4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr
;
90 EXPORT_SYMBOL(max_mapnr
);
93 EXPORT_SYMBOL(mem_map
);
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104 EXPORT_SYMBOL(high_memory
);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly
=
113 #ifdef CONFIG_COMPAT_BRK
119 #ifndef arch_faults_on_old_pte
120 static inline bool arch_faults_on_old_pte(void)
123 * Those arches which don't have hw access flag feature need to
124 * implement their own helper. By default, "true" means pagefault
125 * will be hit on old pte.
131 static int __init
disable_randmaps(char *s
)
133 randomize_va_space
= 0;
136 __setup("norandmaps", disable_randmaps
);
138 unsigned long zero_pfn __read_mostly
;
139 EXPORT_SYMBOL(zero_pfn
);
141 unsigned long highest_memmap_pfn __read_mostly
;
144 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
146 static int __init
init_zero_pfn(void)
148 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
151 core_initcall(init_zero_pfn
);
154 #if defined(SPLIT_RSS_COUNTING)
156 void sync_mm_rss(struct mm_struct
*mm
)
160 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
161 if (current
->rss_stat
.count
[i
]) {
162 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
163 current
->rss_stat
.count
[i
] = 0;
166 current
->rss_stat
.events
= 0;
169 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
171 struct task_struct
*task
= current
;
173 if (likely(task
->mm
== mm
))
174 task
->rss_stat
.count
[member
] += val
;
176 add_mm_counter(mm
, member
, val
);
178 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
179 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
181 /* sync counter once per 64 page faults */
182 #define TASK_RSS_EVENTS_THRESH (64)
183 static void check_sync_rss_stat(struct task_struct
*task
)
185 if (unlikely(task
!= current
))
187 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
188 sync_mm_rss(task
->mm
);
190 #else /* SPLIT_RSS_COUNTING */
192 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
193 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
195 static void check_sync_rss_stat(struct task_struct
*task
)
199 #endif /* SPLIT_RSS_COUNTING */
201 #ifdef HAVE_GENERIC_MMU_GATHER
203 static bool tlb_next_batch(struct mmu_gather
*tlb
)
205 struct mmu_gather_batch
*batch
;
209 tlb
->active
= batch
->next
;
213 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
216 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
223 batch
->max
= MAX_GATHER_BATCH
;
225 tlb
->active
->next
= batch
;
231 void arch_tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
232 unsigned long start
, unsigned long end
)
236 /* Is it from 0 to ~0? */
237 tlb
->fullmm
= !(start
| (end
+1));
238 tlb
->need_flush_all
= 0;
239 tlb
->local
.next
= NULL
;
241 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
242 tlb
->active
= &tlb
->local
;
243 tlb
->batch_count
= 0;
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 __tlb_reset_range(tlb
);
253 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
255 struct mmu_gather_batch
*batch
;
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258 tlb_table_flush(tlb
);
260 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
261 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
264 tlb
->active
= &tlb
->local
;
267 void tlb_flush_mmu(struct mmu_gather
*tlb
)
269 tlb_flush_mmu_tlbonly(tlb
);
270 tlb_flush_mmu_free(tlb
);
274 * Called at the end of the shootdown operation to free up any resources
275 * that were required.
277 void arch_tlb_finish_mmu(struct mmu_gather
*tlb
,
278 unsigned long start
, unsigned long end
, bool force
)
280 struct mmu_gather_batch
*batch
, *next
;
283 __tlb_adjust_range(tlb
, start
, end
- start
);
287 /* keep the page table cache within bounds */
290 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
292 free_pages((unsigned long)batch
, 0);
294 tlb
->local
.next
= NULL
;
298 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
299 * handling the additional races in SMP caused by other CPUs caching valid
300 * mappings in their TLBs. Returns the number of free page slots left.
301 * When out of page slots we must call tlb_flush_mmu().
302 *returns true if the caller should flush.
304 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
306 struct mmu_gather_batch
*batch
;
308 VM_BUG_ON(!tlb
->end
);
309 VM_WARN_ON(tlb
->page_size
!= page_size
);
313 * Add the page and check if we are full. If so
316 batch
->pages
[batch
->nr
++] = page
;
317 if (batch
->nr
== batch
->max
) {
318 if (!tlb_next_batch(tlb
))
322 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
327 #endif /* HAVE_GENERIC_MMU_GATHER */
329 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
332 * See the comment near struct mmu_table_batch.
336 * If we want tlb_remove_table() to imply TLB invalidates.
338 static inline void tlb_table_invalidate(struct mmu_gather
*tlb
)
340 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
342 * Invalidate page-table caches used by hardware walkers. Then we still
343 * need to RCU-sched wait while freeing the pages because software
344 * walkers can still be in-flight.
346 tlb_flush_mmu_tlbonly(tlb
);
350 static void tlb_remove_table_smp_sync(void *arg
)
352 /* Simply deliver the interrupt */
355 static void tlb_remove_table_one(void *table
)
358 * This isn't an RCU grace period and hence the page-tables cannot be
359 * assumed to be actually RCU-freed.
361 * It is however sufficient for software page-table walkers that rely on
362 * IRQ disabling. See the comment near struct mmu_table_batch.
364 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
365 __tlb_remove_table(table
);
368 static void tlb_remove_table_rcu(struct rcu_head
*head
)
370 struct mmu_table_batch
*batch
;
373 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
375 for (i
= 0; i
< batch
->nr
; i
++)
376 __tlb_remove_table(batch
->tables
[i
]);
378 free_page((unsigned long)batch
);
381 void tlb_table_flush(struct mmu_gather
*tlb
)
383 struct mmu_table_batch
**batch
= &tlb
->batch
;
386 tlb_table_invalidate(tlb
);
387 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
392 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
394 struct mmu_table_batch
**batch
= &tlb
->batch
;
396 if (*batch
== NULL
) {
397 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
398 if (*batch
== NULL
) {
399 tlb_table_invalidate(tlb
);
400 tlb_remove_table_one(table
);
406 (*batch
)->tables
[(*batch
)->nr
++] = table
;
407 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
408 tlb_table_flush(tlb
);
411 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
414 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
415 * @tlb: the mmu_gather structure to initialize
416 * @mm: the mm_struct of the target address space
417 * @start: start of the region that will be removed from the page-table
418 * @end: end of the region that will be removed from the page-table
420 * Called to initialize an (on-stack) mmu_gather structure for page-table
421 * tear-down from @mm. The @start and @end are set to 0 and -1
422 * respectively when @mm is without users and we're going to destroy
423 * the full address space (exit/execve).
425 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
426 unsigned long start
, unsigned long end
)
428 arch_tlb_gather_mmu(tlb
, mm
, start
, end
);
429 inc_tlb_flush_pending(tlb
->mm
);
432 void tlb_finish_mmu(struct mmu_gather
*tlb
,
433 unsigned long start
, unsigned long end
)
436 * If there are parallel threads are doing PTE changes on same range
437 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
438 * flush by batching, a thread has stable TLB entry can fail to flush
439 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
440 * forcefully if we detect parallel PTE batching threads.
442 bool force
= mm_tlb_flush_nested(tlb
->mm
);
444 arch_tlb_finish_mmu(tlb
, start
, end
, force
);
445 dec_tlb_flush_pending(tlb
->mm
);
449 * Note: this doesn't free the actual pages themselves. That
450 * has been handled earlier when unmapping all the memory regions.
452 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
455 pgtable_t token
= pmd_pgtable(*pmd
);
457 pte_free_tlb(tlb
, token
, addr
);
458 mm_dec_nr_ptes(tlb
->mm
);
461 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
462 unsigned long addr
, unsigned long end
,
463 unsigned long floor
, unsigned long ceiling
)
470 pmd
= pmd_offset(pud
, addr
);
472 next
= pmd_addr_end(addr
, end
);
473 if (pmd_none_or_clear_bad(pmd
))
475 free_pte_range(tlb
, pmd
, addr
);
476 } while (pmd
++, addr
= next
, addr
!= end
);
486 if (end
- 1 > ceiling
- 1)
489 pmd
= pmd_offset(pud
, start
);
491 pmd_free_tlb(tlb
, pmd
, start
);
492 mm_dec_nr_pmds(tlb
->mm
);
495 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
496 unsigned long addr
, unsigned long end
,
497 unsigned long floor
, unsigned long ceiling
)
504 pud
= pud_offset(p4d
, addr
);
506 next
= pud_addr_end(addr
, end
);
507 if (pud_none_or_clear_bad(pud
))
509 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
510 } while (pud
++, addr
= next
, addr
!= end
);
520 if (end
- 1 > ceiling
- 1)
523 pud
= pud_offset(p4d
, start
);
525 pud_free_tlb(tlb
, pud
, start
);
526 mm_dec_nr_puds(tlb
->mm
);
529 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
530 unsigned long addr
, unsigned long end
,
531 unsigned long floor
, unsigned long ceiling
)
538 p4d
= p4d_offset(pgd
, addr
);
540 next
= p4d_addr_end(addr
, end
);
541 if (p4d_none_or_clear_bad(p4d
))
543 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
544 } while (p4d
++, addr
= next
, addr
!= end
);
550 ceiling
&= PGDIR_MASK
;
554 if (end
- 1 > ceiling
- 1)
557 p4d
= p4d_offset(pgd
, start
);
559 p4d_free_tlb(tlb
, p4d
, start
);
563 * This function frees user-level page tables of a process.
565 void free_pgd_range(struct mmu_gather
*tlb
,
566 unsigned long addr
, unsigned long end
,
567 unsigned long floor
, unsigned long ceiling
)
573 * The next few lines have given us lots of grief...
575 * Why are we testing PMD* at this top level? Because often
576 * there will be no work to do at all, and we'd prefer not to
577 * go all the way down to the bottom just to discover that.
579 * Why all these "- 1"s? Because 0 represents both the bottom
580 * of the address space and the top of it (using -1 for the
581 * top wouldn't help much: the masks would do the wrong thing).
582 * The rule is that addr 0 and floor 0 refer to the bottom of
583 * the address space, but end 0 and ceiling 0 refer to the top
584 * Comparisons need to use "end - 1" and "ceiling - 1" (though
585 * that end 0 case should be mythical).
587 * Wherever addr is brought up or ceiling brought down, we must
588 * be careful to reject "the opposite 0" before it confuses the
589 * subsequent tests. But what about where end is brought down
590 * by PMD_SIZE below? no, end can't go down to 0 there.
592 * Whereas we round start (addr) and ceiling down, by different
593 * masks at different levels, in order to test whether a table
594 * now has no other vmas using it, so can be freed, we don't
595 * bother to round floor or end up - the tests don't need that.
609 if (end
- 1 > ceiling
- 1)
614 * We add page table cache pages with PAGE_SIZE,
615 * (see pte_free_tlb()), flush the tlb if we need
617 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
618 pgd
= pgd_offset(tlb
->mm
, addr
);
620 next
= pgd_addr_end(addr
, end
);
621 if (pgd_none_or_clear_bad(pgd
))
623 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
624 } while (pgd
++, addr
= next
, addr
!= end
);
627 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
628 unsigned long floor
, unsigned long ceiling
)
631 struct vm_area_struct
*next
= vma
->vm_next
;
632 unsigned long addr
= vma
->vm_start
;
635 * Hide vma from rmap and truncate_pagecache before freeing
638 unlink_anon_vmas(vma
);
639 unlink_file_vma(vma
);
641 if (is_vm_hugetlb_page(vma
)) {
642 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
643 floor
, next
? next
->vm_start
: ceiling
);
646 * Optimization: gather nearby vmas into one call down
648 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
649 && !is_vm_hugetlb_page(next
)) {
652 unlink_anon_vmas(vma
);
653 unlink_file_vma(vma
);
655 free_pgd_range(tlb
, addr
, vma
->vm_end
,
656 floor
, next
? next
->vm_start
: ceiling
);
662 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
665 pgtable_t
new = pte_alloc_one(mm
, address
);
670 * Ensure all pte setup (eg. pte page lock and page clearing) are
671 * visible before the pte is made visible to other CPUs by being
672 * put into page tables.
674 * The other side of the story is the pointer chasing in the page
675 * table walking code (when walking the page table without locking;
676 * ie. most of the time). Fortunately, these data accesses consist
677 * of a chain of data-dependent loads, meaning most CPUs (alpha
678 * being the notable exception) will already guarantee loads are
679 * seen in-order. See the alpha page table accessors for the
680 * smp_read_barrier_depends() barriers in page table walking code.
682 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
684 ptl
= pmd_lock(mm
, pmd
);
685 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
687 pmd_populate(mm
, pmd
, new);
696 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
698 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
702 smp_wmb(); /* See comment in __pte_alloc */
704 spin_lock(&init_mm
.page_table_lock
);
705 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
706 pmd_populate_kernel(&init_mm
, pmd
, new);
709 spin_unlock(&init_mm
.page_table_lock
);
711 pte_free_kernel(&init_mm
, new);
715 static inline void init_rss_vec(int *rss
)
717 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
720 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
724 if (current
->mm
== mm
)
726 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
728 add_mm_counter(mm
, i
, rss
[i
]);
732 * This function is called to print an error when a bad pte
733 * is found. For example, we might have a PFN-mapped pte in
734 * a region that doesn't allow it.
736 * The calling function must still handle the error.
738 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
739 pte_t pte
, struct page
*page
)
741 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
742 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
743 pud_t
*pud
= pud_offset(p4d
, addr
);
744 pmd_t
*pmd
= pmd_offset(pud
, addr
);
745 struct address_space
*mapping
;
747 static unsigned long resume
;
748 static unsigned long nr_shown
;
749 static unsigned long nr_unshown
;
752 * Allow a burst of 60 reports, then keep quiet for that minute;
753 * or allow a steady drip of one report per second.
755 if (nr_shown
== 60) {
756 if (time_before(jiffies
, resume
)) {
761 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
768 resume
= jiffies
+ 60 * HZ
;
770 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
771 index
= linear_page_index(vma
, addr
);
773 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
775 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
777 dump_page(page
, "bad pte");
778 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
779 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
780 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
782 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
783 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
784 mapping
? mapping
->a_ops
->readpage
: NULL
);
786 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
790 * vm_normal_page -- This function gets the "struct page" associated with a pte.
792 * "Special" mappings do not wish to be associated with a "struct page" (either
793 * it doesn't exist, or it exists but they don't want to touch it). In this
794 * case, NULL is returned here. "Normal" mappings do have a struct page.
796 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
797 * pte bit, in which case this function is trivial. Secondly, an architecture
798 * may not have a spare pte bit, which requires a more complicated scheme,
801 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
802 * special mapping (even if there are underlying and valid "struct pages").
803 * COWed pages of a VM_PFNMAP are always normal.
805 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
806 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
807 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
808 * mapping will always honor the rule
810 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
812 * And for normal mappings this is false.
814 * This restricts such mappings to be a linear translation from virtual address
815 * to pfn. To get around this restriction, we allow arbitrary mappings so long
816 * as the vma is not a COW mapping; in that case, we know that all ptes are
817 * special (because none can have been COWed).
820 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
822 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
823 * page" backing, however the difference is that _all_ pages with a struct
824 * page (that is, those where pfn_valid is true) are refcounted and considered
825 * normal pages by the VM. The disadvantage is that pages are refcounted
826 * (which can be slower and simply not an option for some PFNMAP users). The
827 * advantage is that we don't have to follow the strict linearity rule of
828 * PFNMAP mappings in order to support COWable mappings.
831 struct page
*_vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
832 pte_t pte
, bool with_public_device
)
834 unsigned long pfn
= pte_pfn(pte
);
836 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
837 if (likely(!pte_special(pte
)))
839 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
840 return vma
->vm_ops
->find_special_page(vma
, addr
);
841 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
843 if (is_zero_pfn(pfn
))
847 * Device public pages are special pages (they are ZONE_DEVICE
848 * pages but different from persistent memory). They behave
849 * allmost like normal pages. The difference is that they are
850 * not on the lru and thus should never be involve with any-
851 * thing that involve lru manipulation (mlock, numa balancing,
854 * This is why we still want to return NULL for such page from
855 * vm_normal_page() so that we do not have to special case all
856 * call site of vm_normal_page().
858 if (likely(pfn
<= highest_memmap_pfn
)) {
859 struct page
*page
= pfn_to_page(pfn
);
861 if (is_device_public_page(page
)) {
862 if (with_public_device
)
871 print_bad_pte(vma
, addr
, pte
, NULL
);
875 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
877 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
878 if (vma
->vm_flags
& VM_MIXEDMAP
) {
884 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
885 if (pfn
== vma
->vm_pgoff
+ off
)
887 if (!is_cow_mapping(vma
->vm_flags
))
892 if (is_zero_pfn(pfn
))
896 if (unlikely(pfn
> highest_memmap_pfn
)) {
897 print_bad_pte(vma
, addr
, pte
, NULL
);
902 * NOTE! We still have PageReserved() pages in the page tables.
903 * eg. VDSO mappings can cause them to exist.
906 return pfn_to_page(pfn
);
909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
910 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
913 unsigned long pfn
= pmd_pfn(pmd
);
916 * There is no pmd_special() but there may be special pmds, e.g.
917 * in a direct-access (dax) mapping, so let's just replicate the
918 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
920 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
921 if (vma
->vm_flags
& VM_MIXEDMAP
) {
927 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
928 if (pfn
== vma
->vm_pgoff
+ off
)
930 if (!is_cow_mapping(vma
->vm_flags
))
937 if (is_zero_pfn(pfn
))
939 if (unlikely(pfn
> highest_memmap_pfn
))
943 * NOTE! We still have PageReserved() pages in the page tables.
944 * eg. VDSO mappings can cause them to exist.
947 return pfn_to_page(pfn
);
952 * copy one vm_area from one task to the other. Assumes the page tables
953 * already present in the new task to be cleared in the whole range
954 * covered by this vma.
957 static inline unsigned long
958 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
959 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
960 unsigned long addr
, int *rss
)
962 unsigned long vm_flags
= vma
->vm_flags
;
963 pte_t pte
= *src_pte
;
966 /* pte contains position in swap or file, so copy. */
967 if (unlikely(!pte_present(pte
))) {
968 swp_entry_t entry
= pte_to_swp_entry(pte
);
970 if (likely(!non_swap_entry(entry
))) {
971 if (swap_duplicate(entry
) < 0)
974 /* make sure dst_mm is on swapoff's mmlist. */
975 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
976 spin_lock(&mmlist_lock
);
977 if (list_empty(&dst_mm
->mmlist
))
978 list_add(&dst_mm
->mmlist
,
980 spin_unlock(&mmlist_lock
);
983 } else if (is_migration_entry(entry
)) {
984 page
= migration_entry_to_page(entry
);
986 rss
[mm_counter(page
)]++;
988 if (is_write_migration_entry(entry
) &&
989 is_cow_mapping(vm_flags
)) {
991 * COW mappings require pages in both
992 * parent and child to be set to read.
994 make_migration_entry_read(&entry
);
995 pte
= swp_entry_to_pte(entry
);
996 if (pte_swp_soft_dirty(*src_pte
))
997 pte
= pte_swp_mksoft_dirty(pte
);
998 set_pte_at(src_mm
, addr
, src_pte
, pte
);
1000 } else if (is_device_private_entry(entry
)) {
1001 page
= device_private_entry_to_page(entry
);
1004 * Update rss count even for unaddressable pages, as
1005 * they should treated just like normal pages in this
1008 * We will likely want to have some new rss counters
1009 * for unaddressable pages, at some point. But for now
1010 * keep things as they are.
1013 rss
[mm_counter(page
)]++;
1014 page_dup_rmap(page
, false);
1017 * We do not preserve soft-dirty information, because so
1018 * far, checkpoint/restore is the only feature that
1019 * requires that. And checkpoint/restore does not work
1020 * when a device driver is involved (you cannot easily
1021 * save and restore device driver state).
1023 if (is_write_device_private_entry(entry
) &&
1024 is_cow_mapping(vm_flags
)) {
1025 make_device_private_entry_read(&entry
);
1026 pte
= swp_entry_to_pte(entry
);
1027 set_pte_at(src_mm
, addr
, src_pte
, pte
);
1034 * If it's a COW mapping, write protect it both
1035 * in the parent and the child
1037 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
1038 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
1039 pte
= pte_wrprotect(pte
);
1043 * If it's a shared mapping, mark it clean in
1046 if (vm_flags
& VM_SHARED
)
1047 pte
= pte_mkclean(pte
);
1048 pte
= pte_mkold(pte
);
1050 page
= vm_normal_page(vma
, addr
, pte
);
1053 page_dup_rmap(page
, false);
1054 rss
[mm_counter(page
)]++;
1055 } else if (pte_devmap(pte
)) {
1056 page
= pte_page(pte
);
1059 * Cache coherent device memory behave like regular page and
1060 * not like persistent memory page. For more informations see
1061 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1063 if (is_device_public_page(page
)) {
1065 page_dup_rmap(page
, false);
1066 rss
[mm_counter(page
)]++;
1071 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
1075 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1076 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
1077 unsigned long addr
, unsigned long end
)
1079 pte_t
*orig_src_pte
, *orig_dst_pte
;
1080 pte_t
*src_pte
, *dst_pte
;
1081 spinlock_t
*src_ptl
, *dst_ptl
;
1083 int rss
[NR_MM_COUNTERS
];
1084 swp_entry_t entry
= (swp_entry_t
){0};
1089 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
1092 src_pte
= pte_offset_map(src_pmd
, addr
);
1093 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
1094 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1095 orig_src_pte
= src_pte
;
1096 orig_dst_pte
= dst_pte
;
1097 arch_enter_lazy_mmu_mode();
1101 * We are holding two locks at this point - either of them
1102 * could generate latencies in another task on another CPU.
1104 if (progress
>= 32) {
1106 if (need_resched() ||
1107 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
1110 if (pte_none(*src_pte
)) {
1114 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
1119 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1121 arch_leave_lazy_mmu_mode();
1122 spin_unlock(src_ptl
);
1123 pte_unmap(orig_src_pte
);
1124 add_mm_rss_vec(dst_mm
, rss
);
1125 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
1129 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
1138 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1139 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
1140 unsigned long addr
, unsigned long end
)
1142 pmd_t
*src_pmd
, *dst_pmd
;
1145 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1148 src_pmd
= pmd_offset(src_pud
, addr
);
1150 next
= pmd_addr_end(addr
, end
);
1151 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
1152 || pmd_devmap(*src_pmd
)) {
1154 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
1155 err
= copy_huge_pmd(dst_mm
, src_mm
,
1156 dst_pmd
, src_pmd
, addr
, vma
);
1163 if (pmd_none_or_clear_bad(src_pmd
))
1165 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1168 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1172 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1173 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
1174 unsigned long addr
, unsigned long end
)
1176 pud_t
*src_pud
, *dst_pud
;
1179 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
1182 src_pud
= pud_offset(src_p4d
, addr
);
1184 next
= pud_addr_end(addr
, end
);
1185 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1188 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
1189 err
= copy_huge_pud(dst_mm
, src_mm
,
1190 dst_pud
, src_pud
, addr
, vma
);
1197 if (pud_none_or_clear_bad(src_pud
))
1199 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1202 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1206 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1207 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1208 unsigned long addr
, unsigned long end
)
1210 p4d_t
*src_p4d
, *dst_p4d
;
1213 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
1216 src_p4d
= p4d_offset(src_pgd
, addr
);
1218 next
= p4d_addr_end(addr
, end
);
1219 if (p4d_none_or_clear_bad(src_p4d
))
1221 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
1224 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
1228 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1229 struct vm_area_struct
*vma
)
1231 pgd_t
*src_pgd
, *dst_pgd
;
1233 unsigned long addr
= vma
->vm_start
;
1234 unsigned long end
= vma
->vm_end
;
1235 unsigned long mmun_start
; /* For mmu_notifiers */
1236 unsigned long mmun_end
; /* For mmu_notifiers */
1241 * Don't copy ptes where a page fault will fill them correctly.
1242 * Fork becomes much lighter when there are big shared or private
1243 * readonly mappings. The tradeoff is that copy_page_range is more
1244 * efficient than faulting.
1246 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1250 if (is_vm_hugetlb_page(vma
))
1251 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1253 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1255 * We do not free on error cases below as remove_vma
1256 * gets called on error from higher level routine
1258 ret
= track_pfn_copy(vma
);
1264 * We need to invalidate the secondary MMU mappings only when
1265 * there could be a permission downgrade on the ptes of the
1266 * parent mm. And a permission downgrade will only happen if
1267 * is_cow_mapping() returns true.
1269 is_cow
= is_cow_mapping(vma
->vm_flags
);
1273 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1277 dst_pgd
= pgd_offset(dst_mm
, addr
);
1278 src_pgd
= pgd_offset(src_mm
, addr
);
1280 next
= pgd_addr_end(addr
, end
);
1281 if (pgd_none_or_clear_bad(src_pgd
))
1283 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1284 vma
, addr
, next
))) {
1288 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1291 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1295 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1296 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1297 unsigned long addr
, unsigned long end
,
1298 struct zap_details
*details
)
1300 struct mm_struct
*mm
= tlb
->mm
;
1301 int force_flush
= 0;
1302 int rss
[NR_MM_COUNTERS
];
1308 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1311 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1313 flush_tlb_batched_pending(mm
);
1314 arch_enter_lazy_mmu_mode();
1317 if (pte_none(ptent
))
1320 if (pte_present(ptent
)) {
1323 page
= _vm_normal_page(vma
, addr
, ptent
, true);
1324 if (unlikely(details
) && page
) {
1326 * unmap_shared_mapping_pages() wants to
1327 * invalidate cache without truncating:
1328 * unmap shared but keep private pages.
1330 if (details
->check_mapping
&&
1331 details
->check_mapping
!= page_rmapping(page
))
1334 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1336 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1337 if (unlikely(!page
))
1340 if (!PageAnon(page
)) {
1341 if (pte_dirty(ptent
)) {
1343 set_page_dirty(page
);
1345 if (pte_young(ptent
) &&
1346 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1347 mark_page_accessed(page
);
1349 rss
[mm_counter(page
)]--;
1350 page_remove_rmap(page
, false);
1351 if (unlikely(page_mapcount(page
) < 0))
1352 print_bad_pte(vma
, addr
, ptent
, page
);
1353 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1361 entry
= pte_to_swp_entry(ptent
);
1362 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1363 struct page
*page
= device_private_entry_to_page(entry
);
1365 if (unlikely(details
&& details
->check_mapping
)) {
1367 * unmap_shared_mapping_pages() wants to
1368 * invalidate cache without truncating:
1369 * unmap shared but keep private pages.
1371 if (details
->check_mapping
!=
1372 page_rmapping(page
))
1376 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1377 rss
[mm_counter(page
)]--;
1378 page_remove_rmap(page
, false);
1383 /* If details->check_mapping, we leave swap entries. */
1384 if (unlikely(details
))
1387 entry
= pte_to_swp_entry(ptent
);
1388 if (!non_swap_entry(entry
))
1390 else if (is_migration_entry(entry
)) {
1393 page
= migration_entry_to_page(entry
);
1394 rss
[mm_counter(page
)]--;
1396 if (unlikely(!free_swap_and_cache(entry
)))
1397 print_bad_pte(vma
, addr
, ptent
, NULL
);
1398 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1399 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1401 add_mm_rss_vec(mm
, rss
);
1402 arch_leave_lazy_mmu_mode();
1404 /* Do the actual TLB flush before dropping ptl */
1406 tlb_flush_mmu_tlbonly(tlb
);
1407 pte_unmap_unlock(start_pte
, ptl
);
1410 * If we forced a TLB flush (either due to running out of
1411 * batch buffers or because we needed to flush dirty TLB
1412 * entries before releasing the ptl), free the batched
1413 * memory too. Restart if we didn't do everything.
1417 tlb_flush_mmu_free(tlb
);
1425 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1426 struct vm_area_struct
*vma
, pud_t
*pud
,
1427 unsigned long addr
, unsigned long end
,
1428 struct zap_details
*details
)
1433 pmd
= pmd_offset(pud
, addr
);
1435 next
= pmd_addr_end(addr
, end
);
1436 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1437 if (next
- addr
!= HPAGE_PMD_SIZE
)
1438 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1439 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1444 * Here there can be other concurrent MADV_DONTNEED or
1445 * trans huge page faults running, and if the pmd is
1446 * none or trans huge it can change under us. This is
1447 * because MADV_DONTNEED holds the mmap_sem in read
1450 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1452 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1455 } while (pmd
++, addr
= next
, addr
!= end
);
1460 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1461 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1462 unsigned long addr
, unsigned long end
,
1463 struct zap_details
*details
)
1468 pud
= pud_offset(p4d
, addr
);
1470 next
= pud_addr_end(addr
, end
);
1471 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1472 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1473 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1474 split_huge_pud(vma
, pud
, addr
);
1475 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1479 if (pud_none_or_clear_bad(pud
))
1481 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1484 } while (pud
++, addr
= next
, addr
!= end
);
1489 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1490 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1491 unsigned long addr
, unsigned long end
,
1492 struct zap_details
*details
)
1497 p4d
= p4d_offset(pgd
, addr
);
1499 next
= p4d_addr_end(addr
, end
);
1500 if (p4d_none_or_clear_bad(p4d
))
1502 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1503 } while (p4d
++, addr
= next
, addr
!= end
);
1508 void unmap_page_range(struct mmu_gather
*tlb
,
1509 struct vm_area_struct
*vma
,
1510 unsigned long addr
, unsigned long end
,
1511 struct zap_details
*details
)
1516 BUG_ON(addr
>= end
);
1517 tlb_start_vma(tlb
, vma
);
1518 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1520 next
= pgd_addr_end(addr
, end
);
1521 if (pgd_none_or_clear_bad(pgd
))
1523 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1524 } while (pgd
++, addr
= next
, addr
!= end
);
1525 tlb_end_vma(tlb
, vma
);
1529 static void unmap_single_vma(struct mmu_gather
*tlb
,
1530 struct vm_area_struct
*vma
, unsigned long start_addr
,
1531 unsigned long end_addr
,
1532 struct zap_details
*details
)
1534 unsigned long start
= max(vma
->vm_start
, start_addr
);
1537 if (start
>= vma
->vm_end
)
1539 end
= min(vma
->vm_end
, end_addr
);
1540 if (end
<= vma
->vm_start
)
1544 uprobe_munmap(vma
, start
, end
);
1546 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1547 untrack_pfn(vma
, 0, 0);
1550 if (unlikely(is_vm_hugetlb_page(vma
))) {
1552 * It is undesirable to test vma->vm_file as it
1553 * should be non-null for valid hugetlb area.
1554 * However, vm_file will be NULL in the error
1555 * cleanup path of mmap_region. When
1556 * hugetlbfs ->mmap method fails,
1557 * mmap_region() nullifies vma->vm_file
1558 * before calling this function to clean up.
1559 * Since no pte has actually been setup, it is
1560 * safe to do nothing in this case.
1563 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1564 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1565 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1568 unmap_page_range(tlb
, vma
, start
, end
, details
);
1573 * unmap_vmas - unmap a range of memory covered by a list of vma's
1574 * @tlb: address of the caller's struct mmu_gather
1575 * @vma: the starting vma
1576 * @start_addr: virtual address at which to start unmapping
1577 * @end_addr: virtual address at which to end unmapping
1579 * Unmap all pages in the vma list.
1581 * Only addresses between `start' and `end' will be unmapped.
1583 * The VMA list must be sorted in ascending virtual address order.
1585 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1586 * range after unmap_vmas() returns. So the only responsibility here is to
1587 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1588 * drops the lock and schedules.
1590 void unmap_vmas(struct mmu_gather
*tlb
,
1591 struct vm_area_struct
*vma
, unsigned long start_addr
,
1592 unsigned long end_addr
)
1594 struct mm_struct
*mm
= vma
->vm_mm
;
1596 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1597 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1598 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1599 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1603 * zap_page_range - remove user pages in a given range
1604 * @vma: vm_area_struct holding the applicable pages
1605 * @start: starting address of pages to zap
1606 * @size: number of bytes to zap
1608 * Caller must protect the VMA list
1610 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1613 struct mm_struct
*mm
= vma
->vm_mm
;
1614 struct mmu_gather tlb
;
1615 unsigned long end
= start
+ size
;
1618 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1619 update_hiwater_rss(mm
);
1620 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1621 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1622 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1623 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1624 tlb_finish_mmu(&tlb
, start
, end
);
1628 * zap_page_range_single - remove user pages in a given range
1629 * @vma: vm_area_struct holding the applicable pages
1630 * @address: starting address of pages to zap
1631 * @size: number of bytes to zap
1632 * @details: details of shared cache invalidation
1634 * The range must fit into one VMA.
1636 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1637 unsigned long size
, struct zap_details
*details
)
1639 struct mm_struct
*mm
= vma
->vm_mm
;
1640 struct mmu_gather tlb
;
1641 unsigned long end
= address
+ size
;
1644 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1645 update_hiwater_rss(mm
);
1646 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1647 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1648 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1649 tlb_finish_mmu(&tlb
, address
, end
);
1653 * zap_vma_ptes - remove ptes mapping the vma
1654 * @vma: vm_area_struct holding ptes to be zapped
1655 * @address: starting address of pages to zap
1656 * @size: number of bytes to zap
1658 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660 * The entire address range must be fully contained within the vma.
1663 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1666 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1667 !(vma
->vm_flags
& VM_PFNMAP
))
1670 zap_page_range_single(vma
, address
, size
, NULL
);
1672 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1674 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1682 pgd
= pgd_offset(mm
, addr
);
1683 p4d
= p4d_alloc(mm
, pgd
, addr
);
1686 pud
= pud_alloc(mm
, p4d
, addr
);
1689 pmd
= pmd_alloc(mm
, pud
, addr
);
1693 VM_BUG_ON(pmd_trans_huge(*pmd
));
1694 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1698 * This is the old fallback for page remapping.
1700 * For historical reasons, it only allows reserved pages. Only
1701 * old drivers should use this, and they needed to mark their
1702 * pages reserved for the old functions anyway.
1704 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1705 struct page
*page
, pgprot_t prot
)
1707 struct mm_struct
*mm
= vma
->vm_mm
;
1716 flush_dcache_page(page
);
1717 pte
= get_locked_pte(mm
, addr
, &ptl
);
1721 if (!pte_none(*pte
))
1724 /* Ok, finally just insert the thing.. */
1726 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1727 page_add_file_rmap(page
, false);
1728 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1731 pte_unmap_unlock(pte
, ptl
);
1734 pte_unmap_unlock(pte
, ptl
);
1740 * vm_insert_page - insert single page into user vma
1741 * @vma: user vma to map to
1742 * @addr: target user address of this page
1743 * @page: source kernel page
1745 * This allows drivers to insert individual pages they've allocated
1748 * The page has to be a nice clean _individual_ kernel allocation.
1749 * If you allocate a compound page, you need to have marked it as
1750 * such (__GFP_COMP), or manually just split the page up yourself
1751 * (see split_page()).
1753 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1754 * took an arbitrary page protection parameter. This doesn't allow
1755 * that. Your vma protection will have to be set up correctly, which
1756 * means that if you want a shared writable mapping, you'd better
1757 * ask for a shared writable mapping!
1759 * The page does not need to be reserved.
1761 * Usually this function is called from f_op->mmap() handler
1762 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1763 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1764 * function from other places, for example from page-fault handler.
1766 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1769 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1771 if (!page_count(page
))
1773 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1774 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1775 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1776 vma
->vm_flags
|= VM_MIXEDMAP
;
1778 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1780 EXPORT_SYMBOL(vm_insert_page
);
1782 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1783 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1785 struct mm_struct
*mm
= vma
->vm_mm
;
1791 pte
= get_locked_pte(mm
, addr
, &ptl
);
1795 if (!pte_none(*pte
)) {
1798 * For read faults on private mappings the PFN passed
1799 * in may not match the PFN we have mapped if the
1800 * mapped PFN is a writeable COW page. In the mkwrite
1801 * case we are creating a writable PTE for a shared
1802 * mapping and we expect the PFNs to match. If they
1803 * don't match, we are likely racing with block
1804 * allocation and mapping invalidation so just skip the
1807 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1808 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1811 entry
= pte_mkyoung(*pte
);
1812 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1813 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
1814 update_mmu_cache(vma
, addr
, pte
);
1819 /* Ok, finally just insert the thing.. */
1820 if (pfn_t_devmap(pfn
))
1821 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1823 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1826 entry
= pte_mkyoung(entry
);
1827 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1830 set_pte_at(mm
, addr
, pte
, entry
);
1831 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1835 pte_unmap_unlock(pte
, ptl
);
1841 * vm_insert_pfn - insert single pfn into user vma
1842 * @vma: user vma to map to
1843 * @addr: target user address of this page
1844 * @pfn: source kernel pfn
1846 * Similar to vm_insert_page, this allows drivers to insert individual pages
1847 * they've allocated into a user vma. Same comments apply.
1849 * This function should only be called from a vm_ops->fault handler, and
1850 * in that case the handler should return NULL.
1852 * vma cannot be a COW mapping.
1854 * As this is called only for pages that do not currently exist, we
1855 * do not need to flush old virtual caches or the TLB.
1857 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1860 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1862 EXPORT_SYMBOL(vm_insert_pfn
);
1865 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1866 * @vma: user vma to map to
1867 * @addr: target user address of this page
1868 * @pfn: source kernel pfn
1869 * @pgprot: pgprot flags for the inserted page
1871 * This is exactly like vm_insert_pfn, except that it allows drivers to
1872 * to override pgprot on a per-page basis.
1874 * This only makes sense for IO mappings, and it makes no sense for
1875 * cow mappings. In general, using multiple vmas is preferable;
1876 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1879 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1880 unsigned long pfn
, pgprot_t pgprot
)
1884 * Technically, architectures with pte_special can avoid all these
1885 * restrictions (same for remap_pfn_range). However we would like
1886 * consistency in testing and feature parity among all, so we should
1887 * try to keep these invariants in place for everybody.
1889 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1890 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1891 (VM_PFNMAP
|VM_MIXEDMAP
));
1892 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1893 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1895 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1898 if (!pfn_modify_allowed(pfn
, pgprot
))
1901 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1903 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1908 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1910 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1912 /* these checks mirror the abort conditions in vm_normal_page */
1913 if (vma
->vm_flags
& VM_MIXEDMAP
)
1915 if (pfn_t_devmap(pfn
))
1917 if (pfn_t_special(pfn
))
1919 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1924 static int __vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1925 pfn_t pfn
, bool mkwrite
)
1927 pgprot_t pgprot
= vma
->vm_page_prot
;
1929 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1931 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1934 track_pfn_insert(vma
, &pgprot
, pfn
);
1936 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1940 * If we don't have pte special, then we have to use the pfn_valid()
1941 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1942 * refcount the page if pfn_valid is true (hence insert_page rather
1943 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1944 * without pte special, it would there be refcounted as a normal page.
1946 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1947 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1951 * At this point we are committed to insert_page()
1952 * regardless of whether the caller specified flags that
1953 * result in pfn_t_has_page() == false.
1955 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1956 return insert_page(vma
, addr
, page
, pgprot
);
1958 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1961 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1964 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1967 EXPORT_SYMBOL(vm_insert_mixed
);
1970 * If the insertion of PTE failed because someone else already added a
1971 * different entry in the mean time, we treat that as success as we assume
1972 * the same entry was actually inserted.
1975 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1976 unsigned long addr
, pfn_t pfn
)
1980 err
= __vm_insert_mixed(vma
, addr
, pfn
, true);
1982 return VM_FAULT_OOM
;
1983 if (err
< 0 && err
!= -EBUSY
)
1984 return VM_FAULT_SIGBUS
;
1985 return VM_FAULT_NOPAGE
;
1987 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1990 * maps a range of physical memory into the requested pages. the old
1991 * mappings are removed. any references to nonexistent pages results
1992 * in null mappings (currently treated as "copy-on-access")
1994 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1995 unsigned long addr
, unsigned long end
,
1996 unsigned long pfn
, pgprot_t prot
)
2002 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2005 arch_enter_lazy_mmu_mode();
2007 BUG_ON(!pte_none(*pte
));
2008 if (!pfn_modify_allowed(pfn
, prot
)) {
2012 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2014 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2015 arch_leave_lazy_mmu_mode();
2016 pte_unmap_unlock(pte
- 1, ptl
);
2020 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2021 unsigned long addr
, unsigned long end
,
2022 unsigned long pfn
, pgprot_t prot
)
2028 pfn
-= addr
>> PAGE_SHIFT
;
2029 pmd
= pmd_alloc(mm
, pud
, addr
);
2032 VM_BUG_ON(pmd_trans_huge(*pmd
));
2034 next
= pmd_addr_end(addr
, end
);
2035 err
= remap_pte_range(mm
, pmd
, addr
, next
,
2036 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2039 } while (pmd
++, addr
= next
, addr
!= end
);
2043 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2044 unsigned long addr
, unsigned long end
,
2045 unsigned long pfn
, pgprot_t prot
)
2051 pfn
-= addr
>> PAGE_SHIFT
;
2052 pud
= pud_alloc(mm
, p4d
, addr
);
2056 next
= pud_addr_end(addr
, end
);
2057 err
= remap_pmd_range(mm
, pud
, addr
, next
,
2058 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2061 } while (pud
++, addr
= next
, addr
!= end
);
2065 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2066 unsigned long addr
, unsigned long end
,
2067 unsigned long pfn
, pgprot_t prot
)
2073 pfn
-= addr
>> PAGE_SHIFT
;
2074 p4d
= p4d_alloc(mm
, pgd
, addr
);
2078 next
= p4d_addr_end(addr
, end
);
2079 err
= remap_pud_range(mm
, p4d
, addr
, next
,
2080 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2083 } while (p4d
++, addr
= next
, addr
!= end
);
2088 * remap_pfn_range - remap kernel memory to userspace
2089 * @vma: user vma to map to
2090 * @addr: target user address to start at
2091 * @pfn: physical address of kernel memory
2092 * @size: size of map area
2093 * @prot: page protection flags for this mapping
2095 * Note: this is only safe if the mm semaphore is held when called.
2097 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2098 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2102 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2103 struct mm_struct
*mm
= vma
->vm_mm
;
2104 unsigned long remap_pfn
= pfn
;
2108 * Physically remapped pages are special. Tell the
2109 * rest of the world about it:
2110 * VM_IO tells people not to look at these pages
2111 * (accesses can have side effects).
2112 * VM_PFNMAP tells the core MM that the base pages are just
2113 * raw PFN mappings, and do not have a "struct page" associated
2116 * Disable vma merging and expanding with mremap().
2118 * Omit vma from core dump, even when VM_IO turned off.
2120 * There's a horrible special case to handle copy-on-write
2121 * behaviour that some programs depend on. We mark the "original"
2122 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2123 * See vm_normal_page() for details.
2125 if (is_cow_mapping(vma
->vm_flags
)) {
2126 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2128 vma
->vm_pgoff
= pfn
;
2131 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
2135 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2137 BUG_ON(addr
>= end
);
2138 pfn
-= addr
>> PAGE_SHIFT
;
2139 pgd
= pgd_offset(mm
, addr
);
2140 flush_cache_range(vma
, addr
, end
);
2142 next
= pgd_addr_end(addr
, end
);
2143 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2144 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2147 } while (pgd
++, addr
= next
, addr
!= end
);
2150 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2154 EXPORT_SYMBOL(remap_pfn_range
);
2157 * vm_iomap_memory - remap memory to userspace
2158 * @vma: user vma to map to
2159 * @start: start of area
2160 * @len: size of area
2162 * This is a simplified io_remap_pfn_range() for common driver use. The
2163 * driver just needs to give us the physical memory range to be mapped,
2164 * we'll figure out the rest from the vma information.
2166 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2167 * whatever write-combining details or similar.
2169 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2171 unsigned long vm_len
, pfn
, pages
;
2173 /* Check that the physical memory area passed in looks valid */
2174 if (start
+ len
< start
)
2177 * You *really* shouldn't map things that aren't page-aligned,
2178 * but we've historically allowed it because IO memory might
2179 * just have smaller alignment.
2181 len
+= start
& ~PAGE_MASK
;
2182 pfn
= start
>> PAGE_SHIFT
;
2183 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2184 if (pfn
+ pages
< pfn
)
2187 /* We start the mapping 'vm_pgoff' pages into the area */
2188 if (vma
->vm_pgoff
> pages
)
2190 pfn
+= vma
->vm_pgoff
;
2191 pages
-= vma
->vm_pgoff
;
2193 /* Can we fit all of the mapping? */
2194 vm_len
= vma
->vm_end
- vma
->vm_start
;
2195 if (vm_len
>> PAGE_SHIFT
> pages
)
2198 /* Ok, let it rip */
2199 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2201 EXPORT_SYMBOL(vm_iomap_memory
);
2203 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2204 unsigned long addr
, unsigned long end
,
2205 pte_fn_t fn
, void *data
)
2210 spinlock_t
*uninitialized_var(ptl
);
2212 pte
= (mm
== &init_mm
) ?
2213 pte_alloc_kernel(pmd
, addr
) :
2214 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2218 BUG_ON(pmd_huge(*pmd
));
2220 arch_enter_lazy_mmu_mode();
2222 token
= pmd_pgtable(*pmd
);
2225 err
= fn(pte
++, token
, addr
, data
);
2228 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2230 arch_leave_lazy_mmu_mode();
2233 pte_unmap_unlock(pte
-1, ptl
);
2237 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2238 unsigned long addr
, unsigned long end
,
2239 pte_fn_t fn
, void *data
)
2245 BUG_ON(pud_huge(*pud
));
2247 pmd
= pmd_alloc(mm
, pud
, addr
);
2251 next
= pmd_addr_end(addr
, end
);
2252 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2255 } while (pmd
++, addr
= next
, addr
!= end
);
2259 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2260 unsigned long addr
, unsigned long end
,
2261 pte_fn_t fn
, void *data
)
2267 pud
= pud_alloc(mm
, p4d
, addr
);
2271 next
= pud_addr_end(addr
, end
);
2272 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2275 } while (pud
++, addr
= next
, addr
!= end
);
2279 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2280 unsigned long addr
, unsigned long end
,
2281 pte_fn_t fn
, void *data
)
2287 p4d
= p4d_alloc(mm
, pgd
, addr
);
2291 next
= p4d_addr_end(addr
, end
);
2292 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2295 } while (p4d
++, addr
= next
, addr
!= end
);
2300 * Scan a region of virtual memory, filling in page tables as necessary
2301 * and calling a provided function on each leaf page table.
2303 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2304 unsigned long size
, pte_fn_t fn
, void *data
)
2308 unsigned long end
= addr
+ size
;
2311 if (WARN_ON(addr
>= end
))
2314 pgd
= pgd_offset(mm
, addr
);
2316 next
= pgd_addr_end(addr
, end
);
2317 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2320 } while (pgd
++, addr
= next
, addr
!= end
);
2324 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2327 * handle_pte_fault chooses page fault handler according to an entry which was
2328 * read non-atomically. Before making any commitment, on those architectures
2329 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2330 * parts, do_swap_page must check under lock before unmapping the pte and
2331 * proceeding (but do_wp_page is only called after already making such a check;
2332 * and do_anonymous_page can safely check later on).
2334 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2335 pte_t
*page_table
, pte_t orig_pte
)
2338 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2339 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2340 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2342 same
= pte_same(*page_table
, orig_pte
);
2346 pte_unmap(page_table
);
2350 static inline bool cow_user_page(struct page
*dst
, struct page
*src
,
2351 struct vm_fault
*vmf
)
2356 bool locked
= false;
2357 struct vm_area_struct
*vma
= vmf
->vma
;
2358 struct mm_struct
*mm
= vma
->vm_mm
;
2359 unsigned long addr
= vmf
->address
;
2361 debug_dma_assert_idle(src
);
2364 copy_user_highpage(dst
, src
, addr
, vma
);
2369 * If the source page was a PFN mapping, we don't have
2370 * a "struct page" for it. We do a best-effort copy by
2371 * just copying from the original user address. If that
2372 * fails, we just zero-fill it. Live with it.
2374 kaddr
= kmap_atomic(dst
);
2375 uaddr
= (void __user
*)(addr
& PAGE_MASK
);
2378 * On architectures with software "accessed" bits, we would
2379 * take a double page fault, so mark it accessed here.
2381 if (arch_faults_on_old_pte() && !pte_young(vmf
->orig_pte
)) {
2384 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2386 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2388 * Other thread has already handled the fault
2389 * and we don't need to do anything. If it's
2390 * not the case, the fault will be triggered
2391 * again on the same address.
2397 entry
= pte_mkyoung(vmf
->orig_pte
);
2398 if (ptep_set_access_flags(vma
, addr
, vmf
->pte
, entry
, 0))
2399 update_mmu_cache(vma
, addr
, vmf
->pte
);
2403 * This really shouldn't fail, because the page is there
2404 * in the page tables. But it might just be unreadable,
2405 * in which case we just give up and fill the result with
2408 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2412 /* Re-validate under PTL if the page is still mapped */
2413 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2415 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2416 /* The PTE changed under us. Retry page fault. */
2422 * The same page can be mapped back since last copy attampt.
2423 * Try to copy again under PTL.
2425 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2427 * Give a warn in case there can be some obscure
2440 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2441 kunmap_atomic(kaddr
);
2442 flush_dcache_page(dst
);
2447 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2449 struct file
*vm_file
= vma
->vm_file
;
2452 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2455 * Special mappings (e.g. VDSO) do not have any file so fake
2456 * a default GFP_KERNEL for them.
2462 * Notify the address space that the page is about to become writable so that
2463 * it can prohibit this or wait for the page to get into an appropriate state.
2465 * We do this without the lock held, so that it can sleep if it needs to.
2467 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2470 struct page
*page
= vmf
->page
;
2471 unsigned int old_flags
= vmf
->flags
;
2473 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2475 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2476 /* Restore original flags so that caller is not surprised */
2477 vmf
->flags
= old_flags
;
2478 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2480 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2482 if (!page
->mapping
) {
2484 return 0; /* retry */
2486 ret
|= VM_FAULT_LOCKED
;
2488 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2493 * Handle dirtying of a page in shared file mapping on a write fault.
2495 * The function expects the page to be locked and unlocks it.
2497 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2500 struct address_space
*mapping
;
2502 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2504 dirtied
= set_page_dirty(page
);
2505 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2507 * Take a local copy of the address_space - page.mapping may be zeroed
2508 * by truncate after unlock_page(). The address_space itself remains
2509 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2510 * release semantics to prevent the compiler from undoing this copying.
2512 mapping
= page_rmapping(page
);
2515 if ((dirtied
|| page_mkwrite
) && mapping
) {
2517 * Some device drivers do not set page.mapping
2518 * but still dirty their pages
2520 balance_dirty_pages_ratelimited(mapping
);
2524 file_update_time(vma
->vm_file
);
2528 * Handle write page faults for pages that can be reused in the current vma
2530 * This can happen either due to the mapping being with the VM_SHARED flag,
2531 * or due to us being the last reference standing to the page. In either
2532 * case, all we need to do here is to mark the page as writable and update
2533 * any related book-keeping.
2535 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2536 __releases(vmf
->ptl
)
2538 struct vm_area_struct
*vma
= vmf
->vma
;
2539 struct page
*page
= vmf
->page
;
2542 * Clear the pages cpupid information as the existing
2543 * information potentially belongs to a now completely
2544 * unrelated process.
2547 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2549 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2550 entry
= pte_mkyoung(vmf
->orig_pte
);
2551 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2552 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2553 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2554 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2558 * Handle the case of a page which we actually need to copy to a new page.
2560 * Called with mmap_sem locked and the old page referenced, but
2561 * without the ptl held.
2563 * High level logic flow:
2565 * - Allocate a page, copy the content of the old page to the new one.
2566 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2567 * - Take the PTL. If the pte changed, bail out and release the allocated page
2568 * - If the pte is still the way we remember it, update the page table and all
2569 * relevant references. This includes dropping the reference the page-table
2570 * held to the old page, as well as updating the rmap.
2571 * - In any case, unlock the PTL and drop the reference we took to the old page.
2573 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2575 struct vm_area_struct
*vma
= vmf
->vma
;
2576 struct mm_struct
*mm
= vma
->vm_mm
;
2577 struct page
*old_page
= vmf
->page
;
2578 struct page
*new_page
= NULL
;
2580 int page_copied
= 0;
2581 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2582 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2583 struct mem_cgroup
*memcg
;
2585 if (unlikely(anon_vma_prepare(vma
)))
2588 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2589 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2594 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2599 if (!cow_user_page(new_page
, old_page
, vmf
)) {
2601 * COW failed, if the fault was solved by other,
2602 * it's fine. If not, userspace would re-fault on
2603 * the same address and we will handle the fault
2604 * from the second attempt.
2613 if (mem_cgroup_try_charge_delay(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2616 __SetPageUptodate(new_page
);
2618 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2621 * Re-check the pte - we dropped the lock
2623 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2624 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2626 if (!PageAnon(old_page
)) {
2627 dec_mm_counter_fast(mm
,
2628 mm_counter_file(old_page
));
2629 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2632 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2634 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2635 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2636 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2638 * Clear the pte entry and flush it first, before updating the
2639 * pte with the new entry. This will avoid a race condition
2640 * seen in the presence of one thread doing SMC and another
2643 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2644 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2645 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2646 lru_cache_add_active_or_unevictable(new_page
, vma
);
2648 * We call the notify macro here because, when using secondary
2649 * mmu page tables (such as kvm shadow page tables), we want the
2650 * new page to be mapped directly into the secondary page table.
2652 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2653 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2656 * Only after switching the pte to the new page may
2657 * we remove the mapcount here. Otherwise another
2658 * process may come and find the rmap count decremented
2659 * before the pte is switched to the new page, and
2660 * "reuse" the old page writing into it while our pte
2661 * here still points into it and can be read by other
2664 * The critical issue is to order this
2665 * page_remove_rmap with the ptp_clear_flush above.
2666 * Those stores are ordered by (if nothing else,)
2667 * the barrier present in the atomic_add_negative
2668 * in page_remove_rmap.
2670 * Then the TLB flush in ptep_clear_flush ensures that
2671 * no process can access the old page before the
2672 * decremented mapcount is visible. And the old page
2673 * cannot be reused until after the decremented
2674 * mapcount is visible. So transitively, TLBs to
2675 * old page will be flushed before it can be reused.
2677 page_remove_rmap(old_page
, false);
2680 /* Free the old page.. */
2681 new_page
= old_page
;
2684 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2690 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2692 * No need to double call mmu_notifier->invalidate_range() callback as
2693 * the above ptep_clear_flush_notify() did already call it.
2695 mmu_notifier_invalidate_range_only_end(mm
, mmun_start
, mmun_end
);
2698 * Don't let another task, with possibly unlocked vma,
2699 * keep the mlocked page.
2701 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2702 lock_page(old_page
); /* LRU manipulation */
2703 if (PageMlocked(old_page
))
2704 munlock_vma_page(old_page
);
2705 unlock_page(old_page
);
2709 return page_copied
? VM_FAULT_WRITE
: 0;
2715 return VM_FAULT_OOM
;
2719 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2720 * writeable once the page is prepared
2722 * @vmf: structure describing the fault
2724 * This function handles all that is needed to finish a write page fault in a
2725 * shared mapping due to PTE being read-only once the mapped page is prepared.
2726 * It handles locking of PTE and modifying it. The function returns
2727 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2730 * The function expects the page to be locked or other protection against
2731 * concurrent faults / writeback (such as DAX radix tree locks).
2733 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2735 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2736 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2739 * We might have raced with another page fault while we released the
2740 * pte_offset_map_lock.
2742 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2743 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2744 return VM_FAULT_NOPAGE
;
2751 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2754 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2756 struct vm_area_struct
*vma
= vmf
->vma
;
2758 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2761 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2762 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2763 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2764 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2766 return finish_mkwrite_fault(vmf
);
2769 return VM_FAULT_WRITE
;
2772 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2773 __releases(vmf
->ptl
)
2775 struct vm_area_struct
*vma
= vmf
->vma
;
2777 get_page(vmf
->page
);
2779 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2782 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2783 tmp
= do_page_mkwrite(vmf
);
2784 if (unlikely(!tmp
|| (tmp
&
2785 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2786 put_page(vmf
->page
);
2789 tmp
= finish_mkwrite_fault(vmf
);
2790 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2791 unlock_page(vmf
->page
);
2792 put_page(vmf
->page
);
2797 lock_page(vmf
->page
);
2799 fault_dirty_shared_page(vma
, vmf
->page
);
2800 put_page(vmf
->page
);
2802 return VM_FAULT_WRITE
;
2806 * This routine handles present pages, when users try to write
2807 * to a shared page. It is done by copying the page to a new address
2808 * and decrementing the shared-page counter for the old page.
2810 * Note that this routine assumes that the protection checks have been
2811 * done by the caller (the low-level page fault routine in most cases).
2812 * Thus we can safely just mark it writable once we've done any necessary
2815 * We also mark the page dirty at this point even though the page will
2816 * change only once the write actually happens. This avoids a few races,
2817 * and potentially makes it more efficient.
2819 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2820 * but allow concurrent faults), with pte both mapped and locked.
2821 * We return with mmap_sem still held, but pte unmapped and unlocked.
2823 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2824 __releases(vmf
->ptl
)
2826 struct vm_area_struct
*vma
= vmf
->vma
;
2828 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2831 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2834 * We should not cow pages in a shared writeable mapping.
2835 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2837 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2838 (VM_WRITE
|VM_SHARED
))
2839 return wp_pfn_shared(vmf
);
2841 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2842 return wp_page_copy(vmf
);
2846 * Take out anonymous pages first, anonymous shared vmas are
2847 * not dirty accountable.
2849 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2850 int total_map_swapcount
;
2851 if (!trylock_page(vmf
->page
)) {
2852 get_page(vmf
->page
);
2853 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2854 lock_page(vmf
->page
);
2855 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2856 vmf
->address
, &vmf
->ptl
);
2857 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2858 unlock_page(vmf
->page
);
2859 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2860 put_page(vmf
->page
);
2863 put_page(vmf
->page
);
2865 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2866 if (total_map_swapcount
== 1) {
2868 * The page is all ours. Move it to
2869 * our anon_vma so the rmap code will
2870 * not search our parent or siblings.
2871 * Protected against the rmap code by
2874 page_move_anon_rmap(vmf
->page
, vma
);
2876 unlock_page(vmf
->page
);
2878 return VM_FAULT_WRITE
;
2880 unlock_page(vmf
->page
);
2881 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2882 (VM_WRITE
|VM_SHARED
))) {
2883 return wp_page_shared(vmf
);
2887 * Ok, we need to copy. Oh, well..
2889 get_page(vmf
->page
);
2891 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2892 return wp_page_copy(vmf
);
2895 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2896 unsigned long start_addr
, unsigned long end_addr
,
2897 struct zap_details
*details
)
2899 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2902 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2903 struct zap_details
*details
)
2905 struct vm_area_struct
*vma
;
2906 pgoff_t vba
, vea
, zba
, zea
;
2908 vma_interval_tree_foreach(vma
, root
,
2909 details
->first_index
, details
->last_index
) {
2911 vba
= vma
->vm_pgoff
;
2912 vea
= vba
+ vma_pages(vma
) - 1;
2913 zba
= details
->first_index
;
2916 zea
= details
->last_index
;
2920 unmap_mapping_range_vma(vma
,
2921 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2922 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2928 * unmap_mapping_pages() - Unmap pages from processes.
2929 * @mapping: The address space containing pages to be unmapped.
2930 * @start: Index of first page to be unmapped.
2931 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2932 * @even_cows: Whether to unmap even private COWed pages.
2934 * Unmap the pages in this address space from any userspace process which
2935 * has them mmaped. Generally, you want to remove COWed pages as well when
2936 * a file is being truncated, but not when invalidating pages from the page
2939 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
2940 pgoff_t nr
, bool even_cows
)
2942 struct zap_details details
= { };
2944 details
.check_mapping
= even_cows
? NULL
: mapping
;
2945 details
.first_index
= start
;
2946 details
.last_index
= start
+ nr
- 1;
2947 if (details
.last_index
< details
.first_index
)
2948 details
.last_index
= ULONG_MAX
;
2950 i_mmap_lock_write(mapping
);
2951 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2952 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2953 i_mmap_unlock_write(mapping
);
2957 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2958 * address_space corresponding to the specified byte range in the underlying
2961 * @mapping: the address space containing mmaps to be unmapped.
2962 * @holebegin: byte in first page to unmap, relative to the start of
2963 * the underlying file. This will be rounded down to a PAGE_SIZE
2964 * boundary. Note that this is different from truncate_pagecache(), which
2965 * must keep the partial page. In contrast, we must get rid of
2967 * @holelen: size of prospective hole in bytes. This will be rounded
2968 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2970 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2971 * but 0 when invalidating pagecache, don't throw away private data.
2973 void unmap_mapping_range(struct address_space
*mapping
,
2974 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2976 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2977 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2979 /* Check for overflow. */
2980 if (sizeof(holelen
) > sizeof(hlen
)) {
2982 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2983 if (holeend
& ~(long long)ULONG_MAX
)
2984 hlen
= ULONG_MAX
- hba
+ 1;
2987 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
2989 EXPORT_SYMBOL(unmap_mapping_range
);
2992 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2993 * but allow concurrent faults), and pte mapped but not yet locked.
2994 * We return with pte unmapped and unlocked.
2996 * We return with the mmap_sem locked or unlocked in the same cases
2997 * as does filemap_fault().
2999 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
3001 struct vm_area_struct
*vma
= vmf
->vma
;
3002 struct page
*page
= NULL
, *swapcache
;
3003 struct mem_cgroup
*memcg
;
3010 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
3013 entry
= pte_to_swp_entry(vmf
->orig_pte
);
3014 if (unlikely(non_swap_entry(entry
))) {
3015 if (is_migration_entry(entry
)) {
3016 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
3018 } else if (is_device_private_entry(entry
)) {
3020 * For un-addressable device memory we call the pgmap
3021 * fault handler callback. The callback must migrate
3022 * the page back to some CPU accessible page.
3024 ret
= device_private_entry_fault(vma
, vmf
->address
, entry
,
3025 vmf
->flags
, vmf
->pmd
);
3026 } else if (is_hwpoison_entry(entry
)) {
3027 ret
= VM_FAULT_HWPOISON
;
3029 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
3030 ret
= VM_FAULT_SIGBUS
;
3036 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
3037 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
3041 struct swap_info_struct
*si
= swp_swap_info(entry
);
3043 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
3044 __swap_count(si
, entry
) == 1) {
3045 /* skip swapcache */
3046 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
3049 __SetPageLocked(page
);
3050 __SetPageSwapBacked(page
);
3051 set_page_private(page
, entry
.val
);
3052 lru_cache_add_anon(page
);
3053 swap_readpage(page
, true);
3056 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
3063 * Back out if somebody else faulted in this pte
3064 * while we released the pte lock.
3066 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3067 vmf
->address
, &vmf
->ptl
);
3068 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3070 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3074 /* Had to read the page from swap area: Major fault */
3075 ret
= VM_FAULT_MAJOR
;
3076 count_vm_event(PGMAJFAULT
);
3077 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
3078 } else if (PageHWPoison(page
)) {
3080 * hwpoisoned dirty swapcache pages are kept for killing
3081 * owner processes (which may be unknown at hwpoison time)
3083 ret
= VM_FAULT_HWPOISON
;
3084 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3088 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
3090 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3092 ret
|= VM_FAULT_RETRY
;
3097 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3098 * release the swapcache from under us. The page pin, and pte_same
3099 * test below, are not enough to exclude that. Even if it is still
3100 * swapcache, we need to check that the page's swap has not changed.
3102 if (unlikely((!PageSwapCache(page
) ||
3103 page_private(page
) != entry
.val
)) && swapcache
)
3106 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
3107 if (unlikely(!page
)) {
3113 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
,
3120 * Back out if somebody else already faulted in this pte.
3122 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3124 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3127 if (unlikely(!PageUptodate(page
))) {
3128 ret
= VM_FAULT_SIGBUS
;
3133 * The page isn't present yet, go ahead with the fault.
3135 * Be careful about the sequence of operations here.
3136 * To get its accounting right, reuse_swap_page() must be called
3137 * while the page is counted on swap but not yet in mapcount i.e.
3138 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3139 * must be called after the swap_free(), or it will never succeed.
3142 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3143 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
3144 pte
= mk_pte(page
, vma
->vm_page_prot
);
3145 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
3146 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3147 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
3148 ret
|= VM_FAULT_WRITE
;
3149 exclusive
= RMAP_EXCLUSIVE
;
3151 flush_icache_page(vma
, page
);
3152 if (pte_swp_soft_dirty(vmf
->orig_pte
))
3153 pte
= pte_mksoft_dirty(pte
);
3154 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3155 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
3156 vmf
->orig_pte
= pte
;
3158 /* ksm created a completely new copy */
3159 if (unlikely(page
!= swapcache
&& swapcache
)) {
3160 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3161 mem_cgroup_commit_charge(page
, memcg
, false, false);
3162 lru_cache_add_active_or_unevictable(page
, vma
);
3164 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
3165 mem_cgroup_commit_charge(page
, memcg
, true, false);
3166 activate_page(page
);
3170 if (mem_cgroup_swap_full(page
) ||
3171 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3172 try_to_free_swap(page
);
3174 if (page
!= swapcache
&& swapcache
) {
3176 * Hold the lock to avoid the swap entry to be reused
3177 * until we take the PT lock for the pte_same() check
3178 * (to avoid false positives from pte_same). For
3179 * further safety release the lock after the swap_free
3180 * so that the swap count won't change under a
3181 * parallel locked swapcache.
3183 unlock_page(swapcache
);
3184 put_page(swapcache
);
3187 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3188 ret
|= do_wp_page(vmf
);
3189 if (ret
& VM_FAULT_ERROR
)
3190 ret
&= VM_FAULT_ERROR
;
3194 /* No need to invalidate - it was non-present before */
3195 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3197 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3201 mem_cgroup_cancel_charge(page
, memcg
, false);
3202 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3207 if (page
!= swapcache
&& swapcache
) {
3208 unlock_page(swapcache
);
3209 put_page(swapcache
);
3215 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3216 * but allow concurrent faults), and pte mapped but not yet locked.
3217 * We return with mmap_sem still held, but pte unmapped and unlocked.
3219 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
3221 struct vm_area_struct
*vma
= vmf
->vma
;
3222 struct mem_cgroup
*memcg
;
3227 /* File mapping without ->vm_ops ? */
3228 if (vma
->vm_flags
& VM_SHARED
)
3229 return VM_FAULT_SIGBUS
;
3232 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3233 * pte_offset_map() on pmds where a huge pmd might be created
3234 * from a different thread.
3236 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3237 * parallel threads are excluded by other means.
3239 * Here we only have down_read(mmap_sem).
3241 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
3242 return VM_FAULT_OOM
;
3244 /* See the comment in pte_alloc_one_map() */
3245 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3248 /* Use the zero-page for reads */
3249 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3250 !mm_forbids_zeropage(vma
->vm_mm
)) {
3251 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3252 vma
->vm_page_prot
));
3253 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3254 vmf
->address
, &vmf
->ptl
);
3255 if (!pte_none(*vmf
->pte
))
3257 ret
= check_stable_address_space(vma
->vm_mm
);
3260 /* Deliver the page fault to userland, check inside PT lock */
3261 if (userfaultfd_missing(vma
)) {
3262 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3263 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3268 /* Allocate our own private page. */
3269 if (unlikely(anon_vma_prepare(vma
)))
3271 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3275 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
3280 * The memory barrier inside __SetPageUptodate makes sure that
3281 * preceeding stores to the page contents become visible before
3282 * the set_pte_at() write.
3284 __SetPageUptodate(page
);
3286 entry
= mk_pte(page
, vma
->vm_page_prot
);
3287 if (vma
->vm_flags
& VM_WRITE
)
3288 entry
= pte_mkwrite(pte_mkdirty(entry
));
3290 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3292 if (!pte_none(*vmf
->pte
))
3295 ret
= check_stable_address_space(vma
->vm_mm
);
3299 /* Deliver the page fault to userland, check inside PT lock */
3300 if (userfaultfd_missing(vma
)) {
3301 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3302 mem_cgroup_cancel_charge(page
, memcg
, false);
3304 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3307 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3308 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3309 mem_cgroup_commit_charge(page
, memcg
, false, false);
3310 lru_cache_add_active_or_unevictable(page
, vma
);
3312 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3314 /* No need to invalidate - it was non-present before */
3315 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3317 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3320 mem_cgroup_cancel_charge(page
, memcg
, false);
3326 return VM_FAULT_OOM
;
3330 * The mmap_sem must have been held on entry, and may have been
3331 * released depending on flags and vma->vm_ops->fault() return value.
3332 * See filemap_fault() and __lock_page_retry().
3334 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
3336 struct vm_area_struct
*vma
= vmf
->vma
;
3340 * Preallocate pte before we take page_lock because this might lead to
3341 * deadlocks for memcg reclaim which waits for pages under writeback:
3343 * SetPageWriteback(A)
3349 * wait_on_page_writeback(A)
3350 * SetPageWriteback(B)
3352 * # flush A, B to clear the writeback
3354 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3355 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3357 if (!vmf
->prealloc_pte
)
3358 return VM_FAULT_OOM
;
3359 smp_wmb(); /* See comment in __pte_alloc() */
3362 ret
= vma
->vm_ops
->fault(vmf
);
3363 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3364 VM_FAULT_DONE_COW
)))
3367 if (unlikely(PageHWPoison(vmf
->page
))) {
3368 if (ret
& VM_FAULT_LOCKED
)
3369 unlock_page(vmf
->page
);
3370 put_page(vmf
->page
);
3372 return VM_FAULT_HWPOISON
;
3375 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3376 lock_page(vmf
->page
);
3378 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3384 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3385 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3386 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3387 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3389 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3391 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3394 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3396 struct vm_area_struct
*vma
= vmf
->vma
;
3398 if (!pmd_none(*vmf
->pmd
))
3400 if (vmf
->prealloc_pte
) {
3401 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3402 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3403 spin_unlock(vmf
->ptl
);
3407 mm_inc_nr_ptes(vma
->vm_mm
);
3408 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3409 spin_unlock(vmf
->ptl
);
3410 vmf
->prealloc_pte
= NULL
;
3411 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
3412 return VM_FAULT_OOM
;
3416 * If a huge pmd materialized under us just retry later. Use
3417 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3418 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3419 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3420 * running immediately after a huge pmd fault in a different thread of
3421 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3422 * All we have to ensure is that it is a regular pmd that we can walk
3423 * with pte_offset_map() and we can do that through an atomic read in
3424 * C, which is what pmd_trans_unstable() provides.
3426 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3427 return VM_FAULT_NOPAGE
;
3430 * At this point we know that our vmf->pmd points to a page of ptes
3431 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3432 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3433 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3434 * be valid and we will re-check to make sure the vmf->pte isn't
3435 * pte_none() under vmf->ptl protection when we return to
3438 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3443 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3445 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3446 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
3447 unsigned long haddr
)
3449 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
3450 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
3452 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
3457 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3459 struct vm_area_struct
*vma
= vmf
->vma
;
3461 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3463 * We are going to consume the prealloc table,
3464 * count that as nr_ptes.
3466 mm_inc_nr_ptes(vma
->vm_mm
);
3467 vmf
->prealloc_pte
= NULL
;
3470 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3472 struct vm_area_struct
*vma
= vmf
->vma
;
3473 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3474 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3479 if (!transhuge_vma_suitable(vma
, haddr
))
3480 return VM_FAULT_FALLBACK
;
3482 ret
= VM_FAULT_FALLBACK
;
3483 page
= compound_head(page
);
3486 * Archs like ppc64 need additonal space to store information
3487 * related to pte entry. Use the preallocated table for that.
3489 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3490 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
3491 if (!vmf
->prealloc_pte
)
3492 return VM_FAULT_OOM
;
3493 smp_wmb(); /* See comment in __pte_alloc() */
3496 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3497 if (unlikely(!pmd_none(*vmf
->pmd
)))
3500 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3501 flush_icache_page(vma
, page
+ i
);
3503 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3505 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3507 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3508 page_add_file_rmap(page
, true);
3510 * deposit and withdraw with pmd lock held
3512 if (arch_needs_pgtable_deposit())
3513 deposit_prealloc_pte(vmf
);
3515 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3517 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3519 /* fault is handled */
3521 count_vm_event(THP_FILE_MAPPED
);
3523 spin_unlock(vmf
->ptl
);
3527 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3535 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3536 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3538 * @vmf: fault environment
3539 * @memcg: memcg to charge page (only for private mappings)
3540 * @page: page to map
3542 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3545 * Target users are page handler itself and implementations of
3546 * vm_ops->map_pages.
3548 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3551 struct vm_area_struct
*vma
= vmf
->vma
;
3552 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3556 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3557 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3559 VM_BUG_ON_PAGE(memcg
, page
);
3561 ret
= do_set_pmd(vmf
, page
);
3562 if (ret
!= VM_FAULT_FALLBACK
)
3567 ret
= pte_alloc_one_map(vmf
);
3572 /* Re-check under ptl */
3573 if (unlikely(!pte_none(*vmf
->pte
)))
3574 return VM_FAULT_NOPAGE
;
3576 flush_icache_page(vma
, page
);
3577 entry
= mk_pte(page
, vma
->vm_page_prot
);
3579 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3580 /* copy-on-write page */
3581 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3582 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3583 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3584 mem_cgroup_commit_charge(page
, memcg
, false, false);
3585 lru_cache_add_active_or_unevictable(page
, vma
);
3587 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3588 page_add_file_rmap(page
, false);
3590 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3592 /* no need to invalidate: a not-present page won't be cached */
3593 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3600 * finish_fault - finish page fault once we have prepared the page to fault
3602 * @vmf: structure describing the fault
3604 * This function handles all that is needed to finish a page fault once the
3605 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3606 * given page, adds reverse page mapping, handles memcg charges and LRU
3607 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3610 * The function expects the page to be locked and on success it consumes a
3611 * reference of a page being mapped (for the PTE which maps it).
3613 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3618 /* Did we COW the page? */
3619 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3620 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3621 page
= vmf
->cow_page
;
3626 * check even for read faults because we might have lost our CoWed
3629 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3630 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3632 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3634 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3638 static unsigned long fault_around_bytes __read_mostly
=
3639 rounddown_pow_of_two(65536);
3641 #ifdef CONFIG_DEBUG_FS
3642 static int fault_around_bytes_get(void *data
, u64
*val
)
3644 *val
= fault_around_bytes
;
3649 * fault_around_bytes must be rounded down to the nearest page order as it's
3650 * what do_fault_around() expects to see.
3652 static int fault_around_bytes_set(void *data
, u64 val
)
3654 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3656 if (val
> PAGE_SIZE
)
3657 fault_around_bytes
= rounddown_pow_of_two(val
);
3659 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3662 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3663 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3665 static int __init
fault_around_debugfs(void)
3669 ret
= debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3670 &fault_around_bytes_fops
);
3672 pr_warn("Failed to create fault_around_bytes in debugfs");
3675 late_initcall(fault_around_debugfs
);
3679 * do_fault_around() tries to map few pages around the fault address. The hope
3680 * is that the pages will be needed soon and this will lower the number of
3683 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3684 * not ready to be mapped: not up-to-date, locked, etc.
3686 * This function is called with the page table lock taken. In the split ptlock
3687 * case the page table lock only protects only those entries which belong to
3688 * the page table corresponding to the fault address.
3690 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3693 * fault_around_bytes defines how many bytes we'll try to map.
3694 * do_fault_around() expects it to be set to a power of two less than or equal
3697 * The virtual address of the area that we map is naturally aligned to
3698 * fault_around_bytes rounded down to the machine page size
3699 * (and therefore to page order). This way it's easier to guarantee
3700 * that we don't cross page table boundaries.
3702 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3704 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3705 pgoff_t start_pgoff
= vmf
->pgoff
;
3710 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3711 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3713 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3714 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3718 * end_pgoff is either the end of the page table, the end of
3719 * the vma or nr_pages from start_pgoff, depending what is nearest.
3721 end_pgoff
= start_pgoff
-
3722 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3724 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3725 start_pgoff
+ nr_pages
- 1);
3727 if (pmd_none(*vmf
->pmd
)) {
3728 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3730 if (!vmf
->prealloc_pte
)
3732 smp_wmb(); /* See comment in __pte_alloc() */
3735 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3737 /* Huge page is mapped? Page fault is solved */
3738 if (pmd_trans_huge(*vmf
->pmd
)) {
3739 ret
= VM_FAULT_NOPAGE
;
3743 /* ->map_pages() haven't done anything useful. Cold page cache? */
3747 /* check if the page fault is solved */
3748 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3749 if (!pte_none(*vmf
->pte
))
3750 ret
= VM_FAULT_NOPAGE
;
3751 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3753 vmf
->address
= address
;
3758 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3760 struct vm_area_struct
*vma
= vmf
->vma
;
3764 * Let's call ->map_pages() first and use ->fault() as fallback
3765 * if page by the offset is not ready to be mapped (cold cache or
3768 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3769 ret
= do_fault_around(vmf
);
3774 ret
= __do_fault(vmf
);
3775 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3778 ret
|= finish_fault(vmf
);
3779 unlock_page(vmf
->page
);
3780 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3781 put_page(vmf
->page
);
3785 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3787 struct vm_area_struct
*vma
= vmf
->vma
;
3790 if (unlikely(anon_vma_prepare(vma
)))
3791 return VM_FAULT_OOM
;
3793 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3795 return VM_FAULT_OOM
;
3797 if (mem_cgroup_try_charge_delay(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3798 &vmf
->memcg
, false)) {
3799 put_page(vmf
->cow_page
);
3800 return VM_FAULT_OOM
;
3803 ret
= __do_fault(vmf
);
3804 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3806 if (ret
& VM_FAULT_DONE_COW
)
3809 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3810 __SetPageUptodate(vmf
->cow_page
);
3812 ret
|= finish_fault(vmf
);
3813 unlock_page(vmf
->page
);
3814 put_page(vmf
->page
);
3815 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3819 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3820 put_page(vmf
->cow_page
);
3824 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3826 struct vm_area_struct
*vma
= vmf
->vma
;
3827 vm_fault_t ret
, tmp
;
3829 ret
= __do_fault(vmf
);
3830 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3834 * Check if the backing address space wants to know that the page is
3835 * about to become writable
3837 if (vma
->vm_ops
->page_mkwrite
) {
3838 unlock_page(vmf
->page
);
3839 tmp
= do_page_mkwrite(vmf
);
3840 if (unlikely(!tmp
||
3841 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3842 put_page(vmf
->page
);
3847 ret
|= finish_fault(vmf
);
3848 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3850 unlock_page(vmf
->page
);
3851 put_page(vmf
->page
);
3855 fault_dirty_shared_page(vma
, vmf
->page
);
3860 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3861 * but allow concurrent faults).
3862 * The mmap_sem may have been released depending on flags and our
3863 * return value. See filemap_fault() and __lock_page_or_retry().
3864 * If mmap_sem is released, vma may become invalid (for example
3865 * by other thread calling munmap()).
3867 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3869 struct vm_area_struct
*vma
= vmf
->vma
;
3870 struct mm_struct
*vm_mm
= vma
->vm_mm
;
3874 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3876 if (!vma
->vm_ops
->fault
) {
3878 * If we find a migration pmd entry or a none pmd entry, which
3879 * should never happen, return SIGBUS
3881 if (unlikely(!pmd_present(*vmf
->pmd
)))
3882 ret
= VM_FAULT_SIGBUS
;
3884 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3889 * Make sure this is not a temporary clearing of pte
3890 * by holding ptl and checking again. A R/M/W update
3891 * of pte involves: take ptl, clearing the pte so that
3892 * we don't have concurrent modification by hardware
3893 * followed by an update.
3895 if (unlikely(pte_none(*vmf
->pte
)))
3896 ret
= VM_FAULT_SIGBUS
;
3898 ret
= VM_FAULT_NOPAGE
;
3900 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3902 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3903 ret
= do_read_fault(vmf
);
3904 else if (!(vma
->vm_flags
& VM_SHARED
))
3905 ret
= do_cow_fault(vmf
);
3907 ret
= do_shared_fault(vmf
);
3909 /* preallocated pagetable is unused: free it */
3910 if (vmf
->prealloc_pte
) {
3911 pte_free(vm_mm
, vmf
->prealloc_pte
);
3912 vmf
->prealloc_pte
= NULL
;
3917 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3918 unsigned long addr
, int page_nid
,
3923 count_vm_numa_event(NUMA_HINT_FAULTS
);
3924 if (page_nid
== numa_node_id()) {
3925 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3926 *flags
|= TNF_FAULT_LOCAL
;
3929 return mpol_misplaced(page
, vma
, addr
);
3932 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3934 struct vm_area_struct
*vma
= vmf
->vma
;
3935 struct page
*page
= NULL
;
3939 bool migrated
= false;
3941 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3945 * The "pte" at this point cannot be used safely without
3946 * validation through pte_unmap_same(). It's of NUMA type but
3947 * the pfn may be screwed if the read is non atomic.
3949 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3950 spin_lock(vmf
->ptl
);
3951 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3952 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3957 * Make it present again, Depending on how arch implementes non
3958 * accessible ptes, some can allow access by kernel mode.
3960 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3961 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3962 pte
= pte_mkyoung(pte
);
3964 pte
= pte_mkwrite(pte
);
3965 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3966 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3968 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3970 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3974 /* TODO: handle PTE-mapped THP */
3975 if (PageCompound(page
)) {
3976 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3981 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3982 * much anyway since they can be in shared cache state. This misses
3983 * the case where a mapping is writable but the process never writes
3984 * to it but pte_write gets cleared during protection updates and
3985 * pte_dirty has unpredictable behaviour between PTE scan updates,
3986 * background writeback, dirty balancing and application behaviour.
3988 if (!pte_write(pte
))
3989 flags
|= TNF_NO_GROUP
;
3992 * Flag if the page is shared between multiple address spaces. This
3993 * is later used when determining whether to group tasks together
3995 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3996 flags
|= TNF_SHARED
;
3998 last_cpupid
= page_cpupid_last(page
);
3999 page_nid
= page_to_nid(page
);
4000 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
4002 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4003 if (target_nid
== -1) {
4008 /* Migrate to the requested node */
4009 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
4011 page_nid
= target_nid
;
4012 flags
|= TNF_MIGRATED
;
4014 flags
|= TNF_MIGRATE_FAIL
;
4018 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
4022 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
4024 if (vma_is_anonymous(vmf
->vma
))
4025 return do_huge_pmd_anonymous_page(vmf
);
4026 if (vmf
->vma
->vm_ops
->huge_fault
)
4027 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
4028 return VM_FAULT_FALLBACK
;
4031 /* `inline' is required to avoid gcc 4.1.2 build error */
4032 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
4034 if (vma_is_anonymous(vmf
->vma
))
4035 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
4036 if (vmf
->vma
->vm_ops
->huge_fault
)
4037 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
4039 /* COW handled on pte level: split pmd */
4040 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
4041 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
4043 return VM_FAULT_FALLBACK
;
4046 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
4048 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
4051 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
4053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4054 /* No support for anonymous transparent PUD pages yet */
4055 if (vma_is_anonymous(vmf
->vma
))
4056 return VM_FAULT_FALLBACK
;
4057 if (vmf
->vma
->vm_ops
->huge_fault
)
4058 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4060 return VM_FAULT_FALLBACK
;
4063 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
4065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4066 /* No support for anonymous transparent PUD pages yet */
4067 if (vma_is_anonymous(vmf
->vma
))
4068 return VM_FAULT_FALLBACK
;
4069 if (vmf
->vma
->vm_ops
->huge_fault
)
4070 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
4071 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4072 return VM_FAULT_FALLBACK
;
4076 * These routines also need to handle stuff like marking pages dirty
4077 * and/or accessed for architectures that don't do it in hardware (most
4078 * RISC architectures). The early dirtying is also good on the i386.
4080 * There is also a hook called "update_mmu_cache()" that architectures
4081 * with external mmu caches can use to update those (ie the Sparc or
4082 * PowerPC hashed page tables that act as extended TLBs).
4084 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4085 * concurrent faults).
4087 * The mmap_sem may have been released depending on flags and our return value.
4088 * See filemap_fault() and __lock_page_or_retry().
4090 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
4094 if (unlikely(pmd_none(*vmf
->pmd
))) {
4096 * Leave __pte_alloc() until later: because vm_ops->fault may
4097 * want to allocate huge page, and if we expose page table
4098 * for an instant, it will be difficult to retract from
4099 * concurrent faults and from rmap lookups.
4103 /* See comment in pte_alloc_one_map() */
4104 if (pmd_devmap_trans_unstable(vmf
->pmd
))
4107 * A regular pmd is established and it can't morph into a huge
4108 * pmd from under us anymore at this point because we hold the
4109 * mmap_sem read mode and khugepaged takes it in write mode.
4110 * So now it's safe to run pte_offset_map().
4112 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
4113 vmf
->orig_pte
= *vmf
->pte
;
4116 * some architectures can have larger ptes than wordsize,
4117 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4118 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4119 * accesses. The code below just needs a consistent view
4120 * for the ifs and we later double check anyway with the
4121 * ptl lock held. So here a barrier will do.
4124 if (pte_none(vmf
->orig_pte
)) {
4125 pte_unmap(vmf
->pte
);
4131 if (vma_is_anonymous(vmf
->vma
))
4132 return do_anonymous_page(vmf
);
4134 return do_fault(vmf
);
4137 if (!pte_present(vmf
->orig_pte
))
4138 return do_swap_page(vmf
);
4140 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
4141 return do_numa_page(vmf
);
4143 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
4144 spin_lock(vmf
->ptl
);
4145 entry
= vmf
->orig_pte
;
4146 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
4148 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4149 if (!pte_write(entry
))
4150 return do_wp_page(vmf
);
4151 entry
= pte_mkdirty(entry
);
4153 entry
= pte_mkyoung(entry
);
4154 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
4155 vmf
->flags
& FAULT_FLAG_WRITE
)) {
4156 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
4159 * This is needed only for protection faults but the arch code
4160 * is not yet telling us if this is a protection fault or not.
4161 * This still avoids useless tlb flushes for .text page faults
4164 if (vmf
->flags
& FAULT_FLAG_WRITE
)
4165 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
4168 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4173 * By the time we get here, we already hold the mm semaphore
4175 * The mmap_sem may have been released depending on flags and our
4176 * return value. See filemap_fault() and __lock_page_or_retry().
4178 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
4179 unsigned long address
, unsigned int flags
)
4181 struct vm_fault vmf
= {
4183 .address
= address
& PAGE_MASK
,
4185 .pgoff
= linear_page_index(vma
, address
),
4186 .gfp_mask
= __get_fault_gfp_mask(vma
),
4188 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
4189 struct mm_struct
*mm
= vma
->vm_mm
;
4194 pgd
= pgd_offset(mm
, address
);
4195 p4d
= p4d_alloc(mm
, pgd
, address
);
4197 return VM_FAULT_OOM
;
4199 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4201 return VM_FAULT_OOM
;
4202 if (pud_none(*vmf
.pud
) && __transparent_hugepage_enabled(vma
)) {
4203 ret
= create_huge_pud(&vmf
);
4204 if (!(ret
& VM_FAULT_FALLBACK
))
4207 pud_t orig_pud
= *vmf
.pud
;
4210 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4212 /* NUMA case for anonymous PUDs would go here */
4214 if (dirty
&& !pud_write(orig_pud
)) {
4215 ret
= wp_huge_pud(&vmf
, orig_pud
);
4216 if (!(ret
& VM_FAULT_FALLBACK
))
4219 huge_pud_set_accessed(&vmf
, orig_pud
);
4225 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4227 return VM_FAULT_OOM
;
4228 if (pmd_none(*vmf
.pmd
) && __transparent_hugepage_enabled(vma
)) {
4229 ret
= create_huge_pmd(&vmf
);
4230 if (!(ret
& VM_FAULT_FALLBACK
))
4233 pmd_t orig_pmd
= *vmf
.pmd
;
4236 if (unlikely(is_swap_pmd(orig_pmd
))) {
4237 VM_BUG_ON(thp_migration_supported() &&
4238 !is_pmd_migration_entry(orig_pmd
));
4239 if (is_pmd_migration_entry(orig_pmd
))
4240 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4243 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4244 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4245 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4247 if (dirty
&& !pmd_write(orig_pmd
)) {
4248 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4249 if (!(ret
& VM_FAULT_FALLBACK
))
4252 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4258 return handle_pte_fault(&vmf
);
4262 * By the time we get here, we already hold the mm semaphore
4264 * The mmap_sem may have been released depending on flags and our
4265 * return value. See filemap_fault() and __lock_page_or_retry().
4267 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4272 __set_current_state(TASK_RUNNING
);
4274 count_vm_event(PGFAULT
);
4275 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4277 /* do counter updates before entering really critical section. */
4278 check_sync_rss_stat(current
);
4280 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4281 flags
& FAULT_FLAG_INSTRUCTION
,
4282 flags
& FAULT_FLAG_REMOTE
))
4283 return VM_FAULT_SIGSEGV
;
4286 * Enable the memcg OOM handling for faults triggered in user
4287 * space. Kernel faults are handled more gracefully.
4289 if (flags
& FAULT_FLAG_USER
)
4290 mem_cgroup_enter_user_fault();
4292 if (unlikely(is_vm_hugetlb_page(vma
)))
4293 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4295 ret
= __handle_mm_fault(vma
, address
, flags
);
4297 if (flags
& FAULT_FLAG_USER
) {
4298 mem_cgroup_exit_user_fault();
4300 * The task may have entered a memcg OOM situation but
4301 * if the allocation error was handled gracefully (no
4302 * VM_FAULT_OOM), there is no need to kill anything.
4303 * Just clean up the OOM state peacefully.
4305 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4306 mem_cgroup_oom_synchronize(false);
4311 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4313 #ifndef __PAGETABLE_P4D_FOLDED
4315 * Allocate p4d page table.
4316 * We've already handled the fast-path in-line.
4318 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4320 p4d_t
*new = p4d_alloc_one(mm
, address
);
4324 smp_wmb(); /* See comment in __pte_alloc */
4326 spin_lock(&mm
->page_table_lock
);
4327 if (pgd_present(*pgd
)) /* Another has populated it */
4330 pgd_populate(mm
, pgd
, new);
4331 spin_unlock(&mm
->page_table_lock
);
4334 #endif /* __PAGETABLE_P4D_FOLDED */
4336 #ifndef __PAGETABLE_PUD_FOLDED
4338 * Allocate page upper directory.
4339 * We've already handled the fast-path in-line.
4341 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4343 pud_t
*new = pud_alloc_one(mm
, address
);
4347 smp_wmb(); /* See comment in __pte_alloc */
4349 spin_lock(&mm
->page_table_lock
);
4350 #ifndef __ARCH_HAS_5LEVEL_HACK
4351 if (!p4d_present(*p4d
)) {
4353 p4d_populate(mm
, p4d
, new);
4354 } else /* Another has populated it */
4357 if (!pgd_present(*p4d
)) {
4359 pgd_populate(mm
, p4d
, new);
4360 } else /* Another has populated it */
4362 #endif /* __ARCH_HAS_5LEVEL_HACK */
4363 spin_unlock(&mm
->page_table_lock
);
4366 #endif /* __PAGETABLE_PUD_FOLDED */
4368 #ifndef __PAGETABLE_PMD_FOLDED
4370 * Allocate page middle directory.
4371 * We've already handled the fast-path in-line.
4373 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4376 pmd_t
*new = pmd_alloc_one(mm
, address
);
4380 smp_wmb(); /* See comment in __pte_alloc */
4382 ptl
= pud_lock(mm
, pud
);
4383 #ifndef __ARCH_HAS_4LEVEL_HACK
4384 if (!pud_present(*pud
)) {
4386 pud_populate(mm
, pud
, new);
4387 } else /* Another has populated it */
4390 if (!pgd_present(*pud
)) {
4392 pgd_populate(mm
, pud
, new);
4393 } else /* Another has populated it */
4395 #endif /* __ARCH_HAS_4LEVEL_HACK */
4399 #endif /* __PAGETABLE_PMD_FOLDED */
4401 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4402 unsigned long *start
, unsigned long *end
,
4403 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4411 pgd
= pgd_offset(mm
, address
);
4412 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4415 p4d
= p4d_offset(pgd
, address
);
4416 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4419 pud
= pud_offset(p4d
, address
);
4420 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4423 pmd
= pmd_offset(pud
, address
);
4424 VM_BUG_ON(pmd_trans_huge(*pmd
));
4426 if (pmd_huge(*pmd
)) {
4431 *start
= address
& PMD_MASK
;
4432 *end
= *start
+ PMD_SIZE
;
4433 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4435 *ptlp
= pmd_lock(mm
, pmd
);
4436 if (pmd_huge(*pmd
)) {
4442 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4445 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4449 *start
= address
& PAGE_MASK
;
4450 *end
= *start
+ PAGE_SIZE
;
4451 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4453 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4454 if (!pte_present(*ptep
))
4459 pte_unmap_unlock(ptep
, *ptlp
);
4461 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4466 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4467 pte_t
**ptepp
, spinlock_t
**ptlp
)
4471 /* (void) is needed to make gcc happy */
4472 (void) __cond_lock(*ptlp
,
4473 !(res
= __follow_pte_pmd(mm
, address
, NULL
, NULL
,
4474 ptepp
, NULL
, ptlp
)));
4478 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4479 unsigned long *start
, unsigned long *end
,
4480 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4484 /* (void) is needed to make gcc happy */
4485 (void) __cond_lock(*ptlp
,
4486 !(res
= __follow_pte_pmd(mm
, address
, start
, end
,
4487 ptepp
, pmdpp
, ptlp
)));
4490 EXPORT_SYMBOL(follow_pte_pmd
);
4493 * follow_pfn - look up PFN at a user virtual address
4494 * @vma: memory mapping
4495 * @address: user virtual address
4496 * @pfn: location to store found PFN
4498 * Only IO mappings and raw PFN mappings are allowed.
4500 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4502 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4509 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4512 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4515 *pfn
= pte_pfn(*ptep
);
4516 pte_unmap_unlock(ptep
, ptl
);
4519 EXPORT_SYMBOL(follow_pfn
);
4521 #ifdef CONFIG_HAVE_IOREMAP_PROT
4522 int follow_phys(struct vm_area_struct
*vma
,
4523 unsigned long address
, unsigned int flags
,
4524 unsigned long *prot
, resource_size_t
*phys
)
4530 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4533 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4537 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4540 *prot
= pgprot_val(pte_pgprot(pte
));
4541 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4545 pte_unmap_unlock(ptep
, ptl
);
4550 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4551 void *buf
, int len
, int write
)
4553 resource_size_t phys_addr
;
4554 unsigned long prot
= 0;
4555 void __iomem
*maddr
;
4556 int offset
= addr
& (PAGE_SIZE
-1);
4558 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4561 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4566 memcpy_toio(maddr
+ offset
, buf
, len
);
4568 memcpy_fromio(buf
, maddr
+ offset
, len
);
4573 EXPORT_SYMBOL_GPL(generic_access_phys
);
4577 * Access another process' address space as given in mm. If non-NULL, use the
4578 * given task for page fault accounting.
4580 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4581 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4583 struct vm_area_struct
*vma
;
4584 void *old_buf
= buf
;
4585 int write
= gup_flags
& FOLL_WRITE
;
4587 if (down_read_killable(&mm
->mmap_sem
))
4590 /* ignore errors, just check how much was successfully transferred */
4592 int bytes
, ret
, offset
;
4594 struct page
*page
= NULL
;
4596 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4597 gup_flags
, &page
, &vma
, NULL
);
4599 #ifndef CONFIG_HAVE_IOREMAP_PROT
4603 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4604 * we can access using slightly different code.
4606 vma
= find_vma(mm
, addr
);
4607 if (!vma
|| vma
->vm_start
> addr
)
4609 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4610 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4618 offset
= addr
& (PAGE_SIZE
-1);
4619 if (bytes
> PAGE_SIZE
-offset
)
4620 bytes
= PAGE_SIZE
-offset
;
4624 copy_to_user_page(vma
, page
, addr
,
4625 maddr
+ offset
, buf
, bytes
);
4626 set_page_dirty_lock(page
);
4628 copy_from_user_page(vma
, page
, addr
,
4629 buf
, maddr
+ offset
, bytes
);
4638 up_read(&mm
->mmap_sem
);
4640 return buf
- old_buf
;
4644 * access_remote_vm - access another process' address space
4645 * @mm: the mm_struct of the target address space
4646 * @addr: start address to access
4647 * @buf: source or destination buffer
4648 * @len: number of bytes to transfer
4649 * @gup_flags: flags modifying lookup behaviour
4651 * The caller must hold a reference on @mm.
4653 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4654 void *buf
, int len
, unsigned int gup_flags
)
4656 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4660 * Access another process' address space.
4661 * Source/target buffer must be kernel space,
4662 * Do not walk the page table directly, use get_user_pages
4664 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4665 void *buf
, int len
, unsigned int gup_flags
)
4667 struct mm_struct
*mm
;
4670 mm
= get_task_mm(tsk
);
4674 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4680 EXPORT_SYMBOL_GPL(access_process_vm
);
4683 * Print the name of a VMA.
4685 void print_vma_addr(char *prefix
, unsigned long ip
)
4687 struct mm_struct
*mm
= current
->mm
;
4688 struct vm_area_struct
*vma
;
4691 * we might be running from an atomic context so we cannot sleep
4693 if (!down_read_trylock(&mm
->mmap_sem
))
4696 vma
= find_vma(mm
, ip
);
4697 if (vma
&& vma
->vm_file
) {
4698 struct file
*f
= vma
->vm_file
;
4699 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4703 p
= file_path(f
, buf
, PAGE_SIZE
);
4706 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4708 vma
->vm_end
- vma
->vm_start
);
4709 free_page((unsigned long)buf
);
4712 up_read(&mm
->mmap_sem
);
4715 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4716 void __might_fault(const char *file
, int line
)
4719 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4720 * holding the mmap_sem, this is safe because kernel memory doesn't
4721 * get paged out, therefore we'll never actually fault, and the
4722 * below annotations will generate false positives.
4724 if (uaccess_kernel())
4726 if (pagefault_disabled())
4728 __might_sleep(file
, line
, 0);
4729 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4731 might_lock_read(¤t
->mm
->mmap_sem
);
4734 EXPORT_SYMBOL(__might_fault
);
4737 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4739 * Process all subpages of the specified huge page with the specified
4740 * operation. The target subpage will be processed last to keep its
4743 static inline void process_huge_page(
4744 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4745 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4749 unsigned long addr
= addr_hint
&
4750 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4752 /* Process target subpage last to keep its cache lines hot */
4754 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4755 if (2 * n
<= pages_per_huge_page
) {
4756 /* If target subpage in first half of huge page */
4759 /* Process subpages at the end of huge page */
4760 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4762 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4765 /* If target subpage in second half of huge page */
4766 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4767 l
= pages_per_huge_page
- n
;
4768 /* Process subpages at the begin of huge page */
4769 for (i
= 0; i
< base
; i
++) {
4771 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4775 * Process remaining subpages in left-right-left-right pattern
4776 * towards the target subpage
4778 for (i
= 0; i
< l
; i
++) {
4779 int left_idx
= base
+ i
;
4780 int right_idx
= base
+ 2 * l
- 1 - i
;
4783 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4785 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4789 static void clear_gigantic_page(struct page
*page
,
4791 unsigned int pages_per_huge_page
)
4794 struct page
*p
= page
;
4797 for (i
= 0; i
< pages_per_huge_page
;
4798 i
++, p
= mem_map_next(p
, page
, i
)) {
4800 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4804 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4806 struct page
*page
= arg
;
4808 clear_user_highpage(page
+ idx
, addr
);
4811 void clear_huge_page(struct page
*page
,
4812 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4814 unsigned long addr
= addr_hint
&
4815 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4817 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4818 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4822 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4825 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4827 struct vm_area_struct
*vma
,
4828 unsigned int pages_per_huge_page
)
4831 struct page
*dst_base
= dst
;
4832 struct page
*src_base
= src
;
4834 for (i
= 0; i
< pages_per_huge_page
; ) {
4836 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4839 dst
= mem_map_next(dst
, dst_base
, i
);
4840 src
= mem_map_next(src
, src_base
, i
);
4844 struct copy_subpage_arg
{
4847 struct vm_area_struct
*vma
;
4850 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4852 struct copy_subpage_arg
*copy_arg
= arg
;
4854 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4855 addr
, copy_arg
->vma
);
4858 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4859 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4860 unsigned int pages_per_huge_page
)
4862 unsigned long addr
= addr_hint
&
4863 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4864 struct copy_subpage_arg arg
= {
4870 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4871 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4872 pages_per_huge_page
);
4876 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4879 long copy_huge_page_from_user(struct page
*dst_page
,
4880 const void __user
*usr_src
,
4881 unsigned int pages_per_huge_page
,
4882 bool allow_pagefault
)
4884 void *src
= (void *)usr_src
;
4886 unsigned long i
, rc
= 0;
4887 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4889 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4890 if (allow_pagefault
)
4891 page_kaddr
= kmap(dst_page
+ i
);
4893 page_kaddr
= kmap_atomic(dst_page
+ i
);
4894 rc
= copy_from_user(page_kaddr
,
4895 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4897 if (allow_pagefault
)
4898 kunmap(dst_page
+ i
);
4900 kunmap_atomic(page_kaddr
);
4902 ret_val
-= (PAGE_SIZE
- rc
);
4910 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4912 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4914 static struct kmem_cache
*page_ptl_cachep
;
4916 void __init
ptlock_cache_init(void)
4918 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4922 bool ptlock_alloc(struct page
*page
)
4926 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4933 void ptlock_free(struct page
*page
)
4935 kmem_cache_free(page_ptl_cachep
, page
->ptl
);