Linux 4.19.168
[linux/fpc-iii.git] / mm / hugetlb.c
blob27e49c5ec21943260eb720d92e0b7f689aa5e134
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
50 __initdata LIST_HEAD(huge_boot_pages);
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
62 DEFINE_SPINLOCK(hugetlb_lock);
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78 spin_unlock(&spool->lock);
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
94 struct hugepage_subpool *spool;
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
110 spool->rsv_hpages = min_hpages;
112 return spool;
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
134 long ret = delta;
136 if (!spool)
137 return ret;
139 spin_lock(&spool->lock);
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
165 unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
179 long ret = delta;
181 if (!spool)
182 return delta;
184 spin_lock(&spool->lock);
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
205 unlock_or_release_subpool(spool);
207 return ret;
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 return HUGETLBFS_SB(inode->i_sb)->spool;
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 return subpool_inode(file_inode(vma->vm_file));
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
239 struct file_region {
240 struct list_head link;
241 long from;
242 long to;
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
259 static long region_add(struct resv_map *resv, long f, long t)
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
289 add += t - f;
290 goto out_locked;
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
326 out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
355 static long region_chg(struct resv_map *resv, long f, long t)
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
361 retry:
362 spin_lock(&resv->lock);
363 retry_locked:
364 resv->adds_in_progress++;
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
436 chg -= rg->to - rg->from;
439 out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444 out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
460 static void region_abort(struct resv_map *resv, long f, long t)
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
482 static long region_del(struct resv_map *resv, long f, long t)
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
489 retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
502 if (rg->from >= t)
503 break;
505 if (f > rg->from && t < rg->to) { /* Must split region */
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
527 del += t - f;
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
534 /* Original entry is trimmed */
535 rg->to = f;
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
572 void hugetlb_fix_reserve_counts(struct inode *inode)
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
581 hugetlb_acct_memory(h, 1);
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
589 static long region_count(struct resv_map *resv, long f, long t)
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
609 chg += seg_to - seg_from;
611 spin_unlock(&resv->lock);
613 return chg;
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 if (vma->vm_ops && vma->vm_ops->pagesize)
641 return vma->vm_ops->pagesize(vma);
642 return PAGE_SIZE;
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 return vma_kernel_pagesize(vma);
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
660 * alignment.
662 #define HPAGE_RESV_OWNER (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 return (unsigned long)vma->vm_private_data;
690 static void set_vma_private_data(struct vm_area_struct *vma,
691 unsigned long value)
693 vma->vm_private_data = (void *)value;
696 struct resv_map *resv_map_alloc(void)
698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701 if (!resv_map || !rg) {
702 kfree(resv_map);
703 kfree(rg);
704 return NULL;
707 kref_init(&resv_map->refs);
708 spin_lock_init(&resv_map->lock);
709 INIT_LIST_HEAD(&resv_map->regions);
711 resv_map->adds_in_progress = 0;
713 INIT_LIST_HEAD(&resv_map->region_cache);
714 list_add(&rg->link, &resv_map->region_cache);
715 resv_map->region_cache_count = 1;
717 return resv_map;
720 void resv_map_release(struct kref *ref)
722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 struct list_head *head = &resv_map->region_cache;
724 struct file_region *rg, *trg;
726 /* Clear out any active regions before we release the map. */
727 region_del(resv_map, 0, LONG_MAX);
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg, trg, head, link) {
731 list_del(&rg->link);
732 kfree(rg);
735 VM_BUG_ON(resv_map->adds_in_progress);
737 kfree(resv_map);
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 return inode->i_mapping->private_data;
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 if (vma->vm_flags & VM_MAYSHARE) {
749 struct address_space *mapping = vma->vm_file->f_mapping;
750 struct inode *inode = mapping->host;
752 return inode_resv_map(inode);
754 } else {
755 return (struct resv_map *)(get_vma_private_data(vma) &
756 ~HPAGE_RESV_MASK);
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 set_vma_private_data(vma, (get_vma_private_data(vma) &
766 HPAGE_RESV_MASK) | (unsigned long)map);
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 return (get_vma_private_data(vma) & flag) != 0;
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 if (!(vma->vm_flags & VM_MAYSHARE))
789 vma->vm_private_data = (void *)0;
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 if (vma->vm_flags & VM_NORESERVE) {
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
805 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806 return true;
807 else
808 return false;
811 /* Shared mappings always use reserves */
812 if (vma->vm_flags & VM_MAYSHARE) {
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
820 if (chg)
821 return false;
822 else
823 return true;
827 * Only the process that called mmap() has reserves for
828 * private mappings.
830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
846 if (chg)
847 return false;
848 else
849 return true;
852 return false;
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 int nid = page_to_nid(page);
858 list_move(&page->lru, &h->hugepage_freelists[nid]);
859 h->free_huge_pages++;
860 h->free_huge_pages_node[nid]++;
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 struct page *page;
867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 if (!PageHWPoison(page))
869 break;
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
874 if (&h->hugepage_freelists[nid] == &page->lru)
875 return NULL;
876 list_move(&page->lru, &h->hugepage_activelist);
877 set_page_refcounted(page);
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
880 return page;
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 nodemask_t *nmask)
886 unsigned int cpuset_mems_cookie;
887 struct zonelist *zonelist;
888 struct zone *zone;
889 struct zoneref *z;
890 int node = -1;
892 zonelist = node_zonelist(nid, gfp_mask);
894 retry_cpuset:
895 cpuset_mems_cookie = read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 struct page *page;
899 if (!cpuset_zone_allowed(zone, gfp_mask))
900 continue;
902 * no need to ask again on the same node. Pool is node rather than
903 * zone aware
905 if (zone_to_nid(zone) == node)
906 continue;
907 node = zone_to_nid(zone);
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 goto retry_cpuset;
916 return NULL;
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 if (hugepage_migration_supported(h))
923 return GFP_HIGHUSER_MOVABLE;
924 else
925 return GFP_HIGHUSER;
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929 struct vm_area_struct *vma,
930 unsigned long address, int avoid_reserve,
931 long chg)
933 struct page *page;
934 struct mempolicy *mpol;
935 gfp_t gfp_mask;
936 nodemask_t *nodemask;
937 int nid;
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
944 if (!vma_has_reserves(vma, chg) &&
945 h->free_huge_pages - h->resv_huge_pages == 0)
946 goto err;
948 /* If reserves cannot be used, ensure enough pages are in the pool */
949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950 goto err;
952 gfp_mask = htlb_alloc_mask(h);
953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 SetPagePrivate(page);
957 h->resv_huge_pages--;
960 mpol_cond_put(mpol);
961 return page;
963 err:
964 return NULL;
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 nid = next_node_in(nid, *nodes_allowed);
977 VM_BUG_ON(nid >= MAX_NUMNODES);
979 return nid;
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 if (!node_isset(nid, *nodes_allowed))
985 nid = next_node_allowed(nid, nodes_allowed);
986 return nid;
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
993 * mask.
995 static int hstate_next_node_to_alloc(struct hstate *h,
996 nodemask_t *nodes_allowed)
998 int nid;
1000 VM_BUG_ON(!nodes_allowed);
1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005 return nid;
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 int nid;
1018 VM_BUG_ON(!nodes_allowed);
1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023 return nid;
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1028 nr_nodes > 0 && \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1030 nr_nodes--)
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1036 nr_nodes--)
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1040 unsigned int order)
1042 int i;
1043 int nr_pages = 1 << order;
1044 struct page *p = page + 1;
1046 atomic_set(compound_mapcount_ptr(page), 0);
1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 clear_compound_head(p);
1049 set_page_refcounted(p);
1052 set_compound_order(page, 0);
1053 __ClearPageHead(page);
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1058 free_contig_range(page_to_pfn(page), 1 << order);
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062 unsigned long nr_pages, gfp_t gfp_mask)
1064 unsigned long end_pfn = start_pfn + nr_pages;
1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066 gfp_mask);
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070 unsigned long start_pfn, unsigned long nr_pages)
1072 unsigned long i, end_pfn = start_pfn + nr_pages;
1073 struct page *page;
1075 for (i = start_pfn; i < end_pfn; i++) {
1076 page = pfn_to_online_page(i);
1077 if (!page)
1078 return false;
1080 if (page_zone(page) != z)
1081 return false;
1083 if (PageReserved(page))
1084 return false;
1086 if (page_count(page) > 0)
1087 return false;
1089 if (PageHuge(page))
1090 return false;
1093 return true;
1096 static bool zone_spans_last_pfn(const struct zone *zone,
1097 unsigned long start_pfn, unsigned long nr_pages)
1099 unsigned long last_pfn = start_pfn + nr_pages - 1;
1100 return zone_spans_pfn(zone, last_pfn);
1103 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1104 int nid, nodemask_t *nodemask)
1106 unsigned int order = huge_page_order(h);
1107 unsigned long nr_pages = 1 << order;
1108 unsigned long ret, pfn, flags;
1109 struct zonelist *zonelist;
1110 struct zone *zone;
1111 struct zoneref *z;
1113 zonelist = node_zonelist(nid, gfp_mask);
1114 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1115 spin_lock_irqsave(&zone->lock, flags);
1117 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1118 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1119 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121 * We release the zone lock here because
1122 * alloc_contig_range() will also lock the zone
1123 * at some point. If there's an allocation
1124 * spinning on this lock, it may win the race
1125 * and cause alloc_contig_range() to fail...
1127 spin_unlock_irqrestore(&zone->lock, flags);
1128 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1129 if (!ret)
1130 return pfn_to_page(pfn);
1131 spin_lock_irqsave(&zone->lock, flags);
1133 pfn += nr_pages;
1136 spin_unlock_irqrestore(&zone->lock, flags);
1139 return NULL;
1142 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1143 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1146 static inline bool gigantic_page_supported(void) { return false; }
1147 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1148 int nid, nodemask_t *nodemask) { return NULL; }
1149 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1150 static inline void destroy_compound_gigantic_page(struct page *page,
1151 unsigned int order) { }
1152 #endif
1154 static void update_and_free_page(struct hstate *h, struct page *page)
1156 int i;
1158 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1159 return;
1161 h->nr_huge_pages--;
1162 h->nr_huge_pages_node[page_to_nid(page)]--;
1163 for (i = 0; i < pages_per_huge_page(h); i++) {
1164 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1165 1 << PG_referenced | 1 << PG_dirty |
1166 1 << PG_active | 1 << PG_private |
1167 1 << PG_writeback);
1169 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1170 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1171 set_page_refcounted(page);
1172 if (hstate_is_gigantic(h)) {
1173 destroy_compound_gigantic_page(page, huge_page_order(h));
1174 free_gigantic_page(page, huge_page_order(h));
1175 } else {
1176 __free_pages(page, huge_page_order(h));
1180 struct hstate *size_to_hstate(unsigned long size)
1182 struct hstate *h;
1184 for_each_hstate(h) {
1185 if (huge_page_size(h) == size)
1186 return h;
1188 return NULL;
1192 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1193 * to hstate->hugepage_activelist.)
1195 * This function can be called for tail pages, but never returns true for them.
1197 bool page_huge_active(struct page *page)
1199 VM_BUG_ON_PAGE(!PageHuge(page), page);
1200 return PageHead(page) && PagePrivate(&page[1]);
1203 /* never called for tail page */
1204 static void set_page_huge_active(struct page *page)
1206 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1207 SetPagePrivate(&page[1]);
1210 static void clear_page_huge_active(struct page *page)
1212 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1213 ClearPagePrivate(&page[1]);
1217 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1218 * code
1220 static inline bool PageHugeTemporary(struct page *page)
1222 if (!PageHuge(page))
1223 return false;
1225 return (unsigned long)page[2].mapping == -1U;
1228 static inline void SetPageHugeTemporary(struct page *page)
1230 page[2].mapping = (void *)-1U;
1233 static inline void ClearPageHugeTemporary(struct page *page)
1235 page[2].mapping = NULL;
1238 void free_huge_page(struct page *page)
1241 * Can't pass hstate in here because it is called from the
1242 * compound page destructor.
1244 struct hstate *h = page_hstate(page);
1245 int nid = page_to_nid(page);
1246 struct hugepage_subpool *spool =
1247 (struct hugepage_subpool *)page_private(page);
1248 bool restore_reserve;
1250 set_page_private(page, 0);
1251 page->mapping = NULL;
1252 VM_BUG_ON_PAGE(page_count(page), page);
1253 VM_BUG_ON_PAGE(page_mapcount(page), page);
1254 restore_reserve = PagePrivate(page);
1255 ClearPagePrivate(page);
1258 * If PagePrivate() was set on page, page allocation consumed a
1259 * reservation. If the page was associated with a subpool, there
1260 * would have been a page reserved in the subpool before allocation
1261 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1262 * reservtion, do not call hugepage_subpool_put_pages() as this will
1263 * remove the reserved page from the subpool.
1265 if (!restore_reserve) {
1267 * A return code of zero implies that the subpool will be
1268 * under its minimum size if the reservation is not restored
1269 * after page is free. Therefore, force restore_reserve
1270 * operation.
1272 if (hugepage_subpool_put_pages(spool, 1) == 0)
1273 restore_reserve = true;
1276 spin_lock(&hugetlb_lock);
1277 clear_page_huge_active(page);
1278 hugetlb_cgroup_uncharge_page(hstate_index(h),
1279 pages_per_huge_page(h), page);
1280 if (restore_reserve)
1281 h->resv_huge_pages++;
1283 if (PageHugeTemporary(page)) {
1284 list_del(&page->lru);
1285 ClearPageHugeTemporary(page);
1286 update_and_free_page(h, page);
1287 } else if (h->surplus_huge_pages_node[nid]) {
1288 /* remove the page from active list */
1289 list_del(&page->lru);
1290 update_and_free_page(h, page);
1291 h->surplus_huge_pages--;
1292 h->surplus_huge_pages_node[nid]--;
1293 } else {
1294 arch_clear_hugepage_flags(page);
1295 enqueue_huge_page(h, page);
1297 spin_unlock(&hugetlb_lock);
1300 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1302 INIT_LIST_HEAD(&page->lru);
1303 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1304 spin_lock(&hugetlb_lock);
1305 set_hugetlb_cgroup(page, NULL);
1306 h->nr_huge_pages++;
1307 h->nr_huge_pages_node[nid]++;
1308 spin_unlock(&hugetlb_lock);
1311 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1313 int i;
1314 int nr_pages = 1 << order;
1315 struct page *p = page + 1;
1317 /* we rely on prep_new_huge_page to set the destructor */
1318 set_compound_order(page, order);
1319 __ClearPageReserved(page);
1320 __SetPageHead(page);
1321 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323 * For gigantic hugepages allocated through bootmem at
1324 * boot, it's safer to be consistent with the not-gigantic
1325 * hugepages and clear the PG_reserved bit from all tail pages
1326 * too. Otherwse drivers using get_user_pages() to access tail
1327 * pages may get the reference counting wrong if they see
1328 * PG_reserved set on a tail page (despite the head page not
1329 * having PG_reserved set). Enforcing this consistency between
1330 * head and tail pages allows drivers to optimize away a check
1331 * on the head page when they need know if put_page() is needed
1332 * after get_user_pages().
1334 __ClearPageReserved(p);
1335 set_page_count(p, 0);
1336 set_compound_head(p, page);
1338 atomic_set(compound_mapcount_ptr(page), -1);
1342 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1343 * transparent huge pages. See the PageTransHuge() documentation for more
1344 * details.
1346 int PageHuge(struct page *page)
1348 if (!PageCompound(page))
1349 return 0;
1351 page = compound_head(page);
1352 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1354 EXPORT_SYMBOL_GPL(PageHuge);
1357 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1358 * normal or transparent huge pages.
1360 int PageHeadHuge(struct page *page_head)
1362 if (!PageHead(page_head))
1363 return 0;
1365 return get_compound_page_dtor(page_head) == free_huge_page;
1368 pgoff_t __basepage_index(struct page *page)
1370 struct page *page_head = compound_head(page);
1371 pgoff_t index = page_index(page_head);
1372 unsigned long compound_idx;
1374 if (!PageHuge(page_head))
1375 return page_index(page);
1377 if (compound_order(page_head) >= MAX_ORDER)
1378 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1379 else
1380 compound_idx = page - page_head;
1382 return (index << compound_order(page_head)) + compound_idx;
1385 static struct page *alloc_buddy_huge_page(struct hstate *h,
1386 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1388 int order = huge_page_order(h);
1389 struct page *page;
1391 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1392 if (nid == NUMA_NO_NODE)
1393 nid = numa_mem_id();
1394 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1395 if (page)
1396 __count_vm_event(HTLB_BUDDY_PGALLOC);
1397 else
1398 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1400 return page;
1404 * Common helper to allocate a fresh hugetlb page. All specific allocators
1405 * should use this function to get new hugetlb pages
1407 static struct page *alloc_fresh_huge_page(struct hstate *h,
1408 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1410 struct page *page;
1412 if (hstate_is_gigantic(h))
1413 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1414 else
1415 page = alloc_buddy_huge_page(h, gfp_mask,
1416 nid, nmask);
1417 if (!page)
1418 return NULL;
1420 if (hstate_is_gigantic(h))
1421 prep_compound_gigantic_page(page, huge_page_order(h));
1422 prep_new_huge_page(h, page, page_to_nid(page));
1424 return page;
1428 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1429 * manner.
1431 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1433 struct page *page;
1434 int nr_nodes, node;
1435 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1437 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1438 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1439 if (page)
1440 break;
1443 if (!page)
1444 return 0;
1446 put_page(page); /* free it into the hugepage allocator */
1448 return 1;
1452 * Free huge page from pool from next node to free.
1453 * Attempt to keep persistent huge pages more or less
1454 * balanced over allowed nodes.
1455 * Called with hugetlb_lock locked.
1457 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1458 bool acct_surplus)
1460 int nr_nodes, node;
1461 int ret = 0;
1463 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1465 * If we're returning unused surplus pages, only examine
1466 * nodes with surplus pages.
1468 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1469 !list_empty(&h->hugepage_freelists[node])) {
1470 struct page *page =
1471 list_entry(h->hugepage_freelists[node].next,
1472 struct page, lru);
1473 list_del(&page->lru);
1474 h->free_huge_pages--;
1475 h->free_huge_pages_node[node]--;
1476 if (acct_surplus) {
1477 h->surplus_huge_pages--;
1478 h->surplus_huge_pages_node[node]--;
1480 update_and_free_page(h, page);
1481 ret = 1;
1482 break;
1486 return ret;
1490 * Dissolve a given free hugepage into free buddy pages. This function does
1491 * nothing for in-use hugepages and non-hugepages.
1492 * This function returns values like below:
1494 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1495 * (allocated or reserved.)
1496 * 0: successfully dissolved free hugepages or the page is not a
1497 * hugepage (considered as already dissolved)
1499 int dissolve_free_huge_page(struct page *page)
1501 int rc = -EBUSY;
1503 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1504 if (!PageHuge(page))
1505 return 0;
1507 spin_lock(&hugetlb_lock);
1508 if (!PageHuge(page)) {
1509 rc = 0;
1510 goto out;
1513 if (!page_count(page)) {
1514 struct page *head = compound_head(page);
1515 struct hstate *h = page_hstate(head);
1516 int nid = page_to_nid(head);
1517 if (h->free_huge_pages - h->resv_huge_pages == 0)
1518 goto out;
1520 * Move PageHWPoison flag from head page to the raw error page,
1521 * which makes any subpages rather than the error page reusable.
1523 if (PageHWPoison(head) && page != head) {
1524 SetPageHWPoison(page);
1525 ClearPageHWPoison(head);
1527 list_del(&head->lru);
1528 h->free_huge_pages--;
1529 h->free_huge_pages_node[nid]--;
1530 h->max_huge_pages--;
1531 update_and_free_page(h, head);
1532 rc = 0;
1534 out:
1535 spin_unlock(&hugetlb_lock);
1536 return rc;
1540 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1541 * make specified memory blocks removable from the system.
1542 * Note that this will dissolve a free gigantic hugepage completely, if any
1543 * part of it lies within the given range.
1544 * Also note that if dissolve_free_huge_page() returns with an error, all
1545 * free hugepages that were dissolved before that error are lost.
1547 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1549 unsigned long pfn;
1550 struct page *page;
1551 int rc = 0;
1553 if (!hugepages_supported())
1554 return rc;
1556 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1557 page = pfn_to_page(pfn);
1558 rc = dissolve_free_huge_page(page);
1559 if (rc)
1560 break;
1563 return rc;
1567 * Allocates a fresh surplus page from the page allocator.
1569 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1570 int nid, nodemask_t *nmask)
1572 struct page *page = NULL;
1574 if (hstate_is_gigantic(h))
1575 return NULL;
1577 spin_lock(&hugetlb_lock);
1578 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1579 goto out_unlock;
1580 spin_unlock(&hugetlb_lock);
1582 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1583 if (!page)
1584 return NULL;
1586 spin_lock(&hugetlb_lock);
1588 * We could have raced with the pool size change.
1589 * Double check that and simply deallocate the new page
1590 * if we would end up overcommiting the surpluses. Abuse
1591 * temporary page to workaround the nasty free_huge_page
1592 * codeflow
1594 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1595 SetPageHugeTemporary(page);
1596 spin_unlock(&hugetlb_lock);
1597 put_page(page);
1598 return NULL;
1599 } else {
1600 h->surplus_huge_pages++;
1601 h->surplus_huge_pages_node[page_to_nid(page)]++;
1604 out_unlock:
1605 spin_unlock(&hugetlb_lock);
1607 return page;
1610 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1611 int nid, nodemask_t *nmask)
1613 struct page *page;
1615 if (hstate_is_gigantic(h))
1616 return NULL;
1618 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1619 if (!page)
1620 return NULL;
1623 * We do not account these pages as surplus because they are only
1624 * temporary and will be released properly on the last reference
1626 SetPageHugeTemporary(page);
1628 return page;
1632 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1634 static
1635 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1636 struct vm_area_struct *vma, unsigned long addr)
1638 struct page *page;
1639 struct mempolicy *mpol;
1640 gfp_t gfp_mask = htlb_alloc_mask(h);
1641 int nid;
1642 nodemask_t *nodemask;
1644 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1645 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1646 mpol_cond_put(mpol);
1648 return page;
1651 /* page migration callback function */
1652 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1654 gfp_t gfp_mask = htlb_alloc_mask(h);
1655 struct page *page = NULL;
1657 if (nid != NUMA_NO_NODE)
1658 gfp_mask |= __GFP_THISNODE;
1660 spin_lock(&hugetlb_lock);
1661 if (h->free_huge_pages - h->resv_huge_pages > 0)
1662 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1663 spin_unlock(&hugetlb_lock);
1665 if (!page)
1666 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1668 return page;
1671 /* page migration callback function */
1672 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1673 nodemask_t *nmask)
1675 gfp_t gfp_mask = htlb_alloc_mask(h);
1677 spin_lock(&hugetlb_lock);
1678 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1679 struct page *page;
1681 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1682 if (page) {
1683 spin_unlock(&hugetlb_lock);
1684 return page;
1687 spin_unlock(&hugetlb_lock);
1689 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1692 /* mempolicy aware migration callback */
1693 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1694 unsigned long address)
1696 struct mempolicy *mpol;
1697 nodemask_t *nodemask;
1698 struct page *page;
1699 gfp_t gfp_mask;
1700 int node;
1702 gfp_mask = htlb_alloc_mask(h);
1703 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1704 page = alloc_huge_page_nodemask(h, node, nodemask);
1705 mpol_cond_put(mpol);
1707 return page;
1711 * Increase the hugetlb pool such that it can accommodate a reservation
1712 * of size 'delta'.
1714 static int gather_surplus_pages(struct hstate *h, int delta)
1716 struct list_head surplus_list;
1717 struct page *page, *tmp;
1718 int ret, i;
1719 int needed, allocated;
1720 bool alloc_ok = true;
1722 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1723 if (needed <= 0) {
1724 h->resv_huge_pages += delta;
1725 return 0;
1728 allocated = 0;
1729 INIT_LIST_HEAD(&surplus_list);
1731 ret = -ENOMEM;
1732 retry:
1733 spin_unlock(&hugetlb_lock);
1734 for (i = 0; i < needed; i++) {
1735 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1736 NUMA_NO_NODE, NULL);
1737 if (!page) {
1738 alloc_ok = false;
1739 break;
1741 list_add(&page->lru, &surplus_list);
1742 cond_resched();
1744 allocated += i;
1747 * After retaking hugetlb_lock, we need to recalculate 'needed'
1748 * because either resv_huge_pages or free_huge_pages may have changed.
1750 spin_lock(&hugetlb_lock);
1751 needed = (h->resv_huge_pages + delta) -
1752 (h->free_huge_pages + allocated);
1753 if (needed > 0) {
1754 if (alloc_ok)
1755 goto retry;
1757 * We were not able to allocate enough pages to
1758 * satisfy the entire reservation so we free what
1759 * we've allocated so far.
1761 goto free;
1764 * The surplus_list now contains _at_least_ the number of extra pages
1765 * needed to accommodate the reservation. Add the appropriate number
1766 * of pages to the hugetlb pool and free the extras back to the buddy
1767 * allocator. Commit the entire reservation here to prevent another
1768 * process from stealing the pages as they are added to the pool but
1769 * before they are reserved.
1771 needed += allocated;
1772 h->resv_huge_pages += delta;
1773 ret = 0;
1775 /* Free the needed pages to the hugetlb pool */
1776 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1777 if ((--needed) < 0)
1778 break;
1780 * This page is now managed by the hugetlb allocator and has
1781 * no users -- drop the buddy allocator's reference.
1783 put_page_testzero(page);
1784 VM_BUG_ON_PAGE(page_count(page), page);
1785 enqueue_huge_page(h, page);
1787 free:
1788 spin_unlock(&hugetlb_lock);
1790 /* Free unnecessary surplus pages to the buddy allocator */
1791 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1792 put_page(page);
1793 spin_lock(&hugetlb_lock);
1795 return ret;
1799 * This routine has two main purposes:
1800 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1801 * in unused_resv_pages. This corresponds to the prior adjustments made
1802 * to the associated reservation map.
1803 * 2) Free any unused surplus pages that may have been allocated to satisfy
1804 * the reservation. As many as unused_resv_pages may be freed.
1806 * Called with hugetlb_lock held. However, the lock could be dropped (and
1807 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1808 * we must make sure nobody else can claim pages we are in the process of
1809 * freeing. Do this by ensuring resv_huge_page always is greater than the
1810 * number of huge pages we plan to free when dropping the lock.
1812 static void return_unused_surplus_pages(struct hstate *h,
1813 unsigned long unused_resv_pages)
1815 unsigned long nr_pages;
1817 /* Cannot return gigantic pages currently */
1818 if (hstate_is_gigantic(h))
1819 goto out;
1822 * Part (or even all) of the reservation could have been backed
1823 * by pre-allocated pages. Only free surplus pages.
1825 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1828 * We want to release as many surplus pages as possible, spread
1829 * evenly across all nodes with memory. Iterate across these nodes
1830 * until we can no longer free unreserved surplus pages. This occurs
1831 * when the nodes with surplus pages have no free pages.
1832 * free_pool_huge_page() will balance the the freed pages across the
1833 * on-line nodes with memory and will handle the hstate accounting.
1835 * Note that we decrement resv_huge_pages as we free the pages. If
1836 * we drop the lock, resv_huge_pages will still be sufficiently large
1837 * to cover subsequent pages we may free.
1839 while (nr_pages--) {
1840 h->resv_huge_pages--;
1841 unused_resv_pages--;
1842 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1843 goto out;
1844 cond_resched_lock(&hugetlb_lock);
1847 out:
1848 /* Fully uncommit the reservation */
1849 h->resv_huge_pages -= unused_resv_pages;
1854 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1855 * are used by the huge page allocation routines to manage reservations.
1857 * vma_needs_reservation is called to determine if the huge page at addr
1858 * within the vma has an associated reservation. If a reservation is
1859 * needed, the value 1 is returned. The caller is then responsible for
1860 * managing the global reservation and subpool usage counts. After
1861 * the huge page has been allocated, vma_commit_reservation is called
1862 * to add the page to the reservation map. If the page allocation fails,
1863 * the reservation must be ended instead of committed. vma_end_reservation
1864 * is called in such cases.
1866 * In the normal case, vma_commit_reservation returns the same value
1867 * as the preceding vma_needs_reservation call. The only time this
1868 * is not the case is if a reserve map was changed between calls. It
1869 * is the responsibility of the caller to notice the difference and
1870 * take appropriate action.
1872 * vma_add_reservation is used in error paths where a reservation must
1873 * be restored when a newly allocated huge page must be freed. It is
1874 * to be called after calling vma_needs_reservation to determine if a
1875 * reservation exists.
1877 enum vma_resv_mode {
1878 VMA_NEEDS_RESV,
1879 VMA_COMMIT_RESV,
1880 VMA_END_RESV,
1881 VMA_ADD_RESV,
1883 static long __vma_reservation_common(struct hstate *h,
1884 struct vm_area_struct *vma, unsigned long addr,
1885 enum vma_resv_mode mode)
1887 struct resv_map *resv;
1888 pgoff_t idx;
1889 long ret;
1891 resv = vma_resv_map(vma);
1892 if (!resv)
1893 return 1;
1895 idx = vma_hugecache_offset(h, vma, addr);
1896 switch (mode) {
1897 case VMA_NEEDS_RESV:
1898 ret = region_chg(resv, idx, idx + 1);
1899 break;
1900 case VMA_COMMIT_RESV:
1901 ret = region_add(resv, idx, idx + 1);
1902 break;
1903 case VMA_END_RESV:
1904 region_abort(resv, idx, idx + 1);
1905 ret = 0;
1906 break;
1907 case VMA_ADD_RESV:
1908 if (vma->vm_flags & VM_MAYSHARE)
1909 ret = region_add(resv, idx, idx + 1);
1910 else {
1911 region_abort(resv, idx, idx + 1);
1912 ret = region_del(resv, idx, idx + 1);
1914 break;
1915 default:
1916 BUG();
1919 if (vma->vm_flags & VM_MAYSHARE)
1920 return ret;
1921 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1923 * In most cases, reserves always exist for private mappings.
1924 * However, a file associated with mapping could have been
1925 * hole punched or truncated after reserves were consumed.
1926 * As subsequent fault on such a range will not use reserves.
1927 * Subtle - The reserve map for private mappings has the
1928 * opposite meaning than that of shared mappings. If NO
1929 * entry is in the reserve map, it means a reservation exists.
1930 * If an entry exists in the reserve map, it means the
1931 * reservation has already been consumed. As a result, the
1932 * return value of this routine is the opposite of the
1933 * value returned from reserve map manipulation routines above.
1935 if (ret)
1936 return 0;
1937 else
1938 return 1;
1940 else
1941 return ret < 0 ? ret : 0;
1944 static long vma_needs_reservation(struct hstate *h,
1945 struct vm_area_struct *vma, unsigned long addr)
1947 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1950 static long vma_commit_reservation(struct hstate *h,
1951 struct vm_area_struct *vma, unsigned long addr)
1953 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1956 static void vma_end_reservation(struct hstate *h,
1957 struct vm_area_struct *vma, unsigned long addr)
1959 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1962 static long vma_add_reservation(struct hstate *h,
1963 struct vm_area_struct *vma, unsigned long addr)
1965 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1969 * This routine is called to restore a reservation on error paths. In the
1970 * specific error paths, a huge page was allocated (via alloc_huge_page)
1971 * and is about to be freed. If a reservation for the page existed,
1972 * alloc_huge_page would have consumed the reservation and set PagePrivate
1973 * in the newly allocated page. When the page is freed via free_huge_page,
1974 * the global reservation count will be incremented if PagePrivate is set.
1975 * However, free_huge_page can not adjust the reserve map. Adjust the
1976 * reserve map here to be consistent with global reserve count adjustments
1977 * to be made by free_huge_page.
1979 static void restore_reserve_on_error(struct hstate *h,
1980 struct vm_area_struct *vma, unsigned long address,
1981 struct page *page)
1983 if (unlikely(PagePrivate(page))) {
1984 long rc = vma_needs_reservation(h, vma, address);
1986 if (unlikely(rc < 0)) {
1988 * Rare out of memory condition in reserve map
1989 * manipulation. Clear PagePrivate so that
1990 * global reserve count will not be incremented
1991 * by free_huge_page. This will make it appear
1992 * as though the reservation for this page was
1993 * consumed. This may prevent the task from
1994 * faulting in the page at a later time. This
1995 * is better than inconsistent global huge page
1996 * accounting of reserve counts.
1998 ClearPagePrivate(page);
1999 } else if (rc) {
2000 rc = vma_add_reservation(h, vma, address);
2001 if (unlikely(rc < 0))
2003 * See above comment about rare out of
2004 * memory condition.
2006 ClearPagePrivate(page);
2007 } else
2008 vma_end_reservation(h, vma, address);
2012 struct page *alloc_huge_page(struct vm_area_struct *vma,
2013 unsigned long addr, int avoid_reserve)
2015 struct hugepage_subpool *spool = subpool_vma(vma);
2016 struct hstate *h = hstate_vma(vma);
2017 struct page *page;
2018 long map_chg, map_commit;
2019 long gbl_chg;
2020 int ret, idx;
2021 struct hugetlb_cgroup *h_cg;
2023 idx = hstate_index(h);
2025 * Examine the region/reserve map to determine if the process
2026 * has a reservation for the page to be allocated. A return
2027 * code of zero indicates a reservation exists (no change).
2029 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2030 if (map_chg < 0)
2031 return ERR_PTR(-ENOMEM);
2034 * Processes that did not create the mapping will have no
2035 * reserves as indicated by the region/reserve map. Check
2036 * that the allocation will not exceed the subpool limit.
2037 * Allocations for MAP_NORESERVE mappings also need to be
2038 * checked against any subpool limit.
2040 if (map_chg || avoid_reserve) {
2041 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2042 if (gbl_chg < 0) {
2043 vma_end_reservation(h, vma, addr);
2044 return ERR_PTR(-ENOSPC);
2048 * Even though there was no reservation in the region/reserve
2049 * map, there could be reservations associated with the
2050 * subpool that can be used. This would be indicated if the
2051 * return value of hugepage_subpool_get_pages() is zero.
2052 * However, if avoid_reserve is specified we still avoid even
2053 * the subpool reservations.
2055 if (avoid_reserve)
2056 gbl_chg = 1;
2059 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2060 if (ret)
2061 goto out_subpool_put;
2063 spin_lock(&hugetlb_lock);
2065 * glb_chg is passed to indicate whether or not a page must be taken
2066 * from the global free pool (global change). gbl_chg == 0 indicates
2067 * a reservation exists for the allocation.
2069 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2070 if (!page) {
2071 spin_unlock(&hugetlb_lock);
2072 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2073 if (!page)
2074 goto out_uncharge_cgroup;
2075 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2076 SetPagePrivate(page);
2077 h->resv_huge_pages--;
2079 spin_lock(&hugetlb_lock);
2080 list_move(&page->lru, &h->hugepage_activelist);
2081 /* Fall through */
2083 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2084 spin_unlock(&hugetlb_lock);
2086 set_page_private(page, (unsigned long)spool);
2088 map_commit = vma_commit_reservation(h, vma, addr);
2089 if (unlikely(map_chg > map_commit)) {
2091 * The page was added to the reservation map between
2092 * vma_needs_reservation and vma_commit_reservation.
2093 * This indicates a race with hugetlb_reserve_pages.
2094 * Adjust for the subpool count incremented above AND
2095 * in hugetlb_reserve_pages for the same page. Also,
2096 * the reservation count added in hugetlb_reserve_pages
2097 * no longer applies.
2099 long rsv_adjust;
2101 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2102 hugetlb_acct_memory(h, -rsv_adjust);
2104 return page;
2106 out_uncharge_cgroup:
2107 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2108 out_subpool_put:
2109 if (map_chg || avoid_reserve)
2110 hugepage_subpool_put_pages(spool, 1);
2111 vma_end_reservation(h, vma, addr);
2112 return ERR_PTR(-ENOSPC);
2115 int alloc_bootmem_huge_page(struct hstate *h)
2116 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2117 int __alloc_bootmem_huge_page(struct hstate *h)
2119 struct huge_bootmem_page *m;
2120 int nr_nodes, node;
2122 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2123 void *addr;
2125 addr = memblock_virt_alloc_try_nid_raw(
2126 huge_page_size(h), huge_page_size(h),
2127 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2128 if (addr) {
2130 * Use the beginning of the huge page to store the
2131 * huge_bootmem_page struct (until gather_bootmem
2132 * puts them into the mem_map).
2134 m = addr;
2135 goto found;
2138 return 0;
2140 found:
2141 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2142 /* Put them into a private list first because mem_map is not up yet */
2143 INIT_LIST_HEAD(&m->list);
2144 list_add(&m->list, &huge_boot_pages);
2145 m->hstate = h;
2146 return 1;
2149 static void __init prep_compound_huge_page(struct page *page,
2150 unsigned int order)
2152 if (unlikely(order > (MAX_ORDER - 1)))
2153 prep_compound_gigantic_page(page, order);
2154 else
2155 prep_compound_page(page, order);
2158 /* Put bootmem huge pages into the standard lists after mem_map is up */
2159 static void __init gather_bootmem_prealloc(void)
2161 struct huge_bootmem_page *m;
2163 list_for_each_entry(m, &huge_boot_pages, list) {
2164 struct page *page = virt_to_page(m);
2165 struct hstate *h = m->hstate;
2167 WARN_ON(page_count(page) != 1);
2168 prep_compound_huge_page(page, h->order);
2169 WARN_ON(PageReserved(page));
2170 prep_new_huge_page(h, page, page_to_nid(page));
2171 put_page(page); /* free it into the hugepage allocator */
2174 * If we had gigantic hugepages allocated at boot time, we need
2175 * to restore the 'stolen' pages to totalram_pages in order to
2176 * fix confusing memory reports from free(1) and another
2177 * side-effects, like CommitLimit going negative.
2179 if (hstate_is_gigantic(h))
2180 adjust_managed_page_count(page, 1 << h->order);
2181 cond_resched();
2185 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2187 unsigned long i;
2189 for (i = 0; i < h->max_huge_pages; ++i) {
2190 if (hstate_is_gigantic(h)) {
2191 if (!alloc_bootmem_huge_page(h))
2192 break;
2193 } else if (!alloc_pool_huge_page(h,
2194 &node_states[N_MEMORY]))
2195 break;
2196 cond_resched();
2198 if (i < h->max_huge_pages) {
2199 char buf[32];
2201 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2202 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2203 h->max_huge_pages, buf, i);
2204 h->max_huge_pages = i;
2208 static void __init hugetlb_init_hstates(void)
2210 struct hstate *h;
2212 for_each_hstate(h) {
2213 if (minimum_order > huge_page_order(h))
2214 minimum_order = huge_page_order(h);
2216 /* oversize hugepages were init'ed in early boot */
2217 if (!hstate_is_gigantic(h))
2218 hugetlb_hstate_alloc_pages(h);
2220 VM_BUG_ON(minimum_order == UINT_MAX);
2223 static void __init report_hugepages(void)
2225 struct hstate *h;
2227 for_each_hstate(h) {
2228 char buf[32];
2230 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2231 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2232 buf, h->free_huge_pages);
2236 #ifdef CONFIG_HIGHMEM
2237 static void try_to_free_low(struct hstate *h, unsigned long count,
2238 nodemask_t *nodes_allowed)
2240 int i;
2242 if (hstate_is_gigantic(h))
2243 return;
2245 for_each_node_mask(i, *nodes_allowed) {
2246 struct page *page, *next;
2247 struct list_head *freel = &h->hugepage_freelists[i];
2248 list_for_each_entry_safe(page, next, freel, lru) {
2249 if (count >= h->nr_huge_pages)
2250 return;
2251 if (PageHighMem(page))
2252 continue;
2253 list_del(&page->lru);
2254 update_and_free_page(h, page);
2255 h->free_huge_pages--;
2256 h->free_huge_pages_node[page_to_nid(page)]--;
2260 #else
2261 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2262 nodemask_t *nodes_allowed)
2265 #endif
2268 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2269 * balanced by operating on them in a round-robin fashion.
2270 * Returns 1 if an adjustment was made.
2272 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2273 int delta)
2275 int nr_nodes, node;
2277 VM_BUG_ON(delta != -1 && delta != 1);
2279 if (delta < 0) {
2280 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2281 if (h->surplus_huge_pages_node[node])
2282 goto found;
2284 } else {
2285 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2286 if (h->surplus_huge_pages_node[node] <
2287 h->nr_huge_pages_node[node])
2288 goto found;
2291 return 0;
2293 found:
2294 h->surplus_huge_pages += delta;
2295 h->surplus_huge_pages_node[node] += delta;
2296 return 1;
2299 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2300 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2301 nodemask_t *nodes_allowed)
2303 unsigned long min_count, ret;
2305 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2306 return h->max_huge_pages;
2309 * Increase the pool size
2310 * First take pages out of surplus state. Then make up the
2311 * remaining difference by allocating fresh huge pages.
2313 * We might race with alloc_surplus_huge_page() here and be unable
2314 * to convert a surplus huge page to a normal huge page. That is
2315 * not critical, though, it just means the overall size of the
2316 * pool might be one hugepage larger than it needs to be, but
2317 * within all the constraints specified by the sysctls.
2319 spin_lock(&hugetlb_lock);
2320 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2321 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2322 break;
2325 while (count > persistent_huge_pages(h)) {
2327 * If this allocation races such that we no longer need the
2328 * page, free_huge_page will handle it by freeing the page
2329 * and reducing the surplus.
2331 spin_unlock(&hugetlb_lock);
2333 /* yield cpu to avoid soft lockup */
2334 cond_resched();
2336 ret = alloc_pool_huge_page(h, nodes_allowed);
2337 spin_lock(&hugetlb_lock);
2338 if (!ret)
2339 goto out;
2341 /* Bail for signals. Probably ctrl-c from user */
2342 if (signal_pending(current))
2343 goto out;
2347 * Decrease the pool size
2348 * First return free pages to the buddy allocator (being careful
2349 * to keep enough around to satisfy reservations). Then place
2350 * pages into surplus state as needed so the pool will shrink
2351 * to the desired size as pages become free.
2353 * By placing pages into the surplus state independent of the
2354 * overcommit value, we are allowing the surplus pool size to
2355 * exceed overcommit. There are few sane options here. Since
2356 * alloc_surplus_huge_page() is checking the global counter,
2357 * though, we'll note that we're not allowed to exceed surplus
2358 * and won't grow the pool anywhere else. Not until one of the
2359 * sysctls are changed, or the surplus pages go out of use.
2361 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2362 min_count = max(count, min_count);
2363 try_to_free_low(h, min_count, nodes_allowed);
2364 while (min_count < persistent_huge_pages(h)) {
2365 if (!free_pool_huge_page(h, nodes_allowed, 0))
2366 break;
2367 cond_resched_lock(&hugetlb_lock);
2369 while (count < persistent_huge_pages(h)) {
2370 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2371 break;
2373 out:
2374 ret = persistent_huge_pages(h);
2375 spin_unlock(&hugetlb_lock);
2376 return ret;
2379 #define HSTATE_ATTR_RO(_name) \
2380 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2382 #define HSTATE_ATTR(_name) \
2383 static struct kobj_attribute _name##_attr = \
2384 __ATTR(_name, 0644, _name##_show, _name##_store)
2386 static struct kobject *hugepages_kobj;
2387 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2389 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2391 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2393 int i;
2395 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2396 if (hstate_kobjs[i] == kobj) {
2397 if (nidp)
2398 *nidp = NUMA_NO_NODE;
2399 return &hstates[i];
2402 return kobj_to_node_hstate(kobj, nidp);
2405 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2406 struct kobj_attribute *attr, char *buf)
2408 struct hstate *h;
2409 unsigned long nr_huge_pages;
2410 int nid;
2412 h = kobj_to_hstate(kobj, &nid);
2413 if (nid == NUMA_NO_NODE)
2414 nr_huge_pages = h->nr_huge_pages;
2415 else
2416 nr_huge_pages = h->nr_huge_pages_node[nid];
2418 return sprintf(buf, "%lu\n", nr_huge_pages);
2421 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2422 struct hstate *h, int nid,
2423 unsigned long count, size_t len)
2425 int err;
2426 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2428 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2429 err = -EINVAL;
2430 goto out;
2433 if (nid == NUMA_NO_NODE) {
2435 * global hstate attribute
2437 if (!(obey_mempolicy &&
2438 init_nodemask_of_mempolicy(nodes_allowed))) {
2439 NODEMASK_FREE(nodes_allowed);
2440 nodes_allowed = &node_states[N_MEMORY];
2442 } else if (nodes_allowed) {
2444 * per node hstate attribute: adjust count to global,
2445 * but restrict alloc/free to the specified node.
2447 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2448 init_nodemask_of_node(nodes_allowed, nid);
2449 } else
2450 nodes_allowed = &node_states[N_MEMORY];
2452 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2454 if (nodes_allowed != &node_states[N_MEMORY])
2455 NODEMASK_FREE(nodes_allowed);
2457 return len;
2458 out:
2459 NODEMASK_FREE(nodes_allowed);
2460 return err;
2463 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2464 struct kobject *kobj, const char *buf,
2465 size_t len)
2467 struct hstate *h;
2468 unsigned long count;
2469 int nid;
2470 int err;
2472 err = kstrtoul(buf, 10, &count);
2473 if (err)
2474 return err;
2476 h = kobj_to_hstate(kobj, &nid);
2477 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2480 static ssize_t nr_hugepages_show(struct kobject *kobj,
2481 struct kobj_attribute *attr, char *buf)
2483 return nr_hugepages_show_common(kobj, attr, buf);
2486 static ssize_t nr_hugepages_store(struct kobject *kobj,
2487 struct kobj_attribute *attr, const char *buf, size_t len)
2489 return nr_hugepages_store_common(false, kobj, buf, len);
2491 HSTATE_ATTR(nr_hugepages);
2493 #ifdef CONFIG_NUMA
2496 * hstate attribute for optionally mempolicy-based constraint on persistent
2497 * huge page alloc/free.
2499 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2500 struct kobj_attribute *attr, char *buf)
2502 return nr_hugepages_show_common(kobj, attr, buf);
2505 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2506 struct kobj_attribute *attr, const char *buf, size_t len)
2508 return nr_hugepages_store_common(true, kobj, buf, len);
2510 HSTATE_ATTR(nr_hugepages_mempolicy);
2511 #endif
2514 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2515 struct kobj_attribute *attr, char *buf)
2517 struct hstate *h = kobj_to_hstate(kobj, NULL);
2518 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2521 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2522 struct kobj_attribute *attr, const char *buf, size_t count)
2524 int err;
2525 unsigned long input;
2526 struct hstate *h = kobj_to_hstate(kobj, NULL);
2528 if (hstate_is_gigantic(h))
2529 return -EINVAL;
2531 err = kstrtoul(buf, 10, &input);
2532 if (err)
2533 return err;
2535 spin_lock(&hugetlb_lock);
2536 h->nr_overcommit_huge_pages = input;
2537 spin_unlock(&hugetlb_lock);
2539 return count;
2541 HSTATE_ATTR(nr_overcommit_hugepages);
2543 static ssize_t free_hugepages_show(struct kobject *kobj,
2544 struct kobj_attribute *attr, char *buf)
2546 struct hstate *h;
2547 unsigned long free_huge_pages;
2548 int nid;
2550 h = kobj_to_hstate(kobj, &nid);
2551 if (nid == NUMA_NO_NODE)
2552 free_huge_pages = h->free_huge_pages;
2553 else
2554 free_huge_pages = h->free_huge_pages_node[nid];
2556 return sprintf(buf, "%lu\n", free_huge_pages);
2558 HSTATE_ATTR_RO(free_hugepages);
2560 static ssize_t resv_hugepages_show(struct kobject *kobj,
2561 struct kobj_attribute *attr, char *buf)
2563 struct hstate *h = kobj_to_hstate(kobj, NULL);
2564 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2566 HSTATE_ATTR_RO(resv_hugepages);
2568 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2569 struct kobj_attribute *attr, char *buf)
2571 struct hstate *h;
2572 unsigned long surplus_huge_pages;
2573 int nid;
2575 h = kobj_to_hstate(kobj, &nid);
2576 if (nid == NUMA_NO_NODE)
2577 surplus_huge_pages = h->surplus_huge_pages;
2578 else
2579 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2581 return sprintf(buf, "%lu\n", surplus_huge_pages);
2583 HSTATE_ATTR_RO(surplus_hugepages);
2585 static struct attribute *hstate_attrs[] = {
2586 &nr_hugepages_attr.attr,
2587 &nr_overcommit_hugepages_attr.attr,
2588 &free_hugepages_attr.attr,
2589 &resv_hugepages_attr.attr,
2590 &surplus_hugepages_attr.attr,
2591 #ifdef CONFIG_NUMA
2592 &nr_hugepages_mempolicy_attr.attr,
2593 #endif
2594 NULL,
2597 static const struct attribute_group hstate_attr_group = {
2598 .attrs = hstate_attrs,
2601 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2602 struct kobject **hstate_kobjs,
2603 const struct attribute_group *hstate_attr_group)
2605 int retval;
2606 int hi = hstate_index(h);
2608 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2609 if (!hstate_kobjs[hi])
2610 return -ENOMEM;
2612 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2613 if (retval)
2614 kobject_put(hstate_kobjs[hi]);
2616 return retval;
2619 static void __init hugetlb_sysfs_init(void)
2621 struct hstate *h;
2622 int err;
2624 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2625 if (!hugepages_kobj)
2626 return;
2628 for_each_hstate(h) {
2629 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2630 hstate_kobjs, &hstate_attr_group);
2631 if (err)
2632 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2636 #ifdef CONFIG_NUMA
2639 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2640 * with node devices in node_devices[] using a parallel array. The array
2641 * index of a node device or _hstate == node id.
2642 * This is here to avoid any static dependency of the node device driver, in
2643 * the base kernel, on the hugetlb module.
2645 struct node_hstate {
2646 struct kobject *hugepages_kobj;
2647 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2649 static struct node_hstate node_hstates[MAX_NUMNODES];
2652 * A subset of global hstate attributes for node devices
2654 static struct attribute *per_node_hstate_attrs[] = {
2655 &nr_hugepages_attr.attr,
2656 &free_hugepages_attr.attr,
2657 &surplus_hugepages_attr.attr,
2658 NULL,
2661 static const struct attribute_group per_node_hstate_attr_group = {
2662 .attrs = per_node_hstate_attrs,
2666 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2667 * Returns node id via non-NULL nidp.
2669 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2671 int nid;
2673 for (nid = 0; nid < nr_node_ids; nid++) {
2674 struct node_hstate *nhs = &node_hstates[nid];
2675 int i;
2676 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2677 if (nhs->hstate_kobjs[i] == kobj) {
2678 if (nidp)
2679 *nidp = nid;
2680 return &hstates[i];
2684 BUG();
2685 return NULL;
2689 * Unregister hstate attributes from a single node device.
2690 * No-op if no hstate attributes attached.
2692 static void hugetlb_unregister_node(struct node *node)
2694 struct hstate *h;
2695 struct node_hstate *nhs = &node_hstates[node->dev.id];
2697 if (!nhs->hugepages_kobj)
2698 return; /* no hstate attributes */
2700 for_each_hstate(h) {
2701 int idx = hstate_index(h);
2702 if (nhs->hstate_kobjs[idx]) {
2703 kobject_put(nhs->hstate_kobjs[idx]);
2704 nhs->hstate_kobjs[idx] = NULL;
2708 kobject_put(nhs->hugepages_kobj);
2709 nhs->hugepages_kobj = NULL;
2714 * Register hstate attributes for a single node device.
2715 * No-op if attributes already registered.
2717 static void hugetlb_register_node(struct node *node)
2719 struct hstate *h;
2720 struct node_hstate *nhs = &node_hstates[node->dev.id];
2721 int err;
2723 if (nhs->hugepages_kobj)
2724 return; /* already allocated */
2726 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2727 &node->dev.kobj);
2728 if (!nhs->hugepages_kobj)
2729 return;
2731 for_each_hstate(h) {
2732 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2733 nhs->hstate_kobjs,
2734 &per_node_hstate_attr_group);
2735 if (err) {
2736 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2737 h->name, node->dev.id);
2738 hugetlb_unregister_node(node);
2739 break;
2745 * hugetlb init time: register hstate attributes for all registered node
2746 * devices of nodes that have memory. All on-line nodes should have
2747 * registered their associated device by this time.
2749 static void __init hugetlb_register_all_nodes(void)
2751 int nid;
2753 for_each_node_state(nid, N_MEMORY) {
2754 struct node *node = node_devices[nid];
2755 if (node->dev.id == nid)
2756 hugetlb_register_node(node);
2760 * Let the node device driver know we're here so it can
2761 * [un]register hstate attributes on node hotplug.
2763 register_hugetlbfs_with_node(hugetlb_register_node,
2764 hugetlb_unregister_node);
2766 #else /* !CONFIG_NUMA */
2768 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2770 BUG();
2771 if (nidp)
2772 *nidp = -1;
2773 return NULL;
2776 static void hugetlb_register_all_nodes(void) { }
2778 #endif
2780 static int __init hugetlb_init(void)
2782 int i;
2784 if (!hugepages_supported())
2785 return 0;
2787 if (!size_to_hstate(default_hstate_size)) {
2788 if (default_hstate_size != 0) {
2789 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2790 default_hstate_size, HPAGE_SIZE);
2793 default_hstate_size = HPAGE_SIZE;
2794 if (!size_to_hstate(default_hstate_size))
2795 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2797 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2798 if (default_hstate_max_huge_pages) {
2799 if (!default_hstate.max_huge_pages)
2800 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2803 hugetlb_init_hstates();
2804 gather_bootmem_prealloc();
2805 report_hugepages();
2807 hugetlb_sysfs_init();
2808 hugetlb_register_all_nodes();
2809 hugetlb_cgroup_file_init();
2811 #ifdef CONFIG_SMP
2812 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2813 #else
2814 num_fault_mutexes = 1;
2815 #endif
2816 hugetlb_fault_mutex_table =
2817 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2818 GFP_KERNEL);
2819 BUG_ON(!hugetlb_fault_mutex_table);
2821 for (i = 0; i < num_fault_mutexes; i++)
2822 mutex_init(&hugetlb_fault_mutex_table[i]);
2823 return 0;
2825 subsys_initcall(hugetlb_init);
2827 /* Should be called on processing a hugepagesz=... option */
2828 void __init hugetlb_bad_size(void)
2830 parsed_valid_hugepagesz = false;
2833 void __init hugetlb_add_hstate(unsigned int order)
2835 struct hstate *h;
2836 unsigned long i;
2838 if (size_to_hstate(PAGE_SIZE << order)) {
2839 pr_warn("hugepagesz= specified twice, ignoring\n");
2840 return;
2842 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2843 BUG_ON(order == 0);
2844 h = &hstates[hugetlb_max_hstate++];
2845 h->order = order;
2846 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2847 h->nr_huge_pages = 0;
2848 h->free_huge_pages = 0;
2849 for (i = 0; i < MAX_NUMNODES; ++i)
2850 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2851 INIT_LIST_HEAD(&h->hugepage_activelist);
2852 h->next_nid_to_alloc = first_memory_node;
2853 h->next_nid_to_free = first_memory_node;
2854 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2855 huge_page_size(h)/1024);
2857 parsed_hstate = h;
2860 static int __init hugetlb_nrpages_setup(char *s)
2862 unsigned long *mhp;
2863 static unsigned long *last_mhp;
2865 if (!parsed_valid_hugepagesz) {
2866 pr_warn("hugepages = %s preceded by "
2867 "an unsupported hugepagesz, ignoring\n", s);
2868 parsed_valid_hugepagesz = true;
2869 return 1;
2872 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2873 * so this hugepages= parameter goes to the "default hstate".
2875 else if (!hugetlb_max_hstate)
2876 mhp = &default_hstate_max_huge_pages;
2877 else
2878 mhp = &parsed_hstate->max_huge_pages;
2880 if (mhp == last_mhp) {
2881 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2882 return 1;
2885 if (sscanf(s, "%lu", mhp) <= 0)
2886 *mhp = 0;
2889 * Global state is always initialized later in hugetlb_init.
2890 * But we need to allocate >= MAX_ORDER hstates here early to still
2891 * use the bootmem allocator.
2893 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2894 hugetlb_hstate_alloc_pages(parsed_hstate);
2896 last_mhp = mhp;
2898 return 1;
2900 __setup("hugepages=", hugetlb_nrpages_setup);
2902 static int __init hugetlb_default_setup(char *s)
2904 default_hstate_size = memparse(s, &s);
2905 return 1;
2907 __setup("default_hugepagesz=", hugetlb_default_setup);
2909 static unsigned int cpuset_mems_nr(unsigned int *array)
2911 int node;
2912 unsigned int nr = 0;
2914 for_each_node_mask(node, cpuset_current_mems_allowed)
2915 nr += array[node];
2917 return nr;
2920 #ifdef CONFIG_SYSCTL
2921 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
2922 void *buffer, size_t *length,
2923 loff_t *ppos, unsigned long *out)
2925 struct ctl_table dup_table;
2928 * In order to avoid races with __do_proc_doulongvec_minmax(), we
2929 * can duplicate the @table and alter the duplicate of it.
2931 dup_table = *table;
2932 dup_table.data = out;
2934 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
2937 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2938 struct ctl_table *table, int write,
2939 void __user *buffer, size_t *length, loff_t *ppos)
2941 struct hstate *h = &default_hstate;
2942 unsigned long tmp = h->max_huge_pages;
2943 int ret;
2945 if (!hugepages_supported())
2946 return -EOPNOTSUPP;
2948 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2949 &tmp);
2950 if (ret)
2951 goto out;
2953 if (write)
2954 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2955 NUMA_NO_NODE, tmp, *length);
2956 out:
2957 return ret;
2960 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2961 void __user *buffer, size_t *length, loff_t *ppos)
2964 return hugetlb_sysctl_handler_common(false, table, write,
2965 buffer, length, ppos);
2968 #ifdef CONFIG_NUMA
2969 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2970 void __user *buffer, size_t *length, loff_t *ppos)
2972 return hugetlb_sysctl_handler_common(true, table, write,
2973 buffer, length, ppos);
2975 #endif /* CONFIG_NUMA */
2977 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2978 void __user *buffer,
2979 size_t *length, loff_t *ppos)
2981 struct hstate *h = &default_hstate;
2982 unsigned long tmp;
2983 int ret;
2985 if (!hugepages_supported())
2986 return -EOPNOTSUPP;
2988 tmp = h->nr_overcommit_huge_pages;
2990 if (write && hstate_is_gigantic(h))
2991 return -EINVAL;
2993 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2994 &tmp);
2995 if (ret)
2996 goto out;
2998 if (write) {
2999 spin_lock(&hugetlb_lock);
3000 h->nr_overcommit_huge_pages = tmp;
3001 spin_unlock(&hugetlb_lock);
3003 out:
3004 return ret;
3007 #endif /* CONFIG_SYSCTL */
3009 void hugetlb_report_meminfo(struct seq_file *m)
3011 struct hstate *h;
3012 unsigned long total = 0;
3014 if (!hugepages_supported())
3015 return;
3017 for_each_hstate(h) {
3018 unsigned long count = h->nr_huge_pages;
3020 total += (PAGE_SIZE << huge_page_order(h)) * count;
3022 if (h == &default_hstate)
3023 seq_printf(m,
3024 "HugePages_Total: %5lu\n"
3025 "HugePages_Free: %5lu\n"
3026 "HugePages_Rsvd: %5lu\n"
3027 "HugePages_Surp: %5lu\n"
3028 "Hugepagesize: %8lu kB\n",
3029 count,
3030 h->free_huge_pages,
3031 h->resv_huge_pages,
3032 h->surplus_huge_pages,
3033 (PAGE_SIZE << huge_page_order(h)) / 1024);
3036 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3039 int hugetlb_report_node_meminfo(int nid, char *buf)
3041 struct hstate *h = &default_hstate;
3042 if (!hugepages_supported())
3043 return 0;
3044 return sprintf(buf,
3045 "Node %d HugePages_Total: %5u\n"
3046 "Node %d HugePages_Free: %5u\n"
3047 "Node %d HugePages_Surp: %5u\n",
3048 nid, h->nr_huge_pages_node[nid],
3049 nid, h->free_huge_pages_node[nid],
3050 nid, h->surplus_huge_pages_node[nid]);
3053 void hugetlb_show_meminfo(void)
3055 struct hstate *h;
3056 int nid;
3058 if (!hugepages_supported())
3059 return;
3061 for_each_node_state(nid, N_MEMORY)
3062 for_each_hstate(h)
3063 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3064 nid,
3065 h->nr_huge_pages_node[nid],
3066 h->free_huge_pages_node[nid],
3067 h->surplus_huge_pages_node[nid],
3068 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3071 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3073 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3074 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3077 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3078 unsigned long hugetlb_total_pages(void)
3080 struct hstate *h;
3081 unsigned long nr_total_pages = 0;
3083 for_each_hstate(h)
3084 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3085 return nr_total_pages;
3088 static int hugetlb_acct_memory(struct hstate *h, long delta)
3090 int ret = -ENOMEM;
3092 spin_lock(&hugetlb_lock);
3094 * When cpuset is configured, it breaks the strict hugetlb page
3095 * reservation as the accounting is done on a global variable. Such
3096 * reservation is completely rubbish in the presence of cpuset because
3097 * the reservation is not checked against page availability for the
3098 * current cpuset. Application can still potentially OOM'ed by kernel
3099 * with lack of free htlb page in cpuset that the task is in.
3100 * Attempt to enforce strict accounting with cpuset is almost
3101 * impossible (or too ugly) because cpuset is too fluid that
3102 * task or memory node can be dynamically moved between cpusets.
3104 * The change of semantics for shared hugetlb mapping with cpuset is
3105 * undesirable. However, in order to preserve some of the semantics,
3106 * we fall back to check against current free page availability as
3107 * a best attempt and hopefully to minimize the impact of changing
3108 * semantics that cpuset has.
3110 if (delta > 0) {
3111 if (gather_surplus_pages(h, delta) < 0)
3112 goto out;
3114 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3115 return_unused_surplus_pages(h, delta);
3116 goto out;
3120 ret = 0;
3121 if (delta < 0)
3122 return_unused_surplus_pages(h, (unsigned long) -delta);
3124 out:
3125 spin_unlock(&hugetlb_lock);
3126 return ret;
3129 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3131 struct resv_map *resv = vma_resv_map(vma);
3134 * This new VMA should share its siblings reservation map if present.
3135 * The VMA will only ever have a valid reservation map pointer where
3136 * it is being copied for another still existing VMA. As that VMA
3137 * has a reference to the reservation map it cannot disappear until
3138 * after this open call completes. It is therefore safe to take a
3139 * new reference here without additional locking.
3141 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3142 kref_get(&resv->refs);
3145 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3147 struct hstate *h = hstate_vma(vma);
3148 struct resv_map *resv = vma_resv_map(vma);
3149 struct hugepage_subpool *spool = subpool_vma(vma);
3150 unsigned long reserve, start, end;
3151 long gbl_reserve;
3153 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3154 return;
3156 start = vma_hugecache_offset(h, vma, vma->vm_start);
3157 end = vma_hugecache_offset(h, vma, vma->vm_end);
3159 reserve = (end - start) - region_count(resv, start, end);
3161 kref_put(&resv->refs, resv_map_release);
3163 if (reserve) {
3165 * Decrement reserve counts. The global reserve count may be
3166 * adjusted if the subpool has a minimum size.
3168 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3169 hugetlb_acct_memory(h, -gbl_reserve);
3173 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3175 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3176 return -EINVAL;
3177 return 0;
3180 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3182 struct hstate *hstate = hstate_vma(vma);
3184 return 1UL << huge_page_shift(hstate);
3188 * We cannot handle pagefaults against hugetlb pages at all. They cause
3189 * handle_mm_fault() to try to instantiate regular-sized pages in the
3190 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3191 * this far.
3193 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3195 BUG();
3196 return 0;
3200 * When a new function is introduced to vm_operations_struct and added
3201 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3202 * This is because under System V memory model, mappings created via
3203 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3204 * their original vm_ops are overwritten with shm_vm_ops.
3206 const struct vm_operations_struct hugetlb_vm_ops = {
3207 .fault = hugetlb_vm_op_fault,
3208 .open = hugetlb_vm_op_open,
3209 .close = hugetlb_vm_op_close,
3210 .split = hugetlb_vm_op_split,
3211 .pagesize = hugetlb_vm_op_pagesize,
3214 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3215 int writable)
3217 pte_t entry;
3219 if (writable) {
3220 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3221 vma->vm_page_prot)));
3222 } else {
3223 entry = huge_pte_wrprotect(mk_huge_pte(page,
3224 vma->vm_page_prot));
3226 entry = pte_mkyoung(entry);
3227 entry = pte_mkhuge(entry);
3228 entry = arch_make_huge_pte(entry, vma, page, writable);
3230 return entry;
3233 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3234 unsigned long address, pte_t *ptep)
3236 pte_t entry;
3238 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3239 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3240 update_mmu_cache(vma, address, ptep);
3243 bool is_hugetlb_entry_migration(pte_t pte)
3245 swp_entry_t swp;
3247 if (huge_pte_none(pte) || pte_present(pte))
3248 return false;
3249 swp = pte_to_swp_entry(pte);
3250 if (non_swap_entry(swp) && is_migration_entry(swp))
3251 return true;
3252 else
3253 return false;
3256 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3258 swp_entry_t swp;
3260 if (huge_pte_none(pte) || pte_present(pte))
3261 return 0;
3262 swp = pte_to_swp_entry(pte);
3263 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3264 return 1;
3265 else
3266 return 0;
3269 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3270 struct vm_area_struct *vma)
3272 pte_t *src_pte, *dst_pte, entry, dst_entry;
3273 struct page *ptepage;
3274 unsigned long addr;
3275 int cow;
3276 struct hstate *h = hstate_vma(vma);
3277 unsigned long sz = huge_page_size(h);
3278 unsigned long mmun_start; /* For mmu_notifiers */
3279 unsigned long mmun_end; /* For mmu_notifiers */
3280 int ret = 0;
3282 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3284 mmun_start = vma->vm_start;
3285 mmun_end = vma->vm_end;
3286 if (cow)
3287 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3289 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3290 spinlock_t *src_ptl, *dst_ptl;
3291 src_pte = huge_pte_offset(src, addr, sz);
3292 if (!src_pte)
3293 continue;
3294 dst_pte = huge_pte_alloc(dst, addr, sz);
3295 if (!dst_pte) {
3296 ret = -ENOMEM;
3297 break;
3301 * If the pagetables are shared don't copy or take references.
3302 * dst_pte == src_pte is the common case of src/dest sharing.
3304 * However, src could have 'unshared' and dst shares with
3305 * another vma. If dst_pte !none, this implies sharing.
3306 * Check here before taking page table lock, and once again
3307 * after taking the lock below.
3309 dst_entry = huge_ptep_get(dst_pte);
3310 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3311 continue;
3313 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3314 src_ptl = huge_pte_lockptr(h, src, src_pte);
3315 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3316 entry = huge_ptep_get(src_pte);
3317 dst_entry = huge_ptep_get(dst_pte);
3318 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3320 * Skip if src entry none. Also, skip in the
3321 * unlikely case dst entry !none as this implies
3322 * sharing with another vma.
3325 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3326 is_hugetlb_entry_hwpoisoned(entry))) {
3327 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3329 if (is_write_migration_entry(swp_entry) && cow) {
3331 * COW mappings require pages in both
3332 * parent and child to be set to read.
3334 make_migration_entry_read(&swp_entry);
3335 entry = swp_entry_to_pte(swp_entry);
3336 set_huge_swap_pte_at(src, addr, src_pte,
3337 entry, sz);
3339 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3340 } else {
3341 if (cow) {
3343 * No need to notify as we are downgrading page
3344 * table protection not changing it to point
3345 * to a new page.
3347 * See Documentation/vm/mmu_notifier.rst
3349 huge_ptep_set_wrprotect(src, addr, src_pte);
3351 entry = huge_ptep_get(src_pte);
3352 ptepage = pte_page(entry);
3353 get_page(ptepage);
3354 page_dup_rmap(ptepage, true);
3355 set_huge_pte_at(dst, addr, dst_pte, entry);
3356 hugetlb_count_add(pages_per_huge_page(h), dst);
3358 spin_unlock(src_ptl);
3359 spin_unlock(dst_ptl);
3362 if (cow)
3363 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3365 return ret;
3368 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3369 unsigned long start, unsigned long end,
3370 struct page *ref_page)
3372 struct mm_struct *mm = vma->vm_mm;
3373 unsigned long address;
3374 pte_t *ptep;
3375 pte_t pte;
3376 spinlock_t *ptl;
3377 struct page *page;
3378 struct hstate *h = hstate_vma(vma);
3379 unsigned long sz = huge_page_size(h);
3380 unsigned long mmun_start = start; /* For mmu_notifiers */
3381 unsigned long mmun_end = end; /* For mmu_notifiers */
3383 WARN_ON(!is_vm_hugetlb_page(vma));
3384 BUG_ON(start & ~huge_page_mask(h));
3385 BUG_ON(end & ~huge_page_mask(h));
3388 * This is a hugetlb vma, all the pte entries should point
3389 * to huge page.
3391 tlb_remove_check_page_size_change(tlb, sz);
3392 tlb_start_vma(tlb, vma);
3395 * If sharing possible, alert mmu notifiers of worst case.
3397 adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end);
3398 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3399 address = start;
3400 for (; address < end; address += sz) {
3401 ptep = huge_pte_offset(mm, address, sz);
3402 if (!ptep)
3403 continue;
3405 ptl = huge_pte_lock(h, mm, ptep);
3406 if (huge_pmd_unshare(mm, &address, ptep)) {
3407 spin_unlock(ptl);
3409 * We just unmapped a page of PMDs by clearing a PUD.
3410 * The caller's TLB flush range should cover this area.
3412 continue;
3415 pte = huge_ptep_get(ptep);
3416 if (huge_pte_none(pte)) {
3417 spin_unlock(ptl);
3418 continue;
3422 * Migrating hugepage or HWPoisoned hugepage is already
3423 * unmapped and its refcount is dropped, so just clear pte here.
3425 if (unlikely(!pte_present(pte))) {
3426 huge_pte_clear(mm, address, ptep, sz);
3427 spin_unlock(ptl);
3428 continue;
3431 page = pte_page(pte);
3433 * If a reference page is supplied, it is because a specific
3434 * page is being unmapped, not a range. Ensure the page we
3435 * are about to unmap is the actual page of interest.
3437 if (ref_page) {
3438 if (page != ref_page) {
3439 spin_unlock(ptl);
3440 continue;
3443 * Mark the VMA as having unmapped its page so that
3444 * future faults in this VMA will fail rather than
3445 * looking like data was lost
3447 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3450 pte = huge_ptep_get_and_clear(mm, address, ptep);
3451 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3452 if (huge_pte_dirty(pte))
3453 set_page_dirty(page);
3455 hugetlb_count_sub(pages_per_huge_page(h), mm);
3456 page_remove_rmap(page, true);
3458 spin_unlock(ptl);
3459 tlb_remove_page_size(tlb, page, huge_page_size(h));
3461 * Bail out after unmapping reference page if supplied
3463 if (ref_page)
3464 break;
3466 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3467 tlb_end_vma(tlb, vma);
3470 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3471 struct vm_area_struct *vma, unsigned long start,
3472 unsigned long end, struct page *ref_page)
3474 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3477 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3478 * test will fail on a vma being torn down, and not grab a page table
3479 * on its way out. We're lucky that the flag has such an appropriate
3480 * name, and can in fact be safely cleared here. We could clear it
3481 * before the __unmap_hugepage_range above, but all that's necessary
3482 * is to clear it before releasing the i_mmap_rwsem. This works
3483 * because in the context this is called, the VMA is about to be
3484 * destroyed and the i_mmap_rwsem is held.
3486 vma->vm_flags &= ~VM_MAYSHARE;
3489 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3490 unsigned long end, struct page *ref_page)
3492 struct mm_struct *mm;
3493 struct mmu_gather tlb;
3494 unsigned long tlb_start = start;
3495 unsigned long tlb_end = end;
3498 * If shared PMDs were possibly used within this vma range, adjust
3499 * start/end for worst case tlb flushing.
3500 * Note that we can not be sure if PMDs are shared until we try to
3501 * unmap pages. However, we want to make sure TLB flushing covers
3502 * the largest possible range.
3504 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3506 mm = vma->vm_mm;
3508 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3509 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3510 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3514 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3515 * mappping it owns the reserve page for. The intention is to unmap the page
3516 * from other VMAs and let the children be SIGKILLed if they are faulting the
3517 * same region.
3519 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3520 struct page *page, unsigned long address)
3522 struct hstate *h = hstate_vma(vma);
3523 struct vm_area_struct *iter_vma;
3524 struct address_space *mapping;
3525 pgoff_t pgoff;
3528 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3529 * from page cache lookup which is in HPAGE_SIZE units.
3531 address = address & huge_page_mask(h);
3532 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3533 vma->vm_pgoff;
3534 mapping = vma->vm_file->f_mapping;
3537 * Take the mapping lock for the duration of the table walk. As
3538 * this mapping should be shared between all the VMAs,
3539 * __unmap_hugepage_range() is called as the lock is already held
3541 i_mmap_lock_write(mapping);
3542 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3543 /* Do not unmap the current VMA */
3544 if (iter_vma == vma)
3545 continue;
3548 * Shared VMAs have their own reserves and do not affect
3549 * MAP_PRIVATE accounting but it is possible that a shared
3550 * VMA is using the same page so check and skip such VMAs.
3552 if (iter_vma->vm_flags & VM_MAYSHARE)
3553 continue;
3556 * Unmap the page from other VMAs without their own reserves.
3557 * They get marked to be SIGKILLed if they fault in these
3558 * areas. This is because a future no-page fault on this VMA
3559 * could insert a zeroed page instead of the data existing
3560 * from the time of fork. This would look like data corruption
3562 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3563 unmap_hugepage_range(iter_vma, address,
3564 address + huge_page_size(h), page);
3566 i_mmap_unlock_write(mapping);
3570 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3571 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3572 * cannot race with other handlers or page migration.
3573 * Keep the pte_same checks anyway to make transition from the mutex easier.
3575 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3576 unsigned long address, pte_t *ptep,
3577 struct page *pagecache_page, spinlock_t *ptl)
3579 pte_t pte;
3580 struct hstate *h = hstate_vma(vma);
3581 struct page *old_page, *new_page;
3582 int outside_reserve = 0;
3583 vm_fault_t ret = 0;
3584 unsigned long mmun_start; /* For mmu_notifiers */
3585 unsigned long mmun_end; /* For mmu_notifiers */
3586 unsigned long haddr = address & huge_page_mask(h);
3588 pte = huge_ptep_get(ptep);
3589 old_page = pte_page(pte);
3591 retry_avoidcopy:
3592 /* If no-one else is actually using this page, avoid the copy
3593 * and just make the page writable */
3594 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3595 page_move_anon_rmap(old_page, vma);
3596 set_huge_ptep_writable(vma, haddr, ptep);
3597 return 0;
3601 * If the process that created a MAP_PRIVATE mapping is about to
3602 * perform a COW due to a shared page count, attempt to satisfy
3603 * the allocation without using the existing reserves. The pagecache
3604 * page is used to determine if the reserve at this address was
3605 * consumed or not. If reserves were used, a partial faulted mapping
3606 * at the time of fork() could consume its reserves on COW instead
3607 * of the full address range.
3609 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3610 old_page != pagecache_page)
3611 outside_reserve = 1;
3613 get_page(old_page);
3616 * Drop page table lock as buddy allocator may be called. It will
3617 * be acquired again before returning to the caller, as expected.
3619 spin_unlock(ptl);
3620 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3622 if (IS_ERR(new_page)) {
3624 * If a process owning a MAP_PRIVATE mapping fails to COW,
3625 * it is due to references held by a child and an insufficient
3626 * huge page pool. To guarantee the original mappers
3627 * reliability, unmap the page from child processes. The child
3628 * may get SIGKILLed if it later faults.
3630 if (outside_reserve) {
3631 put_page(old_page);
3632 BUG_ON(huge_pte_none(pte));
3633 unmap_ref_private(mm, vma, old_page, haddr);
3634 BUG_ON(huge_pte_none(pte));
3635 spin_lock(ptl);
3636 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3637 if (likely(ptep &&
3638 pte_same(huge_ptep_get(ptep), pte)))
3639 goto retry_avoidcopy;
3641 * race occurs while re-acquiring page table
3642 * lock, and our job is done.
3644 return 0;
3647 ret = vmf_error(PTR_ERR(new_page));
3648 goto out_release_old;
3652 * When the original hugepage is shared one, it does not have
3653 * anon_vma prepared.
3655 if (unlikely(anon_vma_prepare(vma))) {
3656 ret = VM_FAULT_OOM;
3657 goto out_release_all;
3660 copy_user_huge_page(new_page, old_page, address, vma,
3661 pages_per_huge_page(h));
3662 __SetPageUptodate(new_page);
3664 mmun_start = haddr;
3665 mmun_end = mmun_start + huge_page_size(h);
3666 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3669 * Retake the page table lock to check for racing updates
3670 * before the page tables are altered
3672 spin_lock(ptl);
3673 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3674 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3675 ClearPagePrivate(new_page);
3677 /* Break COW */
3678 huge_ptep_clear_flush(vma, haddr, ptep);
3679 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3680 set_huge_pte_at(mm, haddr, ptep,
3681 make_huge_pte(vma, new_page, 1));
3682 page_remove_rmap(old_page, true);
3683 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3684 set_page_huge_active(new_page);
3685 /* Make the old page be freed below */
3686 new_page = old_page;
3688 spin_unlock(ptl);
3689 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3690 out_release_all:
3691 restore_reserve_on_error(h, vma, haddr, new_page);
3692 put_page(new_page);
3693 out_release_old:
3694 put_page(old_page);
3696 spin_lock(ptl); /* Caller expects lock to be held */
3697 return ret;
3700 /* Return the pagecache page at a given address within a VMA */
3701 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3702 struct vm_area_struct *vma, unsigned long address)
3704 struct address_space *mapping;
3705 pgoff_t idx;
3707 mapping = vma->vm_file->f_mapping;
3708 idx = vma_hugecache_offset(h, vma, address);
3710 return find_lock_page(mapping, idx);
3714 * Return whether there is a pagecache page to back given address within VMA.
3715 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3717 static bool hugetlbfs_pagecache_present(struct hstate *h,
3718 struct vm_area_struct *vma, unsigned long address)
3720 struct address_space *mapping;
3721 pgoff_t idx;
3722 struct page *page;
3724 mapping = vma->vm_file->f_mapping;
3725 idx = vma_hugecache_offset(h, vma, address);
3727 page = find_get_page(mapping, idx);
3728 if (page)
3729 put_page(page);
3730 return page != NULL;
3733 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3734 pgoff_t idx)
3736 struct inode *inode = mapping->host;
3737 struct hstate *h = hstate_inode(inode);
3738 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3740 if (err)
3741 return err;
3742 ClearPagePrivate(page);
3745 * set page dirty so that it will not be removed from cache/file
3746 * by non-hugetlbfs specific code paths.
3748 set_page_dirty(page);
3750 spin_lock(&inode->i_lock);
3751 inode->i_blocks += blocks_per_huge_page(h);
3752 spin_unlock(&inode->i_lock);
3753 return 0;
3756 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3757 struct vm_area_struct *vma,
3758 struct address_space *mapping, pgoff_t idx,
3759 unsigned long address, pte_t *ptep, unsigned int flags)
3761 struct hstate *h = hstate_vma(vma);
3762 vm_fault_t ret = VM_FAULT_SIGBUS;
3763 int anon_rmap = 0;
3764 unsigned long size;
3765 struct page *page;
3766 pte_t new_pte;
3767 spinlock_t *ptl;
3768 unsigned long haddr = address & huge_page_mask(h);
3769 bool new_page = false;
3772 * Currently, we are forced to kill the process in the event the
3773 * original mapper has unmapped pages from the child due to a failed
3774 * COW. Warn that such a situation has occurred as it may not be obvious
3776 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3777 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3778 current->pid);
3779 return ret;
3783 * Use page lock to guard against racing truncation
3784 * before we get page_table_lock.
3786 retry:
3787 page = find_lock_page(mapping, idx);
3788 if (!page) {
3789 size = i_size_read(mapping->host) >> huge_page_shift(h);
3790 if (idx >= size)
3791 goto out;
3794 * Check for page in userfault range
3796 if (userfaultfd_missing(vma)) {
3797 u32 hash;
3798 struct vm_fault vmf = {
3799 .vma = vma,
3800 .address = haddr,
3801 .flags = flags,
3803 * Hard to debug if it ends up being
3804 * used by a callee that assumes
3805 * something about the other
3806 * uninitialized fields... same as in
3807 * memory.c
3812 * hugetlb_fault_mutex must be dropped before
3813 * handling userfault. Reacquire after handling
3814 * fault to make calling code simpler.
3816 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3817 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3818 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3819 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3820 goto out;
3823 page = alloc_huge_page(vma, haddr, 0);
3824 if (IS_ERR(page)) {
3825 ret = vmf_error(PTR_ERR(page));
3826 goto out;
3828 clear_huge_page(page, address, pages_per_huge_page(h));
3829 __SetPageUptodate(page);
3830 new_page = true;
3832 if (vma->vm_flags & VM_MAYSHARE) {
3833 int err = huge_add_to_page_cache(page, mapping, idx);
3834 if (err) {
3835 put_page(page);
3836 if (err == -EEXIST)
3837 goto retry;
3838 goto out;
3840 } else {
3841 lock_page(page);
3842 if (unlikely(anon_vma_prepare(vma))) {
3843 ret = VM_FAULT_OOM;
3844 goto backout_unlocked;
3846 anon_rmap = 1;
3848 } else {
3850 * If memory error occurs between mmap() and fault, some process
3851 * don't have hwpoisoned swap entry for errored virtual address.
3852 * So we need to block hugepage fault by PG_hwpoison bit check.
3854 if (unlikely(PageHWPoison(page))) {
3855 ret = VM_FAULT_HWPOISON |
3856 VM_FAULT_SET_HINDEX(hstate_index(h));
3857 goto backout_unlocked;
3862 * If we are going to COW a private mapping later, we examine the
3863 * pending reservations for this page now. This will ensure that
3864 * any allocations necessary to record that reservation occur outside
3865 * the spinlock.
3867 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3868 if (vma_needs_reservation(h, vma, haddr) < 0) {
3869 ret = VM_FAULT_OOM;
3870 goto backout_unlocked;
3872 /* Just decrements count, does not deallocate */
3873 vma_end_reservation(h, vma, haddr);
3876 ptl = huge_pte_lock(h, mm, ptep);
3877 size = i_size_read(mapping->host) >> huge_page_shift(h);
3878 if (idx >= size)
3879 goto backout;
3881 ret = 0;
3882 if (!huge_pte_none(huge_ptep_get(ptep)))
3883 goto backout;
3885 if (anon_rmap) {
3886 ClearPagePrivate(page);
3887 hugepage_add_new_anon_rmap(page, vma, haddr);
3888 } else
3889 page_dup_rmap(page, true);
3890 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3891 && (vma->vm_flags & VM_SHARED)));
3892 set_huge_pte_at(mm, haddr, ptep, new_pte);
3894 hugetlb_count_add(pages_per_huge_page(h), mm);
3895 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3896 /* Optimization, do the COW without a second fault */
3897 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3900 spin_unlock(ptl);
3903 * Only make newly allocated pages active. Existing pages found
3904 * in the pagecache could be !page_huge_active() if they have been
3905 * isolated for migration.
3907 if (new_page)
3908 set_page_huge_active(page);
3910 unlock_page(page);
3911 out:
3912 return ret;
3914 backout:
3915 spin_unlock(ptl);
3916 backout_unlocked:
3917 unlock_page(page);
3918 restore_reserve_on_error(h, vma, haddr, page);
3919 put_page(page);
3920 goto out;
3923 #ifdef CONFIG_SMP
3924 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3925 pgoff_t idx, unsigned long address)
3927 unsigned long key[2];
3928 u32 hash;
3930 key[0] = (unsigned long) mapping;
3931 key[1] = idx;
3933 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3935 return hash & (num_fault_mutexes - 1);
3937 #else
3939 * For uniprocesor systems we always use a single mutex, so just
3940 * return 0 and avoid the hashing overhead.
3942 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3943 pgoff_t idx, unsigned long address)
3945 return 0;
3947 #endif
3949 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3950 unsigned long address, unsigned int flags)
3952 pte_t *ptep, entry;
3953 spinlock_t *ptl;
3954 vm_fault_t ret;
3955 u32 hash;
3956 pgoff_t idx;
3957 struct page *page = NULL;
3958 struct page *pagecache_page = NULL;
3959 struct hstate *h = hstate_vma(vma);
3960 struct address_space *mapping;
3961 int need_wait_lock = 0;
3962 unsigned long haddr = address & huge_page_mask(h);
3964 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3965 if (ptep) {
3966 entry = huge_ptep_get(ptep);
3967 if (unlikely(is_hugetlb_entry_migration(entry))) {
3968 migration_entry_wait_huge(vma, mm, ptep);
3969 return 0;
3970 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3971 return VM_FAULT_HWPOISON_LARGE |
3972 VM_FAULT_SET_HINDEX(hstate_index(h));
3973 } else {
3974 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3975 if (!ptep)
3976 return VM_FAULT_OOM;
3979 mapping = vma->vm_file->f_mapping;
3980 idx = vma_hugecache_offset(h, vma, haddr);
3983 * Serialize hugepage allocation and instantiation, so that we don't
3984 * get spurious allocation failures if two CPUs race to instantiate
3985 * the same page in the page cache.
3987 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3988 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3990 entry = huge_ptep_get(ptep);
3991 if (huge_pte_none(entry)) {
3992 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3993 goto out_mutex;
3996 ret = 0;
3999 * entry could be a migration/hwpoison entry at this point, so this
4000 * check prevents the kernel from going below assuming that we have
4001 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4002 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4003 * handle it.
4005 if (!pte_present(entry))
4006 goto out_mutex;
4009 * If we are going to COW the mapping later, we examine the pending
4010 * reservations for this page now. This will ensure that any
4011 * allocations necessary to record that reservation occur outside the
4012 * spinlock. For private mappings, we also lookup the pagecache
4013 * page now as it is used to determine if a reservation has been
4014 * consumed.
4016 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4017 if (vma_needs_reservation(h, vma, haddr) < 0) {
4018 ret = VM_FAULT_OOM;
4019 goto out_mutex;
4021 /* Just decrements count, does not deallocate */
4022 vma_end_reservation(h, vma, haddr);
4024 if (!(vma->vm_flags & VM_MAYSHARE))
4025 pagecache_page = hugetlbfs_pagecache_page(h,
4026 vma, haddr);
4029 ptl = huge_pte_lock(h, mm, ptep);
4031 /* Check for a racing update before calling hugetlb_cow */
4032 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4033 goto out_ptl;
4036 * hugetlb_cow() requires page locks of pte_page(entry) and
4037 * pagecache_page, so here we need take the former one
4038 * when page != pagecache_page or !pagecache_page.
4040 page = pte_page(entry);
4041 if (page != pagecache_page)
4042 if (!trylock_page(page)) {
4043 need_wait_lock = 1;
4044 goto out_ptl;
4047 get_page(page);
4049 if (flags & FAULT_FLAG_WRITE) {
4050 if (!huge_pte_write(entry)) {
4051 ret = hugetlb_cow(mm, vma, address, ptep,
4052 pagecache_page, ptl);
4053 goto out_put_page;
4055 entry = huge_pte_mkdirty(entry);
4057 entry = pte_mkyoung(entry);
4058 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4059 flags & FAULT_FLAG_WRITE))
4060 update_mmu_cache(vma, haddr, ptep);
4061 out_put_page:
4062 if (page != pagecache_page)
4063 unlock_page(page);
4064 put_page(page);
4065 out_ptl:
4066 spin_unlock(ptl);
4068 if (pagecache_page) {
4069 unlock_page(pagecache_page);
4070 put_page(pagecache_page);
4072 out_mutex:
4073 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4075 * Generally it's safe to hold refcount during waiting page lock. But
4076 * here we just wait to defer the next page fault to avoid busy loop and
4077 * the page is not used after unlocked before returning from the current
4078 * page fault. So we are safe from accessing freed page, even if we wait
4079 * here without taking refcount.
4081 if (need_wait_lock)
4082 wait_on_page_locked(page);
4083 return ret;
4087 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4088 * modifications for huge pages.
4090 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4091 pte_t *dst_pte,
4092 struct vm_area_struct *dst_vma,
4093 unsigned long dst_addr,
4094 unsigned long src_addr,
4095 struct page **pagep)
4097 struct address_space *mapping;
4098 pgoff_t idx;
4099 unsigned long size;
4100 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4101 struct hstate *h = hstate_vma(dst_vma);
4102 pte_t _dst_pte;
4103 spinlock_t *ptl;
4104 int ret;
4105 struct page *page;
4107 if (!*pagep) {
4108 ret = -ENOMEM;
4109 page = alloc_huge_page(dst_vma, dst_addr, 0);
4110 if (IS_ERR(page))
4111 goto out;
4113 ret = copy_huge_page_from_user(page,
4114 (const void __user *) src_addr,
4115 pages_per_huge_page(h), false);
4117 /* fallback to copy_from_user outside mmap_sem */
4118 if (unlikely(ret)) {
4119 ret = -ENOENT;
4120 *pagep = page;
4121 /* don't free the page */
4122 goto out;
4124 } else {
4125 page = *pagep;
4126 *pagep = NULL;
4130 * The memory barrier inside __SetPageUptodate makes sure that
4131 * preceding stores to the page contents become visible before
4132 * the set_pte_at() write.
4134 __SetPageUptodate(page);
4136 mapping = dst_vma->vm_file->f_mapping;
4137 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4140 * If shared, add to page cache
4142 if (vm_shared) {
4143 size = i_size_read(mapping->host) >> huge_page_shift(h);
4144 ret = -EFAULT;
4145 if (idx >= size)
4146 goto out_release_nounlock;
4149 * Serialization between remove_inode_hugepages() and
4150 * huge_add_to_page_cache() below happens through the
4151 * hugetlb_fault_mutex_table that here must be hold by
4152 * the caller.
4154 ret = huge_add_to_page_cache(page, mapping, idx);
4155 if (ret)
4156 goto out_release_nounlock;
4159 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4160 spin_lock(ptl);
4163 * Recheck the i_size after holding PT lock to make sure not
4164 * to leave any page mapped (as page_mapped()) beyond the end
4165 * of the i_size (remove_inode_hugepages() is strict about
4166 * enforcing that). If we bail out here, we'll also leave a
4167 * page in the radix tree in the vm_shared case beyond the end
4168 * of the i_size, but remove_inode_hugepages() will take care
4169 * of it as soon as we drop the hugetlb_fault_mutex_table.
4171 size = i_size_read(mapping->host) >> huge_page_shift(h);
4172 ret = -EFAULT;
4173 if (idx >= size)
4174 goto out_release_unlock;
4176 ret = -EEXIST;
4177 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4178 goto out_release_unlock;
4180 if (vm_shared) {
4181 page_dup_rmap(page, true);
4182 } else {
4183 ClearPagePrivate(page);
4184 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4187 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4188 if (dst_vma->vm_flags & VM_WRITE)
4189 _dst_pte = huge_pte_mkdirty(_dst_pte);
4190 _dst_pte = pte_mkyoung(_dst_pte);
4192 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4194 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4195 dst_vma->vm_flags & VM_WRITE);
4196 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4198 /* No need to invalidate - it was non-present before */
4199 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4201 spin_unlock(ptl);
4202 set_page_huge_active(page);
4203 if (vm_shared)
4204 unlock_page(page);
4205 ret = 0;
4206 out:
4207 return ret;
4208 out_release_unlock:
4209 spin_unlock(ptl);
4210 if (vm_shared)
4211 unlock_page(page);
4212 out_release_nounlock:
4213 put_page(page);
4214 goto out;
4217 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4218 struct page **pages, struct vm_area_struct **vmas,
4219 unsigned long *position, unsigned long *nr_pages,
4220 long i, unsigned int flags, int *nonblocking)
4222 unsigned long pfn_offset;
4223 unsigned long vaddr = *position;
4224 unsigned long remainder = *nr_pages;
4225 struct hstate *h = hstate_vma(vma);
4226 int err = -EFAULT;
4228 while (vaddr < vma->vm_end && remainder) {
4229 pte_t *pte;
4230 spinlock_t *ptl = NULL;
4231 int absent;
4232 struct page *page;
4235 * If we have a pending SIGKILL, don't keep faulting pages and
4236 * potentially allocating memory.
4238 if (unlikely(fatal_signal_pending(current))) {
4239 remainder = 0;
4240 break;
4244 * Some archs (sparc64, sh*) have multiple pte_ts to
4245 * each hugepage. We have to make sure we get the
4246 * first, for the page indexing below to work.
4248 * Note that page table lock is not held when pte is null.
4250 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4251 huge_page_size(h));
4252 if (pte)
4253 ptl = huge_pte_lock(h, mm, pte);
4254 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4257 * When coredumping, it suits get_dump_page if we just return
4258 * an error where there's an empty slot with no huge pagecache
4259 * to back it. This way, we avoid allocating a hugepage, and
4260 * the sparse dumpfile avoids allocating disk blocks, but its
4261 * huge holes still show up with zeroes where they need to be.
4263 if (absent && (flags & FOLL_DUMP) &&
4264 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4265 if (pte)
4266 spin_unlock(ptl);
4267 remainder = 0;
4268 break;
4272 * We need call hugetlb_fault for both hugepages under migration
4273 * (in which case hugetlb_fault waits for the migration,) and
4274 * hwpoisoned hugepages (in which case we need to prevent the
4275 * caller from accessing to them.) In order to do this, we use
4276 * here is_swap_pte instead of is_hugetlb_entry_migration and
4277 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4278 * both cases, and because we can't follow correct pages
4279 * directly from any kind of swap entries.
4281 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4282 ((flags & FOLL_WRITE) &&
4283 !huge_pte_write(huge_ptep_get(pte)))) {
4284 vm_fault_t ret;
4285 unsigned int fault_flags = 0;
4287 if (pte)
4288 spin_unlock(ptl);
4289 if (flags & FOLL_WRITE)
4290 fault_flags |= FAULT_FLAG_WRITE;
4291 if (nonblocking)
4292 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4293 if (flags & FOLL_NOWAIT)
4294 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4295 FAULT_FLAG_RETRY_NOWAIT;
4296 if (flags & FOLL_TRIED) {
4297 VM_WARN_ON_ONCE(fault_flags &
4298 FAULT_FLAG_ALLOW_RETRY);
4299 fault_flags |= FAULT_FLAG_TRIED;
4301 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4302 if (ret & VM_FAULT_ERROR) {
4303 err = vm_fault_to_errno(ret, flags);
4304 remainder = 0;
4305 break;
4307 if (ret & VM_FAULT_RETRY) {
4308 if (nonblocking &&
4309 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4310 *nonblocking = 0;
4311 *nr_pages = 0;
4313 * VM_FAULT_RETRY must not return an
4314 * error, it will return zero
4315 * instead.
4317 * No need to update "position" as the
4318 * caller will not check it after
4319 * *nr_pages is set to 0.
4321 return i;
4323 continue;
4326 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4327 page = pte_page(huge_ptep_get(pte));
4330 * Instead of doing 'try_get_page()' below in the same_page
4331 * loop, just check the count once here.
4333 if (unlikely(page_count(page) <= 0)) {
4334 if (pages) {
4335 spin_unlock(ptl);
4336 remainder = 0;
4337 err = -ENOMEM;
4338 break;
4341 same_page:
4342 if (pages) {
4343 pages[i] = mem_map_offset(page, pfn_offset);
4344 get_page(pages[i]);
4347 if (vmas)
4348 vmas[i] = vma;
4350 vaddr += PAGE_SIZE;
4351 ++pfn_offset;
4352 --remainder;
4353 ++i;
4354 if (vaddr < vma->vm_end && remainder &&
4355 pfn_offset < pages_per_huge_page(h)) {
4357 * We use pfn_offset to avoid touching the pageframes
4358 * of this compound page.
4360 goto same_page;
4362 spin_unlock(ptl);
4364 *nr_pages = remainder;
4366 * setting position is actually required only if remainder is
4367 * not zero but it's faster not to add a "if (remainder)"
4368 * branch.
4370 *position = vaddr;
4372 return i ? i : err;
4375 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4377 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4378 * implement this.
4380 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4381 #endif
4383 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4384 unsigned long address, unsigned long end, pgprot_t newprot)
4386 struct mm_struct *mm = vma->vm_mm;
4387 unsigned long start = address;
4388 pte_t *ptep;
4389 pte_t pte;
4390 struct hstate *h = hstate_vma(vma);
4391 unsigned long pages = 0;
4392 unsigned long f_start = start;
4393 unsigned long f_end = end;
4394 bool shared_pmd = false;
4397 * In the case of shared PMDs, the area to flush could be beyond
4398 * start/end. Set f_start/f_end to cover the maximum possible
4399 * range if PMD sharing is possible.
4401 adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end);
4403 BUG_ON(address >= end);
4404 flush_cache_range(vma, f_start, f_end);
4406 mmu_notifier_invalidate_range_start(mm, f_start, f_end);
4407 i_mmap_lock_write(vma->vm_file->f_mapping);
4408 for (; address < end; address += huge_page_size(h)) {
4409 spinlock_t *ptl;
4410 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4411 if (!ptep)
4412 continue;
4413 ptl = huge_pte_lock(h, mm, ptep);
4414 if (huge_pmd_unshare(mm, &address, ptep)) {
4415 pages++;
4416 spin_unlock(ptl);
4417 shared_pmd = true;
4418 continue;
4420 pte = huge_ptep_get(ptep);
4421 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4422 spin_unlock(ptl);
4423 continue;
4425 if (unlikely(is_hugetlb_entry_migration(pte))) {
4426 swp_entry_t entry = pte_to_swp_entry(pte);
4428 if (is_write_migration_entry(entry)) {
4429 pte_t newpte;
4431 make_migration_entry_read(&entry);
4432 newpte = swp_entry_to_pte(entry);
4433 set_huge_swap_pte_at(mm, address, ptep,
4434 newpte, huge_page_size(h));
4435 pages++;
4437 spin_unlock(ptl);
4438 continue;
4440 if (!huge_pte_none(pte)) {
4441 pte = huge_ptep_get_and_clear(mm, address, ptep);
4442 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4443 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4444 set_huge_pte_at(mm, address, ptep, pte);
4445 pages++;
4447 spin_unlock(ptl);
4450 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4451 * may have cleared our pud entry and done put_page on the page table:
4452 * once we release i_mmap_rwsem, another task can do the final put_page
4453 * and that page table be reused and filled with junk. If we actually
4454 * did unshare a page of pmds, flush the range corresponding to the pud.
4456 if (shared_pmd)
4457 flush_hugetlb_tlb_range(vma, f_start, f_end);
4458 else
4459 flush_hugetlb_tlb_range(vma, start, end);
4461 * No need to call mmu_notifier_invalidate_range() we are downgrading
4462 * page table protection not changing it to point to a new page.
4464 * See Documentation/vm/mmu_notifier.rst
4466 i_mmap_unlock_write(vma->vm_file->f_mapping);
4467 mmu_notifier_invalidate_range_end(mm, f_start, f_end);
4469 return pages << h->order;
4472 int hugetlb_reserve_pages(struct inode *inode,
4473 long from, long to,
4474 struct vm_area_struct *vma,
4475 vm_flags_t vm_flags)
4477 long ret, chg;
4478 struct hstate *h = hstate_inode(inode);
4479 struct hugepage_subpool *spool = subpool_inode(inode);
4480 struct resv_map *resv_map;
4481 long gbl_reserve;
4483 /* This should never happen */
4484 if (from > to) {
4485 VM_WARN(1, "%s called with a negative range\n", __func__);
4486 return -EINVAL;
4490 * Only apply hugepage reservation if asked. At fault time, an
4491 * attempt will be made for VM_NORESERVE to allocate a page
4492 * without using reserves
4494 if (vm_flags & VM_NORESERVE)
4495 return 0;
4498 * Shared mappings base their reservation on the number of pages that
4499 * are already allocated on behalf of the file. Private mappings need
4500 * to reserve the full area even if read-only as mprotect() may be
4501 * called to make the mapping read-write. Assume !vma is a shm mapping
4503 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4504 resv_map = inode_resv_map(inode);
4506 chg = region_chg(resv_map, from, to);
4508 } else {
4509 resv_map = resv_map_alloc();
4510 if (!resv_map)
4511 return -ENOMEM;
4513 chg = to - from;
4515 set_vma_resv_map(vma, resv_map);
4516 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4519 if (chg < 0) {
4520 ret = chg;
4521 goto out_err;
4525 * There must be enough pages in the subpool for the mapping. If
4526 * the subpool has a minimum size, there may be some global
4527 * reservations already in place (gbl_reserve).
4529 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4530 if (gbl_reserve < 0) {
4531 ret = -ENOSPC;
4532 goto out_err;
4536 * Check enough hugepages are available for the reservation.
4537 * Hand the pages back to the subpool if there are not
4539 ret = hugetlb_acct_memory(h, gbl_reserve);
4540 if (ret < 0) {
4541 /* put back original number of pages, chg */
4542 (void)hugepage_subpool_put_pages(spool, chg);
4543 goto out_err;
4547 * Account for the reservations made. Shared mappings record regions
4548 * that have reservations as they are shared by multiple VMAs.
4549 * When the last VMA disappears, the region map says how much
4550 * the reservation was and the page cache tells how much of
4551 * the reservation was consumed. Private mappings are per-VMA and
4552 * only the consumed reservations are tracked. When the VMA
4553 * disappears, the original reservation is the VMA size and the
4554 * consumed reservations are stored in the map. Hence, nothing
4555 * else has to be done for private mappings here
4557 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4558 long add = region_add(resv_map, from, to);
4560 if (unlikely(chg > add)) {
4562 * pages in this range were added to the reserve
4563 * map between region_chg and region_add. This
4564 * indicates a race with alloc_huge_page. Adjust
4565 * the subpool and reserve counts modified above
4566 * based on the difference.
4568 long rsv_adjust;
4570 rsv_adjust = hugepage_subpool_put_pages(spool,
4571 chg - add);
4572 hugetlb_acct_memory(h, -rsv_adjust);
4575 return 0;
4576 out_err:
4577 if (!vma || vma->vm_flags & VM_MAYSHARE)
4578 /* Don't call region_abort if region_chg failed */
4579 if (chg >= 0)
4580 region_abort(resv_map, from, to);
4581 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4582 kref_put(&resv_map->refs, resv_map_release);
4583 return ret;
4586 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4587 long freed)
4589 struct hstate *h = hstate_inode(inode);
4590 struct resv_map *resv_map = inode_resv_map(inode);
4591 long chg = 0;
4592 struct hugepage_subpool *spool = subpool_inode(inode);
4593 long gbl_reserve;
4595 if (resv_map) {
4596 chg = region_del(resv_map, start, end);
4598 * region_del() can fail in the rare case where a region
4599 * must be split and another region descriptor can not be
4600 * allocated. If end == LONG_MAX, it will not fail.
4602 if (chg < 0)
4603 return chg;
4606 spin_lock(&inode->i_lock);
4607 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4608 spin_unlock(&inode->i_lock);
4611 * If the subpool has a minimum size, the number of global
4612 * reservations to be released may be adjusted.
4614 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4615 hugetlb_acct_memory(h, -gbl_reserve);
4617 return 0;
4620 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4621 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4622 struct vm_area_struct *vma,
4623 unsigned long addr, pgoff_t idx)
4625 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4626 svma->vm_start;
4627 unsigned long sbase = saddr & PUD_MASK;
4628 unsigned long s_end = sbase + PUD_SIZE;
4630 /* Allow segments to share if only one is marked locked */
4631 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4632 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4635 * match the virtual addresses, permission and the alignment of the
4636 * page table page.
4638 if (pmd_index(addr) != pmd_index(saddr) ||
4639 vm_flags != svm_flags ||
4640 sbase < svma->vm_start || svma->vm_end < s_end)
4641 return 0;
4643 return saddr;
4646 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4648 unsigned long base = addr & PUD_MASK;
4649 unsigned long end = base + PUD_SIZE;
4652 * check on proper vm_flags and page table alignment
4654 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4655 return true;
4656 return false;
4660 * Determine if start,end range within vma could be mapped by shared pmd.
4661 * If yes, adjust start and end to cover range associated with possible
4662 * shared pmd mappings.
4664 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4665 unsigned long *start, unsigned long *end)
4667 unsigned long a_start, a_end;
4669 if (!(vma->vm_flags & VM_MAYSHARE))
4670 return;
4672 /* Extend the range to be PUD aligned for a worst case scenario */
4673 a_start = ALIGN_DOWN(*start, PUD_SIZE);
4674 a_end = ALIGN(*end, PUD_SIZE);
4677 * Intersect the range with the vma range, since pmd sharing won't be
4678 * across vma after all
4680 *start = max(vma->vm_start, a_start);
4681 *end = min(vma->vm_end, a_end);
4685 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4686 * and returns the corresponding pte. While this is not necessary for the
4687 * !shared pmd case because we can allocate the pmd later as well, it makes the
4688 * code much cleaner. pmd allocation is essential for the shared case because
4689 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4690 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4691 * bad pmd for sharing.
4693 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4695 struct vm_area_struct *vma = find_vma(mm, addr);
4696 struct address_space *mapping = vma->vm_file->f_mapping;
4697 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4698 vma->vm_pgoff;
4699 struct vm_area_struct *svma;
4700 unsigned long saddr;
4701 pte_t *spte = NULL;
4702 pte_t *pte;
4703 spinlock_t *ptl;
4705 if (!vma_shareable(vma, addr))
4706 return (pte_t *)pmd_alloc(mm, pud, addr);
4708 i_mmap_lock_write(mapping);
4709 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4710 if (svma == vma)
4711 continue;
4713 saddr = page_table_shareable(svma, vma, addr, idx);
4714 if (saddr) {
4715 spte = huge_pte_offset(svma->vm_mm, saddr,
4716 vma_mmu_pagesize(svma));
4717 if (spte) {
4718 get_page(virt_to_page(spte));
4719 break;
4724 if (!spte)
4725 goto out;
4727 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4728 if (pud_none(*pud)) {
4729 pud_populate(mm, pud,
4730 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4731 mm_inc_nr_pmds(mm);
4732 } else {
4733 put_page(virt_to_page(spte));
4735 spin_unlock(ptl);
4736 out:
4737 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4738 i_mmap_unlock_write(mapping);
4739 return pte;
4743 * unmap huge page backed by shared pte.
4745 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4746 * indicated by page_count > 1, unmap is achieved by clearing pud and
4747 * decrementing the ref count. If count == 1, the pte page is not shared.
4749 * called with page table lock held.
4751 * returns: 1 successfully unmapped a shared pte page
4752 * 0 the underlying pte page is not shared, or it is the last user
4754 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4756 pgd_t *pgd = pgd_offset(mm, *addr);
4757 p4d_t *p4d = p4d_offset(pgd, *addr);
4758 pud_t *pud = pud_offset(p4d, *addr);
4760 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4761 if (page_count(virt_to_page(ptep)) == 1)
4762 return 0;
4764 pud_clear(pud);
4765 put_page(virt_to_page(ptep));
4766 mm_dec_nr_pmds(mm);
4767 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4768 return 1;
4770 #define want_pmd_share() (1)
4771 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4772 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4774 return NULL;
4777 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4779 return 0;
4782 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4783 unsigned long *start, unsigned long *end)
4786 #define want_pmd_share() (0)
4787 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4789 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4790 pte_t *huge_pte_alloc(struct mm_struct *mm,
4791 unsigned long addr, unsigned long sz)
4793 pgd_t *pgd;
4794 p4d_t *p4d;
4795 pud_t *pud;
4796 pte_t *pte = NULL;
4798 pgd = pgd_offset(mm, addr);
4799 p4d = p4d_alloc(mm, pgd, addr);
4800 if (!p4d)
4801 return NULL;
4802 pud = pud_alloc(mm, p4d, addr);
4803 if (pud) {
4804 if (sz == PUD_SIZE) {
4805 pte = (pte_t *)pud;
4806 } else {
4807 BUG_ON(sz != PMD_SIZE);
4808 if (want_pmd_share() && pud_none(*pud))
4809 pte = huge_pmd_share(mm, addr, pud);
4810 else
4811 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4814 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4816 return pte;
4820 * huge_pte_offset() - Walk the page table to resolve the hugepage
4821 * entry at address @addr
4823 * Return: Pointer to page table or swap entry (PUD or PMD) for
4824 * address @addr, or NULL if a p*d_none() entry is encountered and the
4825 * size @sz doesn't match the hugepage size at this level of the page
4826 * table.
4828 pte_t *huge_pte_offset(struct mm_struct *mm,
4829 unsigned long addr, unsigned long sz)
4831 pgd_t *pgd;
4832 p4d_t *p4d;
4833 pud_t *pud, pud_entry;
4834 pmd_t *pmd, pmd_entry;
4836 pgd = pgd_offset(mm, addr);
4837 if (!pgd_present(*pgd))
4838 return NULL;
4839 p4d = p4d_offset(pgd, addr);
4840 if (!p4d_present(*p4d))
4841 return NULL;
4843 pud = pud_offset(p4d, addr);
4844 pud_entry = READ_ONCE(*pud);
4845 if (sz != PUD_SIZE && pud_none(pud_entry))
4846 return NULL;
4847 /* hugepage or swap? */
4848 if (pud_huge(pud_entry) || !pud_present(pud_entry))
4849 return (pte_t *)pud;
4851 pmd = pmd_offset(pud, addr);
4852 pmd_entry = READ_ONCE(*pmd);
4853 if (sz != PMD_SIZE && pmd_none(pmd_entry))
4854 return NULL;
4855 /* hugepage or swap? */
4856 if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
4857 return (pte_t *)pmd;
4859 return NULL;
4862 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4865 * These functions are overwritable if your architecture needs its own
4866 * behavior.
4868 struct page * __weak
4869 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4870 int write)
4872 return ERR_PTR(-EINVAL);
4875 struct page * __weak
4876 follow_huge_pd(struct vm_area_struct *vma,
4877 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4879 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4880 return NULL;
4883 struct page * __weak
4884 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4885 pmd_t *pmd, int flags)
4887 struct page *page = NULL;
4888 spinlock_t *ptl;
4889 pte_t pte;
4890 retry:
4891 ptl = pmd_lockptr(mm, pmd);
4892 spin_lock(ptl);
4894 * make sure that the address range covered by this pmd is not
4895 * unmapped from other threads.
4897 if (!pmd_huge(*pmd))
4898 goto out;
4899 pte = huge_ptep_get((pte_t *)pmd);
4900 if (pte_present(pte)) {
4901 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4902 if (flags & FOLL_GET)
4903 get_page(page);
4904 } else {
4905 if (is_hugetlb_entry_migration(pte)) {
4906 spin_unlock(ptl);
4907 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4908 goto retry;
4911 * hwpoisoned entry is treated as no_page_table in
4912 * follow_page_mask().
4915 out:
4916 spin_unlock(ptl);
4917 return page;
4920 struct page * __weak
4921 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4922 pud_t *pud, int flags)
4924 if (flags & FOLL_GET)
4925 return NULL;
4927 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4930 struct page * __weak
4931 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4933 if (flags & FOLL_GET)
4934 return NULL;
4936 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4939 bool isolate_huge_page(struct page *page, struct list_head *list)
4941 bool ret = true;
4943 VM_BUG_ON_PAGE(!PageHead(page), page);
4944 spin_lock(&hugetlb_lock);
4945 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4946 ret = false;
4947 goto unlock;
4949 clear_page_huge_active(page);
4950 list_move_tail(&page->lru, list);
4951 unlock:
4952 spin_unlock(&hugetlb_lock);
4953 return ret;
4956 void putback_active_hugepage(struct page *page)
4958 VM_BUG_ON_PAGE(!PageHead(page), page);
4959 spin_lock(&hugetlb_lock);
4960 set_page_huge_active(page);
4961 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4962 spin_unlock(&hugetlb_lock);
4963 put_page(page);
4966 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4968 struct hstate *h = page_hstate(oldpage);
4970 hugetlb_cgroup_migrate(oldpage, newpage);
4971 set_page_owner_migrate_reason(newpage, reason);
4974 * transfer temporary state of the new huge page. This is
4975 * reverse to other transitions because the newpage is going to
4976 * be final while the old one will be freed so it takes over
4977 * the temporary status.
4979 * Also note that we have to transfer the per-node surplus state
4980 * here as well otherwise the global surplus count will not match
4981 * the per-node's.
4983 if (PageHugeTemporary(newpage)) {
4984 int old_nid = page_to_nid(oldpage);
4985 int new_nid = page_to_nid(newpage);
4987 SetPageHugeTemporary(oldpage);
4988 ClearPageHugeTemporary(newpage);
4990 spin_lock(&hugetlb_lock);
4991 if (h->surplus_huge_pages_node[old_nid]) {
4992 h->surplus_huge_pages_node[old_nid]--;
4993 h->surplus_huge_pages_node[new_nid]++;
4995 spin_unlock(&hugetlb_lock);