1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95,
8 * Asynchronous swapping added 30.12.95. Stephen Tweedie
9 * Removed race in async swapping. 14.4.1996. Bruno Haible
10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
29 static struct bio
*get_swap_bio(gfp_t gfp_flags
,
30 struct page
*page
, bio_end_io_t end_io
)
32 int i
, nr
= hpage_nr_pages(page
);
35 bio
= bio_alloc(gfp_flags
, nr
);
37 struct block_device
*bdev
;
39 bio
->bi_iter
.bi_sector
= map_swap_page(page
, &bdev
);
40 bio_set_dev(bio
, bdev
);
41 bio
->bi_iter
.bi_sector
<<= PAGE_SHIFT
- 9;
42 bio
->bi_end_io
= end_io
;
44 for (i
= 0; i
< nr
; i
++)
45 bio_add_page(bio
, page
+ i
, PAGE_SIZE
, 0);
46 VM_BUG_ON(bio
->bi_iter
.bi_size
!= PAGE_SIZE
* nr
);
51 void end_swap_bio_write(struct bio
*bio
)
53 struct page
*page
= bio_first_page_all(bio
);
58 * We failed to write the page out to swap-space.
59 * Re-dirty the page in order to avoid it being reclaimed.
60 * Also print a dire warning that things will go BAD (tm)
63 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
66 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
67 MAJOR(bio_dev(bio
)), MINOR(bio_dev(bio
)),
68 (unsigned long long)bio
->bi_iter
.bi_sector
);
69 ClearPageReclaim(page
);
71 end_page_writeback(page
);
75 static void swap_slot_free_notify(struct page
*page
)
77 struct swap_info_struct
*sis
;
82 * There is no guarantee that the page is in swap cache - the software
83 * suspend code (at least) uses end_swap_bio_read() against a non-
84 * swapcache page. So we must check PG_swapcache before proceeding with
87 if (unlikely(!PageSwapCache(page
)))
90 sis
= page_swap_info(page
);
91 if (!(sis
->flags
& SWP_BLKDEV
))
95 * The swap subsystem performs lazy swap slot freeing,
96 * expecting that the page will be swapped out again.
97 * So we can avoid an unnecessary write if the page
99 * This is good for real swap storage because we can
100 * reduce unnecessary I/O and enhance wear-leveling
101 * if an SSD is used as the as swap device.
102 * But if in-memory swap device (eg zram) is used,
103 * this causes a duplicated copy between uncompressed
104 * data in VM-owned memory and compressed data in
105 * zram-owned memory. So let's free zram-owned memory
106 * and make the VM-owned decompressed page *dirty*,
107 * so the page should be swapped out somewhere again if
108 * we again wish to reclaim it.
110 disk
= sis
->bdev
->bd_disk
;
111 entry
.val
= page_private(page
);
112 if (disk
->fops
->swap_slot_free_notify
&&
113 __swap_count(sis
, entry
) == 1) {
114 unsigned long offset
;
116 offset
= swp_offset(entry
);
119 disk
->fops
->swap_slot_free_notify(sis
->bdev
,
124 static void end_swap_bio_read(struct bio
*bio
)
126 struct page
*page
= bio_first_page_all(bio
);
127 struct task_struct
*waiter
= bio
->bi_private
;
129 if (bio
->bi_status
) {
131 ClearPageUptodate(page
);
132 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
133 MAJOR(bio_dev(bio
)), MINOR(bio_dev(bio
)),
134 (unsigned long long)bio
->bi_iter
.bi_sector
);
138 SetPageUptodate(page
);
139 swap_slot_free_notify(page
);
142 WRITE_ONCE(bio
->bi_private
, NULL
);
144 wake_up_process(waiter
);
145 put_task_struct(waiter
);
148 int generic_swapfile_activate(struct swap_info_struct
*sis
,
149 struct file
*swap_file
,
152 struct address_space
*mapping
= swap_file
->f_mapping
;
153 struct inode
*inode
= mapping
->host
;
154 unsigned blocks_per_page
;
155 unsigned long page_no
;
157 sector_t probe_block
;
159 sector_t lowest_block
= -1;
160 sector_t highest_block
= 0;
164 blkbits
= inode
->i_blkbits
;
165 blocks_per_page
= PAGE_SIZE
>> blkbits
;
168 * Map all the blocks into the extent list. This code doesn't try
173 last_block
= i_size_read(inode
) >> blkbits
;
174 while ((probe_block
+ blocks_per_page
) <= last_block
&&
175 page_no
< sis
->max
) {
176 unsigned block_in_page
;
177 sector_t first_block
;
181 first_block
= bmap(inode
, probe_block
);
182 if (first_block
== 0)
186 * It must be PAGE_SIZE aligned on-disk
188 if (first_block
& (blocks_per_page
- 1)) {
193 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
197 block
= bmap(inode
, probe_block
+ block_in_page
);
200 if (block
!= first_block
+ block_in_page
) {
207 first_block
>>= (PAGE_SHIFT
- blkbits
);
208 if (page_no
) { /* exclude the header page */
209 if (first_block
< lowest_block
)
210 lowest_block
= first_block
;
211 if (first_block
> highest_block
)
212 highest_block
= first_block
;
216 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
218 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
223 probe_block
+= blocks_per_page
;
228 *span
= 1 + highest_block
- lowest_block
;
230 page_no
= 1; /* force Empty message */
232 sis
->pages
= page_no
- 1;
233 sis
->highest_bit
= page_no
- 1;
237 pr_err("swapon: swapfile has holes\n");
243 * We may have stale swap cache pages in memory: notice
244 * them here and get rid of the unnecessary final write.
246 int swap_writepage(struct page
*page
, struct writeback_control
*wbc
)
250 if (try_to_free_swap(page
)) {
254 if (frontswap_store(page
) == 0) {
255 set_page_writeback(page
);
257 end_page_writeback(page
);
260 ret
= __swap_writepage(page
, wbc
, end_swap_bio_write
);
265 static sector_t
swap_page_sector(struct page
*page
)
267 return (sector_t
)__page_file_index(page
) << (PAGE_SHIFT
- 9);
270 static inline void count_swpout_vm_event(struct page
*page
)
272 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
273 if (unlikely(PageTransHuge(page
)))
274 count_vm_event(THP_SWPOUT
);
276 count_vm_events(PSWPOUT
, hpage_nr_pages(page
));
279 int __swap_writepage(struct page
*page
, struct writeback_control
*wbc
,
280 bio_end_io_t end_write_func
)
284 struct swap_info_struct
*sis
= page_swap_info(page
);
286 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
287 if (sis
->flags
& SWP_FILE
) {
289 struct file
*swap_file
= sis
->swap_file
;
290 struct address_space
*mapping
= swap_file
->f_mapping
;
291 struct bio_vec bv
= {
296 struct iov_iter from
;
298 iov_iter_bvec(&from
, ITER_BVEC
| WRITE
, &bv
, 1, PAGE_SIZE
);
299 init_sync_kiocb(&kiocb
, swap_file
);
300 kiocb
.ki_pos
= page_file_offset(page
);
302 set_page_writeback(page
);
304 ret
= mapping
->a_ops
->direct_IO(&kiocb
, &from
);
305 if (ret
== PAGE_SIZE
) {
306 count_vm_event(PSWPOUT
);
310 * In the case of swap-over-nfs, this can be a
311 * temporary failure if the system has limited
312 * memory for allocating transmit buffers.
313 * Mark the page dirty and avoid
314 * rotate_reclaimable_page but rate-limit the
315 * messages but do not flag PageError like
316 * the normal direct-to-bio case as it could
319 set_page_dirty(page
);
320 ClearPageReclaim(page
);
321 pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
322 page_file_offset(page
));
324 end_page_writeback(page
);
328 ret
= bdev_write_page(sis
->bdev
, swap_page_sector(page
), page
, wbc
);
330 count_swpout_vm_event(page
);
335 bio
= get_swap_bio(GFP_NOIO
, page
, end_write_func
);
337 set_page_dirty(page
);
342 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SWAP
| wbc_to_write_flags(wbc
);
343 bio_associate_blkcg_from_page(bio
, page
);
344 count_swpout_vm_event(page
);
345 set_page_writeback(page
);
352 int swap_readpage(struct page
*page
, bool synchronous
)
356 struct swap_info_struct
*sis
= page_swap_info(page
);
358 struct gendisk
*disk
;
360 VM_BUG_ON_PAGE(!PageSwapCache(page
) && !synchronous
, page
);
361 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
362 VM_BUG_ON_PAGE(PageUptodate(page
), page
);
363 if (frontswap_load(page
) == 0) {
364 SetPageUptodate(page
);
369 if (sis
->flags
& SWP_FILE
) {
370 struct file
*swap_file
= sis
->swap_file
;
371 struct address_space
*mapping
= swap_file
->f_mapping
;
373 ret
= mapping
->a_ops
->readpage(swap_file
, page
);
375 count_vm_event(PSWPIN
);
379 ret
= bdev_read_page(sis
->bdev
, swap_page_sector(page
), page
);
381 if (trylock_page(page
)) {
382 swap_slot_free_notify(page
);
386 count_vm_event(PSWPIN
);
391 bio
= get_swap_bio(GFP_KERNEL
, page
, end_swap_bio_read
);
399 * Keep this task valid during swap readpage because the oom killer may
400 * attempt to access it in the page fault retry time check.
402 get_task_struct(current
);
403 bio
->bi_private
= current
;
404 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
405 count_vm_event(PSWPIN
);
407 qc
= submit_bio(bio
);
408 while (synchronous
) {
409 set_current_state(TASK_UNINTERRUPTIBLE
);
410 if (!READ_ONCE(bio
->bi_private
))
413 if (!blk_poll(disk
->queue
, qc
))
416 __set_current_state(TASK_RUNNING
);
423 int swap_set_page_dirty(struct page
*page
)
425 struct swap_info_struct
*sis
= page_swap_info(page
);
427 if (sis
->flags
& SWP_FILE
) {
428 struct address_space
*mapping
= sis
->swap_file
->f_mapping
;
430 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
431 return mapping
->a_ops
->set_page_dirty(page
);
433 return __set_page_dirty_no_writeback(page
);