1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
23 #include <asm/pgalloc.h>
33 SCAN_LACK_REFERENCED_PAGE
,
47 SCAN_ALLOC_HUGE_PAGE_FAIL
,
48 SCAN_CGROUP_CHARGE_FAIL
,
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/huge_memory.h>
56 static struct task_struct
*khugepaged_thread __read_mostly
;
57 static DEFINE_MUTEX(khugepaged_mutex
);
59 /* default scan 8*512 pte (or vmas) every 30 second */
60 static unsigned int khugepaged_pages_to_scan __read_mostly
;
61 static unsigned int khugepaged_pages_collapsed
;
62 static unsigned int khugepaged_full_scans
;
63 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
64 /* during fragmentation poll the hugepage allocator once every minute */
65 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
66 static unsigned long khugepaged_sleep_expire
;
67 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
68 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
70 * default collapse hugepages if there is at least one pte mapped like
71 * it would have happened if the vma was large enough during page
74 static unsigned int khugepaged_max_ptes_none __read_mostly
;
75 static unsigned int khugepaged_max_ptes_swap __read_mostly
;
77 #define MM_SLOTS_HASH_BITS 10
78 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
80 static struct kmem_cache
*mm_slot_cache __read_mostly
;
83 * struct mm_slot - hash lookup from mm to mm_slot
84 * @hash: hash collision list
85 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
86 * @mm: the mm that this information is valid for
89 struct hlist_node hash
;
90 struct list_head mm_node
;
95 * struct khugepaged_scan - cursor for scanning
96 * @mm_head: the head of the mm list to scan
97 * @mm_slot: the current mm_slot we are scanning
98 * @address: the next address inside that to be scanned
100 * There is only the one khugepaged_scan instance of this cursor structure.
102 struct khugepaged_scan
{
103 struct list_head mm_head
;
104 struct mm_slot
*mm_slot
;
105 unsigned long address
;
108 static struct khugepaged_scan khugepaged_scan
= {
109 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
113 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
114 struct kobj_attribute
*attr
,
117 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
120 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
121 struct kobj_attribute
*attr
,
122 const char *buf
, size_t count
)
127 err
= kstrtoul(buf
, 10, &msecs
);
128 if (err
|| msecs
> UINT_MAX
)
131 khugepaged_scan_sleep_millisecs
= msecs
;
132 khugepaged_sleep_expire
= 0;
133 wake_up_interruptible(&khugepaged_wait
);
137 static struct kobj_attribute scan_sleep_millisecs_attr
=
138 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
139 scan_sleep_millisecs_store
);
141 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
142 struct kobj_attribute
*attr
,
145 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
148 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
149 struct kobj_attribute
*attr
,
150 const char *buf
, size_t count
)
155 err
= kstrtoul(buf
, 10, &msecs
);
156 if (err
|| msecs
> UINT_MAX
)
159 khugepaged_alloc_sleep_millisecs
= msecs
;
160 khugepaged_sleep_expire
= 0;
161 wake_up_interruptible(&khugepaged_wait
);
165 static struct kobj_attribute alloc_sleep_millisecs_attr
=
166 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
167 alloc_sleep_millisecs_store
);
169 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
170 struct kobj_attribute
*attr
,
173 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
175 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
176 struct kobj_attribute
*attr
,
177 const char *buf
, size_t count
)
182 err
= kstrtoul(buf
, 10, &pages
);
183 if (err
|| !pages
|| pages
> UINT_MAX
)
186 khugepaged_pages_to_scan
= pages
;
190 static struct kobj_attribute pages_to_scan_attr
=
191 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
192 pages_to_scan_store
);
194 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
195 struct kobj_attribute
*attr
,
198 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
200 static struct kobj_attribute pages_collapsed_attr
=
201 __ATTR_RO(pages_collapsed
);
203 static ssize_t
full_scans_show(struct kobject
*kobj
,
204 struct kobj_attribute
*attr
,
207 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
209 static struct kobj_attribute full_scans_attr
=
210 __ATTR_RO(full_scans
);
212 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
213 struct kobj_attribute
*attr
, char *buf
)
215 return single_hugepage_flag_show(kobj
, attr
, buf
,
216 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
218 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
219 struct kobj_attribute
*attr
,
220 const char *buf
, size_t count
)
222 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
223 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
225 static struct kobj_attribute khugepaged_defrag_attr
=
226 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
227 khugepaged_defrag_store
);
230 * max_ptes_none controls if khugepaged should collapse hugepages over
231 * any unmapped ptes in turn potentially increasing the memory
232 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
233 * reduce the available free memory in the system as it
234 * runs. Increasing max_ptes_none will instead potentially reduce the
235 * free memory in the system during the khugepaged scan.
237 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
238 struct kobj_attribute
*attr
,
241 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
243 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
244 struct kobj_attribute
*attr
,
245 const char *buf
, size_t count
)
248 unsigned long max_ptes_none
;
250 err
= kstrtoul(buf
, 10, &max_ptes_none
);
251 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
254 khugepaged_max_ptes_none
= max_ptes_none
;
258 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
259 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
260 khugepaged_max_ptes_none_store
);
262 static ssize_t
khugepaged_max_ptes_swap_show(struct kobject
*kobj
,
263 struct kobj_attribute
*attr
,
266 return sprintf(buf
, "%u\n", khugepaged_max_ptes_swap
);
269 static ssize_t
khugepaged_max_ptes_swap_store(struct kobject
*kobj
,
270 struct kobj_attribute
*attr
,
271 const char *buf
, size_t count
)
274 unsigned long max_ptes_swap
;
276 err
= kstrtoul(buf
, 10, &max_ptes_swap
);
277 if (err
|| max_ptes_swap
> HPAGE_PMD_NR
-1)
280 khugepaged_max_ptes_swap
= max_ptes_swap
;
285 static struct kobj_attribute khugepaged_max_ptes_swap_attr
=
286 __ATTR(max_ptes_swap
, 0644, khugepaged_max_ptes_swap_show
,
287 khugepaged_max_ptes_swap_store
);
289 static struct attribute
*khugepaged_attr
[] = {
290 &khugepaged_defrag_attr
.attr
,
291 &khugepaged_max_ptes_none_attr
.attr
,
292 &pages_to_scan_attr
.attr
,
293 &pages_collapsed_attr
.attr
,
294 &full_scans_attr
.attr
,
295 &scan_sleep_millisecs_attr
.attr
,
296 &alloc_sleep_millisecs_attr
.attr
,
297 &khugepaged_max_ptes_swap_attr
.attr
,
301 struct attribute_group khugepaged_attr_group
= {
302 .attrs
= khugepaged_attr
,
303 .name
= "khugepaged",
305 #endif /* CONFIG_SYSFS */
307 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
309 int hugepage_madvise(struct vm_area_struct
*vma
,
310 unsigned long *vm_flags
, int advice
)
316 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
317 * can't handle this properly after s390_enable_sie, so we simply
318 * ignore the madvise to prevent qemu from causing a SIGSEGV.
320 if (mm_has_pgste(vma
->vm_mm
))
323 *vm_flags
&= ~VM_NOHUGEPAGE
;
324 *vm_flags
|= VM_HUGEPAGE
;
326 * If the vma become good for khugepaged to scan,
327 * register it here without waiting a page fault that
328 * may not happen any time soon.
330 if (!(*vm_flags
& VM_NO_KHUGEPAGED
) &&
331 khugepaged_enter_vma_merge(vma
, *vm_flags
))
334 case MADV_NOHUGEPAGE
:
335 *vm_flags
&= ~VM_HUGEPAGE
;
336 *vm_flags
|= VM_NOHUGEPAGE
;
338 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
339 * this vma even if we leave the mm registered in khugepaged if
340 * it got registered before VM_NOHUGEPAGE was set.
348 int __init
khugepaged_init(void)
350 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
351 sizeof(struct mm_slot
),
352 __alignof__(struct mm_slot
), 0, NULL
);
356 khugepaged_pages_to_scan
= HPAGE_PMD_NR
* 8;
357 khugepaged_max_ptes_none
= HPAGE_PMD_NR
- 1;
358 khugepaged_max_ptes_swap
= HPAGE_PMD_NR
/ 8;
363 void __init
khugepaged_destroy(void)
365 kmem_cache_destroy(mm_slot_cache
);
368 static inline struct mm_slot
*alloc_mm_slot(void)
370 if (!mm_slot_cache
) /* initialization failed */
372 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
375 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
377 kmem_cache_free(mm_slot_cache
, mm_slot
);
380 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
382 struct mm_slot
*mm_slot
;
384 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
385 if (mm
== mm_slot
->mm
)
391 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
392 struct mm_slot
*mm_slot
)
395 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
398 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
400 return atomic_read(&mm
->mm_users
) == 0 || !mmget_still_valid(mm
);
403 static bool hugepage_vma_check(struct vm_area_struct
*vma
,
404 unsigned long vm_flags
)
406 if ((!(vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
407 (vm_flags
& VM_NOHUGEPAGE
) ||
408 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
410 if (shmem_file(vma
->vm_file
)) {
411 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
413 return IS_ALIGNED((vma
->vm_start
>> PAGE_SHIFT
) - vma
->vm_pgoff
,
416 if (!vma
->anon_vma
|| vma
->vm_ops
)
418 if (is_vma_temporary_stack(vma
))
420 return !(vm_flags
& VM_NO_KHUGEPAGED
);
423 int __khugepaged_enter(struct mm_struct
*mm
)
425 struct mm_slot
*mm_slot
;
428 mm_slot
= alloc_mm_slot();
432 /* __khugepaged_exit() must not run from under us */
433 VM_BUG_ON_MM(atomic_read(&mm
->mm_users
) == 0, mm
);
434 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
435 free_mm_slot(mm_slot
);
439 spin_lock(&khugepaged_mm_lock
);
440 insert_to_mm_slots_hash(mm
, mm_slot
);
442 * Insert just behind the scanning cursor, to let the area settle
445 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
446 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
447 spin_unlock(&khugepaged_mm_lock
);
451 wake_up_interruptible(&khugepaged_wait
);
456 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
457 unsigned long vm_flags
)
459 unsigned long hstart
, hend
;
462 * khugepaged does not yet work on non-shmem files or special
463 * mappings. And file-private shmem THP is not supported.
465 if (!hugepage_vma_check(vma
, vm_flags
))
468 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
469 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
471 return khugepaged_enter(vma
, vm_flags
);
475 void __khugepaged_exit(struct mm_struct
*mm
)
477 struct mm_slot
*mm_slot
;
480 spin_lock(&khugepaged_mm_lock
);
481 mm_slot
= get_mm_slot(mm
);
482 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
483 hash_del(&mm_slot
->hash
);
484 list_del(&mm_slot
->mm_node
);
487 spin_unlock(&khugepaged_mm_lock
);
490 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
491 free_mm_slot(mm_slot
);
493 } else if (mm_slot
) {
495 * This is required to serialize against
496 * khugepaged_test_exit() (which is guaranteed to run
497 * under mmap sem read mode). Stop here (after we
498 * return all pagetables will be destroyed) until
499 * khugepaged has finished working on the pagetables
500 * under the mmap_sem.
502 down_write(&mm
->mmap_sem
);
503 up_write(&mm
->mmap_sem
);
507 static void release_pte_page(struct page
*page
)
509 dec_node_page_state(page
, NR_ISOLATED_ANON
+ page_is_file_cache(page
));
511 putback_lru_page(page
);
514 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
516 while (--_pte
>= pte
) {
517 pte_t pteval
= *_pte
;
518 if (!pte_none(pteval
) && !is_zero_pfn(pte_pfn(pteval
)))
519 release_pte_page(pte_page(pteval
));
523 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
524 unsigned long address
,
527 struct page
*page
= NULL
;
529 int none_or_zero
= 0, result
= 0, referenced
= 0;
530 bool writable
= false;
532 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
533 _pte
++, address
+= PAGE_SIZE
) {
534 pte_t pteval
= *_pte
;
535 if (pte_none(pteval
) || (pte_present(pteval
) &&
536 is_zero_pfn(pte_pfn(pteval
)))) {
537 if (!userfaultfd_armed(vma
) &&
538 ++none_or_zero
<= khugepaged_max_ptes_none
) {
541 result
= SCAN_EXCEED_NONE_PTE
;
545 if (!pte_present(pteval
)) {
546 result
= SCAN_PTE_NON_PRESENT
;
549 page
= vm_normal_page(vma
, address
, pteval
);
550 if (unlikely(!page
)) {
551 result
= SCAN_PAGE_NULL
;
555 /* TODO: teach khugepaged to collapse THP mapped with pte */
556 if (PageCompound(page
)) {
557 result
= SCAN_PAGE_COMPOUND
;
561 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
564 * We can do it before isolate_lru_page because the
565 * page can't be freed from under us. NOTE: PG_lock
566 * is needed to serialize against split_huge_page
567 * when invoked from the VM.
569 if (!trylock_page(page
)) {
570 result
= SCAN_PAGE_LOCK
;
575 * cannot use mapcount: can't collapse if there's a gup pin.
576 * The page must only be referenced by the scanned process
577 * and page swap cache.
579 if (page_count(page
) != 1 + PageSwapCache(page
)) {
581 result
= SCAN_PAGE_COUNT
;
584 if (pte_write(pteval
)) {
587 if (PageSwapCache(page
) &&
588 !reuse_swap_page(page
, NULL
)) {
590 result
= SCAN_SWAP_CACHE_PAGE
;
594 * Page is not in the swap cache. It can be collapsed
600 * Isolate the page to avoid collapsing an hugepage
601 * currently in use by the VM.
603 if (isolate_lru_page(page
)) {
605 result
= SCAN_DEL_PAGE_LRU
;
608 inc_node_page_state(page
,
609 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
610 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
611 VM_BUG_ON_PAGE(PageLRU(page
), page
);
613 /* There should be enough young pte to collapse the page */
614 if (pte_young(pteval
) ||
615 page_is_young(page
) || PageReferenced(page
) ||
616 mmu_notifier_test_young(vma
->vm_mm
, address
))
619 if (likely(writable
)) {
620 if (likely(referenced
)) {
621 result
= SCAN_SUCCEED
;
622 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
623 referenced
, writable
, result
);
627 result
= SCAN_PAGE_RO
;
631 release_pte_pages(pte
, _pte
);
632 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
633 referenced
, writable
, result
);
637 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
638 struct vm_area_struct
*vma
,
639 unsigned long address
,
643 for (_pte
= pte
; _pte
< pte
+ HPAGE_PMD_NR
;
644 _pte
++, page
++, address
+= PAGE_SIZE
) {
645 pte_t pteval
= *_pte
;
646 struct page
*src_page
;
648 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
649 clear_user_highpage(page
, address
);
650 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
651 if (is_zero_pfn(pte_pfn(pteval
))) {
653 * ptl mostly unnecessary.
657 * paravirt calls inside pte_clear here are
660 pte_clear(vma
->vm_mm
, address
, _pte
);
664 src_page
= pte_page(pteval
);
665 copy_user_highpage(page
, src_page
, address
, vma
);
666 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
667 release_pte_page(src_page
);
669 * ptl mostly unnecessary, but preempt has to
670 * be disabled to update the per-cpu stats
671 * inside page_remove_rmap().
675 * paravirt calls inside pte_clear here are
678 pte_clear(vma
->vm_mm
, address
, _pte
);
679 page_remove_rmap(src_page
, false);
681 free_page_and_swap_cache(src_page
);
686 static void khugepaged_alloc_sleep(void)
690 add_wait_queue(&khugepaged_wait
, &wait
);
691 freezable_schedule_timeout_interruptible(
692 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
693 remove_wait_queue(&khugepaged_wait
, &wait
);
696 static int khugepaged_node_load
[MAX_NUMNODES
];
698 static bool khugepaged_scan_abort(int nid
)
703 * If node_reclaim_mode is disabled, then no extra effort is made to
704 * allocate memory locally.
706 if (!node_reclaim_mode
)
709 /* If there is a count for this node already, it must be acceptable */
710 if (khugepaged_node_load
[nid
])
713 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
714 if (!khugepaged_node_load
[i
])
716 if (node_distance(nid
, i
) > RECLAIM_DISTANCE
)
722 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
723 static inline gfp_t
alloc_hugepage_khugepaged_gfpmask(void)
725 return khugepaged_defrag() ? GFP_TRANSHUGE
: GFP_TRANSHUGE_LIGHT
;
729 static int khugepaged_find_target_node(void)
731 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
732 int nid
, target_node
= 0, max_value
= 0;
734 /* find first node with max normal pages hit */
735 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
736 if (khugepaged_node_load
[nid
] > max_value
) {
737 max_value
= khugepaged_node_load
[nid
];
741 /* do some balance if several nodes have the same hit record */
742 if (target_node
<= last_khugepaged_target_node
)
743 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
745 if (max_value
== khugepaged_node_load
[nid
]) {
750 last_khugepaged_target_node
= target_node
;
754 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
756 if (IS_ERR(*hpage
)) {
762 khugepaged_alloc_sleep();
772 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
774 VM_BUG_ON_PAGE(*hpage
, *hpage
);
776 *hpage
= __alloc_pages_node(node
, gfp
, HPAGE_PMD_ORDER
);
777 if (unlikely(!*hpage
)) {
778 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
779 *hpage
= ERR_PTR(-ENOMEM
);
783 prep_transhuge_page(*hpage
);
784 count_vm_event(THP_COLLAPSE_ALLOC
);
788 static int khugepaged_find_target_node(void)
793 static inline struct page
*alloc_khugepaged_hugepage(void)
797 page
= alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
800 prep_transhuge_page(page
);
804 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
809 hpage
= alloc_khugepaged_hugepage();
811 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
816 khugepaged_alloc_sleep();
818 count_vm_event(THP_COLLAPSE_ALLOC
);
819 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
824 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
827 * If the hpage allocated earlier was briefly exposed in page cache
828 * before collapse_file() failed, it is possible that racing lookups
829 * have not yet completed, and would then be unpleasantly surprised by
830 * finding the hpage reused for the same mapping at a different offset.
831 * Just release the previous allocation if there is any danger of that.
833 if (*hpage
&& page_count(*hpage
) > 1) {
839 *hpage
= khugepaged_alloc_hugepage(wait
);
841 if (unlikely(!*hpage
))
848 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
857 * If mmap_sem temporarily dropped, revalidate vma
858 * before taking mmap_sem.
859 * Return 0 if succeeds, otherwise return none-zero
863 static int hugepage_vma_revalidate(struct mm_struct
*mm
, unsigned long address
,
864 struct vm_area_struct
**vmap
)
866 struct vm_area_struct
*vma
;
867 unsigned long hstart
, hend
;
869 if (unlikely(khugepaged_test_exit(mm
)))
870 return SCAN_ANY_PROCESS
;
872 *vmap
= vma
= find_vma(mm
, address
);
874 return SCAN_VMA_NULL
;
876 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
877 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
878 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
879 return SCAN_ADDRESS_RANGE
;
880 if (!hugepage_vma_check(vma
, vma
->vm_flags
))
881 return SCAN_VMA_CHECK
;
886 * Bring missing pages in from swap, to complete THP collapse.
887 * Only done if khugepaged_scan_pmd believes it is worthwhile.
889 * Called and returns without pte mapped or spinlocks held,
890 * but with mmap_sem held to protect against vma changes.
893 static bool __collapse_huge_page_swapin(struct mm_struct
*mm
,
894 struct vm_area_struct
*vma
,
895 unsigned long address
, pmd_t
*pmd
,
900 struct vm_fault vmf
= {
903 .flags
= FAULT_FLAG_ALLOW_RETRY
,
905 .pgoff
= linear_page_index(vma
, address
),
908 /* we only decide to swapin, if there is enough young ptes */
909 if (referenced
< HPAGE_PMD_NR
/2) {
910 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
913 vmf
.pte
= pte_offset_map(pmd
, address
);
914 for (; vmf
.address
< address
+ HPAGE_PMD_NR
*PAGE_SIZE
;
915 vmf
.pte
++, vmf
.address
+= PAGE_SIZE
) {
916 vmf
.orig_pte
= *vmf
.pte
;
917 if (!is_swap_pte(vmf
.orig_pte
))
920 ret
= do_swap_page(&vmf
);
922 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
923 if (ret
& VM_FAULT_RETRY
) {
924 down_read(&mm
->mmap_sem
);
925 if (hugepage_vma_revalidate(mm
, address
, &vmf
.vma
)) {
926 /* vma is no longer available, don't continue to swapin */
927 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
930 /* check if the pmd is still valid */
931 if (mm_find_pmd(mm
, address
) != pmd
) {
932 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
936 if (ret
& VM_FAULT_ERROR
) {
937 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
940 /* pte is unmapped now, we need to map it */
941 vmf
.pte
= pte_offset_map(pmd
, vmf
.address
);
945 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 1);
949 static void collapse_huge_page(struct mm_struct
*mm
,
950 unsigned long address
,
952 int node
, int referenced
)
957 struct page
*new_page
;
958 spinlock_t
*pmd_ptl
, *pte_ptl
;
959 int isolated
= 0, result
= 0;
960 struct mem_cgroup
*memcg
;
961 struct vm_area_struct
*vma
;
962 unsigned long mmun_start
; /* For mmu_notifiers */
963 unsigned long mmun_end
; /* For mmu_notifiers */
966 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
968 /* Only allocate from the target node */
969 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
972 * Before allocating the hugepage, release the mmap_sem read lock.
973 * The allocation can take potentially a long time if it involves
974 * sync compaction, and we do not need to hold the mmap_sem during
975 * that. We will recheck the vma after taking it again in write mode.
977 up_read(&mm
->mmap_sem
);
978 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
980 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
984 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
, &memcg
, true))) {
985 result
= SCAN_CGROUP_CHARGE_FAIL
;
989 down_read(&mm
->mmap_sem
);
990 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
992 mem_cgroup_cancel_charge(new_page
, memcg
, true);
993 up_read(&mm
->mmap_sem
);
997 pmd
= mm_find_pmd(mm
, address
);
999 result
= SCAN_PMD_NULL
;
1000 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1001 up_read(&mm
->mmap_sem
);
1006 * __collapse_huge_page_swapin always returns with mmap_sem locked.
1007 * If it fails, we release mmap_sem and jump out_nolock.
1008 * Continuing to collapse causes inconsistency.
1010 if (!__collapse_huge_page_swapin(mm
, vma
, address
, pmd
, referenced
)) {
1011 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1012 up_read(&mm
->mmap_sem
);
1016 up_read(&mm
->mmap_sem
);
1018 * Prevent all access to pagetables with the exception of
1019 * gup_fast later handled by the ptep_clear_flush and the VM
1020 * handled by the anon_vma lock + PG_lock.
1022 down_write(&mm
->mmap_sem
);
1023 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
1026 /* check if the pmd is still valid */
1027 if (mm_find_pmd(mm
, address
) != pmd
)
1030 anon_vma_lock_write(vma
->anon_vma
);
1032 pte
= pte_offset_map(pmd
, address
);
1033 pte_ptl
= pte_lockptr(mm
, pmd
);
1035 mmun_start
= address
;
1036 mmun_end
= address
+ HPAGE_PMD_SIZE
;
1037 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1038 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
1040 * After this gup_fast can't run anymore. This also removes
1041 * any huge TLB entry from the CPU so we won't allow
1042 * huge and small TLB entries for the same virtual address
1043 * to avoid the risk of CPU bugs in that area.
1045 _pmd
= pmdp_collapse_flush(vma
, address
, pmd
);
1046 spin_unlock(pmd_ptl
);
1047 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1050 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1051 spin_unlock(pte_ptl
);
1053 if (unlikely(!isolated
)) {
1056 BUG_ON(!pmd_none(*pmd
));
1058 * We can only use set_pmd_at when establishing
1059 * hugepmds and never for establishing regular pmds that
1060 * points to regular pagetables. Use pmd_populate for that
1062 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
1063 spin_unlock(pmd_ptl
);
1064 anon_vma_unlock_write(vma
->anon_vma
);
1070 * All pages are isolated and locked so anon_vma rmap
1071 * can't run anymore.
1073 anon_vma_unlock_write(vma
->anon_vma
);
1075 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
1077 __SetPageUptodate(new_page
);
1078 pgtable
= pmd_pgtable(_pmd
);
1080 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1081 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1084 * spin_lock() below is not the equivalent of smp_wmb(), so
1085 * this is needed to avoid the copy_huge_page writes to become
1086 * visible after the set_pmd_at() write.
1091 BUG_ON(!pmd_none(*pmd
));
1092 page_add_new_anon_rmap(new_page
, vma
, address
, true);
1093 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1094 lru_cache_add_active_or_unevictable(new_page
, vma
);
1095 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
1096 set_pmd_at(mm
, address
, pmd
, _pmd
);
1097 update_mmu_cache_pmd(vma
, address
, pmd
);
1098 spin_unlock(pmd_ptl
);
1102 khugepaged_pages_collapsed
++;
1103 result
= SCAN_SUCCEED
;
1105 up_write(&mm
->mmap_sem
);
1107 trace_mm_collapse_huge_page(mm
, isolated
, result
);
1110 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1114 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1115 struct vm_area_struct
*vma
,
1116 unsigned long address
,
1117 struct page
**hpage
)
1121 int ret
= 0, none_or_zero
= 0, result
= 0, referenced
= 0;
1122 struct page
*page
= NULL
;
1123 unsigned long _address
;
1125 int node
= NUMA_NO_NODE
, unmapped
= 0;
1126 bool writable
= false;
1128 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1130 pmd
= mm_find_pmd(mm
, address
);
1132 result
= SCAN_PMD_NULL
;
1136 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1137 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1138 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1139 _pte
++, _address
+= PAGE_SIZE
) {
1140 pte_t pteval
= *_pte
;
1141 if (is_swap_pte(pteval
)) {
1142 if (++unmapped
<= khugepaged_max_ptes_swap
) {
1145 result
= SCAN_EXCEED_SWAP_PTE
;
1149 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
1150 if (!userfaultfd_armed(vma
) &&
1151 ++none_or_zero
<= khugepaged_max_ptes_none
) {
1154 result
= SCAN_EXCEED_NONE_PTE
;
1158 if (!pte_present(pteval
)) {
1159 result
= SCAN_PTE_NON_PRESENT
;
1162 if (pte_write(pteval
))
1165 page
= vm_normal_page(vma
, _address
, pteval
);
1166 if (unlikely(!page
)) {
1167 result
= SCAN_PAGE_NULL
;
1171 /* TODO: teach khugepaged to collapse THP mapped with pte */
1172 if (PageCompound(page
)) {
1173 result
= SCAN_PAGE_COMPOUND
;
1178 * Record which node the original page is from and save this
1179 * information to khugepaged_node_load[].
1180 * Khupaged will allocate hugepage from the node has the max
1183 node
= page_to_nid(page
);
1184 if (khugepaged_scan_abort(node
)) {
1185 result
= SCAN_SCAN_ABORT
;
1188 khugepaged_node_load
[node
]++;
1189 if (!PageLRU(page
)) {
1190 result
= SCAN_PAGE_LRU
;
1193 if (PageLocked(page
)) {
1194 result
= SCAN_PAGE_LOCK
;
1197 if (!PageAnon(page
)) {
1198 result
= SCAN_PAGE_ANON
;
1203 * cannot use mapcount: can't collapse if there's a gup pin.
1204 * The page must only be referenced by the scanned process
1205 * and page swap cache.
1207 if (page_count(page
) != 1 + PageSwapCache(page
)) {
1208 result
= SCAN_PAGE_COUNT
;
1211 if (pte_young(pteval
) ||
1212 page_is_young(page
) || PageReferenced(page
) ||
1213 mmu_notifier_test_young(vma
->vm_mm
, address
))
1218 result
= SCAN_SUCCEED
;
1221 result
= SCAN_LACK_REFERENCED_PAGE
;
1224 result
= SCAN_PAGE_RO
;
1227 pte_unmap_unlock(pte
, ptl
);
1229 node
= khugepaged_find_target_node();
1230 /* collapse_huge_page will return with the mmap_sem released */
1231 collapse_huge_page(mm
, address
, hpage
, node
, referenced
);
1234 trace_mm_khugepaged_scan_pmd(mm
, page
, writable
, referenced
,
1235 none_or_zero
, result
, unmapped
);
1239 static void collect_mm_slot(struct mm_slot
*mm_slot
)
1241 struct mm_struct
*mm
= mm_slot
->mm
;
1243 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1245 if (khugepaged_test_exit(mm
)) {
1247 hash_del(&mm_slot
->hash
);
1248 list_del(&mm_slot
->mm_node
);
1251 * Not strictly needed because the mm exited already.
1253 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1256 /* khugepaged_mm_lock actually not necessary for the below */
1257 free_mm_slot(mm_slot
);
1262 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1263 static void retract_page_tables(struct address_space
*mapping
, pgoff_t pgoff
)
1265 struct vm_area_struct
*vma
;
1266 struct mm_struct
*mm
;
1270 i_mmap_lock_write(mapping
);
1271 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1272 /* probably overkill */
1275 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
1276 if (addr
& ~HPAGE_PMD_MASK
)
1278 if (vma
->vm_end
< addr
+ HPAGE_PMD_SIZE
)
1281 pmd
= mm_find_pmd(mm
, addr
);
1285 * We need exclusive mmap_sem to retract page table.
1286 * If trylock fails we would end up with pte-mapped THP after
1287 * re-fault. Not ideal, but it's more important to not disturb
1288 * the system too much.
1290 if (down_write_trylock(&mm
->mmap_sem
)) {
1291 if (!khugepaged_test_exit(mm
)) {
1292 spinlock_t
*ptl
= pmd_lock(mm
, pmd
);
1293 /* assume page table is clear */
1294 _pmd
= pmdp_collapse_flush(vma
, addr
, pmd
);
1297 pte_free(mm
, pmd_pgtable(_pmd
));
1299 up_write(&mm
->mmap_sem
);
1302 i_mmap_unlock_write(mapping
);
1306 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1308 * Basic scheme is simple, details are more complex:
1309 * - allocate and lock a new huge page;
1310 * - scan over radix tree replacing old pages the new one
1311 * + swap in pages if necessary;
1313 * + keep old pages around in case if rollback is required;
1314 * - if replacing succeed:
1317 * + unlock huge page;
1318 * - if replacing failed;
1319 * + put all pages back and unfreeze them;
1320 * + restore gaps in the radix-tree;
1321 * + unlock and free huge page;
1323 static void collapse_shmem(struct mm_struct
*mm
,
1324 struct address_space
*mapping
, pgoff_t start
,
1325 struct page
**hpage
, int node
)
1328 struct page
*page
, *new_page
, *tmp
;
1329 struct mem_cgroup
*memcg
;
1330 pgoff_t index
, end
= start
+ HPAGE_PMD_NR
;
1331 LIST_HEAD(pagelist
);
1332 struct radix_tree_iter iter
;
1334 int nr_none
= 0, result
= SCAN_SUCCEED
;
1336 VM_BUG_ON(start
& (HPAGE_PMD_NR
- 1));
1338 /* Only allocate from the target node */
1339 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
1341 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
1343 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
1347 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
, &memcg
, true))) {
1348 result
= SCAN_CGROUP_CHARGE_FAIL
;
1352 __SetPageLocked(new_page
);
1353 __SetPageSwapBacked(new_page
);
1354 new_page
->index
= start
;
1355 new_page
->mapping
= mapping
;
1358 * At this point the new_page is locked and not up-to-date.
1359 * It's safe to insert it into the page cache, because nobody would
1360 * be able to map it or use it in another way until we unlock it.
1364 xa_lock_irq(&mapping
->i_pages
);
1365 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
1366 int n
= min(iter
.index
, end
) - index
;
1369 * Stop if extent has been hole-punched, and is now completely
1370 * empty (the more obvious i_size_read() check would take an
1371 * irq-unsafe seqlock on 32-bit).
1373 if (n
>= HPAGE_PMD_NR
) {
1374 result
= SCAN_TRUNCATED
;
1379 * Handle holes in the radix tree: charge it from shmem and
1380 * insert relevant subpage of new_page into the radix-tree.
1382 if (n
&& !shmem_charge(mapping
->host
, n
)) {
1386 for (; index
< min(iter
.index
, end
); index
++) {
1387 radix_tree_insert(&mapping
->i_pages
, index
,
1388 new_page
+ (index
% HPAGE_PMD_NR
));
1396 page
= radix_tree_deref_slot_protected(slot
,
1397 &mapping
->i_pages
.xa_lock
);
1398 if (radix_tree_exceptional_entry(page
) || !PageUptodate(page
)) {
1399 xa_unlock_irq(&mapping
->i_pages
);
1400 /* swap in or instantiate fallocated page */
1401 if (shmem_getpage(mapping
->host
, index
, &page
,
1406 } else if (trylock_page(page
)) {
1408 xa_unlock_irq(&mapping
->i_pages
);
1410 result
= SCAN_PAGE_LOCK
;
1415 * The page must be locked, so we can drop the i_pages lock
1416 * without racing with truncate.
1418 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1419 VM_BUG_ON_PAGE(!PageUptodate(page
), page
);
1422 * If file was truncated then extended, or hole-punched, before
1423 * we locked the first page, then a THP might be there already.
1425 if (PageTransCompound(page
)) {
1426 result
= SCAN_PAGE_COMPOUND
;
1430 if (page_mapping(page
) != mapping
) {
1431 result
= SCAN_TRUNCATED
;
1435 if (isolate_lru_page(page
)) {
1436 result
= SCAN_DEL_PAGE_LRU
;
1440 if (page_mapped(page
))
1441 unmap_mapping_pages(mapping
, index
, 1, false);
1443 xa_lock_irq(&mapping
->i_pages
);
1445 slot
= radix_tree_lookup_slot(&mapping
->i_pages
, index
);
1446 VM_BUG_ON_PAGE(page
!= radix_tree_deref_slot_protected(slot
,
1447 &mapping
->i_pages
.xa_lock
), page
);
1448 VM_BUG_ON_PAGE(page_mapped(page
), page
);
1451 * The page is expected to have page_count() == 3:
1452 * - we hold a pin on it;
1453 * - one reference from radix tree;
1454 * - one from isolate_lru_page;
1456 if (!page_ref_freeze(page
, 3)) {
1457 result
= SCAN_PAGE_COUNT
;
1458 xa_unlock_irq(&mapping
->i_pages
);
1459 putback_lru_page(page
);
1464 * Add the page to the list to be able to undo the collapse if
1465 * something go wrong.
1467 list_add_tail(&page
->lru
, &pagelist
);
1469 /* Finally, replace with the new page. */
1470 radix_tree_replace_slot(&mapping
->i_pages
, slot
,
1471 new_page
+ (index
% HPAGE_PMD_NR
));
1473 slot
= radix_tree_iter_resume(slot
, &iter
);
1483 * Handle hole in radix tree at the end of the range.
1484 * This code only triggers if there's nothing in radix tree
1488 int n
= end
- index
;
1490 /* Stop if extent has been truncated, and is now empty */
1491 if (n
>= HPAGE_PMD_NR
) {
1492 result
= SCAN_TRUNCATED
;
1495 if (!shmem_charge(mapping
->host
, n
)) {
1499 for (; index
< end
; index
++) {
1500 radix_tree_insert(&mapping
->i_pages
, index
,
1501 new_page
+ (index
% HPAGE_PMD_NR
));
1506 __inc_node_page_state(new_page
, NR_SHMEM_THPS
);
1508 struct zone
*zone
= page_zone(new_page
);
1510 __mod_node_page_state(zone
->zone_pgdat
, NR_FILE_PAGES
, nr_none
);
1511 __mod_node_page_state(zone
->zone_pgdat
, NR_SHMEM
, nr_none
);
1515 xa_unlock_irq(&mapping
->i_pages
);
1518 if (result
== SCAN_SUCCEED
) {
1520 * Replacing old pages with new one has succeed, now we need to
1521 * copy the content and free old pages.
1524 list_for_each_entry_safe(page
, tmp
, &pagelist
, lru
) {
1525 while (index
< page
->index
) {
1526 clear_highpage(new_page
+ (index
% HPAGE_PMD_NR
));
1529 copy_highpage(new_page
+ (page
->index
% HPAGE_PMD_NR
),
1531 list_del(&page
->lru
);
1532 page
->mapping
= NULL
;
1533 page_ref_unfreeze(page
, 1);
1534 ClearPageActive(page
);
1535 ClearPageUnevictable(page
);
1540 while (index
< end
) {
1541 clear_highpage(new_page
+ (index
% HPAGE_PMD_NR
));
1545 SetPageUptodate(new_page
);
1546 page_ref_add(new_page
, HPAGE_PMD_NR
- 1);
1547 set_page_dirty(new_page
);
1548 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1549 lru_cache_add_anon(new_page
);
1552 * Remove pte page tables, so we can re-fault the page as huge.
1554 retract_page_tables(mapping
, start
);
1557 khugepaged_pages_collapsed
++;
1559 /* Something went wrong: rollback changes to the radix-tree */
1560 xa_lock_irq(&mapping
->i_pages
);
1561 mapping
->nrpages
-= nr_none
;
1562 shmem_uncharge(mapping
->host
, nr_none
);
1564 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
1565 if (iter
.index
>= end
)
1567 page
= list_first_entry_or_null(&pagelist
,
1569 if (!page
|| iter
.index
< page
->index
) {
1573 /* Put holes back where they were */
1574 radix_tree_delete(&mapping
->i_pages
, iter
.index
);
1578 VM_BUG_ON_PAGE(page
->index
!= iter
.index
, page
);
1580 /* Unfreeze the page. */
1581 list_del(&page
->lru
);
1582 page_ref_unfreeze(page
, 2);
1583 radix_tree_replace_slot(&mapping
->i_pages
, slot
, page
);
1584 slot
= radix_tree_iter_resume(slot
, &iter
);
1585 xa_unlock_irq(&mapping
->i_pages
);
1587 putback_lru_page(page
);
1588 xa_lock_irq(&mapping
->i_pages
);
1591 xa_unlock_irq(&mapping
->i_pages
);
1593 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1594 new_page
->mapping
= NULL
;
1597 unlock_page(new_page
);
1599 VM_BUG_ON(!list_empty(&pagelist
));
1600 /* TODO: tracepoints */
1603 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1604 struct address_space
*mapping
,
1605 pgoff_t start
, struct page
**hpage
)
1607 struct page
*page
= NULL
;
1608 struct radix_tree_iter iter
;
1611 int node
= NUMA_NO_NODE
;
1612 int result
= SCAN_SUCCEED
;
1616 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1618 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
1619 if (iter
.index
>= start
+ HPAGE_PMD_NR
)
1622 page
= radix_tree_deref_slot(slot
);
1623 if (radix_tree_deref_retry(page
)) {
1624 slot
= radix_tree_iter_retry(&iter
);
1628 if (radix_tree_exception(page
)) {
1629 if (++swap
> khugepaged_max_ptes_swap
) {
1630 result
= SCAN_EXCEED_SWAP_PTE
;
1636 if (PageTransCompound(page
)) {
1637 result
= SCAN_PAGE_COMPOUND
;
1641 node
= page_to_nid(page
);
1642 if (khugepaged_scan_abort(node
)) {
1643 result
= SCAN_SCAN_ABORT
;
1646 khugepaged_node_load
[node
]++;
1648 if (!PageLRU(page
)) {
1649 result
= SCAN_PAGE_LRU
;
1653 if (page_count(page
) != 1 + page_mapcount(page
)) {
1654 result
= SCAN_PAGE_COUNT
;
1659 * We probably should check if the page is referenced here, but
1660 * nobody would transfer pte_young() to PageReferenced() for us.
1661 * And rmap walk here is just too costly...
1666 if (need_resched()) {
1667 slot
= radix_tree_iter_resume(slot
, &iter
);
1673 if (result
== SCAN_SUCCEED
) {
1674 if (present
< HPAGE_PMD_NR
- khugepaged_max_ptes_none
) {
1675 result
= SCAN_EXCEED_NONE_PTE
;
1677 node
= khugepaged_find_target_node();
1678 collapse_shmem(mm
, mapping
, start
, hpage
, node
);
1682 /* TODO: tracepoints */
1685 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1686 struct address_space
*mapping
,
1687 pgoff_t start
, struct page
**hpage
)
1693 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
1694 struct page
**hpage
)
1695 __releases(&khugepaged_mm_lock
)
1696 __acquires(&khugepaged_mm_lock
)
1698 struct mm_slot
*mm_slot
;
1699 struct mm_struct
*mm
;
1700 struct vm_area_struct
*vma
;
1704 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1706 if (khugepaged_scan
.mm_slot
)
1707 mm_slot
= khugepaged_scan
.mm_slot
;
1709 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
1710 struct mm_slot
, mm_node
);
1711 khugepaged_scan
.address
= 0;
1712 khugepaged_scan
.mm_slot
= mm_slot
;
1714 spin_unlock(&khugepaged_mm_lock
);
1718 * Don't wait for semaphore (to avoid long wait times). Just move to
1719 * the next mm on the list.
1722 if (unlikely(!down_read_trylock(&mm
->mmap_sem
)))
1723 goto breakouterloop_mmap_sem
;
1724 if (likely(!khugepaged_test_exit(mm
)))
1725 vma
= find_vma(mm
, khugepaged_scan
.address
);
1728 for (; vma
; vma
= vma
->vm_next
) {
1729 unsigned long hstart
, hend
;
1732 if (unlikely(khugepaged_test_exit(mm
))) {
1736 if (!hugepage_vma_check(vma
, vma
->vm_flags
)) {
1741 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1742 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1745 if (khugepaged_scan
.address
> hend
)
1747 if (khugepaged_scan
.address
< hstart
)
1748 khugepaged_scan
.address
= hstart
;
1749 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
1751 while (khugepaged_scan
.address
< hend
) {
1754 if (unlikely(khugepaged_test_exit(mm
)))
1755 goto breakouterloop
;
1757 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
1758 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
1760 if (shmem_file(vma
->vm_file
)) {
1762 pgoff_t pgoff
= linear_page_index(vma
,
1763 khugepaged_scan
.address
);
1764 if (!shmem_huge_enabled(vma
))
1766 file
= get_file(vma
->vm_file
);
1767 up_read(&mm
->mmap_sem
);
1769 khugepaged_scan_shmem(mm
, file
->f_mapping
,
1773 ret
= khugepaged_scan_pmd(mm
, vma
,
1774 khugepaged_scan
.address
,
1777 /* move to next address */
1778 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
1779 progress
+= HPAGE_PMD_NR
;
1781 /* we released mmap_sem so break loop */
1782 goto breakouterloop_mmap_sem
;
1783 if (progress
>= pages
)
1784 goto breakouterloop
;
1788 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
1789 breakouterloop_mmap_sem
:
1791 spin_lock(&khugepaged_mm_lock
);
1792 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
1794 * Release the current mm_slot if this mm is about to die, or
1795 * if we scanned all vmas of this mm.
1797 if (khugepaged_test_exit(mm
) || !vma
) {
1799 * Make sure that if mm_users is reaching zero while
1800 * khugepaged runs here, khugepaged_exit will find
1801 * mm_slot not pointing to the exiting mm.
1803 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
1804 khugepaged_scan
.mm_slot
= list_entry(
1805 mm_slot
->mm_node
.next
,
1806 struct mm_slot
, mm_node
);
1807 khugepaged_scan
.address
= 0;
1809 khugepaged_scan
.mm_slot
= NULL
;
1810 khugepaged_full_scans
++;
1813 collect_mm_slot(mm_slot
);
1819 static int khugepaged_has_work(void)
1821 return !list_empty(&khugepaged_scan
.mm_head
) &&
1822 khugepaged_enabled();
1825 static int khugepaged_wait_event(void)
1827 return !list_empty(&khugepaged_scan
.mm_head
) ||
1828 kthread_should_stop();
1831 static void khugepaged_do_scan(void)
1833 struct page
*hpage
= NULL
;
1834 unsigned int progress
= 0, pass_through_head
= 0;
1835 unsigned int pages
= khugepaged_pages_to_scan
;
1838 barrier(); /* write khugepaged_pages_to_scan to local stack */
1840 while (progress
< pages
) {
1841 if (!khugepaged_prealloc_page(&hpage
, &wait
))
1846 if (unlikely(kthread_should_stop() || try_to_freeze()))
1849 spin_lock(&khugepaged_mm_lock
);
1850 if (!khugepaged_scan
.mm_slot
)
1851 pass_through_head
++;
1852 if (khugepaged_has_work() &&
1853 pass_through_head
< 2)
1854 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
1858 spin_unlock(&khugepaged_mm_lock
);
1861 if (!IS_ERR_OR_NULL(hpage
))
1865 static bool khugepaged_should_wakeup(void)
1867 return kthread_should_stop() ||
1868 time_after_eq(jiffies
, khugepaged_sleep_expire
);
1871 static void khugepaged_wait_work(void)
1873 if (khugepaged_has_work()) {
1874 const unsigned long scan_sleep_jiffies
=
1875 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
);
1877 if (!scan_sleep_jiffies
)
1880 khugepaged_sleep_expire
= jiffies
+ scan_sleep_jiffies
;
1881 wait_event_freezable_timeout(khugepaged_wait
,
1882 khugepaged_should_wakeup(),
1883 scan_sleep_jiffies
);
1887 if (khugepaged_enabled())
1888 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
1891 static int khugepaged(void *none
)
1893 struct mm_slot
*mm_slot
;
1896 set_user_nice(current
, MAX_NICE
);
1898 while (!kthread_should_stop()) {
1899 khugepaged_do_scan();
1900 khugepaged_wait_work();
1903 spin_lock(&khugepaged_mm_lock
);
1904 mm_slot
= khugepaged_scan
.mm_slot
;
1905 khugepaged_scan
.mm_slot
= NULL
;
1907 collect_mm_slot(mm_slot
);
1908 spin_unlock(&khugepaged_mm_lock
);
1912 static void set_recommended_min_free_kbytes(void)
1916 unsigned long recommended_min
;
1918 for_each_populated_zone(zone
) {
1920 * We don't need to worry about fragmentation of
1921 * ZONE_MOVABLE since it only has movable pages.
1923 if (zone_idx(zone
) > gfp_zone(GFP_USER
))
1929 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1930 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
1933 * Make sure that on average at least two pageblocks are almost free
1934 * of another type, one for a migratetype to fall back to and a
1935 * second to avoid subsequent fallbacks of other types There are 3
1936 * MIGRATE_TYPES we care about.
1938 recommended_min
+= pageblock_nr_pages
* nr_zones
*
1939 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
1941 /* don't ever allow to reserve more than 5% of the lowmem */
1942 recommended_min
= min(recommended_min
,
1943 (unsigned long) nr_free_buffer_pages() / 20);
1944 recommended_min
<<= (PAGE_SHIFT
-10);
1946 if (recommended_min
> min_free_kbytes
) {
1947 if (user_min_free_kbytes
>= 0)
1948 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1949 min_free_kbytes
, recommended_min
);
1951 min_free_kbytes
= recommended_min
;
1953 setup_per_zone_wmarks();
1956 int start_stop_khugepaged(void)
1960 mutex_lock(&khugepaged_mutex
);
1961 if (khugepaged_enabled()) {
1962 if (!khugepaged_thread
)
1963 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
1965 if (IS_ERR(khugepaged_thread
)) {
1966 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1967 err
= PTR_ERR(khugepaged_thread
);
1968 khugepaged_thread
= NULL
;
1972 if (!list_empty(&khugepaged_scan
.mm_head
))
1973 wake_up_interruptible(&khugepaged_wait
);
1975 set_recommended_min_free_kbytes();
1976 } else if (khugepaged_thread
) {
1977 kthread_stop(khugepaged_thread
);
1978 khugepaged_thread
= NULL
;
1981 mutex_unlock(&khugepaged_mutex
);
1985 void khugepaged_min_free_kbytes_update(void)
1987 mutex_lock(&khugepaged_mutex
);
1988 if (khugepaged_enabled() && khugepaged_thread
)
1989 set_recommended_min_free_kbytes();
1990 mutex_unlock(&khugepaged_mutex
);