1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
78 EXPORT_SYMBOL(memory_cgrp_subsys
);
80 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket
;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem
;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly
;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
103 static const char *const mem_cgroup_lru_names
[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node
{
121 struct rb_root rb_root
;
122 struct rb_node
*rb_rightmost
;
126 struct mem_cgroup_tree
{
127 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
133 struct mem_cgroup_eventfd_list
{
134 struct list_head list
;
135 struct eventfd_ctx
*eventfd
;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event
{
143 * memcg which the event belongs to.
145 struct mem_cgroup
*memcg
;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx
*eventfd
;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list
;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event
)(struct mem_cgroup
*memcg
,
160 struct eventfd_ctx
*eventfd
, const char *args
);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event
)(struct mem_cgroup
*memcg
,
167 struct eventfd_ctx
*eventfd
);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
173 wait_queue_head_t
*wqh
;
174 wait_queue_entry_t wait
;
175 struct work_struct remove
;
178 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
179 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct
{
191 spinlock_t lock
; /* for from, to */
192 struct mm_struct
*mm
;
193 struct mem_cgroup
*from
;
194 struct mem_cgroup
*to
;
196 unsigned long precharge
;
197 unsigned long moved_charge
;
198 unsigned long moved_swap
;
199 struct task_struct
*moving_task
; /* a task moving charges */
200 wait_queue_head_t waitq
; /* a waitq for other context */
202 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
203 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON
,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
221 /* for encoding cft->private value on file */
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
241 #define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
244 iter = mem_cgroup_iter(root, iter, NULL))
246 #define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
251 static inline bool should_force_charge(void)
253 return tsk_is_oom_victim(current
) || fatal_signal_pending(current
) ||
254 (current
->flags
& PF_EXITING
);
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
261 memcg
= root_mem_cgroup
;
262 return &memcg
->vmpressure
;
265 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
267 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
270 #ifdef CONFIG_MEMCG_KMEM
272 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
273 * The main reason for not using cgroup id for this:
274 * this works better in sparse environments, where we have a lot of memcgs,
275 * but only a few kmem-limited. Or also, if we have, for instance, 200
276 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
277 * 200 entry array for that.
279 * The current size of the caches array is stored in memcg_nr_cache_ids. It
280 * will double each time we have to increase it.
282 static DEFINE_IDA(memcg_cache_ida
);
283 int memcg_nr_cache_ids
;
285 /* Protects memcg_nr_cache_ids */
286 static DECLARE_RWSEM(memcg_cache_ids_sem
);
288 void memcg_get_cache_ids(void)
290 down_read(&memcg_cache_ids_sem
);
293 void memcg_put_cache_ids(void)
295 up_read(&memcg_cache_ids_sem
);
299 * MIN_SIZE is different than 1, because we would like to avoid going through
300 * the alloc/free process all the time. In a small machine, 4 kmem-limited
301 * cgroups is a reasonable guess. In the future, it could be a parameter or
302 * tunable, but that is strictly not necessary.
304 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305 * this constant directly from cgroup, but it is understandable that this is
306 * better kept as an internal representation in cgroup.c. In any case, the
307 * cgrp_id space is not getting any smaller, and we don't have to necessarily
308 * increase ours as well if it increases.
310 #define MEMCG_CACHES_MIN_SIZE 4
311 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314 * A lot of the calls to the cache allocation functions are expected to be
315 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316 * conditional to this static branch, we'll have to allow modules that does
317 * kmem_cache_alloc and the such to see this symbol as well
319 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
320 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
322 struct workqueue_struct
*memcg_kmem_cache_wq
;
324 static int memcg_shrinker_map_size
;
325 static DEFINE_MUTEX(memcg_shrinker_map_mutex
);
327 static void memcg_free_shrinker_map_rcu(struct rcu_head
*head
)
329 kvfree(container_of(head
, struct memcg_shrinker_map
, rcu
));
332 static int memcg_expand_one_shrinker_map(struct mem_cgroup
*memcg
,
333 int size
, int old_size
)
335 struct memcg_shrinker_map
*new, *old
;
338 lockdep_assert_held(&memcg_shrinker_map_mutex
);
341 old
= rcu_dereference_protected(
342 mem_cgroup_nodeinfo(memcg
, nid
)->shrinker_map
, true);
343 /* Not yet online memcg */
347 new = kvmalloc(sizeof(*new) + size
, GFP_KERNEL
);
351 /* Set all old bits, clear all new bits */
352 memset(new->map
, (int)0xff, old_size
);
353 memset((void *)new->map
+ old_size
, 0, size
- old_size
);
355 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, new);
356 call_rcu(&old
->rcu
, memcg_free_shrinker_map_rcu
);
362 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
)
364 struct mem_cgroup_per_node
*pn
;
365 struct memcg_shrinker_map
*map
;
368 if (mem_cgroup_is_root(memcg
))
372 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
373 map
= rcu_dereference_protected(pn
->shrinker_map
, true);
376 rcu_assign_pointer(pn
->shrinker_map
, NULL
);
380 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
382 struct memcg_shrinker_map
*map
;
383 int nid
, size
, ret
= 0;
385 if (mem_cgroup_is_root(memcg
))
388 mutex_lock(&memcg_shrinker_map_mutex
);
389 size
= memcg_shrinker_map_size
;
391 map
= kvzalloc(sizeof(*map
) + size
, GFP_KERNEL
);
393 memcg_free_shrinker_maps(memcg
);
397 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, map
);
399 mutex_unlock(&memcg_shrinker_map_mutex
);
404 int memcg_expand_shrinker_maps(int new_id
)
406 int size
, old_size
, ret
= 0;
407 struct mem_cgroup
*memcg
;
409 size
= DIV_ROUND_UP(new_id
+ 1, BITS_PER_LONG
) * sizeof(unsigned long);
410 old_size
= memcg_shrinker_map_size
;
411 if (size
<= old_size
)
414 mutex_lock(&memcg_shrinker_map_mutex
);
415 if (!root_mem_cgroup
)
418 for_each_mem_cgroup(memcg
) {
419 if (mem_cgroup_is_root(memcg
))
421 ret
= memcg_expand_one_shrinker_map(memcg
, size
, old_size
);
423 mem_cgroup_iter_break(NULL
, memcg
);
429 memcg_shrinker_map_size
= size
;
430 mutex_unlock(&memcg_shrinker_map_mutex
);
434 void memcg_set_shrinker_bit(struct mem_cgroup
*memcg
, int nid
, int shrinker_id
)
436 if (shrinker_id
>= 0 && memcg
&& !mem_cgroup_is_root(memcg
)) {
437 struct memcg_shrinker_map
*map
;
440 map
= rcu_dereference(memcg
->nodeinfo
[nid
]->shrinker_map
);
441 /* Pairs with smp mb in shrink_slab() */
442 smp_mb__before_atomic();
443 set_bit(shrinker_id
, map
->map
);
448 #else /* CONFIG_MEMCG_KMEM */
449 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
453 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
) { }
454 #endif /* CONFIG_MEMCG_KMEM */
457 * mem_cgroup_css_from_page - css of the memcg associated with a page
458 * @page: page of interest
460 * If memcg is bound to the default hierarchy, css of the memcg associated
461 * with @page is returned. The returned css remains associated with @page
462 * until it is released.
464 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
467 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
469 struct mem_cgroup
*memcg
;
471 memcg
= page
->mem_cgroup
;
473 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
474 memcg
= root_mem_cgroup
;
480 * page_cgroup_ino - return inode number of the memcg a page is charged to
483 * Look up the closest online ancestor of the memory cgroup @page is charged to
484 * and return its inode number or 0 if @page is not charged to any cgroup. It
485 * is safe to call this function without holding a reference to @page.
487 * Note, this function is inherently racy, because there is nothing to prevent
488 * the cgroup inode from getting torn down and potentially reallocated a moment
489 * after page_cgroup_ino() returns, so it only should be used by callers that
490 * do not care (such as procfs interfaces).
492 ino_t
page_cgroup_ino(struct page
*page
)
494 struct mem_cgroup
*memcg
;
495 unsigned long ino
= 0;
498 memcg
= READ_ONCE(page
->mem_cgroup
);
499 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
500 memcg
= parent_mem_cgroup(memcg
);
502 ino
= cgroup_ino(memcg
->css
.cgroup
);
507 static struct mem_cgroup_per_node
*
508 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
510 int nid
= page_to_nid(page
);
512 return memcg
->nodeinfo
[nid
];
515 static struct mem_cgroup_tree_per_node
*
516 soft_limit_tree_node(int nid
)
518 return soft_limit_tree
.rb_tree_per_node
[nid
];
521 static struct mem_cgroup_tree_per_node
*
522 soft_limit_tree_from_page(struct page
*page
)
524 int nid
= page_to_nid(page
);
526 return soft_limit_tree
.rb_tree_per_node
[nid
];
529 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
530 struct mem_cgroup_tree_per_node
*mctz
,
531 unsigned long new_usage_in_excess
)
533 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
534 struct rb_node
*parent
= NULL
;
535 struct mem_cgroup_per_node
*mz_node
;
536 bool rightmost
= true;
541 mz
->usage_in_excess
= new_usage_in_excess
;
542 if (!mz
->usage_in_excess
)
546 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
548 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
) {
554 * We can't avoid mem cgroups that are over their soft
555 * limit by the same amount
557 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
562 mctz
->rb_rightmost
= &mz
->tree_node
;
564 rb_link_node(&mz
->tree_node
, parent
, p
);
565 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
569 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
570 struct mem_cgroup_tree_per_node
*mctz
)
575 if (&mz
->tree_node
== mctz
->rb_rightmost
)
576 mctz
->rb_rightmost
= rb_prev(&mz
->tree_node
);
578 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
582 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
583 struct mem_cgroup_tree_per_node
*mctz
)
587 spin_lock_irqsave(&mctz
->lock
, flags
);
588 __mem_cgroup_remove_exceeded(mz
, mctz
);
589 spin_unlock_irqrestore(&mctz
->lock
, flags
);
592 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
594 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
595 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
596 unsigned long excess
= 0;
598 if (nr_pages
> soft_limit
)
599 excess
= nr_pages
- soft_limit
;
604 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
606 unsigned long excess
;
607 struct mem_cgroup_per_node
*mz
;
608 struct mem_cgroup_tree_per_node
*mctz
;
610 mctz
= soft_limit_tree_from_page(page
);
614 * Necessary to update all ancestors when hierarchy is used.
615 * because their event counter is not touched.
617 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
618 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
619 excess
= soft_limit_excess(memcg
);
621 * We have to update the tree if mz is on RB-tree or
622 * mem is over its softlimit.
624 if (excess
|| mz
->on_tree
) {
627 spin_lock_irqsave(&mctz
->lock
, flags
);
628 /* if on-tree, remove it */
630 __mem_cgroup_remove_exceeded(mz
, mctz
);
632 * Insert again. mz->usage_in_excess will be updated.
633 * If excess is 0, no tree ops.
635 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
636 spin_unlock_irqrestore(&mctz
->lock
, flags
);
641 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
643 struct mem_cgroup_tree_per_node
*mctz
;
644 struct mem_cgroup_per_node
*mz
;
648 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
649 mctz
= soft_limit_tree_node(nid
);
651 mem_cgroup_remove_exceeded(mz
, mctz
);
655 static struct mem_cgroup_per_node
*
656 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
658 struct mem_cgroup_per_node
*mz
;
662 if (!mctz
->rb_rightmost
)
663 goto done
; /* Nothing to reclaim from */
665 mz
= rb_entry(mctz
->rb_rightmost
,
666 struct mem_cgroup_per_node
, tree_node
);
668 * Remove the node now but someone else can add it back,
669 * we will to add it back at the end of reclaim to its correct
670 * position in the tree.
672 __mem_cgroup_remove_exceeded(mz
, mctz
);
673 if (!soft_limit_excess(mz
->memcg
) ||
674 !css_tryget_online(&mz
->memcg
->css
))
680 static struct mem_cgroup_per_node
*
681 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
683 struct mem_cgroup_per_node
*mz
;
685 spin_lock_irq(&mctz
->lock
);
686 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
687 spin_unlock_irq(&mctz
->lock
);
691 static unsigned long memcg_sum_events(struct mem_cgroup
*memcg
,
694 return atomic_long_read(&memcg
->events
[event
]);
697 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
699 bool compound
, int nr_pages
)
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
706 __mod_memcg_state(memcg
, MEMCG_RSS
, nr_pages
);
708 __mod_memcg_state(memcg
, MEMCG_CACHE
, nr_pages
);
709 if (PageSwapBacked(page
))
710 __mod_memcg_state(memcg
, NR_SHMEM
, nr_pages
);
714 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
715 __mod_memcg_state(memcg
, MEMCG_RSS_HUGE
, nr_pages
);
718 /* pagein of a big page is an event. So, ignore page size */
720 __count_memcg_events(memcg
, PGPGIN
, 1);
722 __count_memcg_events(memcg
, PGPGOUT
, 1);
723 nr_pages
= -nr_pages
; /* for event */
726 __this_cpu_add(memcg
->stat_cpu
->nr_page_events
, nr_pages
);
729 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
730 int nid
, unsigned int lru_mask
)
732 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
733 unsigned long nr
= 0;
736 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
739 if (!(BIT(lru
) & lru_mask
))
741 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
746 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
747 unsigned int lru_mask
)
749 unsigned long nr
= 0;
752 for_each_node_state(nid
, N_MEMORY
)
753 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
757 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
758 enum mem_cgroup_events_target target
)
760 unsigned long val
, next
;
762 val
= __this_cpu_read(memcg
->stat_cpu
->nr_page_events
);
763 next
= __this_cpu_read(memcg
->stat_cpu
->targets
[target
]);
764 /* from time_after() in jiffies.h */
765 if ((long)(next
- val
) < 0) {
767 case MEM_CGROUP_TARGET_THRESH
:
768 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
770 case MEM_CGROUP_TARGET_SOFTLIMIT
:
771 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
773 case MEM_CGROUP_TARGET_NUMAINFO
:
774 next
= val
+ NUMAINFO_EVENTS_TARGET
;
779 __this_cpu_write(memcg
->stat_cpu
->targets
[target
], next
);
786 * Check events in order.
789 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
791 /* threshold event is triggered in finer grain than soft limit */
792 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
793 MEM_CGROUP_TARGET_THRESH
))) {
795 bool do_numainfo __maybe_unused
;
797 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
798 MEM_CGROUP_TARGET_SOFTLIMIT
);
800 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
801 MEM_CGROUP_TARGET_NUMAINFO
);
803 mem_cgroup_threshold(memcg
);
804 if (unlikely(do_softlimit
))
805 mem_cgroup_update_tree(memcg
, page
);
807 if (unlikely(do_numainfo
))
808 atomic_inc(&memcg
->numainfo_events
);
813 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
816 * mm_update_next_owner() may clear mm->owner to NULL
817 * if it races with swapoff, page migration, etc.
818 * So this can be called with p == NULL.
823 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
825 EXPORT_SYMBOL(mem_cgroup_from_task
);
828 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
829 * @mm: mm from which memcg should be extracted. It can be NULL.
831 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
832 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
835 struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
837 struct mem_cgroup
*memcg
;
839 if (mem_cgroup_disabled())
845 * Page cache insertions can happen withou an
846 * actual mm context, e.g. during disk probing
847 * on boot, loopback IO, acct() writes etc.
850 memcg
= root_mem_cgroup
;
852 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
853 if (unlikely(!memcg
))
854 memcg
= root_mem_cgroup
;
856 } while (!css_tryget(&memcg
->css
));
860 EXPORT_SYMBOL(get_mem_cgroup_from_mm
);
863 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
864 * @page: page from which memcg should be extracted.
866 * Obtain a reference on page->memcg and returns it if successful. Otherwise
867 * root_mem_cgroup is returned.
869 struct mem_cgroup
*get_mem_cgroup_from_page(struct page
*page
)
871 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
873 if (mem_cgroup_disabled())
877 if (!memcg
|| !css_tryget_online(&memcg
->css
))
878 memcg
= root_mem_cgroup
;
882 EXPORT_SYMBOL(get_mem_cgroup_from_page
);
885 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
887 static __always_inline
struct mem_cgroup
*get_mem_cgroup_from_current(void)
889 if (unlikely(current
->active_memcg
)) {
890 struct mem_cgroup
*memcg
= root_mem_cgroup
;
893 if (css_tryget_online(¤t
->active_memcg
->css
))
894 memcg
= current
->active_memcg
;
898 return get_mem_cgroup_from_mm(current
->mm
);
902 * mem_cgroup_iter - iterate over memory cgroup hierarchy
903 * @root: hierarchy root
904 * @prev: previously returned memcg, NULL on first invocation
905 * @reclaim: cookie for shared reclaim walks, NULL for full walks
907 * Returns references to children of the hierarchy below @root, or
908 * @root itself, or %NULL after a full round-trip.
910 * Caller must pass the return value in @prev on subsequent
911 * invocations for reference counting, or use mem_cgroup_iter_break()
912 * to cancel a hierarchy walk before the round-trip is complete.
914 * Reclaimers can specify a node and a priority level in @reclaim to
915 * divide up the memcgs in the hierarchy among all concurrent
916 * reclaimers operating on the same node and priority.
918 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
919 struct mem_cgroup
*prev
,
920 struct mem_cgroup_reclaim_cookie
*reclaim
)
922 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
923 struct cgroup_subsys_state
*css
= NULL
;
924 struct mem_cgroup
*memcg
= NULL
;
925 struct mem_cgroup
*pos
= NULL
;
927 if (mem_cgroup_disabled())
931 root
= root_mem_cgroup
;
933 if (prev
&& !reclaim
)
936 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
945 struct mem_cgroup_per_node
*mz
;
947 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
948 iter
= &mz
->iter
[reclaim
->priority
];
950 if (prev
&& reclaim
->generation
!= iter
->generation
)
954 pos
= READ_ONCE(iter
->position
);
955 if (!pos
|| css_tryget(&pos
->css
))
958 * css reference reached zero, so iter->position will
959 * be cleared by ->css_released. However, we should not
960 * rely on this happening soon, because ->css_released
961 * is called from a work queue, and by busy-waiting we
962 * might block it. So we clear iter->position right
965 (void)cmpxchg(&iter
->position
, pos
, NULL
);
973 css
= css_next_descendant_pre(css
, &root
->css
);
976 * Reclaimers share the hierarchy walk, and a
977 * new one might jump in right at the end of
978 * the hierarchy - make sure they see at least
979 * one group and restart from the beginning.
987 * Verify the css and acquire a reference. The root
988 * is provided by the caller, so we know it's alive
989 * and kicking, and don't take an extra reference.
991 memcg
= mem_cgroup_from_css(css
);
993 if (css
== &root
->css
)
1004 * The position could have already been updated by a competing
1005 * thread, so check that the value hasn't changed since we read
1006 * it to avoid reclaiming from the same cgroup twice.
1008 (void)cmpxchg(&iter
->position
, pos
, memcg
);
1016 reclaim
->generation
= iter
->generation
;
1022 if (prev
&& prev
!= root
)
1023 css_put(&prev
->css
);
1029 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1030 * @root: hierarchy root
1031 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1033 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1034 struct mem_cgroup
*prev
)
1037 root
= root_mem_cgroup
;
1038 if (prev
&& prev
!= root
)
1039 css_put(&prev
->css
);
1042 static void __invalidate_reclaim_iterators(struct mem_cgroup
*from
,
1043 struct mem_cgroup
*dead_memcg
)
1045 struct mem_cgroup_reclaim_iter
*iter
;
1046 struct mem_cgroup_per_node
*mz
;
1050 for_each_node(nid
) {
1051 mz
= mem_cgroup_nodeinfo(from
, nid
);
1052 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
1053 iter
= &mz
->iter
[i
];
1054 cmpxchg(&iter
->position
,
1060 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
1062 struct mem_cgroup
*memcg
= dead_memcg
;
1063 struct mem_cgroup
*last
;
1066 __invalidate_reclaim_iterators(memcg
, dead_memcg
);
1068 } while ((memcg
= parent_mem_cgroup(memcg
)));
1071 * When cgruop1 non-hierarchy mode is used,
1072 * parent_mem_cgroup() does not walk all the way up to the
1073 * cgroup root (root_mem_cgroup). So we have to handle
1074 * dead_memcg from cgroup root separately.
1076 if (last
!= root_mem_cgroup
)
1077 __invalidate_reclaim_iterators(root_mem_cgroup
,
1082 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1083 * @memcg: hierarchy root
1084 * @fn: function to call for each task
1085 * @arg: argument passed to @fn
1087 * This function iterates over tasks attached to @memcg or to any of its
1088 * descendants and calls @fn for each task. If @fn returns a non-zero
1089 * value, the function breaks the iteration loop and returns the value.
1090 * Otherwise, it will iterate over all tasks and return 0.
1092 * This function must not be called for the root memory cgroup.
1094 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
1095 int (*fn
)(struct task_struct
*, void *), void *arg
)
1097 struct mem_cgroup
*iter
;
1100 BUG_ON(memcg
== root_mem_cgroup
);
1102 for_each_mem_cgroup_tree(iter
, memcg
) {
1103 struct css_task_iter it
;
1104 struct task_struct
*task
;
1106 css_task_iter_start(&iter
->css
, 0, &it
);
1107 while (!ret
&& (task
= css_task_iter_next(&it
)))
1108 ret
= fn(task
, arg
);
1109 css_task_iter_end(&it
);
1111 mem_cgroup_iter_break(memcg
, iter
);
1119 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1121 * @pgdat: pgdat of the page
1123 * This function is only safe when following the LRU page isolation
1124 * and putback protocol: the LRU lock must be held, and the page must
1125 * either be PageLRU() or the caller must have isolated/allocated it.
1127 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
1129 struct mem_cgroup_per_node
*mz
;
1130 struct mem_cgroup
*memcg
;
1131 struct lruvec
*lruvec
;
1133 if (mem_cgroup_disabled()) {
1134 lruvec
= &pgdat
->lruvec
;
1138 memcg
= page
->mem_cgroup
;
1140 * Swapcache readahead pages are added to the LRU - and
1141 * possibly migrated - before they are charged.
1144 memcg
= root_mem_cgroup
;
1146 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
1147 lruvec
= &mz
->lruvec
;
1150 * Since a node can be onlined after the mem_cgroup was created,
1151 * we have to be prepared to initialize lruvec->zone here;
1152 * and if offlined then reonlined, we need to reinitialize it.
1154 if (unlikely(lruvec
->pgdat
!= pgdat
))
1155 lruvec
->pgdat
= pgdat
;
1160 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1161 * @lruvec: mem_cgroup per zone lru vector
1162 * @lru: index of lru list the page is sitting on
1163 * @zid: zone id of the accounted pages
1164 * @nr_pages: positive when adding or negative when removing
1166 * This function must be called under lru_lock, just before a page is added
1167 * to or just after a page is removed from an lru list (that ordering being
1168 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1170 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1171 int zid
, int nr_pages
)
1173 struct mem_cgroup_per_node
*mz
;
1174 unsigned long *lru_size
;
1177 if (mem_cgroup_disabled())
1180 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1181 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1184 *lru_size
+= nr_pages
;
1187 if (WARN_ONCE(size
< 0,
1188 "%s(%p, %d, %d): lru_size %ld\n",
1189 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1195 *lru_size
+= nr_pages
;
1198 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1200 struct mem_cgroup
*task_memcg
;
1201 struct task_struct
*p
;
1204 p
= find_lock_task_mm(task
);
1206 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1210 * All threads may have already detached their mm's, but the oom
1211 * killer still needs to detect if they have already been oom
1212 * killed to prevent needlessly killing additional tasks.
1215 task_memcg
= mem_cgroup_from_task(task
);
1216 css_get(&task_memcg
->css
);
1219 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1220 css_put(&task_memcg
->css
);
1225 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1226 * @memcg: the memory cgroup
1228 * Returns the maximum amount of memory @mem can be charged with, in
1231 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1233 unsigned long margin
= 0;
1234 unsigned long count
;
1235 unsigned long limit
;
1237 count
= page_counter_read(&memcg
->memory
);
1238 limit
= READ_ONCE(memcg
->memory
.max
);
1240 margin
= limit
- count
;
1242 if (do_memsw_account()) {
1243 count
= page_counter_read(&memcg
->memsw
);
1244 limit
= READ_ONCE(memcg
->memsw
.max
);
1246 margin
= min(margin
, limit
- count
);
1255 * A routine for checking "mem" is under move_account() or not.
1257 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1258 * moving cgroups. This is for waiting at high-memory pressure
1261 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1263 struct mem_cgroup
*from
;
1264 struct mem_cgroup
*to
;
1267 * Unlike task_move routines, we access mc.to, mc.from not under
1268 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1270 spin_lock(&mc
.lock
);
1276 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1277 mem_cgroup_is_descendant(to
, memcg
);
1279 spin_unlock(&mc
.lock
);
1283 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1285 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1286 if (mem_cgroup_under_move(memcg
)) {
1288 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1289 /* moving charge context might have finished. */
1292 finish_wait(&mc
.waitq
, &wait
);
1299 static const unsigned int memcg1_stats
[] = {
1310 static const char *const memcg1_stat_names
[] = {
1321 #define K(x) ((x) << (PAGE_SHIFT-10))
1323 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1324 * @memcg: The memory cgroup that went over limit
1325 * @p: Task that is going to be killed
1327 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1330 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1332 struct mem_cgroup
*iter
;
1338 pr_info("Task in ");
1339 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1340 pr_cont(" killed as a result of limit of ");
1342 pr_info("Memory limit reached of cgroup ");
1345 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1350 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1351 K((u64
)page_counter_read(&memcg
->memory
)),
1352 K((u64
)memcg
->memory
.max
), memcg
->memory
.failcnt
);
1353 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1354 K((u64
)page_counter_read(&memcg
->memsw
)),
1355 K((u64
)memcg
->memsw
.max
), memcg
->memsw
.failcnt
);
1356 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1357 K((u64
)page_counter_read(&memcg
->kmem
)),
1358 K((u64
)memcg
->kmem
.max
), memcg
->kmem
.failcnt
);
1360 for_each_mem_cgroup_tree(iter
, memcg
) {
1361 pr_info("Memory cgroup stats for ");
1362 pr_cont_cgroup_path(iter
->css
.cgroup
);
1365 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
1366 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_swap_account
)
1368 pr_cont(" %s:%luKB", memcg1_stat_names
[i
],
1369 K(memcg_page_state(iter
, memcg1_stats
[i
])));
1372 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1373 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1374 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1381 * Return the memory (and swap, if configured) limit for a memcg.
1383 unsigned long mem_cgroup_get_max(struct mem_cgroup
*memcg
)
1387 max
= memcg
->memory
.max
;
1388 if (mem_cgroup_swappiness(memcg
)) {
1389 unsigned long memsw_max
;
1390 unsigned long swap_max
;
1392 memsw_max
= memcg
->memsw
.max
;
1393 swap_max
= memcg
->swap
.max
;
1394 swap_max
= min(swap_max
, (unsigned long)total_swap_pages
);
1395 max
= min(max
+ swap_max
, memsw_max
);
1400 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1403 struct oom_control oc
= {
1407 .gfp_mask
= gfp_mask
,
1412 if (mutex_lock_killable(&oom_lock
))
1415 * A few threads which were not waiting at mutex_lock_killable() can
1416 * fail to bail out. Therefore, check again after holding oom_lock.
1418 ret
= should_force_charge() || out_of_memory(&oc
);
1419 mutex_unlock(&oom_lock
);
1423 #if MAX_NUMNODES > 1
1426 * test_mem_cgroup_node_reclaimable
1427 * @memcg: the target memcg
1428 * @nid: the node ID to be checked.
1429 * @noswap : specify true here if the user wants flle only information.
1431 * This function returns whether the specified memcg contains any
1432 * reclaimable pages on a node. Returns true if there are any reclaimable
1433 * pages in the node.
1435 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1436 int nid
, bool noswap
)
1438 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1440 if (noswap
|| !total_swap_pages
)
1442 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1449 * Always updating the nodemask is not very good - even if we have an empty
1450 * list or the wrong list here, we can start from some node and traverse all
1451 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1454 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1458 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1459 * pagein/pageout changes since the last update.
1461 if (!atomic_read(&memcg
->numainfo_events
))
1463 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1466 /* make a nodemask where this memcg uses memory from */
1467 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1469 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1471 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1472 node_clear(nid
, memcg
->scan_nodes
);
1475 atomic_set(&memcg
->numainfo_events
, 0);
1476 atomic_set(&memcg
->numainfo_updating
, 0);
1480 * Selecting a node where we start reclaim from. Because what we need is just
1481 * reducing usage counter, start from anywhere is O,K. Considering
1482 * memory reclaim from current node, there are pros. and cons.
1484 * Freeing memory from current node means freeing memory from a node which
1485 * we'll use or we've used. So, it may make LRU bad. And if several threads
1486 * hit limits, it will see a contention on a node. But freeing from remote
1487 * node means more costs for memory reclaim because of memory latency.
1489 * Now, we use round-robin. Better algorithm is welcomed.
1491 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1495 mem_cgroup_may_update_nodemask(memcg
);
1496 node
= memcg
->last_scanned_node
;
1498 node
= next_node_in(node
, memcg
->scan_nodes
);
1500 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1501 * last time it really checked all the LRUs due to rate limiting.
1502 * Fallback to the current node in that case for simplicity.
1504 if (unlikely(node
== MAX_NUMNODES
))
1505 node
= numa_node_id();
1507 memcg
->last_scanned_node
= node
;
1511 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1517 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1520 unsigned long *total_scanned
)
1522 struct mem_cgroup
*victim
= NULL
;
1525 unsigned long excess
;
1526 unsigned long nr_scanned
;
1527 struct mem_cgroup_reclaim_cookie reclaim
= {
1532 excess
= soft_limit_excess(root_memcg
);
1535 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1540 * If we have not been able to reclaim
1541 * anything, it might because there are
1542 * no reclaimable pages under this hierarchy
1547 * We want to do more targeted reclaim.
1548 * excess >> 2 is not to excessive so as to
1549 * reclaim too much, nor too less that we keep
1550 * coming back to reclaim from this cgroup
1552 if (total
>= (excess
>> 2) ||
1553 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1558 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1559 pgdat
, &nr_scanned
);
1560 *total_scanned
+= nr_scanned
;
1561 if (!soft_limit_excess(root_memcg
))
1564 mem_cgroup_iter_break(root_memcg
, victim
);
1568 #ifdef CONFIG_LOCKDEP
1569 static struct lockdep_map memcg_oom_lock_dep_map
= {
1570 .name
= "memcg_oom_lock",
1574 static DEFINE_SPINLOCK(memcg_oom_lock
);
1577 * Check OOM-Killer is already running under our hierarchy.
1578 * If someone is running, return false.
1580 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1582 struct mem_cgroup
*iter
, *failed
= NULL
;
1584 spin_lock(&memcg_oom_lock
);
1586 for_each_mem_cgroup_tree(iter
, memcg
) {
1587 if (iter
->oom_lock
) {
1589 * this subtree of our hierarchy is already locked
1590 * so we cannot give a lock.
1593 mem_cgroup_iter_break(memcg
, iter
);
1596 iter
->oom_lock
= true;
1601 * OK, we failed to lock the whole subtree so we have
1602 * to clean up what we set up to the failing subtree
1604 for_each_mem_cgroup_tree(iter
, memcg
) {
1605 if (iter
== failed
) {
1606 mem_cgroup_iter_break(memcg
, iter
);
1609 iter
->oom_lock
= false;
1612 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1614 spin_unlock(&memcg_oom_lock
);
1619 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1621 struct mem_cgroup
*iter
;
1623 spin_lock(&memcg_oom_lock
);
1624 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1625 for_each_mem_cgroup_tree(iter
, memcg
)
1626 iter
->oom_lock
= false;
1627 spin_unlock(&memcg_oom_lock
);
1630 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1632 struct mem_cgroup
*iter
;
1634 spin_lock(&memcg_oom_lock
);
1635 for_each_mem_cgroup_tree(iter
, memcg
)
1637 spin_unlock(&memcg_oom_lock
);
1640 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1642 struct mem_cgroup
*iter
;
1645 * When a new child is created while the hierarchy is under oom,
1646 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1648 spin_lock(&memcg_oom_lock
);
1649 for_each_mem_cgroup_tree(iter
, memcg
)
1650 if (iter
->under_oom
> 0)
1652 spin_unlock(&memcg_oom_lock
);
1655 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1657 struct oom_wait_info
{
1658 struct mem_cgroup
*memcg
;
1659 wait_queue_entry_t wait
;
1662 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1663 unsigned mode
, int sync
, void *arg
)
1665 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1666 struct mem_cgroup
*oom_wait_memcg
;
1667 struct oom_wait_info
*oom_wait_info
;
1669 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1670 oom_wait_memcg
= oom_wait_info
->memcg
;
1672 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1673 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1675 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1678 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1681 * For the following lockless ->under_oom test, the only required
1682 * guarantee is that it must see the state asserted by an OOM when
1683 * this function is called as a result of userland actions
1684 * triggered by the notification of the OOM. This is trivially
1685 * achieved by invoking mem_cgroup_mark_under_oom() before
1686 * triggering notification.
1688 if (memcg
&& memcg
->under_oom
)
1689 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1699 static enum oom_status
mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1701 enum oom_status ret
;
1704 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1708 * We are in the middle of the charge context here, so we
1709 * don't want to block when potentially sitting on a callstack
1710 * that holds all kinds of filesystem and mm locks.
1712 * cgroup1 allows disabling the OOM killer and waiting for outside
1713 * handling until the charge can succeed; remember the context and put
1714 * the task to sleep at the end of the page fault when all locks are
1717 * On the other hand, in-kernel OOM killer allows for an async victim
1718 * memory reclaim (oom_reaper) and that means that we are not solely
1719 * relying on the oom victim to make a forward progress and we can
1720 * invoke the oom killer here.
1722 * Please note that mem_cgroup_out_of_memory might fail to find a
1723 * victim and then we have to bail out from the charge path.
1725 if (memcg
->oom_kill_disable
) {
1726 if (!current
->in_user_fault
)
1728 css_get(&memcg
->css
);
1729 current
->memcg_in_oom
= memcg
;
1730 current
->memcg_oom_gfp_mask
= mask
;
1731 current
->memcg_oom_order
= order
;
1736 mem_cgroup_mark_under_oom(memcg
);
1738 locked
= mem_cgroup_oom_trylock(memcg
);
1741 mem_cgroup_oom_notify(memcg
);
1743 mem_cgroup_unmark_under_oom(memcg
);
1744 if (mem_cgroup_out_of_memory(memcg
, mask
, order
))
1750 mem_cgroup_oom_unlock(memcg
);
1756 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1757 * @handle: actually kill/wait or just clean up the OOM state
1759 * This has to be called at the end of a page fault if the memcg OOM
1760 * handler was enabled.
1762 * Memcg supports userspace OOM handling where failed allocations must
1763 * sleep on a waitqueue until the userspace task resolves the
1764 * situation. Sleeping directly in the charge context with all kinds
1765 * of locks held is not a good idea, instead we remember an OOM state
1766 * in the task and mem_cgroup_oom_synchronize() has to be called at
1767 * the end of the page fault to complete the OOM handling.
1769 * Returns %true if an ongoing memcg OOM situation was detected and
1770 * completed, %false otherwise.
1772 bool mem_cgroup_oom_synchronize(bool handle
)
1774 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1775 struct oom_wait_info owait
;
1778 /* OOM is global, do not handle */
1785 owait
.memcg
= memcg
;
1786 owait
.wait
.flags
= 0;
1787 owait
.wait
.func
= memcg_oom_wake_function
;
1788 owait
.wait
.private = current
;
1789 INIT_LIST_HEAD(&owait
.wait
.entry
);
1791 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1792 mem_cgroup_mark_under_oom(memcg
);
1794 locked
= mem_cgroup_oom_trylock(memcg
);
1797 mem_cgroup_oom_notify(memcg
);
1799 if (locked
&& !memcg
->oom_kill_disable
) {
1800 mem_cgroup_unmark_under_oom(memcg
);
1801 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1802 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1803 current
->memcg_oom_order
);
1806 mem_cgroup_unmark_under_oom(memcg
);
1807 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1811 mem_cgroup_oom_unlock(memcg
);
1813 * There is no guarantee that an OOM-lock contender
1814 * sees the wakeups triggered by the OOM kill
1815 * uncharges. Wake any sleepers explicitely.
1817 memcg_oom_recover(memcg
);
1820 current
->memcg_in_oom
= NULL
;
1821 css_put(&memcg
->css
);
1826 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1827 * @victim: task to be killed by the OOM killer
1828 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1830 * Returns a pointer to a memory cgroup, which has to be cleaned up
1831 * by killing all belonging OOM-killable tasks.
1833 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1835 struct mem_cgroup
*mem_cgroup_get_oom_group(struct task_struct
*victim
,
1836 struct mem_cgroup
*oom_domain
)
1838 struct mem_cgroup
*oom_group
= NULL
;
1839 struct mem_cgroup
*memcg
;
1841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
1845 oom_domain
= root_mem_cgroup
;
1849 memcg
= mem_cgroup_from_task(victim
);
1850 if (memcg
== root_mem_cgroup
)
1854 * Traverse the memory cgroup hierarchy from the victim task's
1855 * cgroup up to the OOMing cgroup (or root) to find the
1856 * highest-level memory cgroup with oom.group set.
1858 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
1859 if (memcg
->oom_group
)
1862 if (memcg
== oom_domain
)
1867 css_get(&oom_group
->css
);
1874 void mem_cgroup_print_oom_group(struct mem_cgroup
*memcg
)
1876 pr_info("Tasks in ");
1877 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1878 pr_cont(" are going to be killed due to memory.oom.group set\n");
1882 * lock_page_memcg - lock a page->mem_cgroup binding
1885 * This function protects unlocked LRU pages from being moved to
1888 * It ensures lifetime of the returned memcg. Caller is responsible
1889 * for the lifetime of the page; __unlock_page_memcg() is available
1890 * when @page might get freed inside the locked section.
1892 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
1894 struct mem_cgroup
*memcg
;
1895 unsigned long flags
;
1898 * The RCU lock is held throughout the transaction. The fast
1899 * path can get away without acquiring the memcg->move_lock
1900 * because page moving starts with an RCU grace period.
1902 * The RCU lock also protects the memcg from being freed when
1903 * the page state that is going to change is the only thing
1904 * preventing the page itself from being freed. E.g. writeback
1905 * doesn't hold a page reference and relies on PG_writeback to
1906 * keep off truncation, migration and so forth.
1910 if (mem_cgroup_disabled())
1913 memcg
= page
->mem_cgroup
;
1914 if (unlikely(!memcg
))
1917 if (atomic_read(&memcg
->moving_account
) <= 0)
1920 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1921 if (memcg
!= page
->mem_cgroup
) {
1922 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1927 * When charge migration first begins, we can have locked and
1928 * unlocked page stat updates happening concurrently. Track
1929 * the task who has the lock for unlock_page_memcg().
1931 memcg
->move_lock_task
= current
;
1932 memcg
->move_lock_flags
= flags
;
1936 EXPORT_SYMBOL(lock_page_memcg
);
1939 * __unlock_page_memcg - unlock and unpin a memcg
1942 * Unlock and unpin a memcg returned by lock_page_memcg().
1944 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
1946 if (memcg
&& memcg
->move_lock_task
== current
) {
1947 unsigned long flags
= memcg
->move_lock_flags
;
1949 memcg
->move_lock_task
= NULL
;
1950 memcg
->move_lock_flags
= 0;
1952 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1959 * unlock_page_memcg - unlock a page->mem_cgroup binding
1962 void unlock_page_memcg(struct page
*page
)
1964 __unlock_page_memcg(page
->mem_cgroup
);
1966 EXPORT_SYMBOL(unlock_page_memcg
);
1968 struct memcg_stock_pcp
{
1969 struct mem_cgroup
*cached
; /* this never be root cgroup */
1970 unsigned int nr_pages
;
1971 struct work_struct work
;
1972 unsigned long flags
;
1973 #define FLUSHING_CACHED_CHARGE 0
1975 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1976 static DEFINE_MUTEX(percpu_charge_mutex
);
1979 * consume_stock: Try to consume stocked charge on this cpu.
1980 * @memcg: memcg to consume from.
1981 * @nr_pages: how many pages to charge.
1983 * The charges will only happen if @memcg matches the current cpu's memcg
1984 * stock, and at least @nr_pages are available in that stock. Failure to
1985 * service an allocation will refill the stock.
1987 * returns true if successful, false otherwise.
1989 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1991 struct memcg_stock_pcp
*stock
;
1992 unsigned long flags
;
1995 if (nr_pages
> MEMCG_CHARGE_BATCH
)
1998 local_irq_save(flags
);
2000 stock
= this_cpu_ptr(&memcg_stock
);
2001 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
2002 stock
->nr_pages
-= nr_pages
;
2006 local_irq_restore(flags
);
2012 * Returns stocks cached in percpu and reset cached information.
2014 static void drain_stock(struct memcg_stock_pcp
*stock
)
2016 struct mem_cgroup
*old
= stock
->cached
;
2018 if (stock
->nr_pages
) {
2019 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
2020 if (do_memsw_account())
2021 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
2022 css_put_many(&old
->css
, stock
->nr_pages
);
2023 stock
->nr_pages
= 0;
2025 stock
->cached
= NULL
;
2028 static void drain_local_stock(struct work_struct
*dummy
)
2030 struct memcg_stock_pcp
*stock
;
2031 unsigned long flags
;
2034 * The only protection from memory hotplug vs. drain_stock races is
2035 * that we always operate on local CPU stock here with IRQ disabled
2037 local_irq_save(flags
);
2039 stock
= this_cpu_ptr(&memcg_stock
);
2041 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2043 local_irq_restore(flags
);
2047 * Cache charges(val) to local per_cpu area.
2048 * This will be consumed by consume_stock() function, later.
2050 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2052 struct memcg_stock_pcp
*stock
;
2053 unsigned long flags
;
2055 local_irq_save(flags
);
2057 stock
= this_cpu_ptr(&memcg_stock
);
2058 if (stock
->cached
!= memcg
) { /* reset if necessary */
2060 stock
->cached
= memcg
;
2062 stock
->nr_pages
+= nr_pages
;
2064 if (stock
->nr_pages
> MEMCG_CHARGE_BATCH
)
2067 local_irq_restore(flags
);
2071 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2072 * of the hierarchy under it.
2074 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
2078 /* If someone's already draining, avoid adding running more workers. */
2079 if (!mutex_trylock(&percpu_charge_mutex
))
2082 * Notify other cpus that system-wide "drain" is running
2083 * We do not care about races with the cpu hotplug because cpu down
2084 * as well as workers from this path always operate on the local
2085 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2088 for_each_online_cpu(cpu
) {
2089 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2090 struct mem_cgroup
*memcg
;
2092 memcg
= stock
->cached
;
2093 if (!memcg
|| !stock
->nr_pages
|| !css_tryget(&memcg
->css
))
2095 if (!mem_cgroup_is_descendant(memcg
, root_memcg
)) {
2096 css_put(&memcg
->css
);
2099 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2101 drain_local_stock(&stock
->work
);
2103 schedule_work_on(cpu
, &stock
->work
);
2105 css_put(&memcg
->css
);
2108 mutex_unlock(&percpu_charge_mutex
);
2111 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
2113 struct memcg_stock_pcp
*stock
;
2114 struct mem_cgroup
*memcg
;
2116 stock
= &per_cpu(memcg_stock
, cpu
);
2119 for_each_mem_cgroup(memcg
) {
2122 for (i
= 0; i
< MEMCG_NR_STAT
; i
++) {
2126 x
= this_cpu_xchg(memcg
->stat_cpu
->count
[i
], 0);
2128 atomic_long_add(x
, &memcg
->stat
[i
]);
2130 if (i
>= NR_VM_NODE_STAT_ITEMS
)
2133 for_each_node(nid
) {
2134 struct mem_cgroup_per_node
*pn
;
2136 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
2137 x
= this_cpu_xchg(pn
->lruvec_stat_cpu
->count
[i
], 0);
2139 atomic_long_add(x
, &pn
->lruvec_stat
[i
]);
2143 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
2146 x
= this_cpu_xchg(memcg
->stat_cpu
->events
[i
], 0);
2148 atomic_long_add(x
, &memcg
->events
[i
]);
2155 static void reclaim_high(struct mem_cgroup
*memcg
,
2156 unsigned int nr_pages
,
2160 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
2162 memcg_memory_event(memcg
, MEMCG_HIGH
);
2163 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
2164 } while ((memcg
= parent_mem_cgroup(memcg
)));
2167 static void high_work_func(struct work_struct
*work
)
2169 struct mem_cgroup
*memcg
;
2171 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
2172 reclaim_high(memcg
, MEMCG_CHARGE_BATCH
, GFP_KERNEL
);
2176 * Scheduled by try_charge() to be executed from the userland return path
2177 * and reclaims memory over the high limit.
2179 void mem_cgroup_handle_over_high(void)
2181 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
2182 struct mem_cgroup
*memcg
;
2184 if (likely(!nr_pages
))
2187 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2188 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
2189 css_put(&memcg
->css
);
2190 current
->memcg_nr_pages_over_high
= 0;
2193 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2194 unsigned int nr_pages
)
2196 unsigned int batch
= max(MEMCG_CHARGE_BATCH
, nr_pages
);
2197 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2198 struct mem_cgroup
*mem_over_limit
;
2199 struct page_counter
*counter
;
2200 unsigned long nr_reclaimed
;
2201 bool may_swap
= true;
2202 bool drained
= false;
2204 enum oom_status oom_status
;
2206 if (mem_cgroup_is_root(memcg
))
2209 if (consume_stock(memcg
, nr_pages
))
2212 if (!do_memsw_account() ||
2213 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
2214 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
2216 if (do_memsw_account())
2217 page_counter_uncharge(&memcg
->memsw
, batch
);
2218 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
2220 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
2224 if (batch
> nr_pages
) {
2230 * Memcg doesn't have a dedicated reserve for atomic
2231 * allocations. But like the global atomic pool, we need to
2232 * put the burden of reclaim on regular allocation requests
2233 * and let these go through as privileged allocations.
2235 if (gfp_mask
& __GFP_ATOMIC
)
2239 * Unlike in global OOM situations, memcg is not in a physical
2240 * memory shortage. Allow dying and OOM-killed tasks to
2241 * bypass the last charges so that they can exit quickly and
2242 * free their memory.
2244 if (unlikely(should_force_charge()))
2248 * Prevent unbounded recursion when reclaim operations need to
2249 * allocate memory. This might exceed the limits temporarily,
2250 * but we prefer facilitating memory reclaim and getting back
2251 * under the limit over triggering OOM kills in these cases.
2253 if (unlikely(current
->flags
& PF_MEMALLOC
))
2256 if (unlikely(task_in_memcg_oom(current
)))
2259 if (!gfpflags_allow_blocking(gfp_mask
))
2262 memcg_memory_event(mem_over_limit
, MEMCG_MAX
);
2264 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2265 gfp_mask
, may_swap
);
2267 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2271 drain_all_stock(mem_over_limit
);
2276 if (gfp_mask
& __GFP_NORETRY
)
2279 * Even though the limit is exceeded at this point, reclaim
2280 * may have been able to free some pages. Retry the charge
2281 * before killing the task.
2283 * Only for regular pages, though: huge pages are rather
2284 * unlikely to succeed so close to the limit, and we fall back
2285 * to regular pages anyway in case of failure.
2287 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2290 * At task move, charge accounts can be doubly counted. So, it's
2291 * better to wait until the end of task_move if something is going on.
2293 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2299 if (gfp_mask
& __GFP_RETRY_MAYFAIL
&& oomed
)
2302 if (gfp_mask
& __GFP_NOFAIL
)
2305 if (fatal_signal_pending(current
))
2308 memcg_memory_event(mem_over_limit
, MEMCG_OOM
);
2311 * keep retrying as long as the memcg oom killer is able to make
2312 * a forward progress or bypass the charge if the oom killer
2313 * couldn't make any progress.
2315 oom_status
= mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2316 get_order(nr_pages
* PAGE_SIZE
));
2317 switch (oom_status
) {
2319 nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2328 if (!(gfp_mask
& __GFP_NOFAIL
))
2332 * The allocation either can't fail or will lead to more memory
2333 * being freed very soon. Allow memory usage go over the limit
2334 * temporarily by force charging it.
2336 page_counter_charge(&memcg
->memory
, nr_pages
);
2337 if (do_memsw_account())
2338 page_counter_charge(&memcg
->memsw
, nr_pages
);
2339 css_get_many(&memcg
->css
, nr_pages
);
2344 css_get_many(&memcg
->css
, batch
);
2345 if (batch
> nr_pages
)
2346 refill_stock(memcg
, batch
- nr_pages
);
2349 * If the hierarchy is above the normal consumption range, schedule
2350 * reclaim on returning to userland. We can perform reclaim here
2351 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2352 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2353 * not recorded as it most likely matches current's and won't
2354 * change in the meantime. As high limit is checked again before
2355 * reclaim, the cost of mismatch is negligible.
2358 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2359 /* Don't bother a random interrupted task */
2360 if (in_interrupt()) {
2361 schedule_work(&memcg
->high_work
);
2364 current
->memcg_nr_pages_over_high
+= batch
;
2365 set_notify_resume(current
);
2368 } while ((memcg
= parent_mem_cgroup(memcg
)));
2373 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2375 if (mem_cgroup_is_root(memcg
))
2378 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2379 if (do_memsw_account())
2380 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2382 css_put_many(&memcg
->css
, nr_pages
);
2385 static void lock_page_lru(struct page
*page
, int *isolated
)
2387 struct zone
*zone
= page_zone(page
);
2389 spin_lock_irq(zone_lru_lock(zone
));
2390 if (PageLRU(page
)) {
2391 struct lruvec
*lruvec
;
2393 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2395 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2401 static void unlock_page_lru(struct page
*page
, int isolated
)
2403 struct zone
*zone
= page_zone(page
);
2406 struct lruvec
*lruvec
;
2408 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2409 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2411 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2413 spin_unlock_irq(zone_lru_lock(zone
));
2416 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2421 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2424 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2425 * may already be on some other mem_cgroup's LRU. Take care of it.
2428 lock_page_lru(page
, &isolated
);
2431 * Nobody should be changing or seriously looking at
2432 * page->mem_cgroup at this point:
2434 * - the page is uncharged
2436 * - the page is off-LRU
2438 * - an anonymous fault has exclusive page access, except for
2439 * a locked page table
2441 * - a page cache insertion, a swapin fault, or a migration
2442 * have the page locked
2444 page
->mem_cgroup
= memcg
;
2447 unlock_page_lru(page
, isolated
);
2450 #ifdef CONFIG_MEMCG_KMEM
2451 static int memcg_alloc_cache_id(void)
2456 id
= ida_simple_get(&memcg_cache_ida
,
2457 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2461 if (id
< memcg_nr_cache_ids
)
2465 * There's no space for the new id in memcg_caches arrays,
2466 * so we have to grow them.
2468 down_write(&memcg_cache_ids_sem
);
2470 size
= 2 * (id
+ 1);
2471 if (size
< MEMCG_CACHES_MIN_SIZE
)
2472 size
= MEMCG_CACHES_MIN_SIZE
;
2473 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2474 size
= MEMCG_CACHES_MAX_SIZE
;
2476 err
= memcg_update_all_caches(size
);
2478 err
= memcg_update_all_list_lrus(size
);
2480 memcg_nr_cache_ids
= size
;
2482 up_write(&memcg_cache_ids_sem
);
2485 ida_simple_remove(&memcg_cache_ida
, id
);
2491 static void memcg_free_cache_id(int id
)
2493 ida_simple_remove(&memcg_cache_ida
, id
);
2496 struct memcg_kmem_cache_create_work
{
2497 struct mem_cgroup
*memcg
;
2498 struct kmem_cache
*cachep
;
2499 struct work_struct work
;
2502 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2504 struct memcg_kmem_cache_create_work
*cw
=
2505 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2506 struct mem_cgroup
*memcg
= cw
->memcg
;
2507 struct kmem_cache
*cachep
= cw
->cachep
;
2509 memcg_create_kmem_cache(memcg
, cachep
);
2511 css_put(&memcg
->css
);
2516 * Enqueue the creation of a per-memcg kmem_cache.
2518 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2519 struct kmem_cache
*cachep
)
2521 struct memcg_kmem_cache_create_work
*cw
;
2523 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
| __GFP_NOWARN
);
2527 css_get(&memcg
->css
);
2530 cw
->cachep
= cachep
;
2531 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2533 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2536 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2537 struct kmem_cache
*cachep
)
2540 * We need to stop accounting when we kmalloc, because if the
2541 * corresponding kmalloc cache is not yet created, the first allocation
2542 * in __memcg_schedule_kmem_cache_create will recurse.
2544 * However, it is better to enclose the whole function. Depending on
2545 * the debugging options enabled, INIT_WORK(), for instance, can
2546 * trigger an allocation. This too, will make us recurse. Because at
2547 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2548 * the safest choice is to do it like this, wrapping the whole function.
2550 current
->memcg_kmem_skip_account
= 1;
2551 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2552 current
->memcg_kmem_skip_account
= 0;
2555 static inline bool memcg_kmem_bypass(void)
2557 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2563 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2564 * @cachep: the original global kmem cache
2566 * Return the kmem_cache we're supposed to use for a slab allocation.
2567 * We try to use the current memcg's version of the cache.
2569 * If the cache does not exist yet, if we are the first user of it, we
2570 * create it asynchronously in a workqueue and let the current allocation
2571 * go through with the original cache.
2573 * This function takes a reference to the cache it returns to assure it
2574 * won't get destroyed while we are working with it. Once the caller is
2575 * done with it, memcg_kmem_put_cache() must be called to release the
2578 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2580 struct mem_cgroup
*memcg
;
2581 struct kmem_cache
*memcg_cachep
;
2584 VM_BUG_ON(!is_root_cache(cachep
));
2586 if (memcg_kmem_bypass())
2589 if (current
->memcg_kmem_skip_account
)
2592 memcg
= get_mem_cgroup_from_current();
2593 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2597 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2598 if (likely(memcg_cachep
))
2599 return memcg_cachep
;
2602 * If we are in a safe context (can wait, and not in interrupt
2603 * context), we could be be predictable and return right away.
2604 * This would guarantee that the allocation being performed
2605 * already belongs in the new cache.
2607 * However, there are some clashes that can arrive from locking.
2608 * For instance, because we acquire the slab_mutex while doing
2609 * memcg_create_kmem_cache, this means no further allocation
2610 * could happen with the slab_mutex held. So it's better to
2613 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2615 css_put(&memcg
->css
);
2620 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2621 * @cachep: the cache returned by memcg_kmem_get_cache
2623 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2625 if (!is_root_cache(cachep
))
2626 css_put(&cachep
->memcg_params
.memcg
->css
);
2630 * memcg_kmem_charge_memcg: charge a kmem page
2631 * @page: page to charge
2632 * @gfp: reclaim mode
2633 * @order: allocation order
2634 * @memcg: memory cgroup to charge
2636 * Returns 0 on success, an error code on failure.
2638 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2639 struct mem_cgroup
*memcg
)
2641 unsigned int nr_pages
= 1 << order
;
2642 struct page_counter
*counter
;
2645 ret
= try_charge(memcg
, gfp
, nr_pages
);
2649 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2650 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2653 * Enforce __GFP_NOFAIL allocation because callers are not
2654 * prepared to see failures and likely do not have any failure
2657 if (gfp
& __GFP_NOFAIL
) {
2658 page_counter_charge(&memcg
->kmem
, nr_pages
);
2661 cancel_charge(memcg
, nr_pages
);
2665 page
->mem_cgroup
= memcg
;
2671 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2672 * @page: page to charge
2673 * @gfp: reclaim mode
2674 * @order: allocation order
2676 * Returns 0 on success, an error code on failure.
2678 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2680 struct mem_cgroup
*memcg
;
2683 if (mem_cgroup_disabled() || memcg_kmem_bypass())
2686 memcg
= get_mem_cgroup_from_current();
2687 if (!mem_cgroup_is_root(memcg
)) {
2688 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2690 __SetPageKmemcg(page
);
2692 css_put(&memcg
->css
);
2696 * memcg_kmem_uncharge: uncharge a kmem page
2697 * @page: page to uncharge
2698 * @order: allocation order
2700 void memcg_kmem_uncharge(struct page
*page
, int order
)
2702 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2703 unsigned int nr_pages
= 1 << order
;
2708 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2710 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2711 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2713 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2714 if (do_memsw_account())
2715 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2717 page
->mem_cgroup
= NULL
;
2719 /* slab pages do not have PageKmemcg flag set */
2720 if (PageKmemcg(page
))
2721 __ClearPageKmemcg(page
);
2723 css_put_many(&memcg
->css
, nr_pages
);
2725 #endif /* CONFIG_MEMCG_KMEM */
2727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2730 * Because tail pages are not marked as "used", set it. We're under
2731 * zone_lru_lock and migration entries setup in all page mappings.
2733 void mem_cgroup_split_huge_fixup(struct page
*head
)
2737 if (mem_cgroup_disabled())
2740 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2741 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2743 __mod_memcg_state(head
->mem_cgroup
, MEMCG_RSS_HUGE
, -HPAGE_PMD_NR
);
2745 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2747 #ifdef CONFIG_MEMCG_SWAP
2749 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2750 * @entry: swap entry to be moved
2751 * @from: mem_cgroup which the entry is moved from
2752 * @to: mem_cgroup which the entry is moved to
2754 * It succeeds only when the swap_cgroup's record for this entry is the same
2755 * as the mem_cgroup's id of @from.
2757 * Returns 0 on success, -EINVAL on failure.
2759 * The caller must have charged to @to, IOW, called page_counter_charge() about
2760 * both res and memsw, and called css_get().
2762 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2763 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2765 unsigned short old_id
, new_id
;
2767 old_id
= mem_cgroup_id(from
);
2768 new_id
= mem_cgroup_id(to
);
2770 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2771 mod_memcg_state(from
, MEMCG_SWAP
, -1);
2772 mod_memcg_state(to
, MEMCG_SWAP
, 1);
2778 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2779 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2785 static DEFINE_MUTEX(memcg_max_mutex
);
2787 static int mem_cgroup_resize_max(struct mem_cgroup
*memcg
,
2788 unsigned long max
, bool memsw
)
2790 bool enlarge
= false;
2791 bool drained
= false;
2793 bool limits_invariant
;
2794 struct page_counter
*counter
= memsw
? &memcg
->memsw
: &memcg
->memory
;
2797 if (signal_pending(current
)) {
2802 mutex_lock(&memcg_max_mutex
);
2804 * Make sure that the new limit (memsw or memory limit) doesn't
2805 * break our basic invariant rule memory.max <= memsw.max.
2807 limits_invariant
= memsw
? max
>= memcg
->memory
.max
:
2808 max
<= memcg
->memsw
.max
;
2809 if (!limits_invariant
) {
2810 mutex_unlock(&memcg_max_mutex
);
2814 if (max
> counter
->max
)
2816 ret
= page_counter_set_max(counter
, max
);
2817 mutex_unlock(&memcg_max_mutex
);
2823 drain_all_stock(memcg
);
2828 if (!try_to_free_mem_cgroup_pages(memcg
, 1,
2829 GFP_KERNEL
, !memsw
)) {
2835 if (!ret
&& enlarge
)
2836 memcg_oom_recover(memcg
);
2841 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2843 unsigned long *total_scanned
)
2845 unsigned long nr_reclaimed
= 0;
2846 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2847 unsigned long reclaimed
;
2849 struct mem_cgroup_tree_per_node
*mctz
;
2850 unsigned long excess
;
2851 unsigned long nr_scanned
;
2856 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2859 * Do not even bother to check the largest node if the root
2860 * is empty. Do it lockless to prevent lock bouncing. Races
2861 * are acceptable as soft limit is best effort anyway.
2863 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
2867 * This loop can run a while, specially if mem_cgroup's continuously
2868 * keep exceeding their soft limit and putting the system under
2875 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2880 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2881 gfp_mask
, &nr_scanned
);
2882 nr_reclaimed
+= reclaimed
;
2883 *total_scanned
+= nr_scanned
;
2884 spin_lock_irq(&mctz
->lock
);
2885 __mem_cgroup_remove_exceeded(mz
, mctz
);
2888 * If we failed to reclaim anything from this memory cgroup
2889 * it is time to move on to the next cgroup
2893 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2895 excess
= soft_limit_excess(mz
->memcg
);
2897 * One school of thought says that we should not add
2898 * back the node to the tree if reclaim returns 0.
2899 * But our reclaim could return 0, simply because due
2900 * to priority we are exposing a smaller subset of
2901 * memory to reclaim from. Consider this as a longer
2904 /* If excess == 0, no tree ops */
2905 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2906 spin_unlock_irq(&mctz
->lock
);
2907 css_put(&mz
->memcg
->css
);
2910 * Could not reclaim anything and there are no more
2911 * mem cgroups to try or we seem to be looping without
2912 * reclaiming anything.
2914 if (!nr_reclaimed
&&
2916 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2918 } while (!nr_reclaimed
);
2920 css_put(&next_mz
->memcg
->css
);
2921 return nr_reclaimed
;
2925 * Test whether @memcg has children, dead or alive. Note that this
2926 * function doesn't care whether @memcg has use_hierarchy enabled and
2927 * returns %true if there are child csses according to the cgroup
2928 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2930 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2935 ret
= css_next_child(NULL
, &memcg
->css
);
2941 * Reclaims as many pages from the given memcg as possible.
2943 * Caller is responsible for holding css reference for memcg.
2945 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2947 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2949 /* we call try-to-free pages for make this cgroup empty */
2950 lru_add_drain_all();
2952 drain_all_stock(memcg
);
2954 /* try to free all pages in this cgroup */
2955 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2958 if (signal_pending(current
))
2961 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2965 /* maybe some writeback is necessary */
2966 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2974 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2975 char *buf
, size_t nbytes
,
2978 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2980 if (mem_cgroup_is_root(memcg
))
2982 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2985 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2988 return mem_cgroup_from_css(css
)->use_hierarchy
;
2991 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2992 struct cftype
*cft
, u64 val
)
2995 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2996 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2998 if (memcg
->use_hierarchy
== val
)
3002 * If parent's use_hierarchy is set, we can't make any modifications
3003 * in the child subtrees. If it is unset, then the change can
3004 * occur, provided the current cgroup has no children.
3006 * For the root cgroup, parent_mem is NULL, we allow value to be
3007 * set if there are no children.
3009 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3010 (val
== 1 || val
== 0)) {
3011 if (!memcg_has_children(memcg
))
3012 memcg
->use_hierarchy
= val
;
3021 struct accumulated_stats
{
3022 unsigned long stat
[MEMCG_NR_STAT
];
3023 unsigned long events
[NR_VM_EVENT_ITEMS
];
3024 unsigned long lru_pages
[NR_LRU_LISTS
];
3025 const unsigned int *stats_array
;
3026 const unsigned int *events_array
;
3031 static void accumulate_memcg_tree(struct mem_cgroup
*memcg
,
3032 struct accumulated_stats
*acc
)
3034 struct mem_cgroup
*mi
;
3037 for_each_mem_cgroup_tree(mi
, memcg
) {
3038 for (i
= 0; i
< acc
->stats_size
; i
++)
3039 acc
->stat
[i
] += memcg_page_state(mi
,
3040 acc
->stats_array
? acc
->stats_array
[i
] : i
);
3042 for (i
= 0; i
< acc
->events_size
; i
++)
3043 acc
->events
[i
] += memcg_sum_events(mi
,
3044 acc
->events_array
? acc
->events_array
[i
] : i
);
3046 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3047 acc
->lru_pages
[i
] +=
3048 mem_cgroup_nr_lru_pages(mi
, BIT(i
));
3052 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3054 unsigned long val
= 0;
3056 if (mem_cgroup_is_root(memcg
)) {
3057 struct mem_cgroup
*iter
;
3059 for_each_mem_cgroup_tree(iter
, memcg
) {
3060 val
+= memcg_page_state(iter
, MEMCG_CACHE
);
3061 val
+= memcg_page_state(iter
, MEMCG_RSS
);
3063 val
+= memcg_page_state(iter
, MEMCG_SWAP
);
3067 val
= page_counter_read(&memcg
->memory
);
3069 val
= page_counter_read(&memcg
->memsw
);
3082 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
3085 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3086 struct page_counter
*counter
;
3088 switch (MEMFILE_TYPE(cft
->private)) {
3090 counter
= &memcg
->memory
;
3093 counter
= &memcg
->memsw
;
3096 counter
= &memcg
->kmem
;
3099 counter
= &memcg
->tcpmem
;
3105 switch (MEMFILE_ATTR(cft
->private)) {
3107 if (counter
== &memcg
->memory
)
3108 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
3109 if (counter
== &memcg
->memsw
)
3110 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
3111 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
3113 return (u64
)counter
->max
* PAGE_SIZE
;
3115 return (u64
)counter
->watermark
* PAGE_SIZE
;
3117 return counter
->failcnt
;
3118 case RES_SOFT_LIMIT
:
3119 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
3125 #ifdef CONFIG_MEMCG_KMEM
3126 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3130 if (cgroup_memory_nokmem
)
3133 BUG_ON(memcg
->kmemcg_id
>= 0);
3134 BUG_ON(memcg
->kmem_state
);
3136 memcg_id
= memcg_alloc_cache_id();
3140 static_branch_inc(&memcg_kmem_enabled_key
);
3142 * A memory cgroup is considered kmem-online as soon as it gets
3143 * kmemcg_id. Setting the id after enabling static branching will
3144 * guarantee no one starts accounting before all call sites are
3147 memcg
->kmemcg_id
= memcg_id
;
3148 memcg
->kmem_state
= KMEM_ONLINE
;
3149 INIT_LIST_HEAD(&memcg
->kmem_caches
);
3154 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3156 struct cgroup_subsys_state
*css
;
3157 struct mem_cgroup
*parent
, *child
;
3160 if (memcg
->kmem_state
!= KMEM_ONLINE
)
3163 * Clear the online state before clearing memcg_caches array
3164 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3165 * guarantees that no cache will be created for this cgroup
3166 * after we are done (see memcg_create_kmem_cache()).
3168 memcg
->kmem_state
= KMEM_ALLOCATED
;
3170 memcg_deactivate_kmem_caches(memcg
);
3172 kmemcg_id
= memcg
->kmemcg_id
;
3173 BUG_ON(kmemcg_id
< 0);
3175 parent
= parent_mem_cgroup(memcg
);
3177 parent
= root_mem_cgroup
;
3180 * Change kmemcg_id of this cgroup and all its descendants to the
3181 * parent's id, and then move all entries from this cgroup's list_lrus
3182 * to ones of the parent. After we have finished, all list_lrus
3183 * corresponding to this cgroup are guaranteed to remain empty. The
3184 * ordering is imposed by list_lru_node->lock taken by
3185 * memcg_drain_all_list_lrus().
3187 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3188 css_for_each_descendant_pre(css
, &memcg
->css
) {
3189 child
= mem_cgroup_from_css(css
);
3190 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
3191 child
->kmemcg_id
= parent
->kmemcg_id
;
3192 if (!memcg
->use_hierarchy
)
3197 memcg_drain_all_list_lrus(kmemcg_id
, parent
);
3199 memcg_free_cache_id(kmemcg_id
);
3202 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3204 /* css_alloc() failed, offlining didn't happen */
3205 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
3206 memcg_offline_kmem(memcg
);
3208 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
3209 memcg_destroy_kmem_caches(memcg
);
3210 static_branch_dec(&memcg_kmem_enabled_key
);
3211 WARN_ON(page_counter_read(&memcg
->kmem
));
3215 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3219 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3222 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3225 #endif /* CONFIG_MEMCG_KMEM */
3227 static int memcg_update_kmem_max(struct mem_cgroup
*memcg
,
3232 mutex_lock(&memcg_max_mutex
);
3233 ret
= page_counter_set_max(&memcg
->kmem
, max
);
3234 mutex_unlock(&memcg_max_mutex
);
3238 static int memcg_update_tcp_max(struct mem_cgroup
*memcg
, unsigned long max
)
3242 mutex_lock(&memcg_max_mutex
);
3244 ret
= page_counter_set_max(&memcg
->tcpmem
, max
);
3248 if (!memcg
->tcpmem_active
) {
3250 * The active flag needs to be written after the static_key
3251 * update. This is what guarantees that the socket activation
3252 * function is the last one to run. See mem_cgroup_sk_alloc()
3253 * for details, and note that we don't mark any socket as
3254 * belonging to this memcg until that flag is up.
3256 * We need to do this, because static_keys will span multiple
3257 * sites, but we can't control their order. If we mark a socket
3258 * as accounted, but the accounting functions are not patched in
3259 * yet, we'll lose accounting.
3261 * We never race with the readers in mem_cgroup_sk_alloc(),
3262 * because when this value change, the code to process it is not
3265 static_branch_inc(&memcg_sockets_enabled_key
);
3266 memcg
->tcpmem_active
= true;
3269 mutex_unlock(&memcg_max_mutex
);
3274 * The user of this function is...
3277 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3278 char *buf
, size_t nbytes
, loff_t off
)
3280 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3281 unsigned long nr_pages
;
3284 buf
= strstrip(buf
);
3285 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3289 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3291 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3295 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3297 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, false);
3300 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, true);
3303 ret
= memcg_update_kmem_max(memcg
, nr_pages
);
3306 ret
= memcg_update_tcp_max(memcg
, nr_pages
);
3310 case RES_SOFT_LIMIT
:
3311 memcg
->soft_limit
= nr_pages
;
3315 return ret
?: nbytes
;
3318 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3319 size_t nbytes
, loff_t off
)
3321 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3322 struct page_counter
*counter
;
3324 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3326 counter
= &memcg
->memory
;
3329 counter
= &memcg
->memsw
;
3332 counter
= &memcg
->kmem
;
3335 counter
= &memcg
->tcpmem
;
3341 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3343 page_counter_reset_watermark(counter
);
3346 counter
->failcnt
= 0;
3355 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3358 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3362 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3363 struct cftype
*cft
, u64 val
)
3365 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3367 if (val
& ~MOVE_MASK
)
3371 * No kind of locking is needed in here, because ->can_attach() will
3372 * check this value once in the beginning of the process, and then carry
3373 * on with stale data. This means that changes to this value will only
3374 * affect task migrations starting after the change.
3376 memcg
->move_charge_at_immigrate
= val
;
3380 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3381 struct cftype
*cft
, u64 val
)
3388 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3392 unsigned int lru_mask
;
3395 static const struct numa_stat stats
[] = {
3396 { "total", LRU_ALL
},
3397 { "file", LRU_ALL_FILE
},
3398 { "anon", LRU_ALL_ANON
},
3399 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3401 const struct numa_stat
*stat
;
3404 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3406 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3407 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3408 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3409 for_each_node_state(nid
, N_MEMORY
) {
3410 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3412 seq_printf(m
, " N%d=%lu", nid
, nr
);
3417 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3418 struct mem_cgroup
*iter
;
3421 for_each_mem_cgroup_tree(iter
, memcg
)
3422 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3423 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3424 for_each_node_state(nid
, N_MEMORY
) {
3426 for_each_mem_cgroup_tree(iter
, memcg
)
3427 nr
+= mem_cgroup_node_nr_lru_pages(
3428 iter
, nid
, stat
->lru_mask
);
3429 seq_printf(m
, " N%d=%lu", nid
, nr
);
3436 #endif /* CONFIG_NUMA */
3438 /* Universal VM events cgroup1 shows, original sort order */
3439 static const unsigned int memcg1_events
[] = {
3446 static const char *const memcg1_event_names
[] = {
3453 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3455 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3456 unsigned long memory
, memsw
;
3457 struct mem_cgroup
*mi
;
3459 struct accumulated_stats acc
;
3461 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3462 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3464 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3465 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3467 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3468 memcg_page_state(memcg
, memcg1_stats
[i
]) *
3472 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3473 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3474 memcg_sum_events(memcg
, memcg1_events
[i
]));
3476 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3477 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3478 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3480 /* Hierarchical information */
3481 memory
= memsw
= PAGE_COUNTER_MAX
;
3482 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3483 memory
= min(memory
, mi
->memory
.max
);
3484 memsw
= min(memsw
, mi
->memsw
.max
);
3486 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3487 (u64
)memory
* PAGE_SIZE
);
3488 if (do_memsw_account())
3489 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3490 (u64
)memsw
* PAGE_SIZE
);
3492 memset(&acc
, 0, sizeof(acc
));
3493 acc
.stats_size
= ARRAY_SIZE(memcg1_stats
);
3494 acc
.stats_array
= memcg1_stats
;
3495 acc
.events_size
= ARRAY_SIZE(memcg1_events
);
3496 acc
.events_array
= memcg1_events
;
3497 accumulate_memcg_tree(memcg
, &acc
);
3499 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3500 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3502 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
],
3503 (u64
)acc
.stat
[i
] * PAGE_SIZE
);
3506 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3507 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
],
3508 (u64
)acc
.events
[i
]);
3510 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3511 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
],
3512 (u64
)acc
.lru_pages
[i
] * PAGE_SIZE
);
3514 #ifdef CONFIG_DEBUG_VM
3517 struct mem_cgroup_per_node
*mz
;
3518 struct zone_reclaim_stat
*rstat
;
3519 unsigned long recent_rotated
[2] = {0, 0};
3520 unsigned long recent_scanned
[2] = {0, 0};
3522 for_each_online_pgdat(pgdat
) {
3523 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3524 rstat
= &mz
->lruvec
.reclaim_stat
;
3526 recent_rotated
[0] += rstat
->recent_rotated
[0];
3527 recent_rotated
[1] += rstat
->recent_rotated
[1];
3528 recent_scanned
[0] += rstat
->recent_scanned
[0];
3529 recent_scanned
[1] += rstat
->recent_scanned
[1];
3531 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3532 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3533 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3534 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3541 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3544 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3546 return mem_cgroup_swappiness(memcg
);
3549 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3550 struct cftype
*cft
, u64 val
)
3552 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3558 memcg
->swappiness
= val
;
3560 vm_swappiness
= val
;
3565 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3567 struct mem_cgroup_threshold_ary
*t
;
3568 unsigned long usage
;
3573 t
= rcu_dereference(memcg
->thresholds
.primary
);
3575 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3580 usage
= mem_cgroup_usage(memcg
, swap
);
3583 * current_threshold points to threshold just below or equal to usage.
3584 * If it's not true, a threshold was crossed after last
3585 * call of __mem_cgroup_threshold().
3587 i
= t
->current_threshold
;
3590 * Iterate backward over array of thresholds starting from
3591 * current_threshold and check if a threshold is crossed.
3592 * If none of thresholds below usage is crossed, we read
3593 * only one element of the array here.
3595 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3596 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3598 /* i = current_threshold + 1 */
3602 * Iterate forward over array of thresholds starting from
3603 * current_threshold+1 and check if a threshold is crossed.
3604 * If none of thresholds above usage is crossed, we read
3605 * only one element of the array here.
3607 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3608 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3610 /* Update current_threshold */
3611 t
->current_threshold
= i
- 1;
3616 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3619 __mem_cgroup_threshold(memcg
, false);
3620 if (do_memsw_account())
3621 __mem_cgroup_threshold(memcg
, true);
3623 memcg
= parent_mem_cgroup(memcg
);
3627 static int compare_thresholds(const void *a
, const void *b
)
3629 const struct mem_cgroup_threshold
*_a
= a
;
3630 const struct mem_cgroup_threshold
*_b
= b
;
3632 if (_a
->threshold
> _b
->threshold
)
3635 if (_a
->threshold
< _b
->threshold
)
3641 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3643 struct mem_cgroup_eventfd_list
*ev
;
3645 spin_lock(&memcg_oom_lock
);
3647 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3648 eventfd_signal(ev
->eventfd
, 1);
3650 spin_unlock(&memcg_oom_lock
);
3654 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3656 struct mem_cgroup
*iter
;
3658 for_each_mem_cgroup_tree(iter
, memcg
)
3659 mem_cgroup_oom_notify_cb(iter
);
3662 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3663 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3665 struct mem_cgroup_thresholds
*thresholds
;
3666 struct mem_cgroup_threshold_ary
*new;
3667 unsigned long threshold
;
3668 unsigned long usage
;
3671 ret
= page_counter_memparse(args
, "-1", &threshold
);
3675 mutex_lock(&memcg
->thresholds_lock
);
3678 thresholds
= &memcg
->thresholds
;
3679 usage
= mem_cgroup_usage(memcg
, false);
3680 } else if (type
== _MEMSWAP
) {
3681 thresholds
= &memcg
->memsw_thresholds
;
3682 usage
= mem_cgroup_usage(memcg
, true);
3686 /* Check if a threshold crossed before adding a new one */
3687 if (thresholds
->primary
)
3688 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3690 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3692 /* Allocate memory for new array of thresholds */
3693 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3701 /* Copy thresholds (if any) to new array */
3702 if (thresholds
->primary
) {
3703 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3704 sizeof(struct mem_cgroup_threshold
));
3707 /* Add new threshold */
3708 new->entries
[size
- 1].eventfd
= eventfd
;
3709 new->entries
[size
- 1].threshold
= threshold
;
3711 /* Sort thresholds. Registering of new threshold isn't time-critical */
3712 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3713 compare_thresholds
, NULL
);
3715 /* Find current threshold */
3716 new->current_threshold
= -1;
3717 for (i
= 0; i
< size
; i
++) {
3718 if (new->entries
[i
].threshold
<= usage
) {
3720 * new->current_threshold will not be used until
3721 * rcu_assign_pointer(), so it's safe to increment
3724 ++new->current_threshold
;
3729 /* Free old spare buffer and save old primary buffer as spare */
3730 kfree(thresholds
->spare
);
3731 thresholds
->spare
= thresholds
->primary
;
3733 rcu_assign_pointer(thresholds
->primary
, new);
3735 /* To be sure that nobody uses thresholds */
3739 mutex_unlock(&memcg
->thresholds_lock
);
3744 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3745 struct eventfd_ctx
*eventfd
, const char *args
)
3747 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3750 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3751 struct eventfd_ctx
*eventfd
, const char *args
)
3753 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3756 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3757 struct eventfd_ctx
*eventfd
, enum res_type type
)
3759 struct mem_cgroup_thresholds
*thresholds
;
3760 struct mem_cgroup_threshold_ary
*new;
3761 unsigned long usage
;
3762 int i
, j
, size
, entries
;
3764 mutex_lock(&memcg
->thresholds_lock
);
3767 thresholds
= &memcg
->thresholds
;
3768 usage
= mem_cgroup_usage(memcg
, false);
3769 } else if (type
== _MEMSWAP
) {
3770 thresholds
= &memcg
->memsw_thresholds
;
3771 usage
= mem_cgroup_usage(memcg
, true);
3775 if (!thresholds
->primary
)
3778 /* Check if a threshold crossed before removing */
3779 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3781 /* Calculate new number of threshold */
3783 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3784 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3790 new = thresholds
->spare
;
3792 /* If no items related to eventfd have been cleared, nothing to do */
3796 /* Set thresholds array to NULL if we don't have thresholds */
3805 /* Copy thresholds and find current threshold */
3806 new->current_threshold
= -1;
3807 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3808 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3811 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3812 if (new->entries
[j
].threshold
<= usage
) {
3814 * new->current_threshold will not be used
3815 * until rcu_assign_pointer(), so it's safe to increment
3818 ++new->current_threshold
;
3824 /* Swap primary and spare array */
3825 thresholds
->spare
= thresholds
->primary
;
3827 rcu_assign_pointer(thresholds
->primary
, new);
3829 /* To be sure that nobody uses thresholds */
3832 /* If all events are unregistered, free the spare array */
3834 kfree(thresholds
->spare
);
3835 thresholds
->spare
= NULL
;
3838 mutex_unlock(&memcg
->thresholds_lock
);
3841 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3842 struct eventfd_ctx
*eventfd
)
3844 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3847 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3848 struct eventfd_ctx
*eventfd
)
3850 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3853 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3854 struct eventfd_ctx
*eventfd
, const char *args
)
3856 struct mem_cgroup_eventfd_list
*event
;
3858 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3862 spin_lock(&memcg_oom_lock
);
3864 event
->eventfd
= eventfd
;
3865 list_add(&event
->list
, &memcg
->oom_notify
);
3867 /* already in OOM ? */
3868 if (memcg
->under_oom
)
3869 eventfd_signal(eventfd
, 1);
3870 spin_unlock(&memcg_oom_lock
);
3875 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3876 struct eventfd_ctx
*eventfd
)
3878 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3880 spin_lock(&memcg_oom_lock
);
3882 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3883 if (ev
->eventfd
== eventfd
) {
3884 list_del(&ev
->list
);
3889 spin_unlock(&memcg_oom_lock
);
3892 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3894 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3896 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3897 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3898 seq_printf(sf
, "oom_kill %lu\n",
3899 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM_KILL
]));
3903 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3904 struct cftype
*cft
, u64 val
)
3906 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3908 /* cannot set to root cgroup and only 0 and 1 are allowed */
3909 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3912 memcg
->oom_kill_disable
= val
;
3914 memcg_oom_recover(memcg
);
3919 #ifdef CONFIG_CGROUP_WRITEBACK
3921 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3923 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3926 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3928 wb_domain_exit(&memcg
->cgwb_domain
);
3931 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3933 wb_domain_size_changed(&memcg
->cgwb_domain
);
3936 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3938 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3940 if (!memcg
->css
.parent
)
3943 return &memcg
->cgwb_domain
;
3947 * idx can be of type enum memcg_stat_item or node_stat_item.
3948 * Keep in sync with memcg_exact_page().
3950 static unsigned long memcg_exact_page_state(struct mem_cgroup
*memcg
, int idx
)
3952 long x
= atomic_long_read(&memcg
->stat
[idx
]);
3955 for_each_online_cpu(cpu
)
3956 x
+= per_cpu_ptr(memcg
->stat_cpu
, cpu
)->count
[idx
];
3963 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3964 * @wb: bdi_writeback in question
3965 * @pfilepages: out parameter for number of file pages
3966 * @pheadroom: out parameter for number of allocatable pages according to memcg
3967 * @pdirty: out parameter for number of dirty pages
3968 * @pwriteback: out parameter for number of pages under writeback
3970 * Determine the numbers of file, headroom, dirty, and writeback pages in
3971 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3972 * is a bit more involved.
3974 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3975 * headroom is calculated as the lowest headroom of itself and the
3976 * ancestors. Note that this doesn't consider the actual amount of
3977 * available memory in the system. The caller should further cap
3978 * *@pheadroom accordingly.
3980 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3981 unsigned long *pheadroom
, unsigned long *pdirty
,
3982 unsigned long *pwriteback
)
3984 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3985 struct mem_cgroup
*parent
;
3987 *pdirty
= memcg_exact_page_state(memcg
, NR_FILE_DIRTY
);
3989 /* this should eventually include NR_UNSTABLE_NFS */
3990 *pwriteback
= memcg_exact_page_state(memcg
, NR_WRITEBACK
);
3991 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3992 (1 << LRU_ACTIVE_FILE
));
3993 *pheadroom
= PAGE_COUNTER_MAX
;
3995 while ((parent
= parent_mem_cgroup(memcg
))) {
3996 unsigned long ceiling
= min(memcg
->memory
.max
, memcg
->high
);
3997 unsigned long used
= page_counter_read(&memcg
->memory
);
3999 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
4004 #else /* CONFIG_CGROUP_WRITEBACK */
4006 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4011 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4015 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4019 #endif /* CONFIG_CGROUP_WRITEBACK */
4022 * DO NOT USE IN NEW FILES.
4024 * "cgroup.event_control" implementation.
4026 * This is way over-engineered. It tries to support fully configurable
4027 * events for each user. Such level of flexibility is completely
4028 * unnecessary especially in the light of the planned unified hierarchy.
4030 * Please deprecate this and replace with something simpler if at all
4035 * Unregister event and free resources.
4037 * Gets called from workqueue.
4039 static void memcg_event_remove(struct work_struct
*work
)
4041 struct mem_cgroup_event
*event
=
4042 container_of(work
, struct mem_cgroup_event
, remove
);
4043 struct mem_cgroup
*memcg
= event
->memcg
;
4045 remove_wait_queue(event
->wqh
, &event
->wait
);
4047 event
->unregister_event(memcg
, event
->eventfd
);
4049 /* Notify userspace the event is going away. */
4050 eventfd_signal(event
->eventfd
, 1);
4052 eventfd_ctx_put(event
->eventfd
);
4054 css_put(&memcg
->css
);
4058 * Gets called on EPOLLHUP on eventfd when user closes it.
4060 * Called with wqh->lock held and interrupts disabled.
4062 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
4063 int sync
, void *key
)
4065 struct mem_cgroup_event
*event
=
4066 container_of(wait
, struct mem_cgroup_event
, wait
);
4067 struct mem_cgroup
*memcg
= event
->memcg
;
4068 __poll_t flags
= key_to_poll(key
);
4070 if (flags
& EPOLLHUP
) {
4072 * If the event has been detached at cgroup removal, we
4073 * can simply return knowing the other side will cleanup
4076 * We can't race against event freeing since the other
4077 * side will require wqh->lock via remove_wait_queue(),
4080 spin_lock(&memcg
->event_list_lock
);
4081 if (!list_empty(&event
->list
)) {
4082 list_del_init(&event
->list
);
4084 * We are in atomic context, but cgroup_event_remove()
4085 * may sleep, so we have to call it in workqueue.
4087 schedule_work(&event
->remove
);
4089 spin_unlock(&memcg
->event_list_lock
);
4095 static void memcg_event_ptable_queue_proc(struct file
*file
,
4096 wait_queue_head_t
*wqh
, poll_table
*pt
)
4098 struct mem_cgroup_event
*event
=
4099 container_of(pt
, struct mem_cgroup_event
, pt
);
4102 add_wait_queue(wqh
, &event
->wait
);
4106 * DO NOT USE IN NEW FILES.
4108 * Parse input and register new cgroup event handler.
4110 * Input must be in format '<event_fd> <control_fd> <args>'.
4111 * Interpretation of args is defined by control file implementation.
4113 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
4114 char *buf
, size_t nbytes
, loff_t off
)
4116 struct cgroup_subsys_state
*css
= of_css(of
);
4117 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4118 struct mem_cgroup_event
*event
;
4119 struct cgroup_subsys_state
*cfile_css
;
4120 unsigned int efd
, cfd
;
4127 buf
= strstrip(buf
);
4129 efd
= simple_strtoul(buf
, &endp
, 10);
4134 cfd
= simple_strtoul(buf
, &endp
, 10);
4135 if ((*endp
!= ' ') && (*endp
!= '\0'))
4139 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
4143 event
->memcg
= memcg
;
4144 INIT_LIST_HEAD(&event
->list
);
4145 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
4146 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
4147 INIT_WORK(&event
->remove
, memcg_event_remove
);
4155 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
4156 if (IS_ERR(event
->eventfd
)) {
4157 ret
= PTR_ERR(event
->eventfd
);
4164 goto out_put_eventfd
;
4167 /* the process need read permission on control file */
4168 /* AV: shouldn't we check that it's been opened for read instead? */
4169 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
4174 * Determine the event callbacks and set them in @event. This used
4175 * to be done via struct cftype but cgroup core no longer knows
4176 * about these events. The following is crude but the whole thing
4177 * is for compatibility anyway.
4179 * DO NOT ADD NEW FILES.
4181 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
4183 if (!strcmp(name
, "memory.usage_in_bytes")) {
4184 event
->register_event
= mem_cgroup_usage_register_event
;
4185 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
4186 } else if (!strcmp(name
, "memory.oom_control")) {
4187 event
->register_event
= mem_cgroup_oom_register_event
;
4188 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
4189 } else if (!strcmp(name
, "memory.pressure_level")) {
4190 event
->register_event
= vmpressure_register_event
;
4191 event
->unregister_event
= vmpressure_unregister_event
;
4192 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
4193 event
->register_event
= memsw_cgroup_usage_register_event
;
4194 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
4201 * Verify @cfile should belong to @css. Also, remaining events are
4202 * automatically removed on cgroup destruction but the removal is
4203 * asynchronous, so take an extra ref on @css.
4205 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
4206 &memory_cgrp_subsys
);
4208 if (IS_ERR(cfile_css
))
4210 if (cfile_css
!= css
) {
4215 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
4219 vfs_poll(efile
.file
, &event
->pt
);
4221 spin_lock(&memcg
->event_list_lock
);
4222 list_add(&event
->list
, &memcg
->event_list
);
4223 spin_unlock(&memcg
->event_list_lock
);
4235 eventfd_ctx_put(event
->eventfd
);
4244 static struct cftype mem_cgroup_legacy_files
[] = {
4246 .name
= "usage_in_bytes",
4247 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4248 .read_u64
= mem_cgroup_read_u64
,
4251 .name
= "max_usage_in_bytes",
4252 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4253 .write
= mem_cgroup_reset
,
4254 .read_u64
= mem_cgroup_read_u64
,
4257 .name
= "limit_in_bytes",
4258 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4259 .write
= mem_cgroup_write
,
4260 .read_u64
= mem_cgroup_read_u64
,
4263 .name
= "soft_limit_in_bytes",
4264 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4265 .write
= mem_cgroup_write
,
4266 .read_u64
= mem_cgroup_read_u64
,
4270 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4271 .write
= mem_cgroup_reset
,
4272 .read_u64
= mem_cgroup_read_u64
,
4276 .seq_show
= memcg_stat_show
,
4279 .name
= "force_empty",
4280 .write
= mem_cgroup_force_empty_write
,
4283 .name
= "use_hierarchy",
4284 .write_u64
= mem_cgroup_hierarchy_write
,
4285 .read_u64
= mem_cgroup_hierarchy_read
,
4288 .name
= "cgroup.event_control", /* XXX: for compat */
4289 .write
= memcg_write_event_control
,
4290 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4293 .name
= "swappiness",
4294 .read_u64
= mem_cgroup_swappiness_read
,
4295 .write_u64
= mem_cgroup_swappiness_write
,
4298 .name
= "move_charge_at_immigrate",
4299 .read_u64
= mem_cgroup_move_charge_read
,
4300 .write_u64
= mem_cgroup_move_charge_write
,
4303 .name
= "oom_control",
4304 .seq_show
= mem_cgroup_oom_control_read
,
4305 .write_u64
= mem_cgroup_oom_control_write
,
4306 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4309 .name
= "pressure_level",
4313 .name
= "numa_stat",
4314 .seq_show
= memcg_numa_stat_show
,
4318 .name
= "kmem.limit_in_bytes",
4319 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4320 .write
= mem_cgroup_write
,
4321 .read_u64
= mem_cgroup_read_u64
,
4324 .name
= "kmem.usage_in_bytes",
4325 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4326 .read_u64
= mem_cgroup_read_u64
,
4329 .name
= "kmem.failcnt",
4330 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4331 .write
= mem_cgroup_reset
,
4332 .read_u64
= mem_cgroup_read_u64
,
4335 .name
= "kmem.max_usage_in_bytes",
4336 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4337 .write
= mem_cgroup_reset
,
4338 .read_u64
= mem_cgroup_read_u64
,
4340 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4342 .name
= "kmem.slabinfo",
4343 .seq_start
= memcg_slab_start
,
4344 .seq_next
= memcg_slab_next
,
4345 .seq_stop
= memcg_slab_stop
,
4346 .seq_show
= memcg_slab_show
,
4350 .name
= "kmem.tcp.limit_in_bytes",
4351 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4352 .write
= mem_cgroup_write
,
4353 .read_u64
= mem_cgroup_read_u64
,
4356 .name
= "kmem.tcp.usage_in_bytes",
4357 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4358 .read_u64
= mem_cgroup_read_u64
,
4361 .name
= "kmem.tcp.failcnt",
4362 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4363 .write
= mem_cgroup_reset
,
4364 .read_u64
= mem_cgroup_read_u64
,
4367 .name
= "kmem.tcp.max_usage_in_bytes",
4368 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4369 .write
= mem_cgroup_reset
,
4370 .read_u64
= mem_cgroup_read_u64
,
4372 { }, /* terminate */
4376 * Private memory cgroup IDR
4378 * Swap-out records and page cache shadow entries need to store memcg
4379 * references in constrained space, so we maintain an ID space that is
4380 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4381 * memory-controlled cgroups to 64k.
4383 * However, there usually are many references to the oflline CSS after
4384 * the cgroup has been destroyed, such as page cache or reclaimable
4385 * slab objects, that don't need to hang on to the ID. We want to keep
4386 * those dead CSS from occupying IDs, or we might quickly exhaust the
4387 * relatively small ID space and prevent the creation of new cgroups
4388 * even when there are much fewer than 64k cgroups - possibly none.
4390 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4391 * be freed and recycled when it's no longer needed, which is usually
4392 * when the CSS is offlined.
4394 * The only exception to that are records of swapped out tmpfs/shmem
4395 * pages that need to be attributed to live ancestors on swapin. But
4396 * those references are manageable from userspace.
4399 static DEFINE_IDR(mem_cgroup_idr
);
4401 static void mem_cgroup_id_remove(struct mem_cgroup
*memcg
)
4403 if (memcg
->id
.id
> 0) {
4404 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4409 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4411 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4412 atomic_add(n
, &memcg
->id
.ref
);
4415 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4417 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4418 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4419 mem_cgroup_id_remove(memcg
);
4421 /* Memcg ID pins CSS */
4422 css_put(&memcg
->css
);
4426 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4428 mem_cgroup_id_get_many(memcg
, 1);
4431 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4433 mem_cgroup_id_put_many(memcg
, 1);
4437 * mem_cgroup_from_id - look up a memcg from a memcg id
4438 * @id: the memcg id to look up
4440 * Caller must hold rcu_read_lock().
4442 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4444 WARN_ON_ONCE(!rcu_read_lock_held());
4445 return idr_find(&mem_cgroup_idr
, id
);
4448 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4450 struct mem_cgroup_per_node
*pn
;
4453 * This routine is called against possible nodes.
4454 * But it's BUG to call kmalloc() against offline node.
4456 * TODO: this routine can waste much memory for nodes which will
4457 * never be onlined. It's better to use memory hotplug callback
4460 if (!node_state(node
, N_NORMAL_MEMORY
))
4462 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4466 pn
->lruvec_stat_cpu
= alloc_percpu(struct lruvec_stat
);
4467 if (!pn
->lruvec_stat_cpu
) {
4472 lruvec_init(&pn
->lruvec
);
4473 pn
->usage_in_excess
= 0;
4474 pn
->on_tree
= false;
4477 memcg
->nodeinfo
[node
] = pn
;
4481 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4483 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4488 free_percpu(pn
->lruvec_stat_cpu
);
4492 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4497 free_mem_cgroup_per_node_info(memcg
, node
);
4498 free_percpu(memcg
->stat_cpu
);
4502 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4504 memcg_wb_domain_exit(memcg
);
4505 __mem_cgroup_free(memcg
);
4508 static struct mem_cgroup
*mem_cgroup_alloc(void)
4510 struct mem_cgroup
*memcg
;
4514 size
= sizeof(struct mem_cgroup
);
4515 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4517 memcg
= kzalloc(size
, GFP_KERNEL
);
4521 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4522 1, MEM_CGROUP_ID_MAX
,
4524 if (memcg
->id
.id
< 0)
4527 memcg
->stat_cpu
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4528 if (!memcg
->stat_cpu
)
4532 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4535 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4538 INIT_WORK(&memcg
->high_work
, high_work_func
);
4539 memcg
->last_scanned_node
= MAX_NUMNODES
;
4540 INIT_LIST_HEAD(&memcg
->oom_notify
);
4541 mutex_init(&memcg
->thresholds_lock
);
4542 spin_lock_init(&memcg
->move_lock
);
4543 vmpressure_init(&memcg
->vmpressure
);
4544 INIT_LIST_HEAD(&memcg
->event_list
);
4545 spin_lock_init(&memcg
->event_list_lock
);
4546 memcg
->socket_pressure
= jiffies
;
4547 #ifdef CONFIG_MEMCG_KMEM
4548 memcg
->kmemcg_id
= -1;
4550 #ifdef CONFIG_CGROUP_WRITEBACK
4551 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4553 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4556 mem_cgroup_id_remove(memcg
);
4557 __mem_cgroup_free(memcg
);
4561 static struct cgroup_subsys_state
* __ref
4562 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4564 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4565 struct mem_cgroup
*memcg
;
4566 long error
= -ENOMEM
;
4568 memcg
= mem_cgroup_alloc();
4570 return ERR_PTR(error
);
4572 memcg
->high
= PAGE_COUNTER_MAX
;
4573 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4575 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4576 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4578 if (parent
&& parent
->use_hierarchy
) {
4579 memcg
->use_hierarchy
= true;
4580 page_counter_init(&memcg
->memory
, &parent
->memory
);
4581 page_counter_init(&memcg
->swap
, &parent
->swap
);
4582 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4583 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4584 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4586 page_counter_init(&memcg
->memory
, NULL
);
4587 page_counter_init(&memcg
->swap
, NULL
);
4588 page_counter_init(&memcg
->memsw
, NULL
);
4589 page_counter_init(&memcg
->kmem
, NULL
);
4590 page_counter_init(&memcg
->tcpmem
, NULL
);
4592 * Deeper hierachy with use_hierarchy == false doesn't make
4593 * much sense so let cgroup subsystem know about this
4594 * unfortunate state in our controller.
4596 if (parent
!= root_mem_cgroup
)
4597 memory_cgrp_subsys
.broken_hierarchy
= true;
4600 /* The following stuff does not apply to the root */
4602 root_mem_cgroup
= memcg
;
4606 error
= memcg_online_kmem(memcg
);
4610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4611 static_branch_inc(&memcg_sockets_enabled_key
);
4615 mem_cgroup_id_remove(memcg
);
4616 mem_cgroup_free(memcg
);
4617 return ERR_PTR(-ENOMEM
);
4620 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4622 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4625 * A memcg must be visible for memcg_expand_shrinker_maps()
4626 * by the time the maps are allocated. So, we allocate maps
4627 * here, when for_each_mem_cgroup() can't skip it.
4629 if (memcg_alloc_shrinker_maps(memcg
)) {
4630 mem_cgroup_id_remove(memcg
);
4634 /* Online state pins memcg ID, memcg ID pins CSS */
4635 atomic_set(&memcg
->id
.ref
, 1);
4640 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4642 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4643 struct mem_cgroup_event
*event
, *tmp
;
4646 * Unregister events and notify userspace.
4647 * Notify userspace about cgroup removing only after rmdir of cgroup
4648 * directory to avoid race between userspace and kernelspace.
4650 spin_lock(&memcg
->event_list_lock
);
4651 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4652 list_del_init(&event
->list
);
4653 schedule_work(&event
->remove
);
4655 spin_unlock(&memcg
->event_list_lock
);
4657 page_counter_set_min(&memcg
->memory
, 0);
4658 page_counter_set_low(&memcg
->memory
, 0);
4660 memcg_offline_kmem(memcg
);
4661 wb_memcg_offline(memcg
);
4663 mem_cgroup_id_put(memcg
);
4666 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4668 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4670 invalidate_reclaim_iterators(memcg
);
4673 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4675 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4677 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4678 static_branch_dec(&memcg_sockets_enabled_key
);
4680 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4681 static_branch_dec(&memcg_sockets_enabled_key
);
4683 vmpressure_cleanup(&memcg
->vmpressure
);
4684 cancel_work_sync(&memcg
->high_work
);
4685 mem_cgroup_remove_from_trees(memcg
);
4686 memcg_free_shrinker_maps(memcg
);
4687 memcg_free_kmem(memcg
);
4688 mem_cgroup_free(memcg
);
4692 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4693 * @css: the target css
4695 * Reset the states of the mem_cgroup associated with @css. This is
4696 * invoked when the userland requests disabling on the default hierarchy
4697 * but the memcg is pinned through dependency. The memcg should stop
4698 * applying policies and should revert to the vanilla state as it may be
4699 * made visible again.
4701 * The current implementation only resets the essential configurations.
4702 * This needs to be expanded to cover all the visible parts.
4704 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4706 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4708 page_counter_set_max(&memcg
->memory
, PAGE_COUNTER_MAX
);
4709 page_counter_set_max(&memcg
->swap
, PAGE_COUNTER_MAX
);
4710 page_counter_set_max(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4711 page_counter_set_max(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4712 page_counter_set_max(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4713 page_counter_set_min(&memcg
->memory
, 0);
4714 page_counter_set_low(&memcg
->memory
, 0);
4715 memcg
->high
= PAGE_COUNTER_MAX
;
4716 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4717 memcg_wb_domain_size_changed(memcg
);
4721 /* Handlers for move charge at task migration. */
4722 static int mem_cgroup_do_precharge(unsigned long count
)
4726 /* Try a single bulk charge without reclaim first, kswapd may wake */
4727 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4729 mc
.precharge
+= count
;
4733 /* Try charges one by one with reclaim, but do not retry */
4735 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4749 enum mc_target_type
{
4756 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4757 unsigned long addr
, pte_t ptent
)
4759 struct page
*page
= _vm_normal_page(vma
, addr
, ptent
, true);
4761 if (!page
|| !page_mapped(page
))
4763 if (PageAnon(page
)) {
4764 if (!(mc
.flags
& MOVE_ANON
))
4767 if (!(mc
.flags
& MOVE_FILE
))
4770 if (!get_page_unless_zero(page
))
4776 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4777 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4778 pte_t ptent
, swp_entry_t
*entry
)
4780 struct page
*page
= NULL
;
4781 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4783 if (!(mc
.flags
& MOVE_ANON
))
4787 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4788 * a device and because they are not accessible by CPU they are store
4789 * as special swap entry in the CPU page table.
4791 if (is_device_private_entry(ent
)) {
4792 page
= device_private_entry_to_page(ent
);
4794 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4795 * a refcount of 1 when free (unlike normal page)
4797 if (!page_ref_add_unless(page
, 1, 1))
4802 if (non_swap_entry(ent
))
4806 * Because lookup_swap_cache() updates some statistics counter,
4807 * we call find_get_page() with swapper_space directly.
4809 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4810 if (do_memsw_account())
4811 entry
->val
= ent
.val
;
4816 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4817 pte_t ptent
, swp_entry_t
*entry
)
4823 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4824 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4826 struct page
*page
= NULL
;
4827 struct address_space
*mapping
;
4830 if (!vma
->vm_file
) /* anonymous vma */
4832 if (!(mc
.flags
& MOVE_FILE
))
4835 mapping
= vma
->vm_file
->f_mapping
;
4836 pgoff
= linear_page_index(vma
, addr
);
4838 /* page is moved even if it's not RSS of this task(page-faulted). */
4840 /* shmem/tmpfs may report page out on swap: account for that too. */
4841 if (shmem_mapping(mapping
)) {
4842 page
= find_get_entry(mapping
, pgoff
);
4843 if (radix_tree_exceptional_entry(page
)) {
4844 swp_entry_t swp
= radix_to_swp_entry(page
);
4845 if (do_memsw_account())
4847 page
= find_get_page(swap_address_space(swp
),
4851 page
= find_get_page(mapping
, pgoff
);
4853 page
= find_get_page(mapping
, pgoff
);
4859 * mem_cgroup_move_account - move account of the page
4861 * @compound: charge the page as compound or small page
4862 * @from: mem_cgroup which the page is moved from.
4863 * @to: mem_cgroup which the page is moved to. @from != @to.
4865 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4867 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4870 static int mem_cgroup_move_account(struct page
*page
,
4872 struct mem_cgroup
*from
,
4873 struct mem_cgroup
*to
)
4875 unsigned long flags
;
4876 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4880 VM_BUG_ON(from
== to
);
4881 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4882 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4885 * Prevent mem_cgroup_migrate() from looking at
4886 * page->mem_cgroup of its source page while we change it.
4889 if (!trylock_page(page
))
4893 if (page
->mem_cgroup
!= from
)
4896 anon
= PageAnon(page
);
4898 spin_lock_irqsave(&from
->move_lock
, flags
);
4900 if (!anon
&& page_mapped(page
)) {
4901 __mod_memcg_state(from
, NR_FILE_MAPPED
, -nr_pages
);
4902 __mod_memcg_state(to
, NR_FILE_MAPPED
, nr_pages
);
4906 * move_lock grabbed above and caller set from->moving_account, so
4907 * mod_memcg_page_state will serialize updates to PageDirty.
4908 * So mapping should be stable for dirty pages.
4910 if (!anon
&& PageDirty(page
)) {
4911 struct address_space
*mapping
= page_mapping(page
);
4913 if (mapping_cap_account_dirty(mapping
)) {
4914 __mod_memcg_state(from
, NR_FILE_DIRTY
, -nr_pages
);
4915 __mod_memcg_state(to
, NR_FILE_DIRTY
, nr_pages
);
4919 if (PageWriteback(page
)) {
4920 __mod_memcg_state(from
, NR_WRITEBACK
, -nr_pages
);
4921 __mod_memcg_state(to
, NR_WRITEBACK
, nr_pages
);
4925 * It is safe to change page->mem_cgroup here because the page
4926 * is referenced, charged, and isolated - we can't race with
4927 * uncharging, charging, migration, or LRU putback.
4930 /* caller should have done css_get */
4931 page
->mem_cgroup
= to
;
4932 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4936 local_irq_disable();
4937 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4938 memcg_check_events(to
, page
);
4939 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4940 memcg_check_events(from
, page
);
4949 * get_mctgt_type - get target type of moving charge
4950 * @vma: the vma the pte to be checked belongs
4951 * @addr: the address corresponding to the pte to be checked
4952 * @ptent: the pte to be checked
4953 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4956 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4957 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4958 * move charge. if @target is not NULL, the page is stored in target->page
4959 * with extra refcnt got(Callers should handle it).
4960 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4961 * target for charge migration. if @target is not NULL, the entry is stored
4963 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4964 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4965 * For now we such page is charge like a regular page would be as for all
4966 * intent and purposes it is just special memory taking the place of a
4969 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4971 * Called with pte lock held.
4974 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4975 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4977 struct page
*page
= NULL
;
4978 enum mc_target_type ret
= MC_TARGET_NONE
;
4979 swp_entry_t ent
= { .val
= 0 };
4981 if (pte_present(ptent
))
4982 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4983 else if (is_swap_pte(ptent
))
4984 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4985 else if (pte_none(ptent
))
4986 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4988 if (!page
&& !ent
.val
)
4992 * Do only loose check w/o serialization.
4993 * mem_cgroup_move_account() checks the page is valid or
4994 * not under LRU exclusion.
4996 if (page
->mem_cgroup
== mc
.from
) {
4997 ret
= MC_TARGET_PAGE
;
4998 if (is_device_private_page(page
) ||
4999 is_device_public_page(page
))
5000 ret
= MC_TARGET_DEVICE
;
5002 target
->page
= page
;
5004 if (!ret
|| !target
)
5008 * There is a swap entry and a page doesn't exist or isn't charged.
5009 * But we cannot move a tail-page in a THP.
5011 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
5012 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
5013 ret
= MC_TARGET_SWAP
;
5020 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5022 * We don't consider PMD mapped swapping or file mapped pages because THP does
5023 * not support them for now.
5024 * Caller should make sure that pmd_trans_huge(pmd) is true.
5026 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5027 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5029 struct page
*page
= NULL
;
5030 enum mc_target_type ret
= MC_TARGET_NONE
;
5032 if (unlikely(is_swap_pmd(pmd
))) {
5033 VM_BUG_ON(thp_migration_supported() &&
5034 !is_pmd_migration_entry(pmd
));
5037 page
= pmd_page(pmd
);
5038 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
5039 if (!(mc
.flags
& MOVE_ANON
))
5041 if (page
->mem_cgroup
== mc
.from
) {
5042 ret
= MC_TARGET_PAGE
;
5045 target
->page
= page
;
5051 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5052 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5054 return MC_TARGET_NONE
;
5058 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5059 unsigned long addr
, unsigned long end
,
5060 struct mm_walk
*walk
)
5062 struct vm_area_struct
*vma
= walk
->vma
;
5066 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5069 * Note their can not be MC_TARGET_DEVICE for now as we do not
5070 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5071 * MEMORY_DEVICE_PRIVATE but this might change.
5073 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5074 mc
.precharge
+= HPAGE_PMD_NR
;
5079 if (pmd_trans_unstable(pmd
))
5081 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5082 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5083 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5084 mc
.precharge
++; /* increment precharge temporarily */
5085 pte_unmap_unlock(pte
- 1, ptl
);
5091 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5093 unsigned long precharge
;
5095 struct mm_walk mem_cgroup_count_precharge_walk
= {
5096 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5099 down_read(&mm
->mmap_sem
);
5100 walk_page_range(0, mm
->highest_vm_end
,
5101 &mem_cgroup_count_precharge_walk
);
5102 up_read(&mm
->mmap_sem
);
5104 precharge
= mc
.precharge
;
5110 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5112 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5114 VM_BUG_ON(mc
.moving_task
);
5115 mc
.moving_task
= current
;
5116 return mem_cgroup_do_precharge(precharge
);
5119 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5120 static void __mem_cgroup_clear_mc(void)
5122 struct mem_cgroup
*from
= mc
.from
;
5123 struct mem_cgroup
*to
= mc
.to
;
5125 /* we must uncharge all the leftover precharges from mc.to */
5127 cancel_charge(mc
.to
, mc
.precharge
);
5131 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5132 * we must uncharge here.
5134 if (mc
.moved_charge
) {
5135 cancel_charge(mc
.from
, mc
.moved_charge
);
5136 mc
.moved_charge
= 0;
5138 /* we must fixup refcnts and charges */
5139 if (mc
.moved_swap
) {
5140 /* uncharge swap account from the old cgroup */
5141 if (!mem_cgroup_is_root(mc
.from
))
5142 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
5144 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
5147 * we charged both to->memory and to->memsw, so we
5148 * should uncharge to->memory.
5150 if (!mem_cgroup_is_root(mc
.to
))
5151 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
5153 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
5157 memcg_oom_recover(from
);
5158 memcg_oom_recover(to
);
5159 wake_up_all(&mc
.waitq
);
5162 static void mem_cgroup_clear_mc(void)
5164 struct mm_struct
*mm
= mc
.mm
;
5167 * we must clear moving_task before waking up waiters at the end of
5170 mc
.moving_task
= NULL
;
5171 __mem_cgroup_clear_mc();
5172 spin_lock(&mc
.lock
);
5176 spin_unlock(&mc
.lock
);
5181 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5183 struct cgroup_subsys_state
*css
;
5184 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
5185 struct mem_cgroup
*from
;
5186 struct task_struct
*leader
, *p
;
5187 struct mm_struct
*mm
;
5188 unsigned long move_flags
;
5191 /* charge immigration isn't supported on the default hierarchy */
5192 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5196 * Multi-process migrations only happen on the default hierarchy
5197 * where charge immigration is not used. Perform charge
5198 * immigration if @tset contains a leader and whine if there are
5202 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
5205 memcg
= mem_cgroup_from_css(css
);
5211 * We are now commited to this value whatever it is. Changes in this
5212 * tunable will only affect upcoming migrations, not the current one.
5213 * So we need to save it, and keep it going.
5215 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
5219 from
= mem_cgroup_from_task(p
);
5221 VM_BUG_ON(from
== memcg
);
5223 mm
= get_task_mm(p
);
5226 /* We move charges only when we move a owner of the mm */
5227 if (mm
->owner
== p
) {
5230 VM_BUG_ON(mc
.precharge
);
5231 VM_BUG_ON(mc
.moved_charge
);
5232 VM_BUG_ON(mc
.moved_swap
);
5234 spin_lock(&mc
.lock
);
5238 mc
.flags
= move_flags
;
5239 spin_unlock(&mc
.lock
);
5240 /* We set mc.moving_task later */
5242 ret
= mem_cgroup_precharge_mc(mm
);
5244 mem_cgroup_clear_mc();
5251 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5254 mem_cgroup_clear_mc();
5257 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5258 unsigned long addr
, unsigned long end
,
5259 struct mm_walk
*walk
)
5262 struct vm_area_struct
*vma
= walk
->vma
;
5265 enum mc_target_type target_type
;
5266 union mc_target target
;
5269 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5271 if (mc
.precharge
< HPAGE_PMD_NR
) {
5275 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5276 if (target_type
== MC_TARGET_PAGE
) {
5278 if (!isolate_lru_page(page
)) {
5279 if (!mem_cgroup_move_account(page
, true,
5281 mc
.precharge
-= HPAGE_PMD_NR
;
5282 mc
.moved_charge
+= HPAGE_PMD_NR
;
5284 putback_lru_page(page
);
5287 } else if (target_type
== MC_TARGET_DEVICE
) {
5289 if (!mem_cgroup_move_account(page
, true,
5291 mc
.precharge
-= HPAGE_PMD_NR
;
5292 mc
.moved_charge
+= HPAGE_PMD_NR
;
5300 if (pmd_trans_unstable(pmd
))
5303 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5304 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5305 pte_t ptent
= *(pte
++);
5306 bool device
= false;
5312 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5313 case MC_TARGET_DEVICE
:
5316 case MC_TARGET_PAGE
:
5319 * We can have a part of the split pmd here. Moving it
5320 * can be done but it would be too convoluted so simply
5321 * ignore such a partial THP and keep it in original
5322 * memcg. There should be somebody mapping the head.
5324 if (PageTransCompound(page
))
5326 if (!device
&& isolate_lru_page(page
))
5328 if (!mem_cgroup_move_account(page
, false,
5331 /* we uncharge from mc.from later. */
5335 putback_lru_page(page
);
5336 put
: /* get_mctgt_type() gets the page */
5339 case MC_TARGET_SWAP
:
5341 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5343 mem_cgroup_id_get_many(mc
.to
, 1);
5344 /* we fixup other refcnts and charges later. */
5352 pte_unmap_unlock(pte
- 1, ptl
);
5357 * We have consumed all precharges we got in can_attach().
5358 * We try charge one by one, but don't do any additional
5359 * charges to mc.to if we have failed in charge once in attach()
5362 ret
= mem_cgroup_do_precharge(1);
5370 static void mem_cgroup_move_charge(void)
5372 struct mm_walk mem_cgroup_move_charge_walk
= {
5373 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5377 lru_add_drain_all();
5379 * Signal lock_page_memcg() to take the memcg's move_lock
5380 * while we're moving its pages to another memcg. Then wait
5381 * for already started RCU-only updates to finish.
5383 atomic_inc(&mc
.from
->moving_account
);
5386 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5388 * Someone who are holding the mmap_sem might be waiting in
5389 * waitq. So we cancel all extra charges, wake up all waiters,
5390 * and retry. Because we cancel precharges, we might not be able
5391 * to move enough charges, but moving charge is a best-effort
5392 * feature anyway, so it wouldn't be a big problem.
5394 __mem_cgroup_clear_mc();
5399 * When we have consumed all precharges and failed in doing
5400 * additional charge, the page walk just aborts.
5402 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5404 up_read(&mc
.mm
->mmap_sem
);
5405 atomic_dec(&mc
.from
->moving_account
);
5408 static void mem_cgroup_move_task(void)
5411 mem_cgroup_move_charge();
5412 mem_cgroup_clear_mc();
5415 #else /* !CONFIG_MMU */
5416 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5420 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5423 static void mem_cgroup_move_task(void)
5429 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5430 * to verify whether we're attached to the default hierarchy on each mount
5433 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5436 * use_hierarchy is forced on the default hierarchy. cgroup core
5437 * guarantees that @root doesn't have any children, so turning it
5438 * on for the root memcg is enough.
5440 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5441 root_mem_cgroup
->use_hierarchy
= true;
5443 root_mem_cgroup
->use_hierarchy
= false;
5446 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5449 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5451 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5454 static int memory_min_show(struct seq_file
*m
, void *v
)
5456 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5457 unsigned long min
= READ_ONCE(memcg
->memory
.min
);
5459 if (min
== PAGE_COUNTER_MAX
)
5460 seq_puts(m
, "max\n");
5462 seq_printf(m
, "%llu\n", (u64
)min
* PAGE_SIZE
);
5467 static ssize_t
memory_min_write(struct kernfs_open_file
*of
,
5468 char *buf
, size_t nbytes
, loff_t off
)
5470 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5474 buf
= strstrip(buf
);
5475 err
= page_counter_memparse(buf
, "max", &min
);
5479 page_counter_set_min(&memcg
->memory
, min
);
5484 static int memory_low_show(struct seq_file
*m
, void *v
)
5486 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5487 unsigned long low
= READ_ONCE(memcg
->memory
.low
);
5489 if (low
== PAGE_COUNTER_MAX
)
5490 seq_puts(m
, "max\n");
5492 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5497 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5498 char *buf
, size_t nbytes
, loff_t off
)
5500 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5504 buf
= strstrip(buf
);
5505 err
= page_counter_memparse(buf
, "max", &low
);
5509 page_counter_set_low(&memcg
->memory
, low
);
5514 static int memory_high_show(struct seq_file
*m
, void *v
)
5516 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5517 unsigned long high
= READ_ONCE(memcg
->high
);
5519 if (high
== PAGE_COUNTER_MAX
)
5520 seq_puts(m
, "max\n");
5522 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5527 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5528 char *buf
, size_t nbytes
, loff_t off
)
5530 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5531 unsigned long nr_pages
;
5535 buf
= strstrip(buf
);
5536 err
= page_counter_memparse(buf
, "max", &high
);
5542 nr_pages
= page_counter_read(&memcg
->memory
);
5543 if (nr_pages
> high
)
5544 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5547 memcg_wb_domain_size_changed(memcg
);
5551 static int memory_max_show(struct seq_file
*m
, void *v
)
5553 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5554 unsigned long max
= READ_ONCE(memcg
->memory
.max
);
5556 if (max
== PAGE_COUNTER_MAX
)
5557 seq_puts(m
, "max\n");
5559 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5564 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5565 char *buf
, size_t nbytes
, loff_t off
)
5567 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5568 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5569 bool drained
= false;
5573 buf
= strstrip(buf
);
5574 err
= page_counter_memparse(buf
, "max", &max
);
5578 xchg(&memcg
->memory
.max
, max
);
5581 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5583 if (nr_pages
<= max
)
5586 if (signal_pending(current
)) {
5592 drain_all_stock(memcg
);
5598 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5604 memcg_memory_event(memcg
, MEMCG_OOM
);
5605 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5609 memcg_wb_domain_size_changed(memcg
);
5613 static int memory_events_show(struct seq_file
*m
, void *v
)
5615 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5617 seq_printf(m
, "low %lu\n",
5618 atomic_long_read(&memcg
->memory_events
[MEMCG_LOW
]));
5619 seq_printf(m
, "high %lu\n",
5620 atomic_long_read(&memcg
->memory_events
[MEMCG_HIGH
]));
5621 seq_printf(m
, "max %lu\n",
5622 atomic_long_read(&memcg
->memory_events
[MEMCG_MAX
]));
5623 seq_printf(m
, "oom %lu\n",
5624 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM
]));
5625 seq_printf(m
, "oom_kill %lu\n",
5626 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM_KILL
]));
5631 static int memory_stat_show(struct seq_file
*m
, void *v
)
5633 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5634 struct accumulated_stats acc
;
5638 * Provide statistics on the state of the memory subsystem as
5639 * well as cumulative event counters that show past behavior.
5641 * This list is ordered following a combination of these gradients:
5642 * 1) generic big picture -> specifics and details
5643 * 2) reflecting userspace activity -> reflecting kernel heuristics
5645 * Current memory state:
5648 memset(&acc
, 0, sizeof(acc
));
5649 acc
.stats_size
= MEMCG_NR_STAT
;
5650 acc
.events_size
= NR_VM_EVENT_ITEMS
;
5651 accumulate_memcg_tree(memcg
, &acc
);
5653 seq_printf(m
, "anon %llu\n",
5654 (u64
)acc
.stat
[MEMCG_RSS
] * PAGE_SIZE
);
5655 seq_printf(m
, "file %llu\n",
5656 (u64
)acc
.stat
[MEMCG_CACHE
] * PAGE_SIZE
);
5657 seq_printf(m
, "kernel_stack %llu\n",
5658 (u64
)acc
.stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5659 seq_printf(m
, "slab %llu\n",
5660 (u64
)(acc
.stat
[NR_SLAB_RECLAIMABLE
] +
5661 acc
.stat
[NR_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5662 seq_printf(m
, "sock %llu\n",
5663 (u64
)acc
.stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5665 seq_printf(m
, "shmem %llu\n",
5666 (u64
)acc
.stat
[NR_SHMEM
] * PAGE_SIZE
);
5667 seq_printf(m
, "file_mapped %llu\n",
5668 (u64
)acc
.stat
[NR_FILE_MAPPED
] * PAGE_SIZE
);
5669 seq_printf(m
, "file_dirty %llu\n",
5670 (u64
)acc
.stat
[NR_FILE_DIRTY
] * PAGE_SIZE
);
5671 seq_printf(m
, "file_writeback %llu\n",
5672 (u64
)acc
.stat
[NR_WRITEBACK
] * PAGE_SIZE
);
5674 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
5675 seq_printf(m
, "%s %llu\n", mem_cgroup_lru_names
[i
],
5676 (u64
)acc
.lru_pages
[i
] * PAGE_SIZE
);
5678 seq_printf(m
, "slab_reclaimable %llu\n",
5679 (u64
)acc
.stat
[NR_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5680 seq_printf(m
, "slab_unreclaimable %llu\n",
5681 (u64
)acc
.stat
[NR_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5683 /* Accumulated memory events */
5685 seq_printf(m
, "pgfault %lu\n", acc
.events
[PGFAULT
]);
5686 seq_printf(m
, "pgmajfault %lu\n", acc
.events
[PGMAJFAULT
]);
5688 seq_printf(m
, "pgrefill %lu\n", acc
.events
[PGREFILL
]);
5689 seq_printf(m
, "pgscan %lu\n", acc
.events
[PGSCAN_KSWAPD
] +
5690 acc
.events
[PGSCAN_DIRECT
]);
5691 seq_printf(m
, "pgsteal %lu\n", acc
.events
[PGSTEAL_KSWAPD
] +
5692 acc
.events
[PGSTEAL_DIRECT
]);
5693 seq_printf(m
, "pgactivate %lu\n", acc
.events
[PGACTIVATE
]);
5694 seq_printf(m
, "pgdeactivate %lu\n", acc
.events
[PGDEACTIVATE
]);
5695 seq_printf(m
, "pglazyfree %lu\n", acc
.events
[PGLAZYFREE
]);
5696 seq_printf(m
, "pglazyfreed %lu\n", acc
.events
[PGLAZYFREED
]);
5698 seq_printf(m
, "workingset_refault %lu\n",
5699 acc
.stat
[WORKINGSET_REFAULT
]);
5700 seq_printf(m
, "workingset_activate %lu\n",
5701 acc
.stat
[WORKINGSET_ACTIVATE
]);
5702 seq_printf(m
, "workingset_nodereclaim %lu\n",
5703 acc
.stat
[WORKINGSET_NODERECLAIM
]);
5708 static int memory_oom_group_show(struct seq_file
*m
, void *v
)
5710 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5712 seq_printf(m
, "%d\n", memcg
->oom_group
);
5717 static ssize_t
memory_oom_group_write(struct kernfs_open_file
*of
,
5718 char *buf
, size_t nbytes
, loff_t off
)
5720 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5723 buf
= strstrip(buf
);
5727 ret
= kstrtoint(buf
, 0, &oom_group
);
5731 if (oom_group
!= 0 && oom_group
!= 1)
5734 memcg
->oom_group
= oom_group
;
5739 static struct cftype memory_files
[] = {
5742 .flags
= CFTYPE_NOT_ON_ROOT
,
5743 .read_u64
= memory_current_read
,
5747 .flags
= CFTYPE_NOT_ON_ROOT
,
5748 .seq_show
= memory_min_show
,
5749 .write
= memory_min_write
,
5753 .flags
= CFTYPE_NOT_ON_ROOT
,
5754 .seq_show
= memory_low_show
,
5755 .write
= memory_low_write
,
5759 .flags
= CFTYPE_NOT_ON_ROOT
,
5760 .seq_show
= memory_high_show
,
5761 .write
= memory_high_write
,
5765 .flags
= CFTYPE_NOT_ON_ROOT
,
5766 .seq_show
= memory_max_show
,
5767 .write
= memory_max_write
,
5771 .flags
= CFTYPE_NOT_ON_ROOT
,
5772 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5773 .seq_show
= memory_events_show
,
5777 .flags
= CFTYPE_NOT_ON_ROOT
,
5778 .seq_show
= memory_stat_show
,
5781 .name
= "oom.group",
5782 .flags
= CFTYPE_NOT_ON_ROOT
| CFTYPE_NS_DELEGATABLE
,
5783 .seq_show
= memory_oom_group_show
,
5784 .write
= memory_oom_group_write
,
5789 struct cgroup_subsys memory_cgrp_subsys
= {
5790 .css_alloc
= mem_cgroup_css_alloc
,
5791 .css_online
= mem_cgroup_css_online
,
5792 .css_offline
= mem_cgroup_css_offline
,
5793 .css_released
= mem_cgroup_css_released
,
5794 .css_free
= mem_cgroup_css_free
,
5795 .css_reset
= mem_cgroup_css_reset
,
5796 .can_attach
= mem_cgroup_can_attach
,
5797 .cancel_attach
= mem_cgroup_cancel_attach
,
5798 .post_attach
= mem_cgroup_move_task
,
5799 .bind
= mem_cgroup_bind
,
5800 .dfl_cftypes
= memory_files
,
5801 .legacy_cftypes
= mem_cgroup_legacy_files
,
5806 * mem_cgroup_protected - check if memory consumption is in the normal range
5807 * @root: the top ancestor of the sub-tree being checked
5808 * @memcg: the memory cgroup to check
5810 * WARNING: This function is not stateless! It can only be used as part
5811 * of a top-down tree iteration, not for isolated queries.
5813 * Returns one of the following:
5814 * MEMCG_PROT_NONE: cgroup memory is not protected
5815 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5816 * an unprotected supply of reclaimable memory from other cgroups.
5817 * MEMCG_PROT_MIN: cgroup memory is protected
5819 * @root is exclusive; it is never protected when looked at directly
5821 * To provide a proper hierarchical behavior, effective memory.min/low values
5822 * are used. Below is the description of how effective memory.low is calculated.
5823 * Effective memory.min values is calculated in the same way.
5825 * Effective memory.low is always equal or less than the original memory.low.
5826 * If there is no memory.low overcommittment (which is always true for
5827 * top-level memory cgroups), these two values are equal.
5828 * Otherwise, it's a part of parent's effective memory.low,
5829 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5830 * memory.low usages, where memory.low usage is the size of actually
5834 * elow = min( memory.low, parent->elow * ------------------ ),
5835 * siblings_low_usage
5837 * | memory.current, if memory.current < memory.low
5842 * Such definition of the effective memory.low provides the expected
5843 * hierarchical behavior: parent's memory.low value is limiting
5844 * children, unprotected memory is reclaimed first and cgroups,
5845 * which are not using their guarantee do not affect actual memory
5848 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5850 * A A/memory.low = 2G, A/memory.current = 6G
5852 * BC DE B/memory.low = 3G B/memory.current = 2G
5853 * C/memory.low = 1G C/memory.current = 2G
5854 * D/memory.low = 0 D/memory.current = 2G
5855 * E/memory.low = 10G E/memory.current = 0
5857 * and the memory pressure is applied, the following memory distribution
5858 * is expected (approximately):
5860 * A/memory.current = 2G
5862 * B/memory.current = 1.3G
5863 * C/memory.current = 0.6G
5864 * D/memory.current = 0
5865 * E/memory.current = 0
5867 * These calculations require constant tracking of the actual low usages
5868 * (see propagate_protected_usage()), as well as recursive calculation of
5869 * effective memory.low values. But as we do call mem_cgroup_protected()
5870 * path for each memory cgroup top-down from the reclaim,
5871 * it's possible to optimize this part, and save calculated elow
5872 * for next usage. This part is intentionally racy, but it's ok,
5873 * as memory.low is a best-effort mechanism.
5875 enum mem_cgroup_protection
mem_cgroup_protected(struct mem_cgroup
*root
,
5876 struct mem_cgroup
*memcg
)
5878 struct mem_cgroup
*parent
;
5879 unsigned long emin
, parent_emin
;
5880 unsigned long elow
, parent_elow
;
5881 unsigned long usage
;
5883 if (mem_cgroup_disabled())
5884 return MEMCG_PROT_NONE
;
5887 root
= root_mem_cgroup
;
5889 return MEMCG_PROT_NONE
;
5891 usage
= page_counter_read(&memcg
->memory
);
5893 return MEMCG_PROT_NONE
;
5895 emin
= memcg
->memory
.min
;
5896 elow
= memcg
->memory
.low
;
5898 parent
= parent_mem_cgroup(memcg
);
5899 /* No parent means a non-hierarchical mode on v1 memcg */
5901 return MEMCG_PROT_NONE
;
5906 parent_emin
= READ_ONCE(parent
->memory
.emin
);
5907 emin
= min(emin
, parent_emin
);
5908 if (emin
&& parent_emin
) {
5909 unsigned long min_usage
, siblings_min_usage
;
5911 min_usage
= min(usage
, memcg
->memory
.min
);
5912 siblings_min_usage
= atomic_long_read(
5913 &parent
->memory
.children_min_usage
);
5915 if (min_usage
&& siblings_min_usage
)
5916 emin
= min(emin
, parent_emin
* min_usage
/
5917 siblings_min_usage
);
5920 parent_elow
= READ_ONCE(parent
->memory
.elow
);
5921 elow
= min(elow
, parent_elow
);
5922 if (elow
&& parent_elow
) {
5923 unsigned long low_usage
, siblings_low_usage
;
5925 low_usage
= min(usage
, memcg
->memory
.low
);
5926 siblings_low_usage
= atomic_long_read(
5927 &parent
->memory
.children_low_usage
);
5929 if (low_usage
&& siblings_low_usage
)
5930 elow
= min(elow
, parent_elow
* low_usage
/
5931 siblings_low_usage
);
5935 memcg
->memory
.emin
= emin
;
5936 memcg
->memory
.elow
= elow
;
5939 return MEMCG_PROT_MIN
;
5940 else if (usage
<= elow
)
5941 return MEMCG_PROT_LOW
;
5943 return MEMCG_PROT_NONE
;
5947 * mem_cgroup_try_charge - try charging a page
5948 * @page: page to charge
5949 * @mm: mm context of the victim
5950 * @gfp_mask: reclaim mode
5951 * @memcgp: charged memcg return
5952 * @compound: charge the page as compound or small page
5954 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5955 * pages according to @gfp_mask if necessary.
5957 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5958 * Otherwise, an error code is returned.
5960 * After page->mapping has been set up, the caller must finalize the
5961 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5962 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5964 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5965 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5968 struct mem_cgroup
*memcg
= NULL
;
5969 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5972 if (mem_cgroup_disabled())
5975 if (PageSwapCache(page
)) {
5977 * Every swap fault against a single page tries to charge the
5978 * page, bail as early as possible. shmem_unuse() encounters
5979 * already charged pages, too. The USED bit is protected by
5980 * the page lock, which serializes swap cache removal, which
5981 * in turn serializes uncharging.
5983 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5984 if (compound_head(page
)->mem_cgroup
)
5987 if (do_swap_account
) {
5988 swp_entry_t ent
= { .val
= page_private(page
), };
5989 unsigned short id
= lookup_swap_cgroup_id(ent
);
5992 memcg
= mem_cgroup_from_id(id
);
5993 if (memcg
&& !css_tryget_online(&memcg
->css
))
6000 memcg
= get_mem_cgroup_from_mm(mm
);
6002 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
6004 css_put(&memcg
->css
);
6010 int mem_cgroup_try_charge_delay(struct page
*page
, struct mm_struct
*mm
,
6011 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6014 struct mem_cgroup
*memcg
;
6017 ret
= mem_cgroup_try_charge(page
, mm
, gfp_mask
, memcgp
, compound
);
6019 mem_cgroup_throttle_swaprate(memcg
, page_to_nid(page
), gfp_mask
);
6024 * mem_cgroup_commit_charge - commit a page charge
6025 * @page: page to charge
6026 * @memcg: memcg to charge the page to
6027 * @lrucare: page might be on LRU already
6028 * @compound: charge the page as compound or small page
6030 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6031 * after page->mapping has been set up. This must happen atomically
6032 * as part of the page instantiation, i.e. under the page table lock
6033 * for anonymous pages, under the page lock for page and swap cache.
6035 * In addition, the page must not be on the LRU during the commit, to
6036 * prevent racing with task migration. If it might be, use @lrucare.
6038 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6040 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6041 bool lrucare
, bool compound
)
6043 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6045 VM_BUG_ON_PAGE(!page
->mapping
, page
);
6046 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
6048 if (mem_cgroup_disabled())
6051 * Swap faults will attempt to charge the same page multiple
6052 * times. But reuse_swap_page() might have removed the page
6053 * from swapcache already, so we can't check PageSwapCache().
6058 commit_charge(page
, memcg
, lrucare
);
6060 local_irq_disable();
6061 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
6062 memcg_check_events(memcg
, page
);
6065 if (do_memsw_account() && PageSwapCache(page
)) {
6066 swp_entry_t entry
= { .val
= page_private(page
) };
6068 * The swap entry might not get freed for a long time,
6069 * let's not wait for it. The page already received a
6070 * memory+swap charge, drop the swap entry duplicate.
6072 mem_cgroup_uncharge_swap(entry
, nr_pages
);
6077 * mem_cgroup_cancel_charge - cancel a page charge
6078 * @page: page to charge
6079 * @memcg: memcg to charge the page to
6080 * @compound: charge the page as compound or small page
6082 * Cancel a charge transaction started by mem_cgroup_try_charge().
6084 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6087 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6089 if (mem_cgroup_disabled())
6092 * Swap faults will attempt to charge the same page multiple
6093 * times. But reuse_swap_page() might have removed the page
6094 * from swapcache already, so we can't check PageSwapCache().
6099 cancel_charge(memcg
, nr_pages
);
6102 struct uncharge_gather
{
6103 struct mem_cgroup
*memcg
;
6104 unsigned long pgpgout
;
6105 unsigned long nr_anon
;
6106 unsigned long nr_file
;
6107 unsigned long nr_kmem
;
6108 unsigned long nr_huge
;
6109 unsigned long nr_shmem
;
6110 struct page
*dummy_page
;
6113 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
6115 memset(ug
, 0, sizeof(*ug
));
6118 static void uncharge_batch(const struct uncharge_gather
*ug
)
6120 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
6121 unsigned long flags
;
6123 if (!mem_cgroup_is_root(ug
->memcg
)) {
6124 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
6125 if (do_memsw_account())
6126 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
6127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
6128 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
6129 memcg_oom_recover(ug
->memcg
);
6132 local_irq_save(flags
);
6133 __mod_memcg_state(ug
->memcg
, MEMCG_RSS
, -ug
->nr_anon
);
6134 __mod_memcg_state(ug
->memcg
, MEMCG_CACHE
, -ug
->nr_file
);
6135 __mod_memcg_state(ug
->memcg
, MEMCG_RSS_HUGE
, -ug
->nr_huge
);
6136 __mod_memcg_state(ug
->memcg
, NR_SHMEM
, -ug
->nr_shmem
);
6137 __count_memcg_events(ug
->memcg
, PGPGOUT
, ug
->pgpgout
);
6138 __this_cpu_add(ug
->memcg
->stat_cpu
->nr_page_events
, nr_pages
);
6139 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
6140 local_irq_restore(flags
);
6142 if (!mem_cgroup_is_root(ug
->memcg
))
6143 css_put_many(&ug
->memcg
->css
, nr_pages
);
6146 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
6148 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6149 VM_BUG_ON_PAGE(page_count(page
) && !is_zone_device_page(page
) &&
6150 !PageHWPoison(page
) , page
);
6152 if (!page
->mem_cgroup
)
6156 * Nobody should be changing or seriously looking at
6157 * page->mem_cgroup at this point, we have fully
6158 * exclusive access to the page.
6161 if (ug
->memcg
!= page
->mem_cgroup
) {
6164 uncharge_gather_clear(ug
);
6166 ug
->memcg
= page
->mem_cgroup
;
6169 if (!PageKmemcg(page
)) {
6170 unsigned int nr_pages
= 1;
6172 if (PageTransHuge(page
)) {
6173 nr_pages
<<= compound_order(page
);
6174 ug
->nr_huge
+= nr_pages
;
6177 ug
->nr_anon
+= nr_pages
;
6179 ug
->nr_file
+= nr_pages
;
6180 if (PageSwapBacked(page
))
6181 ug
->nr_shmem
+= nr_pages
;
6185 ug
->nr_kmem
+= 1 << compound_order(page
);
6186 __ClearPageKmemcg(page
);
6189 ug
->dummy_page
= page
;
6190 page
->mem_cgroup
= NULL
;
6193 static void uncharge_list(struct list_head
*page_list
)
6195 struct uncharge_gather ug
;
6196 struct list_head
*next
;
6198 uncharge_gather_clear(&ug
);
6201 * Note that the list can be a single page->lru; hence the
6202 * do-while loop instead of a simple list_for_each_entry().
6204 next
= page_list
->next
;
6208 page
= list_entry(next
, struct page
, lru
);
6209 next
= page
->lru
.next
;
6211 uncharge_page(page
, &ug
);
6212 } while (next
!= page_list
);
6215 uncharge_batch(&ug
);
6219 * mem_cgroup_uncharge - uncharge a page
6220 * @page: page to uncharge
6222 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6223 * mem_cgroup_commit_charge().
6225 void mem_cgroup_uncharge(struct page
*page
)
6227 struct uncharge_gather ug
;
6229 if (mem_cgroup_disabled())
6232 /* Don't touch page->lru of any random page, pre-check: */
6233 if (!page
->mem_cgroup
)
6236 uncharge_gather_clear(&ug
);
6237 uncharge_page(page
, &ug
);
6238 uncharge_batch(&ug
);
6242 * mem_cgroup_uncharge_list - uncharge a list of page
6243 * @page_list: list of pages to uncharge
6245 * Uncharge a list of pages previously charged with
6246 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6248 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
6250 if (mem_cgroup_disabled())
6253 if (!list_empty(page_list
))
6254 uncharge_list(page_list
);
6258 * mem_cgroup_migrate - charge a page's replacement
6259 * @oldpage: currently circulating page
6260 * @newpage: replacement page
6262 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6263 * be uncharged upon free.
6265 * Both pages must be locked, @newpage->mapping must be set up.
6267 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
6269 struct mem_cgroup
*memcg
;
6270 unsigned int nr_pages
;
6272 unsigned long flags
;
6274 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
6275 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
6276 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
6277 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
6280 if (mem_cgroup_disabled())
6283 /* Page cache replacement: new page already charged? */
6284 if (newpage
->mem_cgroup
)
6287 /* Swapcache readahead pages can get replaced before being charged */
6288 memcg
= oldpage
->mem_cgroup
;
6292 /* Force-charge the new page. The old one will be freed soon */
6293 compound
= PageTransHuge(newpage
);
6294 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
6296 page_counter_charge(&memcg
->memory
, nr_pages
);
6297 if (do_memsw_account())
6298 page_counter_charge(&memcg
->memsw
, nr_pages
);
6299 css_get_many(&memcg
->css
, nr_pages
);
6301 commit_charge(newpage
, memcg
, false);
6303 local_irq_save(flags
);
6304 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
6305 memcg_check_events(memcg
, newpage
);
6306 local_irq_restore(flags
);
6309 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
6310 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
6312 void mem_cgroup_sk_alloc(struct sock
*sk
)
6314 struct mem_cgroup
*memcg
;
6316 if (!mem_cgroup_sockets_enabled
)
6319 /* Do not associate the sock with unrelated interrupted task's memcg. */
6324 memcg
= mem_cgroup_from_task(current
);
6325 if (memcg
== root_mem_cgroup
)
6327 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
6329 if (css_tryget_online(&memcg
->css
))
6330 sk
->sk_memcg
= memcg
;
6335 void mem_cgroup_sk_free(struct sock
*sk
)
6338 css_put(&sk
->sk_memcg
->css
);
6342 * mem_cgroup_charge_skmem - charge socket memory
6343 * @memcg: memcg to charge
6344 * @nr_pages: number of pages to charge
6346 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6347 * @memcg's configured limit, %false if the charge had to be forced.
6349 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6351 gfp_t gfp_mask
= GFP_KERNEL
;
6353 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6354 struct page_counter
*fail
;
6356 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
6357 memcg
->tcpmem_pressure
= 0;
6360 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
6361 memcg
->tcpmem_pressure
= 1;
6365 /* Don't block in the packet receive path */
6367 gfp_mask
= GFP_NOWAIT
;
6369 mod_memcg_state(memcg
, MEMCG_SOCK
, nr_pages
);
6371 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
6374 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
6379 * mem_cgroup_uncharge_skmem - uncharge socket memory
6380 * @memcg: memcg to uncharge
6381 * @nr_pages: number of pages to uncharge
6383 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6385 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6386 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
6390 mod_memcg_state(memcg
, MEMCG_SOCK
, -nr_pages
);
6392 refill_stock(memcg
, nr_pages
);
6395 static int __init
cgroup_memory(char *s
)
6399 while ((token
= strsep(&s
, ",")) != NULL
) {
6402 if (!strcmp(token
, "nosocket"))
6403 cgroup_memory_nosocket
= true;
6404 if (!strcmp(token
, "nokmem"))
6405 cgroup_memory_nokmem
= true;
6409 __setup("cgroup.memory=", cgroup_memory
);
6412 * subsys_initcall() for memory controller.
6414 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6415 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6416 * basically everything that doesn't depend on a specific mem_cgroup structure
6417 * should be initialized from here.
6419 static int __init
mem_cgroup_init(void)
6423 #ifdef CONFIG_MEMCG_KMEM
6425 * Kmem cache creation is mostly done with the slab_mutex held,
6426 * so use a workqueue with limited concurrency to avoid stalling
6427 * all worker threads in case lots of cgroups are created and
6428 * destroyed simultaneously.
6430 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
6431 BUG_ON(!memcg_kmem_cache_wq
);
6434 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
6435 memcg_hotplug_cpu_dead
);
6437 for_each_possible_cpu(cpu
)
6438 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
6441 for_each_node(node
) {
6442 struct mem_cgroup_tree_per_node
*rtpn
;
6444 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
6445 node_online(node
) ? node
: NUMA_NO_NODE
);
6447 rtpn
->rb_root
= RB_ROOT
;
6448 rtpn
->rb_rightmost
= NULL
;
6449 spin_lock_init(&rtpn
->lock
);
6450 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6455 subsys_initcall(mem_cgroup_init
);
6457 #ifdef CONFIG_MEMCG_SWAP
6458 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
6460 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
6462 * The root cgroup cannot be destroyed, so it's refcount must
6465 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
6469 memcg
= parent_mem_cgroup(memcg
);
6471 memcg
= root_mem_cgroup
;
6477 * mem_cgroup_swapout - transfer a memsw charge to swap
6478 * @page: page whose memsw charge to transfer
6479 * @entry: swap entry to move the charge to
6481 * Transfer the memsw charge of @page to @entry.
6483 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6485 struct mem_cgroup
*memcg
, *swap_memcg
;
6486 unsigned int nr_entries
;
6487 unsigned short oldid
;
6489 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6490 VM_BUG_ON_PAGE(page_count(page
), page
);
6492 if (!do_memsw_account())
6495 memcg
= page
->mem_cgroup
;
6497 /* Readahead page, never charged */
6502 * In case the memcg owning these pages has been offlined and doesn't
6503 * have an ID allocated to it anymore, charge the closest online
6504 * ancestor for the swap instead and transfer the memory+swap charge.
6506 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6507 nr_entries
= hpage_nr_pages(page
);
6508 /* Get references for the tail pages, too */
6510 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6511 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6513 VM_BUG_ON_PAGE(oldid
, page
);
6514 mod_memcg_state(swap_memcg
, MEMCG_SWAP
, nr_entries
);
6516 page
->mem_cgroup
= NULL
;
6518 if (!mem_cgroup_is_root(memcg
))
6519 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6521 if (memcg
!= swap_memcg
) {
6522 if (!mem_cgroup_is_root(swap_memcg
))
6523 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6524 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6528 * Interrupts should be disabled here because the caller holds the
6529 * i_pages lock which is taken with interrupts-off. It is
6530 * important here to have the interrupts disabled because it is the
6531 * only synchronisation we have for updating the per-CPU variables.
6533 VM_BUG_ON(!irqs_disabled());
6534 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6536 memcg_check_events(memcg
, page
);
6538 if (!mem_cgroup_is_root(memcg
))
6539 css_put_many(&memcg
->css
, nr_entries
);
6543 * mem_cgroup_try_charge_swap - try charging swap space for a page
6544 * @page: page being added to swap
6545 * @entry: swap entry to charge
6547 * Try to charge @page's memcg for the swap space at @entry.
6549 * Returns 0 on success, -ENOMEM on failure.
6551 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6553 unsigned int nr_pages
= hpage_nr_pages(page
);
6554 struct page_counter
*counter
;
6555 struct mem_cgroup
*memcg
;
6556 unsigned short oldid
;
6558 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6561 memcg
= page
->mem_cgroup
;
6563 /* Readahead page, never charged */
6568 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6572 memcg
= mem_cgroup_id_get_online(memcg
);
6574 if (!mem_cgroup_is_root(memcg
) &&
6575 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6576 memcg_memory_event(memcg
, MEMCG_SWAP_MAX
);
6577 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6578 mem_cgroup_id_put(memcg
);
6582 /* Get references for the tail pages, too */
6584 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6585 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6586 VM_BUG_ON_PAGE(oldid
, page
);
6587 mod_memcg_state(memcg
, MEMCG_SWAP
, nr_pages
);
6593 * mem_cgroup_uncharge_swap - uncharge swap space
6594 * @entry: swap entry to uncharge
6595 * @nr_pages: the amount of swap space to uncharge
6597 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6599 struct mem_cgroup
*memcg
;
6602 if (!do_swap_account
)
6605 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6607 memcg
= mem_cgroup_from_id(id
);
6609 if (!mem_cgroup_is_root(memcg
)) {
6610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6611 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6613 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6615 mod_memcg_state(memcg
, MEMCG_SWAP
, -nr_pages
);
6616 mem_cgroup_id_put_many(memcg
, nr_pages
);
6621 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6623 long nr_swap_pages
= get_nr_swap_pages();
6625 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6626 return nr_swap_pages
;
6627 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6628 nr_swap_pages
= min_t(long, nr_swap_pages
,
6629 READ_ONCE(memcg
->swap
.max
) -
6630 page_counter_read(&memcg
->swap
));
6631 return nr_swap_pages
;
6634 bool mem_cgroup_swap_full(struct page
*page
)
6636 struct mem_cgroup
*memcg
;
6638 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6642 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6645 memcg
= page
->mem_cgroup
;
6649 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6650 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.max
)
6656 /* for remember boot option*/
6657 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6658 static int really_do_swap_account __initdata
= 1;
6660 static int really_do_swap_account __initdata
;
6663 static int __init
enable_swap_account(char *s
)
6665 if (!strcmp(s
, "1"))
6666 really_do_swap_account
= 1;
6667 else if (!strcmp(s
, "0"))
6668 really_do_swap_account
= 0;
6671 __setup("swapaccount=", enable_swap_account
);
6673 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6676 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6678 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6681 static int swap_max_show(struct seq_file
*m
, void *v
)
6683 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6684 unsigned long max
= READ_ONCE(memcg
->swap
.max
);
6686 if (max
== PAGE_COUNTER_MAX
)
6687 seq_puts(m
, "max\n");
6689 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6694 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6695 char *buf
, size_t nbytes
, loff_t off
)
6697 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6701 buf
= strstrip(buf
);
6702 err
= page_counter_memparse(buf
, "max", &max
);
6706 xchg(&memcg
->swap
.max
, max
);
6711 static int swap_events_show(struct seq_file
*m
, void *v
)
6713 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6715 seq_printf(m
, "max %lu\n",
6716 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_MAX
]));
6717 seq_printf(m
, "fail %lu\n",
6718 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_FAIL
]));
6723 static struct cftype swap_files
[] = {
6725 .name
= "swap.current",
6726 .flags
= CFTYPE_NOT_ON_ROOT
,
6727 .read_u64
= swap_current_read
,
6731 .flags
= CFTYPE_NOT_ON_ROOT
,
6732 .seq_show
= swap_max_show
,
6733 .write
= swap_max_write
,
6736 .name
= "swap.events",
6737 .flags
= CFTYPE_NOT_ON_ROOT
,
6738 .file_offset
= offsetof(struct mem_cgroup
, swap_events_file
),
6739 .seq_show
= swap_events_show
,
6744 static struct cftype memsw_cgroup_files
[] = {
6746 .name
= "memsw.usage_in_bytes",
6747 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6748 .read_u64
= mem_cgroup_read_u64
,
6751 .name
= "memsw.max_usage_in_bytes",
6752 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6753 .write
= mem_cgroup_reset
,
6754 .read_u64
= mem_cgroup_read_u64
,
6757 .name
= "memsw.limit_in_bytes",
6758 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6759 .write
= mem_cgroup_write
,
6760 .read_u64
= mem_cgroup_read_u64
,
6763 .name
= "memsw.failcnt",
6764 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6765 .write
= mem_cgroup_reset
,
6766 .read_u64
= mem_cgroup_read_u64
,
6768 { }, /* terminate */
6771 static int __init
mem_cgroup_swap_init(void)
6773 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6774 do_swap_account
= 1;
6775 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6777 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6778 memsw_cgroup_files
));
6782 subsys_initcall(mem_cgroup_swap_init
);
6784 #endif /* CONFIG_MEMCG_SWAP */