Linux 4.19.168
[linux/fpc-iii.git] / mm / memcontrol.c
blob87cd5bf1b4874894fe1aa5860faf360ac8f7dd26
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event {
143 * memcg which the event belongs to.
145 struct mem_cgroup *memcg;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx *eventfd;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
241 #define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
246 #define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
251 static inline bool should_force_charge(void)
253 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
254 (current->flags & PF_EXITING);
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
270 #ifdef CONFIG_MEMCG_KMEM
272 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
273 * The main reason for not using cgroup id for this:
274 * this works better in sparse environments, where we have a lot of memcgs,
275 * but only a few kmem-limited. Or also, if we have, for instance, 200
276 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
277 * 200 entry array for that.
279 * The current size of the caches array is stored in memcg_nr_cache_ids. It
280 * will double each time we have to increase it.
282 static DEFINE_IDA(memcg_cache_ida);
283 int memcg_nr_cache_ids;
285 /* Protects memcg_nr_cache_ids */
286 static DECLARE_RWSEM(memcg_cache_ids_sem);
288 void memcg_get_cache_ids(void)
290 down_read(&memcg_cache_ids_sem);
293 void memcg_put_cache_ids(void)
295 up_read(&memcg_cache_ids_sem);
299 * MIN_SIZE is different than 1, because we would like to avoid going through
300 * the alloc/free process all the time. In a small machine, 4 kmem-limited
301 * cgroups is a reasonable guess. In the future, it could be a parameter or
302 * tunable, but that is strictly not necessary.
304 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305 * this constant directly from cgroup, but it is understandable that this is
306 * better kept as an internal representation in cgroup.c. In any case, the
307 * cgrp_id space is not getting any smaller, and we don't have to necessarily
308 * increase ours as well if it increases.
310 #define MEMCG_CACHES_MIN_SIZE 4
311 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314 * A lot of the calls to the cache allocation functions are expected to be
315 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316 * conditional to this static branch, we'll have to allow modules that does
317 * kmem_cache_alloc and the such to see this symbol as well
319 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322 struct workqueue_struct *memcg_kmem_cache_wq;
324 static int memcg_shrinker_map_size;
325 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
327 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
329 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
332 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
333 int size, int old_size)
335 struct memcg_shrinker_map *new, *old;
336 int nid;
338 lockdep_assert_held(&memcg_shrinker_map_mutex);
340 for_each_node(nid) {
341 old = rcu_dereference_protected(
342 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
343 /* Not yet online memcg */
344 if (!old)
345 return 0;
347 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
348 if (!new)
349 return -ENOMEM;
351 /* Set all old bits, clear all new bits */
352 memset(new->map, (int)0xff, old_size);
353 memset((void *)new->map + old_size, 0, size - old_size);
355 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
356 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
359 return 0;
362 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
364 struct mem_cgroup_per_node *pn;
365 struct memcg_shrinker_map *map;
366 int nid;
368 if (mem_cgroup_is_root(memcg))
369 return;
371 for_each_node(nid) {
372 pn = mem_cgroup_nodeinfo(memcg, nid);
373 map = rcu_dereference_protected(pn->shrinker_map, true);
374 if (map)
375 kvfree(map);
376 rcu_assign_pointer(pn->shrinker_map, NULL);
380 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
382 struct memcg_shrinker_map *map;
383 int nid, size, ret = 0;
385 if (mem_cgroup_is_root(memcg))
386 return 0;
388 mutex_lock(&memcg_shrinker_map_mutex);
389 size = memcg_shrinker_map_size;
390 for_each_node(nid) {
391 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
392 if (!map) {
393 memcg_free_shrinker_maps(memcg);
394 ret = -ENOMEM;
395 break;
397 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
399 mutex_unlock(&memcg_shrinker_map_mutex);
401 return ret;
404 int memcg_expand_shrinker_maps(int new_id)
406 int size, old_size, ret = 0;
407 struct mem_cgroup *memcg;
409 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
410 old_size = memcg_shrinker_map_size;
411 if (size <= old_size)
412 return 0;
414 mutex_lock(&memcg_shrinker_map_mutex);
415 if (!root_mem_cgroup)
416 goto unlock;
418 for_each_mem_cgroup(memcg) {
419 if (mem_cgroup_is_root(memcg))
420 continue;
421 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
422 if (ret) {
423 mem_cgroup_iter_break(NULL, memcg);
424 goto unlock;
427 unlock:
428 if (!ret)
429 memcg_shrinker_map_size = size;
430 mutex_unlock(&memcg_shrinker_map_mutex);
431 return ret;
434 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
436 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
437 struct memcg_shrinker_map *map;
439 rcu_read_lock();
440 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
441 /* Pairs with smp mb in shrink_slab() */
442 smp_mb__before_atomic();
443 set_bit(shrinker_id, map->map);
444 rcu_read_unlock();
448 #else /* CONFIG_MEMCG_KMEM */
449 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
451 return 0;
453 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
454 #endif /* CONFIG_MEMCG_KMEM */
457 * mem_cgroup_css_from_page - css of the memcg associated with a page
458 * @page: page of interest
460 * If memcg is bound to the default hierarchy, css of the memcg associated
461 * with @page is returned. The returned css remains associated with @page
462 * until it is released.
464 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
465 * is returned.
467 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
469 struct mem_cgroup *memcg;
471 memcg = page->mem_cgroup;
473 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
474 memcg = root_mem_cgroup;
476 return &memcg->css;
480 * page_cgroup_ino - return inode number of the memcg a page is charged to
481 * @page: the page
483 * Look up the closest online ancestor of the memory cgroup @page is charged to
484 * and return its inode number or 0 if @page is not charged to any cgroup. It
485 * is safe to call this function without holding a reference to @page.
487 * Note, this function is inherently racy, because there is nothing to prevent
488 * the cgroup inode from getting torn down and potentially reallocated a moment
489 * after page_cgroup_ino() returns, so it only should be used by callers that
490 * do not care (such as procfs interfaces).
492 ino_t page_cgroup_ino(struct page *page)
494 struct mem_cgroup *memcg;
495 unsigned long ino = 0;
497 rcu_read_lock();
498 memcg = READ_ONCE(page->mem_cgroup);
499 while (memcg && !(memcg->css.flags & CSS_ONLINE))
500 memcg = parent_mem_cgroup(memcg);
501 if (memcg)
502 ino = cgroup_ino(memcg->css.cgroup);
503 rcu_read_unlock();
504 return ino;
507 static struct mem_cgroup_per_node *
508 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
510 int nid = page_to_nid(page);
512 return memcg->nodeinfo[nid];
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_node(int nid)
518 return soft_limit_tree.rb_tree_per_node[nid];
521 static struct mem_cgroup_tree_per_node *
522 soft_limit_tree_from_page(struct page *page)
524 int nid = page_to_nid(page);
526 return soft_limit_tree.rb_tree_per_node[nid];
529 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
530 struct mem_cgroup_tree_per_node *mctz,
531 unsigned long new_usage_in_excess)
533 struct rb_node **p = &mctz->rb_root.rb_node;
534 struct rb_node *parent = NULL;
535 struct mem_cgroup_per_node *mz_node;
536 bool rightmost = true;
538 if (mz->on_tree)
539 return;
541 mz->usage_in_excess = new_usage_in_excess;
542 if (!mz->usage_in_excess)
543 return;
544 while (*p) {
545 parent = *p;
546 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
547 tree_node);
548 if (mz->usage_in_excess < mz_node->usage_in_excess) {
549 p = &(*p)->rb_left;
550 rightmost = false;
554 * We can't avoid mem cgroups that are over their soft
555 * limit by the same amount
557 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
558 p = &(*p)->rb_right;
561 if (rightmost)
562 mctz->rb_rightmost = &mz->tree_node;
564 rb_link_node(&mz->tree_node, parent, p);
565 rb_insert_color(&mz->tree_node, &mctz->rb_root);
566 mz->on_tree = true;
569 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
570 struct mem_cgroup_tree_per_node *mctz)
572 if (!mz->on_tree)
573 return;
575 if (&mz->tree_node == mctz->rb_rightmost)
576 mctz->rb_rightmost = rb_prev(&mz->tree_node);
578 rb_erase(&mz->tree_node, &mctz->rb_root);
579 mz->on_tree = false;
582 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
583 struct mem_cgroup_tree_per_node *mctz)
585 unsigned long flags;
587 spin_lock_irqsave(&mctz->lock, flags);
588 __mem_cgroup_remove_exceeded(mz, mctz);
589 spin_unlock_irqrestore(&mctz->lock, flags);
592 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
594 unsigned long nr_pages = page_counter_read(&memcg->memory);
595 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
596 unsigned long excess = 0;
598 if (nr_pages > soft_limit)
599 excess = nr_pages - soft_limit;
601 return excess;
604 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
606 unsigned long excess;
607 struct mem_cgroup_per_node *mz;
608 struct mem_cgroup_tree_per_node *mctz;
610 mctz = soft_limit_tree_from_page(page);
611 if (!mctz)
612 return;
614 * Necessary to update all ancestors when hierarchy is used.
615 * because their event counter is not touched.
617 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
618 mz = mem_cgroup_page_nodeinfo(memcg, page);
619 excess = soft_limit_excess(memcg);
621 * We have to update the tree if mz is on RB-tree or
622 * mem is over its softlimit.
624 if (excess || mz->on_tree) {
625 unsigned long flags;
627 spin_lock_irqsave(&mctz->lock, flags);
628 /* if on-tree, remove it */
629 if (mz->on_tree)
630 __mem_cgroup_remove_exceeded(mz, mctz);
632 * Insert again. mz->usage_in_excess will be updated.
633 * If excess is 0, no tree ops.
635 __mem_cgroup_insert_exceeded(mz, mctz, excess);
636 spin_unlock_irqrestore(&mctz->lock, flags);
641 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
643 struct mem_cgroup_tree_per_node *mctz;
644 struct mem_cgroup_per_node *mz;
645 int nid;
647 for_each_node(nid) {
648 mz = mem_cgroup_nodeinfo(memcg, nid);
649 mctz = soft_limit_tree_node(nid);
650 if (mctz)
651 mem_cgroup_remove_exceeded(mz, mctz);
655 static struct mem_cgroup_per_node *
656 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
658 struct mem_cgroup_per_node *mz;
660 retry:
661 mz = NULL;
662 if (!mctz->rb_rightmost)
663 goto done; /* Nothing to reclaim from */
665 mz = rb_entry(mctz->rb_rightmost,
666 struct mem_cgroup_per_node, tree_node);
668 * Remove the node now but someone else can add it back,
669 * we will to add it back at the end of reclaim to its correct
670 * position in the tree.
672 __mem_cgroup_remove_exceeded(mz, mctz);
673 if (!soft_limit_excess(mz->memcg) ||
674 !css_tryget_online(&mz->memcg->css))
675 goto retry;
676 done:
677 return mz;
680 static struct mem_cgroup_per_node *
681 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
683 struct mem_cgroup_per_node *mz;
685 spin_lock_irq(&mctz->lock);
686 mz = __mem_cgroup_largest_soft_limit_node(mctz);
687 spin_unlock_irq(&mctz->lock);
688 return mz;
691 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
692 int event)
694 return atomic_long_read(&memcg->events[event]);
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 struct page *page,
699 bool compound, int nr_pages)
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
705 if (PageAnon(page))
706 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
707 else {
708 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
709 if (PageSwapBacked(page))
710 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
713 if (compound) {
714 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
715 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
718 /* pagein of a big page is an event. So, ignore page size */
719 if (nr_pages > 0)
720 __count_memcg_events(memcg, PGPGIN, 1);
721 else {
722 __count_memcg_events(memcg, PGPGOUT, 1);
723 nr_pages = -nr_pages; /* for event */
726 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
729 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
730 int nid, unsigned int lru_mask)
732 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
733 unsigned long nr = 0;
734 enum lru_list lru;
736 VM_BUG_ON((unsigned)nid >= nr_node_ids);
738 for_each_lru(lru) {
739 if (!(BIT(lru) & lru_mask))
740 continue;
741 nr += mem_cgroup_get_lru_size(lruvec, lru);
743 return nr;
746 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
747 unsigned int lru_mask)
749 unsigned long nr = 0;
750 int nid;
752 for_each_node_state(nid, N_MEMORY)
753 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
754 return nr;
757 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
758 enum mem_cgroup_events_target target)
760 unsigned long val, next;
762 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
763 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
764 /* from time_after() in jiffies.h */
765 if ((long)(next - val) < 0) {
766 switch (target) {
767 case MEM_CGROUP_TARGET_THRESH:
768 next = val + THRESHOLDS_EVENTS_TARGET;
769 break;
770 case MEM_CGROUP_TARGET_SOFTLIMIT:
771 next = val + SOFTLIMIT_EVENTS_TARGET;
772 break;
773 case MEM_CGROUP_TARGET_NUMAINFO:
774 next = val + NUMAINFO_EVENTS_TARGET;
775 break;
776 default:
777 break;
779 __this_cpu_write(memcg->stat_cpu->targets[target], next);
780 return true;
782 return false;
786 * Check events in order.
789 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
791 /* threshold event is triggered in finer grain than soft limit */
792 if (unlikely(mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_THRESH))) {
794 bool do_softlimit;
795 bool do_numainfo __maybe_unused;
797 do_softlimit = mem_cgroup_event_ratelimit(memcg,
798 MEM_CGROUP_TARGET_SOFTLIMIT);
799 #if MAX_NUMNODES > 1
800 do_numainfo = mem_cgroup_event_ratelimit(memcg,
801 MEM_CGROUP_TARGET_NUMAINFO);
802 #endif
803 mem_cgroup_threshold(memcg);
804 if (unlikely(do_softlimit))
805 mem_cgroup_update_tree(memcg, page);
806 #if MAX_NUMNODES > 1
807 if (unlikely(do_numainfo))
808 atomic_inc(&memcg->numainfo_events);
809 #endif
813 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
816 * mm_update_next_owner() may clear mm->owner to NULL
817 * if it races with swapoff, page migration, etc.
818 * So this can be called with p == NULL.
820 if (unlikely(!p))
821 return NULL;
823 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
825 EXPORT_SYMBOL(mem_cgroup_from_task);
828 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
829 * @mm: mm from which memcg should be extracted. It can be NULL.
831 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
832 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
833 * returned.
835 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
837 struct mem_cgroup *memcg;
839 if (mem_cgroup_disabled())
840 return NULL;
842 rcu_read_lock();
843 do {
845 * Page cache insertions can happen withou an
846 * actual mm context, e.g. during disk probing
847 * on boot, loopback IO, acct() writes etc.
849 if (unlikely(!mm))
850 memcg = root_mem_cgroup;
851 else {
852 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
853 if (unlikely(!memcg))
854 memcg = root_mem_cgroup;
856 } while (!css_tryget(&memcg->css));
857 rcu_read_unlock();
858 return memcg;
860 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
863 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
864 * @page: page from which memcg should be extracted.
866 * Obtain a reference on page->memcg and returns it if successful. Otherwise
867 * root_mem_cgroup is returned.
869 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
871 struct mem_cgroup *memcg = page->mem_cgroup;
873 if (mem_cgroup_disabled())
874 return NULL;
876 rcu_read_lock();
877 if (!memcg || !css_tryget_online(&memcg->css))
878 memcg = root_mem_cgroup;
879 rcu_read_unlock();
880 return memcg;
882 EXPORT_SYMBOL(get_mem_cgroup_from_page);
885 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
887 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
889 if (unlikely(current->active_memcg)) {
890 struct mem_cgroup *memcg = root_mem_cgroup;
892 rcu_read_lock();
893 if (css_tryget_online(&current->active_memcg->css))
894 memcg = current->active_memcg;
895 rcu_read_unlock();
896 return memcg;
898 return get_mem_cgroup_from_mm(current->mm);
902 * mem_cgroup_iter - iterate over memory cgroup hierarchy
903 * @root: hierarchy root
904 * @prev: previously returned memcg, NULL on first invocation
905 * @reclaim: cookie for shared reclaim walks, NULL for full walks
907 * Returns references to children of the hierarchy below @root, or
908 * @root itself, or %NULL after a full round-trip.
910 * Caller must pass the return value in @prev on subsequent
911 * invocations for reference counting, or use mem_cgroup_iter_break()
912 * to cancel a hierarchy walk before the round-trip is complete.
914 * Reclaimers can specify a node and a priority level in @reclaim to
915 * divide up the memcgs in the hierarchy among all concurrent
916 * reclaimers operating on the same node and priority.
918 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
919 struct mem_cgroup *prev,
920 struct mem_cgroup_reclaim_cookie *reclaim)
922 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
923 struct cgroup_subsys_state *css = NULL;
924 struct mem_cgroup *memcg = NULL;
925 struct mem_cgroup *pos = NULL;
927 if (mem_cgroup_disabled())
928 return NULL;
930 if (!root)
931 root = root_mem_cgroup;
933 if (prev && !reclaim)
934 pos = prev;
936 if (!root->use_hierarchy && root != root_mem_cgroup) {
937 if (prev)
938 goto out;
939 return root;
942 rcu_read_lock();
944 if (reclaim) {
945 struct mem_cgroup_per_node *mz;
947 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
948 iter = &mz->iter[reclaim->priority];
950 if (prev && reclaim->generation != iter->generation)
951 goto out_unlock;
953 while (1) {
954 pos = READ_ONCE(iter->position);
955 if (!pos || css_tryget(&pos->css))
956 break;
958 * css reference reached zero, so iter->position will
959 * be cleared by ->css_released. However, we should not
960 * rely on this happening soon, because ->css_released
961 * is called from a work queue, and by busy-waiting we
962 * might block it. So we clear iter->position right
963 * away.
965 (void)cmpxchg(&iter->position, pos, NULL);
969 if (pos)
970 css = &pos->css;
972 for (;;) {
973 css = css_next_descendant_pre(css, &root->css);
974 if (!css) {
976 * Reclaimers share the hierarchy walk, and a
977 * new one might jump in right at the end of
978 * the hierarchy - make sure they see at least
979 * one group and restart from the beginning.
981 if (!prev)
982 continue;
983 break;
987 * Verify the css and acquire a reference. The root
988 * is provided by the caller, so we know it's alive
989 * and kicking, and don't take an extra reference.
991 memcg = mem_cgroup_from_css(css);
993 if (css == &root->css)
994 break;
996 if (css_tryget(css))
997 break;
999 memcg = NULL;
1002 if (reclaim) {
1004 * The position could have already been updated by a competing
1005 * thread, so check that the value hasn't changed since we read
1006 * it to avoid reclaiming from the same cgroup twice.
1008 (void)cmpxchg(&iter->position, pos, memcg);
1010 if (pos)
1011 css_put(&pos->css);
1013 if (!memcg)
1014 iter->generation++;
1015 else if (!prev)
1016 reclaim->generation = iter->generation;
1019 out_unlock:
1020 rcu_read_unlock();
1021 out:
1022 if (prev && prev != root)
1023 css_put(&prev->css);
1025 return memcg;
1029 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1030 * @root: hierarchy root
1031 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1033 void mem_cgroup_iter_break(struct mem_cgroup *root,
1034 struct mem_cgroup *prev)
1036 if (!root)
1037 root = root_mem_cgroup;
1038 if (prev && prev != root)
1039 css_put(&prev->css);
1042 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1043 struct mem_cgroup *dead_memcg)
1045 struct mem_cgroup_reclaim_iter *iter;
1046 struct mem_cgroup_per_node *mz;
1047 int nid;
1048 int i;
1050 for_each_node(nid) {
1051 mz = mem_cgroup_nodeinfo(from, nid);
1052 for (i = 0; i <= DEF_PRIORITY; i++) {
1053 iter = &mz->iter[i];
1054 cmpxchg(&iter->position,
1055 dead_memcg, NULL);
1060 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1062 struct mem_cgroup *memcg = dead_memcg;
1063 struct mem_cgroup *last;
1065 do {
1066 __invalidate_reclaim_iterators(memcg, dead_memcg);
1067 last = memcg;
1068 } while ((memcg = parent_mem_cgroup(memcg)));
1071 * When cgruop1 non-hierarchy mode is used,
1072 * parent_mem_cgroup() does not walk all the way up to the
1073 * cgroup root (root_mem_cgroup). So we have to handle
1074 * dead_memcg from cgroup root separately.
1076 if (last != root_mem_cgroup)
1077 __invalidate_reclaim_iterators(root_mem_cgroup,
1078 dead_memcg);
1082 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1083 * @memcg: hierarchy root
1084 * @fn: function to call for each task
1085 * @arg: argument passed to @fn
1087 * This function iterates over tasks attached to @memcg or to any of its
1088 * descendants and calls @fn for each task. If @fn returns a non-zero
1089 * value, the function breaks the iteration loop and returns the value.
1090 * Otherwise, it will iterate over all tasks and return 0.
1092 * This function must not be called for the root memory cgroup.
1094 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1095 int (*fn)(struct task_struct *, void *), void *arg)
1097 struct mem_cgroup *iter;
1098 int ret = 0;
1100 BUG_ON(memcg == root_mem_cgroup);
1102 for_each_mem_cgroup_tree(iter, memcg) {
1103 struct css_task_iter it;
1104 struct task_struct *task;
1106 css_task_iter_start(&iter->css, 0, &it);
1107 while (!ret && (task = css_task_iter_next(&it)))
1108 ret = fn(task, arg);
1109 css_task_iter_end(&it);
1110 if (ret) {
1111 mem_cgroup_iter_break(memcg, iter);
1112 break;
1115 return ret;
1119 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1120 * @page: the page
1121 * @pgdat: pgdat of the page
1123 * This function is only safe when following the LRU page isolation
1124 * and putback protocol: the LRU lock must be held, and the page must
1125 * either be PageLRU() or the caller must have isolated/allocated it.
1127 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1129 struct mem_cgroup_per_node *mz;
1130 struct mem_cgroup *memcg;
1131 struct lruvec *lruvec;
1133 if (mem_cgroup_disabled()) {
1134 lruvec = &pgdat->lruvec;
1135 goto out;
1138 memcg = page->mem_cgroup;
1140 * Swapcache readahead pages are added to the LRU - and
1141 * possibly migrated - before they are charged.
1143 if (!memcg)
1144 memcg = root_mem_cgroup;
1146 mz = mem_cgroup_page_nodeinfo(memcg, page);
1147 lruvec = &mz->lruvec;
1148 out:
1150 * Since a node can be onlined after the mem_cgroup was created,
1151 * we have to be prepared to initialize lruvec->zone here;
1152 * and if offlined then reonlined, we need to reinitialize it.
1154 if (unlikely(lruvec->pgdat != pgdat))
1155 lruvec->pgdat = pgdat;
1156 return lruvec;
1160 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1161 * @lruvec: mem_cgroup per zone lru vector
1162 * @lru: index of lru list the page is sitting on
1163 * @zid: zone id of the accounted pages
1164 * @nr_pages: positive when adding or negative when removing
1166 * This function must be called under lru_lock, just before a page is added
1167 * to or just after a page is removed from an lru list (that ordering being
1168 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1170 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1171 int zid, int nr_pages)
1173 struct mem_cgroup_per_node *mz;
1174 unsigned long *lru_size;
1175 long size;
1177 if (mem_cgroup_disabled())
1178 return;
1180 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1181 lru_size = &mz->lru_zone_size[zid][lru];
1183 if (nr_pages < 0)
1184 *lru_size += nr_pages;
1186 size = *lru_size;
1187 if (WARN_ONCE(size < 0,
1188 "%s(%p, %d, %d): lru_size %ld\n",
1189 __func__, lruvec, lru, nr_pages, size)) {
1190 VM_BUG_ON(1);
1191 *lru_size = 0;
1194 if (nr_pages > 0)
1195 *lru_size += nr_pages;
1198 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1200 struct mem_cgroup *task_memcg;
1201 struct task_struct *p;
1202 bool ret;
1204 p = find_lock_task_mm(task);
1205 if (p) {
1206 task_memcg = get_mem_cgroup_from_mm(p->mm);
1207 task_unlock(p);
1208 } else {
1210 * All threads may have already detached their mm's, but the oom
1211 * killer still needs to detect if they have already been oom
1212 * killed to prevent needlessly killing additional tasks.
1214 rcu_read_lock();
1215 task_memcg = mem_cgroup_from_task(task);
1216 css_get(&task_memcg->css);
1217 rcu_read_unlock();
1219 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1220 css_put(&task_memcg->css);
1221 return ret;
1225 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1226 * @memcg: the memory cgroup
1228 * Returns the maximum amount of memory @mem can be charged with, in
1229 * pages.
1231 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1233 unsigned long margin = 0;
1234 unsigned long count;
1235 unsigned long limit;
1237 count = page_counter_read(&memcg->memory);
1238 limit = READ_ONCE(memcg->memory.max);
1239 if (count < limit)
1240 margin = limit - count;
1242 if (do_memsw_account()) {
1243 count = page_counter_read(&memcg->memsw);
1244 limit = READ_ONCE(memcg->memsw.max);
1245 if (count <= limit)
1246 margin = min(margin, limit - count);
1247 else
1248 margin = 0;
1251 return margin;
1255 * A routine for checking "mem" is under move_account() or not.
1257 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1258 * moving cgroups. This is for waiting at high-memory pressure
1259 * caused by "move".
1261 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1263 struct mem_cgroup *from;
1264 struct mem_cgroup *to;
1265 bool ret = false;
1267 * Unlike task_move routines, we access mc.to, mc.from not under
1268 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1270 spin_lock(&mc.lock);
1271 from = mc.from;
1272 to = mc.to;
1273 if (!from)
1274 goto unlock;
1276 ret = mem_cgroup_is_descendant(from, memcg) ||
1277 mem_cgroup_is_descendant(to, memcg);
1278 unlock:
1279 spin_unlock(&mc.lock);
1280 return ret;
1283 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1285 if (mc.moving_task && current != mc.moving_task) {
1286 if (mem_cgroup_under_move(memcg)) {
1287 DEFINE_WAIT(wait);
1288 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1289 /* moving charge context might have finished. */
1290 if (mc.moving_task)
1291 schedule();
1292 finish_wait(&mc.waitq, &wait);
1293 return true;
1296 return false;
1299 static const unsigned int memcg1_stats[] = {
1300 MEMCG_CACHE,
1301 MEMCG_RSS,
1302 MEMCG_RSS_HUGE,
1303 NR_SHMEM,
1304 NR_FILE_MAPPED,
1305 NR_FILE_DIRTY,
1306 NR_WRITEBACK,
1307 MEMCG_SWAP,
1310 static const char *const memcg1_stat_names[] = {
1311 "cache",
1312 "rss",
1313 "rss_huge",
1314 "shmem",
1315 "mapped_file",
1316 "dirty",
1317 "writeback",
1318 "swap",
1321 #define K(x) ((x) << (PAGE_SHIFT-10))
1323 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1324 * @memcg: The memory cgroup that went over limit
1325 * @p: Task that is going to be killed
1327 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1328 * enabled
1330 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1332 struct mem_cgroup *iter;
1333 unsigned int i;
1335 rcu_read_lock();
1337 if (p) {
1338 pr_info("Task in ");
1339 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1340 pr_cont(" killed as a result of limit of ");
1341 } else {
1342 pr_info("Memory limit reached of cgroup ");
1345 pr_cont_cgroup_path(memcg->css.cgroup);
1346 pr_cont("\n");
1348 rcu_read_unlock();
1350 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1351 K((u64)page_counter_read(&memcg->memory)),
1352 K((u64)memcg->memory.max), memcg->memory.failcnt);
1353 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1354 K((u64)page_counter_read(&memcg->memsw)),
1355 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1356 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1357 K((u64)page_counter_read(&memcg->kmem)),
1358 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1360 for_each_mem_cgroup_tree(iter, memcg) {
1361 pr_info("Memory cgroup stats for ");
1362 pr_cont_cgroup_path(iter->css.cgroup);
1363 pr_cont(":");
1365 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1366 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1367 continue;
1368 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1369 K(memcg_page_state(iter, memcg1_stats[i])));
1372 for (i = 0; i < NR_LRU_LISTS; i++)
1373 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1374 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1376 pr_cont("\n");
1381 * Return the memory (and swap, if configured) limit for a memcg.
1383 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1385 unsigned long max;
1387 max = memcg->memory.max;
1388 if (mem_cgroup_swappiness(memcg)) {
1389 unsigned long memsw_max;
1390 unsigned long swap_max;
1392 memsw_max = memcg->memsw.max;
1393 swap_max = memcg->swap.max;
1394 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1395 max = min(max + swap_max, memsw_max);
1397 return max;
1400 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1401 int order)
1403 struct oom_control oc = {
1404 .zonelist = NULL,
1405 .nodemask = NULL,
1406 .memcg = memcg,
1407 .gfp_mask = gfp_mask,
1408 .order = order,
1410 bool ret;
1412 if (mutex_lock_killable(&oom_lock))
1413 return true;
1415 * A few threads which were not waiting at mutex_lock_killable() can
1416 * fail to bail out. Therefore, check again after holding oom_lock.
1418 ret = should_force_charge() || out_of_memory(&oc);
1419 mutex_unlock(&oom_lock);
1420 return ret;
1423 #if MAX_NUMNODES > 1
1426 * test_mem_cgroup_node_reclaimable
1427 * @memcg: the target memcg
1428 * @nid: the node ID to be checked.
1429 * @noswap : specify true here if the user wants flle only information.
1431 * This function returns whether the specified memcg contains any
1432 * reclaimable pages on a node. Returns true if there are any reclaimable
1433 * pages in the node.
1435 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1436 int nid, bool noswap)
1438 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1439 return true;
1440 if (noswap || !total_swap_pages)
1441 return false;
1442 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1443 return true;
1444 return false;
1449 * Always updating the nodemask is not very good - even if we have an empty
1450 * list or the wrong list here, we can start from some node and traverse all
1451 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1454 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1456 int nid;
1458 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1459 * pagein/pageout changes since the last update.
1461 if (!atomic_read(&memcg->numainfo_events))
1462 return;
1463 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1464 return;
1466 /* make a nodemask where this memcg uses memory from */
1467 memcg->scan_nodes = node_states[N_MEMORY];
1469 for_each_node_mask(nid, node_states[N_MEMORY]) {
1471 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1472 node_clear(nid, memcg->scan_nodes);
1475 atomic_set(&memcg->numainfo_events, 0);
1476 atomic_set(&memcg->numainfo_updating, 0);
1480 * Selecting a node where we start reclaim from. Because what we need is just
1481 * reducing usage counter, start from anywhere is O,K. Considering
1482 * memory reclaim from current node, there are pros. and cons.
1484 * Freeing memory from current node means freeing memory from a node which
1485 * we'll use or we've used. So, it may make LRU bad. And if several threads
1486 * hit limits, it will see a contention on a node. But freeing from remote
1487 * node means more costs for memory reclaim because of memory latency.
1489 * Now, we use round-robin. Better algorithm is welcomed.
1491 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1493 int node;
1495 mem_cgroup_may_update_nodemask(memcg);
1496 node = memcg->last_scanned_node;
1498 node = next_node_in(node, memcg->scan_nodes);
1500 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1501 * last time it really checked all the LRUs due to rate limiting.
1502 * Fallback to the current node in that case for simplicity.
1504 if (unlikely(node == MAX_NUMNODES))
1505 node = numa_node_id();
1507 memcg->last_scanned_node = node;
1508 return node;
1510 #else
1511 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1513 return 0;
1515 #endif
1517 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1518 pg_data_t *pgdat,
1519 gfp_t gfp_mask,
1520 unsigned long *total_scanned)
1522 struct mem_cgroup *victim = NULL;
1523 int total = 0;
1524 int loop = 0;
1525 unsigned long excess;
1526 unsigned long nr_scanned;
1527 struct mem_cgroup_reclaim_cookie reclaim = {
1528 .pgdat = pgdat,
1529 .priority = 0,
1532 excess = soft_limit_excess(root_memcg);
1534 while (1) {
1535 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1536 if (!victim) {
1537 loop++;
1538 if (loop >= 2) {
1540 * If we have not been able to reclaim
1541 * anything, it might because there are
1542 * no reclaimable pages under this hierarchy
1544 if (!total)
1545 break;
1547 * We want to do more targeted reclaim.
1548 * excess >> 2 is not to excessive so as to
1549 * reclaim too much, nor too less that we keep
1550 * coming back to reclaim from this cgroup
1552 if (total >= (excess >> 2) ||
1553 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1554 break;
1556 continue;
1558 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1559 pgdat, &nr_scanned);
1560 *total_scanned += nr_scanned;
1561 if (!soft_limit_excess(root_memcg))
1562 break;
1564 mem_cgroup_iter_break(root_memcg, victim);
1565 return total;
1568 #ifdef CONFIG_LOCKDEP
1569 static struct lockdep_map memcg_oom_lock_dep_map = {
1570 .name = "memcg_oom_lock",
1572 #endif
1574 static DEFINE_SPINLOCK(memcg_oom_lock);
1577 * Check OOM-Killer is already running under our hierarchy.
1578 * If someone is running, return false.
1580 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1582 struct mem_cgroup *iter, *failed = NULL;
1584 spin_lock(&memcg_oom_lock);
1586 for_each_mem_cgroup_tree(iter, memcg) {
1587 if (iter->oom_lock) {
1589 * this subtree of our hierarchy is already locked
1590 * so we cannot give a lock.
1592 failed = iter;
1593 mem_cgroup_iter_break(memcg, iter);
1594 break;
1595 } else
1596 iter->oom_lock = true;
1599 if (failed) {
1601 * OK, we failed to lock the whole subtree so we have
1602 * to clean up what we set up to the failing subtree
1604 for_each_mem_cgroup_tree(iter, memcg) {
1605 if (iter == failed) {
1606 mem_cgroup_iter_break(memcg, iter);
1607 break;
1609 iter->oom_lock = false;
1611 } else
1612 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1614 spin_unlock(&memcg_oom_lock);
1616 return !failed;
1619 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1621 struct mem_cgroup *iter;
1623 spin_lock(&memcg_oom_lock);
1624 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1625 for_each_mem_cgroup_tree(iter, memcg)
1626 iter->oom_lock = false;
1627 spin_unlock(&memcg_oom_lock);
1630 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1632 struct mem_cgroup *iter;
1634 spin_lock(&memcg_oom_lock);
1635 for_each_mem_cgroup_tree(iter, memcg)
1636 iter->under_oom++;
1637 spin_unlock(&memcg_oom_lock);
1640 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1642 struct mem_cgroup *iter;
1645 * When a new child is created while the hierarchy is under oom,
1646 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1648 spin_lock(&memcg_oom_lock);
1649 for_each_mem_cgroup_tree(iter, memcg)
1650 if (iter->under_oom > 0)
1651 iter->under_oom--;
1652 spin_unlock(&memcg_oom_lock);
1655 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1657 struct oom_wait_info {
1658 struct mem_cgroup *memcg;
1659 wait_queue_entry_t wait;
1662 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1663 unsigned mode, int sync, void *arg)
1665 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1666 struct mem_cgroup *oom_wait_memcg;
1667 struct oom_wait_info *oom_wait_info;
1669 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1670 oom_wait_memcg = oom_wait_info->memcg;
1672 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1673 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1674 return 0;
1675 return autoremove_wake_function(wait, mode, sync, arg);
1678 static void memcg_oom_recover(struct mem_cgroup *memcg)
1681 * For the following lockless ->under_oom test, the only required
1682 * guarantee is that it must see the state asserted by an OOM when
1683 * this function is called as a result of userland actions
1684 * triggered by the notification of the OOM. This is trivially
1685 * achieved by invoking mem_cgroup_mark_under_oom() before
1686 * triggering notification.
1688 if (memcg && memcg->under_oom)
1689 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1692 enum oom_status {
1693 OOM_SUCCESS,
1694 OOM_FAILED,
1695 OOM_ASYNC,
1696 OOM_SKIPPED
1699 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1701 enum oom_status ret;
1702 bool locked;
1704 if (order > PAGE_ALLOC_COSTLY_ORDER)
1705 return OOM_SKIPPED;
1708 * We are in the middle of the charge context here, so we
1709 * don't want to block when potentially sitting on a callstack
1710 * that holds all kinds of filesystem and mm locks.
1712 * cgroup1 allows disabling the OOM killer and waiting for outside
1713 * handling until the charge can succeed; remember the context and put
1714 * the task to sleep at the end of the page fault when all locks are
1715 * released.
1717 * On the other hand, in-kernel OOM killer allows for an async victim
1718 * memory reclaim (oom_reaper) and that means that we are not solely
1719 * relying on the oom victim to make a forward progress and we can
1720 * invoke the oom killer here.
1722 * Please note that mem_cgroup_out_of_memory might fail to find a
1723 * victim and then we have to bail out from the charge path.
1725 if (memcg->oom_kill_disable) {
1726 if (!current->in_user_fault)
1727 return OOM_SKIPPED;
1728 css_get(&memcg->css);
1729 current->memcg_in_oom = memcg;
1730 current->memcg_oom_gfp_mask = mask;
1731 current->memcg_oom_order = order;
1733 return OOM_ASYNC;
1736 mem_cgroup_mark_under_oom(memcg);
1738 locked = mem_cgroup_oom_trylock(memcg);
1740 if (locked)
1741 mem_cgroup_oom_notify(memcg);
1743 mem_cgroup_unmark_under_oom(memcg);
1744 if (mem_cgroup_out_of_memory(memcg, mask, order))
1745 ret = OOM_SUCCESS;
1746 else
1747 ret = OOM_FAILED;
1749 if (locked)
1750 mem_cgroup_oom_unlock(memcg);
1752 return ret;
1756 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1757 * @handle: actually kill/wait or just clean up the OOM state
1759 * This has to be called at the end of a page fault if the memcg OOM
1760 * handler was enabled.
1762 * Memcg supports userspace OOM handling where failed allocations must
1763 * sleep on a waitqueue until the userspace task resolves the
1764 * situation. Sleeping directly in the charge context with all kinds
1765 * of locks held is not a good idea, instead we remember an OOM state
1766 * in the task and mem_cgroup_oom_synchronize() has to be called at
1767 * the end of the page fault to complete the OOM handling.
1769 * Returns %true if an ongoing memcg OOM situation was detected and
1770 * completed, %false otherwise.
1772 bool mem_cgroup_oom_synchronize(bool handle)
1774 struct mem_cgroup *memcg = current->memcg_in_oom;
1775 struct oom_wait_info owait;
1776 bool locked;
1778 /* OOM is global, do not handle */
1779 if (!memcg)
1780 return false;
1782 if (!handle)
1783 goto cleanup;
1785 owait.memcg = memcg;
1786 owait.wait.flags = 0;
1787 owait.wait.func = memcg_oom_wake_function;
1788 owait.wait.private = current;
1789 INIT_LIST_HEAD(&owait.wait.entry);
1791 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1792 mem_cgroup_mark_under_oom(memcg);
1794 locked = mem_cgroup_oom_trylock(memcg);
1796 if (locked)
1797 mem_cgroup_oom_notify(memcg);
1799 if (locked && !memcg->oom_kill_disable) {
1800 mem_cgroup_unmark_under_oom(memcg);
1801 finish_wait(&memcg_oom_waitq, &owait.wait);
1802 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1803 current->memcg_oom_order);
1804 } else {
1805 schedule();
1806 mem_cgroup_unmark_under_oom(memcg);
1807 finish_wait(&memcg_oom_waitq, &owait.wait);
1810 if (locked) {
1811 mem_cgroup_oom_unlock(memcg);
1813 * There is no guarantee that an OOM-lock contender
1814 * sees the wakeups triggered by the OOM kill
1815 * uncharges. Wake any sleepers explicitely.
1817 memcg_oom_recover(memcg);
1819 cleanup:
1820 current->memcg_in_oom = NULL;
1821 css_put(&memcg->css);
1822 return true;
1826 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1827 * @victim: task to be killed by the OOM killer
1828 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1830 * Returns a pointer to a memory cgroup, which has to be cleaned up
1831 * by killing all belonging OOM-killable tasks.
1833 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1835 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1836 struct mem_cgroup *oom_domain)
1838 struct mem_cgroup *oom_group = NULL;
1839 struct mem_cgroup *memcg;
1841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1842 return NULL;
1844 if (!oom_domain)
1845 oom_domain = root_mem_cgroup;
1847 rcu_read_lock();
1849 memcg = mem_cgroup_from_task(victim);
1850 if (memcg == root_mem_cgroup)
1851 goto out;
1854 * Traverse the memory cgroup hierarchy from the victim task's
1855 * cgroup up to the OOMing cgroup (or root) to find the
1856 * highest-level memory cgroup with oom.group set.
1858 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1859 if (memcg->oom_group)
1860 oom_group = memcg;
1862 if (memcg == oom_domain)
1863 break;
1866 if (oom_group)
1867 css_get(&oom_group->css);
1868 out:
1869 rcu_read_unlock();
1871 return oom_group;
1874 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1876 pr_info("Tasks in ");
1877 pr_cont_cgroup_path(memcg->css.cgroup);
1878 pr_cont(" are going to be killed due to memory.oom.group set\n");
1882 * lock_page_memcg - lock a page->mem_cgroup binding
1883 * @page: the page
1885 * This function protects unlocked LRU pages from being moved to
1886 * another cgroup.
1888 * It ensures lifetime of the returned memcg. Caller is responsible
1889 * for the lifetime of the page; __unlock_page_memcg() is available
1890 * when @page might get freed inside the locked section.
1892 struct mem_cgroup *lock_page_memcg(struct page *page)
1894 struct mem_cgroup *memcg;
1895 unsigned long flags;
1898 * The RCU lock is held throughout the transaction. The fast
1899 * path can get away without acquiring the memcg->move_lock
1900 * because page moving starts with an RCU grace period.
1902 * The RCU lock also protects the memcg from being freed when
1903 * the page state that is going to change is the only thing
1904 * preventing the page itself from being freed. E.g. writeback
1905 * doesn't hold a page reference and relies on PG_writeback to
1906 * keep off truncation, migration and so forth.
1908 rcu_read_lock();
1910 if (mem_cgroup_disabled())
1911 return NULL;
1912 again:
1913 memcg = page->mem_cgroup;
1914 if (unlikely(!memcg))
1915 return NULL;
1917 if (atomic_read(&memcg->moving_account) <= 0)
1918 return memcg;
1920 spin_lock_irqsave(&memcg->move_lock, flags);
1921 if (memcg != page->mem_cgroup) {
1922 spin_unlock_irqrestore(&memcg->move_lock, flags);
1923 goto again;
1927 * When charge migration first begins, we can have locked and
1928 * unlocked page stat updates happening concurrently. Track
1929 * the task who has the lock for unlock_page_memcg().
1931 memcg->move_lock_task = current;
1932 memcg->move_lock_flags = flags;
1934 return memcg;
1936 EXPORT_SYMBOL(lock_page_memcg);
1939 * __unlock_page_memcg - unlock and unpin a memcg
1940 * @memcg: the memcg
1942 * Unlock and unpin a memcg returned by lock_page_memcg().
1944 void __unlock_page_memcg(struct mem_cgroup *memcg)
1946 if (memcg && memcg->move_lock_task == current) {
1947 unsigned long flags = memcg->move_lock_flags;
1949 memcg->move_lock_task = NULL;
1950 memcg->move_lock_flags = 0;
1952 spin_unlock_irqrestore(&memcg->move_lock, flags);
1955 rcu_read_unlock();
1959 * unlock_page_memcg - unlock a page->mem_cgroup binding
1960 * @page: the page
1962 void unlock_page_memcg(struct page *page)
1964 __unlock_page_memcg(page->mem_cgroup);
1966 EXPORT_SYMBOL(unlock_page_memcg);
1968 struct memcg_stock_pcp {
1969 struct mem_cgroup *cached; /* this never be root cgroup */
1970 unsigned int nr_pages;
1971 struct work_struct work;
1972 unsigned long flags;
1973 #define FLUSHING_CACHED_CHARGE 0
1975 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1976 static DEFINE_MUTEX(percpu_charge_mutex);
1979 * consume_stock: Try to consume stocked charge on this cpu.
1980 * @memcg: memcg to consume from.
1981 * @nr_pages: how many pages to charge.
1983 * The charges will only happen if @memcg matches the current cpu's memcg
1984 * stock, and at least @nr_pages are available in that stock. Failure to
1985 * service an allocation will refill the stock.
1987 * returns true if successful, false otherwise.
1989 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1991 struct memcg_stock_pcp *stock;
1992 unsigned long flags;
1993 bool ret = false;
1995 if (nr_pages > MEMCG_CHARGE_BATCH)
1996 return ret;
1998 local_irq_save(flags);
2000 stock = this_cpu_ptr(&memcg_stock);
2001 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2002 stock->nr_pages -= nr_pages;
2003 ret = true;
2006 local_irq_restore(flags);
2008 return ret;
2012 * Returns stocks cached in percpu and reset cached information.
2014 static void drain_stock(struct memcg_stock_pcp *stock)
2016 struct mem_cgroup *old = stock->cached;
2018 if (stock->nr_pages) {
2019 page_counter_uncharge(&old->memory, stock->nr_pages);
2020 if (do_memsw_account())
2021 page_counter_uncharge(&old->memsw, stock->nr_pages);
2022 css_put_many(&old->css, stock->nr_pages);
2023 stock->nr_pages = 0;
2025 stock->cached = NULL;
2028 static void drain_local_stock(struct work_struct *dummy)
2030 struct memcg_stock_pcp *stock;
2031 unsigned long flags;
2034 * The only protection from memory hotplug vs. drain_stock races is
2035 * that we always operate on local CPU stock here with IRQ disabled
2037 local_irq_save(flags);
2039 stock = this_cpu_ptr(&memcg_stock);
2040 drain_stock(stock);
2041 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2043 local_irq_restore(flags);
2047 * Cache charges(val) to local per_cpu area.
2048 * This will be consumed by consume_stock() function, later.
2050 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2052 struct memcg_stock_pcp *stock;
2053 unsigned long flags;
2055 local_irq_save(flags);
2057 stock = this_cpu_ptr(&memcg_stock);
2058 if (stock->cached != memcg) { /* reset if necessary */
2059 drain_stock(stock);
2060 stock->cached = memcg;
2062 stock->nr_pages += nr_pages;
2064 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2065 drain_stock(stock);
2067 local_irq_restore(flags);
2071 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2072 * of the hierarchy under it.
2074 static void drain_all_stock(struct mem_cgroup *root_memcg)
2076 int cpu, curcpu;
2078 /* If someone's already draining, avoid adding running more workers. */
2079 if (!mutex_trylock(&percpu_charge_mutex))
2080 return;
2082 * Notify other cpus that system-wide "drain" is running
2083 * We do not care about races with the cpu hotplug because cpu down
2084 * as well as workers from this path always operate on the local
2085 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2087 curcpu = get_cpu();
2088 for_each_online_cpu(cpu) {
2089 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2090 struct mem_cgroup *memcg;
2092 memcg = stock->cached;
2093 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2094 continue;
2095 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2096 css_put(&memcg->css);
2097 continue;
2099 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2100 if (cpu == curcpu)
2101 drain_local_stock(&stock->work);
2102 else
2103 schedule_work_on(cpu, &stock->work);
2105 css_put(&memcg->css);
2107 put_cpu();
2108 mutex_unlock(&percpu_charge_mutex);
2111 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2113 struct memcg_stock_pcp *stock;
2114 struct mem_cgroup *memcg;
2116 stock = &per_cpu(memcg_stock, cpu);
2117 drain_stock(stock);
2119 for_each_mem_cgroup(memcg) {
2120 int i;
2122 for (i = 0; i < MEMCG_NR_STAT; i++) {
2123 int nid;
2124 long x;
2126 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2127 if (x)
2128 atomic_long_add(x, &memcg->stat[i]);
2130 if (i >= NR_VM_NODE_STAT_ITEMS)
2131 continue;
2133 for_each_node(nid) {
2134 struct mem_cgroup_per_node *pn;
2136 pn = mem_cgroup_nodeinfo(memcg, nid);
2137 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2138 if (x)
2139 atomic_long_add(x, &pn->lruvec_stat[i]);
2143 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2144 long x;
2146 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2147 if (x)
2148 atomic_long_add(x, &memcg->events[i]);
2152 return 0;
2155 static void reclaim_high(struct mem_cgroup *memcg,
2156 unsigned int nr_pages,
2157 gfp_t gfp_mask)
2159 do {
2160 if (page_counter_read(&memcg->memory) <= memcg->high)
2161 continue;
2162 memcg_memory_event(memcg, MEMCG_HIGH);
2163 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2164 } while ((memcg = parent_mem_cgroup(memcg)));
2167 static void high_work_func(struct work_struct *work)
2169 struct mem_cgroup *memcg;
2171 memcg = container_of(work, struct mem_cgroup, high_work);
2172 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2176 * Scheduled by try_charge() to be executed from the userland return path
2177 * and reclaims memory over the high limit.
2179 void mem_cgroup_handle_over_high(void)
2181 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2182 struct mem_cgroup *memcg;
2184 if (likely(!nr_pages))
2185 return;
2187 memcg = get_mem_cgroup_from_mm(current->mm);
2188 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2189 css_put(&memcg->css);
2190 current->memcg_nr_pages_over_high = 0;
2193 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2194 unsigned int nr_pages)
2196 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2197 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2198 struct mem_cgroup *mem_over_limit;
2199 struct page_counter *counter;
2200 unsigned long nr_reclaimed;
2201 bool may_swap = true;
2202 bool drained = false;
2203 bool oomed = false;
2204 enum oom_status oom_status;
2206 if (mem_cgroup_is_root(memcg))
2207 return 0;
2208 retry:
2209 if (consume_stock(memcg, nr_pages))
2210 return 0;
2212 if (!do_memsw_account() ||
2213 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2214 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2215 goto done_restock;
2216 if (do_memsw_account())
2217 page_counter_uncharge(&memcg->memsw, batch);
2218 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2219 } else {
2220 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2221 may_swap = false;
2224 if (batch > nr_pages) {
2225 batch = nr_pages;
2226 goto retry;
2230 * Memcg doesn't have a dedicated reserve for atomic
2231 * allocations. But like the global atomic pool, we need to
2232 * put the burden of reclaim on regular allocation requests
2233 * and let these go through as privileged allocations.
2235 if (gfp_mask & __GFP_ATOMIC)
2236 goto force;
2239 * Unlike in global OOM situations, memcg is not in a physical
2240 * memory shortage. Allow dying and OOM-killed tasks to
2241 * bypass the last charges so that they can exit quickly and
2242 * free their memory.
2244 if (unlikely(should_force_charge()))
2245 goto force;
2248 * Prevent unbounded recursion when reclaim operations need to
2249 * allocate memory. This might exceed the limits temporarily,
2250 * but we prefer facilitating memory reclaim and getting back
2251 * under the limit over triggering OOM kills in these cases.
2253 if (unlikely(current->flags & PF_MEMALLOC))
2254 goto force;
2256 if (unlikely(task_in_memcg_oom(current)))
2257 goto nomem;
2259 if (!gfpflags_allow_blocking(gfp_mask))
2260 goto nomem;
2262 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2264 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2265 gfp_mask, may_swap);
2267 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2268 goto retry;
2270 if (!drained) {
2271 drain_all_stock(mem_over_limit);
2272 drained = true;
2273 goto retry;
2276 if (gfp_mask & __GFP_NORETRY)
2277 goto nomem;
2279 * Even though the limit is exceeded at this point, reclaim
2280 * may have been able to free some pages. Retry the charge
2281 * before killing the task.
2283 * Only for regular pages, though: huge pages are rather
2284 * unlikely to succeed so close to the limit, and we fall back
2285 * to regular pages anyway in case of failure.
2287 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2288 goto retry;
2290 * At task move, charge accounts can be doubly counted. So, it's
2291 * better to wait until the end of task_move if something is going on.
2293 if (mem_cgroup_wait_acct_move(mem_over_limit))
2294 goto retry;
2296 if (nr_retries--)
2297 goto retry;
2299 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2300 goto nomem;
2302 if (gfp_mask & __GFP_NOFAIL)
2303 goto force;
2305 if (fatal_signal_pending(current))
2306 goto force;
2308 memcg_memory_event(mem_over_limit, MEMCG_OOM);
2311 * keep retrying as long as the memcg oom killer is able to make
2312 * a forward progress or bypass the charge if the oom killer
2313 * couldn't make any progress.
2315 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2316 get_order(nr_pages * PAGE_SIZE));
2317 switch (oom_status) {
2318 case OOM_SUCCESS:
2319 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2320 oomed = true;
2321 goto retry;
2322 case OOM_FAILED:
2323 goto force;
2324 default:
2325 goto nomem;
2327 nomem:
2328 if (!(gfp_mask & __GFP_NOFAIL))
2329 return -ENOMEM;
2330 force:
2332 * The allocation either can't fail or will lead to more memory
2333 * being freed very soon. Allow memory usage go over the limit
2334 * temporarily by force charging it.
2336 page_counter_charge(&memcg->memory, nr_pages);
2337 if (do_memsw_account())
2338 page_counter_charge(&memcg->memsw, nr_pages);
2339 css_get_many(&memcg->css, nr_pages);
2341 return 0;
2343 done_restock:
2344 css_get_many(&memcg->css, batch);
2345 if (batch > nr_pages)
2346 refill_stock(memcg, batch - nr_pages);
2349 * If the hierarchy is above the normal consumption range, schedule
2350 * reclaim on returning to userland. We can perform reclaim here
2351 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2352 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2353 * not recorded as it most likely matches current's and won't
2354 * change in the meantime. As high limit is checked again before
2355 * reclaim, the cost of mismatch is negligible.
2357 do {
2358 if (page_counter_read(&memcg->memory) > memcg->high) {
2359 /* Don't bother a random interrupted task */
2360 if (in_interrupt()) {
2361 schedule_work(&memcg->high_work);
2362 break;
2364 current->memcg_nr_pages_over_high += batch;
2365 set_notify_resume(current);
2366 break;
2368 } while ((memcg = parent_mem_cgroup(memcg)));
2370 return 0;
2373 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2375 if (mem_cgroup_is_root(memcg))
2376 return;
2378 page_counter_uncharge(&memcg->memory, nr_pages);
2379 if (do_memsw_account())
2380 page_counter_uncharge(&memcg->memsw, nr_pages);
2382 css_put_many(&memcg->css, nr_pages);
2385 static void lock_page_lru(struct page *page, int *isolated)
2387 struct zone *zone = page_zone(page);
2389 spin_lock_irq(zone_lru_lock(zone));
2390 if (PageLRU(page)) {
2391 struct lruvec *lruvec;
2393 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2394 ClearPageLRU(page);
2395 del_page_from_lru_list(page, lruvec, page_lru(page));
2396 *isolated = 1;
2397 } else
2398 *isolated = 0;
2401 static void unlock_page_lru(struct page *page, int isolated)
2403 struct zone *zone = page_zone(page);
2405 if (isolated) {
2406 struct lruvec *lruvec;
2408 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2409 VM_BUG_ON_PAGE(PageLRU(page), page);
2410 SetPageLRU(page);
2411 add_page_to_lru_list(page, lruvec, page_lru(page));
2413 spin_unlock_irq(zone_lru_lock(zone));
2416 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2417 bool lrucare)
2419 int isolated;
2421 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2424 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2425 * may already be on some other mem_cgroup's LRU. Take care of it.
2427 if (lrucare)
2428 lock_page_lru(page, &isolated);
2431 * Nobody should be changing or seriously looking at
2432 * page->mem_cgroup at this point:
2434 * - the page is uncharged
2436 * - the page is off-LRU
2438 * - an anonymous fault has exclusive page access, except for
2439 * a locked page table
2441 * - a page cache insertion, a swapin fault, or a migration
2442 * have the page locked
2444 page->mem_cgroup = memcg;
2446 if (lrucare)
2447 unlock_page_lru(page, isolated);
2450 #ifdef CONFIG_MEMCG_KMEM
2451 static int memcg_alloc_cache_id(void)
2453 int id, size;
2454 int err;
2456 id = ida_simple_get(&memcg_cache_ida,
2457 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2458 if (id < 0)
2459 return id;
2461 if (id < memcg_nr_cache_ids)
2462 return id;
2465 * There's no space for the new id in memcg_caches arrays,
2466 * so we have to grow them.
2468 down_write(&memcg_cache_ids_sem);
2470 size = 2 * (id + 1);
2471 if (size < MEMCG_CACHES_MIN_SIZE)
2472 size = MEMCG_CACHES_MIN_SIZE;
2473 else if (size > MEMCG_CACHES_MAX_SIZE)
2474 size = MEMCG_CACHES_MAX_SIZE;
2476 err = memcg_update_all_caches(size);
2477 if (!err)
2478 err = memcg_update_all_list_lrus(size);
2479 if (!err)
2480 memcg_nr_cache_ids = size;
2482 up_write(&memcg_cache_ids_sem);
2484 if (err) {
2485 ida_simple_remove(&memcg_cache_ida, id);
2486 return err;
2488 return id;
2491 static void memcg_free_cache_id(int id)
2493 ida_simple_remove(&memcg_cache_ida, id);
2496 struct memcg_kmem_cache_create_work {
2497 struct mem_cgroup *memcg;
2498 struct kmem_cache *cachep;
2499 struct work_struct work;
2502 static void memcg_kmem_cache_create_func(struct work_struct *w)
2504 struct memcg_kmem_cache_create_work *cw =
2505 container_of(w, struct memcg_kmem_cache_create_work, work);
2506 struct mem_cgroup *memcg = cw->memcg;
2507 struct kmem_cache *cachep = cw->cachep;
2509 memcg_create_kmem_cache(memcg, cachep);
2511 css_put(&memcg->css);
2512 kfree(cw);
2516 * Enqueue the creation of a per-memcg kmem_cache.
2518 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2519 struct kmem_cache *cachep)
2521 struct memcg_kmem_cache_create_work *cw;
2523 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2524 if (!cw)
2525 return;
2527 css_get(&memcg->css);
2529 cw->memcg = memcg;
2530 cw->cachep = cachep;
2531 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2533 queue_work(memcg_kmem_cache_wq, &cw->work);
2536 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2537 struct kmem_cache *cachep)
2540 * We need to stop accounting when we kmalloc, because if the
2541 * corresponding kmalloc cache is not yet created, the first allocation
2542 * in __memcg_schedule_kmem_cache_create will recurse.
2544 * However, it is better to enclose the whole function. Depending on
2545 * the debugging options enabled, INIT_WORK(), for instance, can
2546 * trigger an allocation. This too, will make us recurse. Because at
2547 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2548 * the safest choice is to do it like this, wrapping the whole function.
2550 current->memcg_kmem_skip_account = 1;
2551 __memcg_schedule_kmem_cache_create(memcg, cachep);
2552 current->memcg_kmem_skip_account = 0;
2555 static inline bool memcg_kmem_bypass(void)
2557 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2558 return true;
2559 return false;
2563 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2564 * @cachep: the original global kmem cache
2566 * Return the kmem_cache we're supposed to use for a slab allocation.
2567 * We try to use the current memcg's version of the cache.
2569 * If the cache does not exist yet, if we are the first user of it, we
2570 * create it asynchronously in a workqueue and let the current allocation
2571 * go through with the original cache.
2573 * This function takes a reference to the cache it returns to assure it
2574 * won't get destroyed while we are working with it. Once the caller is
2575 * done with it, memcg_kmem_put_cache() must be called to release the
2576 * reference.
2578 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2580 struct mem_cgroup *memcg;
2581 struct kmem_cache *memcg_cachep;
2582 int kmemcg_id;
2584 VM_BUG_ON(!is_root_cache(cachep));
2586 if (memcg_kmem_bypass())
2587 return cachep;
2589 if (current->memcg_kmem_skip_account)
2590 return cachep;
2592 memcg = get_mem_cgroup_from_current();
2593 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2594 if (kmemcg_id < 0)
2595 goto out;
2597 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2598 if (likely(memcg_cachep))
2599 return memcg_cachep;
2602 * If we are in a safe context (can wait, and not in interrupt
2603 * context), we could be be predictable and return right away.
2604 * This would guarantee that the allocation being performed
2605 * already belongs in the new cache.
2607 * However, there are some clashes that can arrive from locking.
2608 * For instance, because we acquire the slab_mutex while doing
2609 * memcg_create_kmem_cache, this means no further allocation
2610 * could happen with the slab_mutex held. So it's better to
2611 * defer everything.
2613 memcg_schedule_kmem_cache_create(memcg, cachep);
2614 out:
2615 css_put(&memcg->css);
2616 return cachep;
2620 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2621 * @cachep: the cache returned by memcg_kmem_get_cache
2623 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2625 if (!is_root_cache(cachep))
2626 css_put(&cachep->memcg_params.memcg->css);
2630 * memcg_kmem_charge_memcg: charge a kmem page
2631 * @page: page to charge
2632 * @gfp: reclaim mode
2633 * @order: allocation order
2634 * @memcg: memory cgroup to charge
2636 * Returns 0 on success, an error code on failure.
2638 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2639 struct mem_cgroup *memcg)
2641 unsigned int nr_pages = 1 << order;
2642 struct page_counter *counter;
2643 int ret;
2645 ret = try_charge(memcg, gfp, nr_pages);
2646 if (ret)
2647 return ret;
2649 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2650 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2653 * Enforce __GFP_NOFAIL allocation because callers are not
2654 * prepared to see failures and likely do not have any failure
2655 * handling code.
2657 if (gfp & __GFP_NOFAIL) {
2658 page_counter_charge(&memcg->kmem, nr_pages);
2659 return 0;
2661 cancel_charge(memcg, nr_pages);
2662 return -ENOMEM;
2665 page->mem_cgroup = memcg;
2667 return 0;
2671 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2672 * @page: page to charge
2673 * @gfp: reclaim mode
2674 * @order: allocation order
2676 * Returns 0 on success, an error code on failure.
2678 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2680 struct mem_cgroup *memcg;
2681 int ret = 0;
2683 if (mem_cgroup_disabled() || memcg_kmem_bypass())
2684 return 0;
2686 memcg = get_mem_cgroup_from_current();
2687 if (!mem_cgroup_is_root(memcg)) {
2688 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2689 if (!ret)
2690 __SetPageKmemcg(page);
2692 css_put(&memcg->css);
2693 return ret;
2696 * memcg_kmem_uncharge: uncharge a kmem page
2697 * @page: page to uncharge
2698 * @order: allocation order
2700 void memcg_kmem_uncharge(struct page *page, int order)
2702 struct mem_cgroup *memcg = page->mem_cgroup;
2703 unsigned int nr_pages = 1 << order;
2705 if (!memcg)
2706 return;
2708 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2710 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2711 page_counter_uncharge(&memcg->kmem, nr_pages);
2713 page_counter_uncharge(&memcg->memory, nr_pages);
2714 if (do_memsw_account())
2715 page_counter_uncharge(&memcg->memsw, nr_pages);
2717 page->mem_cgroup = NULL;
2719 /* slab pages do not have PageKmemcg flag set */
2720 if (PageKmemcg(page))
2721 __ClearPageKmemcg(page);
2723 css_put_many(&memcg->css, nr_pages);
2725 #endif /* CONFIG_MEMCG_KMEM */
2727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2730 * Because tail pages are not marked as "used", set it. We're under
2731 * zone_lru_lock and migration entries setup in all page mappings.
2733 void mem_cgroup_split_huge_fixup(struct page *head)
2735 int i;
2737 if (mem_cgroup_disabled())
2738 return;
2740 for (i = 1; i < HPAGE_PMD_NR; i++)
2741 head[i].mem_cgroup = head->mem_cgroup;
2743 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2745 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2747 #ifdef CONFIG_MEMCG_SWAP
2749 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2750 * @entry: swap entry to be moved
2751 * @from: mem_cgroup which the entry is moved from
2752 * @to: mem_cgroup which the entry is moved to
2754 * It succeeds only when the swap_cgroup's record for this entry is the same
2755 * as the mem_cgroup's id of @from.
2757 * Returns 0 on success, -EINVAL on failure.
2759 * The caller must have charged to @to, IOW, called page_counter_charge() about
2760 * both res and memsw, and called css_get().
2762 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2763 struct mem_cgroup *from, struct mem_cgroup *to)
2765 unsigned short old_id, new_id;
2767 old_id = mem_cgroup_id(from);
2768 new_id = mem_cgroup_id(to);
2770 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2771 mod_memcg_state(from, MEMCG_SWAP, -1);
2772 mod_memcg_state(to, MEMCG_SWAP, 1);
2773 return 0;
2775 return -EINVAL;
2777 #else
2778 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2779 struct mem_cgroup *from, struct mem_cgroup *to)
2781 return -EINVAL;
2783 #endif
2785 static DEFINE_MUTEX(memcg_max_mutex);
2787 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2788 unsigned long max, bool memsw)
2790 bool enlarge = false;
2791 bool drained = false;
2792 int ret;
2793 bool limits_invariant;
2794 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2796 do {
2797 if (signal_pending(current)) {
2798 ret = -EINTR;
2799 break;
2802 mutex_lock(&memcg_max_mutex);
2804 * Make sure that the new limit (memsw or memory limit) doesn't
2805 * break our basic invariant rule memory.max <= memsw.max.
2807 limits_invariant = memsw ? max >= memcg->memory.max :
2808 max <= memcg->memsw.max;
2809 if (!limits_invariant) {
2810 mutex_unlock(&memcg_max_mutex);
2811 ret = -EINVAL;
2812 break;
2814 if (max > counter->max)
2815 enlarge = true;
2816 ret = page_counter_set_max(counter, max);
2817 mutex_unlock(&memcg_max_mutex);
2819 if (!ret)
2820 break;
2822 if (!drained) {
2823 drain_all_stock(memcg);
2824 drained = true;
2825 continue;
2828 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2829 GFP_KERNEL, !memsw)) {
2830 ret = -EBUSY;
2831 break;
2833 } while (true);
2835 if (!ret && enlarge)
2836 memcg_oom_recover(memcg);
2838 return ret;
2841 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2842 gfp_t gfp_mask,
2843 unsigned long *total_scanned)
2845 unsigned long nr_reclaimed = 0;
2846 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2847 unsigned long reclaimed;
2848 int loop = 0;
2849 struct mem_cgroup_tree_per_node *mctz;
2850 unsigned long excess;
2851 unsigned long nr_scanned;
2853 if (order > 0)
2854 return 0;
2856 mctz = soft_limit_tree_node(pgdat->node_id);
2859 * Do not even bother to check the largest node if the root
2860 * is empty. Do it lockless to prevent lock bouncing. Races
2861 * are acceptable as soft limit is best effort anyway.
2863 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2864 return 0;
2867 * This loop can run a while, specially if mem_cgroup's continuously
2868 * keep exceeding their soft limit and putting the system under
2869 * pressure
2871 do {
2872 if (next_mz)
2873 mz = next_mz;
2874 else
2875 mz = mem_cgroup_largest_soft_limit_node(mctz);
2876 if (!mz)
2877 break;
2879 nr_scanned = 0;
2880 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2881 gfp_mask, &nr_scanned);
2882 nr_reclaimed += reclaimed;
2883 *total_scanned += nr_scanned;
2884 spin_lock_irq(&mctz->lock);
2885 __mem_cgroup_remove_exceeded(mz, mctz);
2888 * If we failed to reclaim anything from this memory cgroup
2889 * it is time to move on to the next cgroup
2891 next_mz = NULL;
2892 if (!reclaimed)
2893 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2895 excess = soft_limit_excess(mz->memcg);
2897 * One school of thought says that we should not add
2898 * back the node to the tree if reclaim returns 0.
2899 * But our reclaim could return 0, simply because due
2900 * to priority we are exposing a smaller subset of
2901 * memory to reclaim from. Consider this as a longer
2902 * term TODO.
2904 /* If excess == 0, no tree ops */
2905 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2906 spin_unlock_irq(&mctz->lock);
2907 css_put(&mz->memcg->css);
2908 loop++;
2910 * Could not reclaim anything and there are no more
2911 * mem cgroups to try or we seem to be looping without
2912 * reclaiming anything.
2914 if (!nr_reclaimed &&
2915 (next_mz == NULL ||
2916 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2917 break;
2918 } while (!nr_reclaimed);
2919 if (next_mz)
2920 css_put(&next_mz->memcg->css);
2921 return nr_reclaimed;
2925 * Test whether @memcg has children, dead or alive. Note that this
2926 * function doesn't care whether @memcg has use_hierarchy enabled and
2927 * returns %true if there are child csses according to the cgroup
2928 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2930 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2932 bool ret;
2934 rcu_read_lock();
2935 ret = css_next_child(NULL, &memcg->css);
2936 rcu_read_unlock();
2937 return ret;
2941 * Reclaims as many pages from the given memcg as possible.
2943 * Caller is responsible for holding css reference for memcg.
2945 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2947 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2949 /* we call try-to-free pages for make this cgroup empty */
2950 lru_add_drain_all();
2952 drain_all_stock(memcg);
2954 /* try to free all pages in this cgroup */
2955 while (nr_retries && page_counter_read(&memcg->memory)) {
2956 int progress;
2958 if (signal_pending(current))
2959 return -EINTR;
2961 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2962 GFP_KERNEL, true);
2963 if (!progress) {
2964 nr_retries--;
2965 /* maybe some writeback is necessary */
2966 congestion_wait(BLK_RW_ASYNC, HZ/10);
2971 return 0;
2974 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2975 char *buf, size_t nbytes,
2976 loff_t off)
2978 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2980 if (mem_cgroup_is_root(memcg))
2981 return -EINVAL;
2982 return mem_cgroup_force_empty(memcg) ?: nbytes;
2985 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2986 struct cftype *cft)
2988 return mem_cgroup_from_css(css)->use_hierarchy;
2991 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2992 struct cftype *cft, u64 val)
2994 int retval = 0;
2995 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2996 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2998 if (memcg->use_hierarchy == val)
2999 return 0;
3002 * If parent's use_hierarchy is set, we can't make any modifications
3003 * in the child subtrees. If it is unset, then the change can
3004 * occur, provided the current cgroup has no children.
3006 * For the root cgroup, parent_mem is NULL, we allow value to be
3007 * set if there are no children.
3009 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3010 (val == 1 || val == 0)) {
3011 if (!memcg_has_children(memcg))
3012 memcg->use_hierarchy = val;
3013 else
3014 retval = -EBUSY;
3015 } else
3016 retval = -EINVAL;
3018 return retval;
3021 struct accumulated_stats {
3022 unsigned long stat[MEMCG_NR_STAT];
3023 unsigned long events[NR_VM_EVENT_ITEMS];
3024 unsigned long lru_pages[NR_LRU_LISTS];
3025 const unsigned int *stats_array;
3026 const unsigned int *events_array;
3027 int stats_size;
3028 int events_size;
3031 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
3032 struct accumulated_stats *acc)
3034 struct mem_cgroup *mi;
3035 int i;
3037 for_each_mem_cgroup_tree(mi, memcg) {
3038 for (i = 0; i < acc->stats_size; i++)
3039 acc->stat[i] += memcg_page_state(mi,
3040 acc->stats_array ? acc->stats_array[i] : i);
3042 for (i = 0; i < acc->events_size; i++)
3043 acc->events[i] += memcg_sum_events(mi,
3044 acc->events_array ? acc->events_array[i] : i);
3046 for (i = 0; i < NR_LRU_LISTS; i++)
3047 acc->lru_pages[i] +=
3048 mem_cgroup_nr_lru_pages(mi, BIT(i));
3052 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3054 unsigned long val = 0;
3056 if (mem_cgroup_is_root(memcg)) {
3057 struct mem_cgroup *iter;
3059 for_each_mem_cgroup_tree(iter, memcg) {
3060 val += memcg_page_state(iter, MEMCG_CACHE);
3061 val += memcg_page_state(iter, MEMCG_RSS);
3062 if (swap)
3063 val += memcg_page_state(iter, MEMCG_SWAP);
3065 } else {
3066 if (!swap)
3067 val = page_counter_read(&memcg->memory);
3068 else
3069 val = page_counter_read(&memcg->memsw);
3071 return val;
3074 enum {
3075 RES_USAGE,
3076 RES_LIMIT,
3077 RES_MAX_USAGE,
3078 RES_FAILCNT,
3079 RES_SOFT_LIMIT,
3082 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3083 struct cftype *cft)
3085 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3086 struct page_counter *counter;
3088 switch (MEMFILE_TYPE(cft->private)) {
3089 case _MEM:
3090 counter = &memcg->memory;
3091 break;
3092 case _MEMSWAP:
3093 counter = &memcg->memsw;
3094 break;
3095 case _KMEM:
3096 counter = &memcg->kmem;
3097 break;
3098 case _TCP:
3099 counter = &memcg->tcpmem;
3100 break;
3101 default:
3102 BUG();
3105 switch (MEMFILE_ATTR(cft->private)) {
3106 case RES_USAGE:
3107 if (counter == &memcg->memory)
3108 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3109 if (counter == &memcg->memsw)
3110 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3111 return (u64)page_counter_read(counter) * PAGE_SIZE;
3112 case RES_LIMIT:
3113 return (u64)counter->max * PAGE_SIZE;
3114 case RES_MAX_USAGE:
3115 return (u64)counter->watermark * PAGE_SIZE;
3116 case RES_FAILCNT:
3117 return counter->failcnt;
3118 case RES_SOFT_LIMIT:
3119 return (u64)memcg->soft_limit * PAGE_SIZE;
3120 default:
3121 BUG();
3125 #ifdef CONFIG_MEMCG_KMEM
3126 static int memcg_online_kmem(struct mem_cgroup *memcg)
3128 int memcg_id;
3130 if (cgroup_memory_nokmem)
3131 return 0;
3133 BUG_ON(memcg->kmemcg_id >= 0);
3134 BUG_ON(memcg->kmem_state);
3136 memcg_id = memcg_alloc_cache_id();
3137 if (memcg_id < 0)
3138 return memcg_id;
3140 static_branch_inc(&memcg_kmem_enabled_key);
3142 * A memory cgroup is considered kmem-online as soon as it gets
3143 * kmemcg_id. Setting the id after enabling static branching will
3144 * guarantee no one starts accounting before all call sites are
3145 * patched.
3147 memcg->kmemcg_id = memcg_id;
3148 memcg->kmem_state = KMEM_ONLINE;
3149 INIT_LIST_HEAD(&memcg->kmem_caches);
3151 return 0;
3154 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3156 struct cgroup_subsys_state *css;
3157 struct mem_cgroup *parent, *child;
3158 int kmemcg_id;
3160 if (memcg->kmem_state != KMEM_ONLINE)
3161 return;
3163 * Clear the online state before clearing memcg_caches array
3164 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3165 * guarantees that no cache will be created for this cgroup
3166 * after we are done (see memcg_create_kmem_cache()).
3168 memcg->kmem_state = KMEM_ALLOCATED;
3170 memcg_deactivate_kmem_caches(memcg);
3172 kmemcg_id = memcg->kmemcg_id;
3173 BUG_ON(kmemcg_id < 0);
3175 parent = parent_mem_cgroup(memcg);
3176 if (!parent)
3177 parent = root_mem_cgroup;
3180 * Change kmemcg_id of this cgroup and all its descendants to the
3181 * parent's id, and then move all entries from this cgroup's list_lrus
3182 * to ones of the parent. After we have finished, all list_lrus
3183 * corresponding to this cgroup are guaranteed to remain empty. The
3184 * ordering is imposed by list_lru_node->lock taken by
3185 * memcg_drain_all_list_lrus().
3187 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3188 css_for_each_descendant_pre(css, &memcg->css) {
3189 child = mem_cgroup_from_css(css);
3190 BUG_ON(child->kmemcg_id != kmemcg_id);
3191 child->kmemcg_id = parent->kmemcg_id;
3192 if (!memcg->use_hierarchy)
3193 break;
3195 rcu_read_unlock();
3197 memcg_drain_all_list_lrus(kmemcg_id, parent);
3199 memcg_free_cache_id(kmemcg_id);
3202 static void memcg_free_kmem(struct mem_cgroup *memcg)
3204 /* css_alloc() failed, offlining didn't happen */
3205 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3206 memcg_offline_kmem(memcg);
3208 if (memcg->kmem_state == KMEM_ALLOCATED) {
3209 memcg_destroy_kmem_caches(memcg);
3210 static_branch_dec(&memcg_kmem_enabled_key);
3211 WARN_ON(page_counter_read(&memcg->kmem));
3214 #else
3215 static int memcg_online_kmem(struct mem_cgroup *memcg)
3217 return 0;
3219 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3222 static void memcg_free_kmem(struct mem_cgroup *memcg)
3225 #endif /* CONFIG_MEMCG_KMEM */
3227 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3228 unsigned long max)
3230 int ret;
3232 mutex_lock(&memcg_max_mutex);
3233 ret = page_counter_set_max(&memcg->kmem, max);
3234 mutex_unlock(&memcg_max_mutex);
3235 return ret;
3238 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3240 int ret;
3242 mutex_lock(&memcg_max_mutex);
3244 ret = page_counter_set_max(&memcg->tcpmem, max);
3245 if (ret)
3246 goto out;
3248 if (!memcg->tcpmem_active) {
3250 * The active flag needs to be written after the static_key
3251 * update. This is what guarantees that the socket activation
3252 * function is the last one to run. See mem_cgroup_sk_alloc()
3253 * for details, and note that we don't mark any socket as
3254 * belonging to this memcg until that flag is up.
3256 * We need to do this, because static_keys will span multiple
3257 * sites, but we can't control their order. If we mark a socket
3258 * as accounted, but the accounting functions are not patched in
3259 * yet, we'll lose accounting.
3261 * We never race with the readers in mem_cgroup_sk_alloc(),
3262 * because when this value change, the code to process it is not
3263 * patched in yet.
3265 static_branch_inc(&memcg_sockets_enabled_key);
3266 memcg->tcpmem_active = true;
3268 out:
3269 mutex_unlock(&memcg_max_mutex);
3270 return ret;
3274 * The user of this function is...
3275 * RES_LIMIT.
3277 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3278 char *buf, size_t nbytes, loff_t off)
3280 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3281 unsigned long nr_pages;
3282 int ret;
3284 buf = strstrip(buf);
3285 ret = page_counter_memparse(buf, "-1", &nr_pages);
3286 if (ret)
3287 return ret;
3289 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3290 case RES_LIMIT:
3291 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3292 ret = -EINVAL;
3293 break;
3295 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3296 case _MEM:
3297 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3298 break;
3299 case _MEMSWAP:
3300 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3301 break;
3302 case _KMEM:
3303 ret = memcg_update_kmem_max(memcg, nr_pages);
3304 break;
3305 case _TCP:
3306 ret = memcg_update_tcp_max(memcg, nr_pages);
3307 break;
3309 break;
3310 case RES_SOFT_LIMIT:
3311 memcg->soft_limit = nr_pages;
3312 ret = 0;
3313 break;
3315 return ret ?: nbytes;
3318 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3319 size_t nbytes, loff_t off)
3321 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3322 struct page_counter *counter;
3324 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3325 case _MEM:
3326 counter = &memcg->memory;
3327 break;
3328 case _MEMSWAP:
3329 counter = &memcg->memsw;
3330 break;
3331 case _KMEM:
3332 counter = &memcg->kmem;
3333 break;
3334 case _TCP:
3335 counter = &memcg->tcpmem;
3336 break;
3337 default:
3338 BUG();
3341 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3342 case RES_MAX_USAGE:
3343 page_counter_reset_watermark(counter);
3344 break;
3345 case RES_FAILCNT:
3346 counter->failcnt = 0;
3347 break;
3348 default:
3349 BUG();
3352 return nbytes;
3355 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3356 struct cftype *cft)
3358 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3361 #ifdef CONFIG_MMU
3362 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3363 struct cftype *cft, u64 val)
3365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3367 if (val & ~MOVE_MASK)
3368 return -EINVAL;
3371 * No kind of locking is needed in here, because ->can_attach() will
3372 * check this value once in the beginning of the process, and then carry
3373 * on with stale data. This means that changes to this value will only
3374 * affect task migrations starting after the change.
3376 memcg->move_charge_at_immigrate = val;
3377 return 0;
3379 #else
3380 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3381 struct cftype *cft, u64 val)
3383 return -ENOSYS;
3385 #endif
3387 #ifdef CONFIG_NUMA
3388 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3390 struct numa_stat {
3391 const char *name;
3392 unsigned int lru_mask;
3395 static const struct numa_stat stats[] = {
3396 { "total", LRU_ALL },
3397 { "file", LRU_ALL_FILE },
3398 { "anon", LRU_ALL_ANON },
3399 { "unevictable", BIT(LRU_UNEVICTABLE) },
3401 const struct numa_stat *stat;
3402 int nid;
3403 unsigned long nr;
3404 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3406 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3407 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3408 seq_printf(m, "%s=%lu", stat->name, nr);
3409 for_each_node_state(nid, N_MEMORY) {
3410 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3411 stat->lru_mask);
3412 seq_printf(m, " N%d=%lu", nid, nr);
3414 seq_putc(m, '\n');
3417 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3418 struct mem_cgroup *iter;
3420 nr = 0;
3421 for_each_mem_cgroup_tree(iter, memcg)
3422 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3423 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3424 for_each_node_state(nid, N_MEMORY) {
3425 nr = 0;
3426 for_each_mem_cgroup_tree(iter, memcg)
3427 nr += mem_cgroup_node_nr_lru_pages(
3428 iter, nid, stat->lru_mask);
3429 seq_printf(m, " N%d=%lu", nid, nr);
3431 seq_putc(m, '\n');
3434 return 0;
3436 #endif /* CONFIG_NUMA */
3438 /* Universal VM events cgroup1 shows, original sort order */
3439 static const unsigned int memcg1_events[] = {
3440 PGPGIN,
3441 PGPGOUT,
3442 PGFAULT,
3443 PGMAJFAULT,
3446 static const char *const memcg1_event_names[] = {
3447 "pgpgin",
3448 "pgpgout",
3449 "pgfault",
3450 "pgmajfault",
3453 static int memcg_stat_show(struct seq_file *m, void *v)
3455 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3456 unsigned long memory, memsw;
3457 struct mem_cgroup *mi;
3458 unsigned int i;
3459 struct accumulated_stats acc;
3461 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3462 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3464 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3465 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3466 continue;
3467 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3468 memcg_page_state(memcg, memcg1_stats[i]) *
3469 PAGE_SIZE);
3472 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3473 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3474 memcg_sum_events(memcg, memcg1_events[i]));
3476 for (i = 0; i < NR_LRU_LISTS; i++)
3477 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3478 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3480 /* Hierarchical information */
3481 memory = memsw = PAGE_COUNTER_MAX;
3482 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3483 memory = min(memory, mi->memory.max);
3484 memsw = min(memsw, mi->memsw.max);
3486 seq_printf(m, "hierarchical_memory_limit %llu\n",
3487 (u64)memory * PAGE_SIZE);
3488 if (do_memsw_account())
3489 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3490 (u64)memsw * PAGE_SIZE);
3492 memset(&acc, 0, sizeof(acc));
3493 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3494 acc.stats_array = memcg1_stats;
3495 acc.events_size = ARRAY_SIZE(memcg1_events);
3496 acc.events_array = memcg1_events;
3497 accumulate_memcg_tree(memcg, &acc);
3499 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3500 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3501 continue;
3502 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3503 (u64)acc.stat[i] * PAGE_SIZE);
3506 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3507 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3508 (u64)acc.events[i]);
3510 for (i = 0; i < NR_LRU_LISTS; i++)
3511 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3512 (u64)acc.lru_pages[i] * PAGE_SIZE);
3514 #ifdef CONFIG_DEBUG_VM
3516 pg_data_t *pgdat;
3517 struct mem_cgroup_per_node *mz;
3518 struct zone_reclaim_stat *rstat;
3519 unsigned long recent_rotated[2] = {0, 0};
3520 unsigned long recent_scanned[2] = {0, 0};
3522 for_each_online_pgdat(pgdat) {
3523 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3524 rstat = &mz->lruvec.reclaim_stat;
3526 recent_rotated[0] += rstat->recent_rotated[0];
3527 recent_rotated[1] += rstat->recent_rotated[1];
3528 recent_scanned[0] += rstat->recent_scanned[0];
3529 recent_scanned[1] += rstat->recent_scanned[1];
3531 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3532 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3533 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3534 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3536 #endif
3538 return 0;
3541 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3542 struct cftype *cft)
3544 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3546 return mem_cgroup_swappiness(memcg);
3549 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3550 struct cftype *cft, u64 val)
3552 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3554 if (val > 100)
3555 return -EINVAL;
3557 if (css->parent)
3558 memcg->swappiness = val;
3559 else
3560 vm_swappiness = val;
3562 return 0;
3565 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3567 struct mem_cgroup_threshold_ary *t;
3568 unsigned long usage;
3569 int i;
3571 rcu_read_lock();
3572 if (!swap)
3573 t = rcu_dereference(memcg->thresholds.primary);
3574 else
3575 t = rcu_dereference(memcg->memsw_thresholds.primary);
3577 if (!t)
3578 goto unlock;
3580 usage = mem_cgroup_usage(memcg, swap);
3583 * current_threshold points to threshold just below or equal to usage.
3584 * If it's not true, a threshold was crossed after last
3585 * call of __mem_cgroup_threshold().
3587 i = t->current_threshold;
3590 * Iterate backward over array of thresholds starting from
3591 * current_threshold and check if a threshold is crossed.
3592 * If none of thresholds below usage is crossed, we read
3593 * only one element of the array here.
3595 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3596 eventfd_signal(t->entries[i].eventfd, 1);
3598 /* i = current_threshold + 1 */
3599 i++;
3602 * Iterate forward over array of thresholds starting from
3603 * current_threshold+1 and check if a threshold is crossed.
3604 * If none of thresholds above usage is crossed, we read
3605 * only one element of the array here.
3607 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3608 eventfd_signal(t->entries[i].eventfd, 1);
3610 /* Update current_threshold */
3611 t->current_threshold = i - 1;
3612 unlock:
3613 rcu_read_unlock();
3616 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3618 while (memcg) {
3619 __mem_cgroup_threshold(memcg, false);
3620 if (do_memsw_account())
3621 __mem_cgroup_threshold(memcg, true);
3623 memcg = parent_mem_cgroup(memcg);
3627 static int compare_thresholds(const void *a, const void *b)
3629 const struct mem_cgroup_threshold *_a = a;
3630 const struct mem_cgroup_threshold *_b = b;
3632 if (_a->threshold > _b->threshold)
3633 return 1;
3635 if (_a->threshold < _b->threshold)
3636 return -1;
3638 return 0;
3641 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3643 struct mem_cgroup_eventfd_list *ev;
3645 spin_lock(&memcg_oom_lock);
3647 list_for_each_entry(ev, &memcg->oom_notify, list)
3648 eventfd_signal(ev->eventfd, 1);
3650 spin_unlock(&memcg_oom_lock);
3651 return 0;
3654 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3656 struct mem_cgroup *iter;
3658 for_each_mem_cgroup_tree(iter, memcg)
3659 mem_cgroup_oom_notify_cb(iter);
3662 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3663 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3665 struct mem_cgroup_thresholds *thresholds;
3666 struct mem_cgroup_threshold_ary *new;
3667 unsigned long threshold;
3668 unsigned long usage;
3669 int i, size, ret;
3671 ret = page_counter_memparse(args, "-1", &threshold);
3672 if (ret)
3673 return ret;
3675 mutex_lock(&memcg->thresholds_lock);
3677 if (type == _MEM) {
3678 thresholds = &memcg->thresholds;
3679 usage = mem_cgroup_usage(memcg, false);
3680 } else if (type == _MEMSWAP) {
3681 thresholds = &memcg->memsw_thresholds;
3682 usage = mem_cgroup_usage(memcg, true);
3683 } else
3684 BUG();
3686 /* Check if a threshold crossed before adding a new one */
3687 if (thresholds->primary)
3688 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3690 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3692 /* Allocate memory for new array of thresholds */
3693 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3694 GFP_KERNEL);
3695 if (!new) {
3696 ret = -ENOMEM;
3697 goto unlock;
3699 new->size = size;
3701 /* Copy thresholds (if any) to new array */
3702 if (thresholds->primary) {
3703 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3704 sizeof(struct mem_cgroup_threshold));
3707 /* Add new threshold */
3708 new->entries[size - 1].eventfd = eventfd;
3709 new->entries[size - 1].threshold = threshold;
3711 /* Sort thresholds. Registering of new threshold isn't time-critical */
3712 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3713 compare_thresholds, NULL);
3715 /* Find current threshold */
3716 new->current_threshold = -1;
3717 for (i = 0; i < size; i++) {
3718 if (new->entries[i].threshold <= usage) {
3720 * new->current_threshold will not be used until
3721 * rcu_assign_pointer(), so it's safe to increment
3722 * it here.
3724 ++new->current_threshold;
3725 } else
3726 break;
3729 /* Free old spare buffer and save old primary buffer as spare */
3730 kfree(thresholds->spare);
3731 thresholds->spare = thresholds->primary;
3733 rcu_assign_pointer(thresholds->primary, new);
3735 /* To be sure that nobody uses thresholds */
3736 synchronize_rcu();
3738 unlock:
3739 mutex_unlock(&memcg->thresholds_lock);
3741 return ret;
3744 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3745 struct eventfd_ctx *eventfd, const char *args)
3747 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3750 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3751 struct eventfd_ctx *eventfd, const char *args)
3753 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3756 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3757 struct eventfd_ctx *eventfd, enum res_type type)
3759 struct mem_cgroup_thresholds *thresholds;
3760 struct mem_cgroup_threshold_ary *new;
3761 unsigned long usage;
3762 int i, j, size, entries;
3764 mutex_lock(&memcg->thresholds_lock);
3766 if (type == _MEM) {
3767 thresholds = &memcg->thresholds;
3768 usage = mem_cgroup_usage(memcg, false);
3769 } else if (type == _MEMSWAP) {
3770 thresholds = &memcg->memsw_thresholds;
3771 usage = mem_cgroup_usage(memcg, true);
3772 } else
3773 BUG();
3775 if (!thresholds->primary)
3776 goto unlock;
3778 /* Check if a threshold crossed before removing */
3779 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3781 /* Calculate new number of threshold */
3782 size = entries = 0;
3783 for (i = 0; i < thresholds->primary->size; i++) {
3784 if (thresholds->primary->entries[i].eventfd != eventfd)
3785 size++;
3786 else
3787 entries++;
3790 new = thresholds->spare;
3792 /* If no items related to eventfd have been cleared, nothing to do */
3793 if (!entries)
3794 goto unlock;
3796 /* Set thresholds array to NULL if we don't have thresholds */
3797 if (!size) {
3798 kfree(new);
3799 new = NULL;
3800 goto swap_buffers;
3803 new->size = size;
3805 /* Copy thresholds and find current threshold */
3806 new->current_threshold = -1;
3807 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3808 if (thresholds->primary->entries[i].eventfd == eventfd)
3809 continue;
3811 new->entries[j] = thresholds->primary->entries[i];
3812 if (new->entries[j].threshold <= usage) {
3814 * new->current_threshold will not be used
3815 * until rcu_assign_pointer(), so it's safe to increment
3816 * it here.
3818 ++new->current_threshold;
3820 j++;
3823 swap_buffers:
3824 /* Swap primary and spare array */
3825 thresholds->spare = thresholds->primary;
3827 rcu_assign_pointer(thresholds->primary, new);
3829 /* To be sure that nobody uses thresholds */
3830 synchronize_rcu();
3832 /* If all events are unregistered, free the spare array */
3833 if (!new) {
3834 kfree(thresholds->spare);
3835 thresholds->spare = NULL;
3837 unlock:
3838 mutex_unlock(&memcg->thresholds_lock);
3841 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3842 struct eventfd_ctx *eventfd)
3844 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3847 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3848 struct eventfd_ctx *eventfd)
3850 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3853 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3854 struct eventfd_ctx *eventfd, const char *args)
3856 struct mem_cgroup_eventfd_list *event;
3858 event = kmalloc(sizeof(*event), GFP_KERNEL);
3859 if (!event)
3860 return -ENOMEM;
3862 spin_lock(&memcg_oom_lock);
3864 event->eventfd = eventfd;
3865 list_add(&event->list, &memcg->oom_notify);
3867 /* already in OOM ? */
3868 if (memcg->under_oom)
3869 eventfd_signal(eventfd, 1);
3870 spin_unlock(&memcg_oom_lock);
3872 return 0;
3875 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3876 struct eventfd_ctx *eventfd)
3878 struct mem_cgroup_eventfd_list *ev, *tmp;
3880 spin_lock(&memcg_oom_lock);
3882 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3883 if (ev->eventfd == eventfd) {
3884 list_del(&ev->list);
3885 kfree(ev);
3889 spin_unlock(&memcg_oom_lock);
3892 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3894 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3896 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3897 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3898 seq_printf(sf, "oom_kill %lu\n",
3899 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3900 return 0;
3903 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3904 struct cftype *cft, u64 val)
3906 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3908 /* cannot set to root cgroup and only 0 and 1 are allowed */
3909 if (!css->parent || !((val == 0) || (val == 1)))
3910 return -EINVAL;
3912 memcg->oom_kill_disable = val;
3913 if (!val)
3914 memcg_oom_recover(memcg);
3916 return 0;
3919 #ifdef CONFIG_CGROUP_WRITEBACK
3921 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3923 return wb_domain_init(&memcg->cgwb_domain, gfp);
3926 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3928 wb_domain_exit(&memcg->cgwb_domain);
3931 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3933 wb_domain_size_changed(&memcg->cgwb_domain);
3936 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3938 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3940 if (!memcg->css.parent)
3941 return NULL;
3943 return &memcg->cgwb_domain;
3947 * idx can be of type enum memcg_stat_item or node_stat_item.
3948 * Keep in sync with memcg_exact_page().
3950 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3952 long x = atomic_long_read(&memcg->stat[idx]);
3953 int cpu;
3955 for_each_online_cpu(cpu)
3956 x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx];
3957 if (x < 0)
3958 x = 0;
3959 return x;
3963 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3964 * @wb: bdi_writeback in question
3965 * @pfilepages: out parameter for number of file pages
3966 * @pheadroom: out parameter for number of allocatable pages according to memcg
3967 * @pdirty: out parameter for number of dirty pages
3968 * @pwriteback: out parameter for number of pages under writeback
3970 * Determine the numbers of file, headroom, dirty, and writeback pages in
3971 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3972 * is a bit more involved.
3974 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3975 * headroom is calculated as the lowest headroom of itself and the
3976 * ancestors. Note that this doesn't consider the actual amount of
3977 * available memory in the system. The caller should further cap
3978 * *@pheadroom accordingly.
3980 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3981 unsigned long *pheadroom, unsigned long *pdirty,
3982 unsigned long *pwriteback)
3984 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3985 struct mem_cgroup *parent;
3987 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
3989 /* this should eventually include NR_UNSTABLE_NFS */
3990 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
3991 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3992 (1 << LRU_ACTIVE_FILE));
3993 *pheadroom = PAGE_COUNTER_MAX;
3995 while ((parent = parent_mem_cgroup(memcg))) {
3996 unsigned long ceiling = min(memcg->memory.max, memcg->high);
3997 unsigned long used = page_counter_read(&memcg->memory);
3999 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4000 memcg = parent;
4004 #else /* CONFIG_CGROUP_WRITEBACK */
4006 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4008 return 0;
4011 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4015 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4019 #endif /* CONFIG_CGROUP_WRITEBACK */
4022 * DO NOT USE IN NEW FILES.
4024 * "cgroup.event_control" implementation.
4026 * This is way over-engineered. It tries to support fully configurable
4027 * events for each user. Such level of flexibility is completely
4028 * unnecessary especially in the light of the planned unified hierarchy.
4030 * Please deprecate this and replace with something simpler if at all
4031 * possible.
4035 * Unregister event and free resources.
4037 * Gets called from workqueue.
4039 static void memcg_event_remove(struct work_struct *work)
4041 struct mem_cgroup_event *event =
4042 container_of(work, struct mem_cgroup_event, remove);
4043 struct mem_cgroup *memcg = event->memcg;
4045 remove_wait_queue(event->wqh, &event->wait);
4047 event->unregister_event(memcg, event->eventfd);
4049 /* Notify userspace the event is going away. */
4050 eventfd_signal(event->eventfd, 1);
4052 eventfd_ctx_put(event->eventfd);
4053 kfree(event);
4054 css_put(&memcg->css);
4058 * Gets called on EPOLLHUP on eventfd when user closes it.
4060 * Called with wqh->lock held and interrupts disabled.
4062 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4063 int sync, void *key)
4065 struct mem_cgroup_event *event =
4066 container_of(wait, struct mem_cgroup_event, wait);
4067 struct mem_cgroup *memcg = event->memcg;
4068 __poll_t flags = key_to_poll(key);
4070 if (flags & EPOLLHUP) {
4072 * If the event has been detached at cgroup removal, we
4073 * can simply return knowing the other side will cleanup
4074 * for us.
4076 * We can't race against event freeing since the other
4077 * side will require wqh->lock via remove_wait_queue(),
4078 * which we hold.
4080 spin_lock(&memcg->event_list_lock);
4081 if (!list_empty(&event->list)) {
4082 list_del_init(&event->list);
4084 * We are in atomic context, but cgroup_event_remove()
4085 * may sleep, so we have to call it in workqueue.
4087 schedule_work(&event->remove);
4089 spin_unlock(&memcg->event_list_lock);
4092 return 0;
4095 static void memcg_event_ptable_queue_proc(struct file *file,
4096 wait_queue_head_t *wqh, poll_table *pt)
4098 struct mem_cgroup_event *event =
4099 container_of(pt, struct mem_cgroup_event, pt);
4101 event->wqh = wqh;
4102 add_wait_queue(wqh, &event->wait);
4106 * DO NOT USE IN NEW FILES.
4108 * Parse input and register new cgroup event handler.
4110 * Input must be in format '<event_fd> <control_fd> <args>'.
4111 * Interpretation of args is defined by control file implementation.
4113 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4114 char *buf, size_t nbytes, loff_t off)
4116 struct cgroup_subsys_state *css = of_css(of);
4117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118 struct mem_cgroup_event *event;
4119 struct cgroup_subsys_state *cfile_css;
4120 unsigned int efd, cfd;
4121 struct fd efile;
4122 struct fd cfile;
4123 const char *name;
4124 char *endp;
4125 int ret;
4127 buf = strstrip(buf);
4129 efd = simple_strtoul(buf, &endp, 10);
4130 if (*endp != ' ')
4131 return -EINVAL;
4132 buf = endp + 1;
4134 cfd = simple_strtoul(buf, &endp, 10);
4135 if ((*endp != ' ') && (*endp != '\0'))
4136 return -EINVAL;
4137 buf = endp + 1;
4139 event = kzalloc(sizeof(*event), GFP_KERNEL);
4140 if (!event)
4141 return -ENOMEM;
4143 event->memcg = memcg;
4144 INIT_LIST_HEAD(&event->list);
4145 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4146 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4147 INIT_WORK(&event->remove, memcg_event_remove);
4149 efile = fdget(efd);
4150 if (!efile.file) {
4151 ret = -EBADF;
4152 goto out_kfree;
4155 event->eventfd = eventfd_ctx_fileget(efile.file);
4156 if (IS_ERR(event->eventfd)) {
4157 ret = PTR_ERR(event->eventfd);
4158 goto out_put_efile;
4161 cfile = fdget(cfd);
4162 if (!cfile.file) {
4163 ret = -EBADF;
4164 goto out_put_eventfd;
4167 /* the process need read permission on control file */
4168 /* AV: shouldn't we check that it's been opened for read instead? */
4169 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4170 if (ret < 0)
4171 goto out_put_cfile;
4174 * Determine the event callbacks and set them in @event. This used
4175 * to be done via struct cftype but cgroup core no longer knows
4176 * about these events. The following is crude but the whole thing
4177 * is for compatibility anyway.
4179 * DO NOT ADD NEW FILES.
4181 name = cfile.file->f_path.dentry->d_name.name;
4183 if (!strcmp(name, "memory.usage_in_bytes")) {
4184 event->register_event = mem_cgroup_usage_register_event;
4185 event->unregister_event = mem_cgroup_usage_unregister_event;
4186 } else if (!strcmp(name, "memory.oom_control")) {
4187 event->register_event = mem_cgroup_oom_register_event;
4188 event->unregister_event = mem_cgroup_oom_unregister_event;
4189 } else if (!strcmp(name, "memory.pressure_level")) {
4190 event->register_event = vmpressure_register_event;
4191 event->unregister_event = vmpressure_unregister_event;
4192 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4193 event->register_event = memsw_cgroup_usage_register_event;
4194 event->unregister_event = memsw_cgroup_usage_unregister_event;
4195 } else {
4196 ret = -EINVAL;
4197 goto out_put_cfile;
4201 * Verify @cfile should belong to @css. Also, remaining events are
4202 * automatically removed on cgroup destruction but the removal is
4203 * asynchronous, so take an extra ref on @css.
4205 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4206 &memory_cgrp_subsys);
4207 ret = -EINVAL;
4208 if (IS_ERR(cfile_css))
4209 goto out_put_cfile;
4210 if (cfile_css != css) {
4211 css_put(cfile_css);
4212 goto out_put_cfile;
4215 ret = event->register_event(memcg, event->eventfd, buf);
4216 if (ret)
4217 goto out_put_css;
4219 vfs_poll(efile.file, &event->pt);
4221 spin_lock(&memcg->event_list_lock);
4222 list_add(&event->list, &memcg->event_list);
4223 spin_unlock(&memcg->event_list_lock);
4225 fdput(cfile);
4226 fdput(efile);
4228 return nbytes;
4230 out_put_css:
4231 css_put(css);
4232 out_put_cfile:
4233 fdput(cfile);
4234 out_put_eventfd:
4235 eventfd_ctx_put(event->eventfd);
4236 out_put_efile:
4237 fdput(efile);
4238 out_kfree:
4239 kfree(event);
4241 return ret;
4244 static struct cftype mem_cgroup_legacy_files[] = {
4246 .name = "usage_in_bytes",
4247 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4248 .read_u64 = mem_cgroup_read_u64,
4251 .name = "max_usage_in_bytes",
4252 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4253 .write = mem_cgroup_reset,
4254 .read_u64 = mem_cgroup_read_u64,
4257 .name = "limit_in_bytes",
4258 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4259 .write = mem_cgroup_write,
4260 .read_u64 = mem_cgroup_read_u64,
4263 .name = "soft_limit_in_bytes",
4264 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4265 .write = mem_cgroup_write,
4266 .read_u64 = mem_cgroup_read_u64,
4269 .name = "failcnt",
4270 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4271 .write = mem_cgroup_reset,
4272 .read_u64 = mem_cgroup_read_u64,
4275 .name = "stat",
4276 .seq_show = memcg_stat_show,
4279 .name = "force_empty",
4280 .write = mem_cgroup_force_empty_write,
4283 .name = "use_hierarchy",
4284 .write_u64 = mem_cgroup_hierarchy_write,
4285 .read_u64 = mem_cgroup_hierarchy_read,
4288 .name = "cgroup.event_control", /* XXX: for compat */
4289 .write = memcg_write_event_control,
4290 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4293 .name = "swappiness",
4294 .read_u64 = mem_cgroup_swappiness_read,
4295 .write_u64 = mem_cgroup_swappiness_write,
4298 .name = "move_charge_at_immigrate",
4299 .read_u64 = mem_cgroup_move_charge_read,
4300 .write_u64 = mem_cgroup_move_charge_write,
4303 .name = "oom_control",
4304 .seq_show = mem_cgroup_oom_control_read,
4305 .write_u64 = mem_cgroup_oom_control_write,
4306 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4309 .name = "pressure_level",
4311 #ifdef CONFIG_NUMA
4313 .name = "numa_stat",
4314 .seq_show = memcg_numa_stat_show,
4316 #endif
4318 .name = "kmem.limit_in_bytes",
4319 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4320 .write = mem_cgroup_write,
4321 .read_u64 = mem_cgroup_read_u64,
4324 .name = "kmem.usage_in_bytes",
4325 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4326 .read_u64 = mem_cgroup_read_u64,
4329 .name = "kmem.failcnt",
4330 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4331 .write = mem_cgroup_reset,
4332 .read_u64 = mem_cgroup_read_u64,
4335 .name = "kmem.max_usage_in_bytes",
4336 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4337 .write = mem_cgroup_reset,
4338 .read_u64 = mem_cgroup_read_u64,
4340 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4342 .name = "kmem.slabinfo",
4343 .seq_start = memcg_slab_start,
4344 .seq_next = memcg_slab_next,
4345 .seq_stop = memcg_slab_stop,
4346 .seq_show = memcg_slab_show,
4348 #endif
4350 .name = "kmem.tcp.limit_in_bytes",
4351 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4352 .write = mem_cgroup_write,
4353 .read_u64 = mem_cgroup_read_u64,
4356 .name = "kmem.tcp.usage_in_bytes",
4357 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4358 .read_u64 = mem_cgroup_read_u64,
4361 .name = "kmem.tcp.failcnt",
4362 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4363 .write = mem_cgroup_reset,
4364 .read_u64 = mem_cgroup_read_u64,
4367 .name = "kmem.tcp.max_usage_in_bytes",
4368 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4369 .write = mem_cgroup_reset,
4370 .read_u64 = mem_cgroup_read_u64,
4372 { }, /* terminate */
4376 * Private memory cgroup IDR
4378 * Swap-out records and page cache shadow entries need to store memcg
4379 * references in constrained space, so we maintain an ID space that is
4380 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4381 * memory-controlled cgroups to 64k.
4383 * However, there usually are many references to the oflline CSS after
4384 * the cgroup has been destroyed, such as page cache or reclaimable
4385 * slab objects, that don't need to hang on to the ID. We want to keep
4386 * those dead CSS from occupying IDs, or we might quickly exhaust the
4387 * relatively small ID space and prevent the creation of new cgroups
4388 * even when there are much fewer than 64k cgroups - possibly none.
4390 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4391 * be freed and recycled when it's no longer needed, which is usually
4392 * when the CSS is offlined.
4394 * The only exception to that are records of swapped out tmpfs/shmem
4395 * pages that need to be attributed to live ancestors on swapin. But
4396 * those references are manageable from userspace.
4399 static DEFINE_IDR(mem_cgroup_idr);
4401 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4403 if (memcg->id.id > 0) {
4404 idr_remove(&mem_cgroup_idr, memcg->id.id);
4405 memcg->id.id = 0;
4409 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4411 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4412 atomic_add(n, &memcg->id.ref);
4415 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4417 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4418 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4419 mem_cgroup_id_remove(memcg);
4421 /* Memcg ID pins CSS */
4422 css_put(&memcg->css);
4426 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4428 mem_cgroup_id_get_many(memcg, 1);
4431 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4433 mem_cgroup_id_put_many(memcg, 1);
4437 * mem_cgroup_from_id - look up a memcg from a memcg id
4438 * @id: the memcg id to look up
4440 * Caller must hold rcu_read_lock().
4442 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4444 WARN_ON_ONCE(!rcu_read_lock_held());
4445 return idr_find(&mem_cgroup_idr, id);
4448 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4450 struct mem_cgroup_per_node *pn;
4451 int tmp = node;
4453 * This routine is called against possible nodes.
4454 * But it's BUG to call kmalloc() against offline node.
4456 * TODO: this routine can waste much memory for nodes which will
4457 * never be onlined. It's better to use memory hotplug callback
4458 * function.
4460 if (!node_state(node, N_NORMAL_MEMORY))
4461 tmp = -1;
4462 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4463 if (!pn)
4464 return 1;
4466 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4467 if (!pn->lruvec_stat_cpu) {
4468 kfree(pn);
4469 return 1;
4472 lruvec_init(&pn->lruvec);
4473 pn->usage_in_excess = 0;
4474 pn->on_tree = false;
4475 pn->memcg = memcg;
4477 memcg->nodeinfo[node] = pn;
4478 return 0;
4481 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4483 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4485 if (!pn)
4486 return;
4488 free_percpu(pn->lruvec_stat_cpu);
4489 kfree(pn);
4492 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4494 int node;
4496 for_each_node(node)
4497 free_mem_cgroup_per_node_info(memcg, node);
4498 free_percpu(memcg->stat_cpu);
4499 kfree(memcg);
4502 static void mem_cgroup_free(struct mem_cgroup *memcg)
4504 memcg_wb_domain_exit(memcg);
4505 __mem_cgroup_free(memcg);
4508 static struct mem_cgroup *mem_cgroup_alloc(void)
4510 struct mem_cgroup *memcg;
4511 size_t size;
4512 int node;
4514 size = sizeof(struct mem_cgroup);
4515 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4517 memcg = kzalloc(size, GFP_KERNEL);
4518 if (!memcg)
4519 return NULL;
4521 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4522 1, MEM_CGROUP_ID_MAX,
4523 GFP_KERNEL);
4524 if (memcg->id.id < 0)
4525 goto fail;
4527 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4528 if (!memcg->stat_cpu)
4529 goto fail;
4531 for_each_node(node)
4532 if (alloc_mem_cgroup_per_node_info(memcg, node))
4533 goto fail;
4535 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4536 goto fail;
4538 INIT_WORK(&memcg->high_work, high_work_func);
4539 memcg->last_scanned_node = MAX_NUMNODES;
4540 INIT_LIST_HEAD(&memcg->oom_notify);
4541 mutex_init(&memcg->thresholds_lock);
4542 spin_lock_init(&memcg->move_lock);
4543 vmpressure_init(&memcg->vmpressure);
4544 INIT_LIST_HEAD(&memcg->event_list);
4545 spin_lock_init(&memcg->event_list_lock);
4546 memcg->socket_pressure = jiffies;
4547 #ifdef CONFIG_MEMCG_KMEM
4548 memcg->kmemcg_id = -1;
4549 #endif
4550 #ifdef CONFIG_CGROUP_WRITEBACK
4551 INIT_LIST_HEAD(&memcg->cgwb_list);
4552 #endif
4553 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4554 return memcg;
4555 fail:
4556 mem_cgroup_id_remove(memcg);
4557 __mem_cgroup_free(memcg);
4558 return NULL;
4561 static struct cgroup_subsys_state * __ref
4562 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4564 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4565 struct mem_cgroup *memcg;
4566 long error = -ENOMEM;
4568 memcg = mem_cgroup_alloc();
4569 if (!memcg)
4570 return ERR_PTR(error);
4572 memcg->high = PAGE_COUNTER_MAX;
4573 memcg->soft_limit = PAGE_COUNTER_MAX;
4574 if (parent) {
4575 memcg->swappiness = mem_cgroup_swappiness(parent);
4576 memcg->oom_kill_disable = parent->oom_kill_disable;
4578 if (parent && parent->use_hierarchy) {
4579 memcg->use_hierarchy = true;
4580 page_counter_init(&memcg->memory, &parent->memory);
4581 page_counter_init(&memcg->swap, &parent->swap);
4582 page_counter_init(&memcg->memsw, &parent->memsw);
4583 page_counter_init(&memcg->kmem, &parent->kmem);
4584 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4585 } else {
4586 page_counter_init(&memcg->memory, NULL);
4587 page_counter_init(&memcg->swap, NULL);
4588 page_counter_init(&memcg->memsw, NULL);
4589 page_counter_init(&memcg->kmem, NULL);
4590 page_counter_init(&memcg->tcpmem, NULL);
4592 * Deeper hierachy with use_hierarchy == false doesn't make
4593 * much sense so let cgroup subsystem know about this
4594 * unfortunate state in our controller.
4596 if (parent != root_mem_cgroup)
4597 memory_cgrp_subsys.broken_hierarchy = true;
4600 /* The following stuff does not apply to the root */
4601 if (!parent) {
4602 root_mem_cgroup = memcg;
4603 return &memcg->css;
4606 error = memcg_online_kmem(memcg);
4607 if (error)
4608 goto fail;
4610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4611 static_branch_inc(&memcg_sockets_enabled_key);
4613 return &memcg->css;
4614 fail:
4615 mem_cgroup_id_remove(memcg);
4616 mem_cgroup_free(memcg);
4617 return ERR_PTR(-ENOMEM);
4620 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4622 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4625 * A memcg must be visible for memcg_expand_shrinker_maps()
4626 * by the time the maps are allocated. So, we allocate maps
4627 * here, when for_each_mem_cgroup() can't skip it.
4629 if (memcg_alloc_shrinker_maps(memcg)) {
4630 mem_cgroup_id_remove(memcg);
4631 return -ENOMEM;
4634 /* Online state pins memcg ID, memcg ID pins CSS */
4635 atomic_set(&memcg->id.ref, 1);
4636 css_get(css);
4637 return 0;
4640 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4643 struct mem_cgroup_event *event, *tmp;
4646 * Unregister events and notify userspace.
4647 * Notify userspace about cgroup removing only after rmdir of cgroup
4648 * directory to avoid race between userspace and kernelspace.
4650 spin_lock(&memcg->event_list_lock);
4651 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4652 list_del_init(&event->list);
4653 schedule_work(&event->remove);
4655 spin_unlock(&memcg->event_list_lock);
4657 page_counter_set_min(&memcg->memory, 0);
4658 page_counter_set_low(&memcg->memory, 0);
4660 memcg_offline_kmem(memcg);
4661 wb_memcg_offline(memcg);
4663 mem_cgroup_id_put(memcg);
4666 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4668 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4670 invalidate_reclaim_iterators(memcg);
4673 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4675 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4677 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4678 static_branch_dec(&memcg_sockets_enabled_key);
4680 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4681 static_branch_dec(&memcg_sockets_enabled_key);
4683 vmpressure_cleanup(&memcg->vmpressure);
4684 cancel_work_sync(&memcg->high_work);
4685 mem_cgroup_remove_from_trees(memcg);
4686 memcg_free_shrinker_maps(memcg);
4687 memcg_free_kmem(memcg);
4688 mem_cgroup_free(memcg);
4692 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4693 * @css: the target css
4695 * Reset the states of the mem_cgroup associated with @css. This is
4696 * invoked when the userland requests disabling on the default hierarchy
4697 * but the memcg is pinned through dependency. The memcg should stop
4698 * applying policies and should revert to the vanilla state as it may be
4699 * made visible again.
4701 * The current implementation only resets the essential configurations.
4702 * This needs to be expanded to cover all the visible parts.
4704 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4706 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4708 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4709 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4710 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4711 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4712 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4713 page_counter_set_min(&memcg->memory, 0);
4714 page_counter_set_low(&memcg->memory, 0);
4715 memcg->high = PAGE_COUNTER_MAX;
4716 memcg->soft_limit = PAGE_COUNTER_MAX;
4717 memcg_wb_domain_size_changed(memcg);
4720 #ifdef CONFIG_MMU
4721 /* Handlers for move charge at task migration. */
4722 static int mem_cgroup_do_precharge(unsigned long count)
4724 int ret;
4726 /* Try a single bulk charge without reclaim first, kswapd may wake */
4727 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4728 if (!ret) {
4729 mc.precharge += count;
4730 return ret;
4733 /* Try charges one by one with reclaim, but do not retry */
4734 while (count--) {
4735 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4736 if (ret)
4737 return ret;
4738 mc.precharge++;
4739 cond_resched();
4741 return 0;
4744 union mc_target {
4745 struct page *page;
4746 swp_entry_t ent;
4749 enum mc_target_type {
4750 MC_TARGET_NONE = 0,
4751 MC_TARGET_PAGE,
4752 MC_TARGET_SWAP,
4753 MC_TARGET_DEVICE,
4756 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4757 unsigned long addr, pte_t ptent)
4759 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4761 if (!page || !page_mapped(page))
4762 return NULL;
4763 if (PageAnon(page)) {
4764 if (!(mc.flags & MOVE_ANON))
4765 return NULL;
4766 } else {
4767 if (!(mc.flags & MOVE_FILE))
4768 return NULL;
4770 if (!get_page_unless_zero(page))
4771 return NULL;
4773 return page;
4776 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4777 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4778 pte_t ptent, swp_entry_t *entry)
4780 struct page *page = NULL;
4781 swp_entry_t ent = pte_to_swp_entry(ptent);
4783 if (!(mc.flags & MOVE_ANON))
4784 return NULL;
4787 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4788 * a device and because they are not accessible by CPU they are store
4789 * as special swap entry in the CPU page table.
4791 if (is_device_private_entry(ent)) {
4792 page = device_private_entry_to_page(ent);
4794 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4795 * a refcount of 1 when free (unlike normal page)
4797 if (!page_ref_add_unless(page, 1, 1))
4798 return NULL;
4799 return page;
4802 if (non_swap_entry(ent))
4803 return NULL;
4806 * Because lookup_swap_cache() updates some statistics counter,
4807 * we call find_get_page() with swapper_space directly.
4809 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4810 if (do_memsw_account())
4811 entry->val = ent.val;
4813 return page;
4815 #else
4816 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4817 pte_t ptent, swp_entry_t *entry)
4819 return NULL;
4821 #endif
4823 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4824 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4826 struct page *page = NULL;
4827 struct address_space *mapping;
4828 pgoff_t pgoff;
4830 if (!vma->vm_file) /* anonymous vma */
4831 return NULL;
4832 if (!(mc.flags & MOVE_FILE))
4833 return NULL;
4835 mapping = vma->vm_file->f_mapping;
4836 pgoff = linear_page_index(vma, addr);
4838 /* page is moved even if it's not RSS of this task(page-faulted). */
4839 #ifdef CONFIG_SWAP
4840 /* shmem/tmpfs may report page out on swap: account for that too. */
4841 if (shmem_mapping(mapping)) {
4842 page = find_get_entry(mapping, pgoff);
4843 if (radix_tree_exceptional_entry(page)) {
4844 swp_entry_t swp = radix_to_swp_entry(page);
4845 if (do_memsw_account())
4846 *entry = swp;
4847 page = find_get_page(swap_address_space(swp),
4848 swp_offset(swp));
4850 } else
4851 page = find_get_page(mapping, pgoff);
4852 #else
4853 page = find_get_page(mapping, pgoff);
4854 #endif
4855 return page;
4859 * mem_cgroup_move_account - move account of the page
4860 * @page: the page
4861 * @compound: charge the page as compound or small page
4862 * @from: mem_cgroup which the page is moved from.
4863 * @to: mem_cgroup which the page is moved to. @from != @to.
4865 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4867 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4868 * from old cgroup.
4870 static int mem_cgroup_move_account(struct page *page,
4871 bool compound,
4872 struct mem_cgroup *from,
4873 struct mem_cgroup *to)
4875 unsigned long flags;
4876 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4877 int ret;
4878 bool anon;
4880 VM_BUG_ON(from == to);
4881 VM_BUG_ON_PAGE(PageLRU(page), page);
4882 VM_BUG_ON(compound && !PageTransHuge(page));
4885 * Prevent mem_cgroup_migrate() from looking at
4886 * page->mem_cgroup of its source page while we change it.
4888 ret = -EBUSY;
4889 if (!trylock_page(page))
4890 goto out;
4892 ret = -EINVAL;
4893 if (page->mem_cgroup != from)
4894 goto out_unlock;
4896 anon = PageAnon(page);
4898 spin_lock_irqsave(&from->move_lock, flags);
4900 if (!anon && page_mapped(page)) {
4901 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4902 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4906 * move_lock grabbed above and caller set from->moving_account, so
4907 * mod_memcg_page_state will serialize updates to PageDirty.
4908 * So mapping should be stable for dirty pages.
4910 if (!anon && PageDirty(page)) {
4911 struct address_space *mapping = page_mapping(page);
4913 if (mapping_cap_account_dirty(mapping)) {
4914 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4915 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4919 if (PageWriteback(page)) {
4920 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4921 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4925 * It is safe to change page->mem_cgroup here because the page
4926 * is referenced, charged, and isolated - we can't race with
4927 * uncharging, charging, migration, or LRU putback.
4930 /* caller should have done css_get */
4931 page->mem_cgroup = to;
4932 spin_unlock_irqrestore(&from->move_lock, flags);
4934 ret = 0;
4936 local_irq_disable();
4937 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4938 memcg_check_events(to, page);
4939 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4940 memcg_check_events(from, page);
4941 local_irq_enable();
4942 out_unlock:
4943 unlock_page(page);
4944 out:
4945 return ret;
4949 * get_mctgt_type - get target type of moving charge
4950 * @vma: the vma the pte to be checked belongs
4951 * @addr: the address corresponding to the pte to be checked
4952 * @ptent: the pte to be checked
4953 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4955 * Returns
4956 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4957 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4958 * move charge. if @target is not NULL, the page is stored in target->page
4959 * with extra refcnt got(Callers should handle it).
4960 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4961 * target for charge migration. if @target is not NULL, the entry is stored
4962 * in target->ent.
4963 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4964 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4965 * For now we such page is charge like a regular page would be as for all
4966 * intent and purposes it is just special memory taking the place of a
4967 * regular page.
4969 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4971 * Called with pte lock held.
4974 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4975 unsigned long addr, pte_t ptent, union mc_target *target)
4977 struct page *page = NULL;
4978 enum mc_target_type ret = MC_TARGET_NONE;
4979 swp_entry_t ent = { .val = 0 };
4981 if (pte_present(ptent))
4982 page = mc_handle_present_pte(vma, addr, ptent);
4983 else if (is_swap_pte(ptent))
4984 page = mc_handle_swap_pte(vma, ptent, &ent);
4985 else if (pte_none(ptent))
4986 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4988 if (!page && !ent.val)
4989 return ret;
4990 if (page) {
4992 * Do only loose check w/o serialization.
4993 * mem_cgroup_move_account() checks the page is valid or
4994 * not under LRU exclusion.
4996 if (page->mem_cgroup == mc.from) {
4997 ret = MC_TARGET_PAGE;
4998 if (is_device_private_page(page) ||
4999 is_device_public_page(page))
5000 ret = MC_TARGET_DEVICE;
5001 if (target)
5002 target->page = page;
5004 if (!ret || !target)
5005 put_page(page);
5008 * There is a swap entry and a page doesn't exist or isn't charged.
5009 * But we cannot move a tail-page in a THP.
5011 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5012 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5013 ret = MC_TARGET_SWAP;
5014 if (target)
5015 target->ent = ent;
5017 return ret;
5020 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5022 * We don't consider PMD mapped swapping or file mapped pages because THP does
5023 * not support them for now.
5024 * Caller should make sure that pmd_trans_huge(pmd) is true.
5026 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5027 unsigned long addr, pmd_t pmd, union mc_target *target)
5029 struct page *page = NULL;
5030 enum mc_target_type ret = MC_TARGET_NONE;
5032 if (unlikely(is_swap_pmd(pmd))) {
5033 VM_BUG_ON(thp_migration_supported() &&
5034 !is_pmd_migration_entry(pmd));
5035 return ret;
5037 page = pmd_page(pmd);
5038 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5039 if (!(mc.flags & MOVE_ANON))
5040 return ret;
5041 if (page->mem_cgroup == mc.from) {
5042 ret = MC_TARGET_PAGE;
5043 if (target) {
5044 get_page(page);
5045 target->page = page;
5048 return ret;
5050 #else
5051 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5052 unsigned long addr, pmd_t pmd, union mc_target *target)
5054 return MC_TARGET_NONE;
5056 #endif
5058 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5059 unsigned long addr, unsigned long end,
5060 struct mm_walk *walk)
5062 struct vm_area_struct *vma = walk->vma;
5063 pte_t *pte;
5064 spinlock_t *ptl;
5066 ptl = pmd_trans_huge_lock(pmd, vma);
5067 if (ptl) {
5069 * Note their can not be MC_TARGET_DEVICE for now as we do not
5070 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5071 * MEMORY_DEVICE_PRIVATE but this might change.
5073 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5074 mc.precharge += HPAGE_PMD_NR;
5075 spin_unlock(ptl);
5076 return 0;
5079 if (pmd_trans_unstable(pmd))
5080 return 0;
5081 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5082 for (; addr != end; pte++, addr += PAGE_SIZE)
5083 if (get_mctgt_type(vma, addr, *pte, NULL))
5084 mc.precharge++; /* increment precharge temporarily */
5085 pte_unmap_unlock(pte - 1, ptl);
5086 cond_resched();
5088 return 0;
5091 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5093 unsigned long precharge;
5095 struct mm_walk mem_cgroup_count_precharge_walk = {
5096 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5097 .mm = mm,
5099 down_read(&mm->mmap_sem);
5100 walk_page_range(0, mm->highest_vm_end,
5101 &mem_cgroup_count_precharge_walk);
5102 up_read(&mm->mmap_sem);
5104 precharge = mc.precharge;
5105 mc.precharge = 0;
5107 return precharge;
5110 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5112 unsigned long precharge = mem_cgroup_count_precharge(mm);
5114 VM_BUG_ON(mc.moving_task);
5115 mc.moving_task = current;
5116 return mem_cgroup_do_precharge(precharge);
5119 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5120 static void __mem_cgroup_clear_mc(void)
5122 struct mem_cgroup *from = mc.from;
5123 struct mem_cgroup *to = mc.to;
5125 /* we must uncharge all the leftover precharges from mc.to */
5126 if (mc.precharge) {
5127 cancel_charge(mc.to, mc.precharge);
5128 mc.precharge = 0;
5131 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5132 * we must uncharge here.
5134 if (mc.moved_charge) {
5135 cancel_charge(mc.from, mc.moved_charge);
5136 mc.moved_charge = 0;
5138 /* we must fixup refcnts and charges */
5139 if (mc.moved_swap) {
5140 /* uncharge swap account from the old cgroup */
5141 if (!mem_cgroup_is_root(mc.from))
5142 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5144 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5147 * we charged both to->memory and to->memsw, so we
5148 * should uncharge to->memory.
5150 if (!mem_cgroup_is_root(mc.to))
5151 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5153 css_put_many(&mc.to->css, mc.moved_swap);
5155 mc.moved_swap = 0;
5157 memcg_oom_recover(from);
5158 memcg_oom_recover(to);
5159 wake_up_all(&mc.waitq);
5162 static void mem_cgroup_clear_mc(void)
5164 struct mm_struct *mm = mc.mm;
5167 * we must clear moving_task before waking up waiters at the end of
5168 * task migration.
5170 mc.moving_task = NULL;
5171 __mem_cgroup_clear_mc();
5172 spin_lock(&mc.lock);
5173 mc.from = NULL;
5174 mc.to = NULL;
5175 mc.mm = NULL;
5176 spin_unlock(&mc.lock);
5178 mmput(mm);
5181 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5183 struct cgroup_subsys_state *css;
5184 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5185 struct mem_cgroup *from;
5186 struct task_struct *leader, *p;
5187 struct mm_struct *mm;
5188 unsigned long move_flags;
5189 int ret = 0;
5191 /* charge immigration isn't supported on the default hierarchy */
5192 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5193 return 0;
5196 * Multi-process migrations only happen on the default hierarchy
5197 * where charge immigration is not used. Perform charge
5198 * immigration if @tset contains a leader and whine if there are
5199 * multiple.
5201 p = NULL;
5202 cgroup_taskset_for_each_leader(leader, css, tset) {
5203 WARN_ON_ONCE(p);
5204 p = leader;
5205 memcg = mem_cgroup_from_css(css);
5207 if (!p)
5208 return 0;
5211 * We are now commited to this value whatever it is. Changes in this
5212 * tunable will only affect upcoming migrations, not the current one.
5213 * So we need to save it, and keep it going.
5215 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5216 if (!move_flags)
5217 return 0;
5219 from = mem_cgroup_from_task(p);
5221 VM_BUG_ON(from == memcg);
5223 mm = get_task_mm(p);
5224 if (!mm)
5225 return 0;
5226 /* We move charges only when we move a owner of the mm */
5227 if (mm->owner == p) {
5228 VM_BUG_ON(mc.from);
5229 VM_BUG_ON(mc.to);
5230 VM_BUG_ON(mc.precharge);
5231 VM_BUG_ON(mc.moved_charge);
5232 VM_BUG_ON(mc.moved_swap);
5234 spin_lock(&mc.lock);
5235 mc.mm = mm;
5236 mc.from = from;
5237 mc.to = memcg;
5238 mc.flags = move_flags;
5239 spin_unlock(&mc.lock);
5240 /* We set mc.moving_task later */
5242 ret = mem_cgroup_precharge_mc(mm);
5243 if (ret)
5244 mem_cgroup_clear_mc();
5245 } else {
5246 mmput(mm);
5248 return ret;
5251 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5253 if (mc.to)
5254 mem_cgroup_clear_mc();
5257 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5258 unsigned long addr, unsigned long end,
5259 struct mm_walk *walk)
5261 int ret = 0;
5262 struct vm_area_struct *vma = walk->vma;
5263 pte_t *pte;
5264 spinlock_t *ptl;
5265 enum mc_target_type target_type;
5266 union mc_target target;
5267 struct page *page;
5269 ptl = pmd_trans_huge_lock(pmd, vma);
5270 if (ptl) {
5271 if (mc.precharge < HPAGE_PMD_NR) {
5272 spin_unlock(ptl);
5273 return 0;
5275 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5276 if (target_type == MC_TARGET_PAGE) {
5277 page = target.page;
5278 if (!isolate_lru_page(page)) {
5279 if (!mem_cgroup_move_account(page, true,
5280 mc.from, mc.to)) {
5281 mc.precharge -= HPAGE_PMD_NR;
5282 mc.moved_charge += HPAGE_PMD_NR;
5284 putback_lru_page(page);
5286 put_page(page);
5287 } else if (target_type == MC_TARGET_DEVICE) {
5288 page = target.page;
5289 if (!mem_cgroup_move_account(page, true,
5290 mc.from, mc.to)) {
5291 mc.precharge -= HPAGE_PMD_NR;
5292 mc.moved_charge += HPAGE_PMD_NR;
5294 put_page(page);
5296 spin_unlock(ptl);
5297 return 0;
5300 if (pmd_trans_unstable(pmd))
5301 return 0;
5302 retry:
5303 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5304 for (; addr != end; addr += PAGE_SIZE) {
5305 pte_t ptent = *(pte++);
5306 bool device = false;
5307 swp_entry_t ent;
5309 if (!mc.precharge)
5310 break;
5312 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5313 case MC_TARGET_DEVICE:
5314 device = true;
5315 /* fall through */
5316 case MC_TARGET_PAGE:
5317 page = target.page;
5319 * We can have a part of the split pmd here. Moving it
5320 * can be done but it would be too convoluted so simply
5321 * ignore such a partial THP and keep it in original
5322 * memcg. There should be somebody mapping the head.
5324 if (PageTransCompound(page))
5325 goto put;
5326 if (!device && isolate_lru_page(page))
5327 goto put;
5328 if (!mem_cgroup_move_account(page, false,
5329 mc.from, mc.to)) {
5330 mc.precharge--;
5331 /* we uncharge from mc.from later. */
5332 mc.moved_charge++;
5334 if (!device)
5335 putback_lru_page(page);
5336 put: /* get_mctgt_type() gets the page */
5337 put_page(page);
5338 break;
5339 case MC_TARGET_SWAP:
5340 ent = target.ent;
5341 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5342 mc.precharge--;
5343 mem_cgroup_id_get_many(mc.to, 1);
5344 /* we fixup other refcnts and charges later. */
5345 mc.moved_swap++;
5347 break;
5348 default:
5349 break;
5352 pte_unmap_unlock(pte - 1, ptl);
5353 cond_resched();
5355 if (addr != end) {
5357 * We have consumed all precharges we got in can_attach().
5358 * We try charge one by one, but don't do any additional
5359 * charges to mc.to if we have failed in charge once in attach()
5360 * phase.
5362 ret = mem_cgroup_do_precharge(1);
5363 if (!ret)
5364 goto retry;
5367 return ret;
5370 static void mem_cgroup_move_charge(void)
5372 struct mm_walk mem_cgroup_move_charge_walk = {
5373 .pmd_entry = mem_cgroup_move_charge_pte_range,
5374 .mm = mc.mm,
5377 lru_add_drain_all();
5379 * Signal lock_page_memcg() to take the memcg's move_lock
5380 * while we're moving its pages to another memcg. Then wait
5381 * for already started RCU-only updates to finish.
5383 atomic_inc(&mc.from->moving_account);
5384 synchronize_rcu();
5385 retry:
5386 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5388 * Someone who are holding the mmap_sem might be waiting in
5389 * waitq. So we cancel all extra charges, wake up all waiters,
5390 * and retry. Because we cancel precharges, we might not be able
5391 * to move enough charges, but moving charge is a best-effort
5392 * feature anyway, so it wouldn't be a big problem.
5394 __mem_cgroup_clear_mc();
5395 cond_resched();
5396 goto retry;
5399 * When we have consumed all precharges and failed in doing
5400 * additional charge, the page walk just aborts.
5402 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5404 up_read(&mc.mm->mmap_sem);
5405 atomic_dec(&mc.from->moving_account);
5408 static void mem_cgroup_move_task(void)
5410 if (mc.to) {
5411 mem_cgroup_move_charge();
5412 mem_cgroup_clear_mc();
5415 #else /* !CONFIG_MMU */
5416 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5418 return 0;
5420 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5423 static void mem_cgroup_move_task(void)
5426 #endif
5429 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5430 * to verify whether we're attached to the default hierarchy on each mount
5431 * attempt.
5433 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5436 * use_hierarchy is forced on the default hierarchy. cgroup core
5437 * guarantees that @root doesn't have any children, so turning it
5438 * on for the root memcg is enough.
5440 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5441 root_mem_cgroup->use_hierarchy = true;
5442 else
5443 root_mem_cgroup->use_hierarchy = false;
5446 static u64 memory_current_read(struct cgroup_subsys_state *css,
5447 struct cftype *cft)
5449 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5451 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5454 static int memory_min_show(struct seq_file *m, void *v)
5456 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5457 unsigned long min = READ_ONCE(memcg->memory.min);
5459 if (min == PAGE_COUNTER_MAX)
5460 seq_puts(m, "max\n");
5461 else
5462 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5464 return 0;
5467 static ssize_t memory_min_write(struct kernfs_open_file *of,
5468 char *buf, size_t nbytes, loff_t off)
5470 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5471 unsigned long min;
5472 int err;
5474 buf = strstrip(buf);
5475 err = page_counter_memparse(buf, "max", &min);
5476 if (err)
5477 return err;
5479 page_counter_set_min(&memcg->memory, min);
5481 return nbytes;
5484 static int memory_low_show(struct seq_file *m, void *v)
5486 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5487 unsigned long low = READ_ONCE(memcg->memory.low);
5489 if (low == PAGE_COUNTER_MAX)
5490 seq_puts(m, "max\n");
5491 else
5492 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5494 return 0;
5497 static ssize_t memory_low_write(struct kernfs_open_file *of,
5498 char *buf, size_t nbytes, loff_t off)
5500 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5501 unsigned long low;
5502 int err;
5504 buf = strstrip(buf);
5505 err = page_counter_memparse(buf, "max", &low);
5506 if (err)
5507 return err;
5509 page_counter_set_low(&memcg->memory, low);
5511 return nbytes;
5514 static int memory_high_show(struct seq_file *m, void *v)
5516 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5517 unsigned long high = READ_ONCE(memcg->high);
5519 if (high == PAGE_COUNTER_MAX)
5520 seq_puts(m, "max\n");
5521 else
5522 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5524 return 0;
5527 static ssize_t memory_high_write(struct kernfs_open_file *of,
5528 char *buf, size_t nbytes, loff_t off)
5530 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5531 unsigned long nr_pages;
5532 unsigned long high;
5533 int err;
5535 buf = strstrip(buf);
5536 err = page_counter_memparse(buf, "max", &high);
5537 if (err)
5538 return err;
5540 memcg->high = high;
5542 nr_pages = page_counter_read(&memcg->memory);
5543 if (nr_pages > high)
5544 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5545 GFP_KERNEL, true);
5547 memcg_wb_domain_size_changed(memcg);
5548 return nbytes;
5551 static int memory_max_show(struct seq_file *m, void *v)
5553 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5554 unsigned long max = READ_ONCE(memcg->memory.max);
5556 if (max == PAGE_COUNTER_MAX)
5557 seq_puts(m, "max\n");
5558 else
5559 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5561 return 0;
5564 static ssize_t memory_max_write(struct kernfs_open_file *of,
5565 char *buf, size_t nbytes, loff_t off)
5567 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5568 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5569 bool drained = false;
5570 unsigned long max;
5571 int err;
5573 buf = strstrip(buf);
5574 err = page_counter_memparse(buf, "max", &max);
5575 if (err)
5576 return err;
5578 xchg(&memcg->memory.max, max);
5580 for (;;) {
5581 unsigned long nr_pages = page_counter_read(&memcg->memory);
5583 if (nr_pages <= max)
5584 break;
5586 if (signal_pending(current)) {
5587 err = -EINTR;
5588 break;
5591 if (!drained) {
5592 drain_all_stock(memcg);
5593 drained = true;
5594 continue;
5597 if (nr_reclaims) {
5598 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5599 GFP_KERNEL, true))
5600 nr_reclaims--;
5601 continue;
5604 memcg_memory_event(memcg, MEMCG_OOM);
5605 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5606 break;
5609 memcg_wb_domain_size_changed(memcg);
5610 return nbytes;
5613 static int memory_events_show(struct seq_file *m, void *v)
5615 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5617 seq_printf(m, "low %lu\n",
5618 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5619 seq_printf(m, "high %lu\n",
5620 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5621 seq_printf(m, "max %lu\n",
5622 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5623 seq_printf(m, "oom %lu\n",
5624 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5625 seq_printf(m, "oom_kill %lu\n",
5626 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5628 return 0;
5631 static int memory_stat_show(struct seq_file *m, void *v)
5633 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5634 struct accumulated_stats acc;
5635 int i;
5638 * Provide statistics on the state of the memory subsystem as
5639 * well as cumulative event counters that show past behavior.
5641 * This list is ordered following a combination of these gradients:
5642 * 1) generic big picture -> specifics and details
5643 * 2) reflecting userspace activity -> reflecting kernel heuristics
5645 * Current memory state:
5648 memset(&acc, 0, sizeof(acc));
5649 acc.stats_size = MEMCG_NR_STAT;
5650 acc.events_size = NR_VM_EVENT_ITEMS;
5651 accumulate_memcg_tree(memcg, &acc);
5653 seq_printf(m, "anon %llu\n",
5654 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5655 seq_printf(m, "file %llu\n",
5656 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5657 seq_printf(m, "kernel_stack %llu\n",
5658 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5659 seq_printf(m, "slab %llu\n",
5660 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5661 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5662 seq_printf(m, "sock %llu\n",
5663 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5665 seq_printf(m, "shmem %llu\n",
5666 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5667 seq_printf(m, "file_mapped %llu\n",
5668 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5669 seq_printf(m, "file_dirty %llu\n",
5670 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5671 seq_printf(m, "file_writeback %llu\n",
5672 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5674 for (i = 0; i < NR_LRU_LISTS; i++)
5675 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5676 (u64)acc.lru_pages[i] * PAGE_SIZE);
5678 seq_printf(m, "slab_reclaimable %llu\n",
5679 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5680 seq_printf(m, "slab_unreclaimable %llu\n",
5681 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5683 /* Accumulated memory events */
5685 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5686 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5688 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5689 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5690 acc.events[PGSCAN_DIRECT]);
5691 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5692 acc.events[PGSTEAL_DIRECT]);
5693 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5694 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5695 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5696 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5698 seq_printf(m, "workingset_refault %lu\n",
5699 acc.stat[WORKINGSET_REFAULT]);
5700 seq_printf(m, "workingset_activate %lu\n",
5701 acc.stat[WORKINGSET_ACTIVATE]);
5702 seq_printf(m, "workingset_nodereclaim %lu\n",
5703 acc.stat[WORKINGSET_NODERECLAIM]);
5705 return 0;
5708 static int memory_oom_group_show(struct seq_file *m, void *v)
5710 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5712 seq_printf(m, "%d\n", memcg->oom_group);
5714 return 0;
5717 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5718 char *buf, size_t nbytes, loff_t off)
5720 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5721 int ret, oom_group;
5723 buf = strstrip(buf);
5724 if (!buf)
5725 return -EINVAL;
5727 ret = kstrtoint(buf, 0, &oom_group);
5728 if (ret)
5729 return ret;
5731 if (oom_group != 0 && oom_group != 1)
5732 return -EINVAL;
5734 memcg->oom_group = oom_group;
5736 return nbytes;
5739 static struct cftype memory_files[] = {
5741 .name = "current",
5742 .flags = CFTYPE_NOT_ON_ROOT,
5743 .read_u64 = memory_current_read,
5746 .name = "min",
5747 .flags = CFTYPE_NOT_ON_ROOT,
5748 .seq_show = memory_min_show,
5749 .write = memory_min_write,
5752 .name = "low",
5753 .flags = CFTYPE_NOT_ON_ROOT,
5754 .seq_show = memory_low_show,
5755 .write = memory_low_write,
5758 .name = "high",
5759 .flags = CFTYPE_NOT_ON_ROOT,
5760 .seq_show = memory_high_show,
5761 .write = memory_high_write,
5764 .name = "max",
5765 .flags = CFTYPE_NOT_ON_ROOT,
5766 .seq_show = memory_max_show,
5767 .write = memory_max_write,
5770 .name = "events",
5771 .flags = CFTYPE_NOT_ON_ROOT,
5772 .file_offset = offsetof(struct mem_cgroup, events_file),
5773 .seq_show = memory_events_show,
5776 .name = "stat",
5777 .flags = CFTYPE_NOT_ON_ROOT,
5778 .seq_show = memory_stat_show,
5781 .name = "oom.group",
5782 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5783 .seq_show = memory_oom_group_show,
5784 .write = memory_oom_group_write,
5786 { } /* terminate */
5789 struct cgroup_subsys memory_cgrp_subsys = {
5790 .css_alloc = mem_cgroup_css_alloc,
5791 .css_online = mem_cgroup_css_online,
5792 .css_offline = mem_cgroup_css_offline,
5793 .css_released = mem_cgroup_css_released,
5794 .css_free = mem_cgroup_css_free,
5795 .css_reset = mem_cgroup_css_reset,
5796 .can_attach = mem_cgroup_can_attach,
5797 .cancel_attach = mem_cgroup_cancel_attach,
5798 .post_attach = mem_cgroup_move_task,
5799 .bind = mem_cgroup_bind,
5800 .dfl_cftypes = memory_files,
5801 .legacy_cftypes = mem_cgroup_legacy_files,
5802 .early_init = 0,
5806 * mem_cgroup_protected - check if memory consumption is in the normal range
5807 * @root: the top ancestor of the sub-tree being checked
5808 * @memcg: the memory cgroup to check
5810 * WARNING: This function is not stateless! It can only be used as part
5811 * of a top-down tree iteration, not for isolated queries.
5813 * Returns one of the following:
5814 * MEMCG_PROT_NONE: cgroup memory is not protected
5815 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5816 * an unprotected supply of reclaimable memory from other cgroups.
5817 * MEMCG_PROT_MIN: cgroup memory is protected
5819 * @root is exclusive; it is never protected when looked at directly
5821 * To provide a proper hierarchical behavior, effective memory.min/low values
5822 * are used. Below is the description of how effective memory.low is calculated.
5823 * Effective memory.min values is calculated in the same way.
5825 * Effective memory.low is always equal or less than the original memory.low.
5826 * If there is no memory.low overcommittment (which is always true for
5827 * top-level memory cgroups), these two values are equal.
5828 * Otherwise, it's a part of parent's effective memory.low,
5829 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5830 * memory.low usages, where memory.low usage is the size of actually
5831 * protected memory.
5833 * low_usage
5834 * elow = min( memory.low, parent->elow * ------------------ ),
5835 * siblings_low_usage
5837 * | memory.current, if memory.current < memory.low
5838 * low_usage = |
5839 | 0, otherwise.
5842 * Such definition of the effective memory.low provides the expected
5843 * hierarchical behavior: parent's memory.low value is limiting
5844 * children, unprotected memory is reclaimed first and cgroups,
5845 * which are not using their guarantee do not affect actual memory
5846 * distribution.
5848 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5850 * A A/memory.low = 2G, A/memory.current = 6G
5851 * //\\
5852 * BC DE B/memory.low = 3G B/memory.current = 2G
5853 * C/memory.low = 1G C/memory.current = 2G
5854 * D/memory.low = 0 D/memory.current = 2G
5855 * E/memory.low = 10G E/memory.current = 0
5857 * and the memory pressure is applied, the following memory distribution
5858 * is expected (approximately):
5860 * A/memory.current = 2G
5862 * B/memory.current = 1.3G
5863 * C/memory.current = 0.6G
5864 * D/memory.current = 0
5865 * E/memory.current = 0
5867 * These calculations require constant tracking of the actual low usages
5868 * (see propagate_protected_usage()), as well as recursive calculation of
5869 * effective memory.low values. But as we do call mem_cgroup_protected()
5870 * path for each memory cgroup top-down from the reclaim,
5871 * it's possible to optimize this part, and save calculated elow
5872 * for next usage. This part is intentionally racy, but it's ok,
5873 * as memory.low is a best-effort mechanism.
5875 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5876 struct mem_cgroup *memcg)
5878 struct mem_cgroup *parent;
5879 unsigned long emin, parent_emin;
5880 unsigned long elow, parent_elow;
5881 unsigned long usage;
5883 if (mem_cgroup_disabled())
5884 return MEMCG_PROT_NONE;
5886 if (!root)
5887 root = root_mem_cgroup;
5888 if (memcg == root)
5889 return MEMCG_PROT_NONE;
5891 usage = page_counter_read(&memcg->memory);
5892 if (!usage)
5893 return MEMCG_PROT_NONE;
5895 emin = memcg->memory.min;
5896 elow = memcg->memory.low;
5898 parent = parent_mem_cgroup(memcg);
5899 /* No parent means a non-hierarchical mode on v1 memcg */
5900 if (!parent)
5901 return MEMCG_PROT_NONE;
5903 if (parent == root)
5904 goto exit;
5906 parent_emin = READ_ONCE(parent->memory.emin);
5907 emin = min(emin, parent_emin);
5908 if (emin && parent_emin) {
5909 unsigned long min_usage, siblings_min_usage;
5911 min_usage = min(usage, memcg->memory.min);
5912 siblings_min_usage = atomic_long_read(
5913 &parent->memory.children_min_usage);
5915 if (min_usage && siblings_min_usage)
5916 emin = min(emin, parent_emin * min_usage /
5917 siblings_min_usage);
5920 parent_elow = READ_ONCE(parent->memory.elow);
5921 elow = min(elow, parent_elow);
5922 if (elow && parent_elow) {
5923 unsigned long low_usage, siblings_low_usage;
5925 low_usage = min(usage, memcg->memory.low);
5926 siblings_low_usage = atomic_long_read(
5927 &parent->memory.children_low_usage);
5929 if (low_usage && siblings_low_usage)
5930 elow = min(elow, parent_elow * low_usage /
5931 siblings_low_usage);
5934 exit:
5935 memcg->memory.emin = emin;
5936 memcg->memory.elow = elow;
5938 if (usage <= emin)
5939 return MEMCG_PROT_MIN;
5940 else if (usage <= elow)
5941 return MEMCG_PROT_LOW;
5942 else
5943 return MEMCG_PROT_NONE;
5947 * mem_cgroup_try_charge - try charging a page
5948 * @page: page to charge
5949 * @mm: mm context of the victim
5950 * @gfp_mask: reclaim mode
5951 * @memcgp: charged memcg return
5952 * @compound: charge the page as compound or small page
5954 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5955 * pages according to @gfp_mask if necessary.
5957 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5958 * Otherwise, an error code is returned.
5960 * After page->mapping has been set up, the caller must finalize the
5961 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5962 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5964 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5965 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5966 bool compound)
5968 struct mem_cgroup *memcg = NULL;
5969 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5970 int ret = 0;
5972 if (mem_cgroup_disabled())
5973 goto out;
5975 if (PageSwapCache(page)) {
5977 * Every swap fault against a single page tries to charge the
5978 * page, bail as early as possible. shmem_unuse() encounters
5979 * already charged pages, too. The USED bit is protected by
5980 * the page lock, which serializes swap cache removal, which
5981 * in turn serializes uncharging.
5983 VM_BUG_ON_PAGE(!PageLocked(page), page);
5984 if (compound_head(page)->mem_cgroup)
5985 goto out;
5987 if (do_swap_account) {
5988 swp_entry_t ent = { .val = page_private(page), };
5989 unsigned short id = lookup_swap_cgroup_id(ent);
5991 rcu_read_lock();
5992 memcg = mem_cgroup_from_id(id);
5993 if (memcg && !css_tryget_online(&memcg->css))
5994 memcg = NULL;
5995 rcu_read_unlock();
5999 if (!memcg)
6000 memcg = get_mem_cgroup_from_mm(mm);
6002 ret = try_charge(memcg, gfp_mask, nr_pages);
6004 css_put(&memcg->css);
6005 out:
6006 *memcgp = memcg;
6007 return ret;
6010 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6011 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6012 bool compound)
6014 struct mem_cgroup *memcg;
6015 int ret;
6017 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6018 memcg = *memcgp;
6019 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6020 return ret;
6024 * mem_cgroup_commit_charge - commit a page charge
6025 * @page: page to charge
6026 * @memcg: memcg to charge the page to
6027 * @lrucare: page might be on LRU already
6028 * @compound: charge the page as compound or small page
6030 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6031 * after page->mapping has been set up. This must happen atomically
6032 * as part of the page instantiation, i.e. under the page table lock
6033 * for anonymous pages, under the page lock for page and swap cache.
6035 * In addition, the page must not be on the LRU during the commit, to
6036 * prevent racing with task migration. If it might be, use @lrucare.
6038 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6040 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6041 bool lrucare, bool compound)
6043 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6045 VM_BUG_ON_PAGE(!page->mapping, page);
6046 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6048 if (mem_cgroup_disabled())
6049 return;
6051 * Swap faults will attempt to charge the same page multiple
6052 * times. But reuse_swap_page() might have removed the page
6053 * from swapcache already, so we can't check PageSwapCache().
6055 if (!memcg)
6056 return;
6058 commit_charge(page, memcg, lrucare);
6060 local_irq_disable();
6061 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6062 memcg_check_events(memcg, page);
6063 local_irq_enable();
6065 if (do_memsw_account() && PageSwapCache(page)) {
6066 swp_entry_t entry = { .val = page_private(page) };
6068 * The swap entry might not get freed for a long time,
6069 * let's not wait for it. The page already received a
6070 * memory+swap charge, drop the swap entry duplicate.
6072 mem_cgroup_uncharge_swap(entry, nr_pages);
6077 * mem_cgroup_cancel_charge - cancel a page charge
6078 * @page: page to charge
6079 * @memcg: memcg to charge the page to
6080 * @compound: charge the page as compound or small page
6082 * Cancel a charge transaction started by mem_cgroup_try_charge().
6084 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6085 bool compound)
6087 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6089 if (mem_cgroup_disabled())
6090 return;
6092 * Swap faults will attempt to charge the same page multiple
6093 * times. But reuse_swap_page() might have removed the page
6094 * from swapcache already, so we can't check PageSwapCache().
6096 if (!memcg)
6097 return;
6099 cancel_charge(memcg, nr_pages);
6102 struct uncharge_gather {
6103 struct mem_cgroup *memcg;
6104 unsigned long pgpgout;
6105 unsigned long nr_anon;
6106 unsigned long nr_file;
6107 unsigned long nr_kmem;
6108 unsigned long nr_huge;
6109 unsigned long nr_shmem;
6110 struct page *dummy_page;
6113 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6115 memset(ug, 0, sizeof(*ug));
6118 static void uncharge_batch(const struct uncharge_gather *ug)
6120 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6121 unsigned long flags;
6123 if (!mem_cgroup_is_root(ug->memcg)) {
6124 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6125 if (do_memsw_account())
6126 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6128 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6129 memcg_oom_recover(ug->memcg);
6132 local_irq_save(flags);
6133 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6134 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6135 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6136 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6137 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6138 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6139 memcg_check_events(ug->memcg, ug->dummy_page);
6140 local_irq_restore(flags);
6142 if (!mem_cgroup_is_root(ug->memcg))
6143 css_put_many(&ug->memcg->css, nr_pages);
6146 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6148 VM_BUG_ON_PAGE(PageLRU(page), page);
6149 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6150 !PageHWPoison(page) , page);
6152 if (!page->mem_cgroup)
6153 return;
6156 * Nobody should be changing or seriously looking at
6157 * page->mem_cgroup at this point, we have fully
6158 * exclusive access to the page.
6161 if (ug->memcg != page->mem_cgroup) {
6162 if (ug->memcg) {
6163 uncharge_batch(ug);
6164 uncharge_gather_clear(ug);
6166 ug->memcg = page->mem_cgroup;
6169 if (!PageKmemcg(page)) {
6170 unsigned int nr_pages = 1;
6172 if (PageTransHuge(page)) {
6173 nr_pages <<= compound_order(page);
6174 ug->nr_huge += nr_pages;
6176 if (PageAnon(page))
6177 ug->nr_anon += nr_pages;
6178 else {
6179 ug->nr_file += nr_pages;
6180 if (PageSwapBacked(page))
6181 ug->nr_shmem += nr_pages;
6183 ug->pgpgout++;
6184 } else {
6185 ug->nr_kmem += 1 << compound_order(page);
6186 __ClearPageKmemcg(page);
6189 ug->dummy_page = page;
6190 page->mem_cgroup = NULL;
6193 static void uncharge_list(struct list_head *page_list)
6195 struct uncharge_gather ug;
6196 struct list_head *next;
6198 uncharge_gather_clear(&ug);
6201 * Note that the list can be a single page->lru; hence the
6202 * do-while loop instead of a simple list_for_each_entry().
6204 next = page_list->next;
6205 do {
6206 struct page *page;
6208 page = list_entry(next, struct page, lru);
6209 next = page->lru.next;
6211 uncharge_page(page, &ug);
6212 } while (next != page_list);
6214 if (ug.memcg)
6215 uncharge_batch(&ug);
6219 * mem_cgroup_uncharge - uncharge a page
6220 * @page: page to uncharge
6222 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6223 * mem_cgroup_commit_charge().
6225 void mem_cgroup_uncharge(struct page *page)
6227 struct uncharge_gather ug;
6229 if (mem_cgroup_disabled())
6230 return;
6232 /* Don't touch page->lru of any random page, pre-check: */
6233 if (!page->mem_cgroup)
6234 return;
6236 uncharge_gather_clear(&ug);
6237 uncharge_page(page, &ug);
6238 uncharge_batch(&ug);
6242 * mem_cgroup_uncharge_list - uncharge a list of page
6243 * @page_list: list of pages to uncharge
6245 * Uncharge a list of pages previously charged with
6246 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6248 void mem_cgroup_uncharge_list(struct list_head *page_list)
6250 if (mem_cgroup_disabled())
6251 return;
6253 if (!list_empty(page_list))
6254 uncharge_list(page_list);
6258 * mem_cgroup_migrate - charge a page's replacement
6259 * @oldpage: currently circulating page
6260 * @newpage: replacement page
6262 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6263 * be uncharged upon free.
6265 * Both pages must be locked, @newpage->mapping must be set up.
6267 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6269 struct mem_cgroup *memcg;
6270 unsigned int nr_pages;
6271 bool compound;
6272 unsigned long flags;
6274 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6275 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6276 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6277 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6278 newpage);
6280 if (mem_cgroup_disabled())
6281 return;
6283 /* Page cache replacement: new page already charged? */
6284 if (newpage->mem_cgroup)
6285 return;
6287 /* Swapcache readahead pages can get replaced before being charged */
6288 memcg = oldpage->mem_cgroup;
6289 if (!memcg)
6290 return;
6292 /* Force-charge the new page. The old one will be freed soon */
6293 compound = PageTransHuge(newpage);
6294 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6296 page_counter_charge(&memcg->memory, nr_pages);
6297 if (do_memsw_account())
6298 page_counter_charge(&memcg->memsw, nr_pages);
6299 css_get_many(&memcg->css, nr_pages);
6301 commit_charge(newpage, memcg, false);
6303 local_irq_save(flags);
6304 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6305 memcg_check_events(memcg, newpage);
6306 local_irq_restore(flags);
6309 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6310 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6312 void mem_cgroup_sk_alloc(struct sock *sk)
6314 struct mem_cgroup *memcg;
6316 if (!mem_cgroup_sockets_enabled)
6317 return;
6319 /* Do not associate the sock with unrelated interrupted task's memcg. */
6320 if (in_interrupt())
6321 return;
6323 rcu_read_lock();
6324 memcg = mem_cgroup_from_task(current);
6325 if (memcg == root_mem_cgroup)
6326 goto out;
6327 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6328 goto out;
6329 if (css_tryget_online(&memcg->css))
6330 sk->sk_memcg = memcg;
6331 out:
6332 rcu_read_unlock();
6335 void mem_cgroup_sk_free(struct sock *sk)
6337 if (sk->sk_memcg)
6338 css_put(&sk->sk_memcg->css);
6342 * mem_cgroup_charge_skmem - charge socket memory
6343 * @memcg: memcg to charge
6344 * @nr_pages: number of pages to charge
6346 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6347 * @memcg's configured limit, %false if the charge had to be forced.
6349 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6351 gfp_t gfp_mask = GFP_KERNEL;
6353 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6354 struct page_counter *fail;
6356 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6357 memcg->tcpmem_pressure = 0;
6358 return true;
6360 page_counter_charge(&memcg->tcpmem, nr_pages);
6361 memcg->tcpmem_pressure = 1;
6362 return false;
6365 /* Don't block in the packet receive path */
6366 if (in_softirq())
6367 gfp_mask = GFP_NOWAIT;
6369 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6371 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6372 return true;
6374 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6375 return false;
6379 * mem_cgroup_uncharge_skmem - uncharge socket memory
6380 * @memcg: memcg to uncharge
6381 * @nr_pages: number of pages to uncharge
6383 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6385 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6386 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6387 return;
6390 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6392 refill_stock(memcg, nr_pages);
6395 static int __init cgroup_memory(char *s)
6397 char *token;
6399 while ((token = strsep(&s, ",")) != NULL) {
6400 if (!*token)
6401 continue;
6402 if (!strcmp(token, "nosocket"))
6403 cgroup_memory_nosocket = true;
6404 if (!strcmp(token, "nokmem"))
6405 cgroup_memory_nokmem = true;
6407 return 0;
6409 __setup("cgroup.memory=", cgroup_memory);
6412 * subsys_initcall() for memory controller.
6414 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6415 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6416 * basically everything that doesn't depend on a specific mem_cgroup structure
6417 * should be initialized from here.
6419 static int __init mem_cgroup_init(void)
6421 int cpu, node;
6423 #ifdef CONFIG_MEMCG_KMEM
6425 * Kmem cache creation is mostly done with the slab_mutex held,
6426 * so use a workqueue with limited concurrency to avoid stalling
6427 * all worker threads in case lots of cgroups are created and
6428 * destroyed simultaneously.
6430 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6431 BUG_ON(!memcg_kmem_cache_wq);
6432 #endif
6434 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6435 memcg_hotplug_cpu_dead);
6437 for_each_possible_cpu(cpu)
6438 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6439 drain_local_stock);
6441 for_each_node(node) {
6442 struct mem_cgroup_tree_per_node *rtpn;
6444 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6445 node_online(node) ? node : NUMA_NO_NODE);
6447 rtpn->rb_root = RB_ROOT;
6448 rtpn->rb_rightmost = NULL;
6449 spin_lock_init(&rtpn->lock);
6450 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6453 return 0;
6455 subsys_initcall(mem_cgroup_init);
6457 #ifdef CONFIG_MEMCG_SWAP
6458 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6460 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6462 * The root cgroup cannot be destroyed, so it's refcount must
6463 * always be >= 1.
6465 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6466 VM_BUG_ON(1);
6467 break;
6469 memcg = parent_mem_cgroup(memcg);
6470 if (!memcg)
6471 memcg = root_mem_cgroup;
6473 return memcg;
6477 * mem_cgroup_swapout - transfer a memsw charge to swap
6478 * @page: page whose memsw charge to transfer
6479 * @entry: swap entry to move the charge to
6481 * Transfer the memsw charge of @page to @entry.
6483 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6485 struct mem_cgroup *memcg, *swap_memcg;
6486 unsigned int nr_entries;
6487 unsigned short oldid;
6489 VM_BUG_ON_PAGE(PageLRU(page), page);
6490 VM_BUG_ON_PAGE(page_count(page), page);
6492 if (!do_memsw_account())
6493 return;
6495 memcg = page->mem_cgroup;
6497 /* Readahead page, never charged */
6498 if (!memcg)
6499 return;
6502 * In case the memcg owning these pages has been offlined and doesn't
6503 * have an ID allocated to it anymore, charge the closest online
6504 * ancestor for the swap instead and transfer the memory+swap charge.
6506 swap_memcg = mem_cgroup_id_get_online(memcg);
6507 nr_entries = hpage_nr_pages(page);
6508 /* Get references for the tail pages, too */
6509 if (nr_entries > 1)
6510 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6511 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6512 nr_entries);
6513 VM_BUG_ON_PAGE(oldid, page);
6514 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6516 page->mem_cgroup = NULL;
6518 if (!mem_cgroup_is_root(memcg))
6519 page_counter_uncharge(&memcg->memory, nr_entries);
6521 if (memcg != swap_memcg) {
6522 if (!mem_cgroup_is_root(swap_memcg))
6523 page_counter_charge(&swap_memcg->memsw, nr_entries);
6524 page_counter_uncharge(&memcg->memsw, nr_entries);
6528 * Interrupts should be disabled here because the caller holds the
6529 * i_pages lock which is taken with interrupts-off. It is
6530 * important here to have the interrupts disabled because it is the
6531 * only synchronisation we have for updating the per-CPU variables.
6533 VM_BUG_ON(!irqs_disabled());
6534 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6535 -nr_entries);
6536 memcg_check_events(memcg, page);
6538 if (!mem_cgroup_is_root(memcg))
6539 css_put_many(&memcg->css, nr_entries);
6543 * mem_cgroup_try_charge_swap - try charging swap space for a page
6544 * @page: page being added to swap
6545 * @entry: swap entry to charge
6547 * Try to charge @page's memcg for the swap space at @entry.
6549 * Returns 0 on success, -ENOMEM on failure.
6551 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6553 unsigned int nr_pages = hpage_nr_pages(page);
6554 struct page_counter *counter;
6555 struct mem_cgroup *memcg;
6556 unsigned short oldid;
6558 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6559 return 0;
6561 memcg = page->mem_cgroup;
6563 /* Readahead page, never charged */
6564 if (!memcg)
6565 return 0;
6567 if (!entry.val) {
6568 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6569 return 0;
6572 memcg = mem_cgroup_id_get_online(memcg);
6574 if (!mem_cgroup_is_root(memcg) &&
6575 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6576 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6577 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6578 mem_cgroup_id_put(memcg);
6579 return -ENOMEM;
6582 /* Get references for the tail pages, too */
6583 if (nr_pages > 1)
6584 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6585 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6586 VM_BUG_ON_PAGE(oldid, page);
6587 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6589 return 0;
6593 * mem_cgroup_uncharge_swap - uncharge swap space
6594 * @entry: swap entry to uncharge
6595 * @nr_pages: the amount of swap space to uncharge
6597 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6599 struct mem_cgroup *memcg;
6600 unsigned short id;
6602 if (!do_swap_account)
6603 return;
6605 id = swap_cgroup_record(entry, 0, nr_pages);
6606 rcu_read_lock();
6607 memcg = mem_cgroup_from_id(id);
6608 if (memcg) {
6609 if (!mem_cgroup_is_root(memcg)) {
6610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6611 page_counter_uncharge(&memcg->swap, nr_pages);
6612 else
6613 page_counter_uncharge(&memcg->memsw, nr_pages);
6615 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6616 mem_cgroup_id_put_many(memcg, nr_pages);
6618 rcu_read_unlock();
6621 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6623 long nr_swap_pages = get_nr_swap_pages();
6625 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6626 return nr_swap_pages;
6627 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6628 nr_swap_pages = min_t(long, nr_swap_pages,
6629 READ_ONCE(memcg->swap.max) -
6630 page_counter_read(&memcg->swap));
6631 return nr_swap_pages;
6634 bool mem_cgroup_swap_full(struct page *page)
6636 struct mem_cgroup *memcg;
6638 VM_BUG_ON_PAGE(!PageLocked(page), page);
6640 if (vm_swap_full())
6641 return true;
6642 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6643 return false;
6645 memcg = page->mem_cgroup;
6646 if (!memcg)
6647 return false;
6649 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6650 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6651 return true;
6653 return false;
6656 /* for remember boot option*/
6657 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6658 static int really_do_swap_account __initdata = 1;
6659 #else
6660 static int really_do_swap_account __initdata;
6661 #endif
6663 static int __init enable_swap_account(char *s)
6665 if (!strcmp(s, "1"))
6666 really_do_swap_account = 1;
6667 else if (!strcmp(s, "0"))
6668 really_do_swap_account = 0;
6669 return 1;
6671 __setup("swapaccount=", enable_swap_account);
6673 static u64 swap_current_read(struct cgroup_subsys_state *css,
6674 struct cftype *cft)
6676 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6678 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6681 static int swap_max_show(struct seq_file *m, void *v)
6683 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6684 unsigned long max = READ_ONCE(memcg->swap.max);
6686 if (max == PAGE_COUNTER_MAX)
6687 seq_puts(m, "max\n");
6688 else
6689 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6691 return 0;
6694 static ssize_t swap_max_write(struct kernfs_open_file *of,
6695 char *buf, size_t nbytes, loff_t off)
6697 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6698 unsigned long max;
6699 int err;
6701 buf = strstrip(buf);
6702 err = page_counter_memparse(buf, "max", &max);
6703 if (err)
6704 return err;
6706 xchg(&memcg->swap.max, max);
6708 return nbytes;
6711 static int swap_events_show(struct seq_file *m, void *v)
6713 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6715 seq_printf(m, "max %lu\n",
6716 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6717 seq_printf(m, "fail %lu\n",
6718 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6720 return 0;
6723 static struct cftype swap_files[] = {
6725 .name = "swap.current",
6726 .flags = CFTYPE_NOT_ON_ROOT,
6727 .read_u64 = swap_current_read,
6730 .name = "swap.max",
6731 .flags = CFTYPE_NOT_ON_ROOT,
6732 .seq_show = swap_max_show,
6733 .write = swap_max_write,
6736 .name = "swap.events",
6737 .flags = CFTYPE_NOT_ON_ROOT,
6738 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6739 .seq_show = swap_events_show,
6741 { } /* terminate */
6744 static struct cftype memsw_cgroup_files[] = {
6746 .name = "memsw.usage_in_bytes",
6747 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6748 .read_u64 = mem_cgroup_read_u64,
6751 .name = "memsw.max_usage_in_bytes",
6752 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6753 .write = mem_cgroup_reset,
6754 .read_u64 = mem_cgroup_read_u64,
6757 .name = "memsw.limit_in_bytes",
6758 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6759 .write = mem_cgroup_write,
6760 .read_u64 = mem_cgroup_read_u64,
6763 .name = "memsw.failcnt",
6764 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6765 .write = mem_cgroup_reset,
6766 .read_u64 = mem_cgroup_read_u64,
6768 { }, /* terminate */
6771 static int __init mem_cgroup_swap_init(void)
6773 if (!mem_cgroup_disabled() && really_do_swap_account) {
6774 do_swap_account = 1;
6775 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6776 swap_files));
6777 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6778 memsw_cgroup_files));
6780 return 0;
6782 subsys_initcall(mem_cgroup_swap_init);
6784 #endif /* CONFIG_MEMCG_SWAP */