2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
36 #ifdef CONFIG_RCU_BOOST
38 #include "../locking/rtmutex_common.h"
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
44 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
49 #else /* #ifdef CONFIG_RCU_BOOST */
52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53 * all uses are in dead code. Provide a definition to keep the compiler
54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55 * This probably needs to be excluded from -rt builds.
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
68 * Check the RCU kernel configuration parameters and print informative
69 * messages about anything out of the ordinary.
71 static void __init
rcu_bootup_announce_oddness(void)
73 if (IS_ENABLED(CONFIG_RCU_TRACE
))
74 pr_info("\tRCU event tracing is enabled.\n");
75 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
76 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
80 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83 if (IS_ENABLED(CONFIG_PROVE_RCU
))
84 pr_info("\tRCU lockdep checking is enabled.\n");
85 if (RCU_NUM_LVLS
>= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 if (RCU_FANOUT_LEAF
!= 16)
88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
90 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
93 if (nr_cpu_ids
!= NR_CPUS
)
94 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS
, nr_cpu_ids
);
95 #ifdef CONFIG_RCU_BOOST
96 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
97 kthread_prio
, CONFIG_RCU_BOOST_DELAY
);
99 if (blimit
!= DEFAULT_RCU_BLIMIT
)
100 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit
);
101 if (qhimark
!= DEFAULT_RCU_QHIMARK
)
102 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark
);
103 if (qlowmark
!= DEFAULT_RCU_QLOMARK
)
104 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark
);
105 if (jiffies_till_first_fqs
!= ULONG_MAX
)
106 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs
);
107 if (jiffies_till_next_fqs
!= ULONG_MAX
)
108 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs
);
109 if (rcu_kick_kthreads
)
110 pr_info("\tKick kthreads if too-long grace period.\n");
111 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD
))
112 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
113 if (gp_preinit_delay
)
114 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay
);
116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay
);
117 if (gp_cleanup_delay
)
118 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay
);
119 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
))
120 pr_info("\tRCU debug extended QS entry/exit.\n");
121 rcupdate_announce_bootup_oddness();
124 #ifdef CONFIG_PREEMPT_RCU
126 RCU_STATE_INITIALIZER(rcu_preempt
, 'p', call_rcu
);
127 static struct rcu_state
*const rcu_state_p
= &rcu_preempt_state
;
128 static struct rcu_data __percpu
*const rcu_data_p
= &rcu_preempt_data
;
130 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
132 static void rcu_read_unlock_special(struct task_struct
*t
);
135 * Tell them what RCU they are running.
137 static void __init
rcu_bootup_announce(void)
139 pr_info("Preemptible hierarchical RCU implementation.\n");
140 rcu_bootup_announce_oddness();
143 /* Flags for rcu_preempt_ctxt_queue() decision table. */
144 #define RCU_GP_TASKS 0x8
145 #define RCU_EXP_TASKS 0x4
146 #define RCU_GP_BLKD 0x2
147 #define RCU_EXP_BLKD 0x1
150 * Queues a task preempted within an RCU-preempt read-side critical
151 * section into the appropriate location within the ->blkd_tasks list,
152 * depending on the states of any ongoing normal and expedited grace
153 * periods. The ->gp_tasks pointer indicates which element the normal
154 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
155 * indicates which element the expedited grace period is waiting on (again,
156 * NULL if none). If a grace period is waiting on a given element in the
157 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
158 * adding a task to the tail of the list blocks any grace period that is
159 * already waiting on one of the elements. In contrast, adding a task
160 * to the head of the list won't block any grace period that is already
161 * waiting on one of the elements.
163 * This queuing is imprecise, and can sometimes make an ongoing grace
164 * period wait for a task that is not strictly speaking blocking it.
165 * Given the choice, we needlessly block a normal grace period rather than
166 * blocking an expedited grace period.
168 * Note that an endless sequence of expedited grace periods still cannot
169 * indefinitely postpone a normal grace period. Eventually, all of the
170 * fixed number of preempted tasks blocking the normal grace period that are
171 * not also blocking the expedited grace period will resume and complete
172 * their RCU read-side critical sections. At that point, the ->gp_tasks
173 * pointer will equal the ->exp_tasks pointer, at which point the end of
174 * the corresponding expedited grace period will also be the end of the
175 * normal grace period.
177 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
178 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
180 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
181 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
182 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
183 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
184 struct task_struct
*t
= current
;
186 raw_lockdep_assert_held_rcu_node(rnp
);
187 WARN_ON_ONCE(rdp
->mynode
!= rnp
);
188 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
189 /* RCU better not be waiting on newly onlined CPUs! */
190 WARN_ON_ONCE(rnp
->qsmaskinitnext
& ~rnp
->qsmaskinit
& rnp
->qsmask
&
194 * Decide where to queue the newly blocked task. In theory,
195 * this could be an if-statement. In practice, when I tried
196 * that, it was quite messy.
198 switch (blkd_state
) {
201 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
203 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
206 * Blocking neither GP, or first task blocking the normal
207 * GP but not blocking the already-waiting expedited GP.
208 * Queue at the head of the list to avoid unnecessarily
209 * blocking the already-waiting GPs.
211 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
216 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
217 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
218 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
219 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
222 * First task arriving that blocks either GP, or first task
223 * arriving that blocks the expedited GP (with the normal
224 * GP already waiting), or a task arriving that blocks
225 * both GPs with both GPs already waiting. Queue at the
226 * tail of the list to avoid any GP waiting on any of the
227 * already queued tasks that are not blocking it.
229 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
232 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
233 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
234 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
237 * Second or subsequent task blocking the expedited GP.
238 * The task either does not block the normal GP, or is the
239 * first task blocking the normal GP. Queue just after
240 * the first task blocking the expedited GP.
242 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
245 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
246 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
249 * Second or subsequent task blocking the normal GP.
250 * The task does not block the expedited GP. Queue just
251 * after the first task blocking the normal GP.
253 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
258 /* Yet another exercise in excessive paranoia. */
264 * We have now queued the task. If it was the first one to
265 * block either grace period, update the ->gp_tasks and/or
266 * ->exp_tasks pointers, respectively, to reference the newly
269 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
)) {
270 WRITE_ONCE(rnp
->gp_tasks
, &t
->rcu_node_entry
);
271 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
);
273 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
274 rnp
->exp_tasks
= &t
->rcu_node_entry
;
275 WARN_ON_ONCE(!(blkd_state
& RCU_GP_BLKD
) !=
276 !(rnp
->qsmask
& rdp
->grpmask
));
277 WARN_ON_ONCE(!(blkd_state
& RCU_EXP_BLKD
) !=
278 !(rnp
->expmask
& rdp
->grpmask
));
279 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
282 * Report the quiescent state for the expedited GP. This expedited
283 * GP should not be able to end until we report, so there should be
284 * no need to check for a subsequent expedited GP. (Though we are
285 * still in a quiescent state in any case.)
287 if (blkd_state
& RCU_EXP_BLKD
&&
288 t
->rcu_read_unlock_special
.b
.exp_need_qs
) {
289 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
290 rcu_report_exp_rdp(rdp
->rsp
, rdp
, true);
292 WARN_ON_ONCE(t
->rcu_read_unlock_special
.b
.exp_need_qs
);
297 * Record a preemptible-RCU quiescent state for the specified CPU.
298 * Note that this does not necessarily mean that the task currently running
299 * on the CPU is in a quiescent state: Instead, it means that the current
300 * grace period need not wait on any RCU read-side critical section that
301 * starts later on this CPU. It also means that if the current task is
302 * in an RCU read-side critical section, it has already added itself to
303 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
304 * current task, there might be any number of other tasks blocked while
305 * in an RCU read-side critical section.
307 * Callers to this function must disable preemption.
309 static void rcu_preempt_qs(void)
311 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
312 if (__this_cpu_read(rcu_data_p
->cpu_no_qs
.s
)) {
313 trace_rcu_grace_period(TPS("rcu_preempt"),
314 __this_cpu_read(rcu_data_p
->gp_seq
),
316 __this_cpu_write(rcu_data_p
->cpu_no_qs
.b
.norm
, false);
317 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
318 current
->rcu_read_unlock_special
.b
.need_qs
= false;
323 * We have entered the scheduler, and the current task might soon be
324 * context-switched away from. If this task is in an RCU read-side
325 * critical section, we will no longer be able to rely on the CPU to
326 * record that fact, so we enqueue the task on the blkd_tasks list.
327 * The task will dequeue itself when it exits the outermost enclosing
328 * RCU read-side critical section. Therefore, the current grace period
329 * cannot be permitted to complete until the blkd_tasks list entries
330 * predating the current grace period drain, in other words, until
331 * rnp->gp_tasks becomes NULL.
333 * Caller must disable interrupts.
335 static void rcu_preempt_note_context_switch(bool preempt
)
337 struct task_struct
*t
= current
;
338 struct rcu_data
*rdp
;
339 struct rcu_node
*rnp
;
341 lockdep_assert_irqs_disabled();
342 WARN_ON_ONCE(!preempt
&& t
->rcu_read_lock_nesting
> 0);
343 if (t
->rcu_read_lock_nesting
> 0 &&
344 !t
->rcu_read_unlock_special
.b
.blocked
) {
346 /* Possibly blocking in an RCU read-side critical section. */
347 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
349 raw_spin_lock_rcu_node(rnp
);
350 t
->rcu_read_unlock_special
.b
.blocked
= true;
351 t
->rcu_blocked_node
= rnp
;
354 * Verify the CPU's sanity, trace the preemption, and
355 * then queue the task as required based on the states
356 * of any ongoing and expedited grace periods.
358 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
359 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
360 trace_rcu_preempt_task(rdp
->rsp
->name
,
362 (rnp
->qsmask
& rdp
->grpmask
)
364 : rcu_seq_snap(&rnp
->gp_seq
));
365 rcu_preempt_ctxt_queue(rnp
, rdp
);
366 } else if (t
->rcu_read_lock_nesting
< 0 &&
367 t
->rcu_read_unlock_special
.s
) {
370 * Complete exit from RCU read-side critical section on
371 * behalf of preempted instance of __rcu_read_unlock().
373 rcu_read_unlock_special(t
);
377 * Either we were not in an RCU read-side critical section to
378 * begin with, or we have now recorded that critical section
379 * globally. Either way, we can now note a quiescent state
380 * for this CPU. Again, if we were in an RCU read-side critical
381 * section, and if that critical section was blocking the current
382 * grace period, then the fact that the task has been enqueued
383 * means that we continue to block the current grace period.
389 * Check for preempted RCU readers blocking the current grace period
390 * for the specified rcu_node structure. If the caller needs a reliable
391 * answer, it must hold the rcu_node's ->lock.
393 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
395 return READ_ONCE(rnp
->gp_tasks
) != NULL
;
399 * Preemptible RCU implementation for rcu_read_lock().
400 * Just increment ->rcu_read_lock_nesting, shared state will be updated
403 void __rcu_read_lock(void)
405 current
->rcu_read_lock_nesting
++;
406 barrier(); /* critical section after entry code. */
408 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
411 * Preemptible RCU implementation for rcu_read_unlock().
412 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
413 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
414 * invoke rcu_read_unlock_special() to clean up after a context switch
415 * in an RCU read-side critical section and other special cases.
417 void __rcu_read_unlock(void)
419 struct task_struct
*t
= current
;
421 if (t
->rcu_read_lock_nesting
!= 1) {
422 --t
->rcu_read_lock_nesting
;
424 barrier(); /* critical section before exit code. */
425 t
->rcu_read_lock_nesting
= INT_MIN
;
426 barrier(); /* assign before ->rcu_read_unlock_special load */
427 if (unlikely(READ_ONCE(t
->rcu_read_unlock_special
.s
)))
428 rcu_read_unlock_special(t
);
429 barrier(); /* ->rcu_read_unlock_special load before assign */
430 t
->rcu_read_lock_nesting
= 0;
432 #ifdef CONFIG_PROVE_LOCKING
434 int rrln
= READ_ONCE(t
->rcu_read_lock_nesting
);
436 WARN_ON_ONCE(rrln
< 0 && rrln
> INT_MIN
/ 2);
438 #endif /* #ifdef CONFIG_PROVE_LOCKING */
440 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
443 * Advance a ->blkd_tasks-list pointer to the next entry, instead
444 * returning NULL if at the end of the list.
446 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
447 struct rcu_node
*rnp
)
449 struct list_head
*np
;
451 np
= t
->rcu_node_entry
.next
;
452 if (np
== &rnp
->blkd_tasks
)
458 * Return true if the specified rcu_node structure has tasks that were
459 * preempted within an RCU read-side critical section.
461 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
463 return !list_empty(&rnp
->blkd_tasks
);
467 * Handle special cases during rcu_read_unlock(), such as needing to
468 * notify RCU core processing or task having blocked during the RCU
469 * read-side critical section.
471 static void rcu_read_unlock_special(struct task_struct
*t
)
477 struct list_head
*np
;
478 bool drop_boost_mutex
= false;
479 struct rcu_data
*rdp
;
480 struct rcu_node
*rnp
;
481 union rcu_special special
;
483 /* NMI handlers cannot block and cannot safely manipulate state. */
487 local_irq_save(flags
);
490 * If RCU core is waiting for this CPU to exit its critical section,
491 * report the fact that it has exited. Because irqs are disabled,
492 * t->rcu_read_unlock_special cannot change.
494 special
= t
->rcu_read_unlock_special
;
495 if (special
.b
.need_qs
) {
497 t
->rcu_read_unlock_special
.b
.need_qs
= false;
498 if (!t
->rcu_read_unlock_special
.s
) {
499 local_irq_restore(flags
);
505 * Respond to a request for an expedited grace period, but only if
506 * we were not preempted, meaning that we were running on the same
507 * CPU throughout. If we were preempted, the exp_need_qs flag
508 * would have been cleared at the time of the first preemption,
509 * and the quiescent state would be reported when we were dequeued.
511 if (special
.b
.exp_need_qs
) {
512 WARN_ON_ONCE(special
.b
.blocked
);
513 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
514 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
515 rcu_report_exp_rdp(rcu_state_p
, rdp
, true);
516 if (!t
->rcu_read_unlock_special
.s
) {
517 local_irq_restore(flags
);
522 /* Hardware IRQ handlers cannot block, complain if they get here. */
523 if (in_irq() || in_serving_softirq()) {
524 lockdep_rcu_suspicious(__FILE__
, __LINE__
,
525 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
526 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
527 t
->rcu_read_unlock_special
.s
,
528 t
->rcu_read_unlock_special
.b
.blocked
,
529 t
->rcu_read_unlock_special
.b
.exp_need_qs
,
530 t
->rcu_read_unlock_special
.b
.need_qs
);
531 local_irq_restore(flags
);
535 /* Clean up if blocked during RCU read-side critical section. */
536 if (special
.b
.blocked
) {
537 t
->rcu_read_unlock_special
.b
.blocked
= false;
540 * Remove this task from the list it blocked on. The task
541 * now remains queued on the rcu_node corresponding to the
542 * CPU it first blocked on, so there is no longer any need
543 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
545 rnp
= t
->rcu_blocked_node
;
546 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
547 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
548 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
549 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
550 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
&&
551 (!empty_norm
|| rnp
->qsmask
));
552 empty_exp
= sync_rcu_preempt_exp_done(rnp
);
553 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
554 np
= rcu_next_node_entry(t
, rnp
);
555 list_del_init(&t
->rcu_node_entry
);
556 t
->rcu_blocked_node
= NULL
;
557 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
558 rnp
->gp_seq
, t
->pid
);
559 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
560 WRITE_ONCE(rnp
->gp_tasks
, np
);
561 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
563 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
564 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
565 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
566 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
567 rnp
->boost_tasks
= np
;
571 * If this was the last task on the current list, and if
572 * we aren't waiting on any CPUs, report the quiescent state.
573 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
574 * so we must take a snapshot of the expedited state.
576 empty_exp_now
= sync_rcu_preempt_exp_done(rnp
);
577 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
578 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
585 rcu_report_unblock_qs_rnp(rcu_state_p
, rnp
, flags
);
587 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
590 /* Unboost if we were boosted. */
591 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
592 rt_mutex_futex_unlock(&rnp
->boost_mtx
);
595 * If this was the last task on the expedited lists,
596 * then we need to report up the rcu_node hierarchy.
598 if (!empty_exp
&& empty_exp_now
)
599 rcu_report_exp_rnp(rcu_state_p
, rnp
, true);
601 local_irq_restore(flags
);
606 * Dump detailed information for all tasks blocking the current RCU
607 * grace period on the specified rcu_node structure.
609 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
612 struct task_struct
*t
;
614 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
615 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
616 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
619 t
= list_entry(rnp
->gp_tasks
->prev
,
620 struct task_struct
, rcu_node_entry
);
621 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
623 * We could be printing a lot while holding a spinlock.
624 * Avoid triggering hard lockup.
626 touch_nmi_watchdog();
629 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
633 * Dump detailed information for all tasks blocking the current RCU
636 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
638 struct rcu_node
*rnp
= rcu_get_root(rsp
);
640 rcu_print_detail_task_stall_rnp(rnp
);
641 rcu_for_each_leaf_node(rsp
, rnp
)
642 rcu_print_detail_task_stall_rnp(rnp
);
645 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
647 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
648 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
651 static void rcu_print_task_stall_end(void)
657 * Scan the current list of tasks blocked within RCU read-side critical
658 * sections, printing out the tid of each.
660 static int rcu_print_task_stall(struct rcu_node
*rnp
)
662 struct task_struct
*t
;
665 if (!rcu_preempt_blocked_readers_cgp(rnp
))
667 rcu_print_task_stall_begin(rnp
);
668 t
= list_entry(rnp
->gp_tasks
->prev
,
669 struct task_struct
, rcu_node_entry
);
670 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
671 pr_cont(" P%d", t
->pid
);
674 rcu_print_task_stall_end();
679 * Scan the current list of tasks blocked within RCU read-side critical
680 * sections, printing out the tid of each that is blocking the current
681 * expedited grace period.
683 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
685 struct task_struct
*t
;
690 t
= list_entry(rnp
->exp_tasks
->prev
,
691 struct task_struct
, rcu_node_entry
);
692 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
693 pr_cont(" P%d", t
->pid
);
700 * Check that the list of blocked tasks for the newly completed grace
701 * period is in fact empty. It is a serious bug to complete a grace
702 * period that still has RCU readers blocked! This function must be
703 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
704 * must be held by the caller.
706 * Also, if there are blocked tasks on the list, they automatically
707 * block the newly created grace period, so set up ->gp_tasks accordingly.
710 rcu_preempt_check_blocked_tasks(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
712 struct task_struct
*t
;
714 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
715 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
716 dump_blkd_tasks(rsp
, rnp
, 10);
717 if (rcu_preempt_has_tasks(rnp
) &&
718 (rnp
->qsmaskinit
|| rnp
->wait_blkd_tasks
)) {
719 WRITE_ONCE(rnp
->gp_tasks
, rnp
->blkd_tasks
.next
);
720 t
= container_of(rnp
->gp_tasks
, struct task_struct
,
722 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
723 rnp
->gp_seq
, t
->pid
);
725 WARN_ON_ONCE(rnp
->qsmask
);
729 * Check for a quiescent state from the current CPU. When a task blocks,
730 * the task is recorded in the corresponding CPU's rcu_node structure,
731 * which is checked elsewhere.
733 * Caller must disable hard irqs.
735 static void rcu_preempt_check_callbacks(void)
737 struct rcu_state
*rsp
= &rcu_preempt_state
;
738 struct task_struct
*t
= current
;
740 if (t
->rcu_read_lock_nesting
== 0) {
744 if (t
->rcu_read_lock_nesting
> 0 &&
745 __this_cpu_read(rcu_data_p
->core_needs_qs
) &&
746 __this_cpu_read(rcu_data_p
->cpu_no_qs
.b
.norm
) &&
747 !t
->rcu_read_unlock_special
.b
.need_qs
&&
748 time_after(jiffies
, rsp
->gp_start
+ HZ
))
749 t
->rcu_read_unlock_special
.b
.need_qs
= true;
753 * call_rcu() - Queue an RCU callback for invocation after a grace period.
754 * @head: structure to be used for queueing the RCU updates.
755 * @func: actual callback function to be invoked after the grace period
757 * The callback function will be invoked some time after a full grace
758 * period elapses, in other words after all pre-existing RCU read-side
759 * critical sections have completed. However, the callback function
760 * might well execute concurrently with RCU read-side critical sections
761 * that started after call_rcu() was invoked. RCU read-side critical
762 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
765 * Note that all CPUs must agree that the grace period extended beyond
766 * all pre-existing RCU read-side critical section. On systems with more
767 * than one CPU, this means that when "func()" is invoked, each CPU is
768 * guaranteed to have executed a full memory barrier since the end of its
769 * last RCU read-side critical section whose beginning preceded the call
770 * to call_rcu(). It also means that each CPU executing an RCU read-side
771 * critical section that continues beyond the start of "func()" must have
772 * executed a memory barrier after the call_rcu() but before the beginning
773 * of that RCU read-side critical section. Note that these guarantees
774 * include CPUs that are offline, idle, or executing in user mode, as
775 * well as CPUs that are executing in the kernel.
777 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
778 * resulting RCU callback function "func()", then both CPU A and CPU B are
779 * guaranteed to execute a full memory barrier during the time interval
780 * between the call to call_rcu() and the invocation of "func()" -- even
781 * if CPU A and CPU B are the same CPU (but again only if the system has
782 * more than one CPU).
784 void call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
786 __call_rcu(head
, func
, rcu_state_p
, -1, 0);
788 EXPORT_SYMBOL_GPL(call_rcu
);
791 * synchronize_rcu - wait until a grace period has elapsed.
793 * Control will return to the caller some time after a full grace
794 * period has elapsed, in other words after all currently executing RCU
795 * read-side critical sections have completed. Note, however, that
796 * upon return from synchronize_rcu(), the caller might well be executing
797 * concurrently with new RCU read-side critical sections that began while
798 * synchronize_rcu() was waiting. RCU read-side critical sections are
799 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
801 * See the description of synchronize_sched() for more detailed
802 * information on memory-ordering guarantees. However, please note
803 * that -only- the memory-ordering guarantees apply. For example,
804 * synchronize_rcu() is -not- guaranteed to wait on things like code
805 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
806 * guaranteed to wait on RCU read-side critical sections, that is, sections
807 * of code protected by rcu_read_lock().
809 void synchronize_rcu(void)
811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
812 lock_is_held(&rcu_lock_map
) ||
813 lock_is_held(&rcu_sched_lock_map
),
814 "Illegal synchronize_rcu() in RCU read-side critical section");
815 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
817 if (rcu_gp_is_expedited())
818 synchronize_rcu_expedited();
820 wait_rcu_gp(call_rcu
);
822 EXPORT_SYMBOL_GPL(synchronize_rcu
);
825 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
827 * Note that this primitive does not necessarily wait for an RCU grace period
828 * to complete. For example, if there are no RCU callbacks queued anywhere
829 * in the system, then rcu_barrier() is within its rights to return
830 * immediately, without waiting for anything, much less an RCU grace period.
832 void rcu_barrier(void)
834 _rcu_barrier(rcu_state_p
);
836 EXPORT_SYMBOL_GPL(rcu_barrier
);
839 * Initialize preemptible RCU's state structures.
841 static void __init
__rcu_init_preempt(void)
843 rcu_init_one(rcu_state_p
);
847 * Check for a task exiting while in a preemptible-RCU read-side
848 * critical section, clean up if so. No need to issue warnings,
849 * as debug_check_no_locks_held() already does this if lockdep
854 struct task_struct
*t
= current
;
856 if (likely(list_empty(¤t
->rcu_node_entry
)))
858 t
->rcu_read_lock_nesting
= 1;
860 t
->rcu_read_unlock_special
.b
.blocked
= true;
865 * Dump the blocked-tasks state, but limit the list dump to the
866 * specified number of elements.
869 dump_blkd_tasks(struct rcu_state
*rsp
, struct rcu_node
*rnp
, int ncheck
)
873 struct list_head
*lhp
;
875 struct rcu_data
*rdp
;
876 struct rcu_node
*rnp1
;
878 raw_lockdep_assert_held_rcu_node(rnp
);
879 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
880 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
881 (long)rnp
->gp_seq
, (long)rnp
->completedqs
);
882 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
883 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
884 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
);
885 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
886 __func__
, READ_ONCE(rnp
->gp_tasks
), rnp
->boost_tasks
,
888 pr_info("%s: ->blkd_tasks", __func__
);
890 list_for_each(lhp
, &rnp
->blkd_tasks
) {
896 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
897 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
898 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
899 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
901 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
902 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
906 #else /* #ifdef CONFIG_PREEMPT_RCU */
908 static struct rcu_state
*const rcu_state_p
= &rcu_sched_state
;
911 * Tell them what RCU they are running.
913 static void __init
rcu_bootup_announce(void)
915 pr_info("Hierarchical RCU implementation.\n");
916 rcu_bootup_announce_oddness();
920 * Because preemptible RCU does not exist, we never have to check for
921 * CPUs being in quiescent states.
923 static void rcu_preempt_note_context_switch(bool preempt
)
928 * Because preemptible RCU does not exist, there are never any preempted
931 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
937 * Because there is no preemptible RCU, there can be no readers blocked.
939 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
945 * Because preemptible RCU does not exist, we never have to check for
946 * tasks blocked within RCU read-side critical sections.
948 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
953 * Because preemptible RCU does not exist, we never have to check for
954 * tasks blocked within RCU read-side critical sections.
956 static int rcu_print_task_stall(struct rcu_node
*rnp
)
962 * Because preemptible RCU does not exist, we never have to check for
963 * tasks blocked within RCU read-side critical sections that are
964 * blocking the current expedited grace period.
966 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
972 * Because there is no preemptible RCU, there can be no readers blocked,
973 * so there is no need to check for blocked tasks. So check only for
974 * bogus qsmask values.
977 rcu_preempt_check_blocked_tasks(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
979 WARN_ON_ONCE(rnp
->qsmask
);
983 * Because preemptible RCU does not exist, it never has any callbacks
986 static void rcu_preempt_check_callbacks(void)
991 * Because preemptible RCU does not exist, rcu_barrier() is just
992 * another name for rcu_barrier_sched().
994 void rcu_barrier(void)
998 EXPORT_SYMBOL_GPL(rcu_barrier
);
1001 * Because preemptible RCU does not exist, it need not be initialized.
1003 static void __init
__rcu_init_preempt(void)
1008 * Because preemptible RCU does not exist, tasks cannot possibly exit
1009 * while in preemptible RCU read-side critical sections.
1016 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
1019 dump_blkd_tasks(struct rcu_state
*rsp
, struct rcu_node
*rnp
, int ncheck
)
1021 WARN_ON_ONCE(!list_empty(&rnp
->blkd_tasks
));
1024 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1026 #ifdef CONFIG_RCU_BOOST
1028 static void rcu_wake_cond(struct task_struct
*t
, int status
)
1031 * If the thread is yielding, only wake it when this
1032 * is invoked from idle
1034 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
1039 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1040 * or ->boost_tasks, advancing the pointer to the next task in the
1041 * ->blkd_tasks list.
1043 * Note that irqs must be enabled: boosting the task can block.
1044 * Returns 1 if there are more tasks needing to be boosted.
1046 static int rcu_boost(struct rcu_node
*rnp
)
1048 unsigned long flags
;
1049 struct task_struct
*t
;
1050 struct list_head
*tb
;
1052 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
1053 READ_ONCE(rnp
->boost_tasks
) == NULL
)
1054 return 0; /* Nothing left to boost. */
1056 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1059 * Recheck under the lock: all tasks in need of boosting
1060 * might exit their RCU read-side critical sections on their own.
1062 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
1063 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1068 * Preferentially boost tasks blocking expedited grace periods.
1069 * This cannot starve the normal grace periods because a second
1070 * expedited grace period must boost all blocked tasks, including
1071 * those blocking the pre-existing normal grace period.
1073 if (rnp
->exp_tasks
!= NULL
)
1074 tb
= rnp
->exp_tasks
;
1076 tb
= rnp
->boost_tasks
;
1079 * We boost task t by manufacturing an rt_mutex that appears to
1080 * be held by task t. We leave a pointer to that rt_mutex where
1081 * task t can find it, and task t will release the mutex when it
1082 * exits its outermost RCU read-side critical section. Then
1083 * simply acquiring this artificial rt_mutex will boost task
1084 * t's priority. (Thanks to tglx for suggesting this approach!)
1086 * Note that task t must acquire rnp->lock to remove itself from
1087 * the ->blkd_tasks list, which it will do from exit() if from
1088 * nowhere else. We therefore are guaranteed that task t will
1089 * stay around at least until we drop rnp->lock. Note that
1090 * rnp->lock also resolves races between our priority boosting
1091 * and task t's exiting its outermost RCU read-side critical
1094 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1095 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
1096 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1097 /* Lock only for side effect: boosts task t's priority. */
1098 rt_mutex_lock(&rnp
->boost_mtx
);
1099 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
1101 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
1102 READ_ONCE(rnp
->boost_tasks
) != NULL
;
1106 * Priority-boosting kthread, one per leaf rcu_node.
1108 static int rcu_boost_kthread(void *arg
)
1110 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1114 trace_rcu_utilization(TPS("Start boost kthread@init"));
1116 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1117 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1118 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1119 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1120 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1121 more2boost
= rcu_boost(rnp
);
1127 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1128 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1129 schedule_timeout_interruptible(2);
1130 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1135 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1140 * Check to see if it is time to start boosting RCU readers that are
1141 * blocking the current grace period, and, if so, tell the per-rcu_node
1142 * kthread to start boosting them. If there is an expedited grace
1143 * period in progress, it is always time to boost.
1145 * The caller must hold rnp->lock, which this function releases.
1146 * The ->boost_kthread_task is immortal, so we don't need to worry
1147 * about it going away.
1149 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1150 __releases(rnp
->lock
)
1152 struct task_struct
*t
;
1154 raw_lockdep_assert_held_rcu_node(rnp
);
1155 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1156 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1159 if (rnp
->exp_tasks
!= NULL
||
1160 (rnp
->gp_tasks
!= NULL
&&
1161 rnp
->boost_tasks
== NULL
&&
1163 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1164 if (rnp
->exp_tasks
== NULL
)
1165 rnp
->boost_tasks
= rnp
->gp_tasks
;
1166 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1167 t
= rnp
->boost_kthread_task
;
1169 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1171 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1176 * Wake up the per-CPU kthread to invoke RCU callbacks.
1178 static void invoke_rcu_callbacks_kthread(void)
1180 unsigned long flags
;
1182 local_irq_save(flags
);
1183 __this_cpu_write(rcu_cpu_has_work
, 1);
1184 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1185 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1186 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1187 __this_cpu_read(rcu_cpu_kthread_status
));
1189 local_irq_restore(flags
);
1193 * Is the current CPU running the RCU-callbacks kthread?
1194 * Caller must have preemption disabled.
1196 static bool rcu_is_callbacks_kthread(void)
1198 return __this_cpu_read(rcu_cpu_kthread_task
) == current
;
1201 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1204 * Do priority-boost accounting for the start of a new grace period.
1206 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1208 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1212 * Create an RCU-boost kthread for the specified node if one does not
1213 * already exist. We only create this kthread for preemptible RCU.
1214 * Returns zero if all is well, a negated errno otherwise.
1216 static int rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1217 struct rcu_node
*rnp
)
1219 int rnp_index
= rnp
- &rsp
->node
[0];
1220 unsigned long flags
;
1221 struct sched_param sp
;
1222 struct task_struct
*t
;
1224 if (rcu_state_p
!= rsp
)
1227 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1231 if (rnp
->boost_kthread_task
!= NULL
)
1233 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1234 "rcub/%d", rnp_index
);
1237 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1238 rnp
->boost_kthread_task
= t
;
1239 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1240 sp
.sched_priority
= kthread_prio
;
1241 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1242 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1246 static void rcu_kthread_do_work(void)
1248 rcu_do_batch(&rcu_sched_state
, this_cpu_ptr(&rcu_sched_data
));
1249 rcu_do_batch(&rcu_bh_state
, this_cpu_ptr(&rcu_bh_data
));
1250 rcu_do_batch(&rcu_preempt_state
, this_cpu_ptr(&rcu_preempt_data
));
1253 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1255 struct sched_param sp
;
1257 sp
.sched_priority
= kthread_prio
;
1258 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1261 static void rcu_cpu_kthread_park(unsigned int cpu
)
1263 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1266 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1268 return __this_cpu_read(rcu_cpu_has_work
);
1272 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1273 * RCU softirq used in flavors and configurations of RCU that do not
1274 * support RCU priority boosting.
1276 static void rcu_cpu_kthread(unsigned int cpu
)
1278 unsigned int *statusp
= this_cpu_ptr(&rcu_cpu_kthread_status
);
1279 char work
, *workp
= this_cpu_ptr(&rcu_cpu_has_work
);
1282 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1283 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1285 *statusp
= RCU_KTHREAD_RUNNING
;
1286 this_cpu_inc(rcu_cpu_kthread_loops
);
1287 local_irq_disable();
1292 rcu_kthread_do_work();
1295 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1296 *statusp
= RCU_KTHREAD_WAITING
;
1300 *statusp
= RCU_KTHREAD_YIELDING
;
1301 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1302 schedule_timeout_interruptible(2);
1303 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1304 *statusp
= RCU_KTHREAD_WAITING
;
1308 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1309 * served by the rcu_node in question. The CPU hotplug lock is still
1310 * held, so the value of rnp->qsmaskinit will be stable.
1312 * We don't include outgoingcpu in the affinity set, use -1 if there is
1313 * no outgoing CPU. If there are no CPUs left in the affinity set,
1314 * this function allows the kthread to execute on any CPU.
1316 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1318 struct task_struct
*t
= rnp
->boost_kthread_task
;
1319 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1325 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1327 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1328 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1330 cpumask_set_cpu(cpu
, cm
);
1331 if (cpumask_weight(cm
) == 0)
1333 set_cpus_allowed_ptr(t
, cm
);
1334 free_cpumask_var(cm
);
1337 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1338 .store
= &rcu_cpu_kthread_task
,
1339 .thread_should_run
= rcu_cpu_kthread_should_run
,
1340 .thread_fn
= rcu_cpu_kthread
,
1341 .thread_comm
= "rcuc/%u",
1342 .setup
= rcu_cpu_kthread_setup
,
1343 .park
= rcu_cpu_kthread_park
,
1347 * Spawn boost kthreads -- called as soon as the scheduler is running.
1349 static void __init
rcu_spawn_boost_kthreads(void)
1351 struct rcu_node
*rnp
;
1354 for_each_possible_cpu(cpu
)
1355 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1356 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1357 rcu_for_each_leaf_node(rcu_state_p
, rnp
)
1358 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1361 static void rcu_prepare_kthreads(int cpu
)
1363 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
1364 struct rcu_node
*rnp
= rdp
->mynode
;
1366 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1367 if (rcu_scheduler_fully_active
)
1368 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1371 #else /* #ifdef CONFIG_RCU_BOOST */
1373 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1374 __releases(rnp
->lock
)
1376 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1379 static void invoke_rcu_callbacks_kthread(void)
1384 static bool rcu_is_callbacks_kthread(void)
1389 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1393 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1397 static void __init
rcu_spawn_boost_kthreads(void)
1401 static void rcu_prepare_kthreads(int cpu
)
1405 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1407 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1410 * Check to see if any future RCU-related work will need to be done
1411 * by the current CPU, even if none need be done immediately, returning
1412 * 1 if so. This function is part of the RCU implementation; it is -not-
1413 * an exported member of the RCU API.
1415 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1416 * any flavor of RCU.
1418 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1420 *nextevt
= KTIME_MAX
;
1421 return rcu_cpu_has_callbacks(NULL
);
1425 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1428 static void rcu_cleanup_after_idle(void)
1433 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1436 static void rcu_prepare_for_idle(void)
1441 * Don't bother keeping a running count of the number of RCU callbacks
1442 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1444 static void rcu_idle_count_callbacks_posted(void)
1448 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1451 * This code is invoked when a CPU goes idle, at which point we want
1452 * to have the CPU do everything required for RCU so that it can enter
1453 * the energy-efficient dyntick-idle mode. This is handled by a
1454 * state machine implemented by rcu_prepare_for_idle() below.
1456 * The following three proprocessor symbols control this state machine:
1458 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1459 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1460 * is sized to be roughly one RCU grace period. Those energy-efficiency
1461 * benchmarkers who might otherwise be tempted to set this to a large
1462 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1463 * system. And if you are -that- concerned about energy efficiency,
1464 * just power the system down and be done with it!
1465 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1466 * permitted to sleep in dyntick-idle mode with only lazy RCU
1467 * callbacks pending. Setting this too high can OOM your system.
1469 * The values below work well in practice. If future workloads require
1470 * adjustment, they can be converted into kernel config parameters, though
1471 * making the state machine smarter might be a better option.
1473 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1474 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1476 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1477 module_param(rcu_idle_gp_delay
, int, 0644);
1478 static int rcu_idle_lazy_gp_delay
= RCU_IDLE_LAZY_GP_DELAY
;
1479 module_param(rcu_idle_lazy_gp_delay
, int, 0644);
1482 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1483 * only if it has been awhile since the last time we did so. Afterwards,
1484 * if there are any callbacks ready for immediate invocation, return true.
1486 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1488 bool cbs_ready
= false;
1489 struct rcu_data
*rdp
;
1490 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1491 struct rcu_node
*rnp
;
1492 struct rcu_state
*rsp
;
1494 /* Exit early if we advanced recently. */
1495 if (jiffies
== rdtp
->last_advance_all
)
1497 rdtp
->last_advance_all
= jiffies
;
1499 for_each_rcu_flavor(rsp
) {
1500 rdp
= this_cpu_ptr(rsp
->rda
);
1504 * Don't bother checking unless a grace period has
1505 * completed since we last checked and there are
1506 * callbacks not yet ready to invoke.
1508 if ((rcu_seq_completed_gp(rdp
->gp_seq
,
1509 rcu_seq_current(&rnp
->gp_seq
)) ||
1510 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1511 rcu_segcblist_pend_cbs(&rdp
->cblist
))
1512 note_gp_changes(rsp
, rdp
);
1514 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
1521 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1522 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1523 * caller to set the timeout based on whether or not there are non-lazy
1526 * The caller must have disabled interrupts.
1528 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1530 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1533 lockdep_assert_irqs_disabled();
1535 /* Snapshot to detect later posting of non-lazy callback. */
1536 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1538 /* If no callbacks, RCU doesn't need the CPU. */
1539 if (!rcu_cpu_has_callbacks(&rdtp
->all_lazy
)) {
1540 *nextevt
= KTIME_MAX
;
1544 /* Attempt to advance callbacks. */
1545 if (rcu_try_advance_all_cbs()) {
1546 /* Some ready to invoke, so initiate later invocation. */
1550 rdtp
->last_accelerate
= jiffies
;
1552 /* Request timer delay depending on laziness, and round. */
1553 if (!rdtp
->all_lazy
) {
1554 dj
= round_up(rcu_idle_gp_delay
+ jiffies
,
1555 rcu_idle_gp_delay
) - jiffies
;
1557 dj
= round_jiffies(rcu_idle_lazy_gp_delay
+ jiffies
) - jiffies
;
1559 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1564 * Prepare a CPU for idle from an RCU perspective. The first major task
1565 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1566 * The second major task is to check to see if a non-lazy callback has
1567 * arrived at a CPU that previously had only lazy callbacks. The third
1568 * major task is to accelerate (that is, assign grace-period numbers to)
1569 * any recently arrived callbacks.
1571 * The caller must have disabled interrupts.
1573 static void rcu_prepare_for_idle(void)
1576 struct rcu_data
*rdp
;
1577 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1578 struct rcu_node
*rnp
;
1579 struct rcu_state
*rsp
;
1582 lockdep_assert_irqs_disabled();
1583 if (rcu_is_nocb_cpu(smp_processor_id()))
1586 /* Handle nohz enablement switches conservatively. */
1587 tne
= READ_ONCE(tick_nohz_active
);
1588 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1589 if (rcu_cpu_has_callbacks(NULL
))
1590 invoke_rcu_core(); /* force nohz to see update. */
1591 rdtp
->tick_nohz_enabled_snap
= tne
;
1598 * If a non-lazy callback arrived at a CPU having only lazy
1599 * callbacks, invoke RCU core for the side-effect of recalculating
1600 * idle duration on re-entry to idle.
1602 if (rdtp
->all_lazy
&&
1603 rdtp
->nonlazy_posted
!= rdtp
->nonlazy_posted_snap
) {
1604 rdtp
->all_lazy
= false;
1605 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1611 * If we have not yet accelerated this jiffy, accelerate all
1612 * callbacks on this CPU.
1614 if (rdtp
->last_accelerate
== jiffies
)
1616 rdtp
->last_accelerate
= jiffies
;
1617 for_each_rcu_flavor(rsp
) {
1618 rdp
= this_cpu_ptr(rsp
->rda
);
1619 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1622 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1623 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1624 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1626 rcu_gp_kthread_wake(rsp
);
1631 * Clean up for exit from idle. Attempt to advance callbacks based on
1632 * any grace periods that elapsed while the CPU was idle, and if any
1633 * callbacks are now ready to invoke, initiate invocation.
1635 static void rcu_cleanup_after_idle(void)
1637 lockdep_assert_irqs_disabled();
1638 if (rcu_is_nocb_cpu(smp_processor_id()))
1640 if (rcu_try_advance_all_cbs())
1645 * Keep a running count of the number of non-lazy callbacks posted
1646 * on this CPU. This running counter (which is never decremented) allows
1647 * rcu_prepare_for_idle() to detect when something out of the idle loop
1648 * posts a callback, even if an equal number of callbacks are invoked.
1649 * Of course, callbacks should only be posted from within a trace event
1650 * designed to be called from idle or from within RCU_NONIDLE().
1652 static void rcu_idle_count_callbacks_posted(void)
1654 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1658 * Data for flushing lazy RCU callbacks at OOM time.
1660 static atomic_t oom_callback_count
;
1661 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1664 * RCU OOM callback -- decrement the outstanding count and deliver the
1665 * wake-up if we are the last one.
1667 static void rcu_oom_callback(struct rcu_head
*rhp
)
1669 if (atomic_dec_and_test(&oom_callback_count
))
1670 wake_up(&oom_callback_wq
);
1674 * Post an rcu_oom_notify callback on the current CPU if it has at
1675 * least one lazy callback. This will unnecessarily post callbacks
1676 * to CPUs that already have a non-lazy callback at the end of their
1677 * callback list, but this is an infrequent operation, so accept some
1678 * extra overhead to keep things simple.
1680 static void rcu_oom_notify_cpu(void *unused
)
1682 struct rcu_state
*rsp
;
1683 struct rcu_data
*rdp
;
1685 for_each_rcu_flavor(rsp
) {
1686 rdp
= raw_cpu_ptr(rsp
->rda
);
1687 if (rcu_segcblist_n_lazy_cbs(&rdp
->cblist
)) {
1688 atomic_inc(&oom_callback_count
);
1689 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1695 * If low on memory, ensure that each CPU has a non-lazy callback.
1696 * This will wake up CPUs that have only lazy callbacks, in turn
1697 * ensuring that they free up the corresponding memory in a timely manner.
1698 * Because an uncertain amount of memory will be freed in some uncertain
1699 * timeframe, we do not claim to have freed anything.
1701 static int rcu_oom_notify(struct notifier_block
*self
,
1702 unsigned long notused
, void *nfreed
)
1706 /* Wait for callbacks from earlier instance to complete. */
1707 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1708 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1711 * Prevent premature wakeup: ensure that all increments happen
1712 * before there is a chance of the counter reaching zero.
1714 atomic_set(&oom_callback_count
, 1);
1716 for_each_online_cpu(cpu
) {
1717 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1718 cond_resched_tasks_rcu_qs();
1721 /* Unconditionally decrement: no need to wake ourselves up. */
1722 atomic_dec(&oom_callback_count
);
1727 static struct notifier_block rcu_oom_nb
= {
1728 .notifier_call
= rcu_oom_notify
1731 static int __init
rcu_register_oom_notifier(void)
1733 register_oom_notifier(&rcu_oom_nb
);
1736 early_initcall(rcu_register_oom_notifier
);
1738 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1740 #ifdef CONFIG_RCU_FAST_NO_HZ
1742 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1744 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1745 unsigned long nlpd
= rdtp
->nonlazy_posted
- rdtp
->nonlazy_posted_snap
;
1747 sprintf(cp
, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1748 rdtp
->last_accelerate
& 0xffff, jiffies
& 0xffff,
1750 rdtp
->all_lazy
? 'L' : '.',
1751 rdtp
->tick_nohz_enabled_snap
? '.' : 'D');
1754 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1756 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1761 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1763 /* Initiate the stall-info list. */
1764 static void print_cpu_stall_info_begin(void)
1770 * Print out diagnostic information for the specified stalled CPU.
1772 * If the specified CPU is aware of the current RCU grace period
1773 * (flavor specified by rsp), then print the number of scheduling
1774 * clock interrupts the CPU has taken during the time that it has
1775 * been aware. Otherwise, print the number of RCU grace periods
1776 * that this CPU is ignorant of, for example, "1" if the CPU was
1777 * aware of the previous grace period.
1779 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1781 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
1783 unsigned long delta
;
1784 char fast_no_hz
[72];
1785 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1786 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
1788 unsigned long ticks_value
;
1791 * We could be printing a lot while holding a spinlock. Avoid
1792 * triggering hard lockup.
1794 touch_nmi_watchdog();
1796 ticks_value
= rcu_seq_ctr(rsp
->gp_seq
- rdp
->gp_seq
);
1798 ticks_title
= "GPs behind";
1800 ticks_title
= "ticks this GP";
1801 ticks_value
= rdp
->ticks_this_gp
;
1803 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
1804 delta
= rcu_seq_ctr(rdp
->mynode
->gp_seq
- rdp
->rcu_iw_gp_seq
);
1805 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
1807 "O."[!!cpu_online(cpu
)],
1808 "o."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinit
)],
1809 "N."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinitnext
)],
1810 !IS_ENABLED(CONFIG_IRQ_WORK
) ? '?' :
1811 rdp
->rcu_iw_pending
? (int)min(delta
, 9UL) + '0' :
1813 ticks_value
, ticks_title
,
1814 rcu_dynticks_snap(rdtp
) & 0xfff,
1815 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
1816 rdp
->softirq_snap
, kstat_softirqs_cpu(RCU_SOFTIRQ
, cpu
),
1817 READ_ONCE(rsp
->n_force_qs
) - rsp
->n_force_qs_gpstart
,
1821 /* Terminate the stall-info list. */
1822 static void print_cpu_stall_info_end(void)
1827 /* Zero ->ticks_this_gp for all flavors of RCU. */
1828 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1830 rdp
->ticks_this_gp
= 0;
1831 rdp
->softirq_snap
= kstat_softirqs_cpu(RCU_SOFTIRQ
, smp_processor_id());
1834 /* Increment ->ticks_this_gp for all flavors of RCU. */
1835 static void increment_cpu_stall_ticks(void)
1837 struct rcu_state
*rsp
;
1839 for_each_rcu_flavor(rsp
)
1840 raw_cpu_inc(rsp
->rda
->ticks_this_gp
);
1843 #ifdef CONFIG_RCU_NOCB_CPU
1846 * Offload callback processing from the boot-time-specified set of CPUs
1847 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1848 * kthread created that pulls the callbacks from the corresponding CPU,
1849 * waits for a grace period to elapse, and invokes the callbacks.
1850 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1851 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1852 * has been specified, in which case each kthread actively polls its
1853 * CPU. (Which isn't so great for energy efficiency, but which does
1854 * reduce RCU's overhead on that CPU.)
1856 * This is intended to be used in conjunction with Frederic Weisbecker's
1857 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1858 * running CPU-bound user-mode computations.
1860 * Offloading of callback processing could also in theory be used as
1861 * an energy-efficiency measure because CPUs with no RCU callbacks
1862 * queued are more aggressive about entering dyntick-idle mode.
1866 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1867 static int __init
rcu_nocb_setup(char *str
)
1869 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1870 cpulist_parse(str
, rcu_nocb_mask
);
1873 __setup("rcu_nocbs=", rcu_nocb_setup
);
1875 static int __init
parse_rcu_nocb_poll(char *arg
)
1877 rcu_nocb_poll
= true;
1880 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1883 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1886 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1891 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1893 return &rnp
->nocb_gp_wq
[rcu_seq_ctr(rnp
->gp_seq
) & 0x1];
1896 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1898 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1899 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1902 /* Is the specified CPU a no-CBs CPU? */
1903 bool rcu_is_nocb_cpu(int cpu
)
1905 if (cpumask_available(rcu_nocb_mask
))
1906 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1911 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1912 * and this function releases it.
1914 static void __wake_nocb_leader(struct rcu_data
*rdp
, bool force
,
1915 unsigned long flags
)
1916 __releases(rdp
->nocb_lock
)
1918 struct rcu_data
*rdp_leader
= rdp
->nocb_leader
;
1920 lockdep_assert_held(&rdp
->nocb_lock
);
1921 if (!READ_ONCE(rdp_leader
->nocb_kthread
)) {
1922 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1925 if (rdp_leader
->nocb_leader_sleep
|| force
) {
1926 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1927 WRITE_ONCE(rdp_leader
->nocb_leader_sleep
, false);
1928 del_timer(&rdp
->nocb_timer
);
1929 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1930 smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1931 swake_up_one(&rdp_leader
->nocb_wq
);
1933 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1938 * Kick the leader kthread for this NOCB group, but caller has not
1941 static void wake_nocb_leader(struct rcu_data
*rdp
, bool force
)
1943 unsigned long flags
;
1945 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
1946 __wake_nocb_leader(rdp
, force
, flags
);
1950 * Arrange to wake the leader kthread for this NOCB group at some
1951 * future time when it is safe to do so.
1953 static void wake_nocb_leader_defer(struct rcu_data
*rdp
, int waketype
,
1956 unsigned long flags
;
1958 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
1959 if (rdp
->nocb_defer_wakeup
== RCU_NOCB_WAKE_NOT
)
1960 mod_timer(&rdp
->nocb_timer
, jiffies
+ 1);
1961 WRITE_ONCE(rdp
->nocb_defer_wakeup
, waketype
);
1962 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, reason
);
1963 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1967 * Does the specified CPU need an RCU callback for the specified flavor
1970 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
1972 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1974 #ifdef CONFIG_PROVE_RCU
1975 struct rcu_head
*rhp
;
1976 #endif /* #ifdef CONFIG_PROVE_RCU */
1979 * Check count of all no-CBs callbacks awaiting invocation.
1980 * There needs to be a barrier before this function is called,
1981 * but associated with a prior determination that no more
1982 * callbacks would be posted. In the worst case, the first
1983 * barrier in _rcu_barrier() suffices (but the caller cannot
1984 * necessarily rely on this, not a substitute for the caller
1985 * getting the concurrency design right!). There must also be
1986 * a barrier between the following load an posting of a callback
1987 * (if a callback is in fact needed). This is associated with an
1988 * atomic_inc() in the caller.
1990 ret
= atomic_long_read(&rdp
->nocb_q_count
);
1992 #ifdef CONFIG_PROVE_RCU
1993 rhp
= READ_ONCE(rdp
->nocb_head
);
1995 rhp
= READ_ONCE(rdp
->nocb_gp_head
);
1997 rhp
= READ_ONCE(rdp
->nocb_follower_head
);
1999 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
2000 if (!READ_ONCE(rdp
->nocb_kthread
) && rhp
&&
2001 rcu_scheduler_fully_active
) {
2002 /* RCU callback enqueued before CPU first came online??? */
2003 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2007 #endif /* #ifdef CONFIG_PROVE_RCU */
2013 * Enqueue the specified string of rcu_head structures onto the specified
2014 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2015 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2016 * counts are supplied by rhcount and rhcount_lazy.
2018 * If warranted, also wake up the kthread servicing this CPUs queues.
2020 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
2021 struct rcu_head
*rhp
,
2022 struct rcu_head
**rhtp
,
2023 int rhcount
, int rhcount_lazy
,
2024 unsigned long flags
)
2027 struct rcu_head
**old_rhpp
;
2028 struct task_struct
*t
;
2030 /* Enqueue the callback on the nocb list and update counts. */
2031 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
2032 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
2033 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
2034 WRITE_ONCE(*old_rhpp
, rhp
);
2035 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
2036 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2038 /* If we are not being polled and there is a kthread, awaken it ... */
2039 t
= READ_ONCE(rdp
->nocb_kthread
);
2040 if (rcu_nocb_poll
|| !t
) {
2041 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2042 TPS("WakeNotPoll"));
2045 len
= atomic_long_read(&rdp
->nocb_q_count
);
2046 if (old_rhpp
== &rdp
->nocb_head
) {
2047 if (!irqs_disabled_flags(flags
)) {
2048 /* ... if queue was empty ... */
2049 wake_nocb_leader(rdp
, false);
2050 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2053 wake_nocb_leader_defer(rdp
, RCU_NOCB_WAKE
,
2054 TPS("WakeEmptyIsDeferred"));
2056 rdp
->qlen_last_fqs_check
= 0;
2057 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
2058 /* ... or if many callbacks queued. */
2059 if (!irqs_disabled_flags(flags
)) {
2060 wake_nocb_leader(rdp
, true);
2061 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2064 wake_nocb_leader_defer(rdp
, RCU_NOCB_WAKE_FORCE
,
2065 TPS("WakeOvfIsDeferred"));
2067 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
2069 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WakeNot"));
2075 * This is a helper for __call_rcu(), which invokes this when the normal
2076 * callback queue is inoperable. If this is not a no-CBs CPU, this
2077 * function returns failure back to __call_rcu(), which can complain
2080 * Otherwise, this function queues the callback where the corresponding
2081 * "rcuo" kthread can find it.
2083 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2084 bool lazy
, unsigned long flags
)
2087 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2089 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
, flags
);
2090 if (__is_kfree_rcu_offset((unsigned long)rhp
->func
))
2091 trace_rcu_kfree_callback(rdp
->rsp
->name
, rhp
,
2092 (unsigned long)rhp
->func
,
2093 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
2094 -atomic_long_read(&rdp
->nocb_q_count
));
2096 trace_rcu_callback(rdp
->rsp
->name
, rhp
,
2097 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
2098 -atomic_long_read(&rdp
->nocb_q_count
));
2101 * If called from an extended quiescent state with interrupts
2102 * disabled, invoke the RCU core in order to allow the idle-entry
2103 * deferred-wakeup check to function.
2105 if (irqs_disabled_flags(flags
) &&
2106 !rcu_is_watching() &&
2107 cpu_online(smp_processor_id()))
2114 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2117 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_data
*my_rdp
,
2118 struct rcu_data
*rdp
,
2119 unsigned long flags
)
2121 lockdep_assert_irqs_disabled();
2122 if (!rcu_is_nocb_cpu(smp_processor_id()))
2123 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2124 __call_rcu_nocb_enqueue(my_rdp
, rcu_segcblist_head(&rdp
->cblist
),
2125 rcu_segcblist_tail(&rdp
->cblist
),
2126 rcu_segcblist_n_cbs(&rdp
->cblist
),
2127 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
), flags
);
2128 rcu_segcblist_init(&rdp
->cblist
);
2129 rcu_segcblist_disable(&rdp
->cblist
);
2134 * If necessary, kick off a new grace period, and either way wait
2135 * for a subsequent grace period to complete.
2137 static void rcu_nocb_wait_gp(struct rcu_data
*rdp
)
2141 unsigned long flags
;
2143 struct rcu_node
*rnp
= rdp
->mynode
;
2145 local_irq_save(flags
);
2146 c
= rcu_seq_snap(&rdp
->rsp
->gp_seq
);
2147 if (!rdp
->gpwrap
&& ULONG_CMP_GE(rdp
->gp_seq_needed
, c
)) {
2148 local_irq_restore(flags
);
2150 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2151 needwake
= rcu_start_this_gp(rnp
, rdp
, c
);
2152 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2154 rcu_gp_kthread_wake(rdp
->rsp
);
2158 * Wait for the grace period. Do so interruptibly to avoid messing
2159 * up the load average.
2161 trace_rcu_this_gp(rnp
, rdp
, c
, TPS("StartWait"));
2163 swait_event_interruptible_exclusive(
2164 rnp
->nocb_gp_wq
[rcu_seq_ctr(c
) & 0x1],
2165 (d
= rcu_seq_done(&rnp
->gp_seq
, c
)));
2168 WARN_ON(signal_pending(current
));
2169 trace_rcu_this_gp(rnp
, rdp
, c
, TPS("ResumeWait"));
2171 trace_rcu_this_gp(rnp
, rdp
, c
, TPS("EndWait"));
2172 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2176 * Leaders come here to wait for additional callbacks to show up.
2177 * This function does not return until callbacks appear.
2179 static void nocb_leader_wait(struct rcu_data
*my_rdp
)
2181 bool firsttime
= true;
2182 unsigned long flags
;
2184 struct rcu_data
*rdp
;
2185 struct rcu_head
**tail
;
2189 /* Wait for callbacks to appear. */
2190 if (!rcu_nocb_poll
) {
2191 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, TPS("Sleep"));
2192 swait_event_interruptible_exclusive(my_rdp
->nocb_wq
,
2193 !READ_ONCE(my_rdp
->nocb_leader_sleep
));
2194 raw_spin_lock_irqsave(&my_rdp
->nocb_lock
, flags
);
2195 my_rdp
->nocb_leader_sleep
= true;
2196 WRITE_ONCE(my_rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2197 del_timer(&my_rdp
->nocb_timer
);
2198 raw_spin_unlock_irqrestore(&my_rdp
->nocb_lock
, flags
);
2199 } else if (firsttime
) {
2200 firsttime
= false; /* Don't drown trace log with "Poll"! */
2201 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, TPS("Poll"));
2205 * Each pass through the following loop checks a follower for CBs.
2206 * We are our own first follower. Any CBs found are moved to
2207 * nocb_gp_head, where they await a grace period.
2210 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2211 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2212 rdp
->nocb_gp_head
= READ_ONCE(rdp
->nocb_head
);
2213 if (!rdp
->nocb_gp_head
)
2214 continue; /* No CBs here, try next follower. */
2216 /* Move callbacks to wait-for-GP list, which is empty. */
2217 WRITE_ONCE(rdp
->nocb_head
, NULL
);
2218 rdp
->nocb_gp_tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2222 /* No callbacks? Sleep a bit if polling, and go retry. */
2223 if (unlikely(!gotcbs
)) {
2224 WARN_ON(signal_pending(current
));
2225 if (rcu_nocb_poll
) {
2226 schedule_timeout_interruptible(1);
2228 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
,
2234 /* Wait for one grace period. */
2235 rcu_nocb_wait_gp(my_rdp
);
2237 /* Each pass through the following loop wakes a follower, if needed. */
2238 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2239 if (!rcu_nocb_poll
&&
2240 READ_ONCE(rdp
->nocb_head
) &&
2241 READ_ONCE(my_rdp
->nocb_leader_sleep
)) {
2242 raw_spin_lock_irqsave(&my_rdp
->nocb_lock
, flags
);
2243 my_rdp
->nocb_leader_sleep
= false;/* No need to sleep.*/
2244 raw_spin_unlock_irqrestore(&my_rdp
->nocb_lock
, flags
);
2246 if (!rdp
->nocb_gp_head
)
2247 continue; /* No CBs, so no need to wake follower. */
2249 /* Append callbacks to follower's "done" list. */
2250 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2251 tail
= rdp
->nocb_follower_tail
;
2252 rdp
->nocb_follower_tail
= rdp
->nocb_gp_tail
;
2253 *tail
= rdp
->nocb_gp_head
;
2254 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2255 if (rdp
!= my_rdp
&& tail
== &rdp
->nocb_follower_head
) {
2256 /* List was empty, so wake up the follower. */
2257 swake_up_one(&rdp
->nocb_wq
);
2261 /* If we (the leader) don't have CBs, go wait some more. */
2262 if (!my_rdp
->nocb_follower_head
)
2267 * Followers come here to wait for additional callbacks to show up.
2268 * This function does not return until callbacks appear.
2270 static void nocb_follower_wait(struct rcu_data
*rdp
)
2273 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("FollowerSleep"));
2274 swait_event_interruptible_exclusive(rdp
->nocb_wq
,
2275 READ_ONCE(rdp
->nocb_follower_head
));
2276 if (smp_load_acquire(&rdp
->nocb_follower_head
)) {
2277 /* ^^^ Ensure CB invocation follows _head test. */
2280 WARN_ON(signal_pending(current
));
2281 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WokeEmpty"));
2286 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2287 * callbacks queued by the corresponding no-CBs CPU, however, there is
2288 * an optional leader-follower relationship so that the grace-period
2289 * kthreads don't have to do quite so many wakeups.
2291 static int rcu_nocb_kthread(void *arg
)
2294 unsigned long flags
;
2295 struct rcu_head
*list
;
2296 struct rcu_head
*next
;
2297 struct rcu_head
**tail
;
2298 struct rcu_data
*rdp
= arg
;
2300 /* Each pass through this loop invokes one batch of callbacks */
2302 /* Wait for callbacks. */
2303 if (rdp
->nocb_leader
== rdp
)
2304 nocb_leader_wait(rdp
);
2306 nocb_follower_wait(rdp
);
2308 /* Pull the ready-to-invoke callbacks onto local list. */
2309 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2310 list
= rdp
->nocb_follower_head
;
2311 rdp
->nocb_follower_head
= NULL
;
2312 tail
= rdp
->nocb_follower_tail
;
2313 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2314 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2316 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WokeNonEmpty"));
2318 /* Each pass through the following loop invokes a callback. */
2319 trace_rcu_batch_start(rdp
->rsp
->name
,
2320 atomic_long_read(&rdp
->nocb_q_count_lazy
),
2321 atomic_long_read(&rdp
->nocb_q_count
), -1);
2325 /* Wait for enqueuing to complete, if needed. */
2326 while (next
== NULL
&& &list
->next
!= tail
) {
2327 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2329 schedule_timeout_interruptible(1);
2330 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2334 debug_rcu_head_unqueue(list
);
2336 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2340 cond_resched_tasks_rcu_qs();
2343 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2344 smp_mb__before_atomic(); /* _add after CB invocation. */
2345 atomic_long_add(-c
, &rdp
->nocb_q_count
);
2346 atomic_long_add(-cl
, &rdp
->nocb_q_count_lazy
);
2351 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2352 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2354 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2357 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2358 static void do_nocb_deferred_wakeup_common(struct rcu_data
*rdp
)
2360 unsigned long flags
;
2363 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2364 if (!rcu_nocb_need_deferred_wakeup(rdp
)) {
2365 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2368 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2369 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2370 __wake_nocb_leader(rdp
, ndw
== RCU_NOCB_WAKE_FORCE
, flags
);
2371 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("DeferredWake"));
2374 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2375 static void do_nocb_deferred_wakeup_timer(struct timer_list
*t
)
2377 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_timer
);
2379 do_nocb_deferred_wakeup_common(rdp
);
2383 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2384 * This means we do an inexact common-case check. Note that if
2385 * we miss, ->nocb_timer will eventually clean things up.
2387 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2389 if (rcu_nocb_need_deferred_wakeup(rdp
))
2390 do_nocb_deferred_wakeup_common(rdp
);
2393 void __init
rcu_init_nohz(void)
2396 bool need_rcu_nocb_mask
= false;
2397 struct rcu_state
*rsp
;
2399 #if defined(CONFIG_NO_HZ_FULL)
2400 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2401 need_rcu_nocb_mask
= true;
2402 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2404 if (!cpumask_available(rcu_nocb_mask
) && need_rcu_nocb_mask
) {
2405 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2406 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2410 if (!cpumask_available(rcu_nocb_mask
))
2413 #if defined(CONFIG_NO_HZ_FULL)
2414 if (tick_nohz_full_running
)
2415 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2416 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2418 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2419 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2420 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2423 if (cpumask_empty(rcu_nocb_mask
))
2424 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2426 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2427 cpumask_pr_args(rcu_nocb_mask
));
2429 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2431 for_each_rcu_flavor(rsp
) {
2432 for_each_cpu(cpu
, rcu_nocb_mask
)
2433 init_nocb_callback_list(per_cpu_ptr(rsp
->rda
, cpu
));
2434 rcu_organize_nocb_kthreads(rsp
);
2438 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2439 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2441 rdp
->nocb_tail
= &rdp
->nocb_head
;
2442 init_swait_queue_head(&rdp
->nocb_wq
);
2443 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2444 raw_spin_lock_init(&rdp
->nocb_lock
);
2445 timer_setup(&rdp
->nocb_timer
, do_nocb_deferred_wakeup_timer
, 0);
2449 * If the specified CPU is a no-CBs CPU that does not already have its
2450 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2451 * brought online out of order, this can require re-organizing the
2452 * leader-follower relationships.
2454 static void rcu_spawn_one_nocb_kthread(struct rcu_state
*rsp
, int cpu
)
2456 struct rcu_data
*rdp
;
2457 struct rcu_data
*rdp_last
;
2458 struct rcu_data
*rdp_old_leader
;
2459 struct rcu_data
*rdp_spawn
= per_cpu_ptr(rsp
->rda
, cpu
);
2460 struct task_struct
*t
;
2463 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2464 * then nothing to do.
2466 if (!rcu_is_nocb_cpu(cpu
) || rdp_spawn
->nocb_kthread
)
2469 /* If we didn't spawn the leader first, reorganize! */
2470 rdp_old_leader
= rdp_spawn
->nocb_leader
;
2471 if (rdp_old_leader
!= rdp_spawn
&& !rdp_old_leader
->nocb_kthread
) {
2473 rdp
= rdp_old_leader
;
2475 rdp
->nocb_leader
= rdp_spawn
;
2476 if (rdp_last
&& rdp
!= rdp_spawn
)
2477 rdp_last
->nocb_next_follower
= rdp
;
2478 if (rdp
== rdp_spawn
) {
2479 rdp
= rdp
->nocb_next_follower
;
2482 rdp
= rdp
->nocb_next_follower
;
2483 rdp_last
->nocb_next_follower
= NULL
;
2486 rdp_spawn
->nocb_next_follower
= rdp_old_leader
;
2489 /* Spawn the kthread for this CPU and RCU flavor. */
2490 t
= kthread_run(rcu_nocb_kthread
, rdp_spawn
,
2491 "rcuo%c/%d", rsp
->abbr
, cpu
);
2493 WRITE_ONCE(rdp_spawn
->nocb_kthread
, t
);
2497 * If the specified CPU is a no-CBs CPU that does not already have its
2498 * rcuo kthreads, spawn them.
2500 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2502 struct rcu_state
*rsp
;
2504 if (rcu_scheduler_fully_active
)
2505 for_each_rcu_flavor(rsp
)
2506 rcu_spawn_one_nocb_kthread(rsp
, cpu
);
2510 * Once the scheduler is running, spawn rcuo kthreads for all online
2511 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2512 * non-boot CPUs come online -- if this changes, we will need to add
2513 * some mutual exclusion.
2515 static void __init
rcu_spawn_nocb_kthreads(void)
2519 for_each_online_cpu(cpu
)
2520 rcu_spawn_all_nocb_kthreads(cpu
);
2523 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2524 static int rcu_nocb_leader_stride
= -1;
2525 module_param(rcu_nocb_leader_stride
, int, 0444);
2528 * Initialize leader-follower relationships for all no-CBs CPU.
2530 static void __init
rcu_organize_nocb_kthreads(struct rcu_state
*rsp
)
2533 int ls
= rcu_nocb_leader_stride
;
2534 int nl
= 0; /* Next leader. */
2535 struct rcu_data
*rdp
;
2536 struct rcu_data
*rdp_leader
= NULL
; /* Suppress misguided gcc warn. */
2537 struct rcu_data
*rdp_prev
= NULL
;
2539 if (!cpumask_available(rcu_nocb_mask
))
2542 ls
= int_sqrt(nr_cpu_ids
);
2543 rcu_nocb_leader_stride
= ls
;
2547 * Each pass through this loop sets up one rcu_data structure.
2548 * Should the corresponding CPU come online in the future, then
2549 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2551 for_each_cpu(cpu
, rcu_nocb_mask
) {
2552 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2553 if (rdp
->cpu
>= nl
) {
2554 /* New leader, set up for followers & next leader. */
2555 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2556 rdp
->nocb_leader
= rdp
;
2559 /* Another follower, link to previous leader. */
2560 rdp
->nocb_leader
= rdp_leader
;
2561 rdp_prev
->nocb_next_follower
= rdp
;
2567 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2568 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2570 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2573 /* If there are early-boot callbacks, move them to nocb lists. */
2574 if (!rcu_segcblist_empty(&rdp
->cblist
)) {
2575 rdp
->nocb_head
= rcu_segcblist_head(&rdp
->cblist
);
2576 rdp
->nocb_tail
= rcu_segcblist_tail(&rdp
->cblist
);
2577 atomic_long_set(&rdp
->nocb_q_count
,
2578 rcu_segcblist_n_cbs(&rdp
->cblist
));
2579 atomic_long_set(&rdp
->nocb_q_count_lazy
,
2580 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
));
2581 rcu_segcblist_init(&rdp
->cblist
);
2583 rcu_segcblist_disable(&rdp
->cblist
);
2587 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2589 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
2591 WARN_ON_ONCE(1); /* Should be dead code. */
2595 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2599 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2604 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2608 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2609 bool lazy
, unsigned long flags
)
2614 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_data
*my_rdp
,
2615 struct rcu_data
*rdp
,
2616 unsigned long flags
)
2621 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2625 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2630 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2634 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2638 static void __init
rcu_spawn_nocb_kthreads(void)
2642 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2647 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2650 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2651 * grace-period kthread will do force_quiescent_state() processing?
2652 * The idea is to avoid waking up RCU core processing on such a
2653 * CPU unless the grace period has extended for too long.
2655 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2656 * CONFIG_RCU_NOCB_CPU CPUs.
2658 static bool rcu_nohz_full_cpu(struct rcu_state
*rsp
)
2660 #ifdef CONFIG_NO_HZ_FULL
2661 if (tick_nohz_full_cpu(smp_processor_id()) &&
2662 (!rcu_gp_in_progress(rsp
) ||
2663 ULONG_CMP_LT(jiffies
, READ_ONCE(rsp
->gp_start
) + HZ
)))
2665 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2670 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2672 static void rcu_bind_gp_kthread(void)
2674 if (!tick_nohz_full_enabled())
2676 housekeeping_affine(current
, HK_FLAG_RCU
);
2679 /* Record the current task on dyntick-idle entry. */
2680 static void rcu_dynticks_task_enter(void)
2682 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2683 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2684 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2687 /* Record no current task on dyntick-idle exit. */
2688 static void rcu_dynticks_task_exit(void)
2690 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2691 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2692 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */