of CPUs
1847 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1848 * kthread created that pulls the callbacks from the corresponding CPU,
1849 * waits for a grace period to elapse, and invokes the callbacks.
1850 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1851 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1852 * has been specified, in which case each kthread actively polls its
1853 * CPU. (Which isn't so great for energy efficiency, but which does
1854 * reduce RCU's overhead on that CPU.)
1856 * This is intended to be used in conjunction with Frederic Weisbecker's
1857 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1858 * running CPU-bound user-mode computations.
1860 * Offloading of callback processing could also in theory be used as
1861 * an energy-efficiency measure because CPUs with no RCU callbacks
1862 * queued are more aggressive about entering dyntick-idle mode.
1866 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1867 static int __init rcu_nocb_setup(char *str)
1869 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1870 cpulist_parse(str, rcu_nocb_mask);
1871 return 1;
1873 __setup("rcu_nocbs=", rcu_nocb_setup);
1875 static int __init parse_rcu_nocb_poll(char *arg)
1877 rcu_nocb_poll = true;
1878 return 0;
1880 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1883 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1884 * grace period.
1886 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1888 swake_up_all(sq);
1891 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1893 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1896 static void rcu_init_one_nocb(struct rcu_node *rnp)
1898 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1899 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1902 /* Is the specified CPU a no-CBs CPU? */
1903 bool rcu_is_nocb_cpu(int cpu)
1905 if (cpumask_available(rcu_nocb_mask))
1906 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1907 return false;
1911 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1912 * and this function releases it.
1914 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1915 unsigned long flags)
1916 __releases(rdp->nocb_lock)
1918 struct rcu_data *rdp_leader = rdp->nocb_leader;
1920 lockdep_assert_held(&rdp->nocb_lock);
1921 if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1922 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1923 return;
1925 if (rdp_leader->nocb_leader_sleep || force) {
1926 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1927 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1928 del_timer(&rdp->nocb_timer);
1929 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1930 smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1931 swake_up_one(&rdp_leader->nocb_wq);
1932 } else {
1933 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1938 * Kick the leader kthread for this NOCB group, but caller has not
1939 * acquired locks.
1941 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1943 unsigned long flags;
1945 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1946 __wake_nocb_leader(rdp, force, flags);
1950 * Arrange to wake the leader kthread for this NOCB group at some
1951 * future time when it is safe to do so.
1953 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1954 const char *reason)
1956 unsigned long flags;
1958 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1959 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1960 mod_timer(&rdp->nocb_timer, jiffies + 1);
1961 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1962 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1963 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1967 * Does the specified CPU need an RCU callback for the specified flavor
1968 * of rcu_barrier()?
1970 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1972 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1973 unsigned long ret;
1974 #ifdef CONFIG_PROVE_RCU
1975 struct rcu_head *rhp;
1976 #endif /* #ifdef CONFIG_PROVE_RCU */
1979 * Check count of all no-CBs callbacks awaiting invocation.
1980 * There needs to be a barrier before this function is called,
1981 * but associated with a prior determination that no more
1982 * callbacks would be posted. In the worst case, the first
1983 * barrier in _rcu_barrier() suffices (but the caller cannot
1984 * necessarily rely on this, not a substitute for the caller
1985 * getting the concurrency design right!). There must also be
1986 * a barrier between the following load an posting of a callback
1987 * (if a callback is in fact needed). This is associated with an
1988 * atomic_inc() in the caller.
1990 ret = atomic_long_read(&rdp->nocb_q_count);
1992 #ifdef CONFIG_PROVE_RCU
1993 rhp = READ_ONCE(rdp->nocb_head);
1994 if (!rhp)
1995 rhp = READ_ONCE(rdp->nocb_gp_head);
1996 if (!rhp)
1997 rhp = READ_ONCE(rdp->nocb_follower_head);
1999 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
2000 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
2001 rcu_scheduler_fully_active) {
2002 /* RCU callback enqueued before CPU first came online??? */
2003 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2004 cpu, rhp->func);
2005 WARN_ON_ONCE(1);
2007 #endif /* #ifdef CONFIG_PROVE_RCU */
2009 return !!ret;
2013 * Enqueue the specified string of rcu_head structures onto the specified
2014 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2015 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2016 * counts are supplied by rhcount and rhcount_lazy.
2018 * If warranted, also wake up the kthread servicing this CPUs queues.
2020 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2021 struct rcu_head *rhp,
2022 struct rcu_head **rhtp,
2023 int rhcount, int rhcount_lazy,
2024 unsigned long flags)
2026 int len;
2027 struct rcu_head **old_rhpp;
2028 struct task_struct *t;
2030 /* Enqueue the callback on the nocb list and update counts. */
2031 atomic_long_add(rhcount, &rdp->nocb_q_count);
2032 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
2033 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2034 WRITE_ONCE(*old_rhpp, rhp);
2035 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2036 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2038 /* If we are not being polled and there is a kthread, awaken it ... */
2039 t = READ_ONCE(rdp->nocb_kthread);
2040 if (rcu_nocb_poll || !t) {
2041 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2042 TPS("WakeNotPoll"));
2043 return;
2045 len = atomic_long_read(&rdp->nocb_q_count);
2046 if (old_rhpp == &rdp->nocb_head) {
2047 if (!irqs_disabled_flags(flags)) {
2048 /* ... if queue was empty ... */
2049 wake_nocb_leader(rdp, false);
2050 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2051 TPS("WakeEmpty"));
2052 } else {
2053 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
2054 TPS("WakeEmptyIsDeferred"));
2056 rdp->qlen_last_fqs_check = 0;
2057 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2058 /* ... or if many callbacks queued. */
2059 if (!irqs_disabled_flags(flags)) {
2060 wake_nocb_leader(rdp, true);
2061 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2062 TPS("WakeOvf"));
2063 } else {
2064 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
2065 TPS("WakeOvfIsDeferred"));
2067 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2068 } else {
2069 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2071 return;
2075 * This is a helper for __call_rcu(), which invokes this when the normal
2076 * callback queue is inoperable. If this is not a no-CBs CPU, this
2077 * function returns failure back to __call_rcu(), which can complain
2078 * appropriately.
2080 * Otherwise, this function queues the callback where the corresponding
2081 * "rcuo" kthread can find it.
2083 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2084 bool lazy, unsigned long flags)
2087 if (!rcu_is_nocb_cpu(rdp->cpu))
2088 return false;
2089 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2090 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2091 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2092 (unsigned long)rhp->func,
2093 -atomic_long_read(&rdp->nocb_q_count_lazy),
2094 -atomic_long_read(&rdp->nocb_q_count));
2095 else
2096 trace_rcu_callback(rdp->rsp->name, rhp,
2097 -atomic_long_read(&rdp->nocb_q_count_lazy),
2098 -atomic_long_read(&rdp->nocb_q_count));
2101 * If called from an extended quiescent state with interrupts
2102 * disabled, invoke the RCU core in order to allow the idle-entry
2103 * deferred-wakeup check to function.
2105 if (irqs_disabled_flags(flags) &&
2106 !rcu_is_watching() &&
2107 cpu_online(smp_processor_id()))
2108 invoke_rcu_core();
2110 return true;
2114 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2115 * not a no-CBs CPU.
2117 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2118 struct rcu_data *rdp,
2119 unsigned long flags)
2121 lockdep_assert_irqs_disabled();
2122 if (!rcu_is_nocb_cpu(smp_processor_id()))
2123 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2124 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2125 rcu_segcblist_tail(&rdp->cblist),
2126 rcu_segcblist_n_cbs(&rdp->cblist),
2127 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2128 rcu_segcblist_init(&rdp->cblist);
2129 rcu_segcblist_disable(&rdp->cblist);
2130 return true;
2134 * If necessary, kick off a new grace period, and either way wait
2135 * for a subsequent grace period to complete.
2137 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2139 unsigned long c;
2140 bool d;
2141 unsigned long flags;
2142 bool needwake;
2143 struct rcu_node *rnp = rdp->mynode;
2145 local_irq_save(flags);
2146 c = rcu_seq_snap(&rdp->rsp->gp_seq);
2147 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
2148 local_irq_restore(flags);
2149 } else {
2150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2151 needwake = rcu_start_this_gp(rnp, rdp, c);
2152 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2153 if (needwake)
2154 rcu_gp_kthread_wake(rdp->rsp);
2158 * Wait for the grace period. Do so interruptibly to avoid messing
2159 * up the load average.
2161 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
2162 for (;;) {
2163 swait_event_interruptible_exclusive(
2164 rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
2165 (d = rcu_seq_done(&rnp->gp_seq, c)));
2166 if (likely(d))
2167 break;
2168 WARN_ON(signal_pending(current));
2169 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
2171 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
2172 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2176 * Leaders come here to wait for additional callbacks to show up.
2177 * This function does not return until callbacks appear.
2179 static void nocb_leader_wait(struct rcu_data *my_rdp)
2181 bool firsttime = true;
2182 unsigned long flags;
2183 bool gotcbs;
2184 struct rcu_data *rdp;
2185 struct rcu_head **tail;
2187 wait_again:
2189 /* Wait for callbacks to appear. */
2190 if (!rcu_nocb_poll) {
2191 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2192 swait_event_interruptible_exclusive(my_rdp->nocb_wq,
2193 !READ_ONCE(my_rdp->nocb_leader_sleep));
2194 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2195 my_rdp->nocb_leader_sleep = true;
2196 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2197 del_timer(&my_rdp->nocb_timer);
2198 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2199 } else if (firsttime) {
2200 firsttime = false; /* Don't drown trace log with "Poll"! */
2201 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2205 * Each pass through the following loop checks a follower for CBs.
2206 * We are our own first follower. Any CBs found are moved to
2207 * nocb_gp_head, where they await a grace period.
2209 gotcbs = false;
2210 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2211 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2212 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2213 if (!rdp->nocb_gp_head)
2214 continue; /* No CBs here, try next follower. */
2216 /* Move callbacks to wait-for-GP list, which is empty. */
2217 WRITE_ONCE(rdp->nocb_head, NULL);
2218 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2219 gotcbs = true;
2222 /* No callbacks? Sleep a bit if polling, and go retry. */
2223 if (unlikely(!gotcbs)) {
2224 WARN_ON(signal_pending(current));
2225 if (rcu_nocb_poll) {
2226 schedule_timeout_interruptible(1);
2227 } else {
2228 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2229 TPS("WokeEmpty"));
2231 goto wait_again;
2234 /* Wait for one grace period. */
2235 rcu_nocb_wait_gp(my_rdp);
2237 /* Each pass through the following loop wakes a follower, if needed. */
2238 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2239 if (!rcu_nocb_poll &&
2240 READ_ONCE(rdp->nocb_head) &&
2241 READ_ONCE(my_rdp->nocb_leader_sleep)) {
2242 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2243 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2244 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2246 if (!rdp->nocb_gp_head)
2247 continue; /* No CBs, so no need to wake follower. */
2249 /* Append callbacks to follower's "done" list. */
2250 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2251 tail = rdp->nocb_follower_tail;
2252 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2253 *tail = rdp->nocb_gp_head;
2254 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2255 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2256 /* List was empty, so wake up the follower. */
2257 swake_up_one(&rdp->nocb_wq);
2261 /* If we (the leader) don't have CBs, go wait some more. */
2262 if (!my_rdp->nocb_follower_head)
2263 goto wait_again;
2267 * Followers come here to wait for additional callbacks to show up.
2268 * This function does not return until callbacks appear.
2270 static void nocb_follower_wait(struct rcu_data *rdp)
2272 for (;;) {
2273 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2274 swait_event_interruptible_exclusive(rdp->nocb_wq,
2275 READ_ONCE(rdp->nocb_follower_head));
2276 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2277 /* ^^^ Ensure CB invocation follows _head test. */
2278 return;
2280 WARN_ON(signal_pending(current));
2281 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2286 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2287 * callbacks queued by the corresponding no-CBs CPU, however, there is
2288 * an optional leader-follower relationship so that the grace-period
2289 * kthreads don't have to do quite so many wakeups.
2291 static int rcu_nocb_kthread(void *arg)
2293 int c, cl;
2294 unsigned long flags;
2295 struct rcu_head *list;
2296 struct rcu_head *next;
2297 struct rcu_head **tail;
2298 struct rcu_data *rdp = arg;
2300 /* Each pass through this loop invokes one batch of callbacks */
2301 for (;;) {
2302 /* Wait for callbacks. */
2303 if (rdp->nocb_leader == rdp)
2304 nocb_leader_wait(rdp);
2305 else
2306 nocb_follower_wait(rdp);
2308 /* Pull the ready-to-invoke callbacks onto local list. */
2309 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2310 list = rdp->nocb_follower_head;
2311 rdp->nocb_follower_head = NULL;
2312 tail = rdp->nocb_follower_tail;
2313 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2314 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2315 BUG_ON(!list);
2316 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2318 /* Each pass through the following loop invokes a callback. */
2319 trace_rcu_batch_start(rdp->rsp->name,
2320 atomic_long_read(&rdp->nocb_q_count_lazy),
2321 atomic_long_read(&rdp->nocb_q_count), -1);
2322 c = cl = 0;
2323 while (list) {
2324 next = list->next;
2325 /* Wait for enqueuing to complete, if needed. */
2326 while (next == NULL && &list->next != tail) {
2327 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2328 TPS("WaitQueue"));
2329 schedule_timeout_interruptible(1);
2330 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2331 TPS("WokeQueue"));
2332 next = list->next;
2334 debug_rcu_head_unqueue(list);
2335 local_bh_disable();
2336 if (__rcu_reclaim(rdp->rsp->name, list))
2337 cl++;
2338 c++;
2339 local_bh_enable();
2340 cond_resched_tasks_rcu_qs();
2341 list = next;
2343 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2344 smp_mb__before_atomic(); /* _add after CB invocation. */
2345 atomic_long_add(-c, &rdp->nocb_q_count);
2346 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2348 return 0;
2351 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2352 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2354 return READ_ONCE(rdp->nocb_defer_wakeup);
2357 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2358 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2360 unsigned long flags;
2361 int ndw;
2363 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2364 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2365 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2366 return;
2368 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2369 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2370 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2371 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2374 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2375 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2377 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2379 do_nocb_deferred_wakeup_common(rdp);
2383 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2384 * This means we do an inexact common-case check. Note that if
2385 * we miss, ->nocb_timer will eventually clean things up.
2387 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2389 if (rcu_nocb_need_deferred_wakeup(rdp))
2390 do_nocb_deferred_wakeup_common(rdp);
2393 void __init rcu_init_nohz(void)
2395 int cpu;
2396 bool need_rcu_nocb_mask = false;
2397 struct rcu_state *rsp;
2399 #if defined(CONFIG_NO_HZ_FULL)
2400 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2401 need_rcu_nocb_mask = true;
2402 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2404 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2405 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2406 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2407 return;
2410 if (!cpumask_available(rcu_nocb_mask))
2411 return;
2413 #if defined(CONFIG_NO_HZ_FULL)
2414 if (tick_nohz_full_running)
2415 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2416 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2418 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2419 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2420 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2421 rcu_nocb_mask);
2423 if (cpumask_empty(rcu_nocb_mask))
2424 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2425 else
2426 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2427 cpumask_pr_args(rcu_nocb_mask));
2428 if (rcu_nocb_poll)
2429 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2431 for_each_rcu_flavor(rsp) {
2432 for_each_cpu(cpu, rcu_nocb_mask)
2433 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2434 rcu_organize_nocb_kthreads(rsp);
2438 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2439 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2441 rdp->nocb_tail = &rdp->nocb_head;
2442 init_swait_queue_head(&rdp->nocb_wq);
2443 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2444 raw_spin_lock_init(&rdp->nocb_lock);
2445 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2449 * If the specified CPU is a no-CBs CPU that does not already have its
2450 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2451 * brought online out of order, this can require re-organizing the
2452 * leader-follower relationships.
2454 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2456 struct rcu_data *rdp;
2457 struct rcu_data *rdp_last;
2458 struct rcu_data *rdp_old_leader;
2459 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2460 struct task_struct *t;
2463 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2464 * then nothing to do.
2466 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2467 return;
2469 /* If we didn't spawn the leader first, reorganize! */
2470 rdp_old_leader = rdp_spawn->nocb_leader;
2471 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2472 rdp_last = NULL;
2473 rdp = rdp_old_leader;
2474 do {
2475 rdp->nocb_leader = rdp_spawn;
2476 if (rdp_last && rdp != rdp_spawn)
2477 rdp_last->nocb_next_follower = rdp;
2478 if (rdp == rdp_spawn) {
2479 rdp = rdp->nocb_next_follower;
2480 } else {
2481 rdp_last = rdp;
2482 rdp = rdp->nocb_next_follower;
2483 rdp_last->nocb_next_follower = NULL;
2485 } while (rdp);
2486 rdp_spawn->nocb_next_follower = rdp_old_leader;
2489 /* Spawn the kthread for this CPU and RCU flavor. */
2490 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2491 "rcuo%c/%d", rsp->abbr, cpu);
2492 BUG_ON(IS_ERR(t));
2493 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2497 * If the specified CPU is a no-CBs CPU that does not already have its
2498 * rcuo kthreads, spawn them.
2500 static void rcu_spawn_all_nocb_kthreads(int cpu)
2502 struct rcu_state *rsp;
2504 if (rcu_scheduler_fully_active)
2505 for_each_rcu_flavor(rsp)
2506 rcu_spawn_one_nocb_kthread(rsp, cpu);
2510 * Once the scheduler is running, spawn rcuo kthreads for all online
2511 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2512 * non-boot CPUs come online -- if this changes, we will need to add
2513 * some mutual exclusion.
2515 static void __init rcu_spawn_nocb_kthreads(void)
2517 int cpu;
2519 for_each_online_cpu(cpu)
2520 rcu_spawn_all_nocb_kthreads(cpu);
2523 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2524 static int rcu_nocb_leader_stride = -1;
2525 module_param(rcu_nocb_leader_stride, int, 0444);
2528 * Initialize leader-follower relationships for all no-CBs CPU.
2530 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2532 int cpu;
2533 int ls = rcu_nocb_leader_stride;
2534 int nl = 0; /* Next leader. */
2535 struct rcu_data *rdp;
2536 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2537 struct rcu_data *rdp_prev = NULL;
2539 if (!cpumask_available(rcu_nocb_mask))
2540 return;
2541 if (ls == -1) {
2542 ls = int_sqrt(nr_cpu_ids);
2543 rcu_nocb_leader_stride = ls;
2547 * Each pass through this loop sets up one rcu_data structure.
2548 * Should the corresponding CPU come online in the future, then
2549 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2551 for_each_cpu(cpu, rcu_nocb_mask) {
2552 rdp = per_cpu_ptr(rsp->rda, cpu);
2553 if (rdp->cpu >= nl) {
2554 /* New leader, set up for followers & next leader. */
2555 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2556 rdp->nocb_leader = rdp;
2557 rdp_leader = rdp;
2558 } else {
2559 /* Another follower, link to previous leader. */
2560 rdp->nocb_leader = rdp_leader;
2561 rdp_prev->nocb_next_follower = rdp;
2563 rdp_prev = rdp;
2567 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2568 static bool init_nocb_callback_list(struct rcu_data *rdp)
2570 if (!rcu_is_nocb_cpu(rdp->cpu))
2571 return false;
2573 /* If there are early-boot callbacks, move them to nocb lists. */
2574 if (!rcu_segcblist_empty(&rdp->cblist)) {
2575 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2576 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2577 atomic_long_set(&rdp->nocb_q_count,
2578 rcu_segcblist_n_cbs(&rdp->cblist));
2579 atomic_long_set(&rdp->nocb_q_count_lazy,
2580 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2581 rcu_segcblist_init(&rdp->cblist);
2583 rcu_segcblist_disable(&rdp->cblist);
2584 return true;
2587 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2589 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2591 WARN_ON_ONCE(1); /* Should be dead code. */
2592 return false;
2595 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2599 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2601 return NULL;
2604 static void rcu_init_one_nocb(struct rcu_node *rnp)
2608 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2609 bool lazy, unsigned long flags)
2611 return false;
2614 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2615 struct rcu_data *rdp,
2616 unsigned long flags)
2618 return false;
2621 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2625 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2627 return false;
2630 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2634 static void rcu_spawn_all_nocb_kthreads(int cpu)
2638 static void __init rcu_spawn_nocb_kthreads(void)
2642 static bool init_nocb_callback_list(struct rcu_data *rdp)
2644 return false;
2647 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2650 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2651 * grace-period kthread will do force_quiescent_state() processing?
2652 * The idea is to avoid waking up RCU core processing on such a
2653 * CPU unless the grace period has extended for too long.
2655 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2656 * CONFIG_RCU_NOCB_CPU CPUs.
2658 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2660 #ifdef CONFIG_NO_HZ_FULL
2661 if (tick_nohz_full_cpu(smp_processor_id()) &&
2662 (!rcu_gp_in_progress(rsp) ||
2663 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2664 return true;
2665 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2666 return false;
2670 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2672 static void rcu_bind_gp_kthread(void)
2674 if (!tick_nohz_full_enabled())
2675 return;
2676 housekeeping_affine(current, HK_FLAG_RCU);
2679 /* Record the current task on dyntick-idle entry. */
2680 static void rcu_dynticks_task_enter(void)
2682 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2683 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2684 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2687 /* Record no current task on dyntick-idle exit. */
2688 static void rcu_dynticks_task_exit(void)
2690 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2691 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2692 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */