2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache
*policy_cache
;
113 static struct kmem_cache
*sn_cache
;
115 /* Highest zone. An specific allocation for a zone below that is not
117 enum zone_type policy_zone
= 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy
= {
123 .refcnt
= ATOMIC_INIT(1), /* never free it */
124 .mode
= MPOL_PREFERRED
,
125 .flags
= MPOL_F_LOCAL
,
128 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
130 struct mempolicy
*get_task_policy(struct task_struct
*p
)
132 struct mempolicy
*pol
= p
->mempolicy
;
138 node
= numa_node_id();
139 if (node
!= NUMA_NO_NODE
) {
140 pol
= &preferred_node_policy
[node
];
141 /* preferred_node_policy is not initialised early in boot */
146 return &default_policy
;
149 static const struct mempolicy_operations
{
150 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
151 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
152 } mpol_ops
[MPOL_MAX
];
154 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
156 return pol
->flags
& MPOL_MODE_FLAGS
;
159 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
160 const nodemask_t
*rel
)
163 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
164 nodes_onto(*ret
, tmp
, *rel
);
167 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
169 if (nodes_empty(*nodes
))
171 pol
->v
.nodes
= *nodes
;
175 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
178 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
179 else if (nodes_empty(*nodes
))
180 return -EINVAL
; /* no allowed nodes */
182 pol
->v
.preferred_node
= first_node(*nodes
);
186 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
188 if (nodes_empty(*nodes
))
190 pol
->v
.nodes
= *nodes
;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy
*pol
,
204 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
212 nodes_and(nsc
->mask1
,
213 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
216 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
217 nodes
= NULL
; /* explicit local allocation */
219 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
220 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
222 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
224 if (mpol_store_user_nodemask(pol
))
225 pol
->w
.user_nodemask
= *nodes
;
227 pol
->w
.cpuset_mems_allowed
=
228 cpuset_current_mems_allowed
;
232 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
234 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
245 struct mempolicy
*policy
;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
250 if (mode
== MPOL_DEFAULT
) {
251 if (nodes
&& !nodes_empty(*nodes
))
252 return ERR_PTR(-EINVAL
);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode
== MPOL_PREFERRED
) {
263 if (nodes_empty(*nodes
)) {
264 if (((flags
& MPOL_F_STATIC_NODES
) ||
265 (flags
& MPOL_F_RELATIVE_NODES
)))
266 return ERR_PTR(-EINVAL
);
268 } else if (mode
== MPOL_LOCAL
) {
269 if (!nodes_empty(*nodes
) ||
270 (flags
& MPOL_F_STATIC_NODES
) ||
271 (flags
& MPOL_F_RELATIVE_NODES
))
272 return ERR_PTR(-EINVAL
);
273 mode
= MPOL_PREFERRED
;
274 } else if (nodes_empty(*nodes
))
275 return ERR_PTR(-EINVAL
);
276 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
278 return ERR_PTR(-ENOMEM
);
279 atomic_set(&policy
->refcnt
, 1);
281 policy
->flags
= flags
;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy
*p
)
289 if (!atomic_dec_and_test(&p
->refcnt
))
291 kmem_cache_free(policy_cache
, p
);
294 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
)
298 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
)
302 if (pol
->flags
& MPOL_F_STATIC_NODES
)
303 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
304 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
305 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
307 nodes_remap(tmp
, pol
->v
.nodes
,pol
->w
.cpuset_mems_allowed
,
309 pol
->w
.cpuset_mems_allowed
= *nodes
;
312 if (nodes_empty(tmp
))
318 static void mpol_rebind_preferred(struct mempolicy
*pol
,
319 const nodemask_t
*nodes
)
323 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
324 int node
= first_node(pol
->w
.user_nodemask
);
326 if (node_isset(node
, *nodes
)) {
327 pol
->v
.preferred_node
= node
;
328 pol
->flags
&= ~MPOL_F_LOCAL
;
330 pol
->flags
|= MPOL_F_LOCAL
;
331 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
332 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
333 pol
->v
.preferred_node
= first_node(tmp
);
334 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
335 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
336 pol
->w
.cpuset_mems_allowed
,
338 pol
->w
.cpuset_mems_allowed
= *nodes
;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
353 if (!mpol_store_user_nodemask(pol
) && !(pol
->flags
& MPOL_F_LOCAL
) &&
354 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
357 mpol_ops
[pol
->mode
].rebind(pol
, newmask
);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
369 mpol_rebind_policy(tsk
->mempolicy
, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
380 struct vm_area_struct
*vma
;
382 down_write(&mm
->mmap_sem
);
383 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
384 mpol_rebind_policy(vma
->vm_policy
, new);
385 up_write(&mm
->mmap_sem
);
388 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
390 .rebind
= mpol_rebind_default
,
392 [MPOL_INTERLEAVE
] = {
393 .create
= mpol_new_interleave
,
394 .rebind
= mpol_rebind_nodemask
,
397 .create
= mpol_new_preferred
,
398 .rebind
= mpol_rebind_preferred
,
401 .create
= mpol_new_bind
,
402 .rebind
= mpol_rebind_nodemask
,
406 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
407 unsigned long flags
);
410 struct list_head
*pagelist
;
413 struct vm_area_struct
*prev
;
417 * Check if the page's nid is in qp->nmask.
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
422 static inline bool queue_pages_required(struct page
*page
,
423 struct queue_pages
*qp
)
425 int nid
= page_to_nid(page
);
426 unsigned long flags
= qp
->flags
;
428 return node_isset(nid
, *qp
->nmask
) == !(flags
& MPOL_MF_INVERT
);
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
441 static int queue_pages_pmd(pmd_t
*pmd
, spinlock_t
*ptl
, unsigned long addr
,
442 unsigned long end
, struct mm_walk
*walk
)
446 struct queue_pages
*qp
= walk
->private;
449 if (unlikely(is_pmd_migration_entry(*pmd
))) {
453 page
= pmd_page(*pmd
);
454 if (is_huge_zero_page(page
)) {
456 __split_huge_pmd(walk
->vma
, pmd
, addr
, false, NULL
);
460 if (!queue_pages_required(page
, qp
))
464 /* go to thp migration */
465 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
466 if (!vma_migratable(walk
->vma
) ||
467 migrate_page_add(page
, qp
->pagelist
, flags
)) {
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
483 * queue_pages_pte_range() has three possible return values:
484 * 0 - pages are placed on the right node or queued successfully.
485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488 * on a node that does not follow the policy.
490 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
491 unsigned long end
, struct mm_walk
*walk
)
493 struct vm_area_struct
*vma
= walk
->vma
;
495 struct queue_pages
*qp
= walk
->private;
496 unsigned long flags
= qp
->flags
;
498 bool has_unmovable
= false;
499 pte_t
*pte
, *mapped_pte
;
502 ptl
= pmd_trans_huge_lock(pmd
, vma
);
504 ret
= queue_pages_pmd(pmd
, ptl
, addr
, end
, walk
);
508 /* THP was split, fall through to pte walk */
510 if (pmd_trans_unstable(pmd
))
513 mapped_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
514 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
515 if (!pte_present(*pte
))
517 page
= vm_normal_page(vma
, addr
, *pte
);
521 * vm_normal_page() filters out zero pages, but there might
522 * still be PageReserved pages to skip, perhaps in a VDSO.
524 if (PageReserved(page
))
526 if (!queue_pages_required(page
, qp
))
528 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
529 /* MPOL_MF_STRICT must be specified if we get here */
530 if (!vma_migratable(vma
)) {
531 has_unmovable
= true;
536 * Do not abort immediately since there may be
537 * temporary off LRU pages in the range. Still
538 * need migrate other LRU pages.
540 if (migrate_page_add(page
, qp
->pagelist
, flags
))
541 has_unmovable
= true;
545 pte_unmap_unlock(mapped_pte
, ptl
);
551 return addr
!= end
? -EIO
: 0;
554 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
555 unsigned long addr
, unsigned long end
,
556 struct mm_walk
*walk
)
558 #ifdef CONFIG_HUGETLB_PAGE
559 struct queue_pages
*qp
= walk
->private;
560 unsigned long flags
= qp
->flags
;
565 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
566 entry
= huge_ptep_get(pte
);
567 if (!pte_present(entry
))
569 page
= pte_page(entry
);
570 if (!queue_pages_required(page
, qp
))
572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 if (flags
& (MPOL_MF_MOVE_ALL
) ||
574 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
575 isolate_huge_page(page
, qp
->pagelist
);
584 #ifdef CONFIG_NUMA_BALANCING
586 * This is used to mark a range of virtual addresses to be inaccessible.
587 * These are later cleared by a NUMA hinting fault. Depending on these
588 * faults, pages may be migrated for better NUMA placement.
590 * This is assuming that NUMA faults are handled using PROT_NONE. If
591 * an architecture makes a different choice, it will need further
592 * changes to the core.
594 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
595 unsigned long addr
, unsigned long end
)
599 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, 0, 1);
601 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
606 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
607 unsigned long addr
, unsigned long end
)
611 #endif /* CONFIG_NUMA_BALANCING */
613 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
614 struct mm_walk
*walk
)
616 struct vm_area_struct
*vma
= walk
->vma
;
617 struct queue_pages
*qp
= walk
->private;
618 unsigned long endvma
= vma
->vm_end
;
619 unsigned long flags
= qp
->flags
;
622 * Need check MPOL_MF_STRICT to return -EIO if possible
623 * regardless of vma_migratable
625 if (!vma_migratable(vma
) &&
626 !(flags
& MPOL_MF_STRICT
))
631 if (vma
->vm_start
> start
)
632 start
= vma
->vm_start
;
634 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
635 if (!vma
->vm_next
&& vma
->vm_end
< end
)
637 if (qp
->prev
&& qp
->prev
->vm_end
< vma
->vm_start
)
643 if (flags
& MPOL_MF_LAZY
) {
644 /* Similar to task_numa_work, skip inaccessible VMAs */
645 if (!is_vm_hugetlb_page(vma
) &&
646 (vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)) &&
647 !(vma
->vm_flags
& VM_MIXEDMAP
))
648 change_prot_numa(vma
, start
, endvma
);
652 /* queue pages from current vma */
653 if (flags
& MPOL_MF_VALID
)
659 * Walk through page tables and collect pages to be migrated.
661 * If pages found in a given range are on a set of nodes (determined by
662 * @nodes and @flags,) it's isolated and queued to the pagelist which is
663 * passed via @private.
665 * queue_pages_range() has three possible return values:
666 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
668 * 0 - queue pages successfully or no misplaced page.
669 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
670 * memory range specified by nodemask and maxnode points outside
671 * your accessible address space (-EFAULT)
674 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
675 nodemask_t
*nodes
, unsigned long flags
,
676 struct list_head
*pagelist
)
678 struct queue_pages qp
= {
679 .pagelist
= pagelist
,
684 struct mm_walk queue_pages_walk
= {
685 .hugetlb_entry
= queue_pages_hugetlb
,
686 .pmd_entry
= queue_pages_pte_range
,
687 .test_walk
= queue_pages_test_walk
,
692 return walk_page_range(start
, end
, &queue_pages_walk
);
696 * Apply policy to a single VMA
697 * This must be called with the mmap_sem held for writing.
699 static int vma_replace_policy(struct vm_area_struct
*vma
,
700 struct mempolicy
*pol
)
703 struct mempolicy
*old
;
704 struct mempolicy
*new;
706 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
707 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
708 vma
->vm_ops
, vma
->vm_file
,
709 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
715 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
716 err
= vma
->vm_ops
->set_policy(vma
, new);
721 old
= vma
->vm_policy
;
722 vma
->vm_policy
= new; /* protected by mmap_sem */
731 /* Step 2: apply policy to a range and do splits. */
732 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
733 unsigned long end
, struct mempolicy
*new_pol
)
735 struct vm_area_struct
*next
;
736 struct vm_area_struct
*prev
;
737 struct vm_area_struct
*vma
;
740 unsigned long vmstart
;
743 vma
= find_vma(mm
, start
);
744 if (!vma
|| vma
->vm_start
> start
)
748 if (start
> vma
->vm_start
)
751 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
753 vmstart
= max(start
, vma
->vm_start
);
754 vmend
= min(end
, vma
->vm_end
);
756 if (mpol_equal(vma_policy(vma
), new_pol
))
759 pgoff
= vma
->vm_pgoff
+
760 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
761 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
762 vma
->anon_vma
, vma
->vm_file
, pgoff
,
763 new_pol
, vma
->vm_userfaultfd_ctx
);
767 if (mpol_equal(vma_policy(vma
), new_pol
))
769 /* vma_merge() joined vma && vma->next, case 8 */
772 if (vma
->vm_start
!= vmstart
) {
773 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
777 if (vma
->vm_end
!= vmend
) {
778 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
783 err
= vma_replace_policy(vma
, new_pol
);
792 /* Set the process memory policy */
793 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
796 struct mempolicy
*new, *old
;
797 NODEMASK_SCRATCH(scratch
);
803 new = mpol_new(mode
, flags
, nodes
);
810 ret
= mpol_set_nodemask(new, nodes
, scratch
);
812 task_unlock(current
);
816 old
= current
->mempolicy
;
817 current
->mempolicy
= new;
818 if (new && new->mode
== MPOL_INTERLEAVE
)
819 current
->il_prev
= MAX_NUMNODES
-1;
820 task_unlock(current
);
824 NODEMASK_SCRATCH_FREE(scratch
);
829 * Return nodemask for policy for get_mempolicy() query
831 * Called with task's alloc_lock held
833 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
836 if (p
== &default_policy
)
842 case MPOL_INTERLEAVE
:
846 if (!(p
->flags
& MPOL_F_LOCAL
))
847 node_set(p
->v
.preferred_node
, *nodes
);
848 /* else return empty node mask for local allocation */
855 static int lookup_node(unsigned long addr
)
860 err
= get_user_pages(addr
& PAGE_MASK
, 1, 0, &p
, NULL
);
862 err
= page_to_nid(p
);
868 /* Retrieve NUMA policy */
869 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
870 unsigned long addr
, unsigned long flags
)
873 struct mm_struct
*mm
= current
->mm
;
874 struct vm_area_struct
*vma
= NULL
;
875 struct mempolicy
*pol
= current
->mempolicy
;
878 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
881 if (flags
& MPOL_F_MEMS_ALLOWED
) {
882 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
884 *policy
= 0; /* just so it's initialized */
886 *nmask
= cpuset_current_mems_allowed
;
887 task_unlock(current
);
891 if (flags
& MPOL_F_ADDR
) {
893 * Do NOT fall back to task policy if the
894 * vma/shared policy at addr is NULL. We
895 * want to return MPOL_DEFAULT in this case.
897 down_read(&mm
->mmap_sem
);
898 vma
= find_vma_intersection(mm
, addr
, addr
+1);
900 up_read(&mm
->mmap_sem
);
903 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
904 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
906 pol
= vma
->vm_policy
;
911 pol
= &default_policy
; /* indicates default behavior */
913 if (flags
& MPOL_F_NODE
) {
914 if (flags
& MPOL_F_ADDR
) {
915 err
= lookup_node(addr
);
919 } else if (pol
== current
->mempolicy
&&
920 pol
->mode
== MPOL_INTERLEAVE
) {
921 *policy
= next_node_in(current
->il_prev
, pol
->v
.nodes
);
927 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
930 * Internal mempolicy flags must be masked off before exposing
931 * the policy to userspace.
933 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
938 if (mpol_store_user_nodemask(pol
)) {
939 *nmask
= pol
->w
.user_nodemask
;
942 get_policy_nodemask(pol
, nmask
);
943 task_unlock(current
);
950 up_read(¤t
->mm
->mmap_sem
);
954 #ifdef CONFIG_MIGRATION
956 * page migration, thp tail pages can be passed.
958 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
961 struct page
*head
= compound_head(page
);
963 * Avoid migrating a page that is shared with others.
965 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(head
) == 1) {
966 if (!isolate_lru_page(head
)) {
967 list_add_tail(&head
->lru
, pagelist
);
968 mod_node_page_state(page_pgdat(head
),
969 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
970 hpage_nr_pages(head
));
971 } else if (flags
& MPOL_MF_STRICT
) {
973 * Non-movable page may reach here. And, there may be
974 * temporary off LRU pages or non-LRU movable pages.
975 * Treat them as unmovable pages since they can't be
976 * isolated, so they can't be moved at the moment. It
977 * should return -EIO for this case too.
986 /* page allocation callback for NUMA node migration */
987 struct page
*alloc_new_node_page(struct page
*page
, unsigned long node
)
990 return alloc_huge_page_node(page_hstate(compound_head(page
)),
992 else if (PageTransHuge(page
)) {
995 thp
= alloc_pages_node(node
,
996 (GFP_TRANSHUGE
| __GFP_THISNODE
),
1000 prep_transhuge_page(thp
);
1003 return __alloc_pages_node(node
, GFP_HIGHUSER_MOVABLE
|
1008 * Migrate pages from one node to a target node.
1009 * Returns error or the number of pages not migrated.
1011 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
1015 LIST_HEAD(pagelist
);
1019 node_set(source
, nmask
);
1022 * This does not "check" the range but isolates all pages that
1023 * need migration. Between passing in the full user address
1024 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1026 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1027 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1028 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1030 if (!list_empty(&pagelist
)) {
1031 err
= migrate_pages(&pagelist
, alloc_new_node_page
, NULL
, dest
,
1032 MIGRATE_SYNC
, MR_SYSCALL
);
1034 putback_movable_pages(&pagelist
);
1041 * Move pages between the two nodesets so as to preserve the physical
1042 * layout as much as possible.
1044 * Returns the number of page that could not be moved.
1046 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1047 const nodemask_t
*to
, int flags
)
1053 err
= migrate_prep();
1057 down_read(&mm
->mmap_sem
);
1060 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1061 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1062 * bit in 'tmp', and return that <source, dest> pair for migration.
1063 * The pair of nodemasks 'to' and 'from' define the map.
1065 * If no pair of bits is found that way, fallback to picking some
1066 * pair of 'source' and 'dest' bits that are not the same. If the
1067 * 'source' and 'dest' bits are the same, this represents a node
1068 * that will be migrating to itself, so no pages need move.
1070 * If no bits are left in 'tmp', or if all remaining bits left
1071 * in 'tmp' correspond to the same bit in 'to', return false
1072 * (nothing left to migrate).
1074 * This lets us pick a pair of nodes to migrate between, such that
1075 * if possible the dest node is not already occupied by some other
1076 * source node, minimizing the risk of overloading the memory on a
1077 * node that would happen if we migrated incoming memory to a node
1078 * before migrating outgoing memory source that same node.
1080 * A single scan of tmp is sufficient. As we go, we remember the
1081 * most recent <s, d> pair that moved (s != d). If we find a pair
1082 * that not only moved, but what's better, moved to an empty slot
1083 * (d is not set in tmp), then we break out then, with that pair.
1084 * Otherwise when we finish scanning from_tmp, we at least have the
1085 * most recent <s, d> pair that moved. If we get all the way through
1086 * the scan of tmp without finding any node that moved, much less
1087 * moved to an empty node, then there is nothing left worth migrating.
1091 while (!nodes_empty(tmp
)) {
1093 int source
= NUMA_NO_NODE
;
1096 for_each_node_mask(s
, tmp
) {
1099 * do_migrate_pages() tries to maintain the relative
1100 * node relationship of the pages established between
1101 * threads and memory areas.
1103 * However if the number of source nodes is not equal to
1104 * the number of destination nodes we can not preserve
1105 * this node relative relationship. In that case, skip
1106 * copying memory from a node that is in the destination
1109 * Example: [2,3,4] -> [3,4,5] moves everything.
1110 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1113 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1114 (node_isset(s
, *to
)))
1117 d
= node_remap(s
, *from
, *to
);
1121 source
= s
; /* Node moved. Memorize */
1124 /* dest not in remaining from nodes? */
1125 if (!node_isset(dest
, tmp
))
1128 if (source
== NUMA_NO_NODE
)
1131 node_clear(source
, tmp
);
1132 err
= migrate_to_node(mm
, source
, dest
, flags
);
1138 up_read(&mm
->mmap_sem
);
1146 * Allocate a new page for page migration based on vma policy.
1147 * Start by assuming the page is mapped by the same vma as contains @start.
1148 * Search forward from there, if not. N.B., this assumes that the
1149 * list of pages handed to migrate_pages()--which is how we get here--
1150 * is in virtual address order.
1152 static struct page
*new_page(struct page
*page
, unsigned long start
)
1154 struct vm_area_struct
*vma
;
1155 unsigned long uninitialized_var(address
);
1157 vma
= find_vma(current
->mm
, start
);
1159 address
= page_address_in_vma(page
, vma
);
1160 if (address
!= -EFAULT
)
1165 if (PageHuge(page
)) {
1166 return alloc_huge_page_vma(page_hstate(compound_head(page
)),
1168 } else if (PageTransHuge(page
)) {
1171 thp
= alloc_hugepage_vma(GFP_TRANSHUGE
, vma
, address
,
1175 prep_transhuge_page(thp
);
1179 * if !vma, alloc_page_vma() will use task or system default policy
1181 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
| __GFP_RETRY_MAYFAIL
,
1186 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1187 unsigned long flags
)
1192 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1193 const nodemask_t
*to
, int flags
)
1198 static struct page
*new_page(struct page
*page
, unsigned long start
)
1204 static long do_mbind(unsigned long start
, unsigned long len
,
1205 unsigned short mode
, unsigned short mode_flags
,
1206 nodemask_t
*nmask
, unsigned long flags
)
1208 struct mm_struct
*mm
= current
->mm
;
1209 struct mempolicy
*new;
1213 LIST_HEAD(pagelist
);
1215 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1217 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1220 if (start
& ~PAGE_MASK
)
1223 if (mode
== MPOL_DEFAULT
)
1224 flags
&= ~MPOL_MF_STRICT
;
1226 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1234 new = mpol_new(mode
, mode_flags
, nmask
);
1236 return PTR_ERR(new);
1238 if (flags
& MPOL_MF_LAZY
)
1239 new->flags
|= MPOL_F_MOF
;
1242 * If we are using the default policy then operation
1243 * on discontinuous address spaces is okay after all
1246 flags
|= MPOL_MF_DISCONTIG_OK
;
1248 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1249 start
, start
+ len
, mode
, mode_flags
,
1250 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1252 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1254 err
= migrate_prep();
1259 NODEMASK_SCRATCH(scratch
);
1261 down_write(&mm
->mmap_sem
);
1263 err
= mpol_set_nodemask(new, nmask
, scratch
);
1264 task_unlock(current
);
1266 up_write(&mm
->mmap_sem
);
1269 NODEMASK_SCRATCH_FREE(scratch
);
1274 ret
= queue_pages_range(mm
, start
, end
, nmask
,
1275 flags
| MPOL_MF_INVERT
, &pagelist
);
1282 err
= mbind_range(mm
, start
, end
, new);
1287 if (!list_empty(&pagelist
)) {
1288 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1289 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1290 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1292 putback_movable_pages(&pagelist
);
1295 if ((ret
> 0) || (nr_failed
&& (flags
& MPOL_MF_STRICT
)))
1299 if (!list_empty(&pagelist
))
1300 putback_movable_pages(&pagelist
);
1303 up_write(&mm
->mmap_sem
);
1310 * User space interface with variable sized bitmaps for nodelists.
1313 /* Copy a node mask from user space. */
1314 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1315 unsigned long maxnode
)
1319 unsigned long nlongs
;
1320 unsigned long endmask
;
1323 nodes_clear(*nodes
);
1324 if (maxnode
== 0 || !nmask
)
1326 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1329 nlongs
= BITS_TO_LONGS(maxnode
);
1330 if ((maxnode
% BITS_PER_LONG
) == 0)
1333 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1336 * When the user specified more nodes than supported just check
1337 * if the non supported part is all zero.
1339 * If maxnode have more longs than MAX_NUMNODES, check
1340 * the bits in that area first. And then go through to
1341 * check the rest bits which equal or bigger than MAX_NUMNODES.
1342 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1344 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1345 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1346 if (get_user(t
, nmask
+ k
))
1348 if (k
== nlongs
- 1) {
1354 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1358 if (maxnode
> MAX_NUMNODES
&& MAX_NUMNODES
% BITS_PER_LONG
!= 0) {
1359 unsigned long valid_mask
= endmask
;
1361 valid_mask
&= ~((1UL << (MAX_NUMNODES
% BITS_PER_LONG
)) - 1);
1362 if (get_user(t
, nmask
+ nlongs
- 1))
1368 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1370 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1374 /* Copy a kernel node mask to user space */
1375 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1378 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1379 unsigned int nbytes
= BITS_TO_LONGS(nr_node_ids
) * sizeof(long);
1381 if (copy
> nbytes
) {
1382 if (copy
> PAGE_SIZE
)
1384 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1388 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1391 static long kernel_mbind(unsigned long start
, unsigned long len
,
1392 unsigned long mode
, const unsigned long __user
*nmask
,
1393 unsigned long maxnode
, unsigned int flags
)
1397 unsigned short mode_flags
;
1399 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1400 mode
&= ~MPOL_MODE_FLAGS
;
1401 if (mode
>= MPOL_MAX
)
1403 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1404 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1406 err
= get_nodes(&nodes
, nmask
, maxnode
);
1409 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1412 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1413 unsigned long, mode
, const unsigned long __user
*, nmask
,
1414 unsigned long, maxnode
, unsigned int, flags
)
1416 return kernel_mbind(start
, len
, mode
, nmask
, maxnode
, flags
);
1419 /* Set the process memory policy */
1420 static long kernel_set_mempolicy(int mode
, const unsigned long __user
*nmask
,
1421 unsigned long maxnode
)
1425 unsigned short flags
;
1427 flags
= mode
& MPOL_MODE_FLAGS
;
1428 mode
&= ~MPOL_MODE_FLAGS
;
1429 if ((unsigned int)mode
>= MPOL_MAX
)
1431 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1433 err
= get_nodes(&nodes
, nmask
, maxnode
);
1436 return do_set_mempolicy(mode
, flags
, &nodes
);
1439 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1440 unsigned long, maxnode
)
1442 return kernel_set_mempolicy(mode
, nmask
, maxnode
);
1445 static int kernel_migrate_pages(pid_t pid
, unsigned long maxnode
,
1446 const unsigned long __user
*old_nodes
,
1447 const unsigned long __user
*new_nodes
)
1449 struct mm_struct
*mm
= NULL
;
1450 struct task_struct
*task
;
1451 nodemask_t task_nodes
;
1455 NODEMASK_SCRATCH(scratch
);
1460 old
= &scratch
->mask1
;
1461 new = &scratch
->mask2
;
1463 err
= get_nodes(old
, old_nodes
, maxnode
);
1467 err
= get_nodes(new, new_nodes
, maxnode
);
1471 /* Find the mm_struct */
1473 task
= pid
? find_task_by_vpid(pid
) : current
;
1479 get_task_struct(task
);
1484 * Check if this process has the right to modify the specified process.
1485 * Use the regular "ptrace_may_access()" checks.
1487 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1494 task_nodes
= cpuset_mems_allowed(task
);
1495 /* Is the user allowed to access the target nodes? */
1496 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1501 task_nodes
= cpuset_mems_allowed(current
);
1502 nodes_and(*new, *new, task_nodes
);
1503 if (nodes_empty(*new))
1506 nodes_and(*new, *new, node_states
[N_MEMORY
]);
1507 if (nodes_empty(*new))
1510 err
= security_task_movememory(task
);
1514 mm
= get_task_mm(task
);
1515 put_task_struct(task
);
1522 err
= do_migrate_pages(mm
, old
, new,
1523 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1527 NODEMASK_SCRATCH_FREE(scratch
);
1532 put_task_struct(task
);
1537 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1538 const unsigned long __user
*, old_nodes
,
1539 const unsigned long __user
*, new_nodes
)
1541 return kernel_migrate_pages(pid
, maxnode
, old_nodes
, new_nodes
);
1545 /* Retrieve NUMA policy */
1546 static int kernel_get_mempolicy(int __user
*policy
,
1547 unsigned long __user
*nmask
,
1548 unsigned long maxnode
,
1550 unsigned long flags
)
1553 int uninitialized_var(pval
);
1556 if (nmask
!= NULL
&& maxnode
< nr_node_ids
)
1559 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1564 if (policy
&& put_user(pval
, policy
))
1568 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1573 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1574 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1575 unsigned long, addr
, unsigned long, flags
)
1577 return kernel_get_mempolicy(policy
, nmask
, maxnode
, addr
, flags
);
1580 #ifdef CONFIG_COMPAT
1582 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1583 compat_ulong_t __user
*, nmask
,
1584 compat_ulong_t
, maxnode
,
1585 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1588 unsigned long __user
*nm
= NULL
;
1589 unsigned long nr_bits
, alloc_size
;
1590 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1592 nr_bits
= min_t(unsigned long, maxnode
-1, nr_node_ids
);
1593 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1596 nm
= compat_alloc_user_space(alloc_size
);
1598 err
= kernel_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1600 if (!err
&& nmask
) {
1601 unsigned long copy_size
;
1602 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1603 err
= copy_from_user(bm
, nm
, copy_size
);
1604 /* ensure entire bitmap is zeroed */
1605 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1606 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1612 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1613 compat_ulong_t
, maxnode
)
1615 unsigned long __user
*nm
= NULL
;
1616 unsigned long nr_bits
, alloc_size
;
1617 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1619 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1620 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1623 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1625 nm
= compat_alloc_user_space(alloc_size
);
1626 if (copy_to_user(nm
, bm
, alloc_size
))
1630 return kernel_set_mempolicy(mode
, nm
, nr_bits
+1);
1633 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1634 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1635 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1637 unsigned long __user
*nm
= NULL
;
1638 unsigned long nr_bits
, alloc_size
;
1641 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1642 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1645 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1647 nm
= compat_alloc_user_space(alloc_size
);
1648 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1652 return kernel_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1655 COMPAT_SYSCALL_DEFINE4(migrate_pages
, compat_pid_t
, pid
,
1656 compat_ulong_t
, maxnode
,
1657 const compat_ulong_t __user
*, old_nodes
,
1658 const compat_ulong_t __user
*, new_nodes
)
1660 unsigned long __user
*old
= NULL
;
1661 unsigned long __user
*new = NULL
;
1662 nodemask_t tmp_mask
;
1663 unsigned long nr_bits
;
1666 nr_bits
= min_t(unsigned long, maxnode
- 1, MAX_NUMNODES
);
1667 size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1669 if (compat_get_bitmap(nodes_addr(tmp_mask
), old_nodes
, nr_bits
))
1671 old
= compat_alloc_user_space(new_nodes
? size
* 2 : size
);
1673 new = old
+ size
/ sizeof(unsigned long);
1674 if (copy_to_user(old
, nodes_addr(tmp_mask
), size
))
1678 if (compat_get_bitmap(nodes_addr(tmp_mask
), new_nodes
, nr_bits
))
1681 new = compat_alloc_user_space(size
);
1682 if (copy_to_user(new, nodes_addr(tmp_mask
), size
))
1685 return kernel_migrate_pages(pid
, nr_bits
+ 1, old
, new);
1688 #endif /* CONFIG_COMPAT */
1690 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1693 struct mempolicy
*pol
= NULL
;
1696 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1697 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1698 } else if (vma
->vm_policy
) {
1699 pol
= vma
->vm_policy
;
1702 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1703 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1704 * count on these policies which will be dropped by
1705 * mpol_cond_put() later
1707 if (mpol_needs_cond_ref(pol
))
1716 * get_vma_policy(@vma, @addr)
1717 * @vma: virtual memory area whose policy is sought
1718 * @addr: address in @vma for shared policy lookup
1720 * Returns effective policy for a VMA at specified address.
1721 * Falls back to current->mempolicy or system default policy, as necessary.
1722 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1723 * count--added by the get_policy() vm_op, as appropriate--to protect against
1724 * freeing by another task. It is the caller's responsibility to free the
1725 * extra reference for shared policies.
1727 static struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1730 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1733 pol
= get_task_policy(current
);
1738 bool vma_policy_mof(struct vm_area_struct
*vma
)
1740 struct mempolicy
*pol
;
1742 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1745 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1746 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1753 pol
= vma
->vm_policy
;
1755 pol
= get_task_policy(current
);
1757 return pol
->flags
& MPOL_F_MOF
;
1760 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1762 enum zone_type dynamic_policy_zone
= policy_zone
;
1764 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1767 * if policy->v.nodes has movable memory only,
1768 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1770 * policy->v.nodes is intersect with node_states[N_MEMORY].
1771 * so if the following test faile, it implies
1772 * policy->v.nodes has movable memory only.
1774 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1775 dynamic_policy_zone
= ZONE_MOVABLE
;
1777 return zone
>= dynamic_policy_zone
;
1781 * Return a nodemask representing a mempolicy for filtering nodes for
1784 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1786 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1787 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1788 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1789 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1790 return &policy
->v
.nodes
;
1795 /* Return the node id preferred by the given mempolicy, or the given id */
1796 static int policy_node(gfp_t gfp
, struct mempolicy
*policy
,
1799 if (policy
->mode
== MPOL_PREFERRED
&& !(policy
->flags
& MPOL_F_LOCAL
))
1800 nd
= policy
->v
.preferred_node
;
1803 * __GFP_THISNODE shouldn't even be used with the bind policy
1804 * because we might easily break the expectation to stay on the
1805 * requested node and not break the policy.
1807 WARN_ON_ONCE(policy
->mode
== MPOL_BIND
&& (gfp
& __GFP_THISNODE
));
1813 /* Do dynamic interleaving for a process */
1814 static unsigned interleave_nodes(struct mempolicy
*policy
)
1817 struct task_struct
*me
= current
;
1819 next
= next_node_in(me
->il_prev
, policy
->v
.nodes
);
1820 if (next
< MAX_NUMNODES
)
1826 * Depending on the memory policy provide a node from which to allocate the
1829 unsigned int mempolicy_slab_node(void)
1831 struct mempolicy
*policy
;
1832 int node
= numa_mem_id();
1837 policy
= current
->mempolicy
;
1838 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1841 switch (policy
->mode
) {
1842 case MPOL_PREFERRED
:
1844 * handled MPOL_F_LOCAL above
1846 return policy
->v
.preferred_node
;
1848 case MPOL_INTERLEAVE
:
1849 return interleave_nodes(policy
);
1855 * Follow bind policy behavior and start allocation at the
1858 struct zonelist
*zonelist
;
1859 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1860 zonelist
= &NODE_DATA(node
)->node_zonelists
[ZONELIST_FALLBACK
];
1861 z
= first_zones_zonelist(zonelist
, highest_zoneidx
,
1863 return z
->zone
? zone_to_nid(z
->zone
) : node
;
1872 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1873 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1874 * number of present nodes.
1876 static unsigned offset_il_node(struct mempolicy
*pol
, unsigned long n
)
1878 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1884 return numa_node_id();
1885 target
= (unsigned int)n
% nnodes
;
1886 nid
= first_node(pol
->v
.nodes
);
1887 for (i
= 0; i
< target
; i
++)
1888 nid
= next_node(nid
, pol
->v
.nodes
);
1892 /* Determine a node number for interleave */
1893 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1894 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1900 * for small pages, there is no difference between
1901 * shift and PAGE_SHIFT, so the bit-shift is safe.
1902 * for huge pages, since vm_pgoff is in units of small
1903 * pages, we need to shift off the always 0 bits to get
1906 BUG_ON(shift
< PAGE_SHIFT
);
1907 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1908 off
+= (addr
- vma
->vm_start
) >> shift
;
1909 return offset_il_node(pol
, off
);
1911 return interleave_nodes(pol
);
1914 #ifdef CONFIG_HUGETLBFS
1916 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1917 * @vma: virtual memory area whose policy is sought
1918 * @addr: address in @vma for shared policy lookup and interleave policy
1919 * @gfp_flags: for requested zone
1920 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1921 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1923 * Returns a nid suitable for a huge page allocation and a pointer
1924 * to the struct mempolicy for conditional unref after allocation.
1925 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1926 * @nodemask for filtering the zonelist.
1928 * Must be protected by read_mems_allowed_begin()
1930 int huge_node(struct vm_area_struct
*vma
, unsigned long addr
, gfp_t gfp_flags
,
1931 struct mempolicy
**mpol
, nodemask_t
**nodemask
)
1935 *mpol
= get_vma_policy(vma
, addr
);
1936 *nodemask
= NULL
; /* assume !MPOL_BIND */
1938 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1939 nid
= interleave_nid(*mpol
, vma
, addr
,
1940 huge_page_shift(hstate_vma(vma
)));
1942 nid
= policy_node(gfp_flags
, *mpol
, numa_node_id());
1943 if ((*mpol
)->mode
== MPOL_BIND
)
1944 *nodemask
= &(*mpol
)->v
.nodes
;
1950 * init_nodemask_of_mempolicy
1952 * If the current task's mempolicy is "default" [NULL], return 'false'
1953 * to indicate default policy. Otherwise, extract the policy nodemask
1954 * for 'bind' or 'interleave' policy into the argument nodemask, or
1955 * initialize the argument nodemask to contain the single node for
1956 * 'preferred' or 'local' policy and return 'true' to indicate presence
1957 * of non-default mempolicy.
1959 * We don't bother with reference counting the mempolicy [mpol_get/put]
1960 * because the current task is examining it's own mempolicy and a task's
1961 * mempolicy is only ever changed by the task itself.
1963 * N.B., it is the caller's responsibility to free a returned nodemask.
1965 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1967 struct mempolicy
*mempolicy
;
1970 if (!(mask
&& current
->mempolicy
))
1974 mempolicy
= current
->mempolicy
;
1975 switch (mempolicy
->mode
) {
1976 case MPOL_PREFERRED
:
1977 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1978 nid
= numa_node_id();
1980 nid
= mempolicy
->v
.preferred_node
;
1981 init_nodemask_of_node(mask
, nid
);
1986 case MPOL_INTERLEAVE
:
1987 *mask
= mempolicy
->v
.nodes
;
1993 task_unlock(current
);
2000 * mempolicy_nodemask_intersects
2002 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2003 * policy. Otherwise, check for intersection between mask and the policy
2004 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2005 * policy, always return true since it may allocate elsewhere on fallback.
2007 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2009 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
2010 const nodemask_t
*mask
)
2012 struct mempolicy
*mempolicy
;
2018 mempolicy
= tsk
->mempolicy
;
2022 switch (mempolicy
->mode
) {
2023 case MPOL_PREFERRED
:
2025 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2026 * allocate from, they may fallback to other nodes when oom.
2027 * Thus, it's possible for tsk to have allocated memory from
2032 case MPOL_INTERLEAVE
:
2033 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
2043 /* Allocate a page in interleaved policy.
2044 Own path because it needs to do special accounting. */
2045 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
2050 page
= __alloc_pages(gfp
, order
, nid
);
2051 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2052 if (!static_branch_likely(&vm_numa_stat_key
))
2054 if (page
&& page_to_nid(page
) == nid
) {
2056 __inc_numa_state(page_zone(page
), NUMA_INTERLEAVE_HIT
);
2063 * alloc_pages_vma - Allocate a page for a VMA.
2066 * %GFP_USER user allocation.
2067 * %GFP_KERNEL kernel allocations,
2068 * %GFP_HIGHMEM highmem/user allocations,
2069 * %GFP_FS allocation should not call back into a file system.
2070 * %GFP_ATOMIC don't sleep.
2072 * @order:Order of the GFP allocation.
2073 * @vma: Pointer to VMA or NULL if not available.
2074 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2075 * @node: Which node to prefer for allocation (modulo policy).
2076 * @hugepage: for hugepages try only the preferred node if possible
2078 * This function allocates a page from the kernel page pool and applies
2079 * a NUMA policy associated with the VMA or the current process.
2080 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2081 * mm_struct of the VMA to prevent it from going away. Should be used for
2082 * all allocations for pages that will be mapped into user space. Returns
2083 * NULL when no page can be allocated.
2086 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
2087 unsigned long addr
, int node
, bool hugepage
)
2089 struct mempolicy
*pol
;
2094 pol
= get_vma_policy(vma
, addr
);
2096 if (pol
->mode
== MPOL_INTERLEAVE
) {
2099 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2101 page
= alloc_page_interleave(gfp
, order
, nid
);
2105 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && hugepage
)) {
2106 int hpage_node
= node
;
2109 * For hugepage allocation and non-interleave policy which
2110 * allows the current node (or other explicitly preferred
2111 * node) we only try to allocate from the current/preferred
2112 * node and don't fall back to other nodes, as the cost of
2113 * remote accesses would likely offset THP benefits.
2115 * If the policy is interleave, or does not allow the current
2116 * node in its nodemask, we allocate the standard way.
2118 if (pol
->mode
== MPOL_PREFERRED
&&
2119 !(pol
->flags
& MPOL_F_LOCAL
))
2120 hpage_node
= pol
->v
.preferred_node
;
2122 nmask
= policy_nodemask(gfp
, pol
);
2123 if (!nmask
|| node_isset(hpage_node
, *nmask
)) {
2126 * We cannot invoke reclaim if __GFP_THISNODE
2127 * is set. Invoking reclaim with
2128 * __GFP_THISNODE set, would cause THP
2129 * allocations to trigger heavy swapping
2130 * despite there may be tons of free memory
2131 * (including potentially plenty of THP
2132 * already available in the buddy) on all the
2135 * At most we could invoke compaction when
2136 * __GFP_THISNODE is set (but we would need to
2137 * refrain from invoking reclaim even if
2138 * compaction returned COMPACT_SKIPPED because
2139 * there wasn't not enough memory to succeed
2140 * compaction). For now just avoid
2141 * __GFP_THISNODE instead of limiting the
2142 * allocation path to a strict and single
2143 * compaction invocation.
2145 * Supposedly if direct reclaim was enabled by
2146 * the caller, the app prefers THP regardless
2147 * of the node it comes from so this would be
2148 * more desiderable behavior than only
2149 * providing THP originated from the local
2150 * node in such case.
2152 if (!(gfp
& __GFP_DIRECT_RECLAIM
))
2153 gfp
|= __GFP_THISNODE
;
2154 page
= __alloc_pages_node(hpage_node
, gfp
, order
);
2159 nmask
= policy_nodemask(gfp
, pol
);
2160 preferred_nid
= policy_node(gfp
, pol
, node
);
2161 page
= __alloc_pages_nodemask(gfp
, order
, preferred_nid
, nmask
);
2168 * alloc_pages_current - Allocate pages.
2171 * %GFP_USER user allocation,
2172 * %GFP_KERNEL kernel allocation,
2173 * %GFP_HIGHMEM highmem allocation,
2174 * %GFP_FS don't call back into a file system.
2175 * %GFP_ATOMIC don't sleep.
2176 * @order: Power of two of allocation size in pages. 0 is a single page.
2178 * Allocate a page from the kernel page pool. When not in
2179 * interrupt context and apply the current process NUMA policy.
2180 * Returns NULL when no page can be allocated.
2182 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2184 struct mempolicy
*pol
= &default_policy
;
2187 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
2188 pol
= get_task_policy(current
);
2191 * No reference counting needed for current->mempolicy
2192 * nor system default_policy
2194 if (pol
->mode
== MPOL_INTERLEAVE
)
2195 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2197 page
= __alloc_pages_nodemask(gfp
, order
,
2198 policy_node(gfp
, pol
, numa_node_id()),
2199 policy_nodemask(gfp
, pol
));
2203 EXPORT_SYMBOL(alloc_pages_current
);
2205 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2207 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2210 return PTR_ERR(pol
);
2211 dst
->vm_policy
= pol
;
2216 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2217 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2218 * with the mems_allowed returned by cpuset_mems_allowed(). This
2219 * keeps mempolicies cpuset relative after its cpuset moves. See
2220 * further kernel/cpuset.c update_nodemask().
2222 * current's mempolicy may be rebinded by the other task(the task that changes
2223 * cpuset's mems), so we needn't do rebind work for current task.
2226 /* Slow path of a mempolicy duplicate */
2227 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2229 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2232 return ERR_PTR(-ENOMEM
);
2234 /* task's mempolicy is protected by alloc_lock */
2235 if (old
== current
->mempolicy
) {
2238 task_unlock(current
);
2242 if (current_cpuset_is_being_rebound()) {
2243 nodemask_t mems
= cpuset_mems_allowed(current
);
2244 mpol_rebind_policy(new, &mems
);
2246 atomic_set(&new->refcnt
, 1);
2250 /* Slow path of a mempolicy comparison */
2251 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2255 if (a
->mode
!= b
->mode
)
2257 if (a
->flags
!= b
->flags
)
2259 if (mpol_store_user_nodemask(a
))
2260 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2266 case MPOL_INTERLEAVE
:
2267 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2268 case MPOL_PREFERRED
:
2269 /* a's ->flags is the same as b's */
2270 if (a
->flags
& MPOL_F_LOCAL
)
2272 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2280 * Shared memory backing store policy support.
2282 * Remember policies even when nobody has shared memory mapped.
2283 * The policies are kept in Red-Black tree linked from the inode.
2284 * They are protected by the sp->lock rwlock, which should be held
2285 * for any accesses to the tree.
2289 * lookup first element intersecting start-end. Caller holds sp->lock for
2290 * reading or for writing
2292 static struct sp_node
*
2293 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2295 struct rb_node
*n
= sp
->root
.rb_node
;
2298 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2300 if (start
>= p
->end
)
2302 else if (end
<= p
->start
)
2310 struct sp_node
*w
= NULL
;
2311 struct rb_node
*prev
= rb_prev(n
);
2314 w
= rb_entry(prev
, struct sp_node
, nd
);
2315 if (w
->end
<= start
)
2319 return rb_entry(n
, struct sp_node
, nd
);
2323 * Insert a new shared policy into the list. Caller holds sp->lock for
2326 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2328 struct rb_node
**p
= &sp
->root
.rb_node
;
2329 struct rb_node
*parent
= NULL
;
2334 nd
= rb_entry(parent
, struct sp_node
, nd
);
2335 if (new->start
< nd
->start
)
2337 else if (new->end
> nd
->end
)
2338 p
= &(*p
)->rb_right
;
2342 rb_link_node(&new->nd
, parent
, p
);
2343 rb_insert_color(&new->nd
, &sp
->root
);
2344 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2345 new->policy
? new->policy
->mode
: 0);
2348 /* Find shared policy intersecting idx */
2350 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2352 struct mempolicy
*pol
= NULL
;
2355 if (!sp
->root
.rb_node
)
2357 read_lock(&sp
->lock
);
2358 sn
= sp_lookup(sp
, idx
, idx
+1);
2360 mpol_get(sn
->policy
);
2363 read_unlock(&sp
->lock
);
2367 static void sp_free(struct sp_node
*n
)
2369 mpol_put(n
->policy
);
2370 kmem_cache_free(sn_cache
, n
);
2374 * mpol_misplaced - check whether current page node is valid in policy
2376 * @page: page to be checked
2377 * @vma: vm area where page mapped
2378 * @addr: virtual address where page mapped
2380 * Lookup current policy node id for vma,addr and "compare to" page's
2384 * -1 - not misplaced, page is in the right node
2385 * node - node id where the page should be
2387 * Policy determination "mimics" alloc_page_vma().
2388 * Called from fault path where we know the vma and faulting address.
2390 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2392 struct mempolicy
*pol
;
2394 int curnid
= page_to_nid(page
);
2395 unsigned long pgoff
;
2396 int thiscpu
= raw_smp_processor_id();
2397 int thisnid
= cpu_to_node(thiscpu
);
2401 pol
= get_vma_policy(vma
, addr
);
2402 if (!(pol
->flags
& MPOL_F_MOF
))
2405 switch (pol
->mode
) {
2406 case MPOL_INTERLEAVE
:
2407 pgoff
= vma
->vm_pgoff
;
2408 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2409 polnid
= offset_il_node(pol
, pgoff
);
2412 case MPOL_PREFERRED
:
2413 if (pol
->flags
& MPOL_F_LOCAL
)
2414 polnid
= numa_node_id();
2416 polnid
= pol
->v
.preferred_node
;
2422 * allows binding to multiple nodes.
2423 * use current page if in policy nodemask,
2424 * else select nearest allowed node, if any.
2425 * If no allowed nodes, use current [!misplaced].
2427 if (node_isset(curnid
, pol
->v
.nodes
))
2429 z
= first_zones_zonelist(
2430 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2431 gfp_zone(GFP_HIGHUSER
),
2433 polnid
= zone_to_nid(z
->zone
);
2440 /* Migrate the page towards the node whose CPU is referencing it */
2441 if (pol
->flags
& MPOL_F_MORON
) {
2444 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2448 if (curnid
!= polnid
)
2457 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2458 * dropped after task->mempolicy is set to NULL so that any allocation done as
2459 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2462 void mpol_put_task_policy(struct task_struct
*task
)
2464 struct mempolicy
*pol
;
2467 pol
= task
->mempolicy
;
2468 task
->mempolicy
= NULL
;
2473 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2475 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2476 rb_erase(&n
->nd
, &sp
->root
);
2480 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2481 unsigned long end
, struct mempolicy
*pol
)
2483 node
->start
= start
;
2488 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2489 struct mempolicy
*pol
)
2492 struct mempolicy
*newpol
;
2494 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2498 newpol
= mpol_dup(pol
);
2499 if (IS_ERR(newpol
)) {
2500 kmem_cache_free(sn_cache
, n
);
2503 newpol
->flags
|= MPOL_F_SHARED
;
2504 sp_node_init(n
, start
, end
, newpol
);
2509 /* Replace a policy range. */
2510 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2511 unsigned long end
, struct sp_node
*new)
2514 struct sp_node
*n_new
= NULL
;
2515 struct mempolicy
*mpol_new
= NULL
;
2519 write_lock(&sp
->lock
);
2520 n
= sp_lookup(sp
, start
, end
);
2521 /* Take care of old policies in the same range. */
2522 while (n
&& n
->start
< end
) {
2523 struct rb_node
*next
= rb_next(&n
->nd
);
2524 if (n
->start
>= start
) {
2530 /* Old policy spanning whole new range. */
2535 *mpol_new
= *n
->policy
;
2536 atomic_set(&mpol_new
->refcnt
, 1);
2537 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2539 sp_insert(sp
, n_new
);
2548 n
= rb_entry(next
, struct sp_node
, nd
);
2552 write_unlock(&sp
->lock
);
2559 kmem_cache_free(sn_cache
, n_new
);
2564 write_unlock(&sp
->lock
);
2566 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2569 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2576 * mpol_shared_policy_init - initialize shared policy for inode
2577 * @sp: pointer to inode shared policy
2578 * @mpol: struct mempolicy to install
2580 * Install non-NULL @mpol in inode's shared policy rb-tree.
2581 * On entry, the current task has a reference on a non-NULL @mpol.
2582 * This must be released on exit.
2583 * This is called at get_inode() calls and we can use GFP_KERNEL.
2585 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2589 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2590 rwlock_init(&sp
->lock
);
2593 struct vm_area_struct pvma
;
2594 struct mempolicy
*new;
2595 NODEMASK_SCRATCH(scratch
);
2599 /* contextualize the tmpfs mount point mempolicy */
2600 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2602 goto free_scratch
; /* no valid nodemask intersection */
2605 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2606 task_unlock(current
);
2610 /* Create pseudo-vma that contains just the policy */
2611 vma_init(&pvma
, NULL
);
2612 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2613 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2616 mpol_put(new); /* drop initial ref */
2618 NODEMASK_SCRATCH_FREE(scratch
);
2620 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2624 int mpol_set_shared_policy(struct shared_policy
*info
,
2625 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2628 struct sp_node
*new = NULL
;
2629 unsigned long sz
= vma_pages(vma
);
2631 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2633 sz
, npol
? npol
->mode
: -1,
2634 npol
? npol
->flags
: -1,
2635 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2638 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2642 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2648 /* Free a backing policy store on inode delete. */
2649 void mpol_free_shared_policy(struct shared_policy
*p
)
2652 struct rb_node
*next
;
2654 if (!p
->root
.rb_node
)
2656 write_lock(&p
->lock
);
2657 next
= rb_first(&p
->root
);
2659 n
= rb_entry(next
, struct sp_node
, nd
);
2660 next
= rb_next(&n
->nd
);
2663 write_unlock(&p
->lock
);
2666 #ifdef CONFIG_NUMA_BALANCING
2667 static int __initdata numabalancing_override
;
2669 static void __init
check_numabalancing_enable(void)
2671 bool numabalancing_default
= false;
2673 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2674 numabalancing_default
= true;
2676 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2677 if (numabalancing_override
)
2678 set_numabalancing_state(numabalancing_override
== 1);
2680 if (num_online_nodes() > 1 && !numabalancing_override
) {
2681 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2682 numabalancing_default
? "Enabling" : "Disabling");
2683 set_numabalancing_state(numabalancing_default
);
2687 static int __init
setup_numabalancing(char *str
)
2693 if (!strcmp(str
, "enable")) {
2694 numabalancing_override
= 1;
2696 } else if (!strcmp(str
, "disable")) {
2697 numabalancing_override
= -1;
2702 pr_warn("Unable to parse numa_balancing=\n");
2706 __setup("numa_balancing=", setup_numabalancing
);
2708 static inline void __init
check_numabalancing_enable(void)
2711 #endif /* CONFIG_NUMA_BALANCING */
2713 /* assumes fs == KERNEL_DS */
2714 void __init
numa_policy_init(void)
2716 nodemask_t interleave_nodes
;
2717 unsigned long largest
= 0;
2718 int nid
, prefer
= 0;
2720 policy_cache
= kmem_cache_create("numa_policy",
2721 sizeof(struct mempolicy
),
2722 0, SLAB_PANIC
, NULL
);
2724 sn_cache
= kmem_cache_create("shared_policy_node",
2725 sizeof(struct sp_node
),
2726 0, SLAB_PANIC
, NULL
);
2728 for_each_node(nid
) {
2729 preferred_node_policy
[nid
] = (struct mempolicy
) {
2730 .refcnt
= ATOMIC_INIT(1),
2731 .mode
= MPOL_PREFERRED
,
2732 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2733 .v
= { .preferred_node
= nid
, },
2738 * Set interleaving policy for system init. Interleaving is only
2739 * enabled across suitably sized nodes (default is >= 16MB), or
2740 * fall back to the largest node if they're all smaller.
2742 nodes_clear(interleave_nodes
);
2743 for_each_node_state(nid
, N_MEMORY
) {
2744 unsigned long total_pages
= node_present_pages(nid
);
2746 /* Preserve the largest node */
2747 if (largest
< total_pages
) {
2748 largest
= total_pages
;
2752 /* Interleave this node? */
2753 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2754 node_set(nid
, interleave_nodes
);
2757 /* All too small, use the largest */
2758 if (unlikely(nodes_empty(interleave_nodes
)))
2759 node_set(prefer
, interleave_nodes
);
2761 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2762 pr_err("%s: interleaving failed\n", __func__
);
2764 check_numabalancing_enable();
2767 /* Reset policy of current process to default */
2768 void numa_default_policy(void)
2770 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2774 * Parse and format mempolicy from/to strings
2778 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2780 static const char * const policy_modes
[] =
2782 [MPOL_DEFAULT
] = "default",
2783 [MPOL_PREFERRED
] = "prefer",
2784 [MPOL_BIND
] = "bind",
2785 [MPOL_INTERLEAVE
] = "interleave",
2786 [MPOL_LOCAL
] = "local",
2792 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2793 * @str: string containing mempolicy to parse
2794 * @mpol: pointer to struct mempolicy pointer, returned on success.
2797 * <mode>[=<flags>][:<nodelist>]
2799 * On success, returns 0, else 1
2801 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2803 struct mempolicy
*new = NULL
;
2804 unsigned short mode
;
2805 unsigned short mode_flags
;
2807 char *nodelist
= strchr(str
, ':');
2808 char *flags
= strchr(str
, '=');
2812 *flags
++ = '\0'; /* terminate mode string */
2815 /* NUL-terminate mode or flags string */
2817 if (nodelist_parse(nodelist
, nodes
))
2819 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2824 for (mode
= 0; mode
< MPOL_MAX
; mode
++) {
2825 if (!strcmp(str
, policy_modes
[mode
])) {
2829 if (mode
>= MPOL_MAX
)
2833 case MPOL_PREFERRED
:
2835 * Insist on a nodelist of one node only, although later
2836 * we use first_node(nodes) to grab a single node, so here
2837 * nodelist (or nodes) cannot be empty.
2840 char *rest
= nodelist
;
2841 while (isdigit(*rest
))
2845 if (nodes_empty(nodes
))
2849 case MPOL_INTERLEAVE
:
2851 * Default to online nodes with memory if no nodelist
2854 nodes
= node_states
[N_MEMORY
];
2858 * Don't allow a nodelist; mpol_new() checks flags
2862 mode
= MPOL_PREFERRED
;
2866 * Insist on a empty nodelist
2873 * Insist on a nodelist
2882 * Currently, we only support two mutually exclusive
2885 if (!strcmp(flags
, "static"))
2886 mode_flags
|= MPOL_F_STATIC_NODES
;
2887 else if (!strcmp(flags
, "relative"))
2888 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2893 new = mpol_new(mode
, mode_flags
, &nodes
);
2898 * Save nodes for mpol_to_str() to show the tmpfs mount options
2899 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2901 if (mode
!= MPOL_PREFERRED
)
2902 new->v
.nodes
= nodes
;
2904 new->v
.preferred_node
= first_node(nodes
);
2906 new->flags
|= MPOL_F_LOCAL
;
2909 * Save nodes for contextualization: this will be used to "clone"
2910 * the mempolicy in a specific context [cpuset] at a later time.
2912 new->w
.user_nodemask
= nodes
;
2917 /* Restore string for error message */
2926 #endif /* CONFIG_TMPFS */
2929 * mpol_to_str - format a mempolicy structure for printing
2930 * @buffer: to contain formatted mempolicy string
2931 * @maxlen: length of @buffer
2932 * @pol: pointer to mempolicy to be formatted
2934 * Convert @pol into a string. If @buffer is too short, truncate the string.
2935 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2936 * longest flag, "relative", and to display at least a few node ids.
2938 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2941 nodemask_t nodes
= NODE_MASK_NONE
;
2942 unsigned short mode
= MPOL_DEFAULT
;
2943 unsigned short flags
= 0;
2945 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2953 case MPOL_PREFERRED
:
2954 if (flags
& MPOL_F_LOCAL
)
2957 node_set(pol
->v
.preferred_node
, nodes
);
2960 case MPOL_INTERLEAVE
:
2961 nodes
= pol
->v
.nodes
;
2965 snprintf(p
, maxlen
, "unknown");
2969 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2971 if (flags
& MPOL_MODE_FLAGS
) {
2972 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2975 * Currently, the only defined flags are mutually exclusive
2977 if (flags
& MPOL_F_STATIC_NODES
)
2978 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2979 else if (flags
& MPOL_F_RELATIVE_NODES
)
2980 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2983 if (!nodes_empty(nodes
))
2984 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
2985 nodemask_pr_args(&nodes
));