Linux 4.19.168
[linux/fpc-iii.git] / mm / swap_state.c
blob3febffe0fca4a8edc06580c00ec2684bea4952d0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
25 #include <asm/pgtable.h>
26 #include "internal.h"
29 * swapper_space is a fiction, retained to simplify the path through
30 * vmscan's shrink_page_list.
32 static const struct address_space_operations swap_aops = {
33 .writepage = swap_writepage,
34 .set_page_dirty = swap_set_page_dirty,
35 #ifdef CONFIG_MIGRATION
36 .migratepage = migrate_page,
37 #endif
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
53 #define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
62 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
63 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
65 static struct {
66 unsigned long add_total;
67 unsigned long del_total;
68 unsigned long find_success;
69 unsigned long find_total;
70 } swap_cache_info;
72 unsigned long total_swapcache_pages(void)
74 unsigned int i, j, nr;
75 unsigned long ret = 0;
76 struct address_space *spaces;
78 rcu_read_lock();
79 for (i = 0; i < MAX_SWAPFILES; i++) {
81 * The corresponding entries in nr_swapper_spaces and
82 * swapper_spaces will be reused only after at least
83 * one grace period. So it is impossible for them
84 * belongs to different usage.
86 nr = nr_swapper_spaces[i];
87 spaces = rcu_dereference(swapper_spaces[i]);
88 if (!nr || !spaces)
89 continue;
90 for (j = 0; j < nr; j++)
91 ret += spaces[j].nrpages;
93 rcu_read_unlock();
94 return ret;
97 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
99 void show_swap_cache_info(void)
101 printk("%lu pages in swap cache\n", total_swapcache_pages());
102 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
103 swap_cache_info.add_total, swap_cache_info.del_total,
104 swap_cache_info.find_success, swap_cache_info.find_total);
105 printk("Free swap = %ldkB\n",
106 get_nr_swap_pages() << (PAGE_SHIFT - 10));
107 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
111 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
112 * but sets SwapCache flag and private instead of mapping and index.
114 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
116 int error, i, nr = hpage_nr_pages(page);
117 struct address_space *address_space;
118 pgoff_t idx = swp_offset(entry);
120 VM_BUG_ON_PAGE(!PageLocked(page), page);
121 VM_BUG_ON_PAGE(PageSwapCache(page), page);
122 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
124 page_ref_add(page, nr);
125 SetPageSwapCache(page);
127 address_space = swap_address_space(entry);
128 xa_lock_irq(&address_space->i_pages);
129 for (i = 0; i < nr; i++) {
130 set_page_private(page + i, entry.val + i);
131 error = radix_tree_insert(&address_space->i_pages,
132 idx + i, page + i);
133 if (unlikely(error))
134 break;
136 if (likely(!error)) {
137 address_space->nrpages += nr;
138 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
139 ADD_CACHE_INFO(add_total, nr);
140 } else {
142 * Only the context which have set SWAP_HAS_CACHE flag
143 * would call add_to_swap_cache().
144 * So add_to_swap_cache() doesn't returns -EEXIST.
146 VM_BUG_ON(error == -EEXIST);
147 set_page_private(page + i, 0UL);
148 while (i--) {
149 radix_tree_delete(&address_space->i_pages, idx + i);
150 set_page_private(page + i, 0UL);
152 ClearPageSwapCache(page);
153 page_ref_sub(page, nr);
155 xa_unlock_irq(&address_space->i_pages);
157 return error;
161 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
163 int error;
165 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
166 if (!error) {
167 error = __add_to_swap_cache(page, entry);
168 radix_tree_preload_end();
170 return error;
174 * This must be called only on pages that have
175 * been verified to be in the swap cache.
177 void __delete_from_swap_cache(struct page *page)
179 struct address_space *address_space;
180 int i, nr = hpage_nr_pages(page);
181 swp_entry_t entry;
182 pgoff_t idx;
184 VM_BUG_ON_PAGE(!PageLocked(page), page);
185 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
186 VM_BUG_ON_PAGE(PageWriteback(page), page);
188 entry.val = page_private(page);
189 address_space = swap_address_space(entry);
190 idx = swp_offset(entry);
191 for (i = 0; i < nr; i++) {
192 radix_tree_delete(&address_space->i_pages, idx + i);
193 set_page_private(page + i, 0);
195 ClearPageSwapCache(page);
196 address_space->nrpages -= nr;
197 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
198 ADD_CACHE_INFO(del_total, nr);
202 * add_to_swap - allocate swap space for a page
203 * @page: page we want to move to swap
205 * Allocate swap space for the page and add the page to the
206 * swap cache. Caller needs to hold the page lock.
208 int add_to_swap(struct page *page)
210 swp_entry_t entry;
211 int err;
213 VM_BUG_ON_PAGE(!PageLocked(page), page);
214 VM_BUG_ON_PAGE(!PageUptodate(page), page);
216 entry = get_swap_page(page);
217 if (!entry.val)
218 return 0;
221 * Radix-tree node allocations from PF_MEMALLOC contexts could
222 * completely exhaust the page allocator. __GFP_NOMEMALLOC
223 * stops emergency reserves from being allocated.
225 * TODO: this could cause a theoretical memory reclaim
226 * deadlock in the swap out path.
229 * Add it to the swap cache.
231 err = add_to_swap_cache(page, entry,
232 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
233 /* -ENOMEM radix-tree allocation failure */
234 if (err)
236 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
237 * clear SWAP_HAS_CACHE flag.
239 goto fail;
241 * Normally the page will be dirtied in unmap because its pte should be
242 * dirty. A special case is MADV_FREE page. The page'e pte could have
243 * dirty bit cleared but the page's SwapBacked bit is still set because
244 * clearing the dirty bit and SwapBacked bit has no lock protected. For
245 * such page, unmap will not set dirty bit for it, so page reclaim will
246 * not write the page out. This can cause data corruption when the page
247 * is swap in later. Always setting the dirty bit for the page solves
248 * the problem.
250 set_page_dirty(page);
252 return 1;
254 fail:
255 put_swap_page(page, entry);
256 return 0;
260 * This must be called only on pages that have
261 * been verified to be in the swap cache and locked.
262 * It will never put the page into the free list,
263 * the caller has a reference on the page.
265 void delete_from_swap_cache(struct page *page)
267 swp_entry_t entry;
268 struct address_space *address_space;
270 entry.val = page_private(page);
272 address_space = swap_address_space(entry);
273 xa_lock_irq(&address_space->i_pages);
274 __delete_from_swap_cache(page);
275 xa_unlock_irq(&address_space->i_pages);
277 put_swap_page(page, entry);
278 page_ref_sub(page, hpage_nr_pages(page));
282 * If we are the only user, then try to free up the swap cache.
284 * Its ok to check for PageSwapCache without the page lock
285 * here because we are going to recheck again inside
286 * try_to_free_swap() _with_ the lock.
287 * - Marcelo
289 static inline void free_swap_cache(struct page *page)
291 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
292 try_to_free_swap(page);
293 unlock_page(page);
298 * Perform a free_page(), also freeing any swap cache associated with
299 * this page if it is the last user of the page.
301 void free_page_and_swap_cache(struct page *page)
303 free_swap_cache(page);
304 if (!is_huge_zero_page(page))
305 put_page(page);
309 * Passed an array of pages, drop them all from swapcache and then release
310 * them. They are removed from the LRU and freed if this is their last use.
312 void free_pages_and_swap_cache(struct page **pages, int nr)
314 struct page **pagep = pages;
315 int i;
317 lru_add_drain();
318 for (i = 0; i < nr; i++)
319 free_swap_cache(pagep[i]);
320 release_pages(pagep, nr);
323 static inline bool swap_use_vma_readahead(void)
325 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
329 * Lookup a swap entry in the swap cache. A found page will be returned
330 * unlocked and with its refcount incremented - we rely on the kernel
331 * lock getting page table operations atomic even if we drop the page
332 * lock before returning.
334 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
335 unsigned long addr)
337 struct page *page;
339 page = find_get_page(swap_address_space(entry), swp_offset(entry));
341 INC_CACHE_INFO(find_total);
342 if (page) {
343 bool vma_ra = swap_use_vma_readahead();
344 bool readahead;
346 INC_CACHE_INFO(find_success);
348 * At the moment, we don't support PG_readahead for anon THP
349 * so let's bail out rather than confusing the readahead stat.
351 if (unlikely(PageTransCompound(page)))
352 return page;
354 readahead = TestClearPageReadahead(page);
355 if (vma && vma_ra) {
356 unsigned long ra_val;
357 int win, hits;
359 ra_val = GET_SWAP_RA_VAL(vma);
360 win = SWAP_RA_WIN(ra_val);
361 hits = SWAP_RA_HITS(ra_val);
362 if (readahead)
363 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
364 atomic_long_set(&vma->swap_readahead_info,
365 SWAP_RA_VAL(addr, win, hits));
368 if (readahead) {
369 count_vm_event(SWAP_RA_HIT);
370 if (!vma || !vma_ra)
371 atomic_inc(&swapin_readahead_hits);
375 return page;
378 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
379 struct vm_area_struct *vma, unsigned long addr,
380 bool *new_page_allocated)
382 struct page *found_page, *new_page = NULL;
383 struct address_space *swapper_space = swap_address_space(entry);
384 int err;
385 *new_page_allocated = false;
387 do {
389 * First check the swap cache. Since this is normally
390 * called after lookup_swap_cache() failed, re-calling
391 * that would confuse statistics.
393 found_page = find_get_page(swapper_space, swp_offset(entry));
394 if (found_page)
395 break;
398 * Just skip read ahead for unused swap slot.
399 * During swap_off when swap_slot_cache is disabled,
400 * we have to handle the race between putting
401 * swap entry in swap cache and marking swap slot
402 * as SWAP_HAS_CACHE. That's done in later part of code or
403 * else swap_off will be aborted if we return NULL.
405 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
406 break;
409 * Get a new page to read into from swap.
411 if (!new_page) {
412 new_page = alloc_page_vma(gfp_mask, vma, addr);
413 if (!new_page)
414 break; /* Out of memory */
418 * call radix_tree_preload() while we can wait.
420 err = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
421 if (err)
422 break;
425 * Swap entry may have been freed since our caller observed it.
427 err = swapcache_prepare(entry);
428 if (err == -EEXIST) {
429 radix_tree_preload_end();
431 * We might race against get_swap_page() and stumble
432 * across a SWAP_HAS_CACHE swap_map entry whose page
433 * has not been brought into the swapcache yet.
435 cond_resched();
436 continue;
438 if (err) { /* swp entry is obsolete ? */
439 radix_tree_preload_end();
440 break;
443 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
444 __SetPageLocked(new_page);
445 __SetPageSwapBacked(new_page);
446 err = __add_to_swap_cache(new_page, entry);
447 if (likely(!err)) {
448 radix_tree_preload_end();
450 * Initiate read into locked page and return.
452 lru_cache_add_anon(new_page);
453 *new_page_allocated = true;
454 return new_page;
456 radix_tree_preload_end();
457 __ClearPageLocked(new_page);
459 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
460 * clear SWAP_HAS_CACHE flag.
462 put_swap_page(new_page, entry);
463 } while (err != -ENOMEM);
465 if (new_page)
466 put_page(new_page);
467 return found_page;
471 * Locate a page of swap in physical memory, reserving swap cache space
472 * and reading the disk if it is not already cached.
473 * A failure return means that either the page allocation failed or that
474 * the swap entry is no longer in use.
476 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
477 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
479 bool page_was_allocated;
480 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
481 vma, addr, &page_was_allocated);
483 if (page_was_allocated)
484 swap_readpage(retpage, do_poll);
486 return retpage;
489 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
490 unsigned long offset,
491 int hits,
492 int max_pages,
493 int prev_win)
495 unsigned int pages, last_ra;
498 * This heuristic has been found to work well on both sequential and
499 * random loads, swapping to hard disk or to SSD: please don't ask
500 * what the "+ 2" means, it just happens to work well, that's all.
502 pages = hits + 2;
503 if (pages == 2) {
505 * We can have no readahead hits to judge by: but must not get
506 * stuck here forever, so check for an adjacent offset instead
507 * (and don't even bother to check whether swap type is same).
509 if (offset != prev_offset + 1 && offset != prev_offset - 1)
510 pages = 1;
511 } else {
512 unsigned int roundup = 4;
513 while (roundup < pages)
514 roundup <<= 1;
515 pages = roundup;
518 if (pages > max_pages)
519 pages = max_pages;
521 /* Don't shrink readahead too fast */
522 last_ra = prev_win / 2;
523 if (pages < last_ra)
524 pages = last_ra;
526 return pages;
529 static unsigned long swapin_nr_pages(unsigned long offset)
531 static unsigned long prev_offset;
532 unsigned int hits, pages, max_pages;
533 static atomic_t last_readahead_pages;
535 max_pages = 1 << READ_ONCE(page_cluster);
536 if (max_pages <= 1)
537 return 1;
539 hits = atomic_xchg(&swapin_readahead_hits, 0);
540 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
541 max_pages,
542 atomic_read(&last_readahead_pages));
543 if (!hits)
544 WRITE_ONCE(prev_offset, offset);
545 atomic_set(&last_readahead_pages, pages);
547 return pages;
551 * swap_cluster_readahead - swap in pages in hope we need them soon
552 * @entry: swap entry of this memory
553 * @gfp_mask: memory allocation flags
554 * @vmf: fault information
556 * Returns the struct page for entry and addr, after queueing swapin.
558 * Primitive swap readahead code. We simply read an aligned block of
559 * (1 << page_cluster) entries in the swap area. This method is chosen
560 * because it doesn't cost us any seek time. We also make sure to queue
561 * the 'original' request together with the readahead ones...
563 * This has been extended to use the NUMA policies from the mm triggering
564 * the readahead.
566 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
568 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
569 struct vm_fault *vmf)
571 struct page *page;
572 unsigned long entry_offset = swp_offset(entry);
573 unsigned long offset = entry_offset;
574 unsigned long start_offset, end_offset;
575 unsigned long mask;
576 struct swap_info_struct *si = swp_swap_info(entry);
577 struct blk_plug plug;
578 bool do_poll = true, page_allocated;
579 struct vm_area_struct *vma = vmf->vma;
580 unsigned long addr = vmf->address;
582 mask = swapin_nr_pages(offset) - 1;
583 if (!mask)
584 goto skip;
586 do_poll = false;
587 /* Read a page_cluster sized and aligned cluster around offset. */
588 start_offset = offset & ~mask;
589 end_offset = offset | mask;
590 if (!start_offset) /* First page is swap header. */
591 start_offset++;
592 if (end_offset >= si->max)
593 end_offset = si->max - 1;
595 blk_start_plug(&plug);
596 for (offset = start_offset; offset <= end_offset ; offset++) {
597 /* Ok, do the async read-ahead now */
598 page = __read_swap_cache_async(
599 swp_entry(swp_type(entry), offset),
600 gfp_mask, vma, addr, &page_allocated);
601 if (!page)
602 continue;
603 if (page_allocated) {
604 swap_readpage(page, false);
605 if (offset != entry_offset) {
606 SetPageReadahead(page);
607 count_vm_event(SWAP_RA);
610 put_page(page);
612 blk_finish_plug(&plug);
614 lru_add_drain(); /* Push any new pages onto the LRU now */
615 skip:
616 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
619 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
621 struct address_space *spaces, *space;
622 unsigned int i, nr;
624 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
625 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
626 if (!spaces)
627 return -ENOMEM;
628 for (i = 0; i < nr; i++) {
629 space = spaces + i;
630 INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN);
631 atomic_set(&space->i_mmap_writable, 0);
632 space->a_ops = &swap_aops;
633 /* swap cache doesn't use writeback related tags */
634 mapping_set_no_writeback_tags(space);
636 nr_swapper_spaces[type] = nr;
637 rcu_assign_pointer(swapper_spaces[type], spaces);
639 return 0;
642 void exit_swap_address_space(unsigned int type)
644 struct address_space *spaces;
646 spaces = swapper_spaces[type];
647 nr_swapper_spaces[type] = 0;
648 rcu_assign_pointer(swapper_spaces[type], NULL);
649 synchronize_rcu();
650 kvfree(spaces);
653 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
654 unsigned long faddr,
655 unsigned long lpfn,
656 unsigned long rpfn,
657 unsigned long *start,
658 unsigned long *end)
660 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
661 PFN_DOWN(faddr & PMD_MASK));
662 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
663 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
666 static void swap_ra_info(struct vm_fault *vmf,
667 struct vma_swap_readahead *ra_info)
669 struct vm_area_struct *vma = vmf->vma;
670 unsigned long ra_val;
671 swp_entry_t entry;
672 unsigned long faddr, pfn, fpfn;
673 unsigned long start, end;
674 pte_t *pte, *orig_pte;
675 unsigned int max_win, hits, prev_win, win, left;
676 #ifndef CONFIG_64BIT
677 pte_t *tpte;
678 #endif
680 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
681 SWAP_RA_ORDER_CEILING);
682 if (max_win == 1) {
683 ra_info->win = 1;
684 return;
687 faddr = vmf->address;
688 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
689 entry = pte_to_swp_entry(*pte);
690 if ((unlikely(non_swap_entry(entry)))) {
691 pte_unmap(orig_pte);
692 return;
695 fpfn = PFN_DOWN(faddr);
696 ra_val = GET_SWAP_RA_VAL(vma);
697 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
698 prev_win = SWAP_RA_WIN(ra_val);
699 hits = SWAP_RA_HITS(ra_val);
700 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
701 max_win, prev_win);
702 atomic_long_set(&vma->swap_readahead_info,
703 SWAP_RA_VAL(faddr, win, 0));
705 if (win == 1) {
706 pte_unmap(orig_pte);
707 return;
710 /* Copy the PTEs because the page table may be unmapped */
711 if (fpfn == pfn + 1)
712 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
713 else if (pfn == fpfn + 1)
714 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
715 &start, &end);
716 else {
717 left = (win - 1) / 2;
718 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
719 &start, &end);
721 ra_info->nr_pte = end - start;
722 ra_info->offset = fpfn - start;
723 pte -= ra_info->offset;
724 #ifdef CONFIG_64BIT
725 ra_info->ptes = pte;
726 #else
727 tpte = ra_info->ptes;
728 for (pfn = start; pfn != end; pfn++)
729 *tpte++ = *pte++;
730 #endif
731 pte_unmap(orig_pte);
734 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
735 struct vm_fault *vmf)
737 struct blk_plug plug;
738 struct vm_area_struct *vma = vmf->vma;
739 struct page *page;
740 pte_t *pte, pentry;
741 swp_entry_t entry;
742 unsigned int i;
743 bool page_allocated;
744 struct vma_swap_readahead ra_info = {0,};
746 swap_ra_info(vmf, &ra_info);
747 if (ra_info.win == 1)
748 goto skip;
750 blk_start_plug(&plug);
751 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
752 i++, pte++) {
753 pentry = *pte;
754 if (pte_none(pentry))
755 continue;
756 if (pte_present(pentry))
757 continue;
758 entry = pte_to_swp_entry(pentry);
759 if (unlikely(non_swap_entry(entry)))
760 continue;
761 page = __read_swap_cache_async(entry, gfp_mask, vma,
762 vmf->address, &page_allocated);
763 if (!page)
764 continue;
765 if (page_allocated) {
766 swap_readpage(page, false);
767 if (i != ra_info.offset) {
768 SetPageReadahead(page);
769 count_vm_event(SWAP_RA);
772 put_page(page);
774 blk_finish_plug(&plug);
775 lru_add_drain();
776 skip:
777 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
778 ra_info.win == 1);
782 * swapin_readahead - swap in pages in hope we need them soon
783 * @entry: swap entry of this memory
784 * @gfp_mask: memory allocation flags
785 * @vmf: fault information
787 * Returns the struct page for entry and addr, after queueing swapin.
789 * It's a main entry function for swap readahead. By the configuration,
790 * it will read ahead blocks by cluster-based(ie, physical disk based)
791 * or vma-based(ie, virtual address based on faulty address) readahead.
793 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
794 struct vm_fault *vmf)
796 return swap_use_vma_readahead() ?
797 swap_vma_readahead(entry, gfp_mask, vmf) :
798 swap_cluster_readahead(entry, gfp_mask, vmf);
801 #ifdef CONFIG_SYSFS
802 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
803 struct kobj_attribute *attr, char *buf)
805 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
807 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
808 struct kobj_attribute *attr,
809 const char *buf, size_t count)
811 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
812 enable_vma_readahead = true;
813 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
814 enable_vma_readahead = false;
815 else
816 return -EINVAL;
818 return count;
820 static struct kobj_attribute vma_ra_enabled_attr =
821 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
822 vma_ra_enabled_store);
824 static struct attribute *swap_attrs[] = {
825 &vma_ra_enabled_attr.attr,
826 NULL,
829 static struct attribute_group swap_attr_group = {
830 .attrs = swap_attrs,
833 static int __init swap_init_sysfs(void)
835 int err;
836 struct kobject *swap_kobj;
838 swap_kobj = kobject_create_and_add("swap", mm_kobj);
839 if (!swap_kobj) {
840 pr_err("failed to create swap kobject\n");
841 return -ENOMEM;
843 err = sysfs_create_group(swap_kobj, &swap_attr_group);
844 if (err) {
845 pr_err("failed to register swap group\n");
846 goto delete_obj;
848 return 0;
850 delete_obj:
851 kobject_put(swap_kobj);
852 return err;
854 subsys_initcall(swap_init_sysfs);
855 #endif