Linux 4.19.168
[linux/fpc-iii.git] / mm / memory.c
blobeeae63bd950276c6c111580a5f9dc49bb9991e2d
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
81 #include "internal.h"
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
115 #else
117 #endif
119 #ifndef arch_faults_on_old_pte
120 static inline bool arch_faults_on_old_pte(void)
123 * Those arches which don't have hw access flag feature need to
124 * implement their own helper. By default, "true" means pagefault
125 * will be hit on old pte.
127 return true;
129 #endif
131 static int __init disable_randmaps(char *s)
133 randomize_va_space = 0;
134 return 1;
136 __setup("norandmaps", disable_randmaps);
138 unsigned long zero_pfn __read_mostly;
139 EXPORT_SYMBOL(zero_pfn);
141 unsigned long highest_memmap_pfn __read_mostly;
144 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
146 static int __init init_zero_pfn(void)
148 zero_pfn = page_to_pfn(ZERO_PAGE(0));
149 return 0;
151 core_initcall(init_zero_pfn);
154 #if defined(SPLIT_RSS_COUNTING)
156 void sync_mm_rss(struct mm_struct *mm)
158 int i;
160 for (i = 0; i < NR_MM_COUNTERS; i++) {
161 if (current->rss_stat.count[i]) {
162 add_mm_counter(mm, i, current->rss_stat.count[i]);
163 current->rss_stat.count[i] = 0;
166 current->rss_stat.events = 0;
169 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
171 struct task_struct *task = current;
173 if (likely(task->mm == mm))
174 task->rss_stat.count[member] += val;
175 else
176 add_mm_counter(mm, member, val);
178 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
179 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
181 /* sync counter once per 64 page faults */
182 #define TASK_RSS_EVENTS_THRESH (64)
183 static void check_sync_rss_stat(struct task_struct *task)
185 if (unlikely(task != current))
186 return;
187 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
188 sync_mm_rss(task->mm);
190 #else /* SPLIT_RSS_COUNTING */
192 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
193 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
195 static void check_sync_rss_stat(struct task_struct *task)
199 #endif /* SPLIT_RSS_COUNTING */
201 #ifdef HAVE_GENERIC_MMU_GATHER
203 static bool tlb_next_batch(struct mmu_gather *tlb)
205 struct mmu_gather_batch *batch;
207 batch = tlb->active;
208 if (batch->next) {
209 tlb->active = batch->next;
210 return true;
213 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
214 return false;
216 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
217 if (!batch)
218 return false;
220 tlb->batch_count++;
221 batch->next = NULL;
222 batch->nr = 0;
223 batch->max = MAX_GATHER_BATCH;
225 tlb->active->next = batch;
226 tlb->active = batch;
228 return true;
231 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
232 unsigned long start, unsigned long end)
234 tlb->mm = mm;
236 /* Is it from 0 to ~0? */
237 tlb->fullmm = !(start | (end+1));
238 tlb->need_flush_all = 0;
239 tlb->local.next = NULL;
240 tlb->local.nr = 0;
241 tlb->local.max = ARRAY_SIZE(tlb->__pages);
242 tlb->active = &tlb->local;
243 tlb->batch_count = 0;
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 tlb->batch = NULL;
247 #endif
248 tlb->page_size = 0;
250 __tlb_reset_range(tlb);
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 struct mmu_gather_batch *batch;
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258 tlb_table_flush(tlb);
259 #endif
260 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
261 free_pages_and_swap_cache(batch->pages, batch->nr);
262 batch->nr = 0;
264 tlb->active = &tlb->local;
267 void tlb_flush_mmu(struct mmu_gather *tlb)
269 tlb_flush_mmu_tlbonly(tlb);
270 tlb_flush_mmu_free(tlb);
273 /* tlb_finish_mmu
274 * Called at the end of the shootdown operation to free up any resources
275 * that were required.
277 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
278 unsigned long start, unsigned long end, bool force)
280 struct mmu_gather_batch *batch, *next;
282 if (force)
283 __tlb_adjust_range(tlb, start, end - start);
285 tlb_flush_mmu(tlb);
287 /* keep the page table cache within bounds */
288 check_pgt_cache();
290 for (batch = tlb->local.next; batch; batch = next) {
291 next = batch->next;
292 free_pages((unsigned long)batch, 0);
294 tlb->local.next = NULL;
297 /* __tlb_remove_page
298 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
299 * handling the additional races in SMP caused by other CPUs caching valid
300 * mappings in their TLBs. Returns the number of free page slots left.
301 * When out of page slots we must call tlb_flush_mmu().
302 *returns true if the caller should flush.
304 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
306 struct mmu_gather_batch *batch;
308 VM_BUG_ON(!tlb->end);
309 VM_WARN_ON(tlb->page_size != page_size);
311 batch = tlb->active;
313 * Add the page and check if we are full. If so
314 * force a flush.
316 batch->pages[batch->nr++] = page;
317 if (batch->nr == batch->max) {
318 if (!tlb_next_batch(tlb))
319 return true;
320 batch = tlb->active;
322 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
324 return false;
327 #endif /* HAVE_GENERIC_MMU_GATHER */
329 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
332 * See the comment near struct mmu_table_batch.
336 * If we want tlb_remove_table() to imply TLB invalidates.
338 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
340 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
342 * Invalidate page-table caches used by hardware walkers. Then we still
343 * need to RCU-sched wait while freeing the pages because software
344 * walkers can still be in-flight.
346 tlb_flush_mmu_tlbonly(tlb);
347 #endif
350 static void tlb_remove_table_smp_sync(void *arg)
352 /* Simply deliver the interrupt */
355 static void tlb_remove_table_one(void *table)
358 * This isn't an RCU grace period and hence the page-tables cannot be
359 * assumed to be actually RCU-freed.
361 * It is however sufficient for software page-table walkers that rely on
362 * IRQ disabling. See the comment near struct mmu_table_batch.
364 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
365 __tlb_remove_table(table);
368 static void tlb_remove_table_rcu(struct rcu_head *head)
370 struct mmu_table_batch *batch;
371 int i;
373 batch = container_of(head, struct mmu_table_batch, rcu);
375 for (i = 0; i < batch->nr; i++)
376 __tlb_remove_table(batch->tables[i]);
378 free_page((unsigned long)batch);
381 void tlb_table_flush(struct mmu_gather *tlb)
383 struct mmu_table_batch **batch = &tlb->batch;
385 if (*batch) {
386 tlb_table_invalidate(tlb);
387 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
388 *batch = NULL;
392 void tlb_remove_table(struct mmu_gather *tlb, void *table)
394 struct mmu_table_batch **batch = &tlb->batch;
396 if (*batch == NULL) {
397 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
398 if (*batch == NULL) {
399 tlb_table_invalidate(tlb);
400 tlb_remove_table_one(table);
401 return;
403 (*batch)->nr = 0;
406 (*batch)->tables[(*batch)->nr++] = table;
407 if ((*batch)->nr == MAX_TABLE_BATCH)
408 tlb_table_flush(tlb);
411 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
414 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
415 * @tlb: the mmu_gather structure to initialize
416 * @mm: the mm_struct of the target address space
417 * @start: start of the region that will be removed from the page-table
418 * @end: end of the region that will be removed from the page-table
420 * Called to initialize an (on-stack) mmu_gather structure for page-table
421 * tear-down from @mm. The @start and @end are set to 0 and -1
422 * respectively when @mm is without users and we're going to destroy
423 * the full address space (exit/execve).
425 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
426 unsigned long start, unsigned long end)
428 arch_tlb_gather_mmu(tlb, mm, start, end);
429 inc_tlb_flush_pending(tlb->mm);
432 void tlb_finish_mmu(struct mmu_gather *tlb,
433 unsigned long start, unsigned long end)
436 * If there are parallel threads are doing PTE changes on same range
437 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
438 * flush by batching, a thread has stable TLB entry can fail to flush
439 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
440 * forcefully if we detect parallel PTE batching threads.
442 bool force = mm_tlb_flush_nested(tlb->mm);
444 arch_tlb_finish_mmu(tlb, start, end, force);
445 dec_tlb_flush_pending(tlb->mm);
449 * Note: this doesn't free the actual pages themselves. That
450 * has been handled earlier when unmapping all the memory regions.
452 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
453 unsigned long addr)
455 pgtable_t token = pmd_pgtable(*pmd);
456 pmd_clear(pmd);
457 pte_free_tlb(tlb, token, addr);
458 mm_dec_nr_ptes(tlb->mm);
461 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
462 unsigned long addr, unsigned long end,
463 unsigned long floor, unsigned long ceiling)
465 pmd_t *pmd;
466 unsigned long next;
467 unsigned long start;
469 start = addr;
470 pmd = pmd_offset(pud, addr);
471 do {
472 next = pmd_addr_end(addr, end);
473 if (pmd_none_or_clear_bad(pmd))
474 continue;
475 free_pte_range(tlb, pmd, addr);
476 } while (pmd++, addr = next, addr != end);
478 start &= PUD_MASK;
479 if (start < floor)
480 return;
481 if (ceiling) {
482 ceiling &= PUD_MASK;
483 if (!ceiling)
484 return;
486 if (end - 1 > ceiling - 1)
487 return;
489 pmd = pmd_offset(pud, start);
490 pud_clear(pud);
491 pmd_free_tlb(tlb, pmd, start);
492 mm_dec_nr_pmds(tlb->mm);
495 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
496 unsigned long addr, unsigned long end,
497 unsigned long floor, unsigned long ceiling)
499 pud_t *pud;
500 unsigned long next;
501 unsigned long start;
503 start = addr;
504 pud = pud_offset(p4d, addr);
505 do {
506 next = pud_addr_end(addr, end);
507 if (pud_none_or_clear_bad(pud))
508 continue;
509 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
510 } while (pud++, addr = next, addr != end);
512 start &= P4D_MASK;
513 if (start < floor)
514 return;
515 if (ceiling) {
516 ceiling &= P4D_MASK;
517 if (!ceiling)
518 return;
520 if (end - 1 > ceiling - 1)
521 return;
523 pud = pud_offset(p4d, start);
524 p4d_clear(p4d);
525 pud_free_tlb(tlb, pud, start);
526 mm_dec_nr_puds(tlb->mm);
529 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
530 unsigned long addr, unsigned long end,
531 unsigned long floor, unsigned long ceiling)
533 p4d_t *p4d;
534 unsigned long next;
535 unsigned long start;
537 start = addr;
538 p4d = p4d_offset(pgd, addr);
539 do {
540 next = p4d_addr_end(addr, end);
541 if (p4d_none_or_clear_bad(p4d))
542 continue;
543 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
544 } while (p4d++, addr = next, addr != end);
546 start &= PGDIR_MASK;
547 if (start < floor)
548 return;
549 if (ceiling) {
550 ceiling &= PGDIR_MASK;
551 if (!ceiling)
552 return;
554 if (end - 1 > ceiling - 1)
555 return;
557 p4d = p4d_offset(pgd, start);
558 pgd_clear(pgd);
559 p4d_free_tlb(tlb, p4d, start);
563 * This function frees user-level page tables of a process.
565 void free_pgd_range(struct mmu_gather *tlb,
566 unsigned long addr, unsigned long end,
567 unsigned long floor, unsigned long ceiling)
569 pgd_t *pgd;
570 unsigned long next;
573 * The next few lines have given us lots of grief...
575 * Why are we testing PMD* at this top level? Because often
576 * there will be no work to do at all, and we'd prefer not to
577 * go all the way down to the bottom just to discover that.
579 * Why all these "- 1"s? Because 0 represents both the bottom
580 * of the address space and the top of it (using -1 for the
581 * top wouldn't help much: the masks would do the wrong thing).
582 * The rule is that addr 0 and floor 0 refer to the bottom of
583 * the address space, but end 0 and ceiling 0 refer to the top
584 * Comparisons need to use "end - 1" and "ceiling - 1" (though
585 * that end 0 case should be mythical).
587 * Wherever addr is brought up or ceiling brought down, we must
588 * be careful to reject "the opposite 0" before it confuses the
589 * subsequent tests. But what about where end is brought down
590 * by PMD_SIZE below? no, end can't go down to 0 there.
592 * Whereas we round start (addr) and ceiling down, by different
593 * masks at different levels, in order to test whether a table
594 * now has no other vmas using it, so can be freed, we don't
595 * bother to round floor or end up - the tests don't need that.
598 addr &= PMD_MASK;
599 if (addr < floor) {
600 addr += PMD_SIZE;
601 if (!addr)
602 return;
604 if (ceiling) {
605 ceiling &= PMD_MASK;
606 if (!ceiling)
607 return;
609 if (end - 1 > ceiling - 1)
610 end -= PMD_SIZE;
611 if (addr > end - 1)
612 return;
614 * We add page table cache pages with PAGE_SIZE,
615 * (see pte_free_tlb()), flush the tlb if we need
617 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
618 pgd = pgd_offset(tlb->mm, addr);
619 do {
620 next = pgd_addr_end(addr, end);
621 if (pgd_none_or_clear_bad(pgd))
622 continue;
623 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
624 } while (pgd++, addr = next, addr != end);
627 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
628 unsigned long floor, unsigned long ceiling)
630 while (vma) {
631 struct vm_area_struct *next = vma->vm_next;
632 unsigned long addr = vma->vm_start;
635 * Hide vma from rmap and truncate_pagecache before freeing
636 * pgtables
638 unlink_anon_vmas(vma);
639 unlink_file_vma(vma);
641 if (is_vm_hugetlb_page(vma)) {
642 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
643 floor, next ? next->vm_start : ceiling);
644 } else {
646 * Optimization: gather nearby vmas into one call down
648 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
649 && !is_vm_hugetlb_page(next)) {
650 vma = next;
651 next = vma->vm_next;
652 unlink_anon_vmas(vma);
653 unlink_file_vma(vma);
655 free_pgd_range(tlb, addr, vma->vm_end,
656 floor, next ? next->vm_start : ceiling);
658 vma = next;
662 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
664 spinlock_t *ptl;
665 pgtable_t new = pte_alloc_one(mm, address);
666 if (!new)
667 return -ENOMEM;
670 * Ensure all pte setup (eg. pte page lock and page clearing) are
671 * visible before the pte is made visible to other CPUs by being
672 * put into page tables.
674 * The other side of the story is the pointer chasing in the page
675 * table walking code (when walking the page table without locking;
676 * ie. most of the time). Fortunately, these data accesses consist
677 * of a chain of data-dependent loads, meaning most CPUs (alpha
678 * being the notable exception) will already guarantee loads are
679 * seen in-order. See the alpha page table accessors for the
680 * smp_read_barrier_depends() barriers in page table walking code.
682 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
684 ptl = pmd_lock(mm, pmd);
685 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
686 mm_inc_nr_ptes(mm);
687 pmd_populate(mm, pmd, new);
688 new = NULL;
690 spin_unlock(ptl);
691 if (new)
692 pte_free(mm, new);
693 return 0;
696 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
698 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
699 if (!new)
700 return -ENOMEM;
702 smp_wmb(); /* See comment in __pte_alloc */
704 spin_lock(&init_mm.page_table_lock);
705 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
706 pmd_populate_kernel(&init_mm, pmd, new);
707 new = NULL;
709 spin_unlock(&init_mm.page_table_lock);
710 if (new)
711 pte_free_kernel(&init_mm, new);
712 return 0;
715 static inline void init_rss_vec(int *rss)
717 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
720 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
722 int i;
724 if (current->mm == mm)
725 sync_mm_rss(mm);
726 for (i = 0; i < NR_MM_COUNTERS; i++)
727 if (rss[i])
728 add_mm_counter(mm, i, rss[i]);
732 * This function is called to print an error when a bad pte
733 * is found. For example, we might have a PFN-mapped pte in
734 * a region that doesn't allow it.
736 * The calling function must still handle the error.
738 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
739 pte_t pte, struct page *page)
741 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
742 p4d_t *p4d = p4d_offset(pgd, addr);
743 pud_t *pud = pud_offset(p4d, addr);
744 pmd_t *pmd = pmd_offset(pud, addr);
745 struct address_space *mapping;
746 pgoff_t index;
747 static unsigned long resume;
748 static unsigned long nr_shown;
749 static unsigned long nr_unshown;
752 * Allow a burst of 60 reports, then keep quiet for that minute;
753 * or allow a steady drip of one report per second.
755 if (nr_shown == 60) {
756 if (time_before(jiffies, resume)) {
757 nr_unshown++;
758 return;
760 if (nr_unshown) {
761 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
762 nr_unshown);
763 nr_unshown = 0;
765 nr_shown = 0;
767 if (nr_shown++ == 0)
768 resume = jiffies + 60 * HZ;
770 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
771 index = linear_page_index(vma, addr);
773 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
774 current->comm,
775 (long long)pte_val(pte), (long long)pmd_val(*pmd));
776 if (page)
777 dump_page(page, "bad pte");
778 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
779 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
780 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
781 vma->vm_file,
782 vma->vm_ops ? vma->vm_ops->fault : NULL,
783 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
784 mapping ? mapping->a_ops->readpage : NULL);
785 dump_stack();
786 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
790 * vm_normal_page -- This function gets the "struct page" associated with a pte.
792 * "Special" mappings do not wish to be associated with a "struct page" (either
793 * it doesn't exist, or it exists but they don't want to touch it). In this
794 * case, NULL is returned here. "Normal" mappings do have a struct page.
796 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
797 * pte bit, in which case this function is trivial. Secondly, an architecture
798 * may not have a spare pte bit, which requires a more complicated scheme,
799 * described below.
801 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
802 * special mapping (even if there are underlying and valid "struct pages").
803 * COWed pages of a VM_PFNMAP are always normal.
805 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
806 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
807 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
808 * mapping will always honor the rule
810 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
812 * And for normal mappings this is false.
814 * This restricts such mappings to be a linear translation from virtual address
815 * to pfn. To get around this restriction, we allow arbitrary mappings so long
816 * as the vma is not a COW mapping; in that case, we know that all ptes are
817 * special (because none can have been COWed).
820 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
822 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
823 * page" backing, however the difference is that _all_ pages with a struct
824 * page (that is, those where pfn_valid is true) are refcounted and considered
825 * normal pages by the VM. The disadvantage is that pages are refcounted
826 * (which can be slower and simply not an option for some PFNMAP users). The
827 * advantage is that we don't have to follow the strict linearity rule of
828 * PFNMAP mappings in order to support COWable mappings.
831 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
832 pte_t pte, bool with_public_device)
834 unsigned long pfn = pte_pfn(pte);
836 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
837 if (likely(!pte_special(pte)))
838 goto check_pfn;
839 if (vma->vm_ops && vma->vm_ops->find_special_page)
840 return vma->vm_ops->find_special_page(vma, addr);
841 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
842 return NULL;
843 if (is_zero_pfn(pfn))
844 return NULL;
847 * Device public pages are special pages (they are ZONE_DEVICE
848 * pages but different from persistent memory). They behave
849 * allmost like normal pages. The difference is that they are
850 * not on the lru and thus should never be involve with any-
851 * thing that involve lru manipulation (mlock, numa balancing,
852 * ...).
854 * This is why we still want to return NULL for such page from
855 * vm_normal_page() so that we do not have to special case all
856 * call site of vm_normal_page().
858 if (likely(pfn <= highest_memmap_pfn)) {
859 struct page *page = pfn_to_page(pfn);
861 if (is_device_public_page(page)) {
862 if (with_public_device)
863 return page;
864 return NULL;
868 if (pte_devmap(pte))
869 return NULL;
871 print_bad_pte(vma, addr, pte, NULL);
872 return NULL;
875 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
877 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
878 if (vma->vm_flags & VM_MIXEDMAP) {
879 if (!pfn_valid(pfn))
880 return NULL;
881 goto out;
882 } else {
883 unsigned long off;
884 off = (addr - vma->vm_start) >> PAGE_SHIFT;
885 if (pfn == vma->vm_pgoff + off)
886 return NULL;
887 if (!is_cow_mapping(vma->vm_flags))
888 return NULL;
892 if (is_zero_pfn(pfn))
893 return NULL;
895 check_pfn:
896 if (unlikely(pfn > highest_memmap_pfn)) {
897 print_bad_pte(vma, addr, pte, NULL);
898 return NULL;
902 * NOTE! We still have PageReserved() pages in the page tables.
903 * eg. VDSO mappings can cause them to exist.
905 out:
906 return pfn_to_page(pfn);
909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
910 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
911 pmd_t pmd)
913 unsigned long pfn = pmd_pfn(pmd);
916 * There is no pmd_special() but there may be special pmds, e.g.
917 * in a direct-access (dax) mapping, so let's just replicate the
918 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
920 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
921 if (vma->vm_flags & VM_MIXEDMAP) {
922 if (!pfn_valid(pfn))
923 return NULL;
924 goto out;
925 } else {
926 unsigned long off;
927 off = (addr - vma->vm_start) >> PAGE_SHIFT;
928 if (pfn == vma->vm_pgoff + off)
929 return NULL;
930 if (!is_cow_mapping(vma->vm_flags))
931 return NULL;
935 if (pmd_devmap(pmd))
936 return NULL;
937 if (is_zero_pfn(pfn))
938 return NULL;
939 if (unlikely(pfn > highest_memmap_pfn))
940 return NULL;
943 * NOTE! We still have PageReserved() pages in the page tables.
944 * eg. VDSO mappings can cause them to exist.
946 out:
947 return pfn_to_page(pfn);
949 #endif
952 * copy one vm_area from one task to the other. Assumes the page tables
953 * already present in the new task to be cleared in the whole range
954 * covered by this vma.
957 static inline unsigned long
958 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
959 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
960 unsigned long addr, int *rss)
962 unsigned long vm_flags = vma->vm_flags;
963 pte_t pte = *src_pte;
964 struct page *page;
966 /* pte contains position in swap or file, so copy. */
967 if (unlikely(!pte_present(pte))) {
968 swp_entry_t entry = pte_to_swp_entry(pte);
970 if (likely(!non_swap_entry(entry))) {
971 if (swap_duplicate(entry) < 0)
972 return entry.val;
974 /* make sure dst_mm is on swapoff's mmlist. */
975 if (unlikely(list_empty(&dst_mm->mmlist))) {
976 spin_lock(&mmlist_lock);
977 if (list_empty(&dst_mm->mmlist))
978 list_add(&dst_mm->mmlist,
979 &src_mm->mmlist);
980 spin_unlock(&mmlist_lock);
982 rss[MM_SWAPENTS]++;
983 } else if (is_migration_entry(entry)) {
984 page = migration_entry_to_page(entry);
986 rss[mm_counter(page)]++;
988 if (is_write_migration_entry(entry) &&
989 is_cow_mapping(vm_flags)) {
991 * COW mappings require pages in both
992 * parent and child to be set to read.
994 make_migration_entry_read(&entry);
995 pte = swp_entry_to_pte(entry);
996 if (pte_swp_soft_dirty(*src_pte))
997 pte = pte_swp_mksoft_dirty(pte);
998 set_pte_at(src_mm, addr, src_pte, pte);
1000 } else if (is_device_private_entry(entry)) {
1001 page = device_private_entry_to_page(entry);
1004 * Update rss count even for unaddressable pages, as
1005 * they should treated just like normal pages in this
1006 * respect.
1008 * We will likely want to have some new rss counters
1009 * for unaddressable pages, at some point. But for now
1010 * keep things as they are.
1012 get_page(page);
1013 rss[mm_counter(page)]++;
1014 page_dup_rmap(page, false);
1017 * We do not preserve soft-dirty information, because so
1018 * far, checkpoint/restore is the only feature that
1019 * requires that. And checkpoint/restore does not work
1020 * when a device driver is involved (you cannot easily
1021 * save and restore device driver state).
1023 if (is_write_device_private_entry(entry) &&
1024 is_cow_mapping(vm_flags)) {
1025 make_device_private_entry_read(&entry);
1026 pte = swp_entry_to_pte(entry);
1027 set_pte_at(src_mm, addr, src_pte, pte);
1030 goto out_set_pte;
1034 * If it's a COW mapping, write protect it both
1035 * in the parent and the child
1037 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1038 ptep_set_wrprotect(src_mm, addr, src_pte);
1039 pte = pte_wrprotect(pte);
1043 * If it's a shared mapping, mark it clean in
1044 * the child
1046 if (vm_flags & VM_SHARED)
1047 pte = pte_mkclean(pte);
1048 pte = pte_mkold(pte);
1050 page = vm_normal_page(vma, addr, pte);
1051 if (page) {
1052 get_page(page);
1053 page_dup_rmap(page, false);
1054 rss[mm_counter(page)]++;
1055 } else if (pte_devmap(pte)) {
1056 page = pte_page(pte);
1059 * Cache coherent device memory behave like regular page and
1060 * not like persistent memory page. For more informations see
1061 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1063 if (is_device_public_page(page)) {
1064 get_page(page);
1065 page_dup_rmap(page, false);
1066 rss[mm_counter(page)]++;
1070 out_set_pte:
1071 set_pte_at(dst_mm, addr, dst_pte, pte);
1072 return 0;
1075 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1077 unsigned long addr, unsigned long end)
1079 pte_t *orig_src_pte, *orig_dst_pte;
1080 pte_t *src_pte, *dst_pte;
1081 spinlock_t *src_ptl, *dst_ptl;
1082 int progress = 0;
1083 int rss[NR_MM_COUNTERS];
1084 swp_entry_t entry = (swp_entry_t){0};
1086 again:
1087 init_rss_vec(rss);
1089 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1090 if (!dst_pte)
1091 return -ENOMEM;
1092 src_pte = pte_offset_map(src_pmd, addr);
1093 src_ptl = pte_lockptr(src_mm, src_pmd);
1094 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1095 orig_src_pte = src_pte;
1096 orig_dst_pte = dst_pte;
1097 arch_enter_lazy_mmu_mode();
1099 do {
1101 * We are holding two locks at this point - either of them
1102 * could generate latencies in another task on another CPU.
1104 if (progress >= 32) {
1105 progress = 0;
1106 if (need_resched() ||
1107 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1108 break;
1110 if (pte_none(*src_pte)) {
1111 progress++;
1112 continue;
1114 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1115 vma, addr, rss);
1116 if (entry.val)
1117 break;
1118 progress += 8;
1119 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1121 arch_leave_lazy_mmu_mode();
1122 spin_unlock(src_ptl);
1123 pte_unmap(orig_src_pte);
1124 add_mm_rss_vec(dst_mm, rss);
1125 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1126 cond_resched();
1128 if (entry.val) {
1129 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1130 return -ENOMEM;
1131 progress = 0;
1133 if (addr != end)
1134 goto again;
1135 return 0;
1138 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1139 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1140 unsigned long addr, unsigned long end)
1142 pmd_t *src_pmd, *dst_pmd;
1143 unsigned long next;
1145 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1146 if (!dst_pmd)
1147 return -ENOMEM;
1148 src_pmd = pmd_offset(src_pud, addr);
1149 do {
1150 next = pmd_addr_end(addr, end);
1151 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1152 || pmd_devmap(*src_pmd)) {
1153 int err;
1154 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1155 err = copy_huge_pmd(dst_mm, src_mm,
1156 dst_pmd, src_pmd, addr, vma);
1157 if (err == -ENOMEM)
1158 return -ENOMEM;
1159 if (!err)
1160 continue;
1161 /* fall through */
1163 if (pmd_none_or_clear_bad(src_pmd))
1164 continue;
1165 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1166 vma, addr, next))
1167 return -ENOMEM;
1168 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1169 return 0;
1172 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1173 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1174 unsigned long addr, unsigned long end)
1176 pud_t *src_pud, *dst_pud;
1177 unsigned long next;
1179 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1180 if (!dst_pud)
1181 return -ENOMEM;
1182 src_pud = pud_offset(src_p4d, addr);
1183 do {
1184 next = pud_addr_end(addr, end);
1185 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1186 int err;
1188 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1189 err = copy_huge_pud(dst_mm, src_mm,
1190 dst_pud, src_pud, addr, vma);
1191 if (err == -ENOMEM)
1192 return -ENOMEM;
1193 if (!err)
1194 continue;
1195 /* fall through */
1197 if (pud_none_or_clear_bad(src_pud))
1198 continue;
1199 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1200 vma, addr, next))
1201 return -ENOMEM;
1202 } while (dst_pud++, src_pud++, addr = next, addr != end);
1203 return 0;
1206 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1207 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1208 unsigned long addr, unsigned long end)
1210 p4d_t *src_p4d, *dst_p4d;
1211 unsigned long next;
1213 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214 if (!dst_p4d)
1215 return -ENOMEM;
1216 src_p4d = p4d_offset(src_pgd, addr);
1217 do {
1218 next = p4d_addr_end(addr, end);
1219 if (p4d_none_or_clear_bad(src_p4d))
1220 continue;
1221 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1222 vma, addr, next))
1223 return -ENOMEM;
1224 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225 return 0;
1228 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1229 struct vm_area_struct *vma)
1231 pgd_t *src_pgd, *dst_pgd;
1232 unsigned long next;
1233 unsigned long addr = vma->vm_start;
1234 unsigned long end = vma->vm_end;
1235 unsigned long mmun_start; /* For mmu_notifiers */
1236 unsigned long mmun_end; /* For mmu_notifiers */
1237 bool is_cow;
1238 int ret;
1241 * Don't copy ptes where a page fault will fill them correctly.
1242 * Fork becomes much lighter when there are big shared or private
1243 * readonly mappings. The tradeoff is that copy_page_range is more
1244 * efficient than faulting.
1246 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1247 !vma->anon_vma)
1248 return 0;
1250 if (is_vm_hugetlb_page(vma))
1251 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1253 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1255 * We do not free on error cases below as remove_vma
1256 * gets called on error from higher level routine
1258 ret = track_pfn_copy(vma);
1259 if (ret)
1260 return ret;
1264 * We need to invalidate the secondary MMU mappings only when
1265 * there could be a permission downgrade on the ptes of the
1266 * parent mm. And a permission downgrade will only happen if
1267 * is_cow_mapping() returns true.
1269 is_cow = is_cow_mapping(vma->vm_flags);
1270 mmun_start = addr;
1271 mmun_end = end;
1272 if (is_cow)
1273 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1274 mmun_end);
1276 ret = 0;
1277 dst_pgd = pgd_offset(dst_mm, addr);
1278 src_pgd = pgd_offset(src_mm, addr);
1279 do {
1280 next = pgd_addr_end(addr, end);
1281 if (pgd_none_or_clear_bad(src_pgd))
1282 continue;
1283 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1284 vma, addr, next))) {
1285 ret = -ENOMEM;
1286 break;
1288 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1290 if (is_cow)
1291 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1292 return ret;
1295 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1296 struct vm_area_struct *vma, pmd_t *pmd,
1297 unsigned long addr, unsigned long end,
1298 struct zap_details *details)
1300 struct mm_struct *mm = tlb->mm;
1301 int force_flush = 0;
1302 int rss[NR_MM_COUNTERS];
1303 spinlock_t *ptl;
1304 pte_t *start_pte;
1305 pte_t *pte;
1306 swp_entry_t entry;
1308 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1309 again:
1310 init_rss_vec(rss);
1311 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1312 pte = start_pte;
1313 flush_tlb_batched_pending(mm);
1314 arch_enter_lazy_mmu_mode();
1315 do {
1316 pte_t ptent = *pte;
1317 if (pte_none(ptent))
1318 continue;
1320 if (pte_present(ptent)) {
1321 struct page *page;
1323 page = _vm_normal_page(vma, addr, ptent, true);
1324 if (unlikely(details) && page) {
1326 * unmap_shared_mapping_pages() wants to
1327 * invalidate cache without truncating:
1328 * unmap shared but keep private pages.
1330 if (details->check_mapping &&
1331 details->check_mapping != page_rmapping(page))
1332 continue;
1334 ptent = ptep_get_and_clear_full(mm, addr, pte,
1335 tlb->fullmm);
1336 tlb_remove_tlb_entry(tlb, pte, addr);
1337 if (unlikely(!page))
1338 continue;
1340 if (!PageAnon(page)) {
1341 if (pte_dirty(ptent)) {
1342 force_flush = 1;
1343 set_page_dirty(page);
1345 if (pte_young(ptent) &&
1346 likely(!(vma->vm_flags & VM_SEQ_READ)))
1347 mark_page_accessed(page);
1349 rss[mm_counter(page)]--;
1350 page_remove_rmap(page, false);
1351 if (unlikely(page_mapcount(page) < 0))
1352 print_bad_pte(vma, addr, ptent, page);
1353 if (unlikely(__tlb_remove_page(tlb, page))) {
1354 force_flush = 1;
1355 addr += PAGE_SIZE;
1356 break;
1358 continue;
1361 entry = pte_to_swp_entry(ptent);
1362 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1363 struct page *page = device_private_entry_to_page(entry);
1365 if (unlikely(details && details->check_mapping)) {
1367 * unmap_shared_mapping_pages() wants to
1368 * invalidate cache without truncating:
1369 * unmap shared but keep private pages.
1371 if (details->check_mapping !=
1372 page_rmapping(page))
1373 continue;
1376 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1377 rss[mm_counter(page)]--;
1378 page_remove_rmap(page, false);
1379 put_page(page);
1380 continue;
1383 /* If details->check_mapping, we leave swap entries. */
1384 if (unlikely(details))
1385 continue;
1387 entry = pte_to_swp_entry(ptent);
1388 if (!non_swap_entry(entry))
1389 rss[MM_SWAPENTS]--;
1390 else if (is_migration_entry(entry)) {
1391 struct page *page;
1393 page = migration_entry_to_page(entry);
1394 rss[mm_counter(page)]--;
1396 if (unlikely(!free_swap_and_cache(entry)))
1397 print_bad_pte(vma, addr, ptent, NULL);
1398 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1399 } while (pte++, addr += PAGE_SIZE, addr != end);
1401 add_mm_rss_vec(mm, rss);
1402 arch_leave_lazy_mmu_mode();
1404 /* Do the actual TLB flush before dropping ptl */
1405 if (force_flush)
1406 tlb_flush_mmu_tlbonly(tlb);
1407 pte_unmap_unlock(start_pte, ptl);
1410 * If we forced a TLB flush (either due to running out of
1411 * batch buffers or because we needed to flush dirty TLB
1412 * entries before releasing the ptl), free the batched
1413 * memory too. Restart if we didn't do everything.
1415 if (force_flush) {
1416 force_flush = 0;
1417 tlb_flush_mmu_free(tlb);
1418 if (addr != end)
1419 goto again;
1422 return addr;
1425 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1426 struct vm_area_struct *vma, pud_t *pud,
1427 unsigned long addr, unsigned long end,
1428 struct zap_details *details)
1430 pmd_t *pmd;
1431 unsigned long next;
1433 pmd = pmd_offset(pud, addr);
1434 do {
1435 next = pmd_addr_end(addr, end);
1436 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1437 if (next - addr != HPAGE_PMD_SIZE)
1438 __split_huge_pmd(vma, pmd, addr, false, NULL);
1439 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1440 goto next;
1441 /* fall through */
1444 * Here there can be other concurrent MADV_DONTNEED or
1445 * trans huge page faults running, and if the pmd is
1446 * none or trans huge it can change under us. This is
1447 * because MADV_DONTNEED holds the mmap_sem in read
1448 * mode.
1450 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1451 goto next;
1452 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1453 next:
1454 cond_resched();
1455 } while (pmd++, addr = next, addr != end);
1457 return addr;
1460 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1461 struct vm_area_struct *vma, p4d_t *p4d,
1462 unsigned long addr, unsigned long end,
1463 struct zap_details *details)
1465 pud_t *pud;
1466 unsigned long next;
1468 pud = pud_offset(p4d, addr);
1469 do {
1470 next = pud_addr_end(addr, end);
1471 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1472 if (next - addr != HPAGE_PUD_SIZE) {
1473 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1474 split_huge_pud(vma, pud, addr);
1475 } else if (zap_huge_pud(tlb, vma, pud, addr))
1476 goto next;
1477 /* fall through */
1479 if (pud_none_or_clear_bad(pud))
1480 continue;
1481 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1482 next:
1483 cond_resched();
1484 } while (pud++, addr = next, addr != end);
1486 return addr;
1489 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1490 struct vm_area_struct *vma, pgd_t *pgd,
1491 unsigned long addr, unsigned long end,
1492 struct zap_details *details)
1494 p4d_t *p4d;
1495 unsigned long next;
1497 p4d = p4d_offset(pgd, addr);
1498 do {
1499 next = p4d_addr_end(addr, end);
1500 if (p4d_none_or_clear_bad(p4d))
1501 continue;
1502 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1503 } while (p4d++, addr = next, addr != end);
1505 return addr;
1508 void unmap_page_range(struct mmu_gather *tlb,
1509 struct vm_area_struct *vma,
1510 unsigned long addr, unsigned long end,
1511 struct zap_details *details)
1513 pgd_t *pgd;
1514 unsigned long next;
1516 BUG_ON(addr >= end);
1517 tlb_start_vma(tlb, vma);
1518 pgd = pgd_offset(vma->vm_mm, addr);
1519 do {
1520 next = pgd_addr_end(addr, end);
1521 if (pgd_none_or_clear_bad(pgd))
1522 continue;
1523 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1524 } while (pgd++, addr = next, addr != end);
1525 tlb_end_vma(tlb, vma);
1529 static void unmap_single_vma(struct mmu_gather *tlb,
1530 struct vm_area_struct *vma, unsigned long start_addr,
1531 unsigned long end_addr,
1532 struct zap_details *details)
1534 unsigned long start = max(vma->vm_start, start_addr);
1535 unsigned long end;
1537 if (start >= vma->vm_end)
1538 return;
1539 end = min(vma->vm_end, end_addr);
1540 if (end <= vma->vm_start)
1541 return;
1543 if (vma->vm_file)
1544 uprobe_munmap(vma, start, end);
1546 if (unlikely(vma->vm_flags & VM_PFNMAP))
1547 untrack_pfn(vma, 0, 0);
1549 if (start != end) {
1550 if (unlikely(is_vm_hugetlb_page(vma))) {
1552 * It is undesirable to test vma->vm_file as it
1553 * should be non-null for valid hugetlb area.
1554 * However, vm_file will be NULL in the error
1555 * cleanup path of mmap_region. When
1556 * hugetlbfs ->mmap method fails,
1557 * mmap_region() nullifies vma->vm_file
1558 * before calling this function to clean up.
1559 * Since no pte has actually been setup, it is
1560 * safe to do nothing in this case.
1562 if (vma->vm_file) {
1563 i_mmap_lock_write(vma->vm_file->f_mapping);
1564 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1565 i_mmap_unlock_write(vma->vm_file->f_mapping);
1567 } else
1568 unmap_page_range(tlb, vma, start, end, details);
1573 * unmap_vmas - unmap a range of memory covered by a list of vma's
1574 * @tlb: address of the caller's struct mmu_gather
1575 * @vma: the starting vma
1576 * @start_addr: virtual address at which to start unmapping
1577 * @end_addr: virtual address at which to end unmapping
1579 * Unmap all pages in the vma list.
1581 * Only addresses between `start' and `end' will be unmapped.
1583 * The VMA list must be sorted in ascending virtual address order.
1585 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1586 * range after unmap_vmas() returns. So the only responsibility here is to
1587 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1588 * drops the lock and schedules.
1590 void unmap_vmas(struct mmu_gather *tlb,
1591 struct vm_area_struct *vma, unsigned long start_addr,
1592 unsigned long end_addr)
1594 struct mm_struct *mm = vma->vm_mm;
1596 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1597 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1598 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1599 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1603 * zap_page_range - remove user pages in a given range
1604 * @vma: vm_area_struct holding the applicable pages
1605 * @start: starting address of pages to zap
1606 * @size: number of bytes to zap
1608 * Caller must protect the VMA list
1610 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1611 unsigned long size)
1613 struct mm_struct *mm = vma->vm_mm;
1614 struct mmu_gather tlb;
1615 unsigned long end = start + size;
1617 lru_add_drain();
1618 tlb_gather_mmu(&tlb, mm, start, end);
1619 update_hiwater_rss(mm);
1620 mmu_notifier_invalidate_range_start(mm, start, end);
1621 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1622 unmap_single_vma(&tlb, vma, start, end, NULL);
1623 mmu_notifier_invalidate_range_end(mm, start, end);
1624 tlb_finish_mmu(&tlb, start, end);
1628 * zap_page_range_single - remove user pages in a given range
1629 * @vma: vm_area_struct holding the applicable pages
1630 * @address: starting address of pages to zap
1631 * @size: number of bytes to zap
1632 * @details: details of shared cache invalidation
1634 * The range must fit into one VMA.
1636 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1637 unsigned long size, struct zap_details *details)
1639 struct mm_struct *mm = vma->vm_mm;
1640 struct mmu_gather tlb;
1641 unsigned long end = address + size;
1643 lru_add_drain();
1644 tlb_gather_mmu(&tlb, mm, address, end);
1645 update_hiwater_rss(mm);
1646 mmu_notifier_invalidate_range_start(mm, address, end);
1647 unmap_single_vma(&tlb, vma, address, end, details);
1648 mmu_notifier_invalidate_range_end(mm, address, end);
1649 tlb_finish_mmu(&tlb, address, end);
1653 * zap_vma_ptes - remove ptes mapping the vma
1654 * @vma: vm_area_struct holding ptes to be zapped
1655 * @address: starting address of pages to zap
1656 * @size: number of bytes to zap
1658 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660 * The entire address range must be fully contained within the vma.
1663 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1664 unsigned long size)
1666 if (address < vma->vm_start || address + size > vma->vm_end ||
1667 !(vma->vm_flags & VM_PFNMAP))
1668 return;
1670 zap_page_range_single(vma, address, size, NULL);
1672 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1674 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1675 spinlock_t **ptl)
1677 pgd_t *pgd;
1678 p4d_t *p4d;
1679 pud_t *pud;
1680 pmd_t *pmd;
1682 pgd = pgd_offset(mm, addr);
1683 p4d = p4d_alloc(mm, pgd, addr);
1684 if (!p4d)
1685 return NULL;
1686 pud = pud_alloc(mm, p4d, addr);
1687 if (!pud)
1688 return NULL;
1689 pmd = pmd_alloc(mm, pud, addr);
1690 if (!pmd)
1691 return NULL;
1693 VM_BUG_ON(pmd_trans_huge(*pmd));
1694 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1698 * This is the old fallback for page remapping.
1700 * For historical reasons, it only allows reserved pages. Only
1701 * old drivers should use this, and they needed to mark their
1702 * pages reserved for the old functions anyway.
1704 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1705 struct page *page, pgprot_t prot)
1707 struct mm_struct *mm = vma->vm_mm;
1708 int retval;
1709 pte_t *pte;
1710 spinlock_t *ptl;
1712 retval = -EINVAL;
1713 if (PageAnon(page))
1714 goto out;
1715 retval = -ENOMEM;
1716 flush_dcache_page(page);
1717 pte = get_locked_pte(mm, addr, &ptl);
1718 if (!pte)
1719 goto out;
1720 retval = -EBUSY;
1721 if (!pte_none(*pte))
1722 goto out_unlock;
1724 /* Ok, finally just insert the thing.. */
1725 get_page(page);
1726 inc_mm_counter_fast(mm, mm_counter_file(page));
1727 page_add_file_rmap(page, false);
1728 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1730 retval = 0;
1731 pte_unmap_unlock(pte, ptl);
1732 return retval;
1733 out_unlock:
1734 pte_unmap_unlock(pte, ptl);
1735 out:
1736 return retval;
1740 * vm_insert_page - insert single page into user vma
1741 * @vma: user vma to map to
1742 * @addr: target user address of this page
1743 * @page: source kernel page
1745 * This allows drivers to insert individual pages they've allocated
1746 * into a user vma.
1748 * The page has to be a nice clean _individual_ kernel allocation.
1749 * If you allocate a compound page, you need to have marked it as
1750 * such (__GFP_COMP), or manually just split the page up yourself
1751 * (see split_page()).
1753 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1754 * took an arbitrary page protection parameter. This doesn't allow
1755 * that. Your vma protection will have to be set up correctly, which
1756 * means that if you want a shared writable mapping, you'd better
1757 * ask for a shared writable mapping!
1759 * The page does not need to be reserved.
1761 * Usually this function is called from f_op->mmap() handler
1762 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1763 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1764 * function from other places, for example from page-fault handler.
1766 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1767 struct page *page)
1769 if (addr < vma->vm_start || addr >= vma->vm_end)
1770 return -EFAULT;
1771 if (!page_count(page))
1772 return -EINVAL;
1773 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1774 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1775 BUG_ON(vma->vm_flags & VM_PFNMAP);
1776 vma->vm_flags |= VM_MIXEDMAP;
1778 return insert_page(vma, addr, page, vma->vm_page_prot);
1780 EXPORT_SYMBOL(vm_insert_page);
1782 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1783 pfn_t pfn, pgprot_t prot, bool mkwrite)
1785 struct mm_struct *mm = vma->vm_mm;
1786 int retval;
1787 pte_t *pte, entry;
1788 spinlock_t *ptl;
1790 retval = -ENOMEM;
1791 pte = get_locked_pte(mm, addr, &ptl);
1792 if (!pte)
1793 goto out;
1794 retval = -EBUSY;
1795 if (!pte_none(*pte)) {
1796 if (mkwrite) {
1798 * For read faults on private mappings the PFN passed
1799 * in may not match the PFN we have mapped if the
1800 * mapped PFN is a writeable COW page. In the mkwrite
1801 * case we are creating a writable PTE for a shared
1802 * mapping and we expect the PFNs to match. If they
1803 * don't match, we are likely racing with block
1804 * allocation and mapping invalidation so just skip the
1805 * update.
1807 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1808 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1809 goto out_unlock;
1811 entry = pte_mkyoung(*pte);
1812 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1813 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1814 update_mmu_cache(vma, addr, pte);
1816 goto out_unlock;
1819 /* Ok, finally just insert the thing.. */
1820 if (pfn_t_devmap(pfn))
1821 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1822 else
1823 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1825 if (mkwrite) {
1826 entry = pte_mkyoung(entry);
1827 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1830 set_pte_at(mm, addr, pte, entry);
1831 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1833 retval = 0;
1834 out_unlock:
1835 pte_unmap_unlock(pte, ptl);
1836 out:
1837 return retval;
1841 * vm_insert_pfn - insert single pfn into user vma
1842 * @vma: user vma to map to
1843 * @addr: target user address of this page
1844 * @pfn: source kernel pfn
1846 * Similar to vm_insert_page, this allows drivers to insert individual pages
1847 * they've allocated into a user vma. Same comments apply.
1849 * This function should only be called from a vm_ops->fault handler, and
1850 * in that case the handler should return NULL.
1852 * vma cannot be a COW mapping.
1854 * As this is called only for pages that do not currently exist, we
1855 * do not need to flush old virtual caches or the TLB.
1857 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1858 unsigned long pfn)
1860 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1862 EXPORT_SYMBOL(vm_insert_pfn);
1865 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1866 * @vma: user vma to map to
1867 * @addr: target user address of this page
1868 * @pfn: source kernel pfn
1869 * @pgprot: pgprot flags for the inserted page
1871 * This is exactly like vm_insert_pfn, except that it allows drivers to
1872 * to override pgprot on a per-page basis.
1874 * This only makes sense for IO mappings, and it makes no sense for
1875 * cow mappings. In general, using multiple vmas is preferable;
1876 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1877 * impractical.
1879 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1880 unsigned long pfn, pgprot_t pgprot)
1882 int ret;
1884 * Technically, architectures with pte_special can avoid all these
1885 * restrictions (same for remap_pfn_range). However we would like
1886 * consistency in testing and feature parity among all, so we should
1887 * try to keep these invariants in place for everybody.
1889 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1890 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1891 (VM_PFNMAP|VM_MIXEDMAP));
1892 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1893 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1895 if (addr < vma->vm_start || addr >= vma->vm_end)
1896 return -EFAULT;
1898 if (!pfn_modify_allowed(pfn, pgprot))
1899 return -EACCES;
1901 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1903 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1904 false);
1906 return ret;
1908 EXPORT_SYMBOL(vm_insert_pfn_prot);
1910 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1912 /* these checks mirror the abort conditions in vm_normal_page */
1913 if (vma->vm_flags & VM_MIXEDMAP)
1914 return true;
1915 if (pfn_t_devmap(pfn))
1916 return true;
1917 if (pfn_t_special(pfn))
1918 return true;
1919 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1920 return true;
1921 return false;
1924 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1925 pfn_t pfn, bool mkwrite)
1927 pgprot_t pgprot = vma->vm_page_prot;
1929 BUG_ON(!vm_mixed_ok(vma, pfn));
1931 if (addr < vma->vm_start || addr >= vma->vm_end)
1932 return -EFAULT;
1934 track_pfn_insert(vma, &pgprot, pfn);
1936 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1937 return -EACCES;
1940 * If we don't have pte special, then we have to use the pfn_valid()
1941 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1942 * refcount the page if pfn_valid is true (hence insert_page rather
1943 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1944 * without pte special, it would there be refcounted as a normal page.
1946 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1947 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1948 struct page *page;
1951 * At this point we are committed to insert_page()
1952 * regardless of whether the caller specified flags that
1953 * result in pfn_t_has_page() == false.
1955 page = pfn_to_page(pfn_t_to_pfn(pfn));
1956 return insert_page(vma, addr, page, pgprot);
1958 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1961 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1962 pfn_t pfn)
1964 return __vm_insert_mixed(vma, addr, pfn, false);
1967 EXPORT_SYMBOL(vm_insert_mixed);
1970 * If the insertion of PTE failed because someone else already added a
1971 * different entry in the mean time, we treat that as success as we assume
1972 * the same entry was actually inserted.
1975 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1976 unsigned long addr, pfn_t pfn)
1978 int err;
1980 err = __vm_insert_mixed(vma, addr, pfn, true);
1981 if (err == -ENOMEM)
1982 return VM_FAULT_OOM;
1983 if (err < 0 && err != -EBUSY)
1984 return VM_FAULT_SIGBUS;
1985 return VM_FAULT_NOPAGE;
1987 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1990 * maps a range of physical memory into the requested pages. the old
1991 * mappings are removed. any references to nonexistent pages results
1992 * in null mappings (currently treated as "copy-on-access")
1994 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1995 unsigned long addr, unsigned long end,
1996 unsigned long pfn, pgprot_t prot)
1998 pte_t *pte;
1999 spinlock_t *ptl;
2000 int err = 0;
2002 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2003 if (!pte)
2004 return -ENOMEM;
2005 arch_enter_lazy_mmu_mode();
2006 do {
2007 BUG_ON(!pte_none(*pte));
2008 if (!pfn_modify_allowed(pfn, prot)) {
2009 err = -EACCES;
2010 break;
2012 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2013 pfn++;
2014 } while (pte++, addr += PAGE_SIZE, addr != end);
2015 arch_leave_lazy_mmu_mode();
2016 pte_unmap_unlock(pte - 1, ptl);
2017 return err;
2020 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2021 unsigned long addr, unsigned long end,
2022 unsigned long pfn, pgprot_t prot)
2024 pmd_t *pmd;
2025 unsigned long next;
2026 int err;
2028 pfn -= addr >> PAGE_SHIFT;
2029 pmd = pmd_alloc(mm, pud, addr);
2030 if (!pmd)
2031 return -ENOMEM;
2032 VM_BUG_ON(pmd_trans_huge(*pmd));
2033 do {
2034 next = pmd_addr_end(addr, end);
2035 err = remap_pte_range(mm, pmd, addr, next,
2036 pfn + (addr >> PAGE_SHIFT), prot);
2037 if (err)
2038 return err;
2039 } while (pmd++, addr = next, addr != end);
2040 return 0;
2043 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2044 unsigned long addr, unsigned long end,
2045 unsigned long pfn, pgprot_t prot)
2047 pud_t *pud;
2048 unsigned long next;
2049 int err;
2051 pfn -= addr >> PAGE_SHIFT;
2052 pud = pud_alloc(mm, p4d, addr);
2053 if (!pud)
2054 return -ENOMEM;
2055 do {
2056 next = pud_addr_end(addr, end);
2057 err = remap_pmd_range(mm, pud, addr, next,
2058 pfn + (addr >> PAGE_SHIFT), prot);
2059 if (err)
2060 return err;
2061 } while (pud++, addr = next, addr != end);
2062 return 0;
2065 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2066 unsigned long addr, unsigned long end,
2067 unsigned long pfn, pgprot_t prot)
2069 p4d_t *p4d;
2070 unsigned long next;
2071 int err;
2073 pfn -= addr >> PAGE_SHIFT;
2074 p4d = p4d_alloc(mm, pgd, addr);
2075 if (!p4d)
2076 return -ENOMEM;
2077 do {
2078 next = p4d_addr_end(addr, end);
2079 err = remap_pud_range(mm, p4d, addr, next,
2080 pfn + (addr >> PAGE_SHIFT), prot);
2081 if (err)
2082 return err;
2083 } while (p4d++, addr = next, addr != end);
2084 return 0;
2088 * remap_pfn_range - remap kernel memory to userspace
2089 * @vma: user vma to map to
2090 * @addr: target user address to start at
2091 * @pfn: physical address of kernel memory
2092 * @size: size of map area
2093 * @prot: page protection flags for this mapping
2095 * Note: this is only safe if the mm semaphore is held when called.
2097 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2098 unsigned long pfn, unsigned long size, pgprot_t prot)
2100 pgd_t *pgd;
2101 unsigned long next;
2102 unsigned long end = addr + PAGE_ALIGN(size);
2103 struct mm_struct *mm = vma->vm_mm;
2104 unsigned long remap_pfn = pfn;
2105 int err;
2108 * Physically remapped pages are special. Tell the
2109 * rest of the world about it:
2110 * VM_IO tells people not to look at these pages
2111 * (accesses can have side effects).
2112 * VM_PFNMAP tells the core MM that the base pages are just
2113 * raw PFN mappings, and do not have a "struct page" associated
2114 * with them.
2115 * VM_DONTEXPAND
2116 * Disable vma merging and expanding with mremap().
2117 * VM_DONTDUMP
2118 * Omit vma from core dump, even when VM_IO turned off.
2120 * There's a horrible special case to handle copy-on-write
2121 * behaviour that some programs depend on. We mark the "original"
2122 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2123 * See vm_normal_page() for details.
2125 if (is_cow_mapping(vma->vm_flags)) {
2126 if (addr != vma->vm_start || end != vma->vm_end)
2127 return -EINVAL;
2128 vma->vm_pgoff = pfn;
2131 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2132 if (err)
2133 return -EINVAL;
2135 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2137 BUG_ON(addr >= end);
2138 pfn -= addr >> PAGE_SHIFT;
2139 pgd = pgd_offset(mm, addr);
2140 flush_cache_range(vma, addr, end);
2141 do {
2142 next = pgd_addr_end(addr, end);
2143 err = remap_p4d_range(mm, pgd, addr, next,
2144 pfn + (addr >> PAGE_SHIFT), prot);
2145 if (err)
2146 break;
2147 } while (pgd++, addr = next, addr != end);
2149 if (err)
2150 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2152 return err;
2154 EXPORT_SYMBOL(remap_pfn_range);
2157 * vm_iomap_memory - remap memory to userspace
2158 * @vma: user vma to map to
2159 * @start: start of area
2160 * @len: size of area
2162 * This is a simplified io_remap_pfn_range() for common driver use. The
2163 * driver just needs to give us the physical memory range to be mapped,
2164 * we'll figure out the rest from the vma information.
2166 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2167 * whatever write-combining details or similar.
2169 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2171 unsigned long vm_len, pfn, pages;
2173 /* Check that the physical memory area passed in looks valid */
2174 if (start + len < start)
2175 return -EINVAL;
2177 * You *really* shouldn't map things that aren't page-aligned,
2178 * but we've historically allowed it because IO memory might
2179 * just have smaller alignment.
2181 len += start & ~PAGE_MASK;
2182 pfn = start >> PAGE_SHIFT;
2183 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2184 if (pfn + pages < pfn)
2185 return -EINVAL;
2187 /* We start the mapping 'vm_pgoff' pages into the area */
2188 if (vma->vm_pgoff > pages)
2189 return -EINVAL;
2190 pfn += vma->vm_pgoff;
2191 pages -= vma->vm_pgoff;
2193 /* Can we fit all of the mapping? */
2194 vm_len = vma->vm_end - vma->vm_start;
2195 if (vm_len >> PAGE_SHIFT > pages)
2196 return -EINVAL;
2198 /* Ok, let it rip */
2199 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2201 EXPORT_SYMBOL(vm_iomap_memory);
2203 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2204 unsigned long addr, unsigned long end,
2205 pte_fn_t fn, void *data)
2207 pte_t *pte;
2208 int err;
2209 pgtable_t token;
2210 spinlock_t *uninitialized_var(ptl);
2212 pte = (mm == &init_mm) ?
2213 pte_alloc_kernel(pmd, addr) :
2214 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2215 if (!pte)
2216 return -ENOMEM;
2218 BUG_ON(pmd_huge(*pmd));
2220 arch_enter_lazy_mmu_mode();
2222 token = pmd_pgtable(*pmd);
2224 do {
2225 err = fn(pte++, token, addr, data);
2226 if (err)
2227 break;
2228 } while (addr += PAGE_SIZE, addr != end);
2230 arch_leave_lazy_mmu_mode();
2232 if (mm != &init_mm)
2233 pte_unmap_unlock(pte-1, ptl);
2234 return err;
2237 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2238 unsigned long addr, unsigned long end,
2239 pte_fn_t fn, void *data)
2241 pmd_t *pmd;
2242 unsigned long next;
2243 int err;
2245 BUG_ON(pud_huge(*pud));
2247 pmd = pmd_alloc(mm, pud, addr);
2248 if (!pmd)
2249 return -ENOMEM;
2250 do {
2251 next = pmd_addr_end(addr, end);
2252 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2253 if (err)
2254 break;
2255 } while (pmd++, addr = next, addr != end);
2256 return err;
2259 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2260 unsigned long addr, unsigned long end,
2261 pte_fn_t fn, void *data)
2263 pud_t *pud;
2264 unsigned long next;
2265 int err;
2267 pud = pud_alloc(mm, p4d, addr);
2268 if (!pud)
2269 return -ENOMEM;
2270 do {
2271 next = pud_addr_end(addr, end);
2272 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2273 if (err)
2274 break;
2275 } while (pud++, addr = next, addr != end);
2276 return err;
2279 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2280 unsigned long addr, unsigned long end,
2281 pte_fn_t fn, void *data)
2283 p4d_t *p4d;
2284 unsigned long next;
2285 int err;
2287 p4d = p4d_alloc(mm, pgd, addr);
2288 if (!p4d)
2289 return -ENOMEM;
2290 do {
2291 next = p4d_addr_end(addr, end);
2292 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2293 if (err)
2294 break;
2295 } while (p4d++, addr = next, addr != end);
2296 return err;
2300 * Scan a region of virtual memory, filling in page tables as necessary
2301 * and calling a provided function on each leaf page table.
2303 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2304 unsigned long size, pte_fn_t fn, void *data)
2306 pgd_t *pgd;
2307 unsigned long next;
2308 unsigned long end = addr + size;
2309 int err;
2311 if (WARN_ON(addr >= end))
2312 return -EINVAL;
2314 pgd = pgd_offset(mm, addr);
2315 do {
2316 next = pgd_addr_end(addr, end);
2317 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2318 if (err)
2319 break;
2320 } while (pgd++, addr = next, addr != end);
2322 return err;
2324 EXPORT_SYMBOL_GPL(apply_to_page_range);
2327 * handle_pte_fault chooses page fault handler according to an entry which was
2328 * read non-atomically. Before making any commitment, on those architectures
2329 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2330 * parts, do_swap_page must check under lock before unmapping the pte and
2331 * proceeding (but do_wp_page is only called after already making such a check;
2332 * and do_anonymous_page can safely check later on).
2334 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2335 pte_t *page_table, pte_t orig_pte)
2337 int same = 1;
2338 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2339 if (sizeof(pte_t) > sizeof(unsigned long)) {
2340 spinlock_t *ptl = pte_lockptr(mm, pmd);
2341 spin_lock(ptl);
2342 same = pte_same(*page_table, orig_pte);
2343 spin_unlock(ptl);
2345 #endif
2346 pte_unmap(page_table);
2347 return same;
2350 static inline bool cow_user_page(struct page *dst, struct page *src,
2351 struct vm_fault *vmf)
2353 bool ret;
2354 void *kaddr;
2355 void __user *uaddr;
2356 bool locked = false;
2357 struct vm_area_struct *vma = vmf->vma;
2358 struct mm_struct *mm = vma->vm_mm;
2359 unsigned long addr = vmf->address;
2361 debug_dma_assert_idle(src);
2363 if (likely(src)) {
2364 copy_user_highpage(dst, src, addr, vma);
2365 return true;
2369 * If the source page was a PFN mapping, we don't have
2370 * a "struct page" for it. We do a best-effort copy by
2371 * just copying from the original user address. If that
2372 * fails, we just zero-fill it. Live with it.
2374 kaddr = kmap_atomic(dst);
2375 uaddr = (void __user *)(addr & PAGE_MASK);
2378 * On architectures with software "accessed" bits, we would
2379 * take a double page fault, so mark it accessed here.
2381 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2382 pte_t entry;
2384 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2385 locked = true;
2386 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2388 * Other thread has already handled the fault
2389 * and we don't need to do anything. If it's
2390 * not the case, the fault will be triggered
2391 * again on the same address.
2393 ret = false;
2394 goto pte_unlock;
2397 entry = pte_mkyoung(vmf->orig_pte);
2398 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2399 update_mmu_cache(vma, addr, vmf->pte);
2403 * This really shouldn't fail, because the page is there
2404 * in the page tables. But it might just be unreadable,
2405 * in which case we just give up and fill the result with
2406 * zeroes.
2408 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2409 if (locked)
2410 goto warn;
2412 /* Re-validate under PTL if the page is still mapped */
2413 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2414 locked = true;
2415 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2416 /* The PTE changed under us. Retry page fault. */
2417 ret = false;
2418 goto pte_unlock;
2422 * The same page can be mapped back since last copy attampt.
2423 * Try to copy again under PTL.
2425 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2427 * Give a warn in case there can be some obscure
2428 * use-case
2430 warn:
2431 WARN_ON_ONCE(1);
2432 clear_page(kaddr);
2436 ret = true;
2438 pte_unlock:
2439 if (locked)
2440 pte_unmap_unlock(vmf->pte, vmf->ptl);
2441 kunmap_atomic(kaddr);
2442 flush_dcache_page(dst);
2444 return ret;
2447 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2449 struct file *vm_file = vma->vm_file;
2451 if (vm_file)
2452 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2455 * Special mappings (e.g. VDSO) do not have any file so fake
2456 * a default GFP_KERNEL for them.
2458 return GFP_KERNEL;
2462 * Notify the address space that the page is about to become writable so that
2463 * it can prohibit this or wait for the page to get into an appropriate state.
2465 * We do this without the lock held, so that it can sleep if it needs to.
2467 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2469 vm_fault_t ret;
2470 struct page *page = vmf->page;
2471 unsigned int old_flags = vmf->flags;
2473 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2475 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2476 /* Restore original flags so that caller is not surprised */
2477 vmf->flags = old_flags;
2478 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2479 return ret;
2480 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2481 lock_page(page);
2482 if (!page->mapping) {
2483 unlock_page(page);
2484 return 0; /* retry */
2486 ret |= VM_FAULT_LOCKED;
2487 } else
2488 VM_BUG_ON_PAGE(!PageLocked(page), page);
2489 return ret;
2493 * Handle dirtying of a page in shared file mapping on a write fault.
2495 * The function expects the page to be locked and unlocks it.
2497 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2498 struct page *page)
2500 struct address_space *mapping;
2501 bool dirtied;
2502 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2504 dirtied = set_page_dirty(page);
2505 VM_BUG_ON_PAGE(PageAnon(page), page);
2507 * Take a local copy of the address_space - page.mapping may be zeroed
2508 * by truncate after unlock_page(). The address_space itself remains
2509 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2510 * release semantics to prevent the compiler from undoing this copying.
2512 mapping = page_rmapping(page);
2513 unlock_page(page);
2515 if ((dirtied || page_mkwrite) && mapping) {
2517 * Some device drivers do not set page.mapping
2518 * but still dirty their pages
2520 balance_dirty_pages_ratelimited(mapping);
2523 if (!page_mkwrite)
2524 file_update_time(vma->vm_file);
2528 * Handle write page faults for pages that can be reused in the current vma
2530 * This can happen either due to the mapping being with the VM_SHARED flag,
2531 * or due to us being the last reference standing to the page. In either
2532 * case, all we need to do here is to mark the page as writable and update
2533 * any related book-keeping.
2535 static inline void wp_page_reuse(struct vm_fault *vmf)
2536 __releases(vmf->ptl)
2538 struct vm_area_struct *vma = vmf->vma;
2539 struct page *page = vmf->page;
2540 pte_t entry;
2542 * Clear the pages cpupid information as the existing
2543 * information potentially belongs to a now completely
2544 * unrelated process.
2546 if (page)
2547 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2549 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2550 entry = pte_mkyoung(vmf->orig_pte);
2551 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2552 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2553 update_mmu_cache(vma, vmf->address, vmf->pte);
2554 pte_unmap_unlock(vmf->pte, vmf->ptl);
2558 * Handle the case of a page which we actually need to copy to a new page.
2560 * Called with mmap_sem locked and the old page referenced, but
2561 * without the ptl held.
2563 * High level logic flow:
2565 * - Allocate a page, copy the content of the old page to the new one.
2566 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2567 * - Take the PTL. If the pte changed, bail out and release the allocated page
2568 * - If the pte is still the way we remember it, update the page table and all
2569 * relevant references. This includes dropping the reference the page-table
2570 * held to the old page, as well as updating the rmap.
2571 * - In any case, unlock the PTL and drop the reference we took to the old page.
2573 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2575 struct vm_area_struct *vma = vmf->vma;
2576 struct mm_struct *mm = vma->vm_mm;
2577 struct page *old_page = vmf->page;
2578 struct page *new_page = NULL;
2579 pte_t entry;
2580 int page_copied = 0;
2581 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2582 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2583 struct mem_cgroup *memcg;
2585 if (unlikely(anon_vma_prepare(vma)))
2586 goto oom;
2588 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2589 new_page = alloc_zeroed_user_highpage_movable(vma,
2590 vmf->address);
2591 if (!new_page)
2592 goto oom;
2593 } else {
2594 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2595 vmf->address);
2596 if (!new_page)
2597 goto oom;
2599 if (!cow_user_page(new_page, old_page, vmf)) {
2601 * COW failed, if the fault was solved by other,
2602 * it's fine. If not, userspace would re-fault on
2603 * the same address and we will handle the fault
2604 * from the second attempt.
2606 put_page(new_page);
2607 if (old_page)
2608 put_page(old_page);
2609 return 0;
2613 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2614 goto oom_free_new;
2616 __SetPageUptodate(new_page);
2618 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2621 * Re-check the pte - we dropped the lock
2623 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2624 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2625 if (old_page) {
2626 if (!PageAnon(old_page)) {
2627 dec_mm_counter_fast(mm,
2628 mm_counter_file(old_page));
2629 inc_mm_counter_fast(mm, MM_ANONPAGES);
2631 } else {
2632 inc_mm_counter_fast(mm, MM_ANONPAGES);
2634 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2635 entry = mk_pte(new_page, vma->vm_page_prot);
2636 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2638 * Clear the pte entry and flush it first, before updating the
2639 * pte with the new entry. This will avoid a race condition
2640 * seen in the presence of one thread doing SMC and another
2641 * thread doing COW.
2643 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2644 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2645 mem_cgroup_commit_charge(new_page, memcg, false, false);
2646 lru_cache_add_active_or_unevictable(new_page, vma);
2648 * We call the notify macro here because, when using secondary
2649 * mmu page tables (such as kvm shadow page tables), we want the
2650 * new page to be mapped directly into the secondary page table.
2652 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2653 update_mmu_cache(vma, vmf->address, vmf->pte);
2654 if (old_page) {
2656 * Only after switching the pte to the new page may
2657 * we remove the mapcount here. Otherwise another
2658 * process may come and find the rmap count decremented
2659 * before the pte is switched to the new page, and
2660 * "reuse" the old page writing into it while our pte
2661 * here still points into it and can be read by other
2662 * threads.
2664 * The critical issue is to order this
2665 * page_remove_rmap with the ptp_clear_flush above.
2666 * Those stores are ordered by (if nothing else,)
2667 * the barrier present in the atomic_add_negative
2668 * in page_remove_rmap.
2670 * Then the TLB flush in ptep_clear_flush ensures that
2671 * no process can access the old page before the
2672 * decremented mapcount is visible. And the old page
2673 * cannot be reused until after the decremented
2674 * mapcount is visible. So transitively, TLBs to
2675 * old page will be flushed before it can be reused.
2677 page_remove_rmap(old_page, false);
2680 /* Free the old page.. */
2681 new_page = old_page;
2682 page_copied = 1;
2683 } else {
2684 mem_cgroup_cancel_charge(new_page, memcg, false);
2687 if (new_page)
2688 put_page(new_page);
2690 pte_unmap_unlock(vmf->pte, vmf->ptl);
2692 * No need to double call mmu_notifier->invalidate_range() callback as
2693 * the above ptep_clear_flush_notify() did already call it.
2695 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2696 if (old_page) {
2698 * Don't let another task, with possibly unlocked vma,
2699 * keep the mlocked page.
2701 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2702 lock_page(old_page); /* LRU manipulation */
2703 if (PageMlocked(old_page))
2704 munlock_vma_page(old_page);
2705 unlock_page(old_page);
2707 put_page(old_page);
2709 return page_copied ? VM_FAULT_WRITE : 0;
2710 oom_free_new:
2711 put_page(new_page);
2712 oom:
2713 if (old_page)
2714 put_page(old_page);
2715 return VM_FAULT_OOM;
2719 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2720 * writeable once the page is prepared
2722 * @vmf: structure describing the fault
2724 * This function handles all that is needed to finish a write page fault in a
2725 * shared mapping due to PTE being read-only once the mapped page is prepared.
2726 * It handles locking of PTE and modifying it. The function returns
2727 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2728 * lock.
2730 * The function expects the page to be locked or other protection against
2731 * concurrent faults / writeback (such as DAX radix tree locks).
2733 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2735 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2736 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2737 &vmf->ptl);
2739 * We might have raced with another page fault while we released the
2740 * pte_offset_map_lock.
2742 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2743 pte_unmap_unlock(vmf->pte, vmf->ptl);
2744 return VM_FAULT_NOPAGE;
2746 wp_page_reuse(vmf);
2747 return 0;
2751 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2752 * mapping
2754 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2756 struct vm_area_struct *vma = vmf->vma;
2758 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2759 vm_fault_t ret;
2761 pte_unmap_unlock(vmf->pte, vmf->ptl);
2762 vmf->flags |= FAULT_FLAG_MKWRITE;
2763 ret = vma->vm_ops->pfn_mkwrite(vmf);
2764 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2765 return ret;
2766 return finish_mkwrite_fault(vmf);
2768 wp_page_reuse(vmf);
2769 return VM_FAULT_WRITE;
2772 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2773 __releases(vmf->ptl)
2775 struct vm_area_struct *vma = vmf->vma;
2777 get_page(vmf->page);
2779 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2780 vm_fault_t tmp;
2782 pte_unmap_unlock(vmf->pte, vmf->ptl);
2783 tmp = do_page_mkwrite(vmf);
2784 if (unlikely(!tmp || (tmp &
2785 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2786 put_page(vmf->page);
2787 return tmp;
2789 tmp = finish_mkwrite_fault(vmf);
2790 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2791 unlock_page(vmf->page);
2792 put_page(vmf->page);
2793 return tmp;
2795 } else {
2796 wp_page_reuse(vmf);
2797 lock_page(vmf->page);
2799 fault_dirty_shared_page(vma, vmf->page);
2800 put_page(vmf->page);
2802 return VM_FAULT_WRITE;
2806 * This routine handles present pages, when users try to write
2807 * to a shared page. It is done by copying the page to a new address
2808 * and decrementing the shared-page counter for the old page.
2810 * Note that this routine assumes that the protection checks have been
2811 * done by the caller (the low-level page fault routine in most cases).
2812 * Thus we can safely just mark it writable once we've done any necessary
2813 * COW.
2815 * We also mark the page dirty at this point even though the page will
2816 * change only once the write actually happens. This avoids a few races,
2817 * and potentially makes it more efficient.
2819 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2820 * but allow concurrent faults), with pte both mapped and locked.
2821 * We return with mmap_sem still held, but pte unmapped and unlocked.
2823 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2824 __releases(vmf->ptl)
2826 struct vm_area_struct *vma = vmf->vma;
2828 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2829 if (!vmf->page) {
2831 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2832 * VM_PFNMAP VMA.
2834 * We should not cow pages in a shared writeable mapping.
2835 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2837 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2838 (VM_WRITE|VM_SHARED))
2839 return wp_pfn_shared(vmf);
2841 pte_unmap_unlock(vmf->pte, vmf->ptl);
2842 return wp_page_copy(vmf);
2846 * Take out anonymous pages first, anonymous shared vmas are
2847 * not dirty accountable.
2849 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2850 int total_map_swapcount;
2851 if (!trylock_page(vmf->page)) {
2852 get_page(vmf->page);
2853 pte_unmap_unlock(vmf->pte, vmf->ptl);
2854 lock_page(vmf->page);
2855 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2856 vmf->address, &vmf->ptl);
2857 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2858 unlock_page(vmf->page);
2859 pte_unmap_unlock(vmf->pte, vmf->ptl);
2860 put_page(vmf->page);
2861 return 0;
2863 put_page(vmf->page);
2865 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2866 if (total_map_swapcount == 1) {
2868 * The page is all ours. Move it to
2869 * our anon_vma so the rmap code will
2870 * not search our parent or siblings.
2871 * Protected against the rmap code by
2872 * the page lock.
2874 page_move_anon_rmap(vmf->page, vma);
2876 unlock_page(vmf->page);
2877 wp_page_reuse(vmf);
2878 return VM_FAULT_WRITE;
2880 unlock_page(vmf->page);
2881 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2882 (VM_WRITE|VM_SHARED))) {
2883 return wp_page_shared(vmf);
2887 * Ok, we need to copy. Oh, well..
2889 get_page(vmf->page);
2891 pte_unmap_unlock(vmf->pte, vmf->ptl);
2892 return wp_page_copy(vmf);
2895 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2896 unsigned long start_addr, unsigned long end_addr,
2897 struct zap_details *details)
2899 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2902 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2903 struct zap_details *details)
2905 struct vm_area_struct *vma;
2906 pgoff_t vba, vea, zba, zea;
2908 vma_interval_tree_foreach(vma, root,
2909 details->first_index, details->last_index) {
2911 vba = vma->vm_pgoff;
2912 vea = vba + vma_pages(vma) - 1;
2913 zba = details->first_index;
2914 if (zba < vba)
2915 zba = vba;
2916 zea = details->last_index;
2917 if (zea > vea)
2918 zea = vea;
2920 unmap_mapping_range_vma(vma,
2921 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2922 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2923 details);
2928 * unmap_mapping_pages() - Unmap pages from processes.
2929 * @mapping: The address space containing pages to be unmapped.
2930 * @start: Index of first page to be unmapped.
2931 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2932 * @even_cows: Whether to unmap even private COWed pages.
2934 * Unmap the pages in this address space from any userspace process which
2935 * has them mmaped. Generally, you want to remove COWed pages as well when
2936 * a file is being truncated, but not when invalidating pages from the page
2937 * cache.
2939 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2940 pgoff_t nr, bool even_cows)
2942 struct zap_details details = { };
2944 details.check_mapping = even_cows ? NULL : mapping;
2945 details.first_index = start;
2946 details.last_index = start + nr - 1;
2947 if (details.last_index < details.first_index)
2948 details.last_index = ULONG_MAX;
2950 i_mmap_lock_write(mapping);
2951 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2952 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2953 i_mmap_unlock_write(mapping);
2957 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2958 * address_space corresponding to the specified byte range in the underlying
2959 * file.
2961 * @mapping: the address space containing mmaps to be unmapped.
2962 * @holebegin: byte in first page to unmap, relative to the start of
2963 * the underlying file. This will be rounded down to a PAGE_SIZE
2964 * boundary. Note that this is different from truncate_pagecache(), which
2965 * must keep the partial page. In contrast, we must get rid of
2966 * partial pages.
2967 * @holelen: size of prospective hole in bytes. This will be rounded
2968 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2969 * end of the file.
2970 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2971 * but 0 when invalidating pagecache, don't throw away private data.
2973 void unmap_mapping_range(struct address_space *mapping,
2974 loff_t const holebegin, loff_t const holelen, int even_cows)
2976 pgoff_t hba = holebegin >> PAGE_SHIFT;
2977 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2979 /* Check for overflow. */
2980 if (sizeof(holelen) > sizeof(hlen)) {
2981 long long holeend =
2982 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2983 if (holeend & ~(long long)ULONG_MAX)
2984 hlen = ULONG_MAX - hba + 1;
2987 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2989 EXPORT_SYMBOL(unmap_mapping_range);
2992 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2993 * but allow concurrent faults), and pte mapped but not yet locked.
2994 * We return with pte unmapped and unlocked.
2996 * We return with the mmap_sem locked or unlocked in the same cases
2997 * as does filemap_fault().
2999 vm_fault_t do_swap_page(struct vm_fault *vmf)
3001 struct vm_area_struct *vma = vmf->vma;
3002 struct page *page = NULL, *swapcache;
3003 struct mem_cgroup *memcg;
3004 swp_entry_t entry;
3005 pte_t pte;
3006 int locked;
3007 int exclusive = 0;
3008 vm_fault_t ret = 0;
3010 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3011 goto out;
3013 entry = pte_to_swp_entry(vmf->orig_pte);
3014 if (unlikely(non_swap_entry(entry))) {
3015 if (is_migration_entry(entry)) {
3016 migration_entry_wait(vma->vm_mm, vmf->pmd,
3017 vmf->address);
3018 } else if (is_device_private_entry(entry)) {
3020 * For un-addressable device memory we call the pgmap
3021 * fault handler callback. The callback must migrate
3022 * the page back to some CPU accessible page.
3024 ret = device_private_entry_fault(vma, vmf->address, entry,
3025 vmf->flags, vmf->pmd);
3026 } else if (is_hwpoison_entry(entry)) {
3027 ret = VM_FAULT_HWPOISON;
3028 } else {
3029 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3030 ret = VM_FAULT_SIGBUS;
3032 goto out;
3036 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3037 page = lookup_swap_cache(entry, vma, vmf->address);
3038 swapcache = page;
3040 if (!page) {
3041 struct swap_info_struct *si = swp_swap_info(entry);
3043 if (si->flags & SWP_SYNCHRONOUS_IO &&
3044 __swap_count(si, entry) == 1) {
3045 /* skip swapcache */
3046 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3047 vmf->address);
3048 if (page) {
3049 __SetPageLocked(page);
3050 __SetPageSwapBacked(page);
3051 set_page_private(page, entry.val);
3052 lru_cache_add_anon(page);
3053 swap_readpage(page, true);
3055 } else {
3056 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3057 vmf);
3058 swapcache = page;
3061 if (!page) {
3063 * Back out if somebody else faulted in this pte
3064 * while we released the pte lock.
3066 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3067 vmf->address, &vmf->ptl);
3068 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3069 ret = VM_FAULT_OOM;
3070 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3071 goto unlock;
3074 /* Had to read the page from swap area: Major fault */
3075 ret = VM_FAULT_MAJOR;
3076 count_vm_event(PGMAJFAULT);
3077 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3078 } else if (PageHWPoison(page)) {
3080 * hwpoisoned dirty swapcache pages are kept for killing
3081 * owner processes (which may be unknown at hwpoison time)
3083 ret = VM_FAULT_HWPOISON;
3084 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3085 goto out_release;
3088 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3090 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3091 if (!locked) {
3092 ret |= VM_FAULT_RETRY;
3093 goto out_release;
3097 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3098 * release the swapcache from under us. The page pin, and pte_same
3099 * test below, are not enough to exclude that. Even if it is still
3100 * swapcache, we need to check that the page's swap has not changed.
3102 if (unlikely((!PageSwapCache(page) ||
3103 page_private(page) != entry.val)) && swapcache)
3104 goto out_page;
3106 page = ksm_might_need_to_copy(page, vma, vmf->address);
3107 if (unlikely(!page)) {
3108 ret = VM_FAULT_OOM;
3109 page = swapcache;
3110 goto out_page;
3113 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3114 &memcg, false)) {
3115 ret = VM_FAULT_OOM;
3116 goto out_page;
3120 * Back out if somebody else already faulted in this pte.
3122 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3123 &vmf->ptl);
3124 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3125 goto out_nomap;
3127 if (unlikely(!PageUptodate(page))) {
3128 ret = VM_FAULT_SIGBUS;
3129 goto out_nomap;
3133 * The page isn't present yet, go ahead with the fault.
3135 * Be careful about the sequence of operations here.
3136 * To get its accounting right, reuse_swap_page() must be called
3137 * while the page is counted on swap but not yet in mapcount i.e.
3138 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3139 * must be called after the swap_free(), or it will never succeed.
3142 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3143 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3144 pte = mk_pte(page, vma->vm_page_prot);
3145 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3146 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3147 vmf->flags &= ~FAULT_FLAG_WRITE;
3148 ret |= VM_FAULT_WRITE;
3149 exclusive = RMAP_EXCLUSIVE;
3151 flush_icache_page(vma, page);
3152 if (pte_swp_soft_dirty(vmf->orig_pte))
3153 pte = pte_mksoft_dirty(pte);
3154 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3155 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3156 vmf->orig_pte = pte;
3158 /* ksm created a completely new copy */
3159 if (unlikely(page != swapcache && swapcache)) {
3160 page_add_new_anon_rmap(page, vma, vmf->address, false);
3161 mem_cgroup_commit_charge(page, memcg, false, false);
3162 lru_cache_add_active_or_unevictable(page, vma);
3163 } else {
3164 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3165 mem_cgroup_commit_charge(page, memcg, true, false);
3166 activate_page(page);
3169 swap_free(entry);
3170 if (mem_cgroup_swap_full(page) ||
3171 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3172 try_to_free_swap(page);
3173 unlock_page(page);
3174 if (page != swapcache && swapcache) {
3176 * Hold the lock to avoid the swap entry to be reused
3177 * until we take the PT lock for the pte_same() check
3178 * (to avoid false positives from pte_same). For
3179 * further safety release the lock after the swap_free
3180 * so that the swap count won't change under a
3181 * parallel locked swapcache.
3183 unlock_page(swapcache);
3184 put_page(swapcache);
3187 if (vmf->flags & FAULT_FLAG_WRITE) {
3188 ret |= do_wp_page(vmf);
3189 if (ret & VM_FAULT_ERROR)
3190 ret &= VM_FAULT_ERROR;
3191 goto out;
3194 /* No need to invalidate - it was non-present before */
3195 update_mmu_cache(vma, vmf->address, vmf->pte);
3196 unlock:
3197 pte_unmap_unlock(vmf->pte, vmf->ptl);
3198 out:
3199 return ret;
3200 out_nomap:
3201 mem_cgroup_cancel_charge(page, memcg, false);
3202 pte_unmap_unlock(vmf->pte, vmf->ptl);
3203 out_page:
3204 unlock_page(page);
3205 out_release:
3206 put_page(page);
3207 if (page != swapcache && swapcache) {
3208 unlock_page(swapcache);
3209 put_page(swapcache);
3211 return ret;
3215 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3216 * but allow concurrent faults), and pte mapped but not yet locked.
3217 * We return with mmap_sem still held, but pte unmapped and unlocked.
3219 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3221 struct vm_area_struct *vma = vmf->vma;
3222 struct mem_cgroup *memcg;
3223 struct page *page;
3224 vm_fault_t ret = 0;
3225 pte_t entry;
3227 /* File mapping without ->vm_ops ? */
3228 if (vma->vm_flags & VM_SHARED)
3229 return VM_FAULT_SIGBUS;
3232 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3233 * pte_offset_map() on pmds where a huge pmd might be created
3234 * from a different thread.
3236 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3237 * parallel threads are excluded by other means.
3239 * Here we only have down_read(mmap_sem).
3241 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3242 return VM_FAULT_OOM;
3244 /* See the comment in pte_alloc_one_map() */
3245 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3246 return 0;
3248 /* Use the zero-page for reads */
3249 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3250 !mm_forbids_zeropage(vma->vm_mm)) {
3251 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3252 vma->vm_page_prot));
3253 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3254 vmf->address, &vmf->ptl);
3255 if (!pte_none(*vmf->pte))
3256 goto unlock;
3257 ret = check_stable_address_space(vma->vm_mm);
3258 if (ret)
3259 goto unlock;
3260 /* Deliver the page fault to userland, check inside PT lock */
3261 if (userfaultfd_missing(vma)) {
3262 pte_unmap_unlock(vmf->pte, vmf->ptl);
3263 return handle_userfault(vmf, VM_UFFD_MISSING);
3265 goto setpte;
3268 /* Allocate our own private page. */
3269 if (unlikely(anon_vma_prepare(vma)))
3270 goto oom;
3271 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3272 if (!page)
3273 goto oom;
3275 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3276 false))
3277 goto oom_free_page;
3280 * The memory barrier inside __SetPageUptodate makes sure that
3281 * preceeding stores to the page contents become visible before
3282 * the set_pte_at() write.
3284 __SetPageUptodate(page);
3286 entry = mk_pte(page, vma->vm_page_prot);
3287 if (vma->vm_flags & VM_WRITE)
3288 entry = pte_mkwrite(pte_mkdirty(entry));
3290 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3291 &vmf->ptl);
3292 if (!pte_none(*vmf->pte))
3293 goto release;
3295 ret = check_stable_address_space(vma->vm_mm);
3296 if (ret)
3297 goto release;
3299 /* Deliver the page fault to userland, check inside PT lock */
3300 if (userfaultfd_missing(vma)) {
3301 pte_unmap_unlock(vmf->pte, vmf->ptl);
3302 mem_cgroup_cancel_charge(page, memcg, false);
3303 put_page(page);
3304 return handle_userfault(vmf, VM_UFFD_MISSING);
3307 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3308 page_add_new_anon_rmap(page, vma, vmf->address, false);
3309 mem_cgroup_commit_charge(page, memcg, false, false);
3310 lru_cache_add_active_or_unevictable(page, vma);
3311 setpte:
3312 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3314 /* No need to invalidate - it was non-present before */
3315 update_mmu_cache(vma, vmf->address, vmf->pte);
3316 unlock:
3317 pte_unmap_unlock(vmf->pte, vmf->ptl);
3318 return ret;
3319 release:
3320 mem_cgroup_cancel_charge(page, memcg, false);
3321 put_page(page);
3322 goto unlock;
3323 oom_free_page:
3324 put_page(page);
3325 oom:
3326 return VM_FAULT_OOM;
3330 * The mmap_sem must have been held on entry, and may have been
3331 * released depending on flags and vma->vm_ops->fault() return value.
3332 * See filemap_fault() and __lock_page_retry().
3334 static vm_fault_t __do_fault(struct vm_fault *vmf)
3336 struct vm_area_struct *vma = vmf->vma;
3337 vm_fault_t ret;
3340 * Preallocate pte before we take page_lock because this might lead to
3341 * deadlocks for memcg reclaim which waits for pages under writeback:
3342 * lock_page(A)
3343 * SetPageWriteback(A)
3344 * unlock_page(A)
3345 * lock_page(B)
3346 * lock_page(B)
3347 * pte_alloc_pne
3348 * shrink_page_list
3349 * wait_on_page_writeback(A)
3350 * SetPageWriteback(B)
3351 * unlock_page(B)
3352 * # flush A, B to clear the writeback
3354 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3355 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3356 vmf->address);
3357 if (!vmf->prealloc_pte)
3358 return VM_FAULT_OOM;
3359 smp_wmb(); /* See comment in __pte_alloc() */
3362 ret = vma->vm_ops->fault(vmf);
3363 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3364 VM_FAULT_DONE_COW)))
3365 return ret;
3367 if (unlikely(PageHWPoison(vmf->page))) {
3368 if (ret & VM_FAULT_LOCKED)
3369 unlock_page(vmf->page);
3370 put_page(vmf->page);
3371 vmf->page = NULL;
3372 return VM_FAULT_HWPOISON;
3375 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3376 lock_page(vmf->page);
3377 else
3378 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3380 return ret;
3384 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3385 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3386 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3387 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3389 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3391 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3394 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3396 struct vm_area_struct *vma = vmf->vma;
3398 if (!pmd_none(*vmf->pmd))
3399 goto map_pte;
3400 if (vmf->prealloc_pte) {
3401 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3402 if (unlikely(!pmd_none(*vmf->pmd))) {
3403 spin_unlock(vmf->ptl);
3404 goto map_pte;
3407 mm_inc_nr_ptes(vma->vm_mm);
3408 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3409 spin_unlock(vmf->ptl);
3410 vmf->prealloc_pte = NULL;
3411 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3412 return VM_FAULT_OOM;
3414 map_pte:
3416 * If a huge pmd materialized under us just retry later. Use
3417 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3418 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3419 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3420 * running immediately after a huge pmd fault in a different thread of
3421 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3422 * All we have to ensure is that it is a regular pmd that we can walk
3423 * with pte_offset_map() and we can do that through an atomic read in
3424 * C, which is what pmd_trans_unstable() provides.
3426 if (pmd_devmap_trans_unstable(vmf->pmd))
3427 return VM_FAULT_NOPAGE;
3430 * At this point we know that our vmf->pmd points to a page of ptes
3431 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3432 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3433 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3434 * be valid and we will re-check to make sure the vmf->pte isn't
3435 * pte_none() under vmf->ptl protection when we return to
3436 * alloc_set_pte().
3438 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3439 &vmf->ptl);
3440 return 0;
3443 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3445 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3446 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3447 unsigned long haddr)
3449 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3450 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3451 return false;
3452 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3453 return false;
3454 return true;
3457 static void deposit_prealloc_pte(struct vm_fault *vmf)
3459 struct vm_area_struct *vma = vmf->vma;
3461 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3463 * We are going to consume the prealloc table,
3464 * count that as nr_ptes.
3466 mm_inc_nr_ptes(vma->vm_mm);
3467 vmf->prealloc_pte = NULL;
3470 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3472 struct vm_area_struct *vma = vmf->vma;
3473 bool write = vmf->flags & FAULT_FLAG_WRITE;
3474 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3475 pmd_t entry;
3476 int i;
3477 vm_fault_t ret;
3479 if (!transhuge_vma_suitable(vma, haddr))
3480 return VM_FAULT_FALLBACK;
3482 ret = VM_FAULT_FALLBACK;
3483 page = compound_head(page);
3486 * Archs like ppc64 need additonal space to store information
3487 * related to pte entry. Use the preallocated table for that.
3489 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3490 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3491 if (!vmf->prealloc_pte)
3492 return VM_FAULT_OOM;
3493 smp_wmb(); /* See comment in __pte_alloc() */
3496 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3497 if (unlikely(!pmd_none(*vmf->pmd)))
3498 goto out;
3500 for (i = 0; i < HPAGE_PMD_NR; i++)
3501 flush_icache_page(vma, page + i);
3503 entry = mk_huge_pmd(page, vma->vm_page_prot);
3504 if (write)
3505 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3507 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3508 page_add_file_rmap(page, true);
3510 * deposit and withdraw with pmd lock held
3512 if (arch_needs_pgtable_deposit())
3513 deposit_prealloc_pte(vmf);
3515 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3517 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3519 /* fault is handled */
3520 ret = 0;
3521 count_vm_event(THP_FILE_MAPPED);
3522 out:
3523 spin_unlock(vmf->ptl);
3524 return ret;
3526 #else
3527 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3529 BUILD_BUG();
3530 return 0;
3532 #endif
3535 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3536 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3538 * @vmf: fault environment
3539 * @memcg: memcg to charge page (only for private mappings)
3540 * @page: page to map
3542 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3543 * return.
3545 * Target users are page handler itself and implementations of
3546 * vm_ops->map_pages.
3548 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3549 struct page *page)
3551 struct vm_area_struct *vma = vmf->vma;
3552 bool write = vmf->flags & FAULT_FLAG_WRITE;
3553 pte_t entry;
3554 vm_fault_t ret;
3556 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3557 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3558 /* THP on COW? */
3559 VM_BUG_ON_PAGE(memcg, page);
3561 ret = do_set_pmd(vmf, page);
3562 if (ret != VM_FAULT_FALLBACK)
3563 return ret;
3566 if (!vmf->pte) {
3567 ret = pte_alloc_one_map(vmf);
3568 if (ret)
3569 return ret;
3572 /* Re-check under ptl */
3573 if (unlikely(!pte_none(*vmf->pte)))
3574 return VM_FAULT_NOPAGE;
3576 flush_icache_page(vma, page);
3577 entry = mk_pte(page, vma->vm_page_prot);
3578 if (write)
3579 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3580 /* copy-on-write page */
3581 if (write && !(vma->vm_flags & VM_SHARED)) {
3582 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3583 page_add_new_anon_rmap(page, vma, vmf->address, false);
3584 mem_cgroup_commit_charge(page, memcg, false, false);
3585 lru_cache_add_active_or_unevictable(page, vma);
3586 } else {
3587 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3588 page_add_file_rmap(page, false);
3590 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3592 /* no need to invalidate: a not-present page won't be cached */
3593 update_mmu_cache(vma, vmf->address, vmf->pte);
3595 return 0;
3600 * finish_fault - finish page fault once we have prepared the page to fault
3602 * @vmf: structure describing the fault
3604 * This function handles all that is needed to finish a page fault once the
3605 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3606 * given page, adds reverse page mapping, handles memcg charges and LRU
3607 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3608 * error.
3610 * The function expects the page to be locked and on success it consumes a
3611 * reference of a page being mapped (for the PTE which maps it).
3613 vm_fault_t finish_fault(struct vm_fault *vmf)
3615 struct page *page;
3616 vm_fault_t ret = 0;
3618 /* Did we COW the page? */
3619 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3620 !(vmf->vma->vm_flags & VM_SHARED))
3621 page = vmf->cow_page;
3622 else
3623 page = vmf->page;
3626 * check even for read faults because we might have lost our CoWed
3627 * page
3629 if (!(vmf->vma->vm_flags & VM_SHARED))
3630 ret = check_stable_address_space(vmf->vma->vm_mm);
3631 if (!ret)
3632 ret = alloc_set_pte(vmf, vmf->memcg, page);
3633 if (vmf->pte)
3634 pte_unmap_unlock(vmf->pte, vmf->ptl);
3635 return ret;
3638 static unsigned long fault_around_bytes __read_mostly =
3639 rounddown_pow_of_two(65536);
3641 #ifdef CONFIG_DEBUG_FS
3642 static int fault_around_bytes_get(void *data, u64 *val)
3644 *val = fault_around_bytes;
3645 return 0;
3649 * fault_around_bytes must be rounded down to the nearest page order as it's
3650 * what do_fault_around() expects to see.
3652 static int fault_around_bytes_set(void *data, u64 val)
3654 if (val / PAGE_SIZE > PTRS_PER_PTE)
3655 return -EINVAL;
3656 if (val > PAGE_SIZE)
3657 fault_around_bytes = rounddown_pow_of_two(val);
3658 else
3659 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3660 return 0;
3662 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3663 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3665 static int __init fault_around_debugfs(void)
3667 void *ret;
3669 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3670 &fault_around_bytes_fops);
3671 if (!ret)
3672 pr_warn("Failed to create fault_around_bytes in debugfs");
3673 return 0;
3675 late_initcall(fault_around_debugfs);
3676 #endif
3679 * do_fault_around() tries to map few pages around the fault address. The hope
3680 * is that the pages will be needed soon and this will lower the number of
3681 * faults to handle.
3683 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3684 * not ready to be mapped: not up-to-date, locked, etc.
3686 * This function is called with the page table lock taken. In the split ptlock
3687 * case the page table lock only protects only those entries which belong to
3688 * the page table corresponding to the fault address.
3690 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3691 * only once.
3693 * fault_around_bytes defines how many bytes we'll try to map.
3694 * do_fault_around() expects it to be set to a power of two less than or equal
3695 * to PTRS_PER_PTE.
3697 * The virtual address of the area that we map is naturally aligned to
3698 * fault_around_bytes rounded down to the machine page size
3699 * (and therefore to page order). This way it's easier to guarantee
3700 * that we don't cross page table boundaries.
3702 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3704 unsigned long address = vmf->address, nr_pages, mask;
3705 pgoff_t start_pgoff = vmf->pgoff;
3706 pgoff_t end_pgoff;
3707 int off;
3708 vm_fault_t ret = 0;
3710 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3711 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3713 vmf->address = max(address & mask, vmf->vma->vm_start);
3714 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3715 start_pgoff -= off;
3718 * end_pgoff is either the end of the page table, the end of
3719 * the vma or nr_pages from start_pgoff, depending what is nearest.
3721 end_pgoff = start_pgoff -
3722 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3723 PTRS_PER_PTE - 1;
3724 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3725 start_pgoff + nr_pages - 1);
3727 if (pmd_none(*vmf->pmd)) {
3728 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3729 vmf->address);
3730 if (!vmf->prealloc_pte)
3731 goto out;
3732 smp_wmb(); /* See comment in __pte_alloc() */
3735 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3737 /* Huge page is mapped? Page fault is solved */
3738 if (pmd_trans_huge(*vmf->pmd)) {
3739 ret = VM_FAULT_NOPAGE;
3740 goto out;
3743 /* ->map_pages() haven't done anything useful. Cold page cache? */
3744 if (!vmf->pte)
3745 goto out;
3747 /* check if the page fault is solved */
3748 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3749 if (!pte_none(*vmf->pte))
3750 ret = VM_FAULT_NOPAGE;
3751 pte_unmap_unlock(vmf->pte, vmf->ptl);
3752 out:
3753 vmf->address = address;
3754 vmf->pte = NULL;
3755 return ret;
3758 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3760 struct vm_area_struct *vma = vmf->vma;
3761 vm_fault_t ret = 0;
3764 * Let's call ->map_pages() first and use ->fault() as fallback
3765 * if page by the offset is not ready to be mapped (cold cache or
3766 * something).
3768 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3769 ret = do_fault_around(vmf);
3770 if (ret)
3771 return ret;
3774 ret = __do_fault(vmf);
3775 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3776 return ret;
3778 ret |= finish_fault(vmf);
3779 unlock_page(vmf->page);
3780 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3781 put_page(vmf->page);
3782 return ret;
3785 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3787 struct vm_area_struct *vma = vmf->vma;
3788 vm_fault_t ret;
3790 if (unlikely(anon_vma_prepare(vma)))
3791 return VM_FAULT_OOM;
3793 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3794 if (!vmf->cow_page)
3795 return VM_FAULT_OOM;
3797 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3798 &vmf->memcg, false)) {
3799 put_page(vmf->cow_page);
3800 return VM_FAULT_OOM;
3803 ret = __do_fault(vmf);
3804 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3805 goto uncharge_out;
3806 if (ret & VM_FAULT_DONE_COW)
3807 return ret;
3809 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3810 __SetPageUptodate(vmf->cow_page);
3812 ret |= finish_fault(vmf);
3813 unlock_page(vmf->page);
3814 put_page(vmf->page);
3815 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3816 goto uncharge_out;
3817 return ret;
3818 uncharge_out:
3819 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3820 put_page(vmf->cow_page);
3821 return ret;
3824 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3826 struct vm_area_struct *vma = vmf->vma;
3827 vm_fault_t ret, tmp;
3829 ret = __do_fault(vmf);
3830 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3831 return ret;
3834 * Check if the backing address space wants to know that the page is
3835 * about to become writable
3837 if (vma->vm_ops->page_mkwrite) {
3838 unlock_page(vmf->page);
3839 tmp = do_page_mkwrite(vmf);
3840 if (unlikely(!tmp ||
3841 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3842 put_page(vmf->page);
3843 return tmp;
3847 ret |= finish_fault(vmf);
3848 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3849 VM_FAULT_RETRY))) {
3850 unlock_page(vmf->page);
3851 put_page(vmf->page);
3852 return ret;
3855 fault_dirty_shared_page(vma, vmf->page);
3856 return ret;
3860 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3861 * but allow concurrent faults).
3862 * The mmap_sem may have been released depending on flags and our
3863 * return value. See filemap_fault() and __lock_page_or_retry().
3864 * If mmap_sem is released, vma may become invalid (for example
3865 * by other thread calling munmap()).
3867 static vm_fault_t do_fault(struct vm_fault *vmf)
3869 struct vm_area_struct *vma = vmf->vma;
3870 struct mm_struct *vm_mm = vma->vm_mm;
3871 vm_fault_t ret;
3874 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3876 if (!vma->vm_ops->fault) {
3878 * If we find a migration pmd entry or a none pmd entry, which
3879 * should never happen, return SIGBUS
3881 if (unlikely(!pmd_present(*vmf->pmd)))
3882 ret = VM_FAULT_SIGBUS;
3883 else {
3884 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3885 vmf->pmd,
3886 vmf->address,
3887 &vmf->ptl);
3889 * Make sure this is not a temporary clearing of pte
3890 * by holding ptl and checking again. A R/M/W update
3891 * of pte involves: take ptl, clearing the pte so that
3892 * we don't have concurrent modification by hardware
3893 * followed by an update.
3895 if (unlikely(pte_none(*vmf->pte)))
3896 ret = VM_FAULT_SIGBUS;
3897 else
3898 ret = VM_FAULT_NOPAGE;
3900 pte_unmap_unlock(vmf->pte, vmf->ptl);
3902 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3903 ret = do_read_fault(vmf);
3904 else if (!(vma->vm_flags & VM_SHARED))
3905 ret = do_cow_fault(vmf);
3906 else
3907 ret = do_shared_fault(vmf);
3909 /* preallocated pagetable is unused: free it */
3910 if (vmf->prealloc_pte) {
3911 pte_free(vm_mm, vmf->prealloc_pte);
3912 vmf->prealloc_pte = NULL;
3914 return ret;
3917 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3918 unsigned long addr, int page_nid,
3919 int *flags)
3921 get_page(page);
3923 count_vm_numa_event(NUMA_HINT_FAULTS);
3924 if (page_nid == numa_node_id()) {
3925 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3926 *flags |= TNF_FAULT_LOCAL;
3929 return mpol_misplaced(page, vma, addr);
3932 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3934 struct vm_area_struct *vma = vmf->vma;
3935 struct page *page = NULL;
3936 int page_nid = -1;
3937 int last_cpupid;
3938 int target_nid;
3939 bool migrated = false;
3940 pte_t pte;
3941 bool was_writable = pte_savedwrite(vmf->orig_pte);
3942 int flags = 0;
3945 * The "pte" at this point cannot be used safely without
3946 * validation through pte_unmap_same(). It's of NUMA type but
3947 * the pfn may be screwed if the read is non atomic.
3949 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3950 spin_lock(vmf->ptl);
3951 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3952 pte_unmap_unlock(vmf->pte, vmf->ptl);
3953 goto out;
3957 * Make it present again, Depending on how arch implementes non
3958 * accessible ptes, some can allow access by kernel mode.
3960 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3961 pte = pte_modify(pte, vma->vm_page_prot);
3962 pte = pte_mkyoung(pte);
3963 if (was_writable)
3964 pte = pte_mkwrite(pte);
3965 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3966 update_mmu_cache(vma, vmf->address, vmf->pte);
3968 page = vm_normal_page(vma, vmf->address, pte);
3969 if (!page) {
3970 pte_unmap_unlock(vmf->pte, vmf->ptl);
3971 return 0;
3974 /* TODO: handle PTE-mapped THP */
3975 if (PageCompound(page)) {
3976 pte_unmap_unlock(vmf->pte, vmf->ptl);
3977 return 0;
3981 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3982 * much anyway since they can be in shared cache state. This misses
3983 * the case where a mapping is writable but the process never writes
3984 * to it but pte_write gets cleared during protection updates and
3985 * pte_dirty has unpredictable behaviour between PTE scan updates,
3986 * background writeback, dirty balancing and application behaviour.
3988 if (!pte_write(pte))
3989 flags |= TNF_NO_GROUP;
3992 * Flag if the page is shared between multiple address spaces. This
3993 * is later used when determining whether to group tasks together
3995 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3996 flags |= TNF_SHARED;
3998 last_cpupid = page_cpupid_last(page);
3999 page_nid = page_to_nid(page);
4000 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4001 &flags);
4002 pte_unmap_unlock(vmf->pte, vmf->ptl);
4003 if (target_nid == -1) {
4004 put_page(page);
4005 goto out;
4008 /* Migrate to the requested node */
4009 migrated = migrate_misplaced_page(page, vma, target_nid);
4010 if (migrated) {
4011 page_nid = target_nid;
4012 flags |= TNF_MIGRATED;
4013 } else
4014 flags |= TNF_MIGRATE_FAIL;
4016 out:
4017 if (page_nid != -1)
4018 task_numa_fault(last_cpupid, page_nid, 1, flags);
4019 return 0;
4022 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4024 if (vma_is_anonymous(vmf->vma))
4025 return do_huge_pmd_anonymous_page(vmf);
4026 if (vmf->vma->vm_ops->huge_fault)
4027 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4028 return VM_FAULT_FALLBACK;
4031 /* `inline' is required to avoid gcc 4.1.2 build error */
4032 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4034 if (vma_is_anonymous(vmf->vma))
4035 return do_huge_pmd_wp_page(vmf, orig_pmd);
4036 if (vmf->vma->vm_ops->huge_fault)
4037 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4039 /* COW handled on pte level: split pmd */
4040 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
4041 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4043 return VM_FAULT_FALLBACK;
4046 static inline bool vma_is_accessible(struct vm_area_struct *vma)
4048 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
4051 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4054 /* No support for anonymous transparent PUD pages yet */
4055 if (vma_is_anonymous(vmf->vma))
4056 return VM_FAULT_FALLBACK;
4057 if (vmf->vma->vm_ops->huge_fault)
4058 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4060 return VM_FAULT_FALLBACK;
4063 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4066 /* No support for anonymous transparent PUD pages yet */
4067 if (vma_is_anonymous(vmf->vma))
4068 return VM_FAULT_FALLBACK;
4069 if (vmf->vma->vm_ops->huge_fault)
4070 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4071 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4072 return VM_FAULT_FALLBACK;
4076 * These routines also need to handle stuff like marking pages dirty
4077 * and/or accessed for architectures that don't do it in hardware (most
4078 * RISC architectures). The early dirtying is also good on the i386.
4080 * There is also a hook called "update_mmu_cache()" that architectures
4081 * with external mmu caches can use to update those (ie the Sparc or
4082 * PowerPC hashed page tables that act as extended TLBs).
4084 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4085 * concurrent faults).
4087 * The mmap_sem may have been released depending on flags and our return value.
4088 * See filemap_fault() and __lock_page_or_retry().
4090 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4092 pte_t entry;
4094 if (unlikely(pmd_none(*vmf->pmd))) {
4096 * Leave __pte_alloc() until later: because vm_ops->fault may
4097 * want to allocate huge page, and if we expose page table
4098 * for an instant, it will be difficult to retract from
4099 * concurrent faults and from rmap lookups.
4101 vmf->pte = NULL;
4102 } else {
4103 /* See comment in pte_alloc_one_map() */
4104 if (pmd_devmap_trans_unstable(vmf->pmd))
4105 return 0;
4107 * A regular pmd is established and it can't morph into a huge
4108 * pmd from under us anymore at this point because we hold the
4109 * mmap_sem read mode and khugepaged takes it in write mode.
4110 * So now it's safe to run pte_offset_map().
4112 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4113 vmf->orig_pte = *vmf->pte;
4116 * some architectures can have larger ptes than wordsize,
4117 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4118 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4119 * accesses. The code below just needs a consistent view
4120 * for the ifs and we later double check anyway with the
4121 * ptl lock held. So here a barrier will do.
4123 barrier();
4124 if (pte_none(vmf->orig_pte)) {
4125 pte_unmap(vmf->pte);
4126 vmf->pte = NULL;
4130 if (!vmf->pte) {
4131 if (vma_is_anonymous(vmf->vma))
4132 return do_anonymous_page(vmf);
4133 else
4134 return do_fault(vmf);
4137 if (!pte_present(vmf->orig_pte))
4138 return do_swap_page(vmf);
4140 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4141 return do_numa_page(vmf);
4143 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4144 spin_lock(vmf->ptl);
4145 entry = vmf->orig_pte;
4146 if (unlikely(!pte_same(*vmf->pte, entry)))
4147 goto unlock;
4148 if (vmf->flags & FAULT_FLAG_WRITE) {
4149 if (!pte_write(entry))
4150 return do_wp_page(vmf);
4151 entry = pte_mkdirty(entry);
4153 entry = pte_mkyoung(entry);
4154 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4155 vmf->flags & FAULT_FLAG_WRITE)) {
4156 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4157 } else {
4159 * This is needed only for protection faults but the arch code
4160 * is not yet telling us if this is a protection fault or not.
4161 * This still avoids useless tlb flushes for .text page faults
4162 * with threads.
4164 if (vmf->flags & FAULT_FLAG_WRITE)
4165 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4167 unlock:
4168 pte_unmap_unlock(vmf->pte, vmf->ptl);
4169 return 0;
4173 * By the time we get here, we already hold the mm semaphore
4175 * The mmap_sem may have been released depending on flags and our
4176 * return value. See filemap_fault() and __lock_page_or_retry().
4178 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4179 unsigned long address, unsigned int flags)
4181 struct vm_fault vmf = {
4182 .vma = vma,
4183 .address = address & PAGE_MASK,
4184 .flags = flags,
4185 .pgoff = linear_page_index(vma, address),
4186 .gfp_mask = __get_fault_gfp_mask(vma),
4188 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4189 struct mm_struct *mm = vma->vm_mm;
4190 pgd_t *pgd;
4191 p4d_t *p4d;
4192 vm_fault_t ret;
4194 pgd = pgd_offset(mm, address);
4195 p4d = p4d_alloc(mm, pgd, address);
4196 if (!p4d)
4197 return VM_FAULT_OOM;
4199 vmf.pud = pud_alloc(mm, p4d, address);
4200 if (!vmf.pud)
4201 return VM_FAULT_OOM;
4202 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4203 ret = create_huge_pud(&vmf);
4204 if (!(ret & VM_FAULT_FALLBACK))
4205 return ret;
4206 } else {
4207 pud_t orig_pud = *vmf.pud;
4209 barrier();
4210 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4212 /* NUMA case for anonymous PUDs would go here */
4214 if (dirty && !pud_write(orig_pud)) {
4215 ret = wp_huge_pud(&vmf, orig_pud);
4216 if (!(ret & VM_FAULT_FALLBACK))
4217 return ret;
4218 } else {
4219 huge_pud_set_accessed(&vmf, orig_pud);
4220 return 0;
4225 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4226 if (!vmf.pmd)
4227 return VM_FAULT_OOM;
4228 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4229 ret = create_huge_pmd(&vmf);
4230 if (!(ret & VM_FAULT_FALLBACK))
4231 return ret;
4232 } else {
4233 pmd_t orig_pmd = *vmf.pmd;
4235 barrier();
4236 if (unlikely(is_swap_pmd(orig_pmd))) {
4237 VM_BUG_ON(thp_migration_supported() &&
4238 !is_pmd_migration_entry(orig_pmd));
4239 if (is_pmd_migration_entry(orig_pmd))
4240 pmd_migration_entry_wait(mm, vmf.pmd);
4241 return 0;
4243 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4244 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4245 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4247 if (dirty && !pmd_write(orig_pmd)) {
4248 ret = wp_huge_pmd(&vmf, orig_pmd);
4249 if (!(ret & VM_FAULT_FALLBACK))
4250 return ret;
4251 } else {
4252 huge_pmd_set_accessed(&vmf, orig_pmd);
4253 return 0;
4258 return handle_pte_fault(&vmf);
4262 * By the time we get here, we already hold the mm semaphore
4264 * The mmap_sem may have been released depending on flags and our
4265 * return value. See filemap_fault() and __lock_page_or_retry().
4267 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4268 unsigned int flags)
4270 vm_fault_t ret;
4272 __set_current_state(TASK_RUNNING);
4274 count_vm_event(PGFAULT);
4275 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4277 /* do counter updates before entering really critical section. */
4278 check_sync_rss_stat(current);
4280 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4281 flags & FAULT_FLAG_INSTRUCTION,
4282 flags & FAULT_FLAG_REMOTE))
4283 return VM_FAULT_SIGSEGV;
4286 * Enable the memcg OOM handling for faults triggered in user
4287 * space. Kernel faults are handled more gracefully.
4289 if (flags & FAULT_FLAG_USER)
4290 mem_cgroup_enter_user_fault();
4292 if (unlikely(is_vm_hugetlb_page(vma)))
4293 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4294 else
4295 ret = __handle_mm_fault(vma, address, flags);
4297 if (flags & FAULT_FLAG_USER) {
4298 mem_cgroup_exit_user_fault();
4300 * The task may have entered a memcg OOM situation but
4301 * if the allocation error was handled gracefully (no
4302 * VM_FAULT_OOM), there is no need to kill anything.
4303 * Just clean up the OOM state peacefully.
4305 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4306 mem_cgroup_oom_synchronize(false);
4309 return ret;
4311 EXPORT_SYMBOL_GPL(handle_mm_fault);
4313 #ifndef __PAGETABLE_P4D_FOLDED
4315 * Allocate p4d page table.
4316 * We've already handled the fast-path in-line.
4318 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4320 p4d_t *new = p4d_alloc_one(mm, address);
4321 if (!new)
4322 return -ENOMEM;
4324 smp_wmb(); /* See comment in __pte_alloc */
4326 spin_lock(&mm->page_table_lock);
4327 if (pgd_present(*pgd)) /* Another has populated it */
4328 p4d_free(mm, new);
4329 else
4330 pgd_populate(mm, pgd, new);
4331 spin_unlock(&mm->page_table_lock);
4332 return 0;
4334 #endif /* __PAGETABLE_P4D_FOLDED */
4336 #ifndef __PAGETABLE_PUD_FOLDED
4338 * Allocate page upper directory.
4339 * We've already handled the fast-path in-line.
4341 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4343 pud_t *new = pud_alloc_one(mm, address);
4344 if (!new)
4345 return -ENOMEM;
4347 smp_wmb(); /* See comment in __pte_alloc */
4349 spin_lock(&mm->page_table_lock);
4350 #ifndef __ARCH_HAS_5LEVEL_HACK
4351 if (!p4d_present(*p4d)) {
4352 mm_inc_nr_puds(mm);
4353 p4d_populate(mm, p4d, new);
4354 } else /* Another has populated it */
4355 pud_free(mm, new);
4356 #else
4357 if (!pgd_present(*p4d)) {
4358 mm_inc_nr_puds(mm);
4359 pgd_populate(mm, p4d, new);
4360 } else /* Another has populated it */
4361 pud_free(mm, new);
4362 #endif /* __ARCH_HAS_5LEVEL_HACK */
4363 spin_unlock(&mm->page_table_lock);
4364 return 0;
4366 #endif /* __PAGETABLE_PUD_FOLDED */
4368 #ifndef __PAGETABLE_PMD_FOLDED
4370 * Allocate page middle directory.
4371 * We've already handled the fast-path in-line.
4373 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4375 spinlock_t *ptl;
4376 pmd_t *new = pmd_alloc_one(mm, address);
4377 if (!new)
4378 return -ENOMEM;
4380 smp_wmb(); /* See comment in __pte_alloc */
4382 ptl = pud_lock(mm, pud);
4383 #ifndef __ARCH_HAS_4LEVEL_HACK
4384 if (!pud_present(*pud)) {
4385 mm_inc_nr_pmds(mm);
4386 pud_populate(mm, pud, new);
4387 } else /* Another has populated it */
4388 pmd_free(mm, new);
4389 #else
4390 if (!pgd_present(*pud)) {
4391 mm_inc_nr_pmds(mm);
4392 pgd_populate(mm, pud, new);
4393 } else /* Another has populated it */
4394 pmd_free(mm, new);
4395 #endif /* __ARCH_HAS_4LEVEL_HACK */
4396 spin_unlock(ptl);
4397 return 0;
4399 #endif /* __PAGETABLE_PMD_FOLDED */
4401 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4402 unsigned long *start, unsigned long *end,
4403 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4405 pgd_t *pgd;
4406 p4d_t *p4d;
4407 pud_t *pud;
4408 pmd_t *pmd;
4409 pte_t *ptep;
4411 pgd = pgd_offset(mm, address);
4412 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4413 goto out;
4415 p4d = p4d_offset(pgd, address);
4416 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4417 goto out;
4419 pud = pud_offset(p4d, address);
4420 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4421 goto out;
4423 pmd = pmd_offset(pud, address);
4424 VM_BUG_ON(pmd_trans_huge(*pmd));
4426 if (pmd_huge(*pmd)) {
4427 if (!pmdpp)
4428 goto out;
4430 if (start && end) {
4431 *start = address & PMD_MASK;
4432 *end = *start + PMD_SIZE;
4433 mmu_notifier_invalidate_range_start(mm, *start, *end);
4435 *ptlp = pmd_lock(mm, pmd);
4436 if (pmd_huge(*pmd)) {
4437 *pmdpp = pmd;
4438 return 0;
4440 spin_unlock(*ptlp);
4441 if (start && end)
4442 mmu_notifier_invalidate_range_end(mm, *start, *end);
4445 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4446 goto out;
4448 if (start && end) {
4449 *start = address & PAGE_MASK;
4450 *end = *start + PAGE_SIZE;
4451 mmu_notifier_invalidate_range_start(mm, *start, *end);
4453 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4454 if (!pte_present(*ptep))
4455 goto unlock;
4456 *ptepp = ptep;
4457 return 0;
4458 unlock:
4459 pte_unmap_unlock(ptep, *ptlp);
4460 if (start && end)
4461 mmu_notifier_invalidate_range_end(mm, *start, *end);
4462 out:
4463 return -EINVAL;
4466 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4467 pte_t **ptepp, spinlock_t **ptlp)
4469 int res;
4471 /* (void) is needed to make gcc happy */
4472 (void) __cond_lock(*ptlp,
4473 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4474 ptepp, NULL, ptlp)));
4475 return res;
4478 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4479 unsigned long *start, unsigned long *end,
4480 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4482 int res;
4484 /* (void) is needed to make gcc happy */
4485 (void) __cond_lock(*ptlp,
4486 !(res = __follow_pte_pmd(mm, address, start, end,
4487 ptepp, pmdpp, ptlp)));
4488 return res;
4490 EXPORT_SYMBOL(follow_pte_pmd);
4493 * follow_pfn - look up PFN at a user virtual address
4494 * @vma: memory mapping
4495 * @address: user virtual address
4496 * @pfn: location to store found PFN
4498 * Only IO mappings and raw PFN mappings are allowed.
4500 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4502 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4503 unsigned long *pfn)
4505 int ret = -EINVAL;
4506 spinlock_t *ptl;
4507 pte_t *ptep;
4509 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4510 return ret;
4512 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4513 if (ret)
4514 return ret;
4515 *pfn = pte_pfn(*ptep);
4516 pte_unmap_unlock(ptep, ptl);
4517 return 0;
4519 EXPORT_SYMBOL(follow_pfn);
4521 #ifdef CONFIG_HAVE_IOREMAP_PROT
4522 int follow_phys(struct vm_area_struct *vma,
4523 unsigned long address, unsigned int flags,
4524 unsigned long *prot, resource_size_t *phys)
4526 int ret = -EINVAL;
4527 pte_t *ptep, pte;
4528 spinlock_t *ptl;
4530 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4531 goto out;
4533 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4534 goto out;
4535 pte = *ptep;
4537 if ((flags & FOLL_WRITE) && !pte_write(pte))
4538 goto unlock;
4540 *prot = pgprot_val(pte_pgprot(pte));
4541 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4543 ret = 0;
4544 unlock:
4545 pte_unmap_unlock(ptep, ptl);
4546 out:
4547 return ret;
4550 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4551 void *buf, int len, int write)
4553 resource_size_t phys_addr;
4554 unsigned long prot = 0;
4555 void __iomem *maddr;
4556 int offset = addr & (PAGE_SIZE-1);
4558 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4559 return -EINVAL;
4561 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4562 if (!maddr)
4563 return -ENOMEM;
4565 if (write)
4566 memcpy_toio(maddr + offset, buf, len);
4567 else
4568 memcpy_fromio(buf, maddr + offset, len);
4569 iounmap(maddr);
4571 return len;
4573 EXPORT_SYMBOL_GPL(generic_access_phys);
4574 #endif
4577 * Access another process' address space as given in mm. If non-NULL, use the
4578 * given task for page fault accounting.
4580 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4581 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4583 struct vm_area_struct *vma;
4584 void *old_buf = buf;
4585 int write = gup_flags & FOLL_WRITE;
4587 if (down_read_killable(&mm->mmap_sem))
4588 return 0;
4590 /* ignore errors, just check how much was successfully transferred */
4591 while (len) {
4592 int bytes, ret, offset;
4593 void *maddr;
4594 struct page *page = NULL;
4596 ret = get_user_pages_remote(tsk, mm, addr, 1,
4597 gup_flags, &page, &vma, NULL);
4598 if (ret <= 0) {
4599 #ifndef CONFIG_HAVE_IOREMAP_PROT
4600 break;
4601 #else
4603 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4604 * we can access using slightly different code.
4606 vma = find_vma(mm, addr);
4607 if (!vma || vma->vm_start > addr)
4608 break;
4609 if (vma->vm_ops && vma->vm_ops->access)
4610 ret = vma->vm_ops->access(vma, addr, buf,
4611 len, write);
4612 if (ret <= 0)
4613 break;
4614 bytes = ret;
4615 #endif
4616 } else {
4617 bytes = len;
4618 offset = addr & (PAGE_SIZE-1);
4619 if (bytes > PAGE_SIZE-offset)
4620 bytes = PAGE_SIZE-offset;
4622 maddr = kmap(page);
4623 if (write) {
4624 copy_to_user_page(vma, page, addr,
4625 maddr + offset, buf, bytes);
4626 set_page_dirty_lock(page);
4627 } else {
4628 copy_from_user_page(vma, page, addr,
4629 buf, maddr + offset, bytes);
4631 kunmap(page);
4632 put_page(page);
4634 len -= bytes;
4635 buf += bytes;
4636 addr += bytes;
4638 up_read(&mm->mmap_sem);
4640 return buf - old_buf;
4644 * access_remote_vm - access another process' address space
4645 * @mm: the mm_struct of the target address space
4646 * @addr: start address to access
4647 * @buf: source or destination buffer
4648 * @len: number of bytes to transfer
4649 * @gup_flags: flags modifying lookup behaviour
4651 * The caller must hold a reference on @mm.
4653 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4654 void *buf, int len, unsigned int gup_flags)
4656 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4660 * Access another process' address space.
4661 * Source/target buffer must be kernel space,
4662 * Do not walk the page table directly, use get_user_pages
4664 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4665 void *buf, int len, unsigned int gup_flags)
4667 struct mm_struct *mm;
4668 int ret;
4670 mm = get_task_mm(tsk);
4671 if (!mm)
4672 return 0;
4674 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4676 mmput(mm);
4678 return ret;
4680 EXPORT_SYMBOL_GPL(access_process_vm);
4683 * Print the name of a VMA.
4685 void print_vma_addr(char *prefix, unsigned long ip)
4687 struct mm_struct *mm = current->mm;
4688 struct vm_area_struct *vma;
4691 * we might be running from an atomic context so we cannot sleep
4693 if (!down_read_trylock(&mm->mmap_sem))
4694 return;
4696 vma = find_vma(mm, ip);
4697 if (vma && vma->vm_file) {
4698 struct file *f = vma->vm_file;
4699 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4700 if (buf) {
4701 char *p;
4703 p = file_path(f, buf, PAGE_SIZE);
4704 if (IS_ERR(p))
4705 p = "?";
4706 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4707 vma->vm_start,
4708 vma->vm_end - vma->vm_start);
4709 free_page((unsigned long)buf);
4712 up_read(&mm->mmap_sem);
4715 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4716 void __might_fault(const char *file, int line)
4719 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4720 * holding the mmap_sem, this is safe because kernel memory doesn't
4721 * get paged out, therefore we'll never actually fault, and the
4722 * below annotations will generate false positives.
4724 if (uaccess_kernel())
4725 return;
4726 if (pagefault_disabled())
4727 return;
4728 __might_sleep(file, line, 0);
4729 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4730 if (current->mm)
4731 might_lock_read(&current->mm->mmap_sem);
4732 #endif
4734 EXPORT_SYMBOL(__might_fault);
4735 #endif
4737 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4739 * Process all subpages of the specified huge page with the specified
4740 * operation. The target subpage will be processed last to keep its
4741 * cache lines hot.
4743 static inline void process_huge_page(
4744 unsigned long addr_hint, unsigned int pages_per_huge_page,
4745 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4746 void *arg)
4748 int i, n, base, l;
4749 unsigned long addr = addr_hint &
4750 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4752 /* Process target subpage last to keep its cache lines hot */
4753 might_sleep();
4754 n = (addr_hint - addr) / PAGE_SIZE;
4755 if (2 * n <= pages_per_huge_page) {
4756 /* If target subpage in first half of huge page */
4757 base = 0;
4758 l = n;
4759 /* Process subpages at the end of huge page */
4760 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4761 cond_resched();
4762 process_subpage(addr + i * PAGE_SIZE, i, arg);
4764 } else {
4765 /* If target subpage in second half of huge page */
4766 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4767 l = pages_per_huge_page - n;
4768 /* Process subpages at the begin of huge page */
4769 for (i = 0; i < base; i++) {
4770 cond_resched();
4771 process_subpage(addr + i * PAGE_SIZE, i, arg);
4775 * Process remaining subpages in left-right-left-right pattern
4776 * towards the target subpage
4778 for (i = 0; i < l; i++) {
4779 int left_idx = base + i;
4780 int right_idx = base + 2 * l - 1 - i;
4782 cond_resched();
4783 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4784 cond_resched();
4785 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4789 static void clear_gigantic_page(struct page *page,
4790 unsigned long addr,
4791 unsigned int pages_per_huge_page)
4793 int i;
4794 struct page *p = page;
4796 might_sleep();
4797 for (i = 0; i < pages_per_huge_page;
4798 i++, p = mem_map_next(p, page, i)) {
4799 cond_resched();
4800 clear_user_highpage(p, addr + i * PAGE_SIZE);
4804 static void clear_subpage(unsigned long addr, int idx, void *arg)
4806 struct page *page = arg;
4808 clear_user_highpage(page + idx, addr);
4811 void clear_huge_page(struct page *page,
4812 unsigned long addr_hint, unsigned int pages_per_huge_page)
4814 unsigned long addr = addr_hint &
4815 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4817 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4818 clear_gigantic_page(page, addr, pages_per_huge_page);
4819 return;
4822 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4825 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4826 unsigned long addr,
4827 struct vm_area_struct *vma,
4828 unsigned int pages_per_huge_page)
4830 int i;
4831 struct page *dst_base = dst;
4832 struct page *src_base = src;
4834 for (i = 0; i < pages_per_huge_page; ) {
4835 cond_resched();
4836 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4838 i++;
4839 dst = mem_map_next(dst, dst_base, i);
4840 src = mem_map_next(src, src_base, i);
4844 struct copy_subpage_arg {
4845 struct page *dst;
4846 struct page *src;
4847 struct vm_area_struct *vma;
4850 static void copy_subpage(unsigned long addr, int idx, void *arg)
4852 struct copy_subpage_arg *copy_arg = arg;
4854 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4855 addr, copy_arg->vma);
4858 void copy_user_huge_page(struct page *dst, struct page *src,
4859 unsigned long addr_hint, struct vm_area_struct *vma,
4860 unsigned int pages_per_huge_page)
4862 unsigned long addr = addr_hint &
4863 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4864 struct copy_subpage_arg arg = {
4865 .dst = dst,
4866 .src = src,
4867 .vma = vma,
4870 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4871 copy_user_gigantic_page(dst, src, addr, vma,
4872 pages_per_huge_page);
4873 return;
4876 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4879 long copy_huge_page_from_user(struct page *dst_page,
4880 const void __user *usr_src,
4881 unsigned int pages_per_huge_page,
4882 bool allow_pagefault)
4884 void *src = (void *)usr_src;
4885 void *page_kaddr;
4886 unsigned long i, rc = 0;
4887 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4889 for (i = 0; i < pages_per_huge_page; i++) {
4890 if (allow_pagefault)
4891 page_kaddr = kmap(dst_page + i);
4892 else
4893 page_kaddr = kmap_atomic(dst_page + i);
4894 rc = copy_from_user(page_kaddr,
4895 (const void __user *)(src + i * PAGE_SIZE),
4896 PAGE_SIZE);
4897 if (allow_pagefault)
4898 kunmap(dst_page + i);
4899 else
4900 kunmap_atomic(page_kaddr);
4902 ret_val -= (PAGE_SIZE - rc);
4903 if (rc)
4904 break;
4906 cond_resched();
4908 return ret_val;
4910 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4912 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4914 static struct kmem_cache *page_ptl_cachep;
4916 void __init ptlock_cache_init(void)
4918 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4919 SLAB_PANIC, NULL);
4922 bool ptlock_alloc(struct page *page)
4924 spinlock_t *ptl;
4926 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4927 if (!ptl)
4928 return false;
4929 page->ptl = ptl;
4930 return true;
4933 void ptlock_free(struct page *page)
4935 kmem_cache_free(page_ptl_cachep, page->ptl);
4937 #endif